]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/journal/lookup3.c
journal: add preliminary incomplete implementation
[thirdparty/systemd.git] / src / journal / lookup3.c
1 /* Slightly modified by Lennart Poettering, to avoid name clashes, and
2 * unexport a few functions. */
3
4 #include "lookup3.h"
5
6 /*
7 -------------------------------------------------------------------------------
8 lookup3.c, by Bob Jenkins, May 2006, Public Domain.
9
10 These are functions for producing 32-bit hashes for hash table lookup.
11 hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
12 are externally useful functions. Routines to test the hash are included
13 if SELF_TEST is defined. You can use this free for any purpose. It's in
14 the public domain. It has no warranty.
15
16 You probably want to use hashlittle(). hashlittle() and hashbig()
17 hash byte arrays. hashlittle() is is faster than hashbig() on
18 little-endian machines. Intel and AMD are little-endian machines.
19 On second thought, you probably want hashlittle2(), which is identical to
20 hashlittle() except it returns two 32-bit hashes for the price of one.
21 You could implement hashbig2() if you wanted but I haven't bothered here.
22
23 If you want to find a hash of, say, exactly 7 integers, do
24 a = i1; b = i2; c = i3;
25 mix(a,b,c);
26 a += i4; b += i5; c += i6;
27 mix(a,b,c);
28 a += i7;
29 final(a,b,c);
30 then use c as the hash value. If you have a variable length array of
31 4-byte integers to hash, use hashword(). If you have a byte array (like
32 a character string), use hashlittle(). If you have several byte arrays, or
33 a mix of things, see the comments above hashlittle().
34
35 Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
36 then mix those integers. This is fast (you can do a lot more thorough
37 mixing with 12*3 instructions on 3 integers than you can with 3 instructions
38 on 1 byte), but shoehorning those bytes into integers efficiently is messy.
39 -------------------------------------------------------------------------------
40 */
41 /* #define SELF_TEST 1 */
42
43 #include <stdio.h> /* defines printf for tests */
44 #include <time.h> /* defines time_t for timings in the test */
45 #include <stdint.h> /* defines uint32_t etc */
46 #include <sys/param.h> /* attempt to define endianness */
47 #ifdef linux
48 # include <endian.h> /* attempt to define endianness */
49 #endif
50
51 /*
52 * My best guess at if you are big-endian or little-endian. This may
53 * need adjustment.
54 */
55 #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
56 __BYTE_ORDER == __LITTLE_ENDIAN) || \
57 (defined(i386) || defined(__i386__) || defined(__i486__) || \
58 defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
59 # define HASH_LITTLE_ENDIAN 1
60 # define HASH_BIG_ENDIAN 0
61 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
62 __BYTE_ORDER == __BIG_ENDIAN) || \
63 (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
64 # define HASH_LITTLE_ENDIAN 0
65 # define HASH_BIG_ENDIAN 1
66 #else
67 # define HASH_LITTLE_ENDIAN 0
68 # define HASH_BIG_ENDIAN 0
69 #endif
70
71 #define hashsize(n) ((uint32_t)1<<(n))
72 #define hashmask(n) (hashsize(n)-1)
73 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
74
75 /*
76 -------------------------------------------------------------------------------
77 mix -- mix 3 32-bit values reversibly.
78
79 This is reversible, so any information in (a,b,c) before mix() is
80 still in (a,b,c) after mix().
81
82 If four pairs of (a,b,c) inputs are run through mix(), or through
83 mix() in reverse, there are at least 32 bits of the output that
84 are sometimes the same for one pair and different for another pair.
85 This was tested for:
86 * pairs that differed by one bit, by two bits, in any combination
87 of top bits of (a,b,c), or in any combination of bottom bits of
88 (a,b,c).
89 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
90 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
91 is commonly produced by subtraction) look like a single 1-bit
92 difference.
93 * the base values were pseudorandom, all zero but one bit set, or
94 all zero plus a counter that starts at zero.
95
96 Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
97 satisfy this are
98 4 6 8 16 19 4
99 9 15 3 18 27 15
100 14 9 3 7 17 3
101 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
102 for "differ" defined as + with a one-bit base and a two-bit delta. I
103 used http://burtleburtle.net/bob/hash/avalanche.html to choose
104 the operations, constants, and arrangements of the variables.
