]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/execute.c
6f0f5d09d96b551239e7707d71290305ee825026
[thirdparty/systemd.git] / src / execute.c
1 /*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
2
3 /***
4 This file is part of systemd.
5
6 Copyright 2010 Lennart Poettering
7
8 systemd is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 systemd is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with systemd; If not, see <http://www.gnu.org/licenses/>.
20 ***/
21
22 #include <assert.h>
23 #include <dirent.h>
24 #include <errno.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include <string.h>
28 #include <signal.h>
29 #include <sys/socket.h>
30 #include <sys/un.h>
31 #include <sys/prctl.h>
32 #include <linux/sched.h>
33 #include <sys/types.h>
34 #include <sys/stat.h>
35 #include <grp.h>
36 #include <pwd.h>
37 #include <sys/mount.h>
38 #include <linux/fs.h>
39 #include <linux/oom.h>
40
41 #ifdef HAVE_PAM
42 #include <security/pam_appl.h>
43 #endif
44
45 #include "execute.h"
46 #include "strv.h"
47 #include "macro.h"
48 #include "util.h"
49 #include "log.h"
50 #include "ioprio.h"
51 #include "securebits.h"
52 #include "cgroup.h"
53 #include "namespace.h"
54 #include "tcpwrap.h"
55 #include "exit-status.h"
56 #include "missing.h"
57 #include "utmp-wtmp.h"
58 #include "def.h"
59
60 /* This assumes there is a 'tty' group */
61 #define TTY_MODE 0620
62
63 static int shift_fds(int fds[], unsigned n_fds) {
64 int start, restart_from;
65
66 if (n_fds <= 0)
67 return 0;
68
69 /* Modifies the fds array! (sorts it) */
70
71 assert(fds);
72
73 start = 0;
74 for (;;) {
75 int i;
76
77 restart_from = -1;
78
79 for (i = start; i < (int) n_fds; i++) {
80 int nfd;
81
82 /* Already at right index? */
83 if (fds[i] == i+3)
84 continue;
85
86 if ((nfd = fcntl(fds[i], F_DUPFD, i+3)) < 0)
87 return -errno;
88
89 close_nointr_nofail(fds[i]);
90 fds[i] = nfd;
91
92 /* Hmm, the fd we wanted isn't free? Then
93 * let's remember that and try again from here*/
94 if (nfd != i+3 && restart_from < 0)
95 restart_from = i;
96 }
97
98 if (restart_from < 0)
99 break;
100
101 start = restart_from;
102 }
103
104 return 0;
105 }
106
107 static int flags_fds(const int fds[], unsigned n_fds, bool nonblock) {
108 unsigned i;
109 int r;
110
111 if (n_fds <= 0)
112 return 0;
113
114 assert(fds);
115
116 /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags */
117
118 for (i = 0; i < n_fds; i++) {
119
120 if ((r = fd_nonblock(fds[i], nonblock)) < 0)
121 return r;
122
123 /* We unconditionally drop FD_CLOEXEC from the fds,
124 * since after all we want to pass these fds to our
125 * children */
126
127 if ((r = fd_cloexec(fds[i], false)) < 0)
128 return r;
129 }
130
131 return 0;
132 }
133
134 static const char *tty_path(const ExecContext *context) {
135 assert(context);
136
137 if (context->tty_path)
138 return context->tty_path;
139
140 return "/dev/console";
141 }
142
143 void exec_context_tty_reset(const ExecContext *context) {
144 assert(context);
145
146 if (context->tty_vhangup)
147 terminal_vhangup(tty_path(context));
148
149 if (context->tty_reset)
150 reset_terminal(tty_path(context));
151
152 if (context->tty_vt_disallocate && context->tty_path)
153 vt_disallocate(context->tty_path);
154 }
155
156 static int open_null_as(int flags, int nfd) {
157 int fd, r;
158
159 assert(nfd >= 0);
160
161 if ((fd = open("/dev/null", flags|O_NOCTTY)) < 0)
162 return -errno;
163
164 if (fd != nfd) {
165 r = dup2(fd, nfd) < 0 ? -errno : nfd;
166 close_nointr_nofail(fd);
167 } else
168 r = nfd;
169
170 return r;
171 }
172
173 static int connect_logger_as(const ExecContext *context, ExecOutput output, const char *ident, int nfd) {
174 int fd, r;
175 union {
176 struct sockaddr sa;
177 struct sockaddr_un un;
178 } sa;
179
180 assert(context);
181 assert(output < _EXEC_OUTPUT_MAX);
182 assert(ident);
183 assert(nfd >= 0);
184
185 if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
186 return -errno;
187
188 zero(sa);
189 sa.sa.sa_family = AF_UNIX;
190 strncpy(sa.un.sun_path, LOGGER_SOCKET, sizeof(sa.un.sun_path));
191
192 if (connect(fd, &sa.sa, offsetof(struct sockaddr_un, sun_path) + sizeof(LOGGER_SOCKET) - 1) < 0) {
193 close_nointr_nofail(fd);
194 return -errno;
195 }
196
197 if (shutdown(fd, SHUT_RD) < 0) {
198 close_nointr_nofail(fd);
199 return -errno;
200 }
201
202 /* We speak a very simple protocol between log server
203 * and client: one line for the log destination (kmsg
204 * or syslog), followed by the priority field,
205 * followed by the process name. Since we replaced
206 * stdin/stderr we simple use stdio to write to
207 * it. Note that we use stderr, to minimize buffer
208 * flushing issues. */
209
210 dprintf(fd,
211 "%s\n"
212 "%i\n"
213 "%s\n"
214 "%i\n",
215 output == EXEC_OUTPUT_KMSG ? "kmsg" :
216 output == EXEC_OUTPUT_KMSG_AND_CONSOLE ? "kmsg+console" :
217 output == EXEC_OUTPUT_SYSLOG ? "syslog" :
218 "syslog+console",
219 context->syslog_priority,
220 context->syslog_identifier ? context->syslog_identifier : ident,
221 context->syslog_level_prefix);
222
223 if (fd != nfd) {
224 r = dup2(fd, nfd) < 0 ? -errno : nfd;
225 close_nointr_nofail(fd);
226 } else
227 r = nfd;
228
229 return r;
230 }
231 static int open_terminal_as(const char *path, mode_t mode, int nfd) {
232 int fd, r;
233
234 assert(path);
235 assert(nfd >= 0);
236
237 if ((fd = open_terminal(path, mode | O_NOCTTY)) < 0)
238 return fd;
239
240 if (fd != nfd) {
241 r = dup2(fd, nfd) < 0 ? -errno : nfd;
242 close_nointr_nofail(fd);
243 } else
244 r = nfd;
245
246 return r;
247 }
248
249 static bool is_terminal_input(ExecInput i) {
250 return
251 i == EXEC_INPUT_TTY ||
252 i == EXEC_INPUT_TTY_FORCE ||
253 i == EXEC_INPUT_TTY_FAIL;
254 }
255
256 static int fixup_input(ExecInput std_input, int socket_fd, bool apply_tty_stdin) {
257
258 if (is_terminal_input(std_input) && !apply_tty_stdin)
259 return EXEC_INPUT_NULL;
260
261 if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
262 return EXEC_INPUT_NULL;
263
264 return std_input;
265 }
266
267 static int fixup_output(ExecOutput std_output, int socket_fd) {
268
269 if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
270 return EXEC_OUTPUT_INHERIT;
271
272 return std_output;
273 }
274
275 static int setup_input(const ExecContext *context, int socket_fd, bool apply_tty_stdin) {
276 ExecInput i;
277
278 assert(context);
