]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/partition/repart.c
Merge pull request #30464 from CodethinkLabs/misc-integration-test-fixes
[thirdparty/systemd.git] / src / partition / repart.c
1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <fcntl.h>
8 #include <getopt.h>
9 #include <linux/fs.h>
10 #include <linux/loop.h>
11 #include <sys/file.h>
12 #include <sys/ioctl.h>
13 #include <sys/stat.h>
14
15 #include "sd-device.h"
16 #include "sd-id128.h"
17
18 #include "alloc-util.h"
19 #include "blkid-util.h"
20 #include "blockdev-util.h"
21 #include "btrfs-util.h"
22 #include "build.h"
23 #include "chase.h"
24 #include "conf-files.h"
25 #include "conf-parser.h"
26 #include "constants.h"
27 #include "cryptsetup-util.h"
28 #include "device-util.h"
29 #include "devnum-util.h"
30 #include "dirent-util.h"
31 #include "efivars.h"
32 #include "errno-util.h"
33 #include "fd-util.h"
34 #include "fdisk-util.h"
35 #include "fileio.h"
36 #include "format-table.h"
37 #include "format-util.h"
38 #include "fs-util.h"
39 #include "glyph-util.h"
40 #include "gpt.h"
41 #include "hexdecoct.h"
42 #include "hmac.h"
43 #include "id128-util.h"
44 #include "initrd-util.h"
45 #include "io-util.h"
46 #include "json.h"
47 #include "list.h"
48 #include "loop-util.h"
49 #include "main-func.h"
50 #include "mkdir.h"
51 #include "mkfs-util.h"
52 #include "mount-util.h"
53 #include "mountpoint-util.h"
54 #include "nulstr-util.h"
55 #include "openssl-util.h"
56 #include "parse-argument.h"
57 #include "parse-helpers.h"
58 #include "pretty-print.h"
59 #include "proc-cmdline.h"
60 #include "process-util.h"
61 #include "random-util.h"
62 #include "resize-fs.h"
63 #include "rm-rf.h"
64 #include "sort-util.h"
65 #include "specifier.h"
66 #include "stdio-util.h"
67 #include "string-table.h"
68 #include "string-util.h"
69 #include "strv.h"
70 #include "sync-util.h"
71 #include "terminal-util.h"
72 #include "tmpfile-util.h"
73 #include "tpm2-pcr.h"
74 #include "tpm2-util.h"
75 #include "user-util.h"
76 #include "utf8.h"
77
78 /* If not configured otherwise use a minimal partition size of 10M */
79 #define DEFAULT_MIN_SIZE (10ULL*1024ULL*1024ULL)
80
81 /* Hard lower limit for new partition sizes */
82 #define HARD_MIN_SIZE 4096ULL
83
84 /* We know up front we're never going to put more than this in a verity sig partition. */
85 #define VERITY_SIG_SIZE (HARD_MIN_SIZE*4ULL)
86
87 /* libfdisk takes off slightly more than 1M of the disk size when creating a GPT disk label */
88 #define GPT_METADATA_SIZE (1044ULL*1024ULL)
89
90 /* LUKS2 takes off 16M of the partition size with its metadata by default */
91 #define LUKS2_METADATA_SIZE (16ULL*1024ULL*1024ULL)
92
93 /* To do LUKS2 offline encryption, we need to keep some extra free space at the end of the partition. */
94 #define LUKS2_METADATA_KEEP_FREE (LUKS2_METADATA_SIZE*2ULL)
95
96 /* LUKS2 volume key size. */
97 #define VOLUME_KEY_SIZE (512ULL/8ULL)
98
99 /* Use 4K as the default filesystem sector size because as long as the partitions are aligned to 4K, the
100 * filesystems will then also be compatible with sector sizes 512, 1024 and 2048. */
101 #define DEFAULT_FILESYSTEM_SECTOR_SIZE 4096ULL
102
103 #define APIVFS_TMP_DIRS_NULSTR "proc\0sys\0dev\0tmp\0run\0var/tmp\0"
104
105 /* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks
106 * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B
107 * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll
108 * waste 3K per partition, which is probably fine. */
109
110 typedef enum EmptyMode {
111 EMPTY_UNSET, /* no choice has been made yet */
112 EMPTY_REFUSE, /* refuse empty disks, never create a partition table */
113 EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */
114 EMPTY_REQUIRE, /* require an empty disk, create a partition table */
115 EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */
116 EMPTY_CREATE, /* create disk as loopback file, create a partition table always */
117 _EMPTY_MODE_MAX,
118 _EMPTY_MODE_INVALID = -EINVAL,
119 } EmptyMode;
120
121 typedef enum FilterPartitionType {
122 FILTER_PARTITIONS_NONE,
123 FILTER_PARTITIONS_EXCLUDE,
124 FILTER_PARTITIONS_INCLUDE,
125 _FILTER_PARTITIONS_MAX,
126 _FILTER_PARTITIONS_INVALID = -EINVAL,
127 } FilterPartitionsType;
128
129 static EmptyMode arg_empty = EMPTY_UNSET;
130 static bool arg_dry_run = true;
131 static const char *arg_node = NULL;
132 static char *arg_root = NULL;
133 static char *arg_image = NULL;
134 static char **arg_definitions = NULL;
135 static bool arg_discard = true;
136 static bool arg_can_factory_reset = false;
137 static int arg_factory_reset = -1;
138 static sd_id128_t arg_seed = SD_ID128_NULL;
139 static bool arg_randomize = false;
140 static int arg_pretty = -1;
141 static uint64_t arg_size = UINT64_MAX;
142 static bool arg_size_auto = false;
143 static JsonFormatFlags arg_json_format_flags = JSON_FORMAT_OFF;
144 static PagerFlags arg_pager_flags = 0;
145 static bool arg_legend = true;
146 static void *arg_key = NULL;
147 static size_t arg_key_size = 0;
148 static EVP_PKEY *arg_private_key = NULL;
149 static X509 *arg_certificate = NULL;
150 static char *arg_tpm2_device = NULL;
151 static uint32_t arg_tpm2_seal_key_handle = 0;
152 static char *arg_tpm2_device_key = NULL;
153 static Tpm2PCRValue *arg_tpm2_hash_pcr_values = NULL;
154 static size_t arg_tpm2_n_hash_pcr_values = 0;
155 static char *arg_tpm2_public_key = NULL;
156 static uint32_t arg_tpm2_public_key_pcr_mask = 0;
157 static char *arg_tpm2_pcrlock = NULL;
158 static bool arg_split = false;
159 static GptPartitionType *arg_filter_partitions = NULL;
160 static size_t arg_n_filter_partitions = 0;
161 static FilterPartitionsType arg_filter_partitions_type = FILTER_PARTITIONS_NONE;
162 static GptPartitionType *arg_defer_partitions = NULL;
163 static size_t arg_n_defer_partitions = 0;
164 static uint64_t arg_sector_size = 0;
165 static ImagePolicy *arg_image_policy = NULL;
166 static Architecture arg_architecture = _ARCHITECTURE_INVALID;
167 static int arg_offline = -1;
168 static char **arg_copy_from = NULL;
169 static char *arg_copy_source = NULL;
170 static char *arg_make_ddi = NULL;
171
172 STATIC_DESTRUCTOR_REGISTER(arg_root, freep);
173 STATIC_DESTRUCTOR_REGISTER(arg_image, freep);
174 STATIC_DESTRUCTOR_REGISTER(arg_definitions, strv_freep);
175 STATIC_DESTRUCTOR_REGISTER(arg_key, erase_and_freep);
176 STATIC_DESTRUCTOR_REGISTER(arg_private_key, EVP_PKEY_freep);
177 STATIC_DESTRUCTOR_REGISTER(arg_certificate, X509_freep);
178 STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device, freep);
179 STATIC_DESTRUCTOR_REGISTER(arg_tpm2_device_key, freep);
180 STATIC_DESTRUCTOR_REGISTER(arg_tpm2_hash_pcr_values, freep);
181 STATIC_DESTRUCTOR_REGISTER(arg_tpm2_public_key, freep);
182 STATIC_DESTRUCTOR_REGISTER(arg_tpm2_pcrlock, freep);
183 STATIC_DESTRUCTOR_REGISTER(arg_filter_partitions, freep);
184 STATIC_DESTRUCTOR_REGISTER(arg_image_policy, image_policy_freep);
185 STATIC_DESTRUCTOR_REGISTER(arg_copy_from, strv_freep);
186 STATIC_DESTRUCTOR_REGISTER(arg_copy_source, freep);
187 STATIC_DESTRUCTOR_REGISTER(arg_make_ddi, freep);
188
189 typedef struct FreeArea FreeArea;
190
191 typedef enum EncryptMode {
192 ENCRYPT_OFF,
193 ENCRYPT_KEY_FILE,
194 ENCRYPT_TPM2,
195 ENCRYPT_KEY_FILE_TPM2,
196 _ENCRYPT_MODE_MAX,
197 _ENCRYPT_MODE_INVALID = -EINVAL,
198 } EncryptMode;
199
200 typedef enum VerityMode {
201 VERITY_OFF,
202 VERITY_DATA,
203 VERITY_HASH,
204 VERITY_SIG,
205 _VERITY_MODE_MAX,
206 _VERITY_MODE_INVALID = -EINVAL,
207 } VerityMode;
208
209 typedef enum MinimizeMode {
210 MINIMIZE_OFF,
211 MINIMIZE_BEST,
212 MINIMIZE_GUESS,
213 _MINIMIZE_MODE_MAX,
214 _MINIMIZE_MODE_INVALID = -EINVAL,
215 } MinimizeMode;
216
217 typedef struct Partition {
218 char *definition_path;
219 char **drop_in_files;
220
221 GptPartitionType type;
222 sd_id128_t current_uuid, new_uuid;
223 bool new_uuid_is_set;
224 char *current_label, *new_label;
225 sd_id128_t fs_uuid, luks_uuid, verity_uuid;
226 uint8_t verity_salt[SHA256_DIGEST_SIZE];
227
228 bool dropped;
229 bool factory_reset;
230 int32_t priority;
231
232 uint32_t weight, padding_weight;
233
