]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/core/unit.c
core: don't check potentially NULL error, it's not gonna work anyway
[thirdparty/systemd.git] / src / core / unit.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <sys/prctl.h>
6 #include <unistd.h>
7
8 #include "sd-id128.h"
9 #include "sd-messages.h"
10
11 #include "all-units.h"
12 #include "alloc-util.h"
13 #include "bpf-firewall.h"
14 #include "bus-common-errors.h"
15 #include "bus-util.h"
16 #include "cgroup-setup.h"
17 #include "cgroup-util.h"
18 #include "dbus-unit.h"
19 #include "dbus.h"
20 #include "dropin.h"
21 #include "escape.h"
22 #include "execute.h"
23 #include "fd-util.h"
24 #include "fileio-label.h"
25 #include "fileio.h"
26 #include "format-util.h"
27 #include "fs-util.h"
28 #include "id128-util.h"
29 #include "io-util.h"
30 #include "install.h"
31 #include "load-dropin.h"
32 #include "load-fragment.h"
33 #include "log.h"
34 #include "macro.h"
35 #include "missing_audit.h"
36 #include "mkdir.h"
37 #include "parse-util.h"
38 #include "path-util.h"
39 #include "process-util.h"
40 #include "rm-rf.h"
41 #include "serialize.h"
42 #include "set.h"
43 #include "signal-util.h"
44 #include "sparse-endian.h"
45 #include "special.h"
46 #include "specifier.h"
47 #include "stat-util.h"
48 #include "stdio-util.h"
49 #include "string-table.h"
50 #include "string-util.h"
51 #include "strv.h"
52 #include "terminal-util.h"
53 #include "tmpfile-util.h"
54 #include "umask-util.h"
55 #include "unit-name.h"
56 #include "unit.h"
57 #include "user-util.h"
58 #include "virt.h"
59
60 /* Thresholds for logging at INFO level about resource consumption */
61 #define MENTIONWORTHY_CPU_NSEC (1 * NSEC_PER_SEC)
62 #define MENTIONWORTHY_IO_BYTES (1024 * 1024ULL)
63 #define MENTIONWORTHY_IP_BYTES (0ULL)
64
65 /* Thresholds for logging at INFO level about resource consumption */
66 #define NOTICEWORTHY_CPU_NSEC (10*60 * NSEC_PER_SEC) /* 10 minutes */
67 #define NOTICEWORTHY_IO_BYTES (10 * 1024 * 1024ULL) /* 10 MB */
68 #define NOTICEWORTHY_IP_BYTES (128 * 1024 * 1024ULL) /* 128 MB */
69
70 const UnitVTable * const unit_vtable[_UNIT_TYPE_MAX] = {
71 [UNIT_SERVICE] = &service_vtable,
72 [UNIT_SOCKET] = &socket_vtable,
73 [UNIT_TARGET] = &target_vtable,
74 [UNIT_DEVICE] = &device_vtable,
75 [UNIT_MOUNT] = &mount_vtable,
76 [UNIT_AUTOMOUNT] = &automount_vtable,
77 [UNIT_SWAP] = &swap_vtable,
78 [UNIT_TIMER] = &timer_vtable,
79 [UNIT_PATH] = &path_vtable,
80 [UNIT_SLICE] = &slice_vtable,
81 [UNIT_SCOPE] = &scope_vtable,
82 };
83
84 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency);
85
86 Unit *unit_new(Manager *m, size_t size) {
87 Unit *u;
88
89 assert(m);
90 assert(size >= sizeof(Unit));
91
92 u = malloc0(size);
93 if (!u)
94 return NULL;
95
96 u->names = set_new(&string_hash_ops);
97 if (!u->names)
98 return mfree(u);
99
100 u->manager = m;
101 u->type = _UNIT_TYPE_INVALID;
102 u->default_dependencies = true;
103 u->unit_file_state = _UNIT_FILE_STATE_INVALID;
104 u->unit_file_preset = -1;
105 u->on_failure_job_mode = JOB_REPLACE;
106 u->cgroup_control_inotify_wd = -1;
107 u->cgroup_memory_inotify_wd = -1;
108 u->job_timeout = USEC_INFINITY;
109 u->job_running_timeout = USEC_INFINITY;
110 u->ref_uid = UID_INVALID;
111 u->ref_gid = GID_INVALID;
112 u->cpu_usage_last = NSEC_INFINITY;
113 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
114 u->failure_action_exit_status = u->success_action_exit_status = -1;
115
116 u->ip_accounting_ingress_map_fd = -1;
117 u->ip_accounting_egress_map_fd = -1;
118 u->ipv4_allow_map_fd = -1;
119 u->ipv6_allow_map_fd = -1;
120 u->ipv4_deny_map_fd = -1;
121 u->ipv6_deny_map_fd = -1;
122
123 u->last_section_private = -1;
124
125 u->start_ratelimit = (RateLimit) { m->default_start_limit_interval, m->default_start_limit_burst };
126 u->auto_stop_ratelimit = (RateLimit) { 10 * USEC_PER_SEC, 16 };
127
128 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
129 u->io_accounting_last[i] = UINT64_MAX;
130
131 return u;
132 }
133
134 int unit_new_for_name(Manager *m, size_t size, const char *name, Unit **ret) {
135 _cleanup_(unit_freep) Unit *u = NULL;
136 int r;
137
138 u = unit_new(m, size);
139 if (!u)
140 return -ENOMEM;
141
142 r = unit_add_name(u, name);
143 if (r < 0)
144 return r;
145
146 *ret = TAKE_PTR(u);
147
148 return r;
149 }
150
151 bool unit_has_name(const Unit *u, const char *name) {
152 assert(u);
153 assert(name);
154
155 return set_contains(u->names, (char*) name);
156 }
157
158 static void unit_init(Unit *u) {
159 CGroupContext *cc;
160 ExecContext *ec;
161 KillContext *kc;
162
163 assert(u);
164 assert(u->manager);
165 assert(u->type >= 0);
166
167 cc = unit_get_cgroup_context(u);
168 if (cc) {
169 cgroup_context_init(cc);
170
171 /* Copy in the manager defaults into the cgroup
172 * context, _before_ the rest of the settings have
173 * been initialized */
174
175 cc->cpu_accounting = u->manager->default_cpu_accounting;
176 cc->io_accounting = u->manager->default_io_accounting;
177 cc->blockio_accounting = u->manager->default_blockio_accounting;
178 cc->memory_accounting = u->manager->default_memory_accounting;
179 cc->tasks_accounting = u->manager->default_tasks_accounting;
180 cc->ip_accounting = u->manager->default_ip_accounting;
181
182 if (u->type != UNIT_SLICE)
183 cc->tasks_max = u->manager->default_tasks_max;
184 }
185
186 ec = unit_get_exec_context(u);
187 if (ec) {
188 exec_context_init(ec);
189
190 ec->keyring_mode = MANAGER_IS_SYSTEM(u->manager) ?
191 EXEC_KEYRING_SHARED : EXEC_KEYRING_INHERIT;
192 }
193
194 kc = unit_get_kill_context(u);
195 if (kc)
196 kill_context_init(kc);
197
198 if (UNIT_VTABLE(u)->init)
199 UNIT_VTABLE(u)->init(u);
200 }
201
202 int unit_add_name(Unit *u, const char *text) {
203 _cleanup_free_ char *s = NULL, *i = NULL;
204 UnitType t;
205 int r;
206
207 assert(u);
208 assert(text);
209
210 if (unit_name_is_valid(text, UNIT_NAME_TEMPLATE)) {
211
212 if (!u->instance)
213 return -EINVAL;
214
215 r = unit_name_replace_instance(text, u->instance, &s);
216 if (r < 0)
217 return r;
218 } else {
219 s = strdup(text);
220 if (!s)
221 return -ENOMEM;
222 }
223
224 if (set_contains(u->names, s))
225 return 0;
226 if (hashmap_contains(u->manager->units, s))
227 return -EEXIST;
228
229 if (!unit_name_is_valid(s, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE))
230 return -EINVAL;
231
232 t = unit_name_to_type(s);
233 if (t < 0)
234 return -EINVAL;
235
236 if (u->type != _UNIT_TYPE_INVALID && t != u->type)
237 return -EINVAL;
238
239 r = unit_name_to_instance(s, &i);
240 if (r < 0)
241 return r;
242
243 if (i && !unit_type_may_template(t))
244 return -EINVAL;
245
246 /* Ensure that this unit is either instanced or not instanced,
247 * but not both. Note that we do allow names with different
248 * instance names however! */
249 if (u->type != _UNIT_TYPE_INVALID && !u->instance != !i)
250 return -EINVAL;
251
252 if (!unit_type_may_alias(t) && !set_isempty(u->names))
253 return -EEXIST;
254
255 if (hashmap_size(u->manager->units) >= MANAGER_MAX_NAMES)
256 return -E2BIG;
257
258 r = set_put(u->names, s);
259 if (r < 0)
260 return r;
261 assert(r > 0);
262
263 r = hashmap_put(u->manager->units, s, u);
264 if (r < 0) {
265 (void) set_remove(u->names, s);
266 return r;
267 }
268
269 if (u->type == _UNIT_TYPE_INVALID) {
270 u->type = t;
271 u->id = s;
272 u->instance = TAKE_PTR(i);
273
274 LIST_PREPEND(units_by_type, u->manager->units_by_type[t], u);
275
276 unit_init(u);
277 }
278
279 s = NULL;
280
281 unit_add_to_dbus_queue(u);
282 return 0;
283 }
284
285 int unit_choose_id(Unit *u, const char *name) {
286 _cleanup_free_ char *t = NULL;
287 char *s, *i;
288 int r;
289
290 assert(u);
291 assert(name);
292
293 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
294
295 if (!u->instance)
296 return -EINVAL;
297
298 r = unit_name_replace_instance(name, u->instance, &t);
299 if (r < 0)
300 return r;
301
302 name = t;
303 }
304
305 /* Selects one of the names of this unit as the id */
306 s = set_get(u->names, (char*) name);
307 if (!s)
308 return -ENOENT;
309
310 /* Determine the new instance from the new id */
311 r = unit_name_to_instance(s, &i);
312 if (r < 0)
313 return r;
314
315 u->id = s;
316
317 free(u->instance);
318 u->instance = i;
319
320 unit_add_to_dbus_queue(u);
321
322 return 0;
323 }
324
325 int unit_set_description(Unit *u, const char *description) {
326 int r;
327
328 assert(u);
329
330 r = free_and_strdup(&u->description, empty_to_null(description));
331 if (r < 0)
332 return r;
333 if (r > 0)
334 unit_add_to_dbus_queue(u);
335
336 return 0;
337 }
338
339 bool unit_may_gc(Unit *u) {
340 UnitActiveState state;
341 int r;
342
343 assert(u);
344
345 /* Checks whether the unit is ready to be unloaded for garbage collection.
346 * Returns true when the unit may be collected, and false if there's some
347 * reason to keep it loaded.
348 *
349 * References from other units are *not* checked here. Instead, this is done
350 * in unit_gc_sweep(), but using markers to properly collect dependency loops.
351 */
352
353 if (u->job)
354 return false;
355
356 if (u->nop_job)
357 return false;
358
359 state = unit_active_state(u);
360
361 /* If the unit is inactive and failed and no job is queued for it, then release its runtime resources */
362 if (UNIT_IS_INACTIVE_OR_FAILED(state) &&
363 UNIT_VTABLE(u)->release_resources)
364 UNIT_VTABLE(u)->release_resources(u);
365
366 if (u->perpetual)
367 return false;
368
369 if (sd_bus_track_count(u->bus_track) > 0)
370 return false;
371
372 /* But we keep the unit object around for longer when it is referenced or configured to not be gc'ed */
373 switch (u->collect_mode) {
374
375 case COLLECT_INACTIVE:
376 if (state != UNIT_INACTIVE)
377 return false;
378
379 break;
380
381 case COLLECT_INACTIVE_OR_FAILED:
382 if (!IN_SET(state, UNIT_INACTIVE, UNIT_FAILED))
383 return false;
384
385 break;
386
387 default:
388 assert_not_reached("Unknown garbage collection mode");
389 }
390
391 if (u->cgroup_path) {
392 /* If the unit has a cgroup, then check whether there's anything in it. If so, we should stay
393 * around. Units with active processes should never be collected. */
394
395 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
396 if (r < 0)
397 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
398 if (r <= 0)
399 return false;
400 }
401
402 if (UNIT_VTABLE(u)->may_gc && !UNIT_VTABLE(u)->may_gc(u))
403 return false;
404
405 return true;
406 }
407
408 void unit_add_to_load_queue(Unit *u) {
409 assert(u);
410 assert(u->type != _UNIT_TYPE_INVALID);
411
412 if (u->load_state != UNIT_STUB || u->in_load_queue)
413 return;
414
415 LIST_PREPEND(load_queue, u->manager->load_queue, u);
416 u->in_load_queue = true;
417 }
418
419 void unit_add_to_cleanup_queue(Unit *u) {
420 assert(u);
421
422 if (u->in_cleanup_queue)
423 return;
424
425 LIST_PREPEND(cleanup_queue, u->manager->cleanup_queue, u);
426 u->in_cleanup_queue = true;
427 }
428
429 void unit_add_to_gc_queue(Unit *u) {
430 assert(u);
431
432 if (u->in_gc_queue || u->in_cleanup_queue)
433 return;
434
435 if (!unit_may_gc(u))
436 return;
437
438 LIST_PREPEND(gc_queue, u->manager->gc_unit_queue, u);
439 u->in_gc_queue = true;
440 }
441
442 void unit_add_to_dbus_queue(Unit *u) {
443 assert(u);
444 assert(u->type != _UNIT_TYPE_INVALID);
445
446 if (u->load_state == UNIT_STUB || u->in_dbus_queue)
447 return;
448
449 /* Shortcut things if nobody cares */
450 if (sd_bus_track_count(u->manager->subscribed) <= 0 &&
451 sd_bus_track_count(u->bus_track) <= 0 &&
452 set_isempty(u->manager->private_buses)) {
453 u->sent_dbus_new_signal = true;
454 return;
455 }
456
457 LIST_PREPEND(dbus_queue, u->manager->dbus_unit_queue, u);
458 u->in_dbus_queue = true;
459 }
460
461 void unit_submit_to_stop_when_unneeded_queue(Unit *u) {
462 assert(u);
463
464 if (u->in_stop_when_unneeded_queue)
465 return;
466
467 if (!u->stop_when_unneeded)
468 return;
469
470 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
471 return;
472
473 LIST_PREPEND(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
474 u->in_stop_when_unneeded_queue = true;
475 }
476
477 static void bidi_set_free(Unit *u, Hashmap *h) {
478 Unit *other;
479 Iterator i;
480 void *v;
481
482 assert(u);
483
484 /* Frees the hashmap and makes sure we are dropped from the inverse pointers */
485
486 HASHMAP_FOREACH_KEY(v, other, h, i) {
487 UnitDependency d;
488
489 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
490 hashmap_remove(other->dependencies[d], u);
491
492 unit_add_to_gc_queue(other);
493 }
494
495 hashmap_free(h);
496 }
497
498 static void unit_remove_transient(Unit *u) {
499 char **i;
500
501 assert(u);
502
503 if (!u->transient)
504 return;
505
506 if (u->fragment_path)
507 (void) unlink(u->fragment_path);
508
509 STRV_FOREACH(i, u->dropin_paths) {
510 _cleanup_free_ char *p = NULL, *pp = NULL;
511
512 p = dirname_malloc(*i); /* Get the drop-in directory from the drop-in file */
513 if (!p)
514 continue;
515
516 pp = dirname_malloc(p); /* Get the config directory from the drop-in directory */
517 if (!pp)
518 continue;
519
520 /* Only drop transient drop-ins */
521 if (!path_equal(u->manager->lookup_paths.transient, pp))
522 continue;
523
524 (void) unlink(*i);
525 (void) rmdir(p);
526 }
527 }
528
529 static void unit_free_requires_mounts_for(Unit *u) {
530 assert(u);
531
532 for (;;) {
533 _cleanup_free_ char *path;
534
535 path = hashmap_steal_first_key(u->requires_mounts_for);
536 if (!path)
537 break;
538 else {
539 char s[strlen(path) + 1];
540
541 PATH_FOREACH_PREFIX_MORE(s, path) {
542 char *y;
543 Set *x;
544
545 x = hashmap_get2(u->manager->units_requiring_mounts_for, s, (void**) &y);
546 if (!x)
547 continue;
548
549 (void) set_remove(x, u);
550
551 if (set_isempty(x)) {
552 (void) hashmap_remove(u->manager->units_requiring_mounts_for, y);
553 free(y);
554 set_free(x);
555 }
556 }
557 }
558 }
559
560 u->requires_mounts_for = hashmap_free(u->requires_mounts_for);
561 }
562
563 static void unit_done(Unit *u) {
564 ExecContext *ec;
565 CGroupContext *cc;
566
567 assert(u);
568
569 if (u->type < 0)
570 return;
571
572 if (UNIT_VTABLE(u)->done)
573 UNIT_VTABLE(u)->done(u);
574
575 ec = unit_get_exec_context(u);
576 if (ec)
577 exec_context_done(ec);
578
579 cc = unit_get_cgroup_context(u);
580 if (cc)
581 cgroup_context_done(cc);
582 }
583
584 void unit_free(Unit *u) {
585 UnitDependency d;
586 Iterator i;
587 char *t;
588
589 if (!u)
590 return;
591
592 if (UNIT_ISSET(u->slice)) {
593 /* A unit is being dropped from the tree, make sure our parent slice recalculates the member mask */
594 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
595
596 /* And make sure the parent is realized again, updating cgroup memberships */
597 unit_add_to_cgroup_realize_queue(UNIT_DEREF(u->slice));
598 }
599
600 u->transient_file = safe_fclose(u->transient_file);
601
602 if (!MANAGER_IS_RELOADING(u->manager))
603 unit_remove_transient(u);
604
605 bus_unit_send_removed_signal(u);
606
607 unit_done(u);
608
609 unit_dequeue_rewatch_pids(u);
610
611 sd_bus_slot_unref(u->match_bus_slot);
612 sd_bus_track_unref(u->bus_track);
613 u->deserialized_refs = strv_free(u->deserialized_refs);
614
615 unit_free_requires_mounts_for(u);
616
617 SET_FOREACH(t, u->names, i)
618 hashmap_remove_value(u->manager->units, t, u);
619
620 if (!sd_id128_is_null(u->invocation_id))
621 hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
622
623 if (u->job) {
624 Job *j = u->job;
625 job_uninstall(j);
626 job_free(j);
627 }
628
629 if (u->nop_job) {
630 Job *j = u->nop_job;
631 job_uninstall(j);
632 job_free(j);
633 }
634
635 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
636 bidi_set_free(u, u->dependencies[d]);
637
638 if (u->on_console)
639 manager_unref_console(u->manager);
640
641 unit_release_cgroup(u);
642
643 if (!MANAGER_IS_RELOADING(u->manager))
644 unit_unlink_state_files(u);
645
646 unit_unref_uid_gid(u, false);
647
648 (void) manager_update_failed_units(u->manager, u, false);
649 set_remove(u->manager->startup_units, u);
650
651 unit_unwatch_all_pids(u);
652
653 unit_ref_unset(&u->slice);
654 while (u->refs_by_target)
655 unit_ref_unset(u->refs_by_target);
656
657 if (u->type != _UNIT_TYPE_INVALID)
658 LIST_REMOVE(units_by_type, u->manager->units_by_type[u->type], u);
659
660 if (u->in_load_queue)
661 LIST_REMOVE(load_queue, u->manager->load_queue, u);
662
663 if (u->in_dbus_queue)
664 LIST_REMOVE(dbus_queue, u->manager->dbus_unit_queue, u);
665
666 if (u->in_gc_queue)
667 LIST_REMOVE(gc_queue, u->manager->gc_unit_queue, u);
668
669 if (u->in_cgroup_realize_queue)
670 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
671
672 if (u->in_cgroup_empty_queue)
673 LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
674
675 if (u->in_cleanup_queue)
676 LIST_REMOVE(cleanup_queue, u->manager->cleanup_queue, u);
677
678 if (u->in_target_deps_queue)
679 LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
680
681 if (u->in_stop_when_unneeded_queue)
682 LIST_REMOVE(stop_when_unneeded_queue, u->manager->stop_when_unneeded_queue, u);
683
684 safe_close(u->ip_accounting_ingress_map_fd);
685 safe_close(u->ip_accounting_egress_map_fd);
686
687 safe_close(u->ipv4_allow_map_fd);
688 safe_close(u->ipv6_allow_map_fd);
689 safe_close(u->ipv4_deny_map_fd);
690 safe_close(u->ipv6_deny_map_fd);
691
692 bpf_program_unref(u->ip_bpf_ingress);
693 bpf_program_unref(u->ip_bpf_ingress_installed);
694 bpf_program_unref(u->ip_bpf_egress);
695 bpf_program_unref(u->ip_bpf_egress_installed);
696
697 set_free(u->ip_bpf_custom_ingress);
698 set_free(u->ip_bpf_custom_egress);
699 set_free(u->ip_bpf_custom_ingress_installed);
700 set_free(u->ip_bpf_custom_egress_installed);
701
702 bpf_program_unref(u->bpf_device_control_installed);
703
704 condition_free_list(u->conditions);
705 condition_free_list(u->asserts);
706
707 free(u->description);
708 strv_free(u->documentation);
709 free(u->fragment_path);
710 free(u->source_path);
711 strv_free(u->dropin_paths);
712 free(u->instance);
713
714 free(u->job_timeout_reboot_arg);
715
716 set_free_free(u->names);
717
718 free(u->reboot_arg);
719
720 free(u);
721 }
722
723 UnitActiveState unit_active_state(Unit *u) {
724 assert(u);
725
726 if (u->load_state == UNIT_MERGED)
727 return unit_active_state(unit_follow_merge(u));
728
729 /* After a reload it might happen that a unit is not correctly
730 * loaded but still has a process around. That's why we won't
731 * shortcut failed loading to UNIT_INACTIVE_FAILED. */
732
733 return UNIT_VTABLE(u)->active_state(u);
734 }
735
736 const char* unit_sub_state_to_string(Unit *u) {
737 assert(u);
738
739 return UNIT_VTABLE(u)->sub_state_to_string(u);
740 }
741
742 static int set_complete_move(Set **s, Set **other) {
743 assert(s);
744 assert(other);
745
746 if (!other)
747 return 0;
748
749 if (*s)
750 return set_move(*s, *other);
751 else
752 *s = TAKE_PTR(*other);
753
754 return 0;
755 }
756
757 static int hashmap_complete_move(Hashmap **s, Hashmap **other) {
758 assert(s);
759 assert(other);
760
761 if (!*other)
762 return 0;
763
764 if (*s)
765 return hashmap_move(*s, *other);
766 else
767 *s = TAKE_PTR(*other);
768
769 return 0;
770 }
771
772 static int merge_names(Unit *u, Unit *other) {
773 char *t;
774 Iterator i;
775 int r;
776
777 assert(u);
778 assert(other);
779
780 r = set_complete_move(&u->names, &other->names);
781 if (r < 0)
782 return r;
783
784 set_free_free(other->names);
785 other->names = NULL;
786 other->id = NULL;
787
788 SET_FOREACH(t, u->names, i)
789 assert_se(hashmap_replace(u->manager->units, t, u) == 0);
790
791 return 0;
792 }
793
794 static int reserve_dependencies(Unit *u, Unit *other, UnitDependency d) {
795 unsigned n_reserve;
796
797 assert(u);
798 assert(other);
799 assert(d < _UNIT_DEPENDENCY_MAX);
800
801 /*
802 * If u does not have this dependency set allocated, there is no need
803 * to reserve anything. In that case other's set will be transferred
804 * as a whole to u by complete_move().
805 */
806 if (!u->dependencies[d])
807 return 0;
808
809 /* merge_dependencies() will skip a u-on-u dependency */
810 n_reserve = hashmap_size(other->dependencies[d]) - !!hashmap_get(other->dependencies[d], u);
811
812 return hashmap_reserve(u->dependencies[d], n_reserve);
813 }
814
815 static void merge_dependencies(Unit *u, Unit *other, const char *other_id, UnitDependency d) {
816 Iterator i;
817 Unit *back;
818 void *v;
819 int r;
820
821 /* Merges all dependencies of type 'd' of the unit 'other' into the deps of the unit 'u' */
822
823 assert(u);
824 assert(other);
825 assert(d < _UNIT_DEPENDENCY_MAX);
826
827 /* Fix backwards pointers. Let's iterate through all dependent units of the other unit. */
828 HASHMAP_FOREACH_KEY(v, back, other->dependencies[d], i) {
829 UnitDependency k;
830
831 /* Let's now iterate through the dependencies of that dependencies of the other units, looking for
832 * pointers back, and let's fix them up, to instead point to 'u'. */
833
834 for (k = 0; k < _UNIT_DEPENDENCY_MAX; k++) {
835 if (back == u) {
836 /* Do not add dependencies between u and itself. */
837 if (hashmap_remove(back->dependencies[k], other))
838 maybe_warn_about_dependency(u, other_id, k);
839 } else {
840 UnitDependencyInfo di_u, di_other, di_merged;
841
842 /* Let's drop this dependency between "back" and "other", and let's create it between
843 * "back" and "u" instead. Let's merge the bit masks of the dependency we are moving,
844 * and any such dependency which might already exist */
845
846 di_other.data = hashmap_get(back->dependencies[k], other);
847 if (!di_other.data)
848 continue; /* dependency isn't set, let's try the next one */
849
850 di_u.data = hashmap_get(back->dependencies[k], u);
851
852 di_merged = (UnitDependencyInfo) {
853 .origin_mask = di_u.origin_mask | di_other.origin_mask,
854 .destination_mask = di_u.destination_mask | di_other.destination_mask,
855 };
856
857 r = hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data);
858 if (r < 0)
859 log_warning_errno(r, "Failed to remove/replace: back=%s other=%s u=%s: %m", back->id, other_id, u->id);
860 assert(r >= 0);
861
862 /* assert_se(hashmap_remove_and_replace(back->dependencies[k], other, u, di_merged.data) >= 0); */
863 }
864 }
865
866 }
867
868 /* Also do not move dependencies on u to itself */
869 back = hashmap_remove(other->dependencies[d], u);
870 if (back)
871 maybe_warn_about_dependency(u, other_id, d);
872
873 /* The move cannot fail. The caller must have performed a reservation. */
874 assert_se(hashmap_complete_move(&u->dependencies[d], &other->dependencies[d]) == 0);
875
876 other->dependencies[d] = hashmap_free(other->dependencies[d]);
877 }
878
879 int unit_merge(Unit *u, Unit *other) {
880 UnitDependency d;
881 const char *other_id = NULL;
882 int r;
883
884 assert(u);
885 assert(other);
886 assert(u->manager == other->manager);
887 assert(u->type != _UNIT_TYPE_INVALID);
888
889 other = unit_follow_merge(other);
890
891 if (other == u)
892 return 0;
893
894 if (u->type != other->type)
895 return -EINVAL;
896
897 if (!u->instance != !other->instance)
898 return -EINVAL;
899
900 if (!unit_type_may_alias(u->type)) /* Merging only applies to unit names that support aliases */
901 return -EEXIST;
902
903 if (!IN_SET(other->load_state, UNIT_STUB, UNIT_NOT_FOUND))
904 return -EEXIST;
905
906 if (other->job)
907 return -EEXIST;
908
909 if (other->nop_job)
910 return -EEXIST;
911
912 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
913 return -EEXIST;
914
915 if (other->id)
916 other_id = strdupa(other->id);
917
918 /* Make reservations to ensure merge_dependencies() won't fail */
919 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
920 r = reserve_dependencies(u, other, d);
921 /*
922 * We don't rollback reservations if we fail. We don't have
923 * a way to undo reservations. A reservation is not a leak.