279
280 i = fixup_input(context->std_input, socket_fd, apply_tty_stdin);
281
282 switch (i) {
283
284 case EXEC_INPUT_NULL:
285 return open_null_as(O_RDONLY, STDIN_FILENO);
286
287 case EXEC_INPUT_TTY:
288 case EXEC_INPUT_TTY_FORCE:
289 case EXEC_INPUT_TTY_FAIL: {
290 int fd, r;
291
292 if ((fd = acquire_terminal(
293 tty_path(context),
294 i == EXEC_INPUT_TTY_FAIL,
295 i == EXEC_INPUT_TTY_FORCE,
296 false)) < 0)
297 return fd;
298
299 if (fd != STDIN_FILENO) {
300 r = dup2(fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
301 close_nointr_nofail(fd);
302 } else
303 r = STDIN_FILENO;
304
305 return r;
306 }
307
308 case EXEC_INPUT_SOCKET:
309 return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
310
311 default:
312 assert_not_reached("Unknown input type");
313 }
314 }
315
316 static int setup_output(const ExecContext *context, int socket_fd, const char *ident, bool apply_tty_stdin) {
317 ExecOutput o;
318 ExecInput i;
319
320 assert(context);
321 assert(ident);
322
323 i = fixup_input(context->std_input, socket_fd, apply_tty_stdin);
324 o = fixup_output(context->std_output, socket_fd);
325
326 /* This expects the input is already set up */
327
328 switch (o) {
329
330 case EXEC_OUTPUT_INHERIT:
331
332 /* If input got downgraded, inherit the original value */
333 if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
334 return open_terminal_as(tty_path(context), O_WRONLY, STDOUT_FILENO);
335
336 /* If the input is connected to anything that's not a /dev/null, inherit that... */
337 if (i != EXEC_INPUT_NULL)
338 return dup2(STDIN_FILENO, STDOUT_FILENO) < 0 ? -errno : STDOUT_FILENO;
339
340 /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
341 if (getppid() != 1)
342 return STDOUT_FILENO;
343
344 /* We need to open /dev/null here anew, to get the
345 * right access mode. So we fall through */
346
347 case EXEC_OUTPUT_NULL:
348 return open_null_as(O_WRONLY, STDOUT_FILENO);
349
350 case EXEC_OUTPUT_TTY:
351 if (is_terminal_input(i))
352 return dup2(STDIN_FILENO, STDOUT_FILENO) < 0 ? -errno : STDOUT_FILENO;
353
354 /* We don't reset the terminal if this is just about output */
355 return open_terminal_as(tty_path(context), O_WRONLY, STDOUT_FILENO);
356
357 case EXEC_OUTPUT_SYSLOG:
358 case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
359 case EXEC_OUTPUT_KMSG:
360 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
361 return connect_logger_as(context, o, ident, STDOUT_FILENO);
362
363 case EXEC_OUTPUT_SOCKET:
364 assert(socket_fd >= 0);
365 return dup2(socket_fd, STDOUT_FILENO) < 0 ? -errno : STDOUT_FILENO;
366
367 default:
368 assert_not_reached("Unknown output type");
369 }
370 }
371
372 static int setup_error(const ExecContext *context, int socket_fd, const char *ident, bool apply_tty_stdin) {
373 ExecOutput o, e;
374 ExecInput i;
375
376 assert(context);
377 assert(ident);
378
379 i = fixup_input(context->std_input, socket_fd, apply_tty_stdin);
380 o = fixup_output(context->std_output, socket_fd);
381 e = fixup_output(context->std_error, socket_fd);
382
383 /* This expects the input and output are already set up */
384
385 /* Don't change the stderr file descriptor if we inherit all
386 * the way and are not on a tty */
387 if (e == EXEC_OUTPUT_INHERIT &&
388 o == EXEC_OUTPUT_INHERIT &&
389 i == EXEC_INPUT_NULL &&
390 !is_terminal_input(context->std_input) &&
391 getppid () != 1)
392 return STDERR_FILENO;
393
394 /* Duplicate from stdout if possible */
395 if (e == o || e == EXEC_OUTPUT_INHERIT)
396 return dup2(STDOUT_FILENO, STDERR_FILENO) < 0 ? -errno : STDERR_FILENO;
397
398 switch (e) {
399
400 case EXEC_OUTPUT_NULL:
401 return open_null_as(O_WRONLY, STDERR_FILENO);
402
403 case EXEC_OUTPUT_TTY:
404 if (is_terminal_input(i))
405 return dup2(STDIN_FILENO, STDERR_FILENO) < 0 ? -errno : STDERR_FILENO;
406
407 /* We don't reset the terminal if this is just about output */
408 return open_terminal_as(tty_path(context), O_WRONLY, STDERR_FILENO);
409
410 case EXEC_OUTPUT_SYSLOG:
411 case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
412 case EXEC_OUTPUT_KMSG:
413 case EXEC_OUTPUT_KMSG_AND_CONSOLE:
414 return connect_logger_as(context, e, ident, STDERR_FILENO);
415
416 case EXEC_OUTPUT_SOCKET:
417 assert(socket_fd >= 0);
418 return dup2(socket_fd, STDERR_FILENO) < 0 ? -errno : STDERR_FILENO;
419
420 default:
421 assert_not_reached("Unknown error type");
422 }
423 }
424
425 static int chown_terminal(int fd, uid_t uid) {
426 struct stat st;
427
428 assert(fd >= 0);
429
430 /* This might fail. What matters are the results. */
431 (void) fchown(fd, uid, -1);
432 (void) fchmod(fd, TTY_MODE);
433
434 if (fstat(fd, &st) < 0)
435 return -errno;
436
437 if (st.st_uid != uid || (st.st_mode & 0777) != TTY_MODE)
438 return -EPERM;
439
440 return 0;
441 }
442
443 static int setup_confirm_stdio(const ExecContext *context,
444 int *_saved_stdin,
445 int *_saved_stdout) {
446 int fd = -1, saved_stdin, saved_stdout = -1, r;
447
448 assert(context);
449 assert(_saved_stdin);
450 assert(_saved_stdout);
451
452 /* This returns positive EXIT_xxx return values instead of
453 * negative errno style values! */
454
455 if ((saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3)) < 0)
456 return EXIT_STDIN;
457
458 if ((saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3)) < 0) {
459 r = EXIT_STDOUT;
460 goto fail;
461 }
462
463 if ((fd = acquire_terminal(
464 tty_path(context),
465 context->std_input == EXEC_INPUT_TTY_FAIL,
466 context->std_input == EXEC_INPUT_TTY_FORCE,
467 false)) < 0) {
468 r = EXIT_STDIN;
469 goto fail;
470 }
471
472 if (chown_terminal(fd, getuid()) < 0) {
473 r = EXIT_STDIN;
474 goto fail;
475 }
476
477 if (dup2(fd, STDIN_FILENO) < 0) {
478 r = EXIT_STDIN;
479 goto fail;
480 }
481
482 if (dup2(fd, STDOUT_FILENO) < 0) {
483 r = EXIT_STDOUT;
484 goto fail;
485 }
486
487 if (fd >= 2)
488 close_nointr_nofail(fd);
489
490 *_saved_stdin = saved_stdin;
491 *_saved_stdout = saved_stdout;
492
493 return 0;
494
495 fail:
496 if (saved_stdout >= 0)
497 close_nointr_nofail(saved_stdout);
498
499 if (saved_stdin >= 0)
500 close_nointr_nofail(saved_stdin);
501
502 if (fd >= 0)
503 close_nointr_nofail(fd);
504
505 return r;
506 }
507
508 static int restore_confirm_stdio(const ExecContext *context,
509 int *saved_stdin,
510 int *saved_stdout,
511 bool *keep_stdin,
512 bool *keep_stdout) {
513