105
106 This does not achieve avalanche. There are input bits of (a,b,c)
107 that fail to affect some output bits of (a,b,c), especially of a. The
108 most thoroughly mixed value is c, but it doesn't really even achieve
109 avalanche in c.
110
111 This allows some parallelism. Read-after-writes are good at doubling
112 the number of bits affected, so the goal of mixing pulls in the opposite
113 direction as the goal of parallelism. I did what I could. Rotates
114 seem to cost as much as shifts on every machine I could lay my hands
115 on, and rotates are much kinder to the top and bottom bits, so I used
116 rotates.
117 -------------------------------------------------------------------------------
118 */
119 #define mix(a,b,c) \
120 { \
121 a -= c; a ^= rot(c, 4); c += b; \
122 b -= a; b ^= rot(a, 6); a += c; \
123 c -= b; c ^= rot(b, 8); b += a; \
124 a -= c; a ^= rot(c,16); c += b; \
125 b -= a; b ^= rot(a,19); a += c; \
126 c -= b; c ^= rot(b, 4); b += a; \
127 }
128
129 /*
130 -------------------------------------------------------------------------------
131 final -- final mixing of 3 32-bit values (a,b,c) into c
132
133 Pairs of (a,b,c) values differing in only a few bits will usually
134 produce values of c that look totally different. This was tested for
135 * pairs that differed by one bit, by two bits, in any combination
136 of top bits of (a,b,c), or in any combination of bottom bits of
137 (a,b,c).
138 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
139 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
140 is commonly produced by subtraction) look like a single 1-bit
141 difference.
142 * the base values were pseudorandom, all zero but one bit set, or
143 all zero plus a counter that starts at zero.
144
145 These constants passed:
146 14 11 25 16 4 14 24
147 12 14 25 16 4 14 24
148 and these came close:
149 4 8 15 26 3 22 24
150 10 8 15 26 3 22 24
151 11 8 15 26 3 22 24
152 -------------------------------------------------------------------------------
153 */
154 #define final(a,b,c) \
155 { \
156 c ^= b; c -= rot(b,14); \
157 a ^= c; a -= rot(c,11); \
158 b ^= a; b -= rot(a,25); \
159 c ^= b; c -= rot(b,16); \
160 a ^= c; a -= rot(c,4); \
161 b ^= a; b -= rot(a,14); \
162 c ^= b; c -= rot(b,24); \
163 }
164
165 /*
166 --------------------------------------------------------------------
167 This works on all machines. To be useful, it requires
168 -- that the key be an array of uint32_t's, and
169 -- that the length be the number of uint32_t's in the key
170
171 The function hashword() is identical to hashlittle() on little-endian
172 machines, and identical to hashbig() on big-endian machines,
173 except that the length has to be measured in uint32_ts rather than in
174 bytes. hashlittle() is more complicated than hashword() only because
175 hashlittle() has to dance around fitting the key bytes into registers.
176 --------------------------------------------------------------------
177 */
178 uint32_t jenkins_hashword(
179 const uint32_t *k, /* the key, an array of uint32_t values */
180 size_t length, /* the length of the key, in uint32_ts */
181 uint32_t initval) /* the previous hash, or an arbitrary value */
182 {
183 uint32_t a,b,c;
184
185 /* Set up the internal state */
186 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
187
188 /*------------------------------------------------- handle most of the key */
189 while (length > 3)
190 {
191 a += k[0];
192 b += k[1];
193 c += k[2];
194 mix(a,b,c);
195 length -= 3;
196 k += 3;
197 }
198
199 /*------------------------------------------- handle the last 3 uint32_t's */
200 switch(length) /* all the case statements fall through */
201 {
202 case 3 : c+=k[2];
203 case 2 : b+=k[1];
204 case 1 : a+=k[0];
205 final(a,b,c);
206 case 0: /* case 0: nothing left to add */
207 break;
208 }
209 /*------------------------------------------------------ report the result */
210 return c;
211 }
212
213
214 /*
215 --------------------------------------------------------------------
216 hashword2() -- same as hashword(), but take two seeds and return two
217 32-bit values. pc and pb must both be nonnull, and *pc and *pb must
218 both be initialized with seeds. If you pass in (*pb)==0, the output
219 (*pc) will be the same as the return value from hashword().