924 */
925 if (r < 0)
926 return r;
927 }
928
929 /* Merge names */
930 r = merge_names(u, other);
931 if (r < 0)
932 return r;
933
934 /* Redirect all references */
935 while (other->refs_by_target)
936 unit_ref_set(other->refs_by_target, other->refs_by_target->source, u);
937
938 /* Merge dependencies */
939 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++)
940 merge_dependencies(u, other, other_id, d);
941
942 other->load_state = UNIT_MERGED;
943 other->merged_into = u;
944
945 /* If there is still some data attached to the other node, we
946 * don't need it anymore, and can free it. */
947 if (other->load_state != UNIT_STUB)
948 if (UNIT_VTABLE(other)->done)
949 UNIT_VTABLE(other)->done(other);
950
951 unit_add_to_dbus_queue(u);
952 unit_add_to_cleanup_queue(other);
953
954 return 0;
955 }
956
957 int unit_merge_by_name(Unit *u, const char *name) {
958 _cleanup_free_ char *s = NULL;
959 Unit *other;
960 int r;
961
962 /* Either add name to u, or if a unit with name already exists, merge it with u.
963 * If name is a template, do the same for name@instance, where instance is u's instance. */
964
965 assert(u);
966 assert(name);
967
968 if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
969 if (!u->instance)
970 return -EINVAL;
971
972 r = unit_name_replace_instance(name, u->instance, &s);
973 if (r < 0)
974 return r;
975
976 name = s;
977 }
978
979 other = manager_get_unit(u->manager, name);
980 if (other)
981 return unit_merge(u, other);
982
983 return unit_add_name(u, name);
984 }
985
986 Unit* unit_follow_merge(Unit *u) {
987 assert(u);
988
989 while (u->load_state == UNIT_MERGED)
990 assert_se(u = u->merged_into);
991
992 return u;
993 }
994
995 int unit_add_exec_dependencies(Unit *u, ExecContext *c) {
996 ExecDirectoryType dt;
997 char **dp;
998 int r;
999
1000 assert(u);
1001 assert(c);
1002
1003 if (c->working_directory && !c->working_directory_missing_ok) {
1004 r = unit_require_mounts_for(u, c->working_directory, UNIT_DEPENDENCY_FILE);
1005 if (r < 0)
1006 return r;
1007 }
1008
1009 if (c->root_directory) {
1010 r = unit_require_mounts_for(u, c->root_directory, UNIT_DEPENDENCY_FILE);
1011 if (r < 0)
1012 return r;
1013 }
1014
1015 if (c->root_image) {
1016 r = unit_require_mounts_for(u, c->root_image, UNIT_DEPENDENCY_FILE);
1017 if (r < 0)
1018 return r;
1019 }
1020
1021 for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
1022 if (!u->manager->prefix[dt])
1023 continue;
1024
1025 STRV_FOREACH(dp, c->directories[dt].paths) {
1026 _cleanup_free_ char *p;
1027
1028 p = path_join(u->manager->prefix[dt], *dp);
1029 if (!p)
1030 return -ENOMEM;
1031
1032 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1033 if (r < 0)
1034 return r;
1035 }
1036 }
1037
1038 if (!MANAGER_IS_SYSTEM(u->manager))
1039 return 0;
1040
1041 if (c->private_tmp) {
1042 const char *p;
1043
1044 FOREACH_STRING(p, "/tmp", "/var/tmp") {
1045 r = unit_require_mounts_for(u, p, UNIT_DEPENDENCY_FILE);
1046 if (r < 0)
1047 return r;
1048 }
1049
1050 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_TMPFILES_SETUP_SERVICE, true, UNIT_DEPENDENCY_FILE);
1051 if (r < 0)
1052 return r;
1053 }
1054
1055 if (!IN_SET(c->std_output,
1056 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1057 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1058 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE) &&
1059 !IN_SET(c->std_error,
1060 EXEC_OUTPUT_JOURNAL, EXEC_OUTPUT_JOURNAL_AND_CONSOLE,
1061 EXEC_OUTPUT_KMSG, EXEC_OUTPUT_KMSG_AND_CONSOLE,
1062 EXEC_OUTPUT_SYSLOG, EXEC_OUTPUT_SYSLOG_AND_CONSOLE))
1063 return 0;
1064
1065 /* If syslog or kernel logging is requested, make sure our own
1066 * logging daemon is run first. */
1067
1068 r = unit_add_dependency_by_name(u, UNIT_AFTER, SPECIAL_JOURNALD_SOCKET, true, UNIT_DEPENDENCY_FILE);
1069 if (r < 0)
1070 return r;
1071
1072 return 0;
1073 }
1074
1075 const char *unit_description(Unit *u) {
1076 assert(u);
1077
1078 if (u->description)
1079 return u->description;
1080
1081 return strna(u->id);
1082 }
1083
1084 const char *unit_status_string(Unit *u) {
1085 assert(u);
1086
1087 if (u->manager->status_unit_format == STATUS_UNIT_FORMAT_NAME && u->id)
1088 return u->id;
1089
1090 return unit_description(u);
1091 }
1092
1093 static void print_unit_dependency_mask(FILE *f, const char *kind, UnitDependencyMask mask, bool *space) {
1094 const struct {
1095 UnitDependencyMask mask;
1096 const char *name;
1097 } table[] = {
1098 { UNIT_DEPENDENCY_FILE, "file" },
1099 { UNIT_DEPENDENCY_IMPLICIT, "implicit" },
1100 { UNIT_DEPENDENCY_DEFAULT, "default" },
1101 { UNIT_DEPENDENCY_UDEV, "udev" },
1102 { UNIT_DEPENDENCY_PATH, "path" },
1103 { UNIT_DEPENDENCY_MOUNTINFO_IMPLICIT, "mountinfo-implicit" },
1104 { UNIT_DEPENDENCY_MOUNTINFO_DEFAULT, "mountinfo-default" },
1105 { UNIT_DEPENDENCY_PROC_SWAP, "proc-swap" },
1106 };
1107 size_t i;
1108
1109 assert(f);
1110 assert(kind);
1111 assert(space);
1112
1113 for (i = 0; i < ELEMENTSOF(table); i++) {
1114
1115 if (mask == 0)
1116 break;
1117
1118 if (FLAGS_SET(mask, table[i].mask)) {
1119 if (*space)
1120 fputc(' ', f);
1121 else
1122 *space = true;
1123
1124 fputs(kind, f);
1125 fputs("-", f);
1126 fputs(table[i].name, f);
1127
1128 mask &= ~table[i].mask;
1129 }
1130 }
1131
1132 assert(mask == 0);
1133 }
1134
1135 void unit_dump(Unit *u, FILE *f, const char *prefix) {
1136 char *t, **j;
1137 UnitDependency d;
1138 Iterator i;
1139 const char *prefix2;
1140 char timestamp[5][FORMAT_TIMESTAMP_MAX], timespan[FORMAT_TIMESPAN_MAX];
1141 Unit *following;
1142 _cleanup_set_free_ Set *following_set = NULL;
1143 const char *n;
1144 CGroupMask m;
1145 int r;
1146
1147 assert(u);
1148 assert(u->type >= 0);
1149
1150 prefix = strempty(prefix);
1151 prefix2 = strjoina(prefix, "\t");
1152
1153 fprintf(f,
1154 "%s-> Unit %s:\n",
1155 prefix, u->id);
1156
1157 SET_FOREACH(t, u->names, i)
1158 if (!streq(t, u->id))
1159 fprintf(f, "%s\tAlias: %s\n", prefix, t);
1160
1161 fprintf(f,
1162 "%s\tDescription: %s\n"
1163 "%s\tInstance: %s\n"
1164 "%s\tUnit Load State: %s\n"
1165 "%s\tUnit Active State: %s\n"
1166 "%s\tState Change Timestamp: %s\n"
1167 "%s\tInactive Exit Timestamp: %s\n"
1168 "%s\tActive Enter Timestamp: %s\n"
1169 "%s\tActive Exit Timestamp: %s\n"
1170 "%s\tInactive Enter Timestamp: %s\n"
1171 "%s\tMay GC: %s\n"
1172 "%s\tNeed Daemon Reload: %s\n"
1173 "%s\tTransient: %s\n"
1174 "%s\tPerpetual: %s\n"
1175 "%s\tGarbage Collection Mode: %s\n"
1176 "%s\tSlice: %s\n"
1177 "%s\tCGroup: %s\n"
1178 "%s\tCGroup realized: %s\n",
1179 prefix, unit_description(u),
1180 prefix, strna(u->instance),
1181 prefix, unit_load_state_to_string(u->load_state),
1182 prefix, unit_active_state_to_string(unit_active_state(u)),
1183 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->state_change_timestamp.realtime)),
1184 prefix, strna(format_timestamp(timestamp[1], sizeof(timestamp[1]), u->inactive_exit_timestamp.realtime)),
1185 prefix, strna(format_timestamp(timestamp[2], sizeof(timestamp[2]), u->active_enter_timestamp.realtime)),
1186 prefix, strna(format_timestamp(timestamp[3], sizeof(timestamp[3]), u->active_exit_timestamp.realtime)),
1187 prefix, strna(format_timestamp(timestamp[4], sizeof(timestamp[4]), u->inactive_enter_timestamp.realtime)),
1188 prefix, yes_no(unit_may_gc(u)),
1189 prefix, yes_no(unit_need_daemon_reload(u)),
1190 prefix, yes_no(u->transient),
1191 prefix, yes_no(u->perpetual),
1192 prefix, collect_mode_to_string(u->collect_mode),
1193 prefix, strna(unit_slice_name(u)),
1194 prefix, strna(u->cgroup_path),
1195 prefix, yes_no(u->cgroup_realized));
1196
1197 if (u->cgroup_realized_mask != 0) {
1198 _cleanup_free_ char *s = NULL;
1199 (void) cg_mask_to_string(u->cgroup_realized_mask, &s);
1200 fprintf(f, "%s\tCGroup realized mask: %s\n", prefix, strnull(s));
1201 }
1202
1203 if (u->cgroup_enabled_mask != 0) {
1204 _cleanup_free_ char *s = NULL;
1205 (void) cg_mask_to_string(u->cgroup_enabled_mask, &s);
1206 fprintf(f, "%s\tCGroup enabled mask: %s\n", prefix, strnull(s));
1207 }
1208
1209 m = unit_get_own_mask(u);
1210 if (m != 0) {
1211 _cleanup_free_ char *s = NULL;
1212 (void) cg_mask_to_string(m, &s);
1213 fprintf(f, "%s\tCGroup own mask: %s\n", prefix, strnull(s));
1214 }
1215
1216 m = unit_get_members_mask(u);
1217 if (m != 0) {
1218 _cleanup_free_ char *s = NULL;
1219 (void) cg_mask_to_string(m, &s);
1220 fprintf(f, "%s\tCGroup members mask: %s\n", prefix, strnull(s));
1221 }
1222
1223 m = unit_get_delegate_mask(u);
1224 if (m != 0) {
1225 _cleanup_free_ char *s = NULL;
1226 (void) cg_mask_to_string(m, &s);
1227 fprintf(f, "%s\tCGroup delegate mask: %s\n", prefix, strnull(s));
1228 }
1229
1230 if (!sd_id128_is_null(u->invocation_id))
1231 fprintf(f, "%s\tInvocation ID: " SD_ID128_FORMAT_STR "\n",
1232 prefix, SD_ID128_FORMAT_VAL(u->invocation_id));
1233
1234 STRV_FOREACH(j, u->documentation)
1235 fprintf(f, "%s\tDocumentation: %s\n", prefix, *j);
1236
1237 following = unit_following(u);
1238 if (following)
1239 fprintf(f, "%s\tFollowing: %s\n", prefix, following->id);
1240
1241 r = unit_following_set(u, &following_set);
1242 if (r >= 0) {
1243 Unit *other;
1244
1245 SET_FOREACH(other, following_set, i)
1246 fprintf(f, "%s\tFollowing Set Member: %s\n", prefix, other->id);
1247 }
1248
1249 if (u->fragment_path)
1250 fprintf(f, "%s\tFragment Path: %s\n", prefix, u->fragment_path);
1251
1252 if (u->source_path)
1253 fprintf(f, "%s\tSource Path: %s\n", prefix, u->source_path);
1254
1255 STRV_FOREACH(j, u->dropin_paths)
1256 fprintf(f, "%s\tDropIn Path: %s\n", prefix, *j);
1257
1258 if (u->failure_action != EMERGENCY_ACTION_NONE)
1259 fprintf(f, "%s\tFailure Action: %s\n", prefix, emergency_action_to_string(u->failure_action));
1260 if (u->failure_action_exit_status >= 0)
1261 fprintf(f, "%s\tFailure Action Exit Status: %i\n", prefix, u->failure_action_exit_status);
1262 if (u->success_action != EMERGENCY_ACTION_NONE)
1263 fprintf(f, "%s\tSuccess Action: %s\n", prefix, emergency_action_to_string(u->success_action));
1264 if (u->success_action_exit_status >= 0)
1265 fprintf(f, "%s\tSuccess Action Exit Status: %i\n", prefix, u->success_action_exit_status);
1266
1267 if (u->job_timeout != USEC_INFINITY)
1268 fprintf(f, "%s\tJob Timeout: %s\n", prefix, format_timespan(timespan, sizeof(timespan), u->job_timeout, 0));
1269
1270 if (u->job_timeout_action != EMERGENCY_ACTION_NONE)
1271 fprintf(f, "%s\tJob Timeout Action: %s\n", prefix, emergency_action_to_string(u->job_timeout_action));
1272
1273 if (u->job_timeout_reboot_arg)
1274 fprintf(f, "%s\tJob Timeout Reboot Argument: %s\n", prefix, u->job_timeout_reboot_arg);
1275
1276 condition_dump_list(u->conditions, f, prefix, condition_type_to_string);
1277 condition_dump_list(u->asserts, f, prefix, assert_type_to_string);
1278
1279 if (dual_timestamp_is_set(&u->condition_timestamp))
1280 fprintf(f,
1281 "%s\tCondition Timestamp: %s\n"
1282 "%s\tCondition Result: %s\n",
1283 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->condition_timestamp.realtime)),
1284 prefix, yes_no(u->condition_result));
1285
1286 if (dual_timestamp_is_set(&u->assert_timestamp))
1287 fprintf(f,
1288 "%s\tAssert Timestamp: %s\n"
1289 "%s\tAssert Result: %s\n",
1290 prefix, strna(format_timestamp(timestamp[0], sizeof(timestamp[0]), u->assert_timestamp.realtime)),
1291 prefix, yes_no(u->assert_result));
1292
1293 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
1294 UnitDependencyInfo di;
1295 Unit *other;
1296
1297 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
1298 bool space = false;
1299
1300 fprintf(f, "%s\t%s: %s (", prefix, unit_dependency_to_string(d), other->id);
1301
1302 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1303 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1304
1305 fputs(")\n", f);
1306 }
1307 }
1308
1309 if (!hashmap_isempty(u->requires_mounts_for)) {
1310 UnitDependencyInfo di;
1311 const char *path;
1312
1313 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1314 bool space = false;
1315
1316 fprintf(f, "%s\tRequiresMountsFor: %s (", prefix, path);
1317
1318 print_unit_dependency_mask(f, "origin", di.origin_mask, &space);
1319 print_unit_dependency_mask(f, "destination", di.destination_mask, &space);
1320
1321 fputs(")\n", f);
1322 }
1323 }
1324
1325 if (u->load_state == UNIT_LOADED) {
1326
1327 fprintf(f,
1328 "%s\tStopWhenUnneeded: %s\n"
1329 "%s\tRefuseManualStart: %s\n"
1330 "%s\tRefuseManualStop: %s\n"
1331 "%s\tDefaultDependencies: %s\n"
1332 "%s\tOnFailureJobMode: %s\n"
1333 "%s\tIgnoreOnIsolate: %s\n",
1334 prefix, yes_no(u->stop_when_unneeded),
1335 prefix, yes_no(u->refuse_manual_start),
1336 prefix, yes_no(u->refuse_manual_stop),
1337 prefix, yes_no(u->default_dependencies),
1338 prefix, job_mode_to_string(u->on_failure_job_mode),
1339 prefix, yes_no(u->ignore_on_isolate));
1340
1341 if (UNIT_VTABLE(u)->dump)
1342 UNIT_VTABLE(u)->dump(u, f, prefix2);
1343
1344 } else if (u->load_state == UNIT_MERGED)
1345 fprintf(f,
1346 "%s\tMerged into: %s\n",
1347 prefix, u->merged_into->id);
1348 else if (u->load_state == UNIT_ERROR)
1349 fprintf(f, "%s\tLoad Error Code: %s\n", prefix, strerror_safe(u->load_error));
1350
1351 for (n = sd_bus_track_first(u->bus_track); n; n = sd_bus_track_next(u->bus_track))
1352 fprintf(f, "%s\tBus Ref: %s\n", prefix, n);
1353
1354 if (u->job)
1355 job_dump(u->job, f, prefix2);
1356
1357 if (u->nop_job)
1358 job_dump(u->nop_job, f, prefix2);
1359 }
1360
1361 /* Common implementation for multiple backends */
1362 int unit_load_fragment_and_dropin(Unit *u, bool fragment_required) {
1363 int r;
1364
1365 assert(u);
1366
1367 /* Load a .{service,socket,...} file */
1368 r = unit_load_fragment(u);
1369 if (r < 0)
1370 return r;
1371
1372 if (u->load_state == UNIT_STUB) {
1373 if (fragment_required)
1374 return -ENOENT;
1375
1376 u->load_state = UNIT_LOADED;
1377 }
1378
1379 /* Load drop-in directory data. If u is an alias, we might be reloading the
1380 * target unit needlessly. But we cannot be sure which drops-ins have already
1381 * been loaded and which not, at least without doing complicated book-keeping,
1382 * so let's always reread all drop-ins. */
1383 return unit_load_dropin(unit_follow_merge(u));
1384 }
1385
1386 void unit_add_to_target_deps_queue(Unit *u) {
1387 Manager *m = u->manager;
1388
1389 assert(u);
1390
1391 if (u->in_target_deps_queue)
1392 return;
1393
1394 LIST_PREPEND(target_deps_queue, m->target_deps_queue, u);
1395 u->in_target_deps_queue = true;
1396 }
1397
1398 int unit_add_default_target_dependency(Unit *u, Unit *target) {
1399 assert(u);
1400 assert(target);
1401
1402 if (target->type != UNIT_TARGET)
1403 return 0;
1404
1405 /* Only add the dependency if both units are loaded, so that
1406 * that loop check below is reliable */
1407 if (u->load_state != UNIT_LOADED ||
1408 target->load_state != UNIT_LOADED)
1409 return 0;
1410
1411 /* If either side wants no automatic dependencies, then let's
1412 * skip this */
1413 if (!u->default_dependencies ||
1414 !target->default_dependencies)
1415 return 0;
1416
1417 /* Don't create loops */
1418 if (hashmap_get(target->dependencies[UNIT_BEFORE], u))
1419 return 0;
1420
1421 return unit_add_dependency(target, UNIT_AFTER, u, true, UNIT_DEPENDENCY_DEFAULT);
1422 }
1423
1424 static int unit_add_slice_dependencies(Unit *u) {
1425 UnitDependencyMask mask;
1426 assert(u);
1427
1428 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1429 return 0;
1430
1431 /* Slice units are implicitly ordered against their parent slices (as this relationship is encoded in the
1432 name), while all other units are ordered based on configuration (as in their case Slice= configures the
1433 relationship). */
1434 mask = u->type == UNIT_SLICE ? UNIT_DEPENDENCY_IMPLICIT : UNIT_DEPENDENCY_FILE;
1435
1436 if (UNIT_ISSET(u->slice))
1437 return unit_add_two_dependencies(u, UNIT_AFTER, UNIT_REQUIRES, UNIT_DEREF(u->slice), true, mask);
1438
1439 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1440 return 0;
1441
1442 return unit_add_two_dependencies_by_name(u, UNIT_AFTER, UNIT_REQUIRES, SPECIAL_ROOT_SLICE, true, mask);
1443 }
1444
1445 static int unit_add_mount_dependencies(Unit *u) {
1446 UnitDependencyInfo di;
1447 const char *path;
1448 Iterator i;
1449 int r;
1450
1451 assert(u);
1452
1453 HASHMAP_FOREACH_KEY(di.data, path, u->requires_mounts_for, i) {
1454 char prefix[strlen(path) + 1];
1455
1456 PATH_FOREACH_PREFIX_MORE(prefix, path) {
1457 _cleanup_free_ char *p = NULL;
1458 Unit *m;
1459
1460 r = unit_name_from_path(prefix, ".mount", &p);
1461 if (r < 0)
1462 return r;
1463
1464 m = manager_get_unit(u->manager, p);
1465 if (!m) {
1466 /* Make sure to load the mount unit if
1467 * it exists. If so the dependencies
1468 * on this unit will be added later
1469 * during the loading of the mount
1470 * unit. */
1471 (void) manager_load_unit_prepare(u->manager, p, NULL, NULL, &m);
1472 continue;
1473 }
1474 if (m == u)
1475 continue;
1476
1477 if (m->load_state != UNIT_LOADED)
1478 continue;
1479
1480 r = unit_add_dependency(u, UNIT_AFTER, m, true, di.origin_mask);
1481 if (r < 0)
1482 return r;
1483
1484 if (m->fragment_path) {
1485 r = unit_add_dependency(u, UNIT_REQUIRES, m, true, di.origin_mask);
1486 if (r < 0)
1487 return r;
1488 }
1489 }
1490 }
1491
1492 return 0;
1493 }
1494
1495 static int unit_add_startup_units(Unit *u) {
1496 CGroupContext *c;
1497 int r;
1498
1499 c = unit_get_cgroup_context(u);
1500 if (!c)
1501 return 0;
1502
1503 if (c->startup_cpu_shares == CGROUP_CPU_SHARES_INVALID &&
1504 c->startup_io_weight == CGROUP_WEIGHT_INVALID &&
1505 c->startup_blockio_weight == CGROUP_BLKIO_WEIGHT_INVALID)
1506 return 0;
1507
1508 r = set_ensure_allocated(&u->manager->startup_units, NULL);
1509 if (r < 0)
1510 return r;
1511
1512 return set_put(u->manager->startup_units, u);
1513 }
1514
1515 int unit_load(Unit *u) {
1516 int r;
1517
1518 assert(u);
1519
1520 if (u->in_load_queue) {
1521 LIST_REMOVE(load_queue, u->manager->load_queue, u);
1522 u->in_load_queue = false;
1523 }
1524
1525 if (u->type == _UNIT_TYPE_INVALID)
1526 return -EINVAL;
1527
1528 if (u->load_state != UNIT_STUB)
1529 return 0;
1530
1531 if (u->transient_file) {
1532 /* Finalize transient file: if this is a transient unit file, as soon as we reach unit_load() the setup
1533 * is complete, hence let's synchronize the unit file we just wrote to disk. */
1534
1535 r = fflush_and_check(u->transient_file);
1536 if (r < 0)
1537 goto fail;
1538
1539 u->transient_file = safe_fclose(u->transient_file);
1540 u->fragment_mtime = now(CLOCK_REALTIME);
1541 }
1542
1543 r = UNIT_VTABLE(u)->load(u);
1544 if (r < 0)
1545 goto fail;
1546
1547 assert(u->load_state != UNIT_STUB);
1548
1549 if (u->load_state == UNIT_LOADED) {
1550 unit_add_to_target_deps_queue(u);
1551
1552 r = unit_add_slice_dependencies(u);
1553 if (r < 0)
1554 goto fail;
1555
1556 r = unit_add_mount_dependencies(u);
1557 if (r < 0)
1558 goto fail;
1559
1560 r = unit_add_startup_units(u);
1561 if (r < 0)
1562 goto fail;
1563
1564 if (u->on_failure_job_mode == JOB_ISOLATE && hashmap_size(u->dependencies[UNIT_ON_FAILURE]) > 1) {
1565 log_unit_error(u, "More than one OnFailure= dependencies specified but OnFailureJobMode=isolate set. Refusing.");
1566 r = -ENOEXEC;
1567 goto fail;
1568 }
1569
1570 if (u->job_running_timeout != USEC_INFINITY && u->job_running_timeout > u->job_timeout)
1571 log_unit_warning(u, "JobRunningTimeoutSec= is greater than JobTimeoutSec=, it has no effect.");
1572
1573 /* We finished loading, let's ensure our parents recalculate the members mask */
1574 unit_invalidate_cgroup_members_masks(u);
1575 }
1576
1577 assert((u->load_state != UNIT_MERGED) == !u->merged_into);
1578
1579 unit_add_to_dbus_queue(unit_follow_merge(u));
1580 unit_add_to_gc_queue(u);
1581
1582 return 0;
1583
1584 fail:
1585 /* We convert ENOEXEC errors to the UNIT_BAD_SETTING load state here. Configuration parsing code should hence
1586 * return ENOEXEC to ensure units are placed in this state after loading */
1587
1588 u->load_state = u->load_state == UNIT_STUB ? UNIT_NOT_FOUND :
1589 r == -ENOEXEC ? UNIT_BAD_SETTING :
1590 UNIT_ERROR;
1591 u->load_error = r;
1592
1593 unit_add_to_dbus_queue(u);
1594 unit_add_to_gc_queue(u);
1595
1596 return log_unit_debug_errno(u, r, "Failed to load configuration: %m");
1597 }
1598
1599 _printf_(7, 8)
1600 static int log_unit_internal(void *userdata, int level, int error, const char *file, int line, const char *func, const char *format, ...) {
1601 Unit *u = userdata;
1602 va_list ap;
1603 int r;
1604
1605 va_start(ap, format);
1606 if (u)
1607 r = log_object_internalv(level, error, file, line, func,
1608 u->manager->unit_log_field,
1609 u->id,
1610 u->manager->invocation_log_field,
1611 u->invocation_id_string,
1612 format, ap);
1613 else
1614 r = log_internalv(level, error, file, line, func, format, ap);
1615 va_end(ap);
1616
1617 return r;
1618 }
1619
1620 static bool unit_test_condition(Unit *u) {
1621 assert(u);
1622
1623 dual_timestamp_get(&u->condition_timestamp);
1624 u->condition_result = condition_test_list(u->conditions, condition_type_to_string, log_unit_internal, u);
1625
1626 unit_add_to_dbus_queue(u);
1627
1628 return u->condition_result;
1629 }
1630
1631 static bool unit_test_assert(Unit *u) {
1632 assert(u);
1633
1634 dual_timestamp_get(&u->assert_timestamp);
1635 u->assert_result = condition_test_list(u->asserts, assert_type_to_string, log_unit_internal, u);
1636
1637 unit_add_to_dbus_queue(u);
1638
1639 return u->assert_result;
1640 }
1641
1642 void unit_status_printf(Unit *u, const char *status, const char *unit_status_msg_format) {
1643 const char *d;
1644
1645 d = unit_status_string(u);
1646 if (log_get_show_color())
1647 d = strjoina(ANSI_HIGHLIGHT, d, ANSI_NORMAL);
1648
1649 DISABLE_WARNING_FORMAT_NONLITERAL;
1650 manager_status_printf(u->manager, STATUS_TYPE_NORMAL, status, unit_status_msg_format, d);
1651 REENABLE_WARNING;
1652 }
1653
1654 int unit_test_start_limit(Unit *u) {
1655 const char *reason;
1656
1657 assert(u);
1658
1659 if (ratelimit_below(&u->start_ratelimit)) {
1660 u->start_limit_hit = false;
1661 return 0;
1662 }
1663
1664 log_unit_warning(u, "Start request repeated too quickly.");
1665 u->start_limit_hit = true;
1666
1667 reason = strjoina("unit ", u->id, " failed");
1668
1669 emergency_action(u->manager, u->start_limit_action,
1670 EMERGENCY_ACTION_IS_WATCHDOG|EMERGENCY_ACTION_WARN,
1671 u->reboot_arg, -1, reason);
1672
1673 return -ECANCELED;
1674 }
1675
1676 bool unit_shall_confirm_spawn(Unit *u) {
1677 assert(u);
1678
1679 if (manager_is_confirm_spawn_disabled(u->manager))
1680 return false;
1681
1682 /* For some reasons units remaining in the same process group
1683 * as PID 1 fail to acquire the console even if it's not used
1684 * by any process. So skip the confirmation question for them. */
1685 return !unit_get_exec_context(u)->same_pgrp;
1686 }
1687
1688 static bool unit_verify_deps(Unit *u) {
1689 Unit *other;
1690 Iterator j;
1691 void *v;
1692
1693 assert(u);
1694
1695 /* Checks whether all BindsTo= dependencies of this unit are fulfilled — if they are also combined with
1696 * After=. We do not check Requires= or Requisite= here as they only should have an effect on the job
1697 * processing, but do not have any effect afterwards. We don't check BindsTo= dependencies that are not used in
1698 * conjunction with After= as for them any such check would make things entirely racy. */
1699
1700 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], j) {
1701
1702 if (!hashmap_contains(u->dependencies[UNIT_AFTER], other))
1703 continue;
1704
1705 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(other))) {
1706 log_unit_notice(u, "Bound to unit %s, but unit isn't active.", other->id);
1707 return false;
1708 }
1709 }
1710
1711 return true;
1712 }
1713
1714 /* Errors that aren't really errors:
1715 * -EALREADY: Unit is already started.