514 assert(context);
515 assert(saved_stdin);
516 assert(*saved_stdin >= 0);
517 assert(saved_stdout);
518 assert(*saved_stdout >= 0);
519
520 /* This returns positive EXIT_xxx return values instead of
521 * negative errno style values! */
522
523 if (is_terminal_input(context->std_input)) {
524
525 /* The service wants terminal input. */
526
527 *keep_stdin = true;
528 *keep_stdout =
529 context->std_output == EXEC_OUTPUT_INHERIT ||
530 context->std_output == EXEC_OUTPUT_TTY;
531
532 } else {
533 /* If the service doesn't want a controlling terminal,
534 * then we need to get rid entirely of what we have
535 * already. */
536
537 if (release_terminal() < 0)
538 return EXIT_STDIN;
539
540 if (dup2(*saved_stdin, STDIN_FILENO) < 0)
541 return EXIT_STDIN;
542
543 if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
544 return EXIT_STDOUT;
545
546 *keep_stdout = *keep_stdin = false;
547 }
548
549 return 0;
550 }
551
552 static int get_group_creds(const char *groupname, gid_t *gid) {
553 struct group *g;
554 unsigned long lu;
555
556 assert(groupname);
557 assert(gid);
558
559 /* We enforce some special rules for gid=0: in order to avoid
560 * NSS lookups for root we hardcode its data. */
561
562 if (streq(groupname, "root") || streq(groupname, "0")) {
563 *gid = 0;
564 return 0;
565 }
566
567 if (safe_atolu(groupname, &lu) >= 0) {
568 errno = 0;
569 g = getgrgid((gid_t) lu);
570 } else {
571 errno = 0;
572 g = getgrnam(groupname);
573 }
574
575 if (!g)
576 return errno != 0 ? -errno : -ESRCH;
577
578 *gid = g->gr_gid;
579 return 0;
580 }
581
582 static int get_user_creds(const char **username, uid_t *uid, gid_t *gid, const char **home) {
583 struct passwd *p;
584 unsigned long lu;
585
586 assert(username);
587 assert(*username);
588 assert(uid);
589 assert(gid);
590 assert(home);
591
592 /* We enforce some special rules for uid=0: in order to avoid
593 * NSS lookups for root we hardcode its data. */
594
595 if (streq(*username, "root") || streq(*username, "0")) {
596 *username = "root";
597 *uid = 0;
598 *gid = 0;
599 *home = "/root";
600 return 0;
601 }
602
603 if (safe_atolu(*username, &lu) >= 0) {
604 errno = 0;
605 p = getpwuid((uid_t) lu);
606
607 /* If there are multiple users with the same id, make
608 * sure to leave $USER to the configured value instead
609 * of the first occurrence in the database. However if
610 * the uid was configured by a numeric uid, then let's
611 * pick the real username from /etc/passwd. */
612 if (*username && p)
613 *username = p->pw_name;
614 } else {
615 errno = 0;
616 p = getpwnam(*username);
617 }
618
619 if (!p)
620 return errno != 0 ? -errno : -ESRCH;
621
622 *uid = p->pw_uid;
623 *gid = p->pw_gid;
624 *home = p->pw_dir;
625 return 0;
626 }
627
628 static int enforce_groups(const ExecContext *context, const char *username, gid_t gid) {
629 bool keep_groups = false;
630 int r;
631
632 assert(context);
633
634 /* Lookup and set GID and supplementary group list. Here too
635 * we avoid NSS lookups for gid=0. */
636
637 if (context->group || username) {
638
639 if (context->group)
640 if ((r = get_group_creds(context->group, &gid)) < 0)
641 return r;
642
643 /* First step, initialize groups from /etc/groups */
644 if (username && gid != 0) {
645 if (initgroups(username, gid) < 0)
646 return -errno;
647
648 keep_groups = true;
649 }
650
651 /* Second step, set our gids */
652 if (setresgid(gid, gid, gid) < 0)
653 return -errno;
654 }
655
656 if (context->supplementary_groups) {
657 int ngroups_max, k;
658 gid_t *gids;
659 char **i;
660
661 /* Final step, initialize any manually set supplementary groups */
662 assert_se((ngroups_max = (int) sysconf(_SC_NGROUPS_MAX)) > 0);
663
664 if (!(gids = new(gid_t, ngroups_max)))
665 return -ENOMEM;
666
667 if (keep_groups) {
668 if ((k = getgroups(ngroups_max, gids)) < 0) {
669 free(gids);
670 return -errno;
671 }
672 } else
673 k = 0;
674
675 STRV_FOREACH(i, context->supplementary_groups) {
676
677 if (k >= ngroups_max) {
678 free(gids);
679 return -E2BIG;
680 }
681
682 if ((r = get_group_creds(*i, gids+k)) < 0) {
683 free(gids);
684 return r;
685 }
686
687 k++;
688 }
689
690 if (setgroups(k, gids) < 0) {
691 free(gids);
692 return -errno;
693 }
694
695 free(gids);
696 }
697
698 return 0;
699 }
700
701 static int enforce_user(const ExecContext *context, uid_t uid) {
702 int r;
703 assert(context);
704
705 /* Sets (but doesn't lookup) the uid and make sure we keep the
706 * capabilities while doing so. */
707
708 if (context->capabilities) {
709 cap_t d;
710 static const cap_value_t bits[] = {
711 CAP_SETUID, /* Necessary so that we can run setresuid() below */
712 CAP_SETPCAP /* Necessary so that we can set PR_SET_SECUREBITS later on */
713 };
714
715 /* First step: If we need to keep capabilities but
716 * drop privileges we need to make sure we keep our
717 * caps, whiel we drop privileges. */
718 if (uid != 0) {
719 int sb = context->secure_bits|SECURE_KEEP_CAPS;
720
721 if (prctl(PR_GET_SECUREBITS) != sb)
722 if (prctl(PR_SET_SECUREBITS, sb) < 0)
723 return -errno;
724 }
725
726 /* Second step: set the capabilities. This will reduce
727 * the capabilities to the minimum we need. */
728
729 if (!(d = cap_dup(context->capabilities)))
730 return -errno;
731
732 if (cap_set_flag(d, CAP_EFFECTIVE, ELEMENTSOF(bits), bits, CAP_SET) < 0 ||
733 cap_set_flag(d, CAP_PERMITTED, ELEMENTSOF(bits), bits, CAP_SET) < 0) {
734 r = -errno;
735 cap_free(d);
736 return r;
737 }
738
739 if (cap_set_proc(d) < 0) {
740 r = -errno;
741 cap_free(d);
742 return r;
743 }
744
745 cap_free(d);
746 }
747
748 /* Third step: actually set the uids */
749 if (setresuid(uid, uid, uid) < 0)
750 return -errno;
751
752 /* At this point we should have all necessary capabilities but
753 are otherwise a normal user. However, the caps might got
754 corrupted due to the setresuid() so we need clean them up
755 later. This is done outside of this call. */
756
757 return 0;
758 }
759
760 #ifdef HAVE_PAM
761
762 static int null_conv(
763 int num_msg,
764 const struct pam_message **msg,
765 struct pam_response **resp,
766 void *appdata_ptr) {
767
768 /* We don't support conversations */
769
770 return PAM_CONV_ERR;
771 }
772
773 static int setup_pam(
774 const char *name,
775 const char *user,
776 const char *tty,
777 char ***pam_env,
778 int fds[], unsigned n_fds) {
779
780 static const struct pam_conv conv = {