234 uint64_t current_size, new_size;
235 uint64_t size_min, size_max;
236
237 uint64_t current_padding, new_padding;
238 uint64_t padding_min, padding_max;
239
240 uint64_t partno;
241 uint64_t offset;
242
243 struct fdisk_partition *current_partition;
244 struct fdisk_partition *new_partition;
245 FreeArea *padding_area;
246 FreeArea *allocated_to_area;
247
248 char *copy_blocks_path;
249 bool copy_blocks_path_is_our_file;
250 bool copy_blocks_auto;
251 const char *copy_blocks_root;
252 int copy_blocks_fd;
253 uint64_t copy_blocks_offset;
254 uint64_t copy_blocks_size;
255
256 char *format;
257 char **copy_files;
258 char **exclude_files_source;
259 char **exclude_files_target;
260 char **make_directories;
261 char **subvolumes;
262 EncryptMode encrypt;
263 VerityMode verity;
264 char *verity_match_key;
265 MinimizeMode minimize;
266 uint64_t verity_data_block_size;
267 uint64_t verity_hash_block_size;
268
269 uint64_t gpt_flags;
270 int no_auto;
271 int read_only;
272 int growfs;
273
274 struct iovec roothash;
275
276 char *split_name_format;
277 char *split_path;
278
279 struct Partition *siblings[_VERITY_MODE_MAX];
280
281 LIST_FIELDS(struct Partition, partitions);
282 } Partition;
283
284 #define PARTITION_IS_FOREIGN(p) (!(p)->definition_path)
285 #define PARTITION_EXISTS(p) (!!(p)->current_partition)
286
287 struct FreeArea {
288 Partition *after;
289 uint64_t size;
290 uint64_t allocated;
291 };
292
293 typedef struct Context {
294 LIST_HEAD(Partition, partitions);
295 size_t n_partitions;
296
297 FreeArea **free_areas;
298 size_t n_free_areas;
299
300 uint64_t start, end, total;
301
302 struct fdisk_context *fdisk_context;
303 uint64_t sector_size, grain_size, fs_sector_size;
304
305 sd_id128_t seed;
306
307 char *node;
308 bool node_is_our_file;
309 int backing_fd;
310
311 bool from_scratch;
312 } Context;
313
314 static const char *empty_mode_table[_EMPTY_MODE_MAX] = {
315 [EMPTY_UNSET] = "unset",
316 [EMPTY_REFUSE] = "refuse",
317 [EMPTY_ALLOW] = "allow",
318 [EMPTY_REQUIRE] = "require",
319 [EMPTY_FORCE] = "force",
320 [EMPTY_CREATE] = "create",
321 };
322
323 static const char *encrypt_mode_table[_ENCRYPT_MODE_MAX] = {
324 [ENCRYPT_OFF] = "off",
325 [ENCRYPT_KEY_FILE] = "key-file",
326 [ENCRYPT_TPM2] = "tpm2",
327 [ENCRYPT_KEY_FILE_TPM2] = "key-file+tpm2",
328 };
329
330 static const char *verity_mode_table[_VERITY_MODE_MAX] = {
331 [VERITY_OFF] = "off",
332 [VERITY_DATA] = "data",
333 [VERITY_HASH] = "hash",
334 [VERITY_SIG] = "signature",
335 };
336
337 static const char *minimize_mode_table[_MINIMIZE_MODE_MAX] = {
338 [MINIMIZE_OFF] = "off",
339 [MINIMIZE_BEST] = "best",
340 [MINIMIZE_GUESS] = "guess",
341 };
342
343 DEFINE_PRIVATE_STRING_TABLE_LOOKUP(empty_mode, EmptyMode);
344 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(encrypt_mode, EncryptMode, ENCRYPT_KEY_FILE);
345 DEFINE_PRIVATE_STRING_TABLE_LOOKUP(verity_mode, VerityMode);
346 DEFINE_PRIVATE_STRING_TABLE_LOOKUP_FROM_STRING_WITH_BOOLEAN(minimize_mode, MinimizeMode, MINIMIZE_BEST);
347
348 static uint64_t round_down_size(uint64_t v, uint64_t p) {
349 return (v / p) * p;
350 }
351
352 static uint64_t round_up_size(uint64_t v, uint64_t p) {
353
354 v = DIV_ROUND_UP(v, p);
355
356 if (v > UINT64_MAX / p)
357 return UINT64_MAX; /* overflow */
358
359 return v * p;
360 }
361
362 static Partition *partition_new(void) {
363 Partition *p;
364
365 p = new(Partition, 1);
366 if (!p)
367 return NULL;
368
369 *p = (Partition) {
370 .weight = 1000,
371 .padding_weight = 0,
372 .current_size = UINT64_MAX,
373 .new_size = UINT64_MAX,
374 .size_min = UINT64_MAX,
375 .size_max = UINT64_MAX,
376 .current_padding = UINT64_MAX,
377 .new_padding = UINT64_MAX,
378 .padding_min = UINT64_MAX,
379 .padding_max = UINT64_MAX,
380 .partno = UINT64_MAX,
381 .offset = UINT64_MAX,
382 .copy_blocks_fd = -EBADF,
383 .copy_blocks_offset = UINT64_MAX,
384 .copy_blocks_size = UINT64_MAX,
385 .no_auto = -1,
386 .read_only = -1,
387 .growfs = -1,
388 .verity_data_block_size = UINT64_MAX,
389 .verity_hash_block_size = UINT64_MAX,
390 };
391
392 return p;
393 }
394
395 static Partition* partition_free(Partition *p) {
396 if (!p)
397 return NULL;
398
399 free(p->current_label);
400 free(p->new_label);
401 free(p->definition_path);
402 strv_free(p->drop_in_files);
403
404 if (p->current_partition)
405 fdisk_unref_partition(p->current_partition);
406 if (p->new_partition)
407 fdisk_unref_partition(p->new_partition);
408
409 if (p->copy_blocks_path_is_our_file)
410 unlink_and_free(p->copy_blocks_path);
411 else
412 free(p->copy_blocks_path);
413 safe_close(p->copy_blocks_fd);
414
415 free(p->format);
416 strv_free(p->copy_files);
417 strv_free(p->exclude_files_source);
418 strv_free(p->exclude_files_target);
419 strv_free(p->make_directories);
420 strv_free(p->subvolumes);
421 free(p->verity_match_key);
422
423 iovec_done(&p->roothash);
424
425 free(p->split_name_format);
426 unlink_and_free(p->split_path);
427
428 return mfree(p);
429 }
430
431 static void partition_foreignize(Partition *p) {
432 assert(p);
433 assert(PARTITION_EXISTS(p));
434
435 /* Reset several parameters set through definition file to make the partition foreign. */
436
437 p->definition_path = mfree(p->definition_path);
438 p->drop_in_files = strv_free(p->drop_in_files);
439
440 p->copy_blocks_path = mfree(p->copy_blocks_path);
441 p->copy_blocks_fd = safe_close(p->copy_blocks_fd);
442 p->copy_blocks_root = NULL;
443
444 p->format = mfree(p->format);
445 p->copy_files = strv_free(p->copy_files);
446 p->exclude_files_source = strv_free(p->exclude_files_source);
447 p->exclude_files_target = strv_free(p->exclude_files_target);
448 p->make_directories = strv_free(p->make_directories);
449 p->subvolumes = strv_free(p->subvolumes);
450 p->verity_match_key = mfree(p->verity_match_key);
451
452 p->priority = 0;
453 p->weight = 1000;
454 p->padding_weight = 0;
455 p->size_min = UINT64_MAX;
456 p->size_max = UINT64_MAX;
457 p->padding_min = UINT64_MAX;
458 p->padding_max = UINT64_MAX;
459 p->no_auto = -1;
460 p->read_only = -1;
461 p->growfs = -1;
462 p->verity = VERITY_OFF;
463 }
464
465 static bool partition_type_exclude(const GptPartitionType *type) {
466 if (arg_filter_partitions_type == FILTER_PARTITIONS_NONE)
467 return false;
468
469 for (size_t i = 0; i < arg_n_filter_partitions; i++)
470 if (sd_id128_equal(type->uuid, arg_filter_partitions[i].uuid))
471 return arg_filter_partitions_type == FILTER_PARTITIONS_EXCLUDE;
472
473 return arg_filter_partitions_type == FILTER_PARTITIONS_INCLUDE;
474 }
475
476 static bool partition_type_defer(const GptPartitionType *type) {
477 for (size_t i = 0; i < arg_n_defer_partitions; i++)
478 if (sd_id128_equal(type->uuid, arg_defer_partitions[i].uuid))
479 return true;
480
481 return false;
482 }
483
484 static Partition* partition_unlink_and_free(Context *context, Partition *p) {
485 if (!p)
486 return NULL;
487
488 LIST_REMOVE(partitions, context->partitions, p);
489
490 assert(context->n_partitions > 0);
491 context->n_partitions--;
492
493 return partition_free(p);
494 }
495
496 DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free);
497
498 static Context *context_new(sd_id128_t seed) {
499 Context *context;
500
501 context = new(Context, 1);
502 if (!context)
503 return NULL;
504
505 *context = (Context) {
506 .start = UINT64_MAX,
507 .end = UINT64_MAX,
508 .total = UINT64_MAX,
509 .seed = seed,
510 };
511
512 return context;
513 }
514
515 static void context_free_free_areas(Context *context) {
516 assert(context);
517
518 for (size_t i = 0; i < context->n_free_areas; i++)
519 free(context->free_areas[i]);
520
521 context->free_areas = mfree(context->free_areas);
522 context->n_free_areas = 0;
523 }
524
525 static Context *context_free(Context *context) {
526 if (!context)
527 return NULL;
528
529 while (context->partitions)
530 partition_unlink_and_free(context, context->partitions);
531 assert(context->n_partitions == 0);
532
533 context_free_free_areas(context);
534
535 if (context->fdisk_context)
536 fdisk_unref_context(context->fdisk_context);
537
538 safe_close(context->backing_fd);