1716 * -ECOMM: Condition failed
1717 * -EAGAIN: An operation is already in progress. Retry later.
1718 *
1719 * Errors that are real errors:
1720 * -EBADR: This unit type does not support starting.
1721 * -ECANCELED: Start limit hit, too many requests for now
1722 * -EPROTO: Assert failed
1723 * -EINVAL: Unit not loaded
1724 * -EOPNOTSUPP: Unit type not supported
1725 * -ENOLINK: The necessary dependencies are not fulfilled.
1726 * -ESTALE: This unit has been started before and can't be started a second time
1727 * -ENOENT: This is a triggering unit and unit to trigger is not loaded
1728 */
1729 int unit_start(Unit *u) {
1730 UnitActiveState state;
1731 Unit *following;
1732
1733 assert(u);
1734
1735 /* If this is already started, then this will succeed. Note that this will even succeed if this unit
1736 * is not startable by the user. This is relied on to detect when we need to wait for units and when
1737 * waiting is finished. */
1738 state = unit_active_state(u);
1739 if (UNIT_IS_ACTIVE_OR_RELOADING(state))
1740 return -EALREADY;
1741 if (state == UNIT_MAINTENANCE)
1742 return -EAGAIN;
1743
1744 /* Units that aren't loaded cannot be started */
1745 if (u->load_state != UNIT_LOADED)
1746 return -EINVAL;
1747
1748 /* Refuse starting scope units more than once */
1749 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_enter_timestamp))
1750 return -ESTALE;
1751
1752 /* If the conditions failed, don't do anything at all. If we already are activating this call might
1753 * still be useful to speed up activation in case there is some hold-off time, but we don't want to
1754 * recheck the condition in that case. */
1755 if (state != UNIT_ACTIVATING &&
1756 !unit_test_condition(u))
1757 return log_unit_debug_errno(u, SYNTHETIC_ERRNO(ECOMM), "Starting requested but condition failed. Not starting unit.");
1758
1759 /* If the asserts failed, fail the entire job */
1760 if (state != UNIT_ACTIVATING &&
1761 !unit_test_assert(u))
1762 return log_unit_notice_errno(u, SYNTHETIC_ERRNO(EPROTO), "Starting requested but asserts failed.");
1763
1764 /* Units of types that aren't supported cannot be started. Note that we do this test only after the
1765 * condition checks, so that we rather return condition check errors (which are usually not
1766 * considered a true failure) than "not supported" errors (which are considered a failure).
1767 */
1768 if (!unit_type_supported(u->type))
1769 return -EOPNOTSUPP;
1770
1771 /* Let's make sure that the deps really are in order before we start this. Normally the job engine
1772 * should have taken care of this already, but let's check this here again. After all, our
1773 * dependencies might not be in effect anymore, due to a reload or due to a failed condition. */
1774 if (!unit_verify_deps(u))
1775 return -ENOLINK;
1776
1777 /* Forward to the main object, if we aren't it. */
1778 following = unit_following(u);
1779 if (following) {
1780 log_unit_debug(u, "Redirecting start request from %s to %s.", u->id, following->id);
1781 return unit_start(following);
1782 }
1783
1784 /* If it is stopped, but we cannot start it, then fail */
1785 if (!UNIT_VTABLE(u)->start)
1786 return -EBADR;
1787
1788 /* We don't suppress calls to ->start() here when we are already starting, to allow this request to
1789 * be used as a "hurry up" call, for example when the unit is in some "auto restart" state where it
1790 * waits for a holdoff timer to elapse before it will start again. */
1791
1792 unit_add_to_dbus_queue(u);
1793
1794 return UNIT_VTABLE(u)->start(u);
1795 }
1796
1797 bool unit_can_start(Unit *u) {
1798 assert(u);
1799
1800 if (u->load_state != UNIT_LOADED)
1801 return false;
1802
1803 if (!unit_type_supported(u->type))
1804 return false;
1805
1806 /* Scope units may be started only once */
1807 if (UNIT_VTABLE(u)->once_only && dual_timestamp_is_set(&u->inactive_exit_timestamp))
1808 return false;
1809
1810 return !!UNIT_VTABLE(u)->start;
1811 }
1812
1813 bool unit_can_isolate(Unit *u) {
1814 assert(u);
1815
1816 return unit_can_start(u) &&
1817 u->allow_isolate;
1818 }
1819
1820 /* Errors:
1821 * -EBADR: This unit type does not support stopping.
1822 * -EALREADY: Unit is already stopped.
1823 * -EAGAIN: An operation is already in progress. Retry later.
1824 */
1825 int unit_stop(Unit *u) {
1826 UnitActiveState state;
1827 Unit *following;
1828
1829 assert(u);
1830
1831 state = unit_active_state(u);
1832 if (UNIT_IS_INACTIVE_OR_FAILED(state))
1833 return -EALREADY;
1834
1835 following = unit_following(u);
1836 if (following) {
1837 log_unit_debug(u, "Redirecting stop request from %s to %s.", u->id, following->id);
1838 return unit_stop(following);
1839 }
1840
1841 if (!UNIT_VTABLE(u)->stop)
1842 return -EBADR;
1843
1844 unit_add_to_dbus_queue(u);
1845
1846 return UNIT_VTABLE(u)->stop(u);
1847 }
1848
1849 bool unit_can_stop(Unit *u) {
1850 assert(u);
1851
1852 if (!unit_type_supported(u->type))
1853 return false;
1854
1855 if (u->perpetual)
1856 return false;
1857
1858 return !!UNIT_VTABLE(u)->stop;
1859 }
1860
1861 /* Errors:
1862 * -EBADR: This unit type does not support reloading.
1863 * -ENOEXEC: Unit is not started.
1864 * -EAGAIN: An operation is already in progress. Retry later.
1865 */
1866 int unit_reload(Unit *u) {
1867 UnitActiveState state;
1868 Unit *following;
1869
1870 assert(u);
1871
1872 if (u->load_state != UNIT_LOADED)
1873 return -EINVAL;
1874
1875 if (!unit_can_reload(u))
1876 return -EBADR;
1877
1878 state = unit_active_state(u);
1879 if (state == UNIT_RELOADING)
1880 return -EAGAIN;
1881
1882 if (state != UNIT_ACTIVE) {
1883 log_unit_warning(u, "Unit cannot be reloaded because it is inactive.");
1884 return -ENOEXEC;
1885 }
1886
1887 following = unit_following(u);
1888 if (following) {
1889 log_unit_debug(u, "Redirecting reload request from %s to %s.", u->id, following->id);
1890 return unit_reload(following);
1891 }
1892
1893 unit_add_to_dbus_queue(u);
1894
1895 if (!UNIT_VTABLE(u)->reload) {
1896 /* Unit doesn't have a reload function, but we need to propagate the reload anyway */
1897 unit_notify(u, unit_active_state(u), unit_active_state(u), 0);
1898 return 0;
1899 }
1900
1901 return UNIT_VTABLE(u)->reload(u);
1902 }
1903
1904 bool unit_can_reload(Unit *u) {
1905 assert(u);
1906
1907 if (UNIT_VTABLE(u)->can_reload)
1908 return UNIT_VTABLE(u)->can_reload(u);
1909
1910 if (!hashmap_isempty(u->dependencies[UNIT_PROPAGATES_RELOAD_TO]))
1911 return true;
1912
1913 return UNIT_VTABLE(u)->reload;
1914 }
1915
1916 bool unit_is_unneeded(Unit *u) {
1917 static const UnitDependency deps[] = {
1918 UNIT_REQUIRED_BY,
1919 UNIT_REQUISITE_OF,
1920 UNIT_WANTED_BY,
1921 UNIT_BOUND_BY,
1922 };
1923 size_t j;
1924
1925 assert(u);
1926
1927 if (!u->stop_when_unneeded)
1928 return false;
1929
1930 /* Don't clean up while the unit is transitioning or is even inactive. */
1931 if (!UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
1932 return false;
1933 if (u->job)
1934 return false;
1935
1936 for (j = 0; j < ELEMENTSOF(deps); j++) {
1937 Unit *other;
1938 Iterator i;
1939 void *v;
1940
1941 /* If a dependent unit has a job queued, is active or transitioning, or is marked for
1942 * restart, then don't clean this one up. */
1943
1944 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i) {
1945 if (other->job)
1946 return false;
1947
1948 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
1949 return false;
1950
1951 if (unit_will_restart(other))
1952 return false;
1953 }
1954 }
1955
1956 return true;
1957 }
1958
1959 static void check_unneeded_dependencies(Unit *u) {
1960
1961 static const UnitDependency deps[] = {
1962 UNIT_REQUIRES,
1963 UNIT_REQUISITE,
1964 UNIT_WANTS,
1965 UNIT_BINDS_TO,
1966 };
1967 size_t j;
1968
1969 assert(u);
1970
1971 /* Add all units this unit depends on to the queue that processes StopWhenUnneeded= behaviour. */
1972
1973 for (j = 0; j < ELEMENTSOF(deps); j++) {
1974 Unit *other;
1975 Iterator i;
1976 void *v;
1977
1978 HASHMAP_FOREACH_KEY(v, other, u->dependencies[deps[j]], i)
1979 unit_submit_to_stop_when_unneeded_queue(other);
1980 }
1981 }
1982
1983 static void unit_check_binds_to(Unit *u) {
1984 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1985 bool stop = false;
1986 Unit *other;
1987 Iterator i;
1988 void *v;
1989 int r;
1990
1991 assert(u);
1992
1993 if (u->job)
1994 return;
1995
1996 if (unit_active_state(u) != UNIT_ACTIVE)
1997 return;
1998
1999 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i) {
2000 if (other->job)
2001 continue;
2002
2003 if (!other->coldplugged)
2004 /* We might yet create a job for the other unit… */
2005 continue;
2006
2007 if (!UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(other)))
2008 continue;
2009
2010 stop = true;
2011 break;
2012 }
2013
2014 if (!stop)
2015 return;
2016
2017 /* If stopping a unit fails continuously we might enter a stop
2018 * loop here, hence stop acting on the service being
2019 * unnecessary after a while. */
2020 if (!ratelimit_below(&u->auto_stop_ratelimit)) {
2021 log_unit_warning(u, "Unit is bound to inactive unit %s, but not stopping since we tried this too often recently.", other->id);
2022 return;
2023 }
2024
2025 assert(other);
2026 log_unit_info(u, "Unit is bound to inactive unit %s. Stopping, too.", other->id);
2027
2028 /* A unit we need to run is gone. Sniff. Let's stop this. */
2029 r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
2030 if (r < 0)
2031 log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
2032 }
2033
2034 static void retroactively_start_dependencies(Unit *u) {
2035 Iterator i;
2036 Unit *other;
2037 void *v;
2038
2039 assert(u);
2040 assert(UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)));
2041
2042 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_REQUIRES], i)
2043 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2044 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2045 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2046
2047 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BINDS_TO], i)
2048 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2049 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2050 manager_add_job(u->manager, JOB_START, other, JOB_REPLACE, NULL, NULL, NULL);
2051
2052 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_WANTS], i)
2053 if (!hashmap_get(u->dependencies[UNIT_AFTER], other) &&
2054 !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(other)))
2055 manager_add_job(u->manager, JOB_START, other, JOB_FAIL, NULL, NULL, NULL);
2056
2057 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTS], i)
2058 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2059 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2060
2061 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_CONFLICTED_BY], i)
2062 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2063 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2064 }
2065
2066 static void retroactively_stop_dependencies(Unit *u) {
2067 Unit *other;
2068 Iterator i;
2069 void *v;
2070
2071 assert(u);
2072 assert(UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)));
2073
2074 /* Pull down units which are bound to us recursively if enabled */
2075 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_BOUND_BY], i)
2076 if (!UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(other)))
2077 manager_add_job(u->manager, JOB_STOP, other, JOB_REPLACE, NULL, NULL, NULL);
2078 }
2079
2080 void unit_start_on_failure(Unit *u) {
2081 Unit *other;
2082 Iterator i;
2083 void *v;
2084 int r;
2085
2086 assert(u);
2087
2088 if (hashmap_size(u->dependencies[UNIT_ON_FAILURE]) <= 0)
2089 return;
2090
2091 log_unit_info(u, "Triggering OnFailure= dependencies.");
2092
2093 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_ON_FAILURE], i) {
2094 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
2095
2096 r = manager_add_job(u->manager, JOB_START, other, u->on_failure_job_mode, NULL, &error, NULL);
2097 if (r < 0)
2098 log_unit_warning_errno(u, r, "Failed to enqueue OnFailure= job, ignoring: %s", bus_error_message(&error, r));
2099 }
2100 }
2101
2102 void unit_trigger_notify(Unit *u) {
2103 Unit *other;
2104 Iterator i;
2105 void *v;
2106
2107 assert(u);
2108
2109 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_TRIGGERED_BY], i)
2110 if (UNIT_VTABLE(other)->trigger_notify)
2111 UNIT_VTABLE(other)->trigger_notify(other, u);
2112 }
2113
2114 static int raise_level(int log_level, bool condition_info, bool condition_notice) {
2115 if (condition_notice && log_level > LOG_NOTICE)
2116 return LOG_NOTICE;
2117 if (condition_info && log_level > LOG_INFO)
2118 return LOG_INFO;
2119 return log_level;
2120 }
2121
2122 static int unit_log_resources(Unit *u) {
2123 struct iovec iovec[1 + _CGROUP_IP_ACCOUNTING_METRIC_MAX + _CGROUP_IO_ACCOUNTING_METRIC_MAX + 4];
2124 bool any_traffic = false, have_ip_accounting = false, any_io = false, have_io_accounting = false;
2125 _cleanup_free_ char *igress = NULL, *egress = NULL, *rr = NULL, *wr = NULL;
2126 int log_level = LOG_DEBUG; /* May be raised if resources consumed over a treshold */
2127 size_t n_message_parts = 0, n_iovec = 0;
2128 char* message_parts[1 + 2 + 2 + 1], *t;
2129 nsec_t nsec = NSEC_INFINITY;
2130 CGroupIPAccountingMetric m;
2131 size_t i;
2132 int r;
2133 const char* const ip_fields[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
2134 [CGROUP_IP_INGRESS_BYTES] = "IP_METRIC_INGRESS_BYTES",
2135 [CGROUP_IP_INGRESS_PACKETS] = "IP_METRIC_INGRESS_PACKETS",
2136 [CGROUP_IP_EGRESS_BYTES] = "IP_METRIC_EGRESS_BYTES",
2137 [CGROUP_IP_EGRESS_PACKETS] = "IP_METRIC_EGRESS_PACKETS",
2138 };
2139 const char* const io_fields[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
2140 [CGROUP_IO_READ_BYTES] = "IO_METRIC_READ_BYTES",
2141 [CGROUP_IO_WRITE_BYTES] = "IO_METRIC_WRITE_BYTES",
2142 [CGROUP_IO_READ_OPERATIONS] = "IO_METRIC_READ_OPERATIONS",
2143 [CGROUP_IO_WRITE_OPERATIONS] = "IO_METRIC_WRITE_OPERATIONS",
2144 };
2145
2146 assert(u);
2147
2148 /* Invoked whenever a unit enters failed or dead state. Logs information about consumed resources if resource
2149 * accounting was enabled for a unit. It does this in two ways: a friendly human readable string with reduced
2150 * information and the complete data in structured fields. */
2151
2152 (void) unit_get_cpu_usage(u, &nsec);
2153 if (nsec != NSEC_INFINITY) {
2154 char buf[FORMAT_TIMESPAN_MAX] = "";
2155
2156 /* Format the CPU time for inclusion in the structured log message */
2157 if (asprintf(&t, "CPU_USAGE_NSEC=%" PRIu64, nsec) < 0) {
2158 r = log_oom();
2159 goto finish;
2160 }
2161 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2162
2163 /* Format the CPU time for inclusion in the human language message string */
2164 format_timespan(buf, sizeof(buf), nsec / NSEC_PER_USEC, USEC_PER_MSEC);
2165 t = strjoin("consumed ", buf, " CPU time");
2166 if (!t) {
2167 r = log_oom();
2168 goto finish;
2169 }
2170
2171 message_parts[n_message_parts++] = t;
2172
2173 log_level = raise_level(log_level,
2174 nsec > NOTICEWORTHY_CPU_NSEC,
2175 nsec > MENTIONWORTHY_CPU_NSEC);
2176 }
2177
2178 for (CGroupIOAccountingMetric k = 0; k < _CGROUP_IO_ACCOUNTING_METRIC_MAX; k++) {
2179 char buf[FORMAT_BYTES_MAX] = "";
2180 uint64_t value = UINT64_MAX;
2181
2182 assert(io_fields[k]);
2183
2184 (void) unit_get_io_accounting(u, k, k > 0, &value);
2185 if (value == UINT64_MAX)
2186 continue;
2187
2188 have_io_accounting = true;
2189 if (value > 0)
2190 any_io = true;
2191
2192 /* Format IO accounting data for inclusion in the structured log message */
2193 if (asprintf(&t, "%s=%" PRIu64, io_fields[k], value) < 0) {
2194 r = log_oom();
2195 goto finish;
2196 }
2197 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2198
2199 /* Format the IO accounting data for inclusion in the human language message string, but only
2200 * for the bytes counters (and not for the operations counters) */
2201 if (k == CGROUP_IO_READ_BYTES) {
2202 assert(!rr);
2203 rr = strjoin("read ", format_bytes(buf, sizeof(buf), value), " from disk");
2204 if (!rr) {
2205 r = log_oom();
2206 goto finish;
2207 }
2208 } else if (k == CGROUP_IO_WRITE_BYTES) {
2209 assert(!wr);
2210 wr = strjoin("written ", format_bytes(buf, sizeof(buf), value), " to disk");
2211 if (!wr) {
2212 r = log_oom();
2213 goto finish;
2214 }
2215 }
2216
2217 if (IN_SET(k, CGROUP_IO_READ_BYTES, CGROUP_IO_WRITE_BYTES))
2218 log_level = raise_level(log_level,
2219 value > MENTIONWORTHY_IO_BYTES,
2220 value > NOTICEWORTHY_IO_BYTES);
2221 }
2222
2223 if (have_io_accounting) {
2224 if (any_io) {
2225 if (rr)
2226 message_parts[n_message_parts++] = TAKE_PTR(rr);
2227 if (wr)
2228 message_parts[n_message_parts++] = TAKE_PTR(wr);
2229
2230 } else {
2231 char *k;
2232
2233 k = strdup("no IO");
2234 if (!k) {
2235 r = log_oom();
2236 goto finish;
2237 }
2238
2239 message_parts[n_message_parts++] = k;
2240 }
2241 }
2242
2243 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
2244 char buf[FORMAT_BYTES_MAX] = "";
2245 uint64_t value = UINT64_MAX;
2246
2247 assert(ip_fields[m]);
2248
2249 (void) unit_get_ip_accounting(u, m, &value);
2250 if (value == UINT64_MAX)
2251 continue;
2252
2253 have_ip_accounting = true;
2254 if (value > 0)
2255 any_traffic = true;
2256
2257 /* Format IP accounting data for inclusion in the structured log message */
2258 if (asprintf(&t, "%s=%" PRIu64, ip_fields[m], value) < 0) {
2259 r = log_oom();
2260 goto finish;
2261 }
2262 iovec[n_iovec++] = IOVEC_MAKE_STRING(t);
2263
2264 /* Format the IP accounting data for inclusion in the human language message string, but only for the
2265 * bytes counters (and not for the packets counters) */
2266 if (m == CGROUP_IP_INGRESS_BYTES) {
2267 assert(!igress);
2268 igress = strjoin("received ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2269 if (!igress) {
2270 r = log_oom();
2271 goto finish;
2272 }
2273 } else if (m == CGROUP_IP_EGRESS_BYTES) {
2274 assert(!egress);
2275 egress = strjoin("sent ", format_bytes(buf, sizeof(buf), value), " IP traffic");
2276 if (!egress) {
2277 r = log_oom();
2278 goto finish;
2279 }
2280 }
2281
2282 if (IN_SET(m, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
2283 log_level = raise_level(log_level,
2284 value > MENTIONWORTHY_IP_BYTES,
2285 value > NOTICEWORTHY_IP_BYTES);
2286 }
2287
2288 if (have_ip_accounting) {
2289 if (any_traffic) {
2290 if (igress)
2291 message_parts[n_message_parts++] = TAKE_PTR(igress);
2292 if (egress)
2293 message_parts[n_message_parts++] = TAKE_PTR(egress);
2294
2295 } else {
2296 char *k;
2297
2298 k = strdup("no IP traffic");
2299 if (!k) {
2300 r = log_oom();
2301 goto finish;
2302 }
2303
2304 message_parts[n_message_parts++] = k;
2305 }
2306 }
2307
2308 /* Is there any accounting data available at all? */
2309 if (n_iovec == 0) {
2310 r = 0;
2311 goto finish;
2312 }
2313
2314 if (n_message_parts == 0)
2315 t = strjoina("MESSAGE=", u->id, ": Completed.");
2316 else {
2317 _cleanup_free_ char *joined;
2318
2319 message_parts[n_message_parts] = NULL;
2320
2321 joined = strv_join(message_parts, ", ");
2322 if (!joined) {
2323 r = log_oom();
2324 goto finish;
2325 }
2326
2327 joined[0] = ascii_toupper(joined[0]);
2328 t = strjoina("MESSAGE=", u->id, ": ", joined, ".");
2329 }
2330
2331 /* The following four fields we allocate on the stack or are static strings, we hence don't want to free them,
2332 * and hence don't increase n_iovec for them */
2333 iovec[n_iovec] = IOVEC_MAKE_STRING(t);
2334 iovec[n_iovec + 1] = IOVEC_MAKE_STRING("MESSAGE_ID=" SD_MESSAGE_UNIT_RESOURCES_STR);
2335
2336 t = strjoina(u->manager->unit_log_field, u->id);
2337 iovec[n_iovec + 2] = IOVEC_MAKE_STRING(t);
2338
2339 t = strjoina(u->manager->invocation_log_field, u->invocation_id_string);
2340 iovec[n_iovec + 3] = IOVEC_MAKE_STRING(t);
2341
2342 log_struct_iovec(log_level, iovec, n_iovec + 4);
2343 r = 0;
2344
2345 finish:
2346 for (i = 0; i < n_message_parts; i++)
2347 free(message_parts[i]);
2348
2349 for (i = 0; i < n_iovec; i++)
2350 free(iovec[i].iov_base);
2351
2352 return r;
2353
2354 }
2355
2356 static void unit_update_on_console(Unit *u) {
2357 bool b;
2358
2359 assert(u);
2360
2361 b = unit_needs_console(u);
2362 if (u->on_console == b)
2363 return;
2364
2365 u->on_console = b;
2366 if (b)
2367 manager_ref_console(u->manager);
2368 else
2369 manager_unref_console(u->manager);
2370 }
2371
2372 static void unit_emit_audit_start(Unit *u) {
2373 assert(u);
2374
2375 if (u->type != UNIT_SERVICE)
2376 return;
2377
2378 /* Write audit record if we have just finished starting up */
2379 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, true);
2380 u->in_audit = true;
2381 }
2382
2383 static void unit_emit_audit_stop(Unit *u, UnitActiveState state) {
2384 assert(u);
2385
2386 if (u->type != UNIT_SERVICE)
2387 return;
2388
2389 if (u->in_audit) {
2390 /* Write audit record if we have just finished shutting down */
2391 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, state == UNIT_INACTIVE);
2392 u->in_audit = false;
2393 } else {
2394 /* Hmm, if there was no start record written write it now, so that we always have a nice pair */
2395 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_START, state == UNIT_INACTIVE);
2396
2397 if (state == UNIT_INACTIVE)
2398 manager_send_unit_audit(u->manager, u, AUDIT_SERVICE_STOP, true);
2399 }
2400 }
2401
2402 static bool unit_process_job(Job *j, UnitActiveState ns, UnitNotifyFlags flags) {
2403 bool unexpected = false;
2404 JobResult result;
2405
2406 assert(j);
2407
2408 if (j->state == JOB_WAITING)
2409
2410 /* So we reached a different state for this job. Let's see if we can run it now if it failed previously
2411 * due to EAGAIN. */
2412 job_add_to_run_queue(j);
2413
2414 /* Let's check whether the unit's new state constitutes a finished job, or maybe contradicts a running job and