781 .conv = null_conv,
782 .appdata_ptr = NULL
783 };
784
785 pam_handle_t *handle = NULL;
786 sigset_t ss, old_ss;
787 int pam_code = PAM_SUCCESS;
788 char **e = NULL;
789 bool close_session = false;
790 pid_t pam_pid = 0, parent_pid;
791
792 assert(name);
793 assert(user);
794 assert(pam_env);
795
796 /* We set up PAM in the parent process, then fork. The child
797 * will then stay around until killed via PR_GET_PDEATHSIG or
798 * systemd via the cgroup logic. It will then remove the PAM
799 * session again. The parent process will exec() the actual
800 * daemon. We do things this way to ensure that the main PID
801 * of the daemon is the one we initially fork()ed. */
802
803 if ((pam_code = pam_start(name, user, &conv, &handle)) != PAM_SUCCESS) {
804 handle = NULL;
805 goto fail;
806 }
807
808 if (tty)
809 if ((pam_code = pam_set_item(handle, PAM_TTY, tty)) != PAM_SUCCESS)
810 goto fail;
811
812 if ((pam_code = pam_acct_mgmt(handle, PAM_SILENT)) != PAM_SUCCESS)
813 goto fail;
814
815 if ((pam_code = pam_open_session(handle, PAM_SILENT)) != PAM_SUCCESS)
816 goto fail;
817
818 close_session = true;
819
820 if ((pam_code = pam_setcred(handle, PAM_ESTABLISH_CRED | PAM_SILENT)) != PAM_SUCCESS)
821 goto fail;
822
823 if ((!(e = pam_getenvlist(handle)))) {
824 pam_code = PAM_BUF_ERR;
825 goto fail;
826 }
827
828 /* Block SIGTERM, so that we know that it won't get lost in
829 * the child */
830 if (sigemptyset(&ss) < 0 ||
831 sigaddset(&ss, SIGTERM) < 0 ||
832 sigprocmask(SIG_BLOCK, &ss, &old_ss) < 0)
833 goto fail;
834
835 parent_pid = getpid();
836
837 if ((pam_pid = fork()) < 0)
838 goto fail;
839
840 if (pam_pid == 0) {
841 int sig;
842 int r = EXIT_PAM;
843
844 /* The child's job is to reset the PAM session on
845 * termination */
846
847 /* This string must fit in 10 chars (i.e. the length
848 * of "/sbin/init") */
849 rename_process("sd:pam");
850
851 /* Make sure we don't keep open the passed fds in this
852 child. We assume that otherwise only those fds are
853 open here that have been opened by PAM. */
854 close_many(fds, n_fds);
855
856 /* Wait until our parent died. This will most likely
857 * not work since the kernel does not allow
858 * unprivileged parents kill their privileged children
859 * this way. We rely on the control groups kill logic
860 * to do the rest for us. */
861 if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
862 goto child_finish;
863
864 /* Check if our parent process might already have
865 * died? */
866 if (getppid() == parent_pid) {
867 if (sigwait(&ss, &sig) < 0)
868 goto child_finish;
869
870 assert(sig == SIGTERM);
871 }
872
873 /* Only if our parent died we'll end the session */
874 if (getppid() != parent_pid)
875 if ((pam_code = pam_close_session(handle, PAM_DATA_SILENT)) != PAM_SUCCESS)
876 goto child_finish;
877
878 r = 0;
879
880 child_finish:
881 pam_end(handle, pam_code | PAM_DATA_SILENT);
882 _exit(r);
883 }
884
885 /* If the child was forked off successfully it will do all the
886 * cleanups, so forget about the handle here. */
887 handle = NULL;
888
889 /* Unblock SIGSUR1 again in the parent */
890 if (sigprocmask(SIG_SETMASK, &old_ss, NULL) < 0)
891 goto fail;
892
893 /* We close the log explicitly here, since the PAM modules
894 * might have opened it, but we don't want this fd around. */
895 closelog();
896
897 return 0;
898
899 fail:
900 if (handle) {
901 if (close_session)
902 pam_code = pam_close_session(handle, PAM_DATA_SILENT);
903
904 pam_end(handle, pam_code | PAM_DATA_SILENT);
905 }
906
907 strv_free(e);
908
909 closelog();
910
911 if (pam_pid > 1) {
912 kill(pam_pid, SIGTERM);
913 kill(pam_pid, SIGCONT);
914 }
915
916 return EXIT_PAM;
917 }
918 #endif
919
920 static int do_capability_bounding_set_drop(uint64_t drop) {
921 unsigned long i;
922 cap_t old_cap = NULL, new_cap = NULL;
923 cap_flag_value_t fv;
924 int r;
925
926 /* If we are run as PID 1 we will lack CAP_SETPCAP by default
927 * in the effective set (yes, the kernel drops that when
928 * executing init!), so get it back temporarily so that we can
929 * call PR_CAPBSET_DROP. */
930
931 old_cap = cap_get_proc();
932 if (!old_cap)
933 return -errno;
934
935 if (cap_get_flag(old_cap, CAP_SETPCAP, CAP_EFFECTIVE, &fv) < 0) {
936 r = -errno;
937 goto finish;
938 }
939
940 if (fv != CAP_SET) {
941 static const cap_value_t v = CAP_SETPCAP;
942
943 new_cap = cap_dup(old_cap);
944 if (!new_cap) {
945 r = -errno;
946 goto finish;
947 }
948
949 if (cap_set_flag(new_cap, CAP_EFFECTIVE, 1, &v, CAP_SET) < 0) {
950 r = -errno;
951 goto finish;
952 }
953
954 if (cap_set_proc(new_cap) < 0) {
955 r = -errno;
956 goto finish;
957 }
958 }
959
960 for (i = 0; i <= MAX(63LU, (unsigned long) CAP_LAST_CAP); i++)
961 if (drop & ((uint64_t) 1ULL << (uint64_t) i)) {
962 if (prctl(PR_CAPBSET_DROP, i) < 0) {
963 if (errno == EINVAL)
964 break;
965
966 r = -errno;
967 goto finish;
968 }
969 }
970
971 r = 0;
972
973 finish:
974 if (new_cap)
975 cap_free(new_cap);
976
977 if (old_cap) {
978 cap_set_proc(old_cap);
979 cap_free(old_cap);
980 }
981
982 return r;
983 }
984
985 int exec_spawn(ExecCommand *command,
986 char **argv,
987 const ExecContext *context,
988 int fds[], unsigned n_fds,
989 char **environment,
990 bool apply_permissions,
991 bool apply_chroot,
992 bool apply_tty_stdin,
993 bool confirm_spawn,
994 CGroupBonding *cgroup_bondings,
995 pid_t *ret) {
996
997 pid_t pid;
998 int r;
999 char *line;
1000 int socket_fd;
1001 char **files_env = NULL;
1002
1003 assert(command);
1004 assert(context);
1005 assert(ret);
1006 assert(fds || n_fds <= 0);
1007
1008 if (context->std_input == EXEC_INPUT_SOCKET ||
1009 context->std_output == EXEC_OUTPUT_SOCKET ||
1010 context->std_error == EXEC_OUTPUT_SOCKET) {
1011
1012 if (n_fds != 1)
1013 return -EINVAL;
1014
1015 socket_fd = fds[0];
1016
1017 fds = NULL;
1018 n_fds = 0;
1019 } else
1020 socket_fd = -1;
1021
1022 if ((r = exec_context_load_environment(context, &files_env)) < 0) {
1023 log_error("Failed to load environment files: %s", strerror(-r));
1024 return r;
1025 }
1026
1027 if (!argv)
1028 argv = command->argv;
1029
1030 if (!(line = exec_command_line(argv))) {
1031 r = -ENOMEM;
1032 goto fail_parent;
1033 }
1034
1035 log_debug("About to execute: %s", line);
1036 free(line);
1037
1038 if (cgroup_bondings)
1039 if ((r = cgroup_bonding_realize_list(cgroup_bondings)))