539 if (context->node_is_our_file)
540 unlink_and_free(context->node);
541 else
542 free(context->node);
543
544 return mfree(context);
545 }
546
547 DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free);
548
549 static int context_add_free_area(
550 Context *context,
551 uint64_t size,
552 Partition *after) {
553
554 FreeArea *a;
555
556 assert(context);
557 assert(!after || !after->padding_area);
558
559 if (!GREEDY_REALLOC(context->free_areas, context->n_free_areas + 1))
560 return -ENOMEM;
561
562 a = new(FreeArea, 1);
563 if (!a)
564 return -ENOMEM;
565
566 *a = (FreeArea) {
567 .size = size,
568 .after = after,
569 };
570
571 context->free_areas[context->n_free_areas++] = a;
572
573 if (after)
574 after->padding_area = a;
575
576 return 0;
577 }
578
579 static void partition_drop_or_foreignize(Partition *p) {
580 if (!p || p->dropped || PARTITION_IS_FOREIGN(p))
581 return;
582
583 if (PARTITION_EXISTS(p)) {
584 log_info("Can't grow existing partition %s of priority %" PRIi32 ", ignoring.",
585 strna(p->current_label ?: p->new_label), p->priority);
586
587 /* Handle the partition as foreign. Do not set dropped flag. */
588 partition_foreignize(p);
589 } else {
590 log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.",
591 p->definition_path, p->priority);
592
593 p->dropped = true;
594 p->allocated_to_area = NULL;
595 }
596 }
597
598 static bool context_drop_or_foreignize_one_priority(Context *context) {
599 int32_t priority = 0;
600
601 LIST_FOREACH(partitions, p, context->partitions) {
602 if (p->dropped)
603 continue;
604
605 priority = MAX(priority, p->priority);
606 }
607
608 /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at
609 * least one existing priority */
610 if (priority <= 0)
611 return false;
612
613 LIST_FOREACH(partitions, p, context->partitions) {
614 if (p->priority < priority)
615 continue;
616
617 partition_drop_or_foreignize(p);
618
619 /* We ensure that all verity sibling partitions have the same priority, so it's safe
620 * to drop all siblings here as well. */
621
622 for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++)
623 partition_drop_or_foreignize(p->siblings[mode]);
624 }
625
626 return true;
627 }
628
629 static uint64_t partition_min_size(const Context *context, const Partition *p) {
630 uint64_t sz;
631
632 assert(context);
633 assert(p);
634
635 /* Calculate the disk space we really need at minimum for this partition. If the partition already
636 * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less
637 * than 4K.
638 *
639 * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */
640
641 if (PARTITION_IS_FOREIGN(p)) {
642 /* Don't allow changing size of partitions not managed by us */
643 assert(p->current_size != UINT64_MAX);
644 return p->current_size;
645 }
646
647 if (p->verity == VERITY_SIG)
648 return VERITY_SIG_SIZE;
649
650 sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE;
651
652 if (!PARTITION_EXISTS(p)) {
653 uint64_t d = 0;
654
655 if (p->encrypt != ENCRYPT_OFF)
656 d += round_up_size(LUKS2_METADATA_KEEP_FREE, context->grain_size);
657
658 if (p->copy_blocks_size != UINT64_MAX)
659 d += round_up_size(p->copy_blocks_size, context->grain_size);
660 else if (p->format || p->encrypt != ENCRYPT_OFF) {
661 uint64_t f;
662
663 /* If we shall synthesize a file system, take minimal fs size into account (assumed to be 4K if not known) */
664 f = p->format ? round_up_size(minimal_size_by_fs_name(p->format), context->grain_size) : UINT64_MAX;
665 d += f == UINT64_MAX ? context->grain_size : f;
666 }
667
668 if (d > sz)
669 sz = d;
670 }
671
672 return MAX(round_up_size(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, context->grain_size), sz);
673 }
674
675 static uint64_t partition_max_size(const Context *context, const Partition *p) {
676 uint64_t sm;
677
678 /* Calculate how large the partition may become at max. This is generally the configured maximum
679 * size, except when it already exists and is larger than that. In that case it's the existing size,
680 * since we never want to shrink partitions. */
681
682 assert(context);
683 assert(p);
684
685 if (PARTITION_IS_FOREIGN(p)) {
686 /* Don't allow changing size of partitions not managed by us */
687 assert(p->current_size != UINT64_MAX);
688 return p->current_size;
689 }
690
691 if (p->verity == VERITY_SIG)
692 return VERITY_SIG_SIZE;
693
694 if (p->size_max == UINT64_MAX)
695 return UINT64_MAX;
696
697 sm = round_down_size(p->size_max, context->grain_size);
698
699 if (p->current_size != UINT64_MAX)
700 sm = MAX(p->current_size, sm);
701
702 return MAX(partition_min_size(context, p), sm);
703 }
704
705 static uint64_t partition_min_padding(const Partition *p) {
706 assert(p);
707 return p->padding_min != UINT64_MAX ? p->padding_min : 0;
708 }
709
710 static uint64_t partition_max_padding(const Partition *p) {
711 assert(p);
712 return p->padding_max;
713 }
714
715 static uint64_t partition_min_size_with_padding(Context *context, const Partition *p) {
716 uint64_t sz;
717
718 /* Calculate the disk space we need for this partition plus any free space coming after it. This
719 * takes user configured padding into account as well as any additional whitespace needed to align
720 * the next partition to 4K again. */
721
722 assert(context);
723 assert(p);
724
725 sz = partition_min_size(context, p) + partition_min_padding(p);
726
727 if (PARTITION_EXISTS(p)) {
728 /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */
729 assert(p->offset != UINT64_MAX);
730 return round_up_size(p->offset + sz, context->grain_size) - p->offset;
731 }
732
733 /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */
734 return round_up_size(sz, context->grain_size);
735 }
736
737 static uint64_t free_area_available(const FreeArea *a) {
738 assert(a);
739
740 /* Determines how much of this free area is not allocated yet */
741
742 assert(a->size >= a->allocated);
743 return a->size - a->allocated;
744 }
745
746 static uint64_t free_area_current_end(Context *context, const FreeArea *a) {
747 assert(context);
748 assert(a);
749
750 if (!a->after)
751 return free_area_available(a);
752
753 assert(a->after->offset != UINT64_MAX);
754 assert(a->after->current_size != UINT64_MAX);
755
756 /* Calculate where the free area ends, based on the offset of the partition preceding it. */
757 return round_up_size(a->after->offset + a->after->current_size, context->grain_size) + free_area_available(a);
758 }
759
760 static uint64_t free_area_min_end(Context *context, const FreeArea *a) {
761 assert(context);
762 assert(a);
763
764 if (!a->after)
765 return 0;
766
767 assert(a->after->offset != UINT64_MAX);
768 assert(a->after->current_size != UINT64_MAX);
769
770 /* Calculate where the partition would end when we give it as much as it needs. */
771 return round_up_size(a->after->offset + partition_min_size_with_padding(context, a->after), context->grain_size);
772 }
773
774 static uint64_t free_area_available_for_new_partitions(Context *context, const FreeArea *a) {
775 assert(context);
776 assert(a);
777
778 /* Similar to free_area_available(), but takes into account that the required size and padding of the
779 * preceding partition is honoured. */
780
781 return LESS_BY(free_area_current_end(context, a), free_area_min_end(context, a));
782 }
783
784 static int free_area_compare(FreeArea *const *a, FreeArea *const*b, Context *context) {
785 assert(context);
786
787 return CMP(free_area_available_for_new_partitions(context, *a),
788 free_area_available_for_new_partitions(context, *b));
789 }
790
791 static uint64_t charge_size(Context *context, uint64_t total, uint64_t amount) {
792 assert(context);
793 /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */
794 assert(amount <= total);
795 return LESS_BY(total, round_up_size(amount, context->grain_size));
796 }
797
798 static uint64_t charge_weight(uint64_t total, uint64_t amount) {
799 assert(amount <= total);
800 return total - amount;
801 }
802
803 static bool context_allocate_partitions(Context *context, uint64_t *ret_largest_free_area) {
804 assert(context);
805
806 /* This may be called multiple times. Reset previous assignments. */