2415 * hence needs to invalidate jobs. */
2416
2417 switch (j->type) {
2418
2419 case JOB_START:
2420 case JOB_VERIFY_ACTIVE:
2421
2422 if (UNIT_IS_ACTIVE_OR_RELOADING(ns))
2423 job_finish_and_invalidate(j, JOB_DONE, true, false);
2424 else if (j->state == JOB_RUNNING && ns != UNIT_ACTIVATING) {
2425 unexpected = true;
2426
2427 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2428 if (ns == UNIT_FAILED)
2429 result = JOB_FAILED;
2430 else if (FLAGS_SET(flags, UNIT_NOTIFY_SKIP_CONDITION))
2431 result = JOB_SKIPPED;
2432 else
2433 result = JOB_DONE;
2434
2435 job_finish_and_invalidate(j, result, true, false);
2436 }
2437 }
2438
2439 break;
2440
2441 case JOB_RELOAD:
2442 case JOB_RELOAD_OR_START:
2443 case JOB_TRY_RELOAD:
2444
2445 if (j->state == JOB_RUNNING) {
2446 if (ns == UNIT_ACTIVE)
2447 job_finish_and_invalidate(j, (flags & UNIT_NOTIFY_RELOAD_FAILURE) ? JOB_FAILED : JOB_DONE, true, false);
2448 else if (!IN_SET(ns, UNIT_ACTIVATING, UNIT_RELOADING)) {
2449 unexpected = true;
2450
2451 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2452 job_finish_and_invalidate(j, ns == UNIT_FAILED ? JOB_FAILED : JOB_DONE, true, false);
2453 }
2454 }
2455
2456 break;
2457
2458 case JOB_STOP:
2459 case JOB_RESTART:
2460 case JOB_TRY_RESTART:
2461
2462 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2463 job_finish_and_invalidate(j, JOB_DONE, true, false);
2464 else if (j->state == JOB_RUNNING && ns != UNIT_DEACTIVATING) {
2465 unexpected = true;
2466 job_finish_and_invalidate(j, JOB_FAILED, true, false);
2467 }
2468
2469 break;
2470
2471 default:
2472 assert_not_reached("Job type unknown");
2473 }
2474
2475 return unexpected;
2476 }
2477
2478 void unit_notify(Unit *u, UnitActiveState os, UnitActiveState ns, UnitNotifyFlags flags) {
2479 const char *reason;
2480 Manager *m;
2481
2482 assert(u);
2483 assert(os < _UNIT_ACTIVE_STATE_MAX);
2484 assert(ns < _UNIT_ACTIVE_STATE_MAX);
2485
2486 /* Note that this is called for all low-level state changes, even if they might map to the same high-level
2487 * UnitActiveState! That means that ns == os is an expected behavior here. For example: if a mount point is
2488 * remounted this function will be called too! */
2489
2490 m = u->manager;
2491
2492 /* Let's enqueue the change signal early. In case this unit has a job associated we want that this unit is in
2493 * the bus queue, so that any job change signal queued will force out the unit change signal first. */
2494 unit_add_to_dbus_queue(u);
2495
2496 /* Update timestamps for state changes */
2497 if (!MANAGER_IS_RELOADING(m)) {
2498 dual_timestamp_get(&u->state_change_timestamp);
2499
2500 if (UNIT_IS_INACTIVE_OR_FAILED(os) && !UNIT_IS_INACTIVE_OR_FAILED(ns))
2501 u->inactive_exit_timestamp = u->state_change_timestamp;
2502 else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_INACTIVE_OR_FAILED(ns))
2503 u->inactive_enter_timestamp = u->state_change_timestamp;
2504
2505 if (!UNIT_IS_ACTIVE_OR_RELOADING(os) && UNIT_IS_ACTIVE_OR_RELOADING(ns))
2506 u->active_enter_timestamp = u->state_change_timestamp;
2507 else if (UNIT_IS_ACTIVE_OR_RELOADING(os) && !UNIT_IS_ACTIVE_OR_RELOADING(ns))
2508 u->active_exit_timestamp = u->state_change_timestamp;
2509 }
2510
2511 /* Keep track of failed units */
2512 (void) manager_update_failed_units(m, u, ns == UNIT_FAILED);
2513
2514 /* Make sure the cgroup and state files are always removed when we become inactive */
2515 if (UNIT_IS_INACTIVE_OR_FAILED(ns)) {
2516 unit_prune_cgroup(u);
2517 unit_unlink_state_files(u);
2518 }
2519
2520 unit_update_on_console(u);
2521
2522 if (!MANAGER_IS_RELOADING(m)) {
2523 bool unexpected;
2524
2525 /* Let's propagate state changes to the job */
2526 if (u->job)
2527 unexpected = unit_process_job(u->job, ns, flags);
2528 else
2529 unexpected = true;
2530
2531 /* If this state change happened without being requested by a job, then let's retroactively start or
2532 * stop dependencies. We skip that step when deserializing, since we don't want to create any
2533 * additional jobs just because something is already activated. */
2534
2535 if (unexpected) {
2536 if (UNIT_IS_INACTIVE_OR_FAILED(os) && UNIT_IS_ACTIVE_OR_ACTIVATING(ns))
2537 retroactively_start_dependencies(u);
2538 else if (UNIT_IS_ACTIVE_OR_ACTIVATING(os) && UNIT_IS_INACTIVE_OR_DEACTIVATING(ns))
2539 retroactively_stop_dependencies(u);
2540 }
2541
2542 /* stop unneeded units regardless if going down was expected or not */
2543 if (UNIT_IS_INACTIVE_OR_FAILED(ns))
2544 check_unneeded_dependencies(u);
2545
2546 if (ns != os && ns == UNIT_FAILED) {
2547 log_unit_debug(u, "Unit entered failed state.");
2548
2549 if (!(flags & UNIT_NOTIFY_WILL_AUTO_RESTART))
2550 unit_start_on_failure(u);
2551 }
2552
2553 if (UNIT_IS_ACTIVE_OR_RELOADING(ns) && !UNIT_IS_ACTIVE_OR_RELOADING(os)) {
2554 /* This unit just finished starting up */
2555
2556 unit_emit_audit_start(u);
2557 manager_send_unit_plymouth(m, u);
2558 }
2559
2560 if (UNIT_IS_INACTIVE_OR_FAILED(ns) && !UNIT_IS_INACTIVE_OR_FAILED(os)) {
2561 /* This unit just stopped/failed. */
2562
2563 unit_emit_audit_stop(u, ns);
2564 unit_log_resources(u);
2565 }
2566 }
2567
2568 manager_recheck_journal(m);
2569 manager_recheck_dbus(m);
2570
2571 unit_trigger_notify(u);
2572
2573 if (!MANAGER_IS_RELOADING(m)) {
2574 /* Maybe we finished startup and are now ready for being stopped because unneeded? */
2575 unit_submit_to_stop_when_unneeded_queue(u);
2576
2577 /* Maybe we finished startup, but something we needed has vanished? Let's die then. (This happens when
2578 * something BindsTo= to a Type=oneshot unit, as these units go directly from starting to inactive,
2579 * without ever entering started.) */
2580 unit_check_binds_to(u);
2581
2582 if (os != UNIT_FAILED && ns == UNIT_FAILED) {
2583 reason = strjoina("unit ", u->id, " failed");
2584 emergency_action(m, u->failure_action, 0, u->reboot_arg, unit_failure_action_exit_status(u), reason);
2585 } else if (!UNIT_IS_INACTIVE_OR_FAILED(os) && ns == UNIT_INACTIVE) {
2586 reason = strjoina("unit ", u->id, " succeeded");
2587 emergency_action(m, u->success_action, 0, u->reboot_arg, unit_success_action_exit_status(u), reason);
2588 }
2589 }
2590
2591 unit_add_to_gc_queue(u);
2592 }
2593
2594 int unit_watch_pid(Unit *u, pid_t pid, bool exclusive) {
2595 int r;
2596
2597 assert(u);
2598 assert(pid_is_valid(pid));
2599
2600 /* Watch a specific PID */
2601
2602 /* Caller might be sure that this PID belongs to this unit only. Let's take this
2603 * opportunity to remove any stalled references to this PID as they can be created
2604 * easily (when watching a process which is not our direct child). */
2605 if (exclusive)
2606 manager_unwatch_pid(u->manager, pid);
2607
2608 r = set_ensure_allocated(&u->pids, NULL);
2609 if (r < 0)
2610 return r;
2611
2612 r = hashmap_ensure_allocated(&u->manager->watch_pids, NULL);
2613 if (r < 0)
2614 return r;
2615
2616 /* First try, let's add the unit keyed by "pid". */
2617 r = hashmap_put(u->manager->watch_pids, PID_TO_PTR(pid), u);
2618 if (r == -EEXIST) {
2619 Unit **array;
2620 bool found = false;
2621 size_t n = 0;
2622
2623 /* OK, the "pid" key is already assigned to a different unit. Let's see if the "-pid" key (which points
2624 * to an array of Units rather than just a Unit), lists us already. */
2625
2626 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2627 if (array)
2628 for (; array[n]; n++)
2629 if (array[n] == u)
2630 found = true;
2631
2632 if (found) /* Found it already? if so, do nothing */
2633 r = 0;
2634 else {
2635 Unit **new_array;
2636
2637 /* Allocate a new array */
2638 new_array = new(Unit*, n + 2);
2639 if (!new_array)
2640 return -ENOMEM;
2641
2642 memcpy_safe(new_array, array, sizeof(Unit*) * n);
2643 new_array[n] = u;
2644 new_array[n+1] = NULL;
2645
2646 /* Add or replace the old array */
2647 r = hashmap_replace(u->manager->watch_pids, PID_TO_PTR(-pid), new_array);
2648 if (r < 0) {
2649 free(new_array);
2650 return r;
2651 }
2652
2653 free(array);
2654 }
2655 } else if (r < 0)
2656 return r;
2657
2658 r = set_put(u->pids, PID_TO_PTR(pid));
2659 if (r < 0)
2660 return r;
2661
2662 return 0;
2663 }
2664
2665 void unit_unwatch_pid(Unit *u, pid_t pid) {
2666 Unit **array;
2667
2668 assert(u);
2669 assert(pid_is_valid(pid));
2670
2671 /* First let's drop the unit in case it's keyed as "pid". */
2672 (void) hashmap_remove_value(u->manager->watch_pids, PID_TO_PTR(pid), u);
2673
2674 /* Then, let's also drop the unit, in case it's in the array keyed by -pid */
2675 array = hashmap_get(u->manager->watch_pids, PID_TO_PTR(-pid));
2676 if (array) {
2677 size_t n, m = 0;
2678
2679 /* Let's iterate through the array, dropping our own entry */
2680 for (n = 0; array[n]; n++)
2681 if (array[n] != u)
2682 array[m++] = array[n];
2683 array[m] = NULL;
2684
2685 if (m == 0) {
2686 /* The array is now empty, remove the entire entry */
2687 assert(hashmap_remove(u->manager->watch_pids, PID_TO_PTR(-pid)) == array);
2688 free(array);
2689 }
2690 }
2691
2692 (void) set_remove(u->pids, PID_TO_PTR(pid));
2693 }
2694
2695 void unit_unwatch_all_pids(Unit *u) {
2696 assert(u);
2697
2698 while (!set_isempty(u->pids))
2699 unit_unwatch_pid(u, PTR_TO_PID(set_first(u->pids)));
2700
2701 u->pids = set_free(u->pids);
2702 }
2703
2704 static void unit_tidy_watch_pids(Unit *u) {
2705 pid_t except1, except2;
2706 Iterator i;
2707 void *e;
2708
2709 assert(u);
2710
2711 /* Cleans dead PIDs from our list */
2712
2713 except1 = unit_main_pid(u);
2714 except2 = unit_control_pid(u);
2715
2716 SET_FOREACH(e, u->pids, i) {
2717 pid_t pid = PTR_TO_PID(e);
2718
2719 if (pid == except1 || pid == except2)
2720 continue;
2721
2722 if (!pid_is_unwaited(pid))
2723 unit_unwatch_pid(u, pid);
2724 }
2725 }
2726
2727 static int on_rewatch_pids_event(sd_event_source *s, void *userdata) {
2728 Unit *u = userdata;
2729
2730 assert(s);
2731 assert(u);
2732
2733 unit_tidy_watch_pids(u);
2734 unit_watch_all_pids(u);
2735
2736 /* If the PID set is empty now, then let's finish this off. */
2737 unit_synthesize_cgroup_empty_event(u);
2738
2739 return 0;
2740 }
2741
2742 int unit_enqueue_rewatch_pids(Unit *u) {
2743 int r;
2744
2745 assert(u);
2746
2747 if (!u->cgroup_path)
2748 return -ENOENT;
2749
2750 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2751 if (r < 0)
2752 return r;
2753 if (r > 0) /* On unified we can use proper notifications */
2754 return 0;
2755
2756 /* Enqueues a low-priority job that will clean up dead PIDs from our list of PIDs to watch and subscribe to new
2757 * PIDs that might have appeared. We do this in a delayed job because the work might be quite slow, as it
2758 * involves issuing kill(pid, 0) on all processes we watch. */
2759
2760 if (!u->rewatch_pids_event_source) {
2761 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2762
2763 r = sd_event_add_defer(u->manager->event, &s, on_rewatch_pids_event, u);
2764 if (r < 0)
2765 return log_error_errno(r, "Failed to allocate event source for tidying watched PIDs: %m");
2766
2767 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_IDLE);
2768 if (r < 0)
2769 return log_error_errno(r, "Failed to adjust priority of event source for tidying watched PIDs: %m");
2770
2771 (void) sd_event_source_set_description(s, "tidy-watch-pids");
2772
2773 u->rewatch_pids_event_source = TAKE_PTR(s);
2774 }
2775
2776 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_ONESHOT);
2777 if (r < 0)
2778 return log_error_errno(r, "Failed to enable event source for tidying watched PIDs: %m");
2779
2780 return 0;
2781 }
2782
2783 void unit_dequeue_rewatch_pids(Unit *u) {
2784 int r;
2785 assert(u);
2786
2787 if (!u->rewatch_pids_event_source)
2788 return;
2789
2790 r = sd_event_source_set_enabled(u->rewatch_pids_event_source, SD_EVENT_OFF);
2791 if (r < 0)
2792 log_warning_errno(r, "Failed to disable event source for tidying watched PIDs, ignoring: %m");
2793
2794 u->rewatch_pids_event_source = sd_event_source_unref(u->rewatch_pids_event_source);
2795 }
2796
2797 bool unit_job_is_applicable(Unit *u, JobType j) {
2798 assert(u);
2799 assert(j >= 0 && j < _JOB_TYPE_MAX);
2800
2801 switch (j) {
2802
2803 case JOB_VERIFY_ACTIVE:
2804 case JOB_START:
2805 case JOB_NOP:
2806 /* Note that we don't check unit_can_start() here. That's because .device units and suchlike are not
2807 * startable by us but may appear due to external events, and it thus makes sense to permit enqueing
2808 * jobs for it. */
2809 return true;
2810
2811 case JOB_STOP:
2812 /* Similar as above. However, perpetual units can never be stopped (neither explicitly nor due to
2813 * external events), hence it makes no sense to permit enqueing such a request either. */
2814 return !u->perpetual;
2815
2816 case JOB_RESTART:
2817 case JOB_TRY_RESTART:
2818 return unit_can_stop(u) && unit_can_start(u);
2819
2820 case JOB_RELOAD:
2821 case JOB_TRY_RELOAD:
2822 return unit_can_reload(u);
2823
2824 case JOB_RELOAD_OR_START:
2825 return unit_can_reload(u) && unit_can_start(u);
2826
2827 default:
2828 assert_not_reached("Invalid job type");
2829 }
2830 }
2831
2832 static void maybe_warn_about_dependency(Unit *u, const char *other, UnitDependency dependency) {
2833 assert(u);
2834
2835 /* Only warn about some unit types */
2836 if (!IN_SET(dependency, UNIT_CONFLICTS, UNIT_CONFLICTED_BY, UNIT_BEFORE, UNIT_AFTER, UNIT_ON_FAILURE, UNIT_TRIGGERS, UNIT_TRIGGERED_BY))
2837 return;
2838
2839 if (streq_ptr(u->id, other))
2840 log_unit_warning(u, "Dependency %s=%s dropped", unit_dependency_to_string(dependency), u->id);
2841 else
2842 log_unit_warning(u, "Dependency %s=%s dropped, merged into %s", unit_dependency_to_string(dependency), strna(other), u->id);
2843 }
2844
2845 static int unit_add_dependency_hashmap(
2846 Hashmap **h,
2847 Unit *other,
2848 UnitDependencyMask origin_mask,
2849 UnitDependencyMask destination_mask) {
2850
2851 UnitDependencyInfo info;
2852 int r;
2853
2854 assert(h);
2855 assert(other);
2856 assert(origin_mask < _UNIT_DEPENDENCY_MASK_FULL);
2857 assert(destination_mask < _UNIT_DEPENDENCY_MASK_FULL);
2858 assert(origin_mask > 0 || destination_mask > 0);
2859
2860 r = hashmap_ensure_allocated(h, NULL);
2861 if (r < 0)
2862 return r;
2863
2864 assert_cc(sizeof(void*) == sizeof(info));
2865
2866 info.data = hashmap_get(*h, other);
2867 if (info.data) {
2868 /* Entry already exists. Add in our mask. */
2869
2870 if (FLAGS_SET(origin_mask, info.origin_mask) &&
2871 FLAGS_SET(destination_mask, info.destination_mask))
2872 return 0; /* NOP */
2873
2874 info.origin_mask |= origin_mask;
2875 info.destination_mask |= destination_mask;
2876
2877 r = hashmap_update(*h, other, info.data);
2878 } else {
2879 info = (UnitDependencyInfo) {
2880 .origin_mask = origin_mask,
2881 .destination_mask = destination_mask,
2882 };
2883
2884 r = hashmap_put(*h, other, info.data);
2885 }
2886 if (r < 0)
2887 return r;
2888
2889 return 1;
2890 }
2891
2892 int unit_add_dependency(
2893 Unit *u,
2894 UnitDependency d,
2895 Unit *other,
2896 bool add_reference,
2897 UnitDependencyMask mask) {
2898
2899 static const UnitDependency inverse_table[_UNIT_DEPENDENCY_MAX] = {
2900 [UNIT_REQUIRES] = UNIT_REQUIRED_BY,
2901 [UNIT_WANTS] = UNIT_WANTED_BY,
2902 [UNIT_REQUISITE] = UNIT_REQUISITE_OF,
2903 [UNIT_BINDS_TO] = UNIT_BOUND_BY,
2904 [UNIT_PART_OF] = UNIT_CONSISTS_OF,
2905 [UNIT_REQUIRED_BY] = UNIT_REQUIRES,
2906 [UNIT_REQUISITE_OF] = UNIT_REQUISITE,
2907 [UNIT_WANTED_BY] = UNIT_WANTS,
2908 [UNIT_BOUND_BY] = UNIT_BINDS_TO,
2909 [UNIT_CONSISTS_OF] = UNIT_PART_OF,
2910 [UNIT_CONFLICTS] = UNIT_CONFLICTED_BY,
2911 [UNIT_CONFLICTED_BY] = UNIT_CONFLICTS,
2912 [UNIT_BEFORE] = UNIT_AFTER,
2913 [UNIT_AFTER] = UNIT_BEFORE,
2914 [UNIT_ON_FAILURE] = _UNIT_DEPENDENCY_INVALID,
2915 [UNIT_REFERENCES] = UNIT_REFERENCED_BY,
2916 [UNIT_REFERENCED_BY] = UNIT_REFERENCES,
2917 [UNIT_TRIGGERS] = UNIT_TRIGGERED_BY,
2918 [UNIT_TRIGGERED_BY] = UNIT_TRIGGERS,
2919 [UNIT_PROPAGATES_RELOAD_TO] = UNIT_RELOAD_PROPAGATED_FROM,
2920 [UNIT_RELOAD_PROPAGATED_FROM] = UNIT_PROPAGATES_RELOAD_TO,
2921 [UNIT_JOINS_NAMESPACE_OF] = UNIT_JOINS_NAMESPACE_OF,
2922 };
2923 Unit *original_u = u, *original_other = other;
2924 int r;
2925
2926 assert(u);
2927 assert(d >= 0 && d < _UNIT_DEPENDENCY_MAX);
2928 assert(other);
2929
2930 u = unit_follow_merge(u);
2931 other = unit_follow_merge(other);
2932
2933 /* We won't allow dependencies on ourselves. We will not
2934 * consider them an error however. */
2935 if (u == other) {
2936 maybe_warn_about_dependency(original_u, original_other->id, d);
2937 return 0;
2938 }
2939
2940 if ((d == UNIT_BEFORE && other->type == UNIT_DEVICE) ||
2941 (d == UNIT_AFTER && u->type == UNIT_DEVICE)) {
2942 log_unit_warning(u, "Dependency Before=%s ignored (.device units cannot be delayed)", other->id);
2943 return 0;
2944 }
2945
2946 r = unit_add_dependency_hashmap(u->dependencies + d, other, mask, 0);
2947 if (r < 0)
2948 return r;
2949
2950 if (inverse_table[d] != _UNIT_DEPENDENCY_INVALID && inverse_table[d] != d) {
2951 r = unit_add_dependency_hashmap(other->dependencies + inverse_table[d], u, 0, mask);
2952 if (r < 0)
2953 return r;
2954 }
2955
2956 if (add_reference) {
2957 r = unit_add_dependency_hashmap(u->dependencies + UNIT_REFERENCES, other, mask, 0);
2958 if (r < 0)
2959 return r;
2960
2961 r = unit_add_dependency_hashmap(other->dependencies + UNIT_REFERENCED_BY, u, 0, mask);
2962 if (r < 0)
2963 return r;
2964 }
2965
2966 unit_add_to_dbus_queue(u);
2967 return 0;
2968 }
2969
2970 int unit_add_two_dependencies(Unit *u, UnitDependency d, UnitDependency e, Unit *other, bool add_reference, UnitDependencyMask mask) {
2971 int r;
2972
2973 assert(u);
2974
2975 r = unit_add_dependency(u, d, other, add_reference, mask);
2976 if (r < 0)
2977 return r;
2978
2979 return unit_add_dependency(u, e, other, add_reference, mask);
2980 }
2981
2982 static int resolve_template(Unit *u, const char *name, char **buf, const char **ret) {
2983 int r;
2984
2985 assert(u);
2986 assert(name);
2987 assert(buf);
2988 assert(ret);
2989
2990 if (!unit_name_is_valid(name, UNIT_NAME_TEMPLATE)) {
2991 *buf = NULL;
2992 *ret = name;
2993 return 0;
2994 }
2995
2996 if (u->instance)
2997 r = unit_name_replace_instance(name, u->instance, buf);
2998 else {
2999 _cleanup_free_ char *i = NULL;
3000
3001 r = unit_name_to_prefix(u->id, &i);
3002 if (r < 0)
3003 return r;
3004
3005 r = unit_name_replace_instance(name, i, buf);
3006 }
3007 if (r < 0)
3008 return r;
3009
3010 *ret = *buf;
3011 return 0;
3012 }
3013
3014 int unit_add_dependency_by_name(Unit *u, UnitDependency d, const char *name, bool add_reference, UnitDependencyMask mask) {
3015 _cleanup_free_ char *buf = NULL;
3016 Unit *other;
3017 int r;
3018
3019 assert(u);
3020 assert(name);
3021
3022 r = resolve_template(u, name, &buf, &name);
3023 if (r < 0)
3024 return r;
3025
3026 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3027 if (r < 0)
3028 return r;
3029
3030 return unit_add_dependency(u, d, other, add_reference, mask);
3031 }
3032
3033 int unit_add_two_dependencies_by_name(Unit *u, UnitDependency d, UnitDependency e, const char *name, bool add_reference, UnitDependencyMask mask) {
3034 _cleanup_free_ char *buf = NULL;
3035 Unit *other;
3036 int r;
3037
3038 assert(u);
3039 assert(name);
3040
3041 r = resolve_template(u, name, &buf, &name);
3042 if (r < 0)
3043 return r;
3044
3045 r = manager_load_unit(u->manager, name, NULL, NULL, &other);
3046 if (r < 0)
3047 return r;
3048
3049 return unit_add_two_dependencies(u, d, e, other, add_reference, mask);
3050 }
3051
3052 int set_unit_path(const char *p) {
3053 /* This is mostly for debug purposes */
3054 if (setenv("SYSTEMD_UNIT_PATH", p, 1) < 0)
3055 return -errno;
3056
3057 return 0;
3058 }
3059
3060 char *unit_dbus_path(Unit *u) {
3061 assert(u);
3062
3063 if (!u->id)
3064 return NULL;
3065
3066 return unit_dbus_path_from_name(u->id);
3067 }
3068
3069 char *unit_dbus_path_invocation_id(Unit *u) {
3070 assert(u);
3071
3072 if (sd_id128_is_null(u->invocation_id))
3073 return NULL;
3074
3075 return unit_dbus_path_from_name(u->invocation_id_string);
3076 }
3077
3078 int unit_set_slice(Unit *u, Unit *slice) {
3079 assert(u);
3080 assert(slice);
3081
3082 /* Sets the unit slice if it has not been set before. Is extra
3083 * careful, to only allow this for units that actually have a
3084 * cgroup context. Also, we don't allow to set this for slices
3085 * (since the parent slice is derived from the name). Make
3086 * sure the unit we set is actually a slice. */
3087
3088 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3089 return -EOPNOTSUPP;
3090
3091 if (u->type == UNIT_SLICE)
3092 return -EINVAL;
3093
3094 if (unit_active_state(u) != UNIT_INACTIVE)
3095 return -EBUSY;
3096
3097 if (slice->type != UNIT_SLICE)
3098 return -EINVAL;
3099
3100 if (unit_has_name(u, SPECIAL_INIT_SCOPE) &&
3101 !unit_has_name(slice, SPECIAL_ROOT_SLICE))
3102 return -EPERM;
3103
3104 if (UNIT_DEREF(u->slice) == slice)
3105 return 0;
3106
3107 /* Disallow slice changes if @u is already bound to cgroups */
3108 if (UNIT_ISSET(u->slice) && u->cgroup_realized)
3109 return -EBUSY;
3110
3111 unit_ref_set(&u->slice, u, slice);
3112 return 1;
3113 }
3114
3115 int unit_set_default_slice(Unit *u) {
3116 const char *slice_name;
3117 Unit *slice;
3118 int r;
3119
3120 assert(u);
3121
3122 if (UNIT_ISSET(u->slice))
3123 return 0;
3124
3125 if (u->instance) {
3126 _cleanup_free_ char *prefix = NULL, *escaped = NULL;
3127
3128 /* Implicitly place all instantiated units in their
3129 * own per-template slice */
3130
3131 r = unit_name_to_prefix(u->id, &prefix);
3132 if (r < 0)
3133 return r;
3134
3135 /* The prefix is already escaped, but it might include
3136 * "-" which has a special meaning for slice units,
3137 * hence escape it here extra. */
3138 escaped = unit_name_escape(prefix);
3139 if (!escaped)
3140 return -ENOMEM;
3141
3142 if (MANAGER_IS_SYSTEM(u->manager))