220 --------------------------------------------------------------------
221 */
222 void jenkins_hashword2 (
223 const uint32_t *k, /* the key, an array of uint32_t values */
224 size_t length, /* the length of the key, in uint32_ts */
225 uint32_t *pc, /* IN: seed OUT: primary hash value */
226 uint32_t *pb) /* IN: more seed OUT: secondary hash value */
227 {
228 uint32_t a,b,c;
229
230 /* Set up the internal state */
231 a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
232 c += *pb;
233
234 /*------------------------------------------------- handle most of the key */
235 while (length > 3)
236 {
237 a += k[0];
238 b += k[1];
239 c += k[2];
240 mix(a,b,c);
241 length -= 3;
242 k += 3;
243 }
244
245 /*------------------------------------------- handle the last 3 uint32_t's */
246 switch(length) /* all the case statements fall through */
247 {
248 case 3 : c+=k[2];
249 case 2 : b+=k[1];
250 case 1 : a+=k[0];
251 final(a,b,c);
252 case 0: /* case 0: nothing left to add */
253 break;
254 }
255 /*------------------------------------------------------ report the result */
256 *pc=c; *pb=b;
257 }
258
259
260 /*
261 -------------------------------------------------------------------------------
262 hashlittle() -- hash a variable-length key into a 32-bit value
263 k : the key (the unaligned variable-length array of bytes)
264 length : the length of the key, counting by bytes
265 initval : can be any 4-byte value
266 Returns a 32-bit value. Every bit of the key affects every bit of
267 the return value. Two keys differing by one or two bits will have
268 totally different hash values.
269
270 The best hash table sizes are powers of 2. There is no need to do
271 mod a prime (mod is sooo slow!). If you need less than 32 bits,
272 use a bitmask. For example, if you need only 10 bits, do
273 h = (h & hashmask(10));
274 In which case, the hash table should have hashsize(10) elements.
275
276 If you are hashing n strings (uint8_t **)k, do it like this:
277 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
278
279 By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
280 code any way you wish, private, educational, or commercial. It's free.
281
282 Use for hash table lookup, or anything where one collision in 2^^32 is
283 acceptable. Do NOT use for cryptographic purposes.
284 -------------------------------------------------------------------------------
285 */
286
287 uint32_t jenkins_hashlittle( const void *key, size_t length, uint32_t initval)
288 {
289 uint32_t a,b,c; /* internal state */
290 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
291
292 /* Set up the internal state */
293 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
294
295 u.ptr = key;
296 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
297 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
298
299 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
300 while (length > 12)
301 {
302 a += k[0];
303 b += k[1];
304 c += k[2];
305 mix(a,b,c);
306 length -= 12;
307 k += 3;
308 }
309
310 /*----------------------------- handle the last (probably partial) block */
311 /*
312 * "k[2]&0xffffff" actually reads beyond the end of the string, but
313 * then masks off the part it's not allowed to read. Because the
314 * string is aligned, the masked-off tail is in the same word as the
315 * rest of the string. Every machine with memory protection I've seen
316 * does it on word boundaries, so is OK with this. But VALGRIND will
317 * still catch it and complain. The masking trick does make the hash
318 * noticably faster for short strings (like English words).