807 for (size_t i = 0; i < context->n_free_areas; i++)
808 context->free_areas[i]->allocated = 0;
809
810 /* Sort free areas by size, putting smallest first */
811 typesafe_qsort_r(context->free_areas, context->n_free_areas, free_area_compare, context);
812
813 /* In any case return size of the largest free area (i.e. not the size of all free areas
814 * combined!) */
815 if (ret_largest_free_area)
816 *ret_largest_free_area =
817 context->n_free_areas == 0 ? 0 :
818 free_area_available_for_new_partitions(context, context->free_areas[context->n_free_areas-1]);
819
820 /* Check that each existing partition can fit its area. */
821 for (size_t i = 0; i < context->n_free_areas; i++)
822 if (free_area_current_end(context, context->free_areas[i]) <
823 free_area_min_end(context, context->free_areas[i]))
824 return false;
825
826 /* A simple first-fit algorithm. We return true if we can fit the partitions in, otherwise false. */
827 LIST_FOREACH(partitions, p, context->partitions) {
828 bool fits = false;
829 uint64_t required;
830 FreeArea *a = NULL;
831
832 /* Skip partitions we already dropped or that already exist */
833 if (p->dropped || PARTITION_EXISTS(p))
834 continue;
835
836 /* How much do we need to fit? */
837 required = partition_min_size_with_padding(context, p);
838 assert(required % context->grain_size == 0);
839
840 for (size_t i = 0; i < context->n_free_areas; i++) {
841 a = context->free_areas[i];
842
843 if (free_area_available_for_new_partitions(context, a) >= required) {
844 fits = true;
845 break;
846 }
847 }
848
849 if (!fits)
850 return false; /* 😢 Oh no! We can't fit this partition into any free area! */
851
852 /* Assign the partition to this free area */
853 p->allocated_to_area = a;
854
855 /* Budget the minimal partition size */
856 a->allocated += required;
857 }
858
859 return true;
860 }
861
862 static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) {
863 uint64_t weight_sum = 0;
864
865 assert(context);
866 assert(a);
867 assert(ret);
868
869 /* Determine the sum of the weights of all partitions placed in or before the specified free area */
870
871 LIST_FOREACH(partitions, p, context->partitions) {
872 if (p->padding_area != a && p->allocated_to_area != a)
873 continue;
874
875 if (p->weight > UINT64_MAX - weight_sum)
876 goto overflow_sum;
877 weight_sum += p->weight;
878
879 if (p->padding_weight > UINT64_MAX - weight_sum)
880 goto overflow_sum;
881 weight_sum += p->padding_weight;
882 }
883
884 *ret = weight_sum;
885 return 0;
886
887 overflow_sum:
888 return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64-bit range, refusing.");
889 }
890
891 static uint64_t scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum) {
892 assert(weight_sum >= weight);
893
894 for (;;) {
895 if (weight == 0)
896 return 0;
897 if (weight == weight_sum)
898 return value;
899 if (value <= UINT64_MAX / weight)
900 return value * weight / weight_sum;
901
902 /* Rescale weight and weight_sum to make not the calculation overflow. To satisfy the
903 * following conditions, 'weight_sum' is rounded up but 'weight' is rounded down:
904 * - the sum of scale_by_weight() for all weights must not be larger than the input value,
905 * - scale_by_weight() must not be larger than the ideal value (i.e. calculated with uint128_t). */
906 weight_sum = DIV_ROUND_UP(weight_sum, 2);
907 weight /= 2;
908 }
909 }
910
911 typedef enum GrowPartitionPhase {
912 /* The zeroth phase: do not touch foreign partitions (i.e. those we don't manage). */
913 PHASE_FOREIGN,
914
915 /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */
916 PHASE_OVERCHARGE,
917
918 /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */
919 PHASE_UNDERCHARGE,
920
921 /* The third phase: we distribute what remains among the remaining partitions, according to the weights */
922 PHASE_DISTRIBUTE,
923
924 _GROW_PARTITION_PHASE_MAX,
925 } GrowPartitionPhase;
926
927 static bool context_grow_partitions_phase(
928 Context *context,
929 FreeArea *a,
930 GrowPartitionPhase phase,
931 uint64_t *span,
932 uint64_t *weight_sum) {
933
934 bool try_again = false;
935
936 assert(context);
937 assert(a);
938 assert(span);
939 assert(weight_sum);
940
941 /* Now let's look at the intended weights and adjust them taking the minimum space assignments into
942 * account. i.e. if a partition has a small weight but a high minimum space value set it should not
943 * get any additional room from the left-overs. Similar, if two partitions have the same weight they
944 * should get the same space if possible, even if one has a smaller minimum size than the other. */
945 LIST_FOREACH(partitions, p, context->partitions) {
946
947 /* Look only at partitions associated with this free area, i.e. immediately
948 * preceding it, or allocated into it */
949 if (p->allocated_to_area != a && p->padding_area != a)
950 continue;
951
952 if (p->new_size == UINT64_MAX) {
953 uint64_t share, rsz, xsz;
954 bool charge = false;
955
956 /* Calculate how much this space this partition needs if everyone would get
957 * the weight based share */
958 share = scale_by_weight(*span, p->weight, *weight_sum);
959
960 rsz = partition_min_size(context, p);
961 xsz = partition_max_size(context, p);
962
963 if (phase == PHASE_FOREIGN && PARTITION_IS_FOREIGN(p)) {
964 /* Never change of foreign partitions (i.e. those we don't manage) */
965
966 p->new_size = p->current_size;
967 charge = true;
968
969 } else if (phase == PHASE_OVERCHARGE && rsz > share) {
970 /* This partition needs more than its calculated share. Let's assign
971 * it that, and take this partition out of all calculations and start
972 * again. */
973
974 p->new_size = rsz;
975 charge = try_again = true;
976
977 } else if (phase == PHASE_UNDERCHARGE && xsz < share) {
978 /* This partition accepts less than its calculated
979 * share. Let's assign it that, and take this partition out
980 * of all calculations and start again. */
981
982 p->new_size = xsz;
983 charge = try_again = true;
984
985 } else if (phase == PHASE_DISTRIBUTE) {
986 /* This partition can accept its calculated share. Let's
987 * assign it. There's no need to restart things here since
988 * assigning this shouldn't impact the shares of the other
989 * partitions. */
990
991 assert(share >= rsz);
992 p->new_size = CLAMP(round_down_size(share, context->grain_size), rsz, xsz);
993 charge = true;
994 }
995
996 if (charge) {
997 *span = charge_size(context, *span, p->new_size);
998 *weight_sum = charge_weight(*weight_sum, p->weight);
999 }
1000 }
1001
1002 if (p->new_padding == UINT64_MAX) {
1003 uint64_t share, rsz, xsz;
1004 bool charge = false;
1005
1006 share = scale_by_weight(*span, p->padding_weight, *weight_sum);
1007
1008 rsz = partition_min_padding(p);
1009 xsz = partition_max_padding(p);
1010
1011 if (phase == PHASE_OVERCHARGE && rsz > share) {
1012 p->new_padding = rsz;
1013 charge = try_again = true;
1014 } else if (phase == PHASE_UNDERCHARGE && xsz < share) {
1015 p->new_padding = xsz;
1016 charge = try_again = true;
1017 } else if (phase == PHASE_DISTRIBUTE) {
1018 assert(share >= rsz);
1019 p->new_padding = CLAMP(round_down_size(share, context->grain_size), rsz, xsz);
1020 charge = true;
1021 }
1022
1023 if (charge) {
1024 *span = charge_size(context, *span, p->new_padding);
1025 *weight_sum = charge_weight(*weight_sum, p->padding_weight);
1026 }
1027 }
1028 }
1029
1030 return !try_again;
1031 }
1032
1033 static void context_grow_partition_one(Context *context, FreeArea *a, Partition *p, uint64_t *span) {
1034 uint64_t m;
1035
1036 assert(context);
1037 assert(a);
1038 assert(p);
1039 assert(span);
1040
1041 if (*span == 0)
1042 return;
1043
1044 if (p->allocated_to_area != a)
1045 return;
1046
1047 if (PARTITION_IS_FOREIGN(p))
1048 return;
1049
1050 assert(p->new_size != UINT64_MAX);
1051
1052 /* Calculate new size and align. */
1053 m = round_down_size(p->new_size + *span, context->grain_size);
1054 /* But ensure this doesn't shrink the size. */
1055 m = MAX(m, p->new_size);
1056 /* And ensure this doesn't exceed the maximum size. */
1057 m = MIN(m, partition_max_size(context, p));