3143 slice_name = strjoina("system-", escaped, ".slice");
3144 else
3145 slice_name = strjoina(escaped, ".slice");
3146 } else
3147 slice_name =
3148 MANAGER_IS_SYSTEM(u->manager) && !unit_has_name(u, SPECIAL_INIT_SCOPE)
3149 ? SPECIAL_SYSTEM_SLICE
3150 : SPECIAL_ROOT_SLICE;
3151
3152 r = manager_load_unit(u->manager, slice_name, NULL, NULL, &slice);
3153 if (r < 0)
3154 return r;
3155
3156 return unit_set_slice(u, slice);
3157 }
3158
3159 const char *unit_slice_name(Unit *u) {
3160 assert(u);
3161
3162 if (!UNIT_ISSET(u->slice))
3163 return NULL;
3164
3165 return UNIT_DEREF(u->slice)->id;
3166 }
3167
3168 int unit_load_related_unit(Unit *u, const char *type, Unit **_found) {
3169 _cleanup_free_ char *t = NULL;
3170 int r;
3171
3172 assert(u);
3173 assert(type);
3174 assert(_found);
3175
3176 r = unit_name_change_suffix(u->id, type, &t);
3177 if (r < 0)
3178 return r;
3179 if (unit_has_name(u, t))
3180 return -EINVAL;
3181
3182 r = manager_load_unit(u->manager, t, NULL, NULL, _found);
3183 assert(r < 0 || *_found != u);
3184 return r;
3185 }
3186
3187 static int signal_name_owner_changed(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3188 const char *name, *old_owner, *new_owner;
3189 Unit *u = userdata;
3190 int r;
3191
3192 assert(message);
3193 assert(u);
3194
3195 r = sd_bus_message_read(message, "sss", &name, &old_owner, &new_owner);
3196 if (r < 0) {
3197 bus_log_parse_error(r);
3198 return 0;
3199 }
3200
3201 old_owner = empty_to_null(old_owner);
3202 new_owner = empty_to_null(new_owner);
3203
3204 if (UNIT_VTABLE(u)->bus_name_owner_change)
3205 UNIT_VTABLE(u)->bus_name_owner_change(u, old_owner, new_owner);
3206
3207 return 0;
3208 }
3209
3210 static int get_name_owner_handler(sd_bus_message *message, void *userdata, sd_bus_error *error) {
3211 const sd_bus_error *e;
3212 const char *new_owner;
3213 Unit *u = userdata;
3214 int r;
3215
3216 assert(message);
3217 assert(u);
3218
3219 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3220
3221 e = sd_bus_message_get_error(message);
3222 if (e) {
3223 if (!sd_bus_error_has_name(e, "org.freedesktop.DBus.Error.NameHasNoOwner"))
3224 log_unit_error(u, "Unexpected error response from GetNameOwner(): %s", e->message);
3225
3226 return 0;
3227 }
3228
3229 r = sd_bus_message_read(message, "s", &new_owner);
3230 if (r < 0) {
3231 bus_log_parse_error(r);
3232 return 0;
3233 }
3234
3235 new_owner = empty_to_null(new_owner);
3236
3237 if (UNIT_VTABLE(u)->bus_name_owner_change)
3238 UNIT_VTABLE(u)->bus_name_owner_change(u, NULL, new_owner);
3239
3240 return 0;
3241 }
3242
3243 int unit_install_bus_match(Unit *u, sd_bus *bus, const char *name) {
3244 const char *match;
3245
3246 assert(u);
3247 assert(bus);
3248 assert(name);
3249
3250 if (u->match_bus_slot)
3251 return -EBUSY;
3252
3253 match = strjoina("type='signal',"
3254 "sender='org.freedesktop.DBus',"
3255 "path='/org/freedesktop/DBus',"
3256 "interface='org.freedesktop.DBus',"
3257 "member='NameOwnerChanged',"
3258 "arg0='", name, "'");
3259
3260 int r = sd_bus_add_match_async(bus, &u->match_bus_slot, match, signal_name_owner_changed, NULL, u);
3261 if (r < 0)
3262 return r;
3263
3264 return sd_bus_call_method_async(bus,
3265 &u->get_name_owner_slot,
3266 "org.freedesktop.DBus",
3267 "/org/freedesktop/DBus",
3268 "org.freedesktop.DBus",
3269 "GetNameOwner",
3270 get_name_owner_handler,
3271 u,
3272 "s", name);
3273 }
3274
3275 int unit_watch_bus_name(Unit *u, const char *name) {
3276 int r;
3277
3278 assert(u);
3279 assert(name);
3280
3281 /* Watch a specific name on the bus. We only support one unit
3282 * watching each name for now. */
3283
3284 if (u->manager->api_bus) {
3285 /* If the bus is already available, install the match directly.
3286 * Otherwise, just put the name in the list. bus_setup_api() will take care later. */
3287 r = unit_install_bus_match(u, u->manager->api_bus, name);
3288 if (r < 0)
3289 return log_warning_errno(r, "Failed to subscribe to NameOwnerChanged signal for '%s': %m", name);
3290 }
3291
3292 r = hashmap_put(u->manager->watch_bus, name, u);
3293 if (r < 0) {
3294 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3295 return log_warning_errno(r, "Failed to put bus name to hashmap: %m");
3296 }
3297
3298 return 0;
3299 }
3300
3301 void unit_unwatch_bus_name(Unit *u, const char *name) {
3302 assert(u);
3303 assert(name);
3304
3305 (void) hashmap_remove_value(u->manager->watch_bus, name, u);
3306 u->match_bus_slot = sd_bus_slot_unref(u->match_bus_slot);
3307 u->get_name_owner_slot = sd_bus_slot_unref(u->get_name_owner_slot);
3308 }
3309
3310 bool unit_can_serialize(Unit *u) {
3311 assert(u);
3312
3313 return UNIT_VTABLE(u)->serialize && UNIT_VTABLE(u)->deserialize_item;
3314 }
3315
3316 static int serialize_cgroup_mask(FILE *f, const char *key, CGroupMask mask) {
3317 _cleanup_free_ char *s = NULL;
3318 int r;
3319
3320 assert(f);
3321 assert(key);
3322
3323 if (mask == 0)
3324 return 0;
3325
3326 r = cg_mask_to_string(mask, &s);
3327 if (r < 0)
3328 return log_error_errno(r, "Failed to format cgroup mask: %m");
3329
3330 return serialize_item(f, key, s);
3331 }
3332
3333 static const char *const ip_accounting_metric_field[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
3334 [CGROUP_IP_INGRESS_BYTES] = "ip-accounting-ingress-bytes",
3335 [CGROUP_IP_INGRESS_PACKETS] = "ip-accounting-ingress-packets",
3336 [CGROUP_IP_EGRESS_BYTES] = "ip-accounting-egress-bytes",
3337 [CGROUP_IP_EGRESS_PACKETS] = "ip-accounting-egress-packets",
3338 };
3339
3340 static const char *const io_accounting_metric_field_base[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3341 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-base",
3342 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-base",
3343 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-base",
3344 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-base",
3345 };
3346
3347 static const char *const io_accounting_metric_field_last[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3348 [CGROUP_IO_READ_BYTES] = "io-accounting-read-bytes-last",
3349 [CGROUP_IO_WRITE_BYTES] = "io-accounting-write-bytes-last",
3350 [CGROUP_IO_READ_OPERATIONS] = "io-accounting-read-operations-last",
3351 [CGROUP_IO_WRITE_OPERATIONS] = "io-accounting-write-operations-last",
3352 };
3353
3354 int unit_serialize(Unit *u, FILE *f, FDSet *fds, bool serialize_jobs) {
3355 CGroupIPAccountingMetric m;
3356 int r;
3357
3358 assert(u);
3359 assert(f);
3360 assert(fds);
3361
3362 if (unit_can_serialize(u)) {
3363 r = UNIT_VTABLE(u)->serialize(u, f, fds);
3364 if (r < 0)
3365 return r;
3366 }
3367
3368 (void) serialize_dual_timestamp(f, "state-change-timestamp", &u->state_change_timestamp);
3369
3370 (void) serialize_dual_timestamp(f, "inactive-exit-timestamp", &u->inactive_exit_timestamp);
3371 (void) serialize_dual_timestamp(f, "active-enter-timestamp", &u->active_enter_timestamp);
3372 (void) serialize_dual_timestamp(f, "active-exit-timestamp", &u->active_exit_timestamp);
3373 (void) serialize_dual_timestamp(f, "inactive-enter-timestamp", &u->inactive_enter_timestamp);
3374
3375 (void) serialize_dual_timestamp(f, "condition-timestamp", &u->condition_timestamp);
3376 (void) serialize_dual_timestamp(f, "assert-timestamp", &u->assert_timestamp);
3377
3378 if (dual_timestamp_is_set(&u->condition_timestamp))
3379 (void) serialize_bool(f, "condition-result", u->condition_result);
3380
3381 if (dual_timestamp_is_set(&u->assert_timestamp))
3382 (void) serialize_bool(f, "assert-result", u->assert_result);
3383
3384 (void) serialize_bool(f, "transient", u->transient);
3385 (void) serialize_bool(f, "in-audit", u->in_audit);
3386
3387 (void) serialize_bool(f, "exported-invocation-id", u->exported_invocation_id);
3388 (void) serialize_bool(f, "exported-log-level-max", u->exported_log_level_max);
3389 (void) serialize_bool(f, "exported-log-extra-fields", u->exported_log_extra_fields);
3390 (void) serialize_bool(f, "exported-log-rate-limit-interval", u->exported_log_ratelimit_interval);
3391 (void) serialize_bool(f, "exported-log-rate-limit-burst", u->exported_log_ratelimit_burst);
3392
3393 (void) serialize_item_format(f, "cpu-usage-base", "%" PRIu64, u->cpu_usage_base);
3394 if (u->cpu_usage_last != NSEC_INFINITY)
3395 (void) serialize_item_format(f, "cpu-usage-last", "%" PRIu64, u->cpu_usage_last);
3396
3397 if (u->oom_kill_last > 0)
3398 (void) serialize_item_format(f, "oom-kill-last", "%" PRIu64, u->oom_kill_last);
3399
3400 for (CGroupIOAccountingMetric im = 0; im < _CGROUP_IO_ACCOUNTING_METRIC_MAX; im++) {
3401 (void) serialize_item_format(f, io_accounting_metric_field_base[im], "%" PRIu64, u->io_accounting_base[im]);
3402
3403 if (u->io_accounting_last[im] != UINT64_MAX)
3404 (void) serialize_item_format(f, io_accounting_metric_field_last[im], "%" PRIu64, u->io_accounting_last[im]);
3405 }
3406
3407 if (u->cgroup_path)
3408 (void) serialize_item(f, "cgroup", u->cgroup_path);
3409
3410 (void) serialize_bool(f, "cgroup-realized", u->cgroup_realized);
3411 (void) serialize_cgroup_mask(f, "cgroup-realized-mask", u->cgroup_realized_mask);
3412 (void) serialize_cgroup_mask(f, "cgroup-enabled-mask", u->cgroup_enabled_mask);
3413 (void) serialize_cgroup_mask(f, "cgroup-invalidated-mask", u->cgroup_invalidated_mask);
3414
3415 if (uid_is_valid(u->ref_uid))
3416 (void) serialize_item_format(f, "ref-uid", UID_FMT, u->ref_uid);
3417 if (gid_is_valid(u->ref_gid))
3418 (void) serialize_item_format(f, "ref-gid", GID_FMT, u->ref_gid);
3419
3420 if (!sd_id128_is_null(u->invocation_id))
3421 (void) serialize_item_format(f, "invocation-id", SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id));
3422
3423 bus_track_serialize(u->bus_track, f, "ref");
3424
3425 for (m = 0; m < _CGROUP_IP_ACCOUNTING_METRIC_MAX; m++) {
3426 uint64_t v;
3427
3428 r = unit_get_ip_accounting(u, m, &v);
3429 if (r >= 0)
3430 (void) serialize_item_format(f, ip_accounting_metric_field[m], "%" PRIu64, v);
3431 }
3432
3433 if (serialize_jobs) {
3434 if (u->job) {
3435 fputs("job\n", f);
3436 job_serialize(u->job, f);
3437 }
3438
3439 if (u->nop_job) {
3440 fputs("job\n", f);
3441 job_serialize(u->nop_job, f);
3442 }
3443 }
3444
3445 /* End marker */
3446 fputc('\n', f);
3447 return 0;
3448 }
3449
3450 static int unit_deserialize_job(Unit *u, FILE *f) {
3451 _cleanup_(job_freep) Job *j = NULL;
3452 int r;
3453
3454 assert(u);
3455 assert(f);
3456
3457 j = job_new_raw(u);
3458 if (!j)
3459 return log_oom();
3460
3461 r = job_deserialize(j, f);
3462 if (r < 0)
3463 return r;
3464
3465 r = job_install_deserialized(j);
3466 if (r < 0)
3467 return r;
3468
3469 TAKE_PTR(j);
3470 return 0;
3471 }
3472
3473 int unit_deserialize(Unit *u, FILE *f, FDSet *fds) {
3474 int r;
3475
3476 assert(u);
3477 assert(f);
3478 assert(fds);
3479
3480 for (;;) {
3481 _cleanup_free_ char *line = NULL;
3482 char *l, *v;
3483 ssize_t m;
3484 size_t k;
3485
3486 r = read_line(f, LONG_LINE_MAX, &line);
3487 if (r < 0)
3488 return log_error_errno(r, "Failed to read serialization line: %m");
3489 if (r == 0) /* eof */
3490 break;
3491
3492 l = strstrip(line);
3493 if (isempty(l)) /* End marker */
3494 break;
3495
3496 k = strcspn(l, "=");
3497
3498 if (l[k] == '=') {
3499 l[k] = 0;
3500 v = l+k+1;
3501 } else
3502 v = l+k;
3503
3504 if (streq(l, "job")) {
3505 if (v[0] == '\0') {
3506 /* New-style serialized job */
3507 r = unit_deserialize_job(u, f);
3508 if (r < 0)
3509 return r;
3510 } else /* Legacy for pre-44 */
3511 log_unit_warning(u, "Update from too old systemd versions are unsupported, cannot deserialize job: %s", v);
3512 continue;
3513 } else if (streq(l, "state-change-timestamp")) {
3514 (void) deserialize_dual_timestamp(v, &u->state_change_timestamp);
3515 continue;
3516 } else if (streq(l, "inactive-exit-timestamp")) {
3517 (void) deserialize_dual_timestamp(v, &u->inactive_exit_timestamp);
3518 continue;
3519 } else if (streq(l, "active-enter-timestamp")) {
3520 (void) deserialize_dual_timestamp(v, &u->active_enter_timestamp);
3521 continue;
3522 } else if (streq(l, "active-exit-timestamp")) {
3523 (void) deserialize_dual_timestamp(v, &u->active_exit_timestamp);
3524 continue;
3525 } else if (streq(l, "inactive-enter-timestamp")) {
3526 (void) deserialize_dual_timestamp(v, &u->inactive_enter_timestamp);
3527 continue;
3528 } else if (streq(l, "condition-timestamp")) {
3529 (void) deserialize_dual_timestamp(v, &u->condition_timestamp);
3530 continue;
3531 } else if (streq(l, "assert-timestamp")) {
3532 (void) deserialize_dual_timestamp(v, &u->assert_timestamp);
3533 continue;
3534 } else if (streq(l, "condition-result")) {
3535
3536 r = parse_boolean(v);
3537 if (r < 0)
3538 log_unit_debug(u, "Failed to parse condition result value %s, ignoring.", v);
3539 else
3540 u->condition_result = r;
3541
3542 continue;
3543
3544 } else if (streq(l, "assert-result")) {
3545
3546 r = parse_boolean(v);
3547 if (r < 0)
3548 log_unit_debug(u, "Failed to parse assert result value %s, ignoring.", v);
3549 else
3550 u->assert_result = r;
3551
3552 continue;
3553
3554 } else if (streq(l, "transient")) {
3555
3556 r = parse_boolean(v);
3557 if (r < 0)
3558 log_unit_debug(u, "Failed to parse transient bool %s, ignoring.", v);
3559 else
3560 u->transient = r;
3561
3562 continue;
3563
3564 } else if (streq(l, "in-audit")) {
3565
3566 r = parse_boolean(v);
3567 if (r < 0)
3568 log_unit_debug(u, "Failed to parse in-audit bool %s, ignoring.", v);
3569 else
3570 u->in_audit = r;
3571
3572 continue;
3573
3574 } else if (streq(l, "exported-invocation-id")) {
3575
3576 r = parse_boolean(v);
3577 if (r < 0)
3578 log_unit_debug(u, "Failed to parse exported invocation ID bool %s, ignoring.", v);
3579 else
3580 u->exported_invocation_id = r;
3581
3582 continue;
3583
3584 } else if (streq(l, "exported-log-level-max")) {
3585
3586 r = parse_boolean(v);
3587 if (r < 0)
3588 log_unit_debug(u, "Failed to parse exported log level max bool %s, ignoring.", v);
3589 else
3590 u->exported_log_level_max = r;
3591
3592 continue;
3593
3594 } else if (streq(l, "exported-log-extra-fields")) {
3595
3596 r = parse_boolean(v);
3597 if (r < 0)
3598 log_unit_debug(u, "Failed to parse exported log extra fields bool %s, ignoring.", v);
3599 else
3600 u->exported_log_extra_fields = r;
3601
3602 continue;
3603
3604 } else if (streq(l, "exported-log-rate-limit-interval")) {
3605
3606 r = parse_boolean(v);
3607 if (r < 0)
3608 log_unit_debug(u, "Failed to parse exported log rate limit interval %s, ignoring.", v);
3609 else
3610 u->exported_log_ratelimit_interval = r;
3611
3612 continue;
3613
3614 } else if (streq(l, "exported-log-rate-limit-burst")) {
3615
3616 r = parse_boolean(v);
3617 if (r < 0)
3618 log_unit_debug(u, "Failed to parse exported log rate limit burst %s, ignoring.", v);
3619 else
3620 u->exported_log_ratelimit_burst = r;
3621
3622 continue;
3623
3624 } else if (STR_IN_SET(l, "cpu-usage-base", "cpuacct-usage-base")) {
3625
3626 r = safe_atou64(v, &u->cpu_usage_base);
3627 if (r < 0)
3628 log_unit_debug(u, "Failed to parse CPU usage base %s, ignoring.", v);
3629
3630 continue;
3631
3632 } else if (streq(l, "cpu-usage-last")) {
3633
3634 r = safe_atou64(v, &u->cpu_usage_last);
3635 if (r < 0)
3636 log_unit_debug(u, "Failed to read CPU usage last %s, ignoring.", v);
3637
3638 continue;
3639
3640 } else if (streq(l, "oom-kill-last")) {
3641
3642 r = safe_atou64(v, &u->oom_kill_last);
3643 if (r < 0)
3644 log_unit_debug(u, "Failed to read OOM kill last %s, ignoring.", v);
3645
3646 continue;
3647
3648 } else if (streq(l, "cgroup")) {
3649
3650 r = unit_set_cgroup_path(u, v);
3651 if (r < 0)
3652 log_unit_debug_errno(u, r, "Failed to set cgroup path %s, ignoring: %m", v);
3653
3654 (void) unit_watch_cgroup(u);
3655 (void) unit_watch_cgroup_memory(u);
3656
3657 continue;
3658 } else if (streq(l, "cgroup-realized")) {
3659 int b;
3660
3661 b = parse_boolean(v);
3662 if (b < 0)
3663 log_unit_debug(u, "Failed to parse cgroup-realized bool %s, ignoring.", v);
3664 else
3665 u->cgroup_realized = b;
3666
3667 continue;
3668
3669 } else if (streq(l, "cgroup-realized-mask")) {
3670
3671 r = cg_mask_from_string(v, &u->cgroup_realized_mask);
3672 if (r < 0)
3673 log_unit_debug(u, "Failed to parse cgroup-realized-mask %s, ignoring.", v);
3674 continue;
3675
3676 } else if (streq(l, "cgroup-enabled-mask")) {
3677
3678 r = cg_mask_from_string(v, &u->cgroup_enabled_mask);
3679 if (r < 0)
3680 log_unit_debug(u, "Failed to parse cgroup-enabled-mask %s, ignoring.", v);
3681 continue;
3682
3683 } else if (streq(l, "cgroup-invalidated-mask")) {
3684
3685 r = cg_mask_from_string(v, &u->cgroup_invalidated_mask);
3686 if (r < 0)
3687 log_unit_debug(u, "Failed to parse cgroup-invalidated-mask %s, ignoring.", v);
3688 continue;
3689
3690 } else if (streq(l, "ref-uid")) {
3691 uid_t uid;
3692
3693 r = parse_uid(v, &uid);
3694 if (r < 0)
3695 log_unit_debug(u, "Failed to parse referenced UID %s, ignoring.", v);
3696 else
3697 unit_ref_uid_gid(u, uid, GID_INVALID);
3698
3699 continue;
3700
3701 } else if (streq(l, "ref-gid")) {
3702 gid_t gid;
3703
3704 r = parse_gid(v, &gid);
3705 if (r < 0)
3706 log_unit_debug(u, "Failed to parse referenced GID %s, ignoring.", v);
3707 else
3708 unit_ref_uid_gid(u, UID_INVALID, gid);
3709
3710 continue;
3711
3712 } else if (streq(l, "ref")) {
3713
3714 r = strv_extend(&u->deserialized_refs, v);
3715 if (r < 0)
3716 return log_oom();
3717
3718 continue;
3719 } else if (streq(l, "invocation-id")) {
3720 sd_id128_t id;
3721
3722 r = sd_id128_from_string(v, &id);
3723 if (r < 0)
3724 log_unit_debug(u, "Failed to parse invocation id %s, ignoring.", v);
3725 else {
3726 r = unit_set_invocation_id(u, id);
3727 if (r < 0)
3728 log_unit_warning_errno(u, r, "Failed to set invocation ID for unit: %m");
3729 }
3730
3731 continue;
3732 }
3733
3734 /* Check if this is an IP accounting metric serialization field */
3735 m = string_table_lookup(ip_accounting_metric_field, ELEMENTSOF(ip_accounting_metric_field), l);
3736 if (m >= 0) {
3737 uint64_t c;
3738
3739 r = safe_atou64(v, &c);
3740 if (r < 0)
3741 log_unit_debug(u, "Failed to parse IP accounting value %s, ignoring.", v);
3742 else
3743 u->ip_accounting_extra[m] = c;
3744 continue;
3745 }
3746
3747 m = string_table_lookup(io_accounting_metric_field_base, ELEMENTSOF(io_accounting_metric_field_base), l);
3748 if (m >= 0) {
3749 uint64_t c;
3750
3751 r = safe_atou64(v, &c);
3752 if (r < 0)
3753 log_unit_debug(u, "Failed to parse IO accounting base value %s, ignoring.", v);
3754 else
3755 u->io_accounting_base[m] = c;
3756 continue;
3757 }
3758
3759 m = string_table_lookup(io_accounting_metric_field_last, ELEMENTSOF(io_accounting_metric_field_last), l);
3760 if (m >= 0) {
3761 uint64_t c;
3762
3763 r = safe_atou64(v, &c);
3764 if (r < 0)
3765 log_unit_debug(u, "Failed to parse IO accounting last value %s, ignoring.", v);
3766 else
3767 u->io_accounting_last[m] = c;
3768 continue;
3769 }
3770
3771 if (unit_can_serialize(u)) {
3772 r = exec_runtime_deserialize_compat(u, l, v, fds);
3773 if (r < 0) {
3774 log_unit_warning(u, "Failed to deserialize runtime parameter '%s', ignoring.", l);
3775 continue;
3776 }
3777
3778 /* Returns positive if key was handled by the call */
3779 if (r > 0)
3780 continue;
3781
3782 r = UNIT_VTABLE(u)->deserialize_item(u, l, v, fds);
3783 if (r < 0)
3784 log_unit_warning(u, "Failed to deserialize unit parameter '%s', ignoring.", l);
3785 }
3786 }
3787
3788 /* Versions before 228 did not carry a state change timestamp. In this case, take the current time. This is
3789 * useful, so that timeouts based on this timestamp don't trigger too early, and is in-line with the logic from
3790 * before 228 where the base for timeouts was not persistent across reboots. */
3791
3792 if (!dual_timestamp_is_set(&u->state_change_timestamp))
3793 dual_timestamp_get(&u->state_change_timestamp);
3794
3795 /* Let's make sure that everything that is deserialized also gets any potential new cgroup settings applied
3796 * after we are done. For that we invalidate anything already realized, so that we can realize it again. */
3797 unit_invalidate_cgroup(u, _CGROUP_MASK_ALL);
3798 unit_invalidate_cgroup_bpf(u);
3799
3800 return 0;
3801 }
3802
3803 int unit_deserialize_skip(FILE *f) {
3804 int r;
3805 assert(f);
3806
3807 /* Skip serialized data for this unit. We don't know what it is. */
3808
3809 for (;;) {
3810 _cleanup_free_ char *line = NULL;
3811 char *l;
3812
3813 r = read_line(f, LONG_LINE_MAX, &line);
3814 if (r < 0)
3815 return log_error_errno(r, "Failed to read serialization line: %m");
3816 if (r == 0)
3817 return 0;
3818
3819 l = strstrip(line);
3820
3821 /* End marker */
3822 if (isempty(l))
3823 return 1;
3824 }
3825 }
3826
3827 int unit_add_node_dependency(Unit *u, const char *what, UnitDependency dep, UnitDependencyMask mask) {
3828 Unit *device;
3829 _cleanup_free_ char *e = NULL;
3830 int r;
3831
3832 assert(u);
3833
3834 /* Adds in links to the device node that this unit is based on */
3835 if (isempty(what))
3836 return 0;
3837
3838 if (!is_device_path(what))
3839 return 0;
3840
3841 /* When device units aren't supported (such as in a
3842 * container), don't create dependencies on them. */
3843 if (!unit_type_supported(UNIT_DEVICE))
3844 return 0;
3845
3846 r = unit_name_from_path(what, ".device", &e);
3847 if (r < 0)
3848 return r;
3849
3850 r = manager_load_unit(u->manager, e, NULL, NULL, &device);
3851 if (r < 0)
3852 return r;
3853
3854 if (dep == UNIT_REQUIRES && device_shall_be_bound_by(device, u))
3855 dep = UNIT_BINDS_TO;
3856
3857 return unit_add_two_dependencies(u, UNIT_AFTER,
3858 MANAGER_IS_SYSTEM(u->manager) ? dep : UNIT_WANTS,
3859 device, true, mask);
3860 }
3861
3862 int unit_coldplug(Unit *u) {
3863 int r = 0, q;
3864 char **i;
3865 Job *uj;
3866
3867 assert(u);
3868
3869 /* Make sure we don't enter a loop, when coldplugging recursively. */