1040 goto fail_parent;
1041
1042 if ((pid = fork()) < 0) {
1043 r = -errno;
1044 goto fail_parent;
1045 }
1046
1047 if (pid == 0) {
1048 int i;
1049 sigset_t ss;
1050 const char *username = NULL, *home = NULL;
1051 uid_t uid = (uid_t) -1;
1052 gid_t gid = (gid_t) -1;
1053 char **our_env = NULL, **pam_env = NULL, **final_env = NULL, **final_argv = NULL;
1054 unsigned n_env = 0;
1055 int saved_stdout = -1, saved_stdin = -1;
1056 bool keep_stdout = false, keep_stdin = false;
1057
1058 /* child */
1059
1060 /* This string must fit in 10 chars (i.e. the length
1061 * of "/sbin/init") */
1062 rename_process("sd.exec");
1063
1064 /* We reset exactly these signals, since they are the
1065 * only ones we set to SIG_IGN in the main daemon. All
1066 * others we leave untouched because we set them to
1067 * SIG_DFL or a valid handler initially, both of which
1068 * will be demoted to SIG_DFL. */
1069 default_signals(SIGNALS_CRASH_HANDLER,
1070 SIGNALS_IGNORE, -1);
1071
1072 if (sigemptyset(&ss) < 0 ||
1073 sigprocmask(SIG_SETMASK, &ss, NULL) < 0) {
1074 r = EXIT_SIGNAL_MASK;
1075 goto fail_child;
1076 }
1077
1078 /* Close sockets very early to make sure we don't
1079 * block init reexecution because it cannot bind its
1080 * sockets */
1081 if (close_all_fds(socket_fd >= 0 ? &socket_fd : fds,
1082 socket_fd >= 0 ? 1 : n_fds) < 0) {
1083 r = EXIT_FDS;
1084 goto fail_child;
1085 }
1086
1087 if (!context->same_pgrp)
1088 if (setsid() < 0) {
1089 r = EXIT_SETSID;
1090 goto fail_child;
1091 }
1092
1093 if (context->tcpwrap_name) {
1094 if (socket_fd >= 0)
1095 if (!socket_tcpwrap(socket_fd, context->tcpwrap_name)) {
1096 r = EXIT_TCPWRAP;
1097 goto fail_child;
1098 }
1099
1100 for (i = 0; i < (int) n_fds; i++) {
1101 if (!socket_tcpwrap(fds[i], context->tcpwrap_name)) {
1102 r = EXIT_TCPWRAP;
1103 goto fail_child;
1104 }
1105 }
1106 }
1107
1108 exec_context_tty_reset(context);
1109
1110 /* We skip the confirmation step if we shall not apply the TTY */
1111 if (confirm_spawn &&
1112 (!is_terminal_input(context->std_input) || apply_tty_stdin)) {
1113 char response;
1114
1115 /* Set up terminal for the question */
1116 if ((r = setup_confirm_stdio(context,
1117 &saved_stdin, &saved_stdout)))
1118 goto fail_child;
1119
1120 /* Now ask the question. */
1121 if (!(line = exec_command_line(argv))) {
1122 r = EXIT_MEMORY;
1123 goto fail_child;
1124 }
1125
1126 r = ask(&response, "yns", "Execute %s? [Yes, No, Skip] ", line);
1127 free(line);
1128
1129 if (r < 0 || response == 'n') {
1130 r = EXIT_CONFIRM;
1131 goto fail_child;
1132 } else if (response == 's') {
1133 r = 0;
1134 goto fail_child;
1135 }
1136
1137 /* Release terminal for the question */
1138 if ((r = restore_confirm_stdio(context,
1139 &saved_stdin, &saved_stdout,
1140 &keep_stdin, &keep_stdout)))
1141 goto fail_child;
1142 }
1143
1144 /* If a socket is connected to STDIN/STDOUT/STDERR, we
1145 * must sure to drop O_NONBLOCK */
1146 if (socket_fd >= 0)
1147 fd_nonblock(socket_fd, false);
1148
1149 if (!keep_stdin)
1150 if (setup_input(context, socket_fd, apply_tty_stdin) < 0) {
1151 r = EXIT_STDIN;
1152 goto fail_child;
1153 }
1154
1155 if (!keep_stdout)
1156 if (setup_output(context, socket_fd, file_name_from_path(command->path), apply_tty_stdin) < 0) {
1157 r = EXIT_STDOUT;
1158 goto fail_child;
1159 }
1160
1161 if (setup_error(context, socket_fd, file_name_from_path(command->path), apply_tty_stdin) < 0) {
1162 r = EXIT_STDERR;
1163 goto fail_child;
1164 }
1165
1166 if (cgroup_bondings)
1167 if (cgroup_bonding_install_list(cgroup_bondings, 0) < 0) {
1168 r = EXIT_CGROUP;
1169 goto fail_child;
1170 }
1171
1172 if (context->oom_score_adjust_set) {
1173 char t[16];
1174
1175 snprintf(t, sizeof(t), "%i", context->oom_score_adjust);
1176 char_array_0(t);
1177
1178 if (write_one_line_file("/proc/self/oom_score_adj", t) < 0) {
1179 /* Compatibility with Linux <= 2.6.35 */
1180
1181 int adj;
1182
1183 adj = (context->oom_score_adjust * -OOM_DISABLE) / OOM_SCORE_ADJ_MAX;
1184 adj = CLAMP(adj, OOM_DISABLE, OOM_ADJUST_MAX);
1185
1186 snprintf(t, sizeof(t), "%i", adj);
1187 char_array_0(t);
1188
1189 if (write_one_line_file("/proc/self/oom_adj", t) < 0
1190 && errno != EACCES) {
1191 r = EXIT_OOM_ADJUST;
1192 goto fail_child;
1193 }
1194 }
1195 }
1196
1197 if (context->nice_set)
1198 if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
1199 r = EXIT_NICE;
1200 goto fail_child;
1201 }
1202
1203 if (context->cpu_sched_set) {
1204 struct sched_param param;
1205
1206 zero(param);
1207 param.sched_priority = context->cpu_sched_priority;
1208
1209 if (sched_setscheduler(0, context->cpu_sched_policy |
1210 (context->cpu_sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0), &param) < 0) {
1211 r = EXIT_SETSCHEDULER;
1212 goto fail_child;
1213 }
1214 }
1215
1216 if (context->cpuset)
1217 if (sched_setaffinity(0, CPU_ALLOC_SIZE(context->cpuset_ncpus), context->cpuset) < 0) {
1218 r = EXIT_CPUAFFINITY;
1219 goto fail_child;
1220 }
1221
1222 if (context->ioprio_set)
1223 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
1224 r = EXIT_IOPRIO;
1225 goto fail_child;
1226 }
1227
1228 if (context->timer_slack_nsec_set)
1229 if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
1230 r = EXIT_TIMERSLACK;
1231 goto fail_child;
1232 }
1233
1234 if (context->utmp_id)
1235 utmp_put_init_process(0, context->utmp_id, getpid(), getsid(0), context->tty_path);
1236
1237 if (context->user) {
1238 username = context->user;
1239 if (get_user_creds(&username, &uid, &gid, &home) < 0) {
1240 r = EXIT_USER;
1241 goto fail_child;
1242 }
1243
1244 if (is_terminal_input(context->std_input))
1245 if (chown_terminal(STDIN_FILENO, uid) < 0) {
1246 r = EXIT_STDIN;
1247 goto fail_child;
1248 }
1249
1250 if (cgroup_bondings && context->control_group_modify)
1251 if (cgroup_bonding_set_group_access_list(cgroup_bondings, 0755, uid, gid) < 0 ||
1252 cgroup_bonding_set_task_access_list(cgroup_bondings, 0644, uid, gid) < 0) {
1253 r = EXIT_CGROUP;
1254 goto fail_child;
1255 }
1256 }
1257
1258 #ifdef HAVE_PAM
1259 if (context->pam_name && username) {
1260 if (setup_pam(context->pam_name, username, context->tty_path, &pam_env, fds, n_fds) < 0) {
1261 r = EXIT_PAM;
1262 goto fail_child;
1263 }
1264 }
1265 #endif
1266
1267 if (apply_permissions)
1268 if (enforce_groups(context, username, uid) < 0) {
1269 r = EXIT_GROUP;
1270 goto fail_child;