1058
1059 assert(m >= p->new_size);
1060
1061 *span = charge_size(context, *span, m - p->new_size);
1062 p->new_size = m;
1063 }
1064
1065 static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) {
1066 uint64_t weight_sum = 0, span;
1067 int r;
1068
1069 assert(context);
1070 assert(a);
1071
1072 r = context_sum_weights(context, a, &weight_sum);
1073 if (r < 0)
1074 return r;
1075
1076 /* Let's calculate the total area covered by this free area and the partition before it */
1077 span = a->size;
1078 if (a->after) {
1079 assert(a->after->offset != UINT64_MAX);
1080 assert(a->after->current_size != UINT64_MAX);
1081
1082 span += round_up_size(a->after->offset + a->after->current_size, context->grain_size) - a->after->offset;
1083 }
1084
1085 for (GrowPartitionPhase phase = 0; phase < _GROW_PARTITION_PHASE_MAX;)
1086 if (context_grow_partitions_phase(context, a, phase, &span, &weight_sum))
1087 phase++; /* go to the next phase */
1088
1089 /* We still have space left over? Donate to preceding partition if we have one */
1090 if (span > 0 && a->after)
1091 context_grow_partition_one(context, a, a->after, &span);
1092
1093 /* What? Even still some space left (maybe because there was no preceding partition, or it had a
1094 * size limit), then let's donate it to whoever wants it. */
1095 if (span > 0)
1096 LIST_FOREACH(partitions, p, context->partitions) {
1097 context_grow_partition_one(context, a, p, &span);
1098 if (span == 0)
1099 break;
1100 }
1101
1102 /* Yuck, still no one? Then make it padding */
1103 if (span > 0 && a->after) {
1104 assert(a->after->new_padding != UINT64_MAX);
1105 a->after->new_padding += span;
1106 }
1107
1108 return 0;
1109 }
1110
1111 static int context_grow_partitions(Context *context) {
1112 int r;
1113
1114 assert(context);
1115
1116 for (size_t i = 0; i < context->n_free_areas; i++) {
1117 r = context_grow_partitions_on_free_area(context, context->free_areas[i]);
1118 if (r < 0)
1119 return r;
1120 }
1121
1122 /* All existing partitions that have no free space after them can't change size */
1123 LIST_FOREACH(partitions, p, context->partitions) {
1124 if (p->dropped)
1125 continue;
1126
1127 if (!PARTITION_EXISTS(p) || p->padding_area) {
1128 /* The algorithm above must have initialized this already */
1129 assert(p->new_size != UINT64_MAX);
1130 continue;
1131 }
1132
1133 assert(p->new_size == UINT64_MAX);
1134 p->new_size = p->current_size;
1135
1136 assert(p->new_padding == UINT64_MAX);
1137 p->new_padding = p->current_padding;
1138 }
1139
1140 return 0;
1141 }
1142
1143 static uint64_t find_first_unused_partno(Context *context) {
1144 uint64_t partno = 0;
1145
1146 assert(context);
1147
1148 for (partno = 0;; partno++) {
1149 bool found = false;
1150 LIST_FOREACH(partitions, p, context->partitions)
1151 if (p->partno != UINT64_MAX && p->partno == partno)
1152 found = true;
1153 if (!found)
1154 break;
1155 }
1156
1157 return partno;
1158 }
1159
1160 static void context_place_partitions(Context *context) {
1161
1162 assert(context);
1163
1164 for (size_t i = 0; i < context->n_free_areas; i++) {
1165 FreeArea *a = context->free_areas[i];
1166 _unused_ uint64_t left;
1167 uint64_t start;
1168
1169 if (a->after) {
1170 assert(a->after->offset != UINT64_MAX);
1171 assert(a->after->new_size != UINT64_MAX);
1172 assert(a->after->new_padding != UINT64_MAX);
1173
1174 start = a->after->offset + a->after->new_size + a->after->new_padding;
1175 } else
1176 start = context->start;
1177
1178 start = round_up_size(start, context->grain_size);
1179 left = a->size;
1180
1181 LIST_FOREACH(partitions, p, context->partitions) {
1182 if (p->allocated_to_area != a)
1183 continue;
1184
1185 p->offset = start;
1186 p->partno = find_first_unused_partno(context);
1187
1188 assert(left >= p->new_size);
1189 start += p->new_size;
1190 left -= p->new_size;
1191
1192 assert(left >= p->new_padding);
1193 start += p->new_padding;
1194 left -= p->new_padding;
1195 }
1196 }
1197 }
1198
1199 static int config_parse_type(
1200 const char *unit,
1201 const char *filename,
1202 unsigned line,
1203 const char *section,
1204 unsigned section_line,
1205 const char *lvalue,
1206 int ltype,
1207 const char *rvalue,
1208 void *data,
1209 void *userdata) {
1210
1211 GptPartitionType *type = ASSERT_PTR(data);
1212 int r;
1213
1214 assert(rvalue);
1215
1216 r = gpt_partition_type_from_string(rvalue, type);
1217 if (r < 0)
1218 return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue);
1219
1220 if (arg_architecture >= 0)
1221 *type = gpt_partition_type_override_architecture(*type, arg_architecture);
1222
1223 return 0;
1224 }
1225
1226 static int config_parse_label(
1227 const char *unit,
1228 const char *filename,
1229 unsigned line,
1230 const char *section,
1231 unsigned section_line,
1232 const char *lvalue,
1233 int ltype,
1234 const char *rvalue,
1235 void *data,
1236 void *userdata) {
1237
1238 _cleanup_free_ char *resolved = NULL;
1239 char **label = ASSERT_PTR(data);
1240 int r;
1241
1242 assert(rvalue);
1243
1244 /* Nota bene: the empty label is a totally valid one. Let's hence not follow our usual rule of
1245 * assigning the empty string to reset to default here, but really accept it as label to set. */
1246
1247 r = specifier_printf(rvalue, GPT_LABEL_MAX, system_and_tmp_specifier_table, arg_root, NULL, &resolved);
1248 if (r < 0) {
1249 log_syntax(unit, LOG_WARNING, filename, line, r,
1250 "Failed to expand specifiers in Label=, ignoring: %s", rvalue);
1251 return 0;
1252 }
1253
1254 if (!utf8_is_valid(resolved)) {
1255 log_syntax(unit, LOG_WARNING, filename, line, 0,
1256 "Partition label not valid UTF-8, ignoring: %s", rvalue);
1257 return 0;
1258 }
1259
1260 r = gpt_partition_label_valid(resolved);
1261 if (r < 0) {
1262 log_syntax(unit, LOG_WARNING, filename, line, r,
1263 "Failed to check if string is valid as GPT partition label, ignoring: \"%s\" (from \"%s\")",
1264 resolved, rvalue);
1265 return 0;
1266 }
1267 if (!r) {
1268 log_syntax(unit, LOG_WARNING, filename, line, 0,
1269 "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")",
1270 resolved, rvalue);
1271 return 0;
1272 }
1273
1274 free_and_replace(*label, resolved);
1275 return 0;
1276 }
1277
1278 static int config_parse_weight(
1279 const char *unit,
1280 const char *filename,
1281 unsigned line,
1282 const char *section,
1283 unsigned section_line,
1284 const char *lvalue,
1285 int ltype,
1286 const char *rvalue,
1287 void *data,
1288 void *userdata) {
1289
1290 uint32_t *w = ASSERT_PTR(data), v;
1291 int r;
1292
1293 assert(rvalue);
1294
1295 r = safe_atou32(rvalue, &v);
1296 if (r < 0) {
1297 log_syntax(unit, LOG_WARNING, filename, line, r,
1298 "Failed to parse weight value, ignoring: %s", rvalue);
1299 return 0;
1300 }
1301
1302 if (v > 1000U*1000U) {
1303 log_syntax(unit, LOG_WARNING, filename, line, 0,
1304 "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v);
1305 return 0;
1306 }
1307
1308 *w = v;
1309 return 0;
1310 }
1311
1312 static int config_parse_size4096(
1313 const char *unit,
1314 const char *filename,
1315 unsigned line,
1316 const char *section,
1317 unsigned section_line,
1318 const char *lvalue,
1319 int ltype,
1320 const char *rvalue,
1321 void *data,
1322 void *userdata) {
1323
1324 uint64_t *sz = data, parsed;
1325 int r;
1326
1327 assert(rvalue);
1328 assert(data);
1329
1330 r = parse_size(rvalue, 1024, &parsed);
1331 if (r < 0)
1332 return log_syntax(unit, LOG_ERR, filename, line, r,
1333 "Failed to parse size value: %s", rvalue);
1334
1335 if (ltype > 0)
1336 *sz = round_up_size(parsed, 4096);
1337 else if (ltype < 0)
1338 *sz = round_down_size(parsed, 4096);
1339 else
1340 *sz = parsed;
1341
1342 if (*sz != parsed)
1343 log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " %s %" PRIu64 ", a multiple of 4096.",
1344 lvalue, parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), *sz);
1345
1346 return 0;
1347 }
1348
1349 static int config_parse_block_size(
1350 const char *unit,
1351 const char *filename,
1352 unsigned line,
1353 const char *section,
1354 unsigned section_line,
1355 const char *lvalue,
1356 int ltype,