3870 if (u->coldplugged)
3871 return 0;
3872
3873 u->coldplugged = true;
3874
3875 STRV_FOREACH(i, u->deserialized_refs) {
3876 q = bus_unit_track_add_name(u, *i);
3877 if (q < 0 && r >= 0)
3878 r = q;
3879 }
3880 u->deserialized_refs = strv_free(u->deserialized_refs);
3881
3882 if (UNIT_VTABLE(u)->coldplug) {
3883 q = UNIT_VTABLE(u)->coldplug(u);
3884 if (q < 0 && r >= 0)
3885 r = q;
3886 }
3887
3888 uj = u->job ?: u->nop_job;
3889 if (uj) {
3890 q = job_coldplug(uj);
3891 if (q < 0 && r >= 0)
3892 r = q;
3893 }
3894
3895 return r;
3896 }
3897
3898 void unit_catchup(Unit *u) {
3899 assert(u);
3900
3901 if (UNIT_VTABLE(u)->catchup)
3902 UNIT_VTABLE(u)->catchup(u);
3903 }
3904
3905 static bool fragment_mtime_newer(const char *path, usec_t mtime, bool path_masked) {
3906 struct stat st;
3907
3908 if (!path)
3909 return false;
3910
3911 /* If the source is some virtual kernel file system, then we assume we watch it anyway, and hence pretend we
3912 * are never out-of-date. */
3913 if (PATH_STARTSWITH_SET(path, "/proc", "/sys"))
3914 return false;
3915
3916 if (stat(path, &st) < 0)
3917 /* What, cannot access this anymore? */
3918 return true;
3919
3920 if (path_masked)
3921 /* For masked files check if they are still so */
3922 return !null_or_empty(&st);
3923 else
3924 /* For non-empty files check the mtime */
3925 return timespec_load(&st.st_mtim) > mtime;
3926
3927 return false;
3928 }
3929
3930 bool unit_need_daemon_reload(Unit *u) {
3931 _cleanup_strv_free_ char **t = NULL;
3932 char **path;
3933
3934 assert(u);
3935
3936 /* For unit files, we allow masking… */
3937 if (fragment_mtime_newer(u->fragment_path, u->fragment_mtime,
3938 u->load_state == UNIT_MASKED))
3939 return true;
3940
3941 /* Source paths should not be masked… */
3942 if (fragment_mtime_newer(u->source_path, u->source_mtime, false))
3943 return true;
3944
3945 if (u->load_state == UNIT_LOADED)
3946 (void) unit_find_dropin_paths(u, &t);
3947 if (!strv_equal(u->dropin_paths, t))
3948 return true;
3949
3950 /* … any drop-ins that are masked are simply omitted from the list. */
3951 STRV_FOREACH(path, u->dropin_paths)
3952 if (fragment_mtime_newer(*path, u->dropin_mtime, false))
3953 return true;
3954
3955 return false;
3956 }
3957
3958 void unit_reset_failed(Unit *u) {
3959 assert(u);
3960
3961 if (UNIT_VTABLE(u)->reset_failed)
3962 UNIT_VTABLE(u)->reset_failed(u);
3963
3964 ratelimit_reset(&u->start_ratelimit);
3965 u->start_limit_hit = false;
3966 }
3967
3968 Unit *unit_following(Unit *u) {
3969 assert(u);
3970
3971 if (UNIT_VTABLE(u)->following)
3972 return UNIT_VTABLE(u)->following(u);
3973
3974 return NULL;
3975 }
3976
3977 bool unit_stop_pending(Unit *u) {
3978 assert(u);
3979
3980 /* This call does check the current state of the unit. It's
3981 * hence useful to be called from state change calls of the
3982 * unit itself, where the state isn't updated yet. This is
3983 * different from unit_inactive_or_pending() which checks both
3984 * the current state and for a queued job. */
3985
3986 return unit_has_job_type(u, JOB_STOP);
3987 }
3988
3989 bool unit_inactive_or_pending(Unit *u) {
3990 assert(u);
3991
3992 /* Returns true if the unit is inactive or going down */
3993
3994 if (UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(u)))
3995 return true;
3996
3997 if (unit_stop_pending(u))
3998 return true;
3999
4000 return false;
4001 }
4002
4003 bool unit_active_or_pending(Unit *u) {
4004 assert(u);
4005
4006 /* Returns true if the unit is active or going up */
4007
4008 if (UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u)))
4009 return true;
4010
4011 if (u->job &&
4012 IN_SET(u->job->type, JOB_START, JOB_RELOAD_OR_START, JOB_RESTART))
4013 return true;
4014
4015 return false;
4016 }
4017
4018 bool unit_will_restart_default(Unit *u) {
4019 assert(u);
4020
4021 return unit_has_job_type(u, JOB_START);
4022 }
4023
4024 bool unit_will_restart(Unit *u) {
4025 assert(u);
4026
4027 if (!UNIT_VTABLE(u)->will_restart)
4028 return false;
4029
4030 return UNIT_VTABLE(u)->will_restart(u);
4031 }
4032
4033 int unit_kill(Unit *u, KillWho w, int signo, sd_bus_error *error) {
4034 assert(u);
4035 assert(w >= 0 && w < _KILL_WHO_MAX);
4036 assert(SIGNAL_VALID(signo));
4037
4038 if (!UNIT_VTABLE(u)->kill)
4039 return -EOPNOTSUPP;
4040
4041 return UNIT_VTABLE(u)->kill(u, w, signo, error);
4042 }
4043
4044 static Set *unit_pid_set(pid_t main_pid, pid_t control_pid) {
4045 _cleanup_set_free_ Set *pid_set = NULL;
4046 int r;
4047
4048 pid_set = set_new(NULL);
4049 if (!pid_set)
4050 return NULL;
4051
4052 /* Exclude the main/control pids from being killed via the cgroup */
4053 if (main_pid > 0) {
4054 r = set_put(pid_set, PID_TO_PTR(main_pid));
4055 if (r < 0)
4056 return NULL;
4057 }
4058
4059 if (control_pid > 0) {
4060 r = set_put(pid_set, PID_TO_PTR(control_pid));
4061 if (r < 0)
4062 return NULL;
4063 }
4064
4065 return TAKE_PTR(pid_set);
4066 }
4067
4068 int unit_kill_common(
4069 Unit *u,
4070 KillWho who,
4071 int signo,
4072 pid_t main_pid,
4073 pid_t control_pid,
4074 sd_bus_error *error) {
4075
4076 int r = 0;
4077 bool killed = false;
4078
4079 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL)) {
4080 if (main_pid < 0)
4081 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no main processes", unit_type_to_string(u->type));
4082 else if (main_pid == 0)
4083 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No main process to kill");
4084 }
4085
4086 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL)) {
4087 if (control_pid < 0)
4088 return sd_bus_error_setf(error, BUS_ERROR_NO_SUCH_PROCESS, "%s units have no control processes", unit_type_to_string(u->type));
4089 else if (control_pid == 0)
4090 return sd_bus_error_set_const(error, BUS_ERROR_NO_SUCH_PROCESS, "No control process to kill");
4091 }
4092
4093 if (IN_SET(who, KILL_CONTROL, KILL_CONTROL_FAIL, KILL_ALL, KILL_ALL_FAIL))
4094 if (control_pid > 0) {
4095 if (kill(control_pid, signo) < 0)
4096 r = -errno;
4097 else
4098 killed = true;
4099 }
4100
4101 if (IN_SET(who, KILL_MAIN, KILL_MAIN_FAIL, KILL_ALL, KILL_ALL_FAIL))
4102 if (main_pid > 0) {
4103 if (kill(main_pid, signo) < 0)
4104 r = -errno;
4105 else
4106 killed = true;
4107 }
4108
4109 if (IN_SET(who, KILL_ALL, KILL_ALL_FAIL) && u->cgroup_path) {
4110 _cleanup_set_free_ Set *pid_set = NULL;
4111 int q;
4112
4113 /* Exclude the main/control pids from being killed via the cgroup */
4114 pid_set = unit_pid_set(main_pid, control_pid);
4115 if (!pid_set)
4116 return -ENOMEM;
4117
4118 q = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, signo, 0, pid_set, NULL, NULL);
4119 if (q < 0 && !IN_SET(q, -EAGAIN, -ESRCH, -ENOENT))
4120 r = q;
4121 else
4122 killed = true;
4123 }
4124
4125 if (r == 0 && !killed && IN_SET(who, KILL_ALL_FAIL, KILL_CONTROL_FAIL))
4126 return -ESRCH;
4127
4128 return r;
4129 }
4130
4131 int unit_following_set(Unit *u, Set **s) {
4132 assert(u);
4133 assert(s);
4134
4135 if (UNIT_VTABLE(u)->following_set)
4136 return UNIT_VTABLE(u)->following_set(u, s);
4137
4138 *s = NULL;
4139 return 0;
4140 }
4141
4142 UnitFileState unit_get_unit_file_state(Unit *u) {
4143 int r;
4144
4145 assert(u);
4146
4147 if (u->unit_file_state < 0 && u->fragment_path) {
4148 r = unit_file_get_state(
4149 u->manager->unit_file_scope,
4150 NULL,
4151 u->id,
4152 &u->unit_file_state);
4153 if (r < 0)
4154 u->unit_file_state = UNIT_FILE_BAD;
4155 }
4156
4157 return u->unit_file_state;
4158 }
4159
4160 int unit_get_unit_file_preset(Unit *u) {
4161 assert(u);
4162
4163 if (u->unit_file_preset < 0 && u->fragment_path)
4164 u->unit_file_preset = unit_file_query_preset(
4165 u->manager->unit_file_scope,
4166 NULL,
4167 basename(u->fragment_path));
4168
4169 return u->unit_file_preset;
4170 }
4171
4172 Unit* unit_ref_set(UnitRef *ref, Unit *source, Unit *target) {
4173 assert(ref);
4174 assert(source);
4175 assert(target);
4176
4177 if (ref->target)
4178 unit_ref_unset(ref);
4179
4180 ref->source = source;
4181 ref->target = target;
4182 LIST_PREPEND(refs_by_target, target->refs_by_target, ref);
4183 return target;
4184 }
4185
4186 void unit_ref_unset(UnitRef *ref) {
4187 assert(ref);
4188
4189 if (!ref->target)
4190 return;
4191
4192 /* We are about to drop a reference to the unit, make sure the garbage collection has a look at it as it might
4193 * be unreferenced now. */
4194 unit_add_to_gc_queue(ref->target);
4195
4196 LIST_REMOVE(refs_by_target, ref->target->refs_by_target, ref);
4197 ref->source = ref->target = NULL;
4198 }
4199
4200 static int user_from_unit_name(Unit *u, char **ret) {
4201
4202 static const uint8_t hash_key[] = {
4203 0x58, 0x1a, 0xaf, 0xe6, 0x28, 0x58, 0x4e, 0x96,
4204 0xb4, 0x4e, 0xf5, 0x3b, 0x8c, 0x92, 0x07, 0xec
4205 };
4206
4207 _cleanup_free_ char *n = NULL;
4208 int r;
4209
4210 r = unit_name_to_prefix(u->id, &n);
4211 if (r < 0)
4212 return r;
4213
4214 if (valid_user_group_name(n)) {
4215 *ret = TAKE_PTR(n);
4216 return 0;
4217 }
4218
4219 /* If we can't use the unit name as a user name, then let's hash it and use that */
4220 if (asprintf(ret, "_du%016" PRIx64, siphash24(n, strlen(n), hash_key)) < 0)
4221 return -ENOMEM;
4222
4223 return 0;
4224 }
4225
4226 int unit_patch_contexts(Unit *u) {
4227 CGroupContext *cc;
4228 ExecContext *ec;
4229 unsigned i;
4230 int r;
4231
4232 assert(u);
4233
4234 /* Patch in the manager defaults into the exec and cgroup
4235 * contexts, _after_ the rest of the settings have been
4236 * initialized */
4237
4238 ec = unit_get_exec_context(u);
4239 if (ec) {
4240 /* This only copies in the ones that need memory */
4241 for (i = 0; i < _RLIMIT_MAX; i++)
4242 if (u->manager->rlimit[i] && !ec->rlimit[i]) {
4243 ec->rlimit[i] = newdup(struct rlimit, u->manager->rlimit[i], 1);
4244 if (!ec->rlimit[i])
4245 return -ENOMEM;
4246 }
4247
4248 if (MANAGER_IS_USER(u->manager) &&
4249 !ec->working_directory) {
4250
4251 r = get_home_dir(&ec->working_directory);
4252 if (r < 0)
4253 return r;
4254
4255 /* Allow user services to run, even if the
4256 * home directory is missing */
4257 ec->working_directory_missing_ok = true;
4258 }
4259
4260 if (ec->private_devices)
4261 ec->capability_bounding_set &= ~((UINT64_C(1) << CAP_MKNOD) | (UINT64_C(1) << CAP_SYS_RAWIO));
4262
4263 if (ec->protect_kernel_modules)
4264 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYS_MODULE);
4265
4266 if (ec->protect_kernel_logs)
4267 ec->capability_bounding_set &= ~(UINT64_C(1) << CAP_SYSLOG);
4268
4269 if (ec->dynamic_user) {
4270 if (!ec->user) {
4271 r = user_from_unit_name(u, &ec->user);
4272 if (r < 0)
4273 return r;
4274 }
4275
4276 if (!ec->group) {
4277 ec->group = strdup(ec->user);
4278 if (!ec->group)
4279 return -ENOMEM;
4280 }
4281
4282 /* If the dynamic user option is on, let's make sure that the unit can't leave its
4283 * UID/GID around in the file system or on IPC objects. Hence enforce a strict
4284 * sandbox. */
4285
4286 ec->private_tmp = true;
4287 ec->remove_ipc = true;
4288 ec->protect_system = PROTECT_SYSTEM_STRICT;
4289 if (ec->protect_home == PROTECT_HOME_NO)
4290 ec->protect_home = PROTECT_HOME_READ_ONLY;
4291
4292 /* Make sure this service can neither benefit from SUID/SGID binaries nor create
4293 * them. */
4294 ec->no_new_privileges = true;
4295 ec->restrict_suid_sgid = true;
4296 }
4297 }
4298
4299 cc = unit_get_cgroup_context(u);
4300 if (cc && ec) {
4301
4302 if (ec->private_devices &&
4303 cc->device_policy == CGROUP_DEVICE_POLICY_AUTO)
4304 cc->device_policy = CGROUP_DEVICE_POLICY_CLOSED;
4305
4306 if (ec->root_image &&
4307 (cc->device_policy != CGROUP_DEVICE_POLICY_AUTO || cc->device_allow)) {
4308
4309 /* When RootImage= is specified, the following devices are touched. */
4310 r = cgroup_add_device_allow(cc, "/dev/loop-control", "rw");
4311 if (r < 0)
4312 return r;
4313
4314 r = cgroup_add_device_allow(cc, "block-loop", "rwm");
4315 if (r < 0)
4316 return r;
4317
4318 r = cgroup_add_device_allow(cc, "block-blkext", "rwm");
4319 if (r < 0)
4320 return r;
4321 }
4322 }
4323
4324 return 0;
4325 }
4326
4327 ExecContext *unit_get_exec_context(Unit *u) {
4328 size_t offset;
4329 assert(u);
4330
4331 if (u->type < 0)
4332 return NULL;
4333
4334 offset = UNIT_VTABLE(u)->exec_context_offset;
4335 if (offset <= 0)
4336 return NULL;
4337
4338 return (ExecContext*) ((uint8_t*) u + offset);
4339 }
4340
4341 KillContext *unit_get_kill_context(Unit *u) {
4342 size_t offset;
4343 assert(u);
4344
4345 if (u->type < 0)
4346 return NULL;
4347
4348 offset = UNIT_VTABLE(u)->kill_context_offset;
4349 if (offset <= 0)
4350 return NULL;
4351
4352 return (KillContext*) ((uint8_t*) u + offset);
4353 }
4354
4355 CGroupContext *unit_get_cgroup_context(Unit *u) {
4356 size_t offset;
4357
4358 if (u->type < 0)
4359 return NULL;
4360
4361 offset = UNIT_VTABLE(u)->cgroup_context_offset;
4362 if (offset <= 0)
4363 return NULL;
4364
4365 return (CGroupContext*) ((uint8_t*) u + offset);
4366 }
4367
4368 ExecRuntime *unit_get_exec_runtime(Unit *u) {
4369 size_t offset;
4370
4371 if (u->type < 0)
4372 return NULL;
4373
4374 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4375 if (offset <= 0)
4376 return NULL;
4377
4378 return *(ExecRuntime**) ((uint8_t*) u + offset);
4379 }
4380
4381 static const char* unit_drop_in_dir(Unit *u, UnitWriteFlags flags) {
4382 assert(u);
4383
4384 if (UNIT_WRITE_FLAGS_NOOP(flags))
4385 return NULL;
4386
4387 if (u->transient) /* Redirect drop-ins for transient units always into the transient directory. */
4388 return u->manager->lookup_paths.transient;
4389
4390 if (flags & UNIT_PERSISTENT)
4391 return u->manager->lookup_paths.persistent_control;
4392
4393 if (flags & UNIT_RUNTIME)
4394 return u->manager->lookup_paths.runtime_control;
4395
4396 return NULL;
4397 }
4398
4399 char* unit_escape_setting(const char *s, UnitWriteFlags flags, char **buf) {
4400 char *ret = NULL;
4401
4402 if (!s)
4403 return NULL;
4404
4405 /* Escapes the input string as requested. Returns the escaped string. If 'buf' is specified then the allocated
4406 * return buffer pointer is also written to *buf, except if no escaping was necessary, in which case *buf is
4407 * set to NULL, and the input pointer is returned as-is. This means the return value always contains a properly
4408 * escaped version, but *buf when passed only contains a pointer if an allocation was necessary. If *buf is
4409 * not specified, then the return value always needs to be freed. Callers can use this to optimize memory
4410 * allocations. */
4411
4412 if (flags & UNIT_ESCAPE_SPECIFIERS) {
4413 ret = specifier_escape(s);
4414 if (!ret)
4415 return NULL;
4416
4417 s = ret;
4418 }
4419
4420 if (flags & UNIT_ESCAPE_C) {
4421 char *a;
4422
4423 a = cescape(s);
4424 free(ret);
4425 if (!a)
4426 return NULL;
4427
4428 ret = a;
4429 }
4430
4431 if (buf) {
4432 *buf = ret;
4433 return ret ?: (char*) s;
4434 }
4435
4436 return ret ?: strdup(s);
4437 }
4438
4439 char* unit_concat_strv(char **l, UnitWriteFlags flags) {
4440 _cleanup_free_ char *result = NULL;
4441 size_t n = 0, allocated = 0;
4442 char **i;
4443
4444 /* Takes a list of strings, escapes them, and concatenates them. This may be used to format command lines in a
4445 * way suitable for ExecStart= stanzas */
4446
4447 STRV_FOREACH(i, l) {
4448 _cleanup_free_ char *buf = NULL;
4449 const char *p;
4450 size_t a;
4451 char *q;
4452
4453 p = unit_escape_setting(*i, flags, &buf);
4454 if (!p)
4455 return NULL;
4456
4457 a = (n > 0) + 1 + strlen(p) + 1; /* separating space + " + entry + " */
4458 if (!GREEDY_REALLOC(result, allocated, n + a + 1))
4459 return NULL;
4460
4461 q = result + n;
4462 if (n > 0)
4463 *(q++) = ' ';
4464
4465 *(q++) = '"';
4466 q = stpcpy(q, p);
4467 *(q++) = '"';
4468
4469 n += a;
4470 }
4471
4472 if (!GREEDY_REALLOC(result, allocated, n + 1))
4473 return NULL;
4474
4475 result[n] = 0;
4476
4477 return TAKE_PTR(result);
4478 }
4479
4480 int unit_write_setting(Unit *u, UnitWriteFlags flags, const char *name, const char *data) {
4481 _cleanup_free_ char *p = NULL, *q = NULL, *escaped = NULL;
4482 const char *dir, *wrapped;
4483 int r;
4484
4485 assert(u);
4486 assert(name);
4487 assert(data);
4488
4489 if (UNIT_WRITE_FLAGS_NOOP(flags))
4490 return 0;
4491
4492 data = unit_escape_setting(data, flags, &escaped);
4493 if (!data)
4494 return -ENOMEM;
4495
4496 /* Prefix the section header. If we are writing this out as transient file, then let's suppress this if the
4497 * previous section header is the same */
4498
4499 if (flags & UNIT_PRIVATE) {
4500 if (!UNIT_VTABLE(u)->private_section)
4501 return -EINVAL;
4502
4503 if (!u->transient_file || u->last_section_private < 0)
4504 data = strjoina("[", UNIT_VTABLE(u)->private_section, "]\n", data);
4505 else if (u->last_section_private == 0)
4506 data = strjoina("\n[", UNIT_VTABLE(u)->private_section, "]\n", data);
4507 } else {
4508 if (!u->transient_file || u->last_section_private < 0)
4509 data = strjoina("[Unit]\n", data);
4510 else if (u->last_section_private > 0)
4511 data = strjoina("\n[Unit]\n", data);
4512 }
4513
4514 if (u->transient_file) {
4515 /* When this is a transient unit file in creation, then let's not create a new drop-in but instead
4516 * write to the transient unit file. */
4517 fputs(data, u->transient_file);
4518
4519 if (!endswith(data, "\n"))
4520 fputc('\n', u->transient_file);
4521
4522 /* Remember which section we wrote this entry to */
4523 u->last_section_private = !!(flags & UNIT_PRIVATE);
4524 return 0;
4525 }
4526
4527 dir = unit_drop_in_dir(u, flags);
4528 if (!dir)
4529 return -EINVAL;
4530
4531 wrapped = strjoina("# This is a drop-in unit file extension, created via \"systemctl set-property\"\n"
4532 "# or an equivalent operation. Do not edit.\n",
4533 data,
4534 "\n");
4535
4536 r = drop_in_file(dir, u->id, 50, name, &p, &q);
4537 if (r < 0)
4538 return r;
4539
4540 (void) mkdir_p_label(p, 0755);
4541
4542 /* Make sure the drop-in dir is registered in our path cache. This way we don't need to stupidly
4543 * recreate the cache after every drop-in we write. */
4544 if (u->manager->unit_path_cache) {
4545 r = set_put_strdup(u->manager->unit_path_cache, p);
4546 if (r < 0)
4547 return r;
4548 }
4549
4550 r = write_string_file_atomic_label(q, wrapped);
4551 if (r < 0)
4552 return r;
4553
4554 r = strv_push(&u->dropin_paths, q);
4555 if (r < 0)
4556 return r;
4557 q = NULL;
4558
4559 strv_uniq(u->dropin_paths);
4560
4561 u->dropin_mtime = now(CLOCK_REALTIME);
4562
4563 return 0;
4564 }
4565
4566 int unit_write_settingf(Unit *u, UnitWriteFlags flags, const char *name, const char *format, ...) {
4567 _cleanup_free_ char *p = NULL;
4568 va_list ap;
4569 int r;
4570
4571 assert(u);
4572 assert(name);
4573 assert(format);
4574
4575 if (UNIT_WRITE_FLAGS_NOOP(flags))
4576 return 0;
4577
4578 va_start(ap, format);
4579 r = vasprintf(&p, format, ap);
4580 va_end(ap);
4581
4582 if (r < 0)
4583 return -ENOMEM;
4584
4585 return unit_write_setting(u, flags, name, p);
4586 }
4587
4588 int unit_make_transient(Unit *u) {
4589 _cleanup_free_ char *path = NULL;
4590 FILE *f;
4591
4592 assert(u);
4593
4594 if (!UNIT_VTABLE(u)->can_transient)
4595 return -EOPNOTSUPP;
4596
4597 (void) mkdir_p_label(u->manager->lookup_paths.transient, 0755);
4598
4599 path = path_join(u->manager->lookup_paths.transient, u->id);
4600 if (!path)
4601 return -ENOMEM;
4602
4603 /* Let's open the file we'll write the transient settings into. This file is kept open as long as we are
4604 * creating the transient, and is closed in unit_load(), as soon as we start loading the file. */
4605
4606 RUN_WITH_UMASK(0022) {
4607 f = fopen(path, "we");
4608 if (!f)
4609 return -errno;
4610 }
4611
4612 safe_fclose(u->transient_file);
4613 u->transient_file = f;
4614
4615 free_and_replace(u->fragment_path, path);
4616
4617 u->source_path = mfree(u->source_path);
4618 u->dropin_paths = strv_free(u->dropin_paths);
4619 u->fragment_mtime = u->source_mtime = u->dropin_mtime = 0;
4620
4621 u->load_state = UNIT_STUB;
4622 u->load_error = 0;
4623 u->transient = true;
4624
4625 unit_add_to_dbus_queue(u);
4626 unit_add_to_gc_queue(u);
4627
4628 fputs("# This is a transient unit file, created programmatically via the systemd API. Do not edit.\n",
4629 u->transient_file);
4630
4631 return 0;
4632 }
4633
4634 static int log_kill(pid_t pid, int sig, void *userdata) {
4635 _cleanup_free_ char *comm = NULL;
4636
4637 (void) get_process_comm(pid, &comm);
4638
4639 /* Don't log about processes marked with brackets, under the assumption that these are temporary processes
4640 only, like for example systemd's own PAM stub process. */
4641 if (comm && comm[0] == '(')
4642 return 0;
4643
4644 log_unit_notice(userdata,
4645 "Killing process " PID_FMT " (%s) with signal SIG%s.",
4646 pid,
4647 strna(comm),
4648 signal_to_string(sig));
4649
4650 return 1;
4651 }
4652
4653 static int operation_to_signal(const KillContext *c, KillOperation k, bool *noteworthy) {
4654 assert(c);
4655
4656 switch (k) {
4657
4658 case KILL_TERMINATE:
4659 case KILL_TERMINATE_AND_LOG:
4660 *noteworthy = false;
4661 return c->kill_signal;
4662
4663 case KILL_RESTART:
4664 *noteworthy = false;
4665 return restart_kill_signal(c);
4666
4667 case KILL_KILL:
4668 *noteworthy = true;
4669 return c->final_kill_signal;
4670
4671 case KILL_WATCHDOG:
4672 *noteworthy = true;
4673 return c->watchdog_signal;
4674
4675 default:
4676 assert_not_reached("KillOperation unknown");
4677 }
4678 }
4679
4680 int unit_kill_context(
4681 Unit *u,
4682 KillContext *c,
4683 KillOperation k,
4684 pid_t main_pid,
4685 pid_t control_pid,
4686 bool main_pid_alien) {
4687
4688 bool wait_for_exit = false, send_sighup;
4689 cg_kill_log_func_t log_func = NULL;
4690 int sig, r;
4691
4692 assert(u);
4693 assert(c);
4694
4695 /* Kill the processes belonging to this unit, in preparation for shutting the unit down.