1271 }
1272
1273 umask(context->umask);
1274
1275 if (strv_length(context->read_write_dirs) > 0 ||
1276 strv_length(context->read_only_dirs) > 0 ||
1277 strv_length(context->inaccessible_dirs) > 0 ||
1278 context->mount_flags != MS_SHARED ||
1279 context->private_tmp)
1280 if ((r = setup_namespace(
1281 context->read_write_dirs,
1282 context->read_only_dirs,
1283 context->inaccessible_dirs,
1284 context->private_tmp,
1285 context->mount_flags)) < 0)
1286 goto fail_child;
1287
1288 if (apply_chroot) {
1289 if (context->root_directory)
1290 if (chroot(context->root_directory) < 0) {
1291 r = EXIT_CHROOT;
1292 goto fail_child;
1293 }
1294
1295 if (chdir(context->working_directory ? context->working_directory : "/") < 0) {
1296 r = EXIT_CHDIR;
1297 goto fail_child;
1298 }
1299 } else {
1300
1301 char *d;
1302
1303 if (asprintf(&d, "%s/%s",
1304 context->root_directory ? context->root_directory : "",
1305 context->working_directory ? context->working_directory : "") < 0) {
1306 r = EXIT_MEMORY;
1307 goto fail_child;
1308 }
1309
1310 if (chdir(d) < 0) {
1311 free(d);
1312 r = EXIT_CHDIR;
1313 goto fail_child;
1314 }
1315
1316 free(d);
1317 }
1318
1319 /* We repeat the fd closing here, to make sure that
1320 * nothing is leaked from the PAM modules */
1321 if (close_all_fds(fds, n_fds) < 0 ||
1322 shift_fds(fds, n_fds) < 0 ||
1323 flags_fds(fds, n_fds, context->non_blocking) < 0) {
1324 r = EXIT_FDS;
1325 goto fail_child;
1326 }
1327
1328 if (apply_permissions) {
1329
1330 for (i = 0; i < RLIMIT_NLIMITS; i++) {
1331 if (!context->rlimit[i])
1332 continue;
1333
1334 if (setrlimit(i, context->rlimit[i]) < 0) {
1335 r = EXIT_LIMITS;
1336 goto fail_child;
1337 }
1338 }
1339
1340 if (context->capability_bounding_set_drop)
1341 if (do_capability_bounding_set_drop(context->capability_bounding_set_drop) < 0) {
1342 r = EXIT_CAPABILITIES;
1343 goto fail_child;
1344 }
1345
1346 if (context->user)
1347 if (enforce_user(context, uid) < 0) {
1348 r = EXIT_USER;
1349 goto fail_child;
1350 }
1351
1352 /* PR_GET_SECUREBITS is not privileged, while
1353 * PR_SET_SECUREBITS is. So to suppress
1354 * potential EPERMs we'll try not to call
1355 * PR_SET_SECUREBITS unless necessary. */
1356 if (prctl(PR_GET_SECUREBITS) != context->secure_bits)
1357 if (prctl(PR_SET_SECUREBITS, context->secure_bits) < 0) {
1358 r = EXIT_SECUREBITS;
1359 goto fail_child;
1360 }
1361
1362 if (context->capabilities)
1363 if (cap_set_proc(context->capabilities) < 0) {
1364 r = EXIT_CAPABILITIES;
1365 goto fail_child;
1366 }
1367 }
1368
1369 if (!(our_env = new0(char*, 7))) {
1370 r = EXIT_MEMORY;
1371 goto fail_child;
1372 }
1373
1374 if (n_fds > 0)
1375 if (asprintf(our_env + n_env++, "LISTEN_PID=%lu", (unsigned long) getpid()) < 0 ||
1376 asprintf(our_env + n_env++, "LISTEN_FDS=%u", n_fds) < 0) {
1377 r = EXIT_MEMORY;
1378 goto fail_child;
1379 }
1380
1381 if (home)
1382 if (asprintf(our_env + n_env++, "HOME=%s", home) < 0) {
1383 r = EXIT_MEMORY;
1384 goto fail_child;
1385 }
1386
1387 if (username)
1388 if (asprintf(our_env + n_env++, "LOGNAME=%s", username) < 0 ||
1389 asprintf(our_env + n_env++, "USER=%s", username) < 0) {
1390 r = EXIT_MEMORY;
1391 goto fail_child;
1392 }
1393
1394 if (is_terminal_input(context->std_input) ||
1395 context->std_output == EXEC_OUTPUT_TTY ||
1396 context->std_error == EXEC_OUTPUT_TTY)
1397 if (!(our_env[n_env++] = strdup(default_term_for_tty(tty_path(context))))) {
1398 r = EXIT_MEMORY;
1399 goto fail_child;
1400 }
1401
1402 assert(n_env <= 7);
1403
1404 if (!(final_env = strv_env_merge(
1405 5,
1406 environment,
1407 our_env,
1408 context->environment,
1409 files_env,
1410 pam_env,
1411 NULL))) {
1412 r = EXIT_MEMORY;
1413 goto fail_child;
1414 }
1415
1416 if (!(final_argv = replace_env_argv(argv, final_env))) {
1417 r = EXIT_MEMORY;
1418 goto fail_child;
1419 }
1420
1421 final_env = strv_env_clean(final_env);
1422
1423 execve(command->path, final_argv, final_env);
1424 r = EXIT_EXEC;
1425
1426 fail_child:
1427 strv_free(our_env);
1428 strv_free(final_env);
1429 strv_free(pam_env);
1430 strv_free(files_env);
1431 strv_free(final_argv);
1432
1433 if (saved_stdin >= 0)
1434 close_nointr_nofail(saved_stdin);
1435
1436 if (saved_stdout >= 0)
1437 close_nointr_nofail(saved_stdout);
1438
1439 _exit(r);
1440 }
1441
1442 strv_free(files_env);
1443
1444 /* We add the new process to the cgroup both in the child (so
1445 * that we can be sure that no user code is ever executed
1446 * outside of the cgroup) and in the parent (so that we can be
1447 * sure that when we kill the cgroup the process will be
1448 * killed too). */
1449 if (cgroup_bondings)
1450 cgroup_bonding_install_list(cgroup_bondings, pid);
1451
1452 log_debug("Forked %s as %lu", command->path, (unsigned long) pid);
1453
1454 exec_status_start(&command->exec_status, pid);
1455
1456 *ret = pid;
1457 return 0;
1458
1459 fail_parent:
1460 strv_free(files_env);
1461
1462 return r;
1463 }
1464
1465 void exec_context_init(ExecContext *c) {
1466 assert(c);
1467
1468 c->umask = 0002;
1469 c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
1470 c->cpu_sched_policy = SCHED_OTHER;
1471 c->syslog_priority = LOG_DAEMON|LOG_INFO;
1472 c->syslog_level_prefix = true;
1473 c->mount_flags = MS_SHARED;
1474 c->kill_signal = SIGTERM;
1475 c->send_sigkill = true;
1476 }
1477
1478 void exec_context_done(ExecContext *c) {
1479 unsigned l;
1480
1481 assert(c);
1482
1483 strv_free(c->environment);
1484 c->environment = NULL;
1485
1486 strv_free(c->environment_files);
1487 c->environment_files = NULL;
1488
1489 for (l = 0; l < ELEMENTSOF(c->rlimit); l++) {
1490 free(c->rlimit[l]);
1491 c->rlimit[l] = NULL;
1492 }
1493
1494 free(c->working_directory);
1495 c->working_directory = NULL;
1496 free(c->root_directory);
1497 c->root_directory = NULL;
1498
1499 free(c->tty_path);
1500 c->tty_path = NULL;
1501
1502 free(c->tcpwrap_name);
1503 c->tcpwrap_name = NULL;
1504
1505 free(c->syslog_identifier);
1506 c->syslog_identifier = NULL;
1507
1508 free(c->user);
1509 c->user = NULL;
1510
1511 free(c->group);
1512 c->group = NULL;
1513
1514 strv_free(c->supplementary_groups);
1515 c->supplementary_groups = NULL;
1516
1517 free(c->pam_name);
1518 c->pam_name = NULL;
1519
1520 if (c->capabilities) {
1521 cap_free(c->capabilities);
1522 c->capabilities = NULL;
1523 }
1524
1525 strv_free(c->read_only_dirs);