319 */
320 #ifndef VALGRIND
321
322 switch(length)
323 {
324 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
325 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
326 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
327 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
328 case 8 : b+=k[1]; a+=k[0]; break;
329 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
330 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
331 case 5 : b+=k[1]&0xff; a+=k[0]; break;
332 case 4 : a+=k[0]; break;
333 case 3 : a+=k[0]&0xffffff; break;
334 case 2 : a+=k[0]&0xffff; break;
335 case 1 : a+=k[0]&0xff; break;
336 case 0 : return c; /* zero length strings require no mixing */
337 }
338
339 #else /* make valgrind happy */
340
341 k8 = (const uint8_t *)k;
342 switch(length)
343 {
344 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
345 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
346 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
347 case 9 : c+=k8[8]; /* fall through */
348 case 8 : b+=k[1]; a+=k[0]; break;
349 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
350 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
351 case 5 : b+=k8[4]; /* fall through */
352 case 4 : a+=k[0]; break;
353 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
354 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
355 case 1 : a+=k8[0]; break;
356 case 0 : return c;
357 }
358
359 #endif /* !valgrind */
360
361 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
362 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
363 const uint8_t *k8;
364
365 /*--------------- all but last block: aligned reads and different mixing */
366 while (length > 12)
367 {
368 a += k[0] + (((uint32_t)k[1])<<16);
369 b += k[2] + (((uint32_t)k[3])<<16);
370 c += k[4] + (((uint32_t)k[5])<<16);
371 mix(a,b,c);
372 length -= 12;
373 k += 6;
374 }
375
376 /*----------------------------- handle the last (probably partial) block */
377 k8 = (const uint8_t *)k;
378 switch(length)
379 {
380 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
381 b+=k[2]+(((uint32_t)k[3])<<16);
382 a+=k[0]+(((uint32_t)k[1])<<16);
383 break;
384 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
385 case 10: c+=k[4];
386 b+=k[2]+(((uint32_t)k[3])<<16);
387 a+=k[0]+(((uint32_t)k[1])<<16);
388 break;
389 case 9 : c+=k8[8]; /* fall through */
390 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
391 a+=k[0]+(((uint32_t)k[1])<<16);
392 break;
393 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
394 case 6 : b+=k[2];
395 a+=k[0]+(((uint32_t)k[1])<<16);
396 break;
397 case 5 : b+=k8[4]; /* fall through */
398 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
399 break;
400 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
401 case 2 : a+=k[0];
402 break;
403 case 1 : a+=k8[0];
404 break;
405 case 0 : return c; /* zero length requires no mixing */
406 }
407
408 } else { /* need to read the key one byte at a time */
409 const uint8_t *k = (const uint8_t *)key;
410
411 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
412 while (length > 12)
413 {
414 a += k[0];
415 a += ((uint32_t)k[1])<<8;
416 a += ((uint32_t)k[2])<<16;
417 a += ((uint32_t)k[3])<<24;
418 b += k[4];
419 b += ((uint32_t)k[5])<<8;
420 b += ((uint32_t)k[6])<<16;
421 b += ((uint32_t)k[7])<<24;
422 c += k[8];
423 c += ((uint32_t)k[9])<<8;
424 c += ((uint32_t)k[10])<<16;
425 c += ((uint32_t)k[11])<<24;
426 mix(a,b,c);
427 length -= 12;
428 k += 12;
429 }
430
431 /*-------------------------------- last block: affect all 32 bits of (c) */
432 switch(length) /* all the case statements fall through */
433 {
434 case 12: c+=((uint32_t)k[11])<<24;
435 case 11: c+=((uint32_t)k[10])<<16;
436 case 10: c+=((uint32_t)k[9])<<8;
437 case 9 : c+=k[8];
438 case 8 : b+=((uint32_t)k[7])<<24;
439 case 7 : b+=((uint32_t)k[6])<<16;
440 case 6 : b+=((uint32_t)k[5])<<8;
441 case 5 : b+=k[4];
442 case 4 : a+=((uint32_t)k[3])<<24;
443 case 3 : a+=((uint32_t)k[2])<<16;
444 case 2 : a+=((uint32_t)k[1])<<8;
445 case 1 : a+=k[0];
446 break;
447 case 0 : return c;
448 }
449 }
450
451 final(a,b,c);
452 return c;
453 }
454
455
456 /*
457 * hashlittle2: return 2 32-bit hash values
458 *
459 * This is identical to hashlittle(), except it returns two 32-bit hash
460 * values instead of just one. This is good enough for hash table
461 * lookup with 2^^64 buckets, or if you want a second hash if you're not
462 * happy with the first, or if you want a probably-unique 64-bit ID for
463 * the key. *pc is better mixed than *pb, so use *pc first. If you want
464 * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
465 */
466 void jenkins_hashlittle2(
467 const void *key, /* the key to hash */
468 size_t length, /* length of the key */
469 uint32_t *pc, /* IN: primary initval, OUT: primary hash */
470 uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */
471 {
472 uint32_t a,b,c; /* internal state */
473 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
474
475 /* Set up the internal state */
476 a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
477 c += *pb;
478
479 u.ptr = key;
480 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
481 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
482
483 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
484 while (length > 12)
485 {
486 a += k[0];
487 b += k[1];
488 c += k[2];
489 mix(a,b,c);
490 length -= 12;
491 k += 3;
492 }
493
494 /*----------------------------- handle the last (probably partial) block */
495 /*
496 * "k[2]&0xffffff" actually reads beyond the end of the string, but
497 * then masks off the part it's not allowed to read. Because the
498 * string is aligned, the masked-off tail is in the same word as the
499 * rest of the string. Every machine with memory protection I've seen
500 * does it on word boundaries, so is OK with this. But VALGRIND will
501 * still catch it and complain. The masking trick does make the hash
502 * noticably faster for short strings (like English words).