4696 * Returns > 0 if we killed something worth waiting for, 0 otherwise. */
4697
4698 if (c->kill_mode == KILL_NONE)
4699 return 0;
4700
4701 bool noteworthy;
4702 sig = operation_to_signal(c, k, &noteworthy);
4703 if (noteworthy)
4704 log_func = log_kill;
4705
4706 send_sighup =
4707 c->send_sighup &&
4708 IN_SET(k, KILL_TERMINATE, KILL_TERMINATE_AND_LOG) &&
4709 sig != SIGHUP;
4710
4711 if (main_pid > 0) {
4712 if (log_func)
4713 log_func(main_pid, sig, u);
4714
4715 r = kill_and_sigcont(main_pid, sig);
4716 if (r < 0 && r != -ESRCH) {
4717 _cleanup_free_ char *comm = NULL;
4718 (void) get_process_comm(main_pid, &comm);
4719
4720 log_unit_warning_errno(u, r, "Failed to kill main process " PID_FMT " (%s), ignoring: %m", main_pid, strna(comm));
4721 } else {
4722 if (!main_pid_alien)
4723 wait_for_exit = true;
4724
4725 if (r != -ESRCH && send_sighup)
4726 (void) kill(main_pid, SIGHUP);
4727 }
4728 }
4729
4730 if (control_pid > 0) {
4731 if (log_func)
4732 log_func(control_pid, sig, u);
4733
4734 r = kill_and_sigcont(control_pid, sig);
4735 if (r < 0 && r != -ESRCH) {
4736 _cleanup_free_ char *comm = NULL;
4737 (void) get_process_comm(control_pid, &comm);
4738
4739 log_unit_warning_errno(u, r, "Failed to kill control process " PID_FMT " (%s), ignoring: %m", control_pid, strna(comm));
4740 } else {
4741 wait_for_exit = true;
4742
4743 if (r != -ESRCH && send_sighup)
4744 (void) kill(control_pid, SIGHUP);
4745 }
4746 }
4747
4748 if (u->cgroup_path &&
4749 (c->kill_mode == KILL_CONTROL_GROUP || (c->kill_mode == KILL_MIXED && k == KILL_KILL))) {
4750 _cleanup_set_free_ Set *pid_set = NULL;
4751
4752 /* Exclude the main/control pids from being killed via the cgroup */
4753 pid_set = unit_pid_set(main_pid, control_pid);
4754 if (!pid_set)
4755 return -ENOMEM;
4756
4757 r = cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4758 sig,
4759 CGROUP_SIGCONT|CGROUP_IGNORE_SELF,
4760 pid_set,
4761 log_func, u);
4762 if (r < 0) {
4763 if (!IN_SET(r, -EAGAIN, -ESRCH, -ENOENT))
4764 log_unit_warning_errno(u, r, "Failed to kill control group %s, ignoring: %m", u->cgroup_path);
4765
4766 } else if (r > 0) {
4767
4768 /* FIXME: For now, on the legacy hierarchy, we will not wait for the cgroup members to die if
4769 * we are running in a container or if this is a delegation unit, simply because cgroup
4770 * notification is unreliable in these cases. It doesn't work at all in containers, and outside
4771 * of containers it can be confused easily by left-over directories in the cgroup — which
4772 * however should not exist in non-delegated units. On the unified hierarchy that's different,
4773 * there we get proper events. Hence rely on them. */
4774
4775 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0 ||
4776 (detect_container() == 0 && !unit_cgroup_delegate(u)))
4777 wait_for_exit = true;
4778
4779 if (send_sighup) {
4780 set_free(pid_set);
4781
4782 pid_set = unit_pid_set(main_pid, control_pid);
4783 if (!pid_set)
4784 return -ENOMEM;
4785
4786 cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
4787 SIGHUP,
4788 CGROUP_IGNORE_SELF,
4789 pid_set,
4790 NULL, NULL);
4791 }
4792 }
4793 }
4794
4795 return wait_for_exit;
4796 }
4797
4798 int unit_require_mounts_for(Unit *u, const char *path, UnitDependencyMask mask) {
4799 _cleanup_free_ char *p = NULL;
4800 UnitDependencyInfo di;
4801 int r;
4802
4803 assert(u);
4804 assert(path);
4805
4806 /* Registers a unit for requiring a certain path and all its prefixes. We keep a hashtable of these paths in
4807 * the unit (from the path to the UnitDependencyInfo structure indicating how to the dependency came to
4808 * be). However, we build a prefix table for all possible prefixes so that new appearing mount units can easily
4809 * determine which units to make themselves a dependency of. */
4810
4811 if (!path_is_absolute(path))
4812 return -EINVAL;
4813
4814 r = hashmap_ensure_allocated(&u->requires_mounts_for, &path_hash_ops);
4815 if (r < 0)
4816 return r;
4817
4818 p = strdup(path);
4819 if (!p)
4820 return -ENOMEM;
4821
4822 path = path_simplify(p, true);
4823
4824 if (!path_is_normalized(path))
4825 return -EPERM;
4826
4827 if (hashmap_contains(u->requires_mounts_for, path))
4828 return 0;
4829
4830 di = (UnitDependencyInfo) {
4831 .origin_mask = mask
4832 };
4833
4834 r = hashmap_put(u->requires_mounts_for, path, di.data);
4835 if (r < 0)
4836 return r;
4837 p = NULL;
4838
4839 char prefix[strlen(path) + 1];
4840 PATH_FOREACH_PREFIX_MORE(prefix, path) {
4841 Set *x;
4842
4843 x = hashmap_get(u->manager->units_requiring_mounts_for, prefix);
4844 if (!x) {
4845 _cleanup_free_ char *q = NULL;
4846
4847 r = hashmap_ensure_allocated(&u->manager->units_requiring_mounts_for, &path_hash_ops);
4848 if (r < 0)
4849 return r;
4850
4851 q = strdup(prefix);
4852 if (!q)
4853 return -ENOMEM;
4854
4855 x = set_new(NULL);
4856 if (!x)
4857 return -ENOMEM;
4858
4859 r = hashmap_put(u->manager->units_requiring_mounts_for, q, x);
4860 if (r < 0) {
4861 set_free(x);
4862 return r;
4863 }
4864 q = NULL;
4865 }
4866
4867 r = set_put(x, u);
4868 if (r < 0)
4869 return r;
4870 }
4871
4872 return 0;
4873 }
4874
4875 int unit_setup_exec_runtime(Unit *u) {
4876 ExecRuntime **rt;
4877 size_t offset;
4878 Unit *other;
4879 Iterator i;
4880 void *v;
4881 int r;
4882
4883 offset = UNIT_VTABLE(u)->exec_runtime_offset;
4884 assert(offset > 0);
4885
4886 /* Check if there already is an ExecRuntime for this unit? */
4887 rt = (ExecRuntime**) ((uint8_t*) u + offset);
4888 if (*rt)
4889 return 0;
4890
4891 /* Try to get it from somebody else */
4892 HASHMAP_FOREACH_KEY(v, other, u->dependencies[UNIT_JOINS_NAMESPACE_OF], i) {
4893 r = exec_runtime_acquire(u->manager, NULL, other->id, false, rt);
4894 if (r == 1)
4895 return 1;
4896 }
4897
4898 return exec_runtime_acquire(u->manager, unit_get_exec_context(u), u->id, true, rt);
4899 }
4900
4901 int unit_setup_dynamic_creds(Unit *u) {
4902 ExecContext *ec;
4903 DynamicCreds *dcreds;
4904 size_t offset;
4905
4906 assert(u);
4907
4908 offset = UNIT_VTABLE(u)->dynamic_creds_offset;
4909 assert(offset > 0);
4910 dcreds = (DynamicCreds*) ((uint8_t*) u + offset);
4911
4912 ec = unit_get_exec_context(u);
4913 assert(ec);
4914
4915 if (!ec->dynamic_user)
4916 return 0;
4917
4918 return dynamic_creds_acquire(dcreds, u->manager, ec->user, ec->group);
4919 }
4920
4921 bool unit_type_supported(UnitType t) {
4922 if (_unlikely_(t < 0))
4923 return false;
4924 if (_unlikely_(t >= _UNIT_TYPE_MAX))
4925 return false;
4926
4927 if (!unit_vtable[t]->supported)
4928 return true;
4929
4930 return unit_vtable[t]->supported();
4931 }
4932
4933 void unit_warn_if_dir_nonempty(Unit *u, const char* where) {
4934 int r;
4935
4936 assert(u);
4937 assert(where);
4938
4939 r = dir_is_empty(where);
4940 if (r > 0 || r == -ENOTDIR)
4941 return;
4942 if (r < 0) {
4943 log_unit_warning_errno(u, r, "Failed to check directory %s: %m", where);
4944 return;
4945 }
4946
4947 log_struct(LOG_NOTICE,
4948 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4949 LOG_UNIT_ID(u),
4950 LOG_UNIT_INVOCATION_ID(u),
4951 LOG_UNIT_MESSAGE(u, "Directory %s to mount over is not empty, mounting anyway.", where),
4952 "WHERE=%s", where);
4953 }
4954
4955 int unit_fail_if_noncanonical(Unit *u, const char* where) {
4956 _cleanup_free_ char *canonical_where = NULL;
4957 int r;
4958
4959 assert(u);
4960 assert(where);
4961
4962 r = chase_symlinks(where, NULL, CHASE_NONEXISTENT, &canonical_where, NULL);
4963 if (r < 0) {
4964 log_unit_debug_errno(u, r, "Failed to check %s for symlinks, ignoring: %m", where);
4965 return 0;
4966 }
4967
4968 /* We will happily ignore a trailing slash (or any redundant slashes) */
4969 if (path_equal(where, canonical_where))
4970 return 0;
4971
4972 /* No need to mention "." or "..", they would already have been rejected by unit_name_from_path() */
4973 log_struct(LOG_ERR,
4974 "MESSAGE_ID=" SD_MESSAGE_OVERMOUNTING_STR,
4975 LOG_UNIT_ID(u),
4976 LOG_UNIT_INVOCATION_ID(u),
4977 LOG_UNIT_MESSAGE(u, "Mount path %s is not canonical (contains a symlink).", where),
4978 "WHERE=%s", where);
4979
4980 return -ELOOP;
4981 }
4982
4983 bool unit_is_pristine(Unit *u) {
4984 assert(u);
4985
4986 /* Check if the unit already exists or is already around,
4987 * in a number of different ways. Note that to cater for unit
4988 * types such as slice, we are generally fine with units that
4989 * are marked UNIT_LOADED even though nothing was actually
4990 * loaded, as those unit types don't require a file on disk. */
4991
4992 return !(!IN_SET(u->load_state, UNIT_NOT_FOUND, UNIT_LOADED) ||
4993 u->fragment_path ||
4994 u->source_path ||
4995 !strv_isempty(u->dropin_paths) ||
4996 u->job ||
4997 u->merged_into);
4998 }
4999
5000 pid_t unit_control_pid(Unit *u) {
5001 assert(u);
5002
5003 if (UNIT_VTABLE(u)->control_pid)
5004 return UNIT_VTABLE(u)->control_pid(u);
5005
5006 return 0;
5007 }
5008
5009 pid_t unit_main_pid(Unit *u) {
5010 assert(u);
5011
5012 if (UNIT_VTABLE(u)->main_pid)
5013 return UNIT_VTABLE(u)->main_pid(u);
5014
5015 return 0;
5016 }
5017
5018 static void unit_unref_uid_internal(
5019 Unit *u,
5020 uid_t *ref_uid,
5021 bool destroy_now,
5022 void (*_manager_unref_uid)(Manager *m, uid_t uid, bool destroy_now)) {
5023
5024 assert(u);
5025 assert(ref_uid);
5026 assert(_manager_unref_uid);
5027
5028 /* Generic implementation of both unit_unref_uid() and unit_unref_gid(), under the assumption that uid_t and
5029 * gid_t are actually the same time, with the same validity rules.
5030 *
5031 * Drops a reference to UID/GID from a unit. */
5032
5033 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5034 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5035
5036 if (!uid_is_valid(*ref_uid))
5037 return;
5038
5039 _manager_unref_uid(u->manager, *ref_uid, destroy_now);
5040 *ref_uid = UID_INVALID;
5041 }
5042
5043 void unit_unref_uid(Unit *u, bool destroy_now) {
5044 unit_unref_uid_internal(u, &u->ref_uid, destroy_now, manager_unref_uid);
5045 }
5046
5047 void unit_unref_gid(Unit *u, bool destroy_now) {
5048 unit_unref_uid_internal(u, (uid_t*) &u->ref_gid, destroy_now, manager_unref_gid);
5049 }
5050
5051 static int unit_ref_uid_internal(
5052 Unit *u,
5053 uid_t *ref_uid,
5054 uid_t uid,
5055 bool clean_ipc,
5056 int (*_manager_ref_uid)(Manager *m, uid_t uid, bool clean_ipc)) {
5057
5058 int r;
5059
5060 assert(u);
5061 assert(ref_uid);
5062 assert(uid_is_valid(uid));
5063 assert(_manager_ref_uid);
5064
5065 /* Generic implementation of both unit_ref_uid() and unit_ref_guid(), under the assumption that uid_t and gid_t
5066 * are actually the same type, and have the same validity rules.