1526 c->read_only_dirs = NULL;
1527
1528 strv_free(c->read_write_dirs);
1529 c->read_write_dirs = NULL;
1530
1531 strv_free(c->inaccessible_dirs);
1532 c->inaccessible_dirs = NULL;
1533
1534 if (c->cpuset)
1535 CPU_FREE(c->cpuset);
1536
1537 free(c->utmp_id);
1538 c->utmp_id = NULL;
1539 }
1540
1541 void exec_command_done(ExecCommand *c) {
1542 assert(c);
1543
1544 free(c->path);
1545 c->path = NULL;
1546
1547 strv_free(c->argv);
1548 c->argv = NULL;
1549 }
1550
1551 void exec_command_done_array(ExecCommand *c, unsigned n) {
1552 unsigned i;
1553
1554 for (i = 0; i < n; i++)
1555 exec_command_done(c+i);
1556 }
1557
1558 void exec_command_free_list(ExecCommand *c) {
1559 ExecCommand *i;
1560
1561 while ((i = c)) {
1562 LIST_REMOVE(ExecCommand, command, c, i);
1563 exec_command_done(i);
1564 free(i);
1565 }
1566 }
1567
1568 void exec_command_free_array(ExecCommand **c, unsigned n) {
1569 unsigned i;
1570
1571 for (i = 0; i < n; i++) {
1572 exec_command_free_list(c[i]);
1573 c[i] = NULL;
1574 }
1575 }
1576
1577 int exec_context_load_environment(const ExecContext *c, char ***l) {
1578 char **i, **r = NULL;
1579
1580 assert(c);
1581 assert(l);
1582
1583 STRV_FOREACH(i, c->environment_files) {
1584 char *fn;
1585 int k;
1586 bool ignore = false;
1587 char **p;
1588
1589 fn = *i;
1590
1591 if (fn[0] == '-') {
1592 ignore = true;
1593 fn ++;
1594 }
1595
1596 if (!path_is_absolute(fn)) {
1597
1598 if (ignore)
1599 continue;
1600
1601 strv_free(r);
1602 return -EINVAL;
1603 }
1604
1605 if ((k = load_env_file(fn, &p)) < 0) {
1606
1607 if (ignore)
1608 continue;
1609
1610 strv_free(r);
1611 return k;
1612 }
1613
1614 if (r == NULL)
1615 r = p;
1616 else {
1617 char **m;
1618
1619 m = strv_env_merge(2, r, p);
1620 strv_free(r);
1621 strv_free(p);
1622
1623 if (!m)
1624 return -ENOMEM;
1625
1626 r = m;
1627 }
1628 }
1629
1630 *l = r;
1631
1632 return 0;
1633 }
1634
1635 static void strv_fprintf(FILE *f, char **l) {
1636 char **g;
1637
1638 assert(f);
1639
1640 STRV_FOREACH(g, l)
1641 fprintf(f, " %s", *g);
1642 }
1643
1644 void exec_context_dump(ExecContext *c, FILE* f, const char *prefix) {
1645 char ** e;
1646 unsigned i;
1647
1648 assert(c);
1649 assert(f);
1650
1651 if (!prefix)
1652 prefix = "";
1653
1654 fprintf(f,
1655 "%sUMask: %04o\n"
1656 "%sWorkingDirectory: %s\n"
1657 "%sRootDirectory: %s\n"
1658 "%sNonBlocking: %s\n"
1659 "%sPrivateTmp: %s\n"
1660 "%sControlGroupModify: %s\n",
1661 prefix, c->umask,
1662 prefix, c->working_directory ? c->working_directory : "/",
1663 prefix, c->root_directory ? c->root_directory : "/",
1664 prefix, yes_no(c->non_blocking),
1665 prefix, yes_no(c->private_tmp),
1666 prefix, yes_no(c->control_group_modify));
1667
1668 STRV_FOREACH(e, c->environment)
1669 fprintf(f, "%sEnvironment: %s\n", prefix, *e);
1670
1671 STRV_FOREACH(e, c->environment_files)
1672 fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
1673
1674 if (c->tcpwrap_name)
1675 fprintf(f,
1676 "%sTCPWrapName: %s\n",
1677 prefix, c->tcpwrap_name);
1678
1679 if (c->nice_set)
1680 fprintf(f,
1681 "%sNice: %i\n",
1682 prefix, c->nice);
1683
1684 if (c->oom_score_adjust_set)
1685 fprintf(f,
1686 "%sOOMScoreAdjust: %i\n",
1687 prefix, c->oom_score_adjust);
1688
1689 for (i = 0; i < RLIM_NLIMITS; i++)
1690 if (c->rlimit[i])
1691 fprintf(f, "%s%s: %llu\n", prefix, rlimit_to_string(i), (unsigned long long) c->rlimit[i]->rlim_max);
1692
1693 if (c->ioprio_set)
1694 fprintf(f,
1695 "%sIOSchedulingClass: %s\n"
1696 "%sIOPriority: %i\n",
1697 prefix, ioprio_class_to_string(IOPRIO_PRIO_CLASS(c->ioprio)),
1698 prefix, (int) IOPRIO_PRIO_DATA(c->ioprio));
1699
1700 if (c->cpu_sched_set)
1701 fprintf(f,
1702 "%sCPUSchedulingPolicy: %s\n"
1703 "%sCPUSchedulingPriority: %i\n"
1704 "%sCPUSchedulingResetOnFork: %s\n",
1705 prefix, sched_policy_to_string(c->cpu_sched_policy),
1706 prefix, c->cpu_sched_priority,
1707 prefix, yes_no(c->cpu_sched_reset_on_fork));
1708
1709 if (c->cpuset) {
1710 fprintf(f, "%sCPUAffinity:", prefix);
1711 for (i = 0; i < c->cpuset_ncpus; i++)
1712 if (CPU_ISSET_S(i, CPU_ALLOC_SIZE(c->cpuset_ncpus), c->cpuset))
1713 fprintf(f, " %i", i);
1714 fputs("\n", f);
1715 }
1716
1717 if (c->timer_slack_nsec_set)
1718 fprintf(f, "%sTimerSlackNSec: %lu\n", prefix, c->timer_slack_nsec);
1719
1720 fprintf(f,
1721 "%sStandardInput: %s\n"
1722 "%sStandardOutput: %s\n"
1723 "%sStandardError: %s\n",
1724 prefix, exec_input_to_string(c->std_input),
1725 prefix, exec_output_to_string(c->std_output),
1726 prefix, exec_output_to_string(c->std_error));
1727
1728 if (c->tty_path)
1729 fprintf(f,
1730 "%sTTYPath: %s\n"
1731 "%sTTYReset: %s\n"
1732 "%sTTYVHangup: %s\n"
1733 "%sTTYVTDisallocate: %s\n",
1734 prefix, c->tty_path,
1735 prefix, yes_no(c->tty_reset),
1736 prefix, yes_no(c->tty_vhangup),
1737 prefix, yes_no(c->tty_vt_disallocate));
1738
1739 if (c->std_output == EXEC_OUTPUT_SYSLOG || c->std_output == EXEC_OUTPUT_KMSG ||
1740 c->std_output == EXEC_OUTPUT_SYSLOG_AND_CONSOLE || c->std_output == EXEC_OUTPUT_KMSG_AND_CONSOLE ||
1741 c->std_error == EXEC_OUTPUT_SYSLOG || c->std_error == EXEC_OUTPUT_KMSG ||
1742 c->std_error == EXEC_OUTPUT_SYSLOG_AND_CONSOLE || c->std_error == EXEC_OUTPUT_KMSG_AND_CONSOLE)
1743 fprintf(f,
1744 "%sSyslogFacility: %s\n"
1745 "%sSyslogLevel: %s\n",
1746 prefix, log_facility_unshifted_to_string(c->syslog_priority >> 3),
1747 prefix, log_level_to_string(LOG_PRI(c->syslog_priority)));
1748
1749 if (c->capabilities) {
1750 char *t;
1751 if ((t = cap_to_text(c->capabilities, NULL))) {
1752 fprintf(f, "%sCapabilities: %s\n",
1753 prefix, t);
1754 cap_free(t);
1755 }
1756 }
1757
1758 if (c->secure_bits)
1759 fprintf(f, "%sSecure Bits:%s%s%s%s%s%s\n",
1760 prefix,
1761 (c->secure_bits & SECURE_KEEP_CAPS) ? " keep-caps" : "",
1762 (c->secure_bits & SECURE_KEEP_CAPS_LOCKED) ? " keep-caps-locked" : "",
1763 (c->secure_bits & SECURE_NO_SETUID_FIXUP) ? " no-setuid-fixup" : "",
1764 (c->secure_bits & SECURE_NO_SETUID_FIXUP_LOCKED) ? " no-setuid-fixup-locked" : "",
1765 (c->secure_bits & SECURE_NOROOT) ? " noroot" : "",
1766 (c->secure_bits & SECURE_NOROOT_LOCKED) ? "noroot-locked" : "");
1767
1768 if (c->capability_bounding_set_drop) {
1769 unsigned long l;
1770 fprintf(f, "%sCapabilityBoundingSet:", prefix);
1771
1772 for (l = 0; l <= (unsigned long) CAP_LAST_CAP; l++)
1773 if (!(c->capability_bounding_set_drop & ((uint64_t) 1ULL << (uint64_t) l))) {