503 */
504 #ifndef VALGRIND
505
506 switch(length)
507 {
508 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
509 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
510 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
511 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
512 case 8 : b+=k[1]; a+=k[0]; break;
513 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
514 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
515 case 5 : b+=k[1]&0xff; a+=k[0]; break;
516 case 4 : a+=k[0]; break;
517 case 3 : a+=k[0]&0xffffff; break;
518 case 2 : a+=k[0]&0xffff; break;
519 case 1 : a+=k[0]&0xff; break;
520 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
521 }
522
523 #else /* make valgrind happy */
524
525 k8 = (const uint8_t *)k;
526 switch(length)
527 {
528 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
529 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
530 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
531 case 9 : c+=k8[8]; /* fall through */
532 case 8 : b+=k[1]; a+=k[0]; break;
533 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
534 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
535 case 5 : b+=k8[4]; /* fall through */
536 case 4 : a+=k[0]; break;
537 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
538 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
539 case 1 : a+=k8[0]; break;
540 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
541 }
542
543 #endif /* !valgrind */
544
545 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
546 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
547 const uint8_t *k8;
548
549 /*--------------- all but last block: aligned reads and different mixing */
550 while (length > 12)
551 {
552 a += k[0] + (((uint32_t)k[1])<<16);
553 b += k[2] + (((uint32_t)k[3])<<16);
554 c += k[4] + (((uint32_t)k[5])<<16);
555 mix(a,b,c);
556 length -= 12;
557 k += 6;
558 }
559
560 /*----------------------------- handle the last (probably partial) block */
561 k8 = (const uint8_t *)k;
562 switch(length)
563 {
564 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
565 b+=k[2]+(((uint32_t)k[3])<<16);
566 a+=k[0]+(((uint32_t)k[1])<<16);
567 break;
568 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
569 case 10: c+=k[4];
570 b+=k[2]+(((uint32_t)k[3])<<16);
571 a+=k[0]+(((uint32_t)k[1])<<16);
572 break;
573 case 9 : c+=k8[8]; /* fall through */
574 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
575 a+=k[0]+(((uint32_t)k[1])<<16);
576 break;
577 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
578 case 6 : b+=k[2];
579 a+=k[0]+(((uint32_t)k[1])<<16);
580 break;
581 case 5 : b+=k8[4]; /* fall through */
582 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
583 break;
584 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
585 case 2 : a+=k[0];
586 break;
587 case 1 : a+=k8[0];
588 break;
589 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
590 }
591
592 } else { /* need to read the key one byte at a time */
593 const uint8_t *k = (const uint8_t *)key;
594
595 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
596 while (length > 12)
597 {
598 a += k[0];
599 a += ((uint32_t)k[1])<<8;
600 a += ((uint32_t)k[2])<<16;
601 a += ((uint32_t)k[3])<<24;
602 b += k[4];
603 b += ((uint32_t)k[5])<<8;
604 b += ((uint32_t)k[6])<<16;
605 b += ((uint32_t)k[7])<<24;
606 c += k[8];
607 c += ((uint32_t)k[9])<<8;
608 c += ((uint32_t)k[10])<<16;
609 c += ((uint32_t)k[11])<<24;
610 mix(a,b,c);
611 length -= 12;
612 k += 12;
613 }
614
615 /*-------------------------------- last block: affect all 32 bits of (c) */
616 switch(length) /* all the case statements fall through */
617 {
618 case 12: c+=((uint32_t)k[11])<<24;
619 case 11: c+=((uint32_t)k[10])<<16;
620 case 10: c+=((uint32_t)k[9])<<8;
621 case 9 : c+=k[8];
622 case 8 : b+=((uint32_t)k[7])<<24;
623 case 7 : b+=((uint32_t)k[6])<<16;
624 case 6 : b+=((uint32_t)k[5])<<8;
625 case 5 : b+=k[4];
626 case 4 : a+=((uint32_t)k[3])<<24;
627 case 3 : a+=((uint32_t)k[2])<<16;
628 case 2 : a+=((uint32_t)k[1])<<8;
629 case 1 : a+=k[0];
630 break;
631 case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */
632 }
633 }
634
635 final(a,b,c);
636 *pc=c; *pb=b;
637 }
638
639
640
641 /*
642 * hashbig():
643 * This is the same as hashword() on big-endian machines. It is different
644 * from hashlittle() on all machines. hashbig() takes advantage of
645 * big-endian byte ordering.