1357 const char *rvalue,
1358 void *data,
1359 void *userdata) {
1360
1361 uint64_t *blksz = ASSERT_PTR(data), parsed;
1362 int r;
1363
1364 assert(rvalue);
1365
1366 r = parse_size(rvalue, 1024, &parsed);
1367 if (r < 0)
1368 return log_syntax(unit, LOG_ERR, filename, line, r,
1369 "Failed to parse size value: %s", rvalue);
1370
1371 if (parsed < 512 || parsed > 4096)
1372 return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL),
1373 "Value not between 512 and 4096: %s", rvalue);
1374
1375 if (!ISPOWEROF2(parsed))
1376 return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL),
1377 "Value not a power of 2: %s", rvalue);
1378
1379 *blksz = parsed;
1380 return 0;
1381 }
1382
1383 static int config_parse_fstype(
1384 const char *unit,
1385 const char *filename,
1386 unsigned line,
1387 const char *section,
1388 unsigned section_line,
1389 const char *lvalue,
1390 int ltype,
1391 const char *rvalue,
1392 void *data,
1393 void *userdata) {
1394
1395 char **fstype = ASSERT_PTR(data);
1396 const char *e;
1397
1398 assert(rvalue);
1399
1400 /* Let's provide an easy way to override the chosen fstype for file system partitions */
1401 e = secure_getenv("SYSTEMD_REPART_OVERRIDE_FSTYPE");
1402 if (e && !streq(rvalue, e)) {
1403 log_syntax(unit, LOG_NOTICE, filename, line, 0,
1404 "Overriding defined file system type '%s' with '%s'.", rvalue, e);
1405 rvalue = e;
1406 }
1407
1408 if (!filename_is_valid(rvalue))
1409 return log_syntax(unit, LOG_ERR, filename, line, 0,
1410 "File system type is not valid, refusing: %s", rvalue);
1411
1412 return free_and_strdup_warn(fstype, rvalue);
1413 }
1414
1415 static int config_parse_copy_files(
1416 const char *unit,
1417 const char *filename,
1418 unsigned line,
1419 const char *section,
1420 unsigned section_line,
1421 const char *lvalue,
1422 int ltype,
1423 const char *rvalue,
1424 void *data,
1425 void *userdata) {
1426
1427 _cleanup_free_ char *source = NULL, *buffer = NULL, *resolved_source = NULL, *resolved_target = NULL;
1428 const char *p = rvalue, *target;
1429 char ***copy_files = ASSERT_PTR(data);
1430 int r;
1431
1432 assert(rvalue);
1433
1434 r = extract_first_word(&p, &source, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS);
1435 if (r < 0)
1436 return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract source path: %s", rvalue);
1437 if (r == 0) {
1438 log_syntax(unit, LOG_WARNING, filename, line, 0, "No argument specified: %s", rvalue);
1439 return 0;
1440 }
1441
1442 r = extract_first_word(&p, &buffer, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS);
1443 if (r < 0)
1444 return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract target path: %s", rvalue);
1445 if (r == 0)
1446 target = source; /* No target, then it's the same as the source */
1447 else
1448 target = buffer;
1449
1450 if (!isempty(p))
1451 return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Too many arguments: %s", rvalue);
1452
1453 r = specifier_printf(source, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_source);
1454 if (r < 0) {
1455 log_syntax(unit, LOG_WARNING, filename, line, r,
1456 "Failed to expand specifiers in CopyFiles= source, ignoring: %s", rvalue);
1457 return 0;
1458 }
1459
1460 r = path_simplify_and_warn(resolved_source, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
1461 if (r < 0)
1462 return 0;
1463
1464 r = specifier_printf(target, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved_target);
1465 if (r < 0) {
1466 log_syntax(unit, LOG_WARNING, filename, line, r,
1467 "Failed to expand specifiers in CopyFiles= target, ignoring: %s", resolved_target);
1468 return 0;
1469 }
1470
1471 r = path_simplify_and_warn(resolved_target, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
1472 if (r < 0)
1473 return 0;
1474
1475 r = strv_consume_pair(copy_files, TAKE_PTR(resolved_source), TAKE_PTR(resolved_target));
1476 if (r < 0)
1477 return log_oom();
1478
1479 return 0;
1480 }
1481
1482 static int config_parse_exclude_files(
1483 const char *unit,
1484 const char *filename,
1485 unsigned line,
1486 const char *section,
1487 unsigned section_line,
1488 const char *lvalue,
1489 int ltype,
1490 const char *rvalue,
1491 void *data,
1492 void *userdata) {
1493 _cleanup_free_ char *resolved = NULL;
1494 char ***exclude_files = ASSERT_PTR(data);
1495 int r;
1496
1497 if (isempty(rvalue)) {
1498 *exclude_files = strv_free(*exclude_files);
1499 return 0;
1500 }
1501
1502 r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &resolved);
1503 if (r < 0) {
1504 log_syntax(unit, LOG_WARNING, filename, line, r,
1505 "Failed to expand specifiers in ExcludeFiles= path, ignoring: %s", rvalue);
1506 return 0;
1507 }
1508
1509 r = path_simplify_and_warn(resolved, PATH_CHECK_ABSOLUTE|PATH_KEEP_TRAILING_SLASH, unit, filename, line, lvalue);
1510 if (r < 0)
1511 return 0;
1512
1513 if (strv_consume(exclude_files, TAKE_PTR(resolved)) < 0)
1514 return log_oom();
1515
1516 return 0;
1517 }
1518
1519 static int config_parse_copy_blocks(
1520 const char *unit,
1521 const char *filename,
1522 unsigned line,
1523 const char *section,
1524 unsigned section_line,
1525 const char *lvalue,
1526 int ltype,
1527 const char *rvalue,
1528 void *data,
1529 void *userdata) {
1530
1531 _cleanup_free_ char *d = NULL;
1532 Partition *partition = ASSERT_PTR(data);
1533 int r;
1534
1535 assert(rvalue);
1536
1537 if (isempty(rvalue)) {
1538 partition->copy_blocks_path = mfree(partition->copy_blocks_path);
1539 partition->copy_blocks_auto = false;
1540 return 0;
1541 }
1542
1543 if (streq(rvalue, "auto")) {
1544 partition->copy_blocks_path = mfree(partition->copy_blocks_path);
1545 partition->copy_blocks_auto = true;
1546 partition->copy_blocks_root = arg_root;
1547 return 0;
1548 }
1549
1550 r = specifier_printf(rvalue, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d);
1551 if (r < 0) {
1552 log_syntax(unit, LOG_WARNING, filename, line, r,
1553 "Failed to expand specifiers in CopyBlocks= source path, ignoring: %s", rvalue);
1554 return 0;
1555 }
1556
1557 r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
1558 if (r < 0)
1559 return 0;
1560
1561 free_and_replace(partition->copy_blocks_path, d);
1562 partition->copy_blocks_auto = false;
1563 partition->copy_blocks_root = arg_root;
1564 return 0;
1565 }
1566
1567 static int config_parse_make_dirs(
1568 const char *unit,
1569 const char *filename,
1570 unsigned line,
1571 const char *section,
1572 unsigned section_line,
1573 const char *lvalue,
1574 int ltype,
1575 const char *rvalue,
1576 void *data,
1577 void *userdata) {
1578
1579 char ***sv = ASSERT_PTR(data);
1580 const char *p = ASSERT_PTR(rvalue);
1581 int r;
1582
1583 for (;;) {
1584 _cleanup_free_ char *word = NULL, *d = NULL;
1585
1586 r = extract_first_word(&p, &word, NULL, EXTRACT_UNQUOTE);
1587 if (r == -ENOMEM)
1588 return log_oom();
1589 if (r < 0) {
1590 log_syntax(unit, LOG_WARNING, filename, line, r, "Invalid syntax, ignoring: %s", rvalue);
1591 return 0;
1592 }
1593 if (r == 0)
1594 return 0;
1595
1596 r = specifier_printf(word, PATH_MAX-1, system_and_tmp_specifier_table, arg_root, NULL, &d);
1597 if (r < 0) {
1598 log_syntax(unit, LOG_WARNING, filename, line, r,
1599 "Failed to expand specifiers in MakeDirectories= parameter, ignoring: %s", word);
1600 continue;
1601 }
1602
1603 r = path_simplify_and_warn(d, PATH_CHECK_ABSOLUTE, unit, filename, line, lvalue);
1604 if (r < 0)
1605 continue;
1606
1607 r = strv_consume(sv, TAKE_PTR(d));
1608 if (r < 0)
1609 return log_oom();
1610 }
1611 }
1612
1613 static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_encrypt, encrypt_mode, EncryptMode, ENCRYPT_OFF, "Invalid encryption mode");
1614
1615 static int config_parse_gpt_flags(
1616 const char *unit,
1617 const char *filename,
1618 unsigned line,
1619 const char *section,
1620 unsigned section_line,
1621 const char *lvalue,
1622 int ltype,
1623 const char *rvalue,
1624 void *data,
1625 void *userdata) {
1626
1627 uint64_t *gpt_flags = ASSERT_PTR(data);
1628 int r;
1629
1630 assert(rvalue);
1631
1632 r = safe_atou64(rvalue, gpt_flags);
1633 if (r < 0) {
1634 log_syntax(unit, LOG_WARNING, filename, line, r,