1774 char *t;
1775
1776 if ((t = cap_to_name(l))) {
1777 fprintf(f, " %s", t);
1778 cap_free(t);
1779 }
1780 }
1781
1782 fputs("\n", f);
1783 }
1784
1785 if (c->user)
1786 fprintf(f, "%sUser: %s\n", prefix, c->user);
1787 if (c->group)
1788 fprintf(f, "%sGroup: %s\n", prefix, c->group);
1789
1790 if (strv_length(c->supplementary_groups) > 0) {
1791 fprintf(f, "%sSupplementaryGroups:", prefix);
1792 strv_fprintf(f, c->supplementary_groups);
1793 fputs("\n", f);
1794 }
1795
1796 if (c->pam_name)
1797 fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
1798
1799 if (strv_length(c->read_write_dirs) > 0) {
1800 fprintf(f, "%sReadWriteDirs:", prefix);
1801 strv_fprintf(f, c->read_write_dirs);
1802 fputs("\n", f);
1803 }
1804
1805 if (strv_length(c->read_only_dirs) > 0) {
1806 fprintf(f, "%sReadOnlyDirs:", prefix);
1807 strv_fprintf(f, c->read_only_dirs);
1808 fputs("\n", f);
1809 }
1810
1811 if (strv_length(c->inaccessible_dirs) > 0) {
1812 fprintf(f, "%sInaccessibleDirs:", prefix);
1813 strv_fprintf(f, c->inaccessible_dirs);
1814 fputs("\n", f);
1815 }
1816
1817 fprintf(f,
1818 "%sKillMode: %s\n"
1819 "%sKillSignal: SIG%s\n"
1820 "%sSendSIGKILL: %s\n",
1821 prefix, kill_mode_to_string(c->kill_mode),
1822 prefix, signal_to_string(c->kill_signal),
1823 prefix, yes_no(c->send_sigkill));
1824
1825 if (c->utmp_id)
1826 fprintf(f,
1827 "%sUtmpIdentifier: %s\n",
1828 prefix, c->utmp_id);
1829 }
1830
1831 void exec_status_start(ExecStatus *s, pid_t pid) {
1832 assert(s);
1833
1834 zero(*s);
1835 s->pid = pid;
1836 dual_timestamp_get(&s->start_timestamp);
1837 }
1838
1839 void exec_status_exit(ExecStatus *s, ExecContext *context, pid_t pid, int code, int status) {
1840 assert(s);
1841
1842 if ((s->pid && s->pid != pid) ||
1843 !s->start_timestamp.realtime <= 0)
1844 zero(*s);
1845
1846 s->pid = pid;
1847 dual_timestamp_get(&s->exit_timestamp);
1848
1849 s->code = code;
1850 s->status = status;
1851
1852 if (context) {
1853 if (context->utmp_id)
1854 utmp_put_dead_process(context->utmp_id, pid, code, status);
1855
1856 exec_context_tty_reset(context);
1857 }
1858 }
1859
1860 void exec_status_dump(ExecStatus *s, FILE *f, const char *prefix) {
1861 char buf[FORMAT_TIMESTAMP_MAX];
1862
1863 assert(s);
1864 assert(f);
1865
1866 if (!prefix)
1867 prefix = "";
1868
1869 if (s->pid <= 0)
1870 return;
1871
1872 fprintf(f,
1873 "%sPID: %lu\n",
1874 prefix, (unsigned long) s->pid);
1875
1876 if (s->start_timestamp.realtime > 0)
1877 fprintf(f,
1878 "%sStart Timestamp: %s\n",
1879 prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
1880
1881 if (s->exit_timestamp.realtime > 0)
1882 fprintf(f,
1883 "%sExit Timestamp: %s\n"
1884 "%sExit Code: %s\n"
1885 "%sExit Status: %i\n",
1886 prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
1887 prefix, sigchld_code_to_string(s->code),
1888 prefix, s->status);
1889 }
1890
1891 char *exec_command_line(char **argv) {
1892 size_t k;
1893 char *n, *p, **a;
1894 bool first = true;
1895
1896 assert(argv);
1897
1898 k = 1;
1899 STRV_FOREACH(a, argv)
1900 k += strlen(*a)+3;
1901
1902 if (!(n = new(char, k)))
1903 return NULL;
1904
1905 p = n;
1906 STRV_FOREACH(a, argv) {
1907
1908 if (!first)
1909 *(p++) = ' ';
1910 else
1911 first = false;
1912
1913 if (strpbrk(*a, WHITESPACE)) {
1914 *(p++) = '\'';
1915 p = stpcpy(p, *a);
1916 *(p++) = '\'';
1917 } else
1918 p = stpcpy(p, *a);
1919
1920 }
1921
1922 *p = 0;
1923
1924 /* FIXME: this doesn't really handle arguments that have
1925 * spaces and ticks in them */
1926
1927 return n;
1928 }
1929
1930 void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
1931 char *p2;
1932 const char *prefix2;
1933
1934 char *cmd;
1935
1936 assert(c);
1937 assert(f);
1938
1939 if (!prefix)
1940 prefix = "";
1941 p2 = strappend(prefix, "\t");
1942 prefix2 = p2 ? p2 : prefix;
1943
1944 cmd = exec_command_line(c->argv);
1945
1946 fprintf(f,
1947 "%sCommand Line: %s\n",
1948 prefix, cmd ? cmd : strerror(ENOMEM));
1949
1950 free(cmd);
1951
1952 exec_status_dump(&c->exec_status, f, prefix2);
1953
1954 free(p2);
1955 }
1956
1957 void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
1958 assert(f);
1959
1960 if (!prefix)
1961 prefix = "";
1962
1963 LIST_FOREACH(command, c, c)
1964 exec_command_dump(c, f, prefix);
1965 }
1966
1967 void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
1968 ExecCommand *end;
1969
1970 assert(l);
1971 assert(e);
1972
1973 if (*l) {
1974 /* It's kind of important, that we keep the order here */
1975 LIST_FIND_TAIL(ExecCommand, command, *l, end);
1976 LIST_INSERT_AFTER(ExecCommand, command, *l, end, e);
1977 } else
1978 *l = e;
1979 }
1980
1981 int exec_command_set(ExecCommand *c, const char *path, ...) {
1982 va_list ap;
1983 char **l, *p;
1984
1985 assert(c);
1986 assert(path);
1987
1988 va_start(ap, path);
1989 l = strv_new_ap(path, ap);
1990 va_end(ap);
1991
1992 if (!l)
1993 return -ENOMEM;
1994
1995 if (!(p = strdup(path))) {
1996 strv_free(l);
1997 return -ENOMEM;
1998 }
1999
2000 free(c->path);
2001 c->path = p;
2002
2003 strv_free(c->argv);
2004 c->argv = l;
2005
2006 return 0;
2007 }
2008
2009 static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
2010 [EXEC_INPUT_NULL] = "null",
2011 [EXEC_INPUT_TTY] = "tty",
2012 [EXEC_INPUT_TTY_FORCE] = "tty-force",
2013 [EXEC_INPUT_TTY_FAIL] = "tty-fail",
2014 [EXEC_INPUT_SOCKET] = "socket"
2015 };
2016
2017 DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
2018
2019 static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
2020 [EXEC_OUTPUT_INHERIT] = "inherit",
2021 [EXEC_OUTPUT_NULL] = "null",
2022 [EXEC_OUTPUT_TTY] = "tty",
2023 [EXEC_OUTPUT_SYSLOG] = "syslog",
2024 [EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
2025 [EXEC_OUTPUT_KMSG] = "kmsg",
2026 [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
2027 [EXEC_OUTPUT_SOCKET] = "socket"
2028 };
2029
2030 DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
2031
2032 static const char* const kill_mode_table[_KILL_MODE_MAX] = {
2033 [KILL_CONTROL_GROUP] = "control-group",
2034 [KILL_PROCESS] = "process",
2035 [KILL_NONE] = "none"
2036 };
2037
2038 DEFINE_STRING_TABLE_LOOKUP(kill_mode, KillMode);
2039
2040 static const char* const kill_who_table[_KILL_WHO_MAX] = {
2041 [KILL_MAIN] = "main",
2042 [KILL_CONTROL] = "control",
2043 [KILL_ALL] = "all"
2044 };
2045
2046 DEFINE_STRING_TABLE_LOOKUP(kill_who, KillWho);