646 */
647 uint32_t jenkins_hashbig( const void *key, size_t length, uint32_t initval)
648 {
649 uint32_t a,b,c;
650 union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
651
652 /* Set up the internal state */
653 a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
654
655 u.ptr = key;
656 if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
657 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
658
659 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
660 while (length > 12)
661 {
662 a += k[0];
663 b += k[1];
664 c += k[2];
665 mix(a,b,c);
666 length -= 12;
667 k += 3;
668 }
669
670 /*----------------------------- handle the last (probably partial) block */
671 /*
672 * "k[2]<<8" actually reads beyond the end of the string, but
673 * then shifts out the part it's not allowed to read. Because the
674 * string is aligned, the illegal read is in the same word as the
675 * rest of the string. Every machine with memory protection I've seen
676 * does it on word boundaries, so is OK with this. But VALGRIND will
677 * still catch it and complain. The masking trick does make the hash
678 * noticably faster for short strings (like English words).
679 */
680 #ifndef VALGRIND
681
682 switch(length)
683 {
684 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
685 case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
686 case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
687 case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
688 case 8 : b+=k[1]; a+=k[0]; break;
689 case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
690 case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
691 case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
692 case 4 : a+=k[0]; break;
693 case 3 : a+=k[0]&0xffffff00; break;
694 case 2 : a+=k[0]&0xffff0000; break;
695 case 1 : a+=k[0]&0xff000000; break;
696 case 0 : return c; /* zero length strings require no mixing */
697 }
698
699 #else /* make valgrind happy */
700
701 k8 = (const uint8_t *)k;
702 switch(length) /* all the case statements fall through */
703 {
704 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
705 case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
706 case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
707 case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
708 case 8 : b+=k[1]; a+=k[0]; break;
709 case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
710 case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
711 case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
712 case 4 : a+=k[0]; break;
713 case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
714 case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
715 case 1 : a+=((uint32_t)k8[0])<<24; break;
716 case 0 : return c;
717 }
718
719 #endif /* !VALGRIND */
720
721 } else { /* need to read the key one byte at a time */
722 const uint8_t *k = (const uint8_t *)key;
723
724 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
725 while (length > 12)
726 {
727 a += ((uint32_t)k[0])<<24;
728 a += ((uint32_t)k[1])<<16;
729 a += ((uint32_t)k[2])<<8;
730 a += ((uint32_t)k[3]);
731 b += ((uint32_t)k[4])<<24;
732 b += ((uint32_t)k[5])<<16;
733 b += ((uint32_t)k[6])<<8;
734 b += ((uint32_t)k[7]);
735 c += ((uint32_t)k[8])<<24;
736 c += ((uint32_t)k[9])<<16;
737 c += ((uint32_t)k[10])<<8;
738 c += ((uint32_t)k[11]);
739 mix(a,b,c);
740 length -= 12;
741 k += 12;
742 }
743
744 /*-------------------------------- last block: affect all 32 bits of (c) */
745 switch(length) /* all the case statements fall through */
746 {
747 case 12: c+=k[11];
748 case 11: c+=((uint32_t)k[10])<<8;
749 case 10: c+=((uint32_t)k[9])<<16;
750 case 9 : c+=((uint32_t)k[8])<<24;
751 case 8 : b+=k[7];
752 case 7 : b+=((uint32_t)k[6])<<8;
753 case 6 : b+=((uint32_t)k[5])<<16;
754 case 5 : b+=((uint32_t)k[4])<<24;
755 case 4 : a+=k[3];
756 case 3 : a+=((uint32_t)k[2])<<8;
757 case 2 : a+=((uint32_t)k[1])<<16;
758 case 1 : a+=((uint32_t)k[0])<<24;