1635 "Failed to parse Flags= value, ignoring: %s", rvalue);
1636 return 0;
1637 }
1638
1639 return 0;
1640 }
1641
1642 static int config_parse_uuid(
1643 const char *unit,
1644 const char *filename,
1645 unsigned line,
1646 const char *section,
1647 unsigned section_line,
1648 const char *lvalue,
1649 int ltype,
1650 const char *rvalue,
1651 void *data,
1652 void *userdata) {
1653
1654 Partition *partition = ASSERT_PTR(data);
1655 int r;
1656
1657 if (isempty(rvalue)) {
1658 partition->new_uuid = SD_ID128_NULL;
1659 partition->new_uuid_is_set = false;
1660 return 0;
1661 }
1662
1663 if (streq(rvalue, "null")) {
1664 partition->new_uuid = SD_ID128_NULL;
1665 partition->new_uuid_is_set = true;
1666 return 0;
1667 }
1668
1669 r = sd_id128_from_string(rvalue, &partition->new_uuid);
1670 if (r < 0) {
1671 log_syntax(unit, LOG_WARNING, filename, line, r, "Failed to parse 128-bit ID/UUID, ignoring: %s", rvalue);
1672 return 0;
1673 }
1674
1675 partition->new_uuid_is_set = true;
1676
1677 return 0;
1678 }
1679
1680 static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_verity, verity_mode, VerityMode, VERITY_OFF, "Invalid verity mode");
1681 static DEFINE_CONFIG_PARSE_ENUM_WITH_DEFAULT(config_parse_minimize, minimize_mode, MinimizeMode, MINIMIZE_OFF, "Invalid minimize mode");
1682
1683 static int partition_read_definition(Partition *p, const char *path, const char *const *conf_file_dirs) {
1684
1685 ConfigTableItem table[] = {
1686 { "Partition", "Type", config_parse_type, 0, &p->type },
1687 { "Partition", "Label", config_parse_label, 0, &p->new_label },
1688 { "Partition", "UUID", config_parse_uuid, 0, p },
1689 { "Partition", "Priority", config_parse_int32, 0, &p->priority },
1690 { "Partition", "Weight", config_parse_weight, 0, &p->weight },
1691 { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight },
1692 { "Partition", "SizeMinBytes", config_parse_size4096, -1, &p->size_min },
1693 { "Partition", "SizeMaxBytes", config_parse_size4096, 1, &p->size_max },
1694 { "Partition", "PaddingMinBytes", config_parse_size4096, -1, &p->padding_min },
1695 { "Partition", "PaddingMaxBytes", config_parse_size4096, 1, &p->padding_max },
1696 { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset },
1697 { "Partition", "CopyBlocks", config_parse_copy_blocks, 0, p },
1698 { "Partition", "Format", config_parse_fstype, 0, &p->format },
1699 { "Partition", "CopyFiles", config_parse_copy_files, 0, &p->copy_files },
1700 { "Partition", "ExcludeFiles", config_parse_exclude_files, 0, &p->exclude_files_source },
1701 { "Partition", "ExcludeFilesTarget", config_parse_exclude_files, 0, &p->exclude_files_target },
1702 { "Partition", "MakeDirectories", config_parse_make_dirs, 0, &p->make_directories },
1703 { "Partition", "Encrypt", config_parse_encrypt, 0, &p->encrypt },
1704 { "Partition", "Verity", config_parse_verity, 0, &p->verity },
1705 { "Partition", "VerityMatchKey", config_parse_string, 0, &p->verity_match_key },
1706 { "Partition", "Flags", config_parse_gpt_flags, 0, &p->gpt_flags },
1707 { "Partition", "ReadOnly", config_parse_tristate, 0, &p->read_only },
1708 { "Partition", "NoAuto", config_parse_tristate, 0, &p->no_auto },
1709 { "Partition", "GrowFileSystem", config_parse_tristate, 0, &p->growfs },
1710 { "Partition", "SplitName", config_parse_string, 0, &p->split_name_format },
1711 { "Partition", "Minimize", config_parse_minimize, 0, &p->minimize },
1712 { "Partition", "Subvolumes", config_parse_make_dirs, 0, &p->subvolumes },
1713 { "Partition", "VerityDataBlockSizeBytes", config_parse_block_size, 0, &p->verity_data_block_size },
1714 { "Partition", "VerityHashBlockSizeBytes", config_parse_block_size, 0, &p->verity_hash_block_size },
1715 {}
1716 };
1717 int r;
1718 _cleanup_free_ char *filename = NULL;
1719 const char* dropin_dirname;
1720
1721 r = path_extract_filename(path, &filename);
1722 if (r < 0)
1723 return log_error_errno(r, "Failed to extract filename from path '%s': %m", path);
1724
1725 dropin_dirname = strjoina(filename, ".d");
1726
1727 r = config_parse_many(
1728 STRV_MAKE_CONST(path),
1729 conf_file_dirs,
1730 dropin_dirname,
1731 arg_definitions ? NULL : arg_root,
1732 "Partition\0",
1733 config_item_table_lookup, table,
1734 CONFIG_PARSE_WARN,
1735 p,
1736 NULL,
1737 &p->drop_in_files);
1738 if (r < 0)
1739 return r;
1740
1741 if (partition_type_exclude(&p->type))
1742 return 0;
1743
1744 if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max)
1745 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1746 "SizeMinBytes= larger than SizeMaxBytes=, refusing.");
1747
1748 if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max)
1749 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1750 "PaddingMinBytes= larger than PaddingMaxBytes=, refusing.");
1751
1752 if (sd_id128_is_null(p->type.uuid))
1753 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1754 "Type= not defined, refusing.");
1755
1756 if ((p->copy_blocks_path || p->copy_blocks_auto) &&
1757 (p->format || !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)))
1758 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1759 "Format=/CopyFiles=/MakeDirectories= and CopyBlocks= cannot be combined, refusing.");
1760
1761 if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && streq_ptr(p->format, "swap"))
1762 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1763 "Format=swap and CopyFiles= cannot be combined, refusing.");
1764
1765 if (!p->format) {
1766 const char *format = NULL;
1767
1768 if (!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories) || (p->encrypt != ENCRYPT_OFF && !(p->copy_blocks_path || p->copy_blocks_auto)))
1769 /* Pick "vfat" as file system for esp and xbootldr partitions, otherwise default to "ext4". */
1770 format = IN_SET(p->type.designator, PARTITION_ESP, PARTITION_XBOOTLDR) ? "vfat" : "ext4";
1771 else if (p->type.designator == PARTITION_SWAP)
1772 format = "swap";
1773
1774 if (format) {
1775 p->format = strdup(format);
1776 if (!p->format)
1777 return log_oom();
1778 }
1779 }
1780
1781 if (p->minimize != MINIMIZE_OFF && !p->format && p->verity != VERITY_HASH)
1782 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1783 "Minimize= can only be enabled if Format= or Verity=hash are set");
1784
1785 if (p->minimize == MINIMIZE_BEST && (p->format && !fstype_is_ro(p->format)) && p->verity != VERITY_HASH)
1786 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1787 "Minimize=best can only be used with read-only filesystems or Verity=hash");
1788
1789 if ((!strv_isempty(p->copy_files) || !strv_isempty(p->make_directories)) && !mkfs_supports_root_option(p->format) && geteuid() != 0)
1790 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EPERM),
1791 "Need to be root to populate %s filesystems with CopyFiles=/MakeDirectories=",
1792 p->format);
1793
1794 if (p->format && fstype_is_ro(p->format) && strv_isempty(p->copy_files) && strv_isempty(p->make_directories))
1795 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1796 "Cannot format %s filesystem without source files, refusing", p->format);
1797
1798 if (p->verity != VERITY_OFF || p->encrypt != ENCRYPT_OFF) {
1799 r = dlopen_cryptsetup();
1800 if (r < 0)
1801 return log_syntax(NULL, LOG_ERR, path, 1, r,
1802 "libcryptsetup not found, Verity=/Encrypt= are not supported: %m");
1803 }
1804
1805 if (p->verity != VERITY_OFF && !p->verity_match_key)
1806 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1807 "VerityMatchKey= must be set if Verity=%s", verity_mode_to_string(p->verity));
1808
1809 if (p->verity == VERITY_OFF && p->verity_match_key)
1810 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1811 "VerityMatchKey= can only be set if Verity= is not \"%s\"",
1812 verity_mode_to_string(p->verity));
1813
1814 if (IN_SET(p->verity, VERITY_HASH, VERITY_SIG) &&
1815 (p->copy_files || p->copy_blocks_path || p->copy_blocks_auto || p->format || p->make_directories))
1816 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1817 "CopyBlocks=/CopyFiles=/Format=/MakeDirectories= cannot be used with Verity=%s",
1818 verity_mode_to_string(p->verity));
1819