5067 *
5068 * Adds a reference on a specific UID/GID to this unit. Each unit referencing the same UID/GID maintains a
5069 * reference so that we can destroy the UID/GID's IPC resources as soon as this is requested and the counter
5070 * drops to zero. */
5071
5072 assert_cc(sizeof(uid_t) == sizeof(gid_t));
5073 assert_cc(UID_INVALID == (uid_t) GID_INVALID);
5074
5075 if (*ref_uid == uid)
5076 return 0;
5077
5078 if (uid_is_valid(*ref_uid)) /* Already set? */
5079 return -EBUSY;
5080
5081 r = _manager_ref_uid(u->manager, uid, clean_ipc);
5082 if (r < 0)
5083 return r;
5084
5085 *ref_uid = uid;
5086 return 1;
5087 }
5088
5089 int unit_ref_uid(Unit *u, uid_t uid, bool clean_ipc) {
5090 return unit_ref_uid_internal(u, &u->ref_uid, uid, clean_ipc, manager_ref_uid);
5091 }
5092
5093 int unit_ref_gid(Unit *u, gid_t gid, bool clean_ipc) {
5094 return unit_ref_uid_internal(u, (uid_t*) &u->ref_gid, (uid_t) gid, clean_ipc, manager_ref_gid);
5095 }
5096
5097 static int unit_ref_uid_gid_internal(Unit *u, uid_t uid, gid_t gid, bool clean_ipc) {
5098 int r = 0, q = 0;
5099
5100 assert(u);
5101
5102 /* Reference both a UID and a GID in one go. Either references both, or neither. */
5103
5104 if (uid_is_valid(uid)) {
5105 r = unit_ref_uid(u, uid, clean_ipc);
5106 if (r < 0)
5107 return r;
5108 }
5109
5110 if (gid_is_valid(gid)) {
5111 q = unit_ref_gid(u, gid, clean_ipc);
5112 if (q < 0) {
5113 if (r > 0)
5114 unit_unref_uid(u, false);
5115
5116 return q;
5117 }
5118 }
5119
5120 return r > 0 || q > 0;
5121 }
5122
5123 int unit_ref_uid_gid(Unit *u, uid_t uid, gid_t gid) {
5124 ExecContext *c;
5125 int r;
5126
5127 assert(u);
5128
5129 c = unit_get_exec_context(u);
5130
5131 r = unit_ref_uid_gid_internal(u, uid, gid, c ? c->remove_ipc : false);
5132 if (r < 0)
5133 return log_unit_warning_errno(u, r, "Couldn't add UID/GID reference to unit, proceeding without: %m");
5134
5135 return r;
5136 }
5137
5138 void unit_unref_uid_gid(Unit *u, bool destroy_now) {
5139 assert(u);
5140
5141 unit_unref_uid(u, destroy_now);
5142 unit_unref_gid(u, destroy_now);
5143 }
5144
5145 void unit_notify_user_lookup(Unit *u, uid_t uid, gid_t gid) {
5146 int r;
5147
5148 assert(u);
5149
5150 /* This is invoked whenever one of the forked off processes let's us know the UID/GID its user name/group names
5151 * resolved to. We keep track of which UID/GID is currently assigned in order to be able to destroy its IPC
5152 * objects when no service references the UID/GID anymore. */
5153
5154 r = unit_ref_uid_gid(u, uid, gid);
5155 if (r > 0)
5156 unit_add_to_dbus_queue(u);
5157 }
5158
5159 int unit_set_invocation_id(Unit *u, sd_id128_t id) {
5160 int r;
5161
5162 assert(u);
5163
5164 /* Set the invocation ID for this unit. If we cannot, this will not roll back, but reset the whole thing. */
5165
5166 if (sd_id128_equal(u->invocation_id, id))
5167 return 0;
5168
5169 if (!sd_id128_is_null(u->invocation_id))
5170 (void) hashmap_remove_value(u->manager->units_by_invocation_id, &u->invocation_id, u);
5171
5172 if (sd_id128_is_null(id)) {
5173 r = 0;
5174 goto reset;
5175 }
5176
5177 r = hashmap_ensure_allocated(&u->manager->units_by_invocation_id, &id128_hash_ops);
5178 if (r < 0)
5179 goto reset;
5180
5181 u->invocation_id = id;
5182 sd_id128_to_string(id, u->invocation_id_string);
5183
5184 r = hashmap_put(u->manager->units_by_invocation_id, &u->invocation_id, u);
5185 if (r < 0)
5186 goto reset;
5187
5188 return 0;
5189
5190 reset:
5191 u->invocation_id = SD_ID128_NULL;
5192 u->invocation_id_string[0] = 0;
5193 return r;
5194 }
5195
5196 int unit_acquire_invocation_id(Unit *u) {
5197 sd_id128_t id;
5198 int r;
5199
5200 assert(u);
5201
5202 r = sd_id128_randomize(&id);
5203 if (r < 0)
5204 return log_unit_error_errno(u, r, "Failed to generate invocation ID for unit: %m");
5205
5206 r = unit_set_invocation_id(u, id);
5207 if (r < 0)
5208 return log_unit_error_errno(u, r, "Failed to set invocation ID for unit: %m");
5209
5210 unit_add_to_dbus_queue(u);
5211 return 0;
5212 }
5213
5214 int unit_set_exec_params(Unit *u, ExecParameters *p) {
5215 int r;
5216
5217 assert(u);
5218 assert(p);
5219
5220 /* Copy parameters from manager */
5221 r = manager_get_effective_environment(u->manager, &p->environment);
5222 if (r < 0)
5223 return r;
5224
5225 p->confirm_spawn = manager_get_confirm_spawn(u->manager);
5226 p->cgroup_supported = u->manager->cgroup_supported;
5227 p->prefix = u->manager->prefix;
5228 SET_FLAG(p->flags, EXEC_PASS_LOG_UNIT|EXEC_CHOWN_DIRECTORIES, MANAGER_IS_SYSTEM(u->manager));
5229
5230 /* Copy parameters from unit */
5231 p->cgroup_path = u->cgroup_path;
5232 SET_FLAG(p->flags, EXEC_CGROUP_DELEGATE, unit_cgroup_delegate(u));
5233
5234 return 0;
5235 }
5236
5237 int unit_fork_helper_process(Unit *u, const char *name, pid_t *ret) {
5238 int r;
5239
5240 assert(u);
5241 assert(ret);
5242
5243 /* Forks off a helper process and makes sure it is a member of the unit's cgroup. Returns == 0 in the child,
5244 * and > 0 in the parent. The pid parameter is always filled in with the child's PID. */
5245
5246 (void) unit_realize_cgroup(u);
5247
5248 r = safe_fork(name, FORK_REOPEN_LOG, ret);
5249 if (r != 0)
5250 return r;
5251
5252 (void) default_signals(SIGNALS_CRASH_HANDLER, SIGNALS_IGNORE, -1);
5253 (void) ignore_signals(SIGPIPE, -1);
5254
5255 (void) prctl(PR_SET_PDEATHSIG, SIGTERM);
5256
5257 if (u->cgroup_path) {
5258 r = cg_attach_everywhere(u->manager->cgroup_supported, u->cgroup_path, 0, NULL, NULL);
5259 if (r < 0) {
5260 log_unit_error_errno(u, r, "Failed to join unit cgroup %s: %m", u->cgroup_path);
5261 _exit(EXIT_CGROUP);
5262 }
5263 }
5264
5265 return 0;
5266 }
5267
5268 int unit_fork_and_watch_rm_rf(Unit *u, char **paths, pid_t *ret_pid) {
5269 pid_t pid;
5270 int r;
5271
5272 assert(u);
5273 assert(ret_pid);
5274
5275 r = unit_fork_helper_process(u, "(sd-rmrf)", &pid);
5276 if (r < 0)
5277 return r;
5278 if (r == 0) {
5279 int ret = EXIT_SUCCESS;
5280 char **i;
5281
5282 STRV_FOREACH(i, paths) {
5283 r = rm_rf(*i, REMOVE_ROOT|REMOVE_PHYSICAL|REMOVE_MISSING_OK);
5284 if (r < 0) {
5285 log_error_errno(r, "Failed to remove '%s': %m", *i);
5286 ret = EXIT_FAILURE;
5287 }
5288 }
5289
5290 _exit(ret);
5291 }
5292
5293 r = unit_watch_pid(u, pid, true);
5294 if (r < 0)
5295 return r;
5296
5297 *ret_pid = pid;
5298 return 0;
5299 }
5300
5301 static void unit_update_dependency_mask(Unit *u, UnitDependency d, Unit *other, UnitDependencyInfo di) {
5302 assert(u);
5303 assert(d >= 0);
5304 assert(d < _UNIT_DEPENDENCY_MAX);
5305 assert(other);
5306
5307 if (di.origin_mask == 0 && di.destination_mask == 0) {
5308 /* No bit set anymore, let's drop the whole entry */
5309 assert_se(hashmap_remove(u->dependencies[d], other));
5310 log_unit_debug(u, "%s lost dependency %s=%s", u->id, unit_dependency_to_string(d), other->id);
5311 } else
5312 /* Mask was reduced, let's update the entry */
5313 assert_se(hashmap_update(u->dependencies[d], other, di.data) == 0);
5314 }
5315
5316 void unit_remove_dependencies(Unit *u, UnitDependencyMask mask) {
5317 UnitDependency d;
5318
5319 assert(u);
5320
5321 /* Removes all dependencies u has on other units marked for ownership by 'mask'. */
5322
5323 if (mask == 0)
5324 return;
5325
5326 for (d = 0; d < _UNIT_DEPENDENCY_MAX; d++) {
5327 bool done;
5328
5329 do {
5330 UnitDependencyInfo di;
5331 Unit *other;
5332 Iterator i;
5333
5334 done = true;
5335
5336 HASHMAP_FOREACH_KEY(di.data, other, u->dependencies[d], i) {
5337 UnitDependency q;
5338
5339 if ((di.origin_mask & ~mask) == di.origin_mask)
5340 continue;
5341 di.origin_mask &= ~mask;
5342 unit_update_dependency_mask(u, d, other, di);
5343
5344 /* We updated the dependency from our unit to the other unit now. But most dependencies
5345 * imply a reverse dependency. Hence, let's delete that one too. For that we go through
5346 * all dependency types on the other unit and delete all those which point to us and
5347 * have the right mask set. */
5348
5349 for (q = 0; q < _UNIT_DEPENDENCY_MAX; q++) {
5350 UnitDependencyInfo dj;
5351
5352 dj.data = hashmap_get(other->dependencies[q], u);
5353 if ((dj.destination_mask & ~mask) == dj.destination_mask)
5354 continue;
5355 dj.destination_mask &= ~mask;
5356
5357 unit_update_dependency_mask(other, q, u, dj);
5358 }
5359
5360 unit_add_to_gc_queue(other);
5361
5362 done = false;
5363 break;
5364 }
5365
5366 } while (!done);
5367 }
5368 }
5369
5370 static int unit_get_invocation_path(Unit *u, char **ret) {
5371 char *p;
5372 int r;
5373
5374 assert(u);
5375 assert(ret);
5376
5377 if (MANAGER_IS_SYSTEM(u->manager))
5378 p = strjoin("/run/systemd/units/invocation:", u->id);
5379 else {
5380 _cleanup_free_ char *user_path = NULL;
5381 r = xdg_user_runtime_dir(&user_path, "/systemd/units/invocation:");
5382 if (r < 0)
5383 return r;
5384 p = strjoin(user_path, u->id);
5385 }
5386
5387 if (!p)
5388 return -ENOMEM;
5389
5390 *ret = p;
5391 return 0;
5392 }
5393
5394 static int unit_export_invocation_id(Unit *u) {
5395 _cleanup_free_ char *p = NULL;
5396 int r;
5397
5398 assert(u);
5399
5400 if (u->exported_invocation_id)
5401 return 0;
5402
5403 if (sd_id128_is_null(u->invocation_id))
5404 return 0;
5405
5406 r = unit_get_invocation_path(u, &p);
5407 if (r < 0)
5408 return log_unit_debug_errno(u, r, "Failed to get invocation path: %m");
5409
5410 r = symlink_atomic(u->invocation_id_string, p);
5411 if (r < 0)
5412 return log_unit_debug_errno(u, r, "Failed to create invocation ID symlink %s: %m", p);
5413
5414 u->exported_invocation_id = true;
5415 return 0;
5416 }
5417
5418 static int unit_export_log_level_max(Unit *u, const ExecContext *c) {
5419 const char *p;
5420 char buf[2];
5421 int r;
5422
5423 assert(u);
5424 assert(c);
5425
5426 if (u->exported_log_level_max)
5427 return 0;
5428
5429 if (c->log_level_max < 0)
5430 return 0;
5431
5432 assert(c->log_level_max <= 7);
5433
5434 buf[0] = '0' + c->log_level_max;
5435 buf[1] = 0;
5436
5437 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5438 r = symlink_atomic(buf, p);
5439 if (r < 0)
5440 return log_unit_debug_errno(u, r, "Failed to create maximum log level symlink %s: %m", p);
5441
5442 u->exported_log_level_max = true;
5443 return 0;
5444 }
5445
5446 static int unit_export_log_extra_fields(Unit *u, const ExecContext *c) {
5447 _cleanup_close_ int fd = -1;
5448 struct iovec *iovec;
5449 const char *p;
5450 char *pattern;
5451 le64_t *sizes;
5452 ssize_t n;
5453 size_t i;
5454 int r;
5455
5456 if (u->exported_log_extra_fields)
5457 return 0;
5458
5459 if (c->n_log_extra_fields <= 0)
5460 return 0;
5461
5462 sizes = newa(le64_t, c->n_log_extra_fields);
5463 iovec = newa(struct iovec, c->n_log_extra_fields * 2);
5464
5465 for (i = 0; i < c->n_log_extra_fields; i++) {
5466 sizes[i] = htole64(c->log_extra_fields[i].iov_len);
5467
5468 iovec[i*2] = IOVEC_MAKE(sizes + i, sizeof(le64_t));
5469 iovec[i*2+1] = c->log_extra_fields[i];
5470 }
5471
5472 p = strjoina("/run/systemd/units/log-extra-fields:", u->id);
5473 pattern = strjoina(p, ".XXXXXX");
5474
5475 fd = mkostemp_safe(pattern);
5476 if (fd < 0)
5477 return log_unit_debug_errno(u, fd, "Failed to create extra fields file %s: %m", p);
5478
5479 n = writev(fd, iovec, c->n_log_extra_fields*2);
5480 if (n < 0) {
5481 r = log_unit_debug_errno(u, errno, "Failed to write extra fields: %m");
5482 goto fail;
5483 }
5484
5485 (void) fchmod(fd, 0644);
5486
5487 if (rename(pattern, p) < 0) {
5488 r = log_unit_debug_errno(u, errno, "Failed to rename extra fields file: %m");
5489 goto fail;
5490 }
5491
5492 u->exported_log_extra_fields = true;
5493 return 0;
5494
5495 fail:
5496 (void) unlink(pattern);
5497 return r;
5498 }
5499
5500 static int unit_export_log_ratelimit_interval(Unit *u, const ExecContext *c) {
5501 _cleanup_free_ char *buf = NULL;
5502 const char *p;
5503 int r;
5504
5505 assert(u);
5506 assert(c);
5507
5508 if (u->exported_log_ratelimit_interval)
5509 return 0;
5510
5511 if (c->log_ratelimit_interval_usec == 0)
5512 return 0;
5513
5514 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5515
5516 if (asprintf(&buf, "%" PRIu64, c->log_ratelimit_interval_usec) < 0)
5517 return log_oom();
5518
5519 r = symlink_atomic(buf, p);
5520 if (r < 0)
5521 return log_unit_debug_errno(u, r, "Failed to create log rate limit interval symlink %s: %m", p);
5522
5523 u->exported_log_ratelimit_interval = true;
5524 return 0;
5525 }
5526
5527 static int unit_export_log_ratelimit_burst(Unit *u, const ExecContext *c) {
5528 _cleanup_free_ char *buf = NULL;
5529 const char *p;
5530 int r;
5531
5532 assert(u);
5533 assert(c);
5534
5535 if (u->exported_log_ratelimit_burst)
5536 return 0;
5537
5538 if (c->log_ratelimit_burst == 0)
5539 return 0;
5540
5541 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5542
5543 if (asprintf(&buf, "%u", c->log_ratelimit_burst) < 0)
5544 return log_oom();
5545
5546 r = symlink_atomic(buf, p);
5547 if (r < 0)
5548 return log_unit_debug_errno(u, r, "Failed to create log rate limit burst symlink %s: %m", p);
5549
5550 u->exported_log_ratelimit_burst = true;
5551 return 0;
5552 }
5553
5554 void unit_export_state_files(Unit *u) {
5555 const ExecContext *c;
5556
5557 assert(u);
5558
5559 if (!u->id)
5560 return;
5561
5562 if (MANAGER_IS_TEST_RUN(u->manager))
5563 return;
5564
5565 /* Exports a couple of unit properties to /run/systemd/units/, so that journald can quickly query this data
5566 * from there. Ideally, journald would use IPC to query this, like everybody else, but that's hard, as long as
5567 * the IPC system itself and PID 1 also log to the journal.
5568 *
5569 * Note that these files really shouldn't be considered API for anyone else, as use a runtime file system as
5570 * IPC replacement is not compatible with today's world of file system namespaces. However, this doesn't really
5571 * apply to communication between the journal and systemd, as we assume that these two daemons live in the same
5572 * namespace at least.
5573 *
5574 * Note that some of the "files" exported here are actually symlinks and not regular files. Symlinks work
5575 * better for storing small bits of data, in particular as we can write them with two system calls, and read
5576 * them with one. */
5577
5578 (void) unit_export_invocation_id(u);
5579
5580 if (!MANAGER_IS_SYSTEM(u->manager))
5581 return;
5582
5583 c = unit_get_exec_context(u);
5584 if (c) {
5585 (void) unit_export_log_level_max(u, c);
5586 (void) unit_export_log_extra_fields(u, c);
5587 (void) unit_export_log_ratelimit_interval(u, c);
5588 (void) unit_export_log_ratelimit_burst(u, c);
5589 }
5590 }
5591
5592 void unit_unlink_state_files(Unit *u) {
5593 const char *p;
5594
5595 assert(u);
5596
5597 if (!u->id)
5598 return;
5599
5600 /* Undoes the effect of unit_export_state() */
5601
5602 if (u->exported_invocation_id) {
5603 _cleanup_free_ char *invocation_path = NULL;
5604 int r = unit_get_invocation_path(u, &invocation_path);
5605 if (r >= 0) {
5606 (void) unlink(invocation_path);
5607 u->exported_invocation_id = false;
5608 }
5609 }
5610
5611 if (!MANAGER_IS_SYSTEM(u->manager))
5612 return;
5613
5614 if (u->exported_log_level_max) {
5615 p = strjoina("/run/systemd/units/log-level-max:", u->id);
5616 (void) unlink(p);
5617
5618 u->exported_log_level_max = false;
5619 }
5620
5621 if (u->exported_log_extra_fields) {
5622 p = strjoina("/run/systemd/units/extra-fields:", u->id);
5623 (void) unlink(p);
5624
5625 u->exported_log_extra_fields = false;
5626 }
5627
5628 if (u->exported_log_ratelimit_interval) {
5629 p = strjoina("/run/systemd/units/log-rate-limit-interval:", u->id);
5630 (void) unlink(p);
5631
5632 u->exported_log_ratelimit_interval = false;
5633 }
5634
5635 if (u->exported_log_ratelimit_burst) {
5636 p = strjoina("/run/systemd/units/log-rate-limit-burst:", u->id);
5637 (void) unlink(p);
5638
5639 u->exported_log_ratelimit_burst = false;
5640 }
5641 }
5642
5643 int unit_prepare_exec(Unit *u) {
5644 int r;
5645
5646 assert(u);
5647
5648 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
5649 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
5650 r = bpf_firewall_load_custom(u);
5651 if (r < 0)
5652 return r;
5653
5654 /* Prepares everything so that we can fork of a process for this unit */
5655
5656 (void) unit_realize_cgroup(u);
5657
5658 if (u->reset_accounting) {
5659 (void) unit_reset_accounting(u);
5660 u->reset_accounting = false;
5661 }
5662
5663 unit_export_state_files(u);
5664
5665 r = unit_setup_exec_runtime(u);
5666 if (r < 0)
5667 return r;
5668
5669 r = unit_setup_dynamic_creds(u);
5670 if (r < 0)
5671 return r;
5672
5673 return 0;
5674 }
5675
5676 static int log_leftover(pid_t pid, int sig, void *userdata) {
5677 _cleanup_free_ char *comm = NULL;
5678
5679 (void) get_process_comm(pid, &comm);
5680
5681 if (comm && comm[0] == '(') /* Most likely our own helper process (PAM?), ignore */
5682 return 0;
5683
5684 log_unit_warning(userdata,
5685 "Found left-over process " PID_FMT " (%s) in control group while starting unit. Ignoring.\n"
5686 "This usually indicates unclean termination of a previous run, or service implementation deficiencies.",
5687 pid, strna(comm));
5688
5689 return 1;
5690 }
5691
5692 int unit_warn_leftover_processes(Unit *u) {
5693 assert(u);
5694
5695 (void) unit_pick_cgroup_path(u);
5696
5697 if (!u->cgroup_path)
5698 return 0;
5699
5700 return cg_kill_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, 0, 0, NULL, log_leftover, u);
5701 }
5702
5703 bool unit_needs_console(Unit *u) {
5704 ExecContext *ec;
5705 UnitActiveState state;
5706
5707 assert(u);
5708
5709 state = unit_active_state(u);
5710
5711 if (UNIT_IS_INACTIVE_OR_FAILED(state))
5712 return false;
5713
5714 if (UNIT_VTABLE(u)->needs_console)
5715 return UNIT_VTABLE(u)->needs_console(u);
5716
5717 /* If this unit type doesn't implement this call, let's use a generic fallback implementation: */
5718 ec = unit_get_exec_context(u);
5719 if (!ec)
5720 return false;
5721
5722 return exec_context_may_touch_console(ec);
5723 }
5724
5725 const char *unit_label_path(Unit *u) {
5726 const char *p;
5727
5728 /* Returns the file system path to use for MAC access decisions, i.e. the file to read the SELinux label off
5729 * when validating access checks. */
5730
5731 p = u->source_path ?: u->fragment_path;
5732 if (!p)
5733 return NULL;
5734
5735 /* If a unit is masked, then don't read the SELinux label of /dev/null, as that really makes no sense */
5736 if (path_equal(p, "/dev/null"))
5737 return NULL;
5738
5739 return p;
5740 }
5741
5742 int unit_pid_attachable(Unit *u, pid_t pid, sd_bus_error *error) {
5743 int r;
5744
5745 assert(u);
5746
5747 /* Checks whether the specified PID is generally good for attaching, i.e. a valid PID, not our manager itself,
5748 * and not a kernel thread either */
5749
5750 /* First, a simple range check */
5751 if (!pid_is_valid(pid))
5752 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process identifier " PID_FMT " is not valid.", pid);
5753
5754 /* Some extra safety check */
5755 if (pid == 1 || pid == getpid_cached())
5756 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a manager process, refusing.", pid);
5757
5758 /* Don't even begin to bother with kernel threads */
5759 r = is_kernel_thread(pid);
5760 if (r == -ESRCH)
5761 return sd_bus_error_setf(error, SD_BUS_ERROR_UNIX_PROCESS_ID_UNKNOWN, "Process with ID " PID_FMT " does not exist.", pid);
5762 if (r < 0)
5763 return sd_bus_error_set_errnof(error, r, "Failed to determine whether process " PID_FMT " is a kernel thread: %m", pid);
5764 if (r > 0)
5765 return sd_bus_error_setf(error, SD_BUS_ERROR_INVALID_ARGS, "Process " PID_FMT " is a kernel thread, refusing.", pid);
5766
5767 return 0;
5768 }
5769
5770 void unit_log_success(Unit *u) {
5771 assert(u);
5772
5773 log_struct(LOG_INFO,
5774 "MESSAGE_ID=" SD_MESSAGE_UNIT_SUCCESS_STR,
5775 LOG_UNIT_ID(u),
5776 LOG_UNIT_INVOCATION_ID(u),
5777 LOG_UNIT_MESSAGE(u, "Succeeded."));
5778 }
5779
5780 void unit_log_failure(Unit *u, const char *result) {
5781 assert(u);
5782 assert(result);
5783
5784 log_struct(LOG_WARNING,
5785 "MESSAGE_ID=" SD_MESSAGE_UNIT_FAILURE_RESULT_STR,
5786 LOG_UNIT_ID(u),
5787 LOG_UNIT_INVOCATION_ID(u),
5788 LOG_UNIT_MESSAGE(u, "Failed with result '%s'.", result),
5789 "UNIT_RESULT=%s", result);
5790 }
5791
5792 void unit_log_skip(Unit *u, const char *result) {
5793 assert(u);
5794 assert(result);
5795
5796 log_struct(LOG_INFO,
5797 "MESSAGE_ID=" SD_MESSAGE_UNIT_SKIPPED_STR,
5798 LOG_UNIT_ID(u),
5799 LOG_UNIT_INVOCATION_ID(u),
5800 LOG_UNIT_MESSAGE(u, "Skipped due to '%s'.", result),
5801 "UNIT_RESULT=%s", result);
5802 }
5803
5804 void unit_log_process_exit(
5805 Unit *u,
5806 const char *kind,
5807 const char *command,
5808 bool success,
5809 int code,
5810 int status) {
5811
5812 int level;
5813
5814 assert(u);
5815 assert(kind);
5816
5817 /* If this is a successful exit, let's log about the exit code on DEBUG level. If this is a failure
5818 * and the process exited on its own via exit(), then let's make this a NOTICE, under the assumption
5819 * that the service already logged the reason at a higher log level on its own. Otherwise, make it a
5820 * WARNING. */
5821 if (success)
5822 level = LOG_DEBUG;
5823 else if (code == CLD_EXITED)
5824 level = LOG_NOTICE;
5825 else
5826 level = LOG_WARNING;
5827
5828 log_struct(level,
5829 "MESSAGE_ID=" SD_MESSAGE_UNIT_PROCESS_EXIT_STR,
5830 LOG_UNIT_MESSAGE(u, "%s exited, code=%s, status=%i/%s",
5831 kind,
5832 sigchld_code_to_string(code), status,
5833 strna(code == CLD_EXITED
5834 ? exit_status_to_string(status, EXIT_STATUS_FULL)
5835 : signal_to_string(status))),
5836 "EXIT_CODE=%s", sigchld_code_to_string(code),
5837 "EXIT_STATUS=%i", status,
5838 "COMMAND=%s", strna(command),
5839 LOG_UNIT_ID(u),
5840 LOG_UNIT_INVOCATION_ID(u));
5841 }
5842
5843 int unit_exit_status(Unit *u) {
5844 assert(u);
5845
5846 /* Returns the exit status to propagate for the most recent cycle of this unit. Returns a value in the range
5847 * 0…255 if there's something to propagate. EOPNOTSUPP if the concept does not apply to this unit type, ENODATA
5848 * if no data is currently known (for example because the unit hasn't deactivated yet) and EBADE if the main
5849 * service process has exited abnormally (signal/coredump). */
5850
5851 if (!UNIT_VTABLE(u)->exit_status)
5852 return -EOPNOTSUPP;
5853
5854 return UNIT_VTABLE(u)->exit_status(u);
5855 }
5856
5857 int unit_failure_action_exit_status(Unit *u) {
5858 int r;
5859
5860 assert(u);
5861
5862 /* Returns the exit status to propagate on failure, or an error if there's nothing to propagate */
5863
5864 if (u->failure_action_exit_status >= 0)
5865 return u->failure_action_exit_status;
5866
5867 r = unit_exit_status(u);
5868 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5869 return 255;
5870
5871 return r;
5872 }
5873
5874 int unit_success_action_exit_status(Unit *u) {
5875 int r;
5876
5877 assert(u);
5878
5879 /* Returns the exit status to propagate on success, or an error if there's nothing to propagate */
5880
5881 if (u->success_action_exit_status >= 0)
5882 return u->success_action_exit_status;
5883
5884 r = unit_exit_status(u);
5885 if (r == -EBADE) /* Exited, but not cleanly (i.e. by signal or such) */
5886 return 255;
5887
5888 return r;
5889 }
5890
5891 int unit_test_trigger_loaded(Unit *u) {
5892 Unit *trigger;
5893
5894 /* Tests whether the unit to trigger is loaded */
5895
5896 trigger = UNIT_TRIGGER(u);
5897 if (!trigger)
5898 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
5899 "Refusing to start, no unit to trigger.");
5900 if (trigger->load_state != UNIT_LOADED)
5901 return log_unit_error_errno(u, SYNTHETIC_ERRNO(ENOENT),
5902 "Refusing to start, unit %s to trigger not loaded.", trigger->id);
5903
5904 return 0;
5905 }
5906
5907 void unit_destroy_runtime_directory(Unit *u, const ExecContext *context) {
5908 if (context->runtime_directory_preserve_mode == EXEC_PRESERVE_NO ||
5909 (context->runtime_directory_preserve_mode == EXEC_PRESERVE_RESTART && !unit_will_restart(u)))
5910 exec_context_destroy_runtime_directory(context, u->manager->prefix[EXEC_DIRECTORY_RUNTIME]);
5911 }
5912
5913 int unit_clean(Unit *u, ExecCleanMask mask) {
5914 UnitActiveState state;
5915
5916 assert(u);
5917
5918 /* Special return values:
5919 *
5920 * -EOPNOTSUPP → cleaning not supported for this unit type
5921 * -EUNATCH → cleaning not defined for this resource type
5922 * -EBUSY → unit currently can't be cleaned since it's running or not properly loaded, or has
5923 * a job queued or similar
5924 */
5925
5926 if (!UNIT_VTABLE(u)->clean)
5927 return -EOPNOTSUPP;
5928
5929 if (mask == 0)
5930 return -EUNATCH;
5931
5932 if (u->load_state != UNIT_LOADED)
5933 return -EBUSY;
5934
5935 if (u->job)
5936 return -EBUSY;
5937
5938 state = unit_active_state(u);
5939 if (!IN_SET(state, UNIT_INACTIVE))
5940 return -EBUSY;
5941
5942 return UNIT_VTABLE(u)->clean(u, mask);
5943 }
5944
5945 int unit_can_clean(Unit *u, ExecCleanMask *ret) {
5946 assert(u);
5947
5948 if (!UNIT_VTABLE(u)->clean ||
5949 u->load_state != UNIT_LOADED) {
5950 *ret = 0;
5951 return 0;
5952 }
5953
5954 /* When the clean() method is set, can_clean() really should be set too */
5955 assert(UNIT_VTABLE(u)->can_clean);
5956
5957 return UNIT_VTABLE(u)->can_clean(u, ret);
5958 }
5959
5960 static const char* const collect_mode_table[_COLLECT_MODE_MAX] = {
5961 [COLLECT_INACTIVE] = "inactive",
5962 [COLLECT_INACTIVE_OR_FAILED] = "inactive-or-failed",
5963 };
5964
5965 DEFINE_STRING_TABLE_LOOKUP(collect_mode, CollectMode);