759 break;
760 case 0 : return c;
761 }
762 }
763
764 final(a,b,c);
765 return c;
766 }
767
768
769 #ifdef SELF_TEST
770
771 /* used for timings */
772 void driver1()
773 {
774 uint8_t buf[256];
775 uint32_t i;
776 uint32_t h=0;
777 time_t a,z;
778
779 time(&a);
780 for (i=0; i<256; ++i) buf[i] = 'x';
781 for (i=0; i<1; ++i)
782 {
783 h = hashlittle(&buf[0],1,h);
784 }
785 time(&z);
786 if (z-a > 0) printf("time %d %.8x\n", z-a, h);
787 }
788
789 /* check that every input bit changes every output bit half the time */
790 #define HASHSTATE 1
791 #define HASHLEN 1
792 #define MAXPAIR 60
793 #define MAXLEN 70
794 void driver2()
795 {
796 uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
797 uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
798 uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
799 uint32_t x[HASHSTATE],y[HASHSTATE];
800 uint32_t hlen;
801
802 printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
803 for (hlen=0; hlen < MAXLEN; ++hlen)
804 {
805 z=0;
806 for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
807 {
808 for (j=0; j<8; ++j) /*------------------------ for each input bit, */
809 {
810 for (m=1; m<8; ++m) /*------------ for serveral possible initvals, */
811 {
812 for (l=0; l<HASHSTATE; ++l)
813 e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
814
815 /*---- check that every output bit is affected by that input bit */
816 for (k=0; k<MAXPAIR; k+=2)
817 {
818 uint32_t finished=1;
819 /* keys have one bit different */
820 for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
821 /* have a and b be two keys differing in only one bit */
822 a[i] ^= (k<<j);
823 a[i] ^= (k>>(8-j));
824 c[0] = hashlittle(a, hlen, m);
825 b[i] ^= ((k+1)<<j);
826 b[i] ^= ((k+1)>>(8-j));
827 d[0] = hashlittle(b, hlen, m);
828 /* check every bit is 1, 0, set, and not set at least once */
829 for (l=0; l<HASHSTATE; ++l)
830 {
831 e[l] &= (c[l]^d[l]);
832 f[l] &= ~(c[l]^d[l]);
833 g[l] &= c[l];
834 h[l] &= ~c[l];
835 x[l] &= d[l];
836 y[l] &= ~d[l];
837 if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
838 }
839 if (finished) break;
840 }
841 if (k>z) z=k;
842 if (k==MAXPAIR)
843 {
844 printf("Some bit didn't change: ");
845 printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
846 e[0],f[0],g[0],h[0],x[0],y[0]);
847 printf("i %d j %d m %d len %d\n", i, j, m, hlen);
848 }
849 if (z==MAXPAIR) goto done;
850 }
851 }
852 }
853 done:
854 if (z < MAXPAIR)
855 {
856 printf("Mix success %2d bytes %2d initvals ",i,m);
857 printf("required %d trials\n", z/2);
858 }
859 }
860 printf("\n");
861 }
862
863 /* Check for reading beyond the end of the buffer and alignment problems */
864 void driver3()
865 {
866 uint8_t buf[MAXLEN+20], *b;
867 uint32_t len;
868 uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
869 uint32_t h;
870 uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
871 uint32_t i;
872 uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
873 uint32_t j;
874 uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
875 uint32_t ref,x,y;
876 uint8_t *p;
877
878 printf("Endianness. These lines should all be the same (for values filled in):\n");
879 printf("%.8x %.8x %.8x\n",
880 hashword((const uint32_t *)q, (sizeof(q)-1)/4, 13),
881 hashword((const uint32_t *)q, (sizeof(q)-5)/4, 13),
882 hashword((const uint32_t *)q, (sizeof(q)-9)/4, 13));
883 p = q;
884 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
885 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
886 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
887 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
888 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
889 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
890 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
891 p = &qq[1];
892 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
893 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
894 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
895 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
896 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
897 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
898 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
899 p = &qqq[2];
900 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
901 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
902 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
903 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
904 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
905 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
906 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
907 p = &qqqq[3];
908 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
909 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
910 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
911 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
912 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
913 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
914 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
915 printf("\n");
916
917 /* check that hashlittle2 and hashlittle produce the same results */
918 i=47; j=0;
919 hashlittle2(q, sizeof(q), &i, &j);
920 if (hashlittle(q, sizeof(q), 47) != i)
921 printf("hashlittle2 and hashlittle mismatch\n");
922
923 /* check that hashword2 and hashword produce the same results */
924 len = 0xdeadbeef;
925 i=47, j=0;
926 hashword2(&len, 1, &i, &j);
927 if (hashword(&len, 1, 47) != i)
928 printf("hashword2 and hashword mismatch %x %x\n",
929 i, hashword(&len, 1, 47));
930
931 /* check hashlittle doesn't read before or after the ends of the string */
932 for (h=0, b=buf+1; h<8; ++h, ++b)
933 {
934 for (i=0; i<MAXLEN; ++i)
935 {
936 len = i;
937 for (j=0; j<i; ++j) *(b+j)=0;
938
939 /* these should all be equal */
940 ref = hashlittle(b, len, (uint32_t)1);
941 *(b+i)=(uint8_t)~0;
942 *(b-1)=(uint8_t)~0;
943 x = hashlittle(b, len, (uint32_t)1);
944 y = hashlittle(b, len, (uint32_t)1);
945 if ((ref != x) || (ref != y))
946 {
947 printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
948 h, i);
949 }
950 }
951 }
952 }
953
954 /* check for problems with nulls */
955 void driver4()
956 {
957 uint8_t buf[1];
958 uint32_t h,i,state[HASHSTATE];
959
960
961 buf[0] = ~0;
962 for (i=0; i<HASHSTATE; ++i) state[i] = 1;
963 printf("These should all be different\n");
964 for (i=0, h=0; i<8; ++i)
965 {
966 h = hashlittle(buf, 0, h);
967 printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
968 }
969 }
970
971 void driver5()
972 {
973 uint32_t b,c;
974 b=0, c=0, hashlittle2("", 0, &c, &b);
975 printf("hash is %.8lx %.8lx\n", c, b); /* deadbeef deadbeef */
976 b=0xdeadbeef, c=0, hashlittle2("", 0, &c, &b);
977 printf("hash is %.8lx %.8lx\n", c, b); /* bd5b7dde deadbeef */
978 b=0xdeadbeef, c=0xdeadbeef, hashlittle2("", 0, &c, &b);
979 printf("hash is %.8lx %.8lx\n", c, b); /* 9c093ccd bd5b7dde */
980 b=0, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
981 printf("hash is %.8lx %.8lx\n", c, b); /* 17770551 ce7226e6 */
982 b=1, c=0, hashlittle2("Four score and seven years ago", 30, &c, &b);
983 printf("hash is %.8lx %.8lx\n", c, b); /* e3607cae bd371de4 */
984 b=0, c=1, hashlittle2("Four score and seven years ago", 30, &c, &b);
985 printf("hash is %.8lx %.8lx\n", c, b); /* cd628161 6cbea4b3 */
986 c = hashlittle("Four score and seven years ago", 30, 0);
987 printf("hash is %.8lx\n", c); /* 17770551 */
988 c = hashlittle("Four score and seven years ago", 30, 1);
989 printf("hash is %.8lx\n", c); /* cd628161 */
990 }
991
992
993 int main()
994 {
995 driver1(); /* test that the key is hashed: used for timings */
996 driver2(); /* test that whole key is hashed thoroughly */
997 driver3(); /* test that nothing but the key is hashed */
998 driver4(); /* test hashing multiple buffers (all buffers are null) */
999 driver5(); /* test the hash against known vectors */
1000 return 1;
1001 }
1002
1003 #endif /* SELF_TEST */