1820 if (p->verity != VERITY_OFF && p->encrypt != ENCRYPT_OFF)
1821 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1822 "Encrypting verity hash/data partitions is not supported");
1823
1824 if (p->verity == VERITY_SIG && !arg_private_key)
1825 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1826 "Verity signature partition requested but no private key provided (--private-key=)");
1827
1828 if (p->verity == VERITY_SIG && !arg_certificate)
1829 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1830 "Verity signature partition requested but no PEM certificate provided (--certificate=)");
1831
1832 if (p->verity == VERITY_SIG && (p->size_min != UINT64_MAX || p->size_max != UINT64_MAX))
1833 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1834 "SizeMinBytes=/SizeMaxBytes= cannot be used with Verity=%s",
1835 verity_mode_to_string(p->verity));
1836
1837 if (!strv_isempty(p->subvolumes) && arg_offline > 0)
1838 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EOPNOTSUPP),
1839 "Subvolumes= cannot be used with --offline=yes");
1840
1841 /* Verity partitions are read only, let's imply the RO flag hence, unless explicitly configured otherwise. */
1842 if ((IN_SET(p->type.designator,
1843 PARTITION_ROOT_VERITY,
1844 PARTITION_USR_VERITY) || p->verity == VERITY_DATA) && p->read_only < 0)
1845 p->read_only = true;
1846
1847 /* Default to "growfs" on, unless read-only */
1848 if (gpt_partition_type_knows_growfs(p->type) &&
1849 p->read_only <= 0)
1850 p->growfs = true;
1851
1852 if (!p->split_name_format) {
1853 char *s = strdup("%t");
1854 if (!s)
1855 return log_oom();
1856
1857 p->split_name_format = s;
1858 } else if (streq(p->split_name_format, "-"))
1859 p->split_name_format = mfree(p->split_name_format);
1860
1861 return 1;
1862 }
1863
1864 static int find_verity_sibling(Context *context, Partition *p, VerityMode mode, Partition **ret) {
1865 Partition *s = NULL;
1866
1867 assert(p);
1868 assert(p->verity != VERITY_OFF);
1869 assert(p->verity_match_key);
1870 assert(mode != VERITY_OFF);
1871 assert(p->verity != mode);
1872 assert(ret);
1873
1874 /* Try to find the matching sibling partition of the given type for a verity partition. For a data
1875 * partition, this is the corresponding hash partition with the same verity name (and vice versa for
1876 * the hash partition). */
1877
1878 LIST_FOREACH(partitions, q, context->partitions) {
1879 if (p == q)
1880 continue;
1881
1882 if (q->verity != mode)
1883 continue;
1884
1885 assert(q->verity_match_key);
1886
1887 if (!streq(p->verity_match_key, q->verity_match_key))
1888 continue;
1889
1890 if (s)
1891 return -ENOTUNIQ;
1892
1893 s = q;
1894 }
1895
1896 if (!s)
1897 return -ENXIO;
1898
1899 *ret = s;
1900
1901 return 0;
1902 }
1903
1904 static int context_open_and_lock_backing_fd(const char *node, int operation, int *backing_fd) {
1905 _cleanup_close_ int fd = -EBADF;
1906
1907 assert(node);
1908 assert(backing_fd);
1909
1910 if (*backing_fd >= 0)
1911 return 0;
1912
1913 fd = open(node, O_RDONLY|O_CLOEXEC);
1914 if (fd < 0)
1915 return log_error_errno(errno, "Failed to open device '%s': %m", node);
1916
1917 /* Tell udev not to interfere while we are processing the device */
1918 if (flock(fd, operation) < 0)
1919 return log_error_errno(errno, "Failed to lock device '%s': %m", node);
1920
1921 log_debug("Device %s opened and locked.", node);
1922 *backing_fd = TAKE_FD(fd);
1923 return 1;
1924 }
1925
1926 static int determine_current_padding(
1927 struct fdisk_context *c,
1928 struct fdisk_table *t,
1929 struct fdisk_partition *p,
1930 uint64_t secsz,
1931 uint64_t grainsz,
1932 uint64_t *ret) {
1933
1934 size_t n_partitions;
1935 uint64_t offset, next = UINT64_MAX;
1936
1937 assert(c);
1938 assert(t);
1939 assert(p);
1940 assert(ret);
1941
1942 if (!fdisk_partition_has_end(p))
1943 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!");
1944
1945 offset = fdisk_partition_get_end(p);
1946 assert(offset < UINT64_MAX);
1947 offset++; /* The end is one sector before the next partition or padding. */
1948 assert(offset < UINT64_MAX / secsz);
1949 offset *= secsz;
1950
1951 n_partitions = fdisk_table_get_nents(t);
1952 for (size_t i = 0; i < n_partitions; i++) {
1953 struct fdisk_partition *q;
1954 uint64_t start;
1955
1956 q = fdisk_table_get_partition(t, i);
1957 if (!q)
1958 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
1959
1960 if (fdisk_partition_is_used(q) <= 0)
1961 continue;
1962
1963 if (!fdisk_partition_has_start(q))
1964 continue;
1965
1966 start = fdisk_partition_get_start(q);
1967 assert(start < UINT64_MAX / secsz);
1968 start *= secsz;
1969
1970 if (start >= offset && (next == UINT64_MAX || next > start))
1971 next = start;
1972 }
1973
1974 if (next == UINT64_MAX) {
1975 /* No later partition? In that case check the end of the usable area */
1976 next = fdisk_get_last_lba(c);
1977 assert(next < UINT64_MAX);
1978 next++; /* The last LBA is one sector before the end */
1979
1980 assert(next < UINT64_MAX / secsz);
1981 next *= secsz;
1982
1983 if (offset > next)
1984 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
1985 }
1986
1987 assert(next >= offset);
1988 offset = round_up_size(offset, grainsz);
1989 next = round_down_size(next, grainsz);
1990
1991 *ret = LESS_BY(next, offset); /* Saturated subtraction, rounding might have fucked things up */
1992 return 0;
1993 }
1994
1995 static int context_copy_from_one(Context *context, const char *src) {
1996 _cleanup_close_ int fd = -EBADF;
1997 _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
1998 _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
1999 Partition *last = NULL;
2000 unsigned long secsz, grainsz;
2001 size_t n_partitions;
2002 int r;
2003
2004 assert(src);
2005
2006 r = context_open_and_lock_backing_fd(src, LOCK_SH, &fd);
2007 if (r < 0)
2008 return r;
2009
2010 r = fd_verify_regular(fd);
2011 if (r < 0)
2012 return log_error_errno(r, "%s is not a file: %m", src);
2013
2014 r = fdisk_new_context_at(fd, /* path = */ NULL, /* read_only = */ true, /* sector_size = */ UINT32_MAX, &c);
2015 if (r < 0)
2016 return log_error_errno(r, "Failed to create fdisk context: %m");
2017
2018 secsz = fdisk_get_sector_size(c);
2019 grainsz = fdisk_get_grain_size(c);
2020
2021 /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */
2022 if (secsz < 512 || !ISPOWEROF2(secsz))
2023 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz);
2024
2025 if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
2026 return log_error_errno(SYNTHETIC_ERRNO(EHWPOISON), "Cannot copy from disk %s with no GPT disk label.", src);
2027
2028 r = fdisk_get_partitions(c, &t);
2029 if (r < 0)
2030 return log_error_errno(r, "Failed to acquire partition table: %m");
2031
2032 n_partitions = fdisk_table_get_nents(t);
2033 for (size_t i = 0; i < n_partitions; i++) {
2034 _cleanup_(partition_freep) Partition *np = NULL;
2035 _cleanup_free_ char *label_copy = NULL;
2036 struct fdisk_partition *p;
2037 const char *label;
2038 uint64_t sz, start, padding;
2039 sd_id128_t ptid, id;
2040 GptPartitionType type;
2041
2042 p = fdisk_table_get_partition(t, i);
2043 if (!p)
2044 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
2045
2046 if (fdisk_partition_is_used(p) <= 0)
2047 continue;
2048
2049 if (fdisk_partition_has_start(p) <= 0 ||
2050 fdisk_partition_has_size(p) <= 0 ||
2051 fdisk_partition_has_partno(p) <= 0)
2052 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
2053
2054 r = fdisk_partition_get_type_as_id128(p, &ptid);
2055 if (r < 0)
2056 return log_error_errno(r, "Failed to query partition type UUID: %m");
2057
2058 type = gpt_partition_type_from_uuid(ptid);
2059
2060 r = fdisk_partition_get_uuid_as_id128(p, &id);
2061 if (r < 0)
2062 return log_error_errno(r, "Failed to query partition UUID: %m");
2063
2064 label = fdisk_partition_get_name(p);
2065 if (!isempty(label)) {
2066 label_copy = strdup(label);
2067 if (!label_copy)
2068 return log_oom();
2069 }
2070
2071 sz = fdisk_partition_get_size(p);
2072 assert(sz <= UINT64_MAX/secsz);
2073 sz *= secsz;
2074
2075 start = fdisk_partition_get_start(p);
2076 assert(start <= UINT64_MAX/secsz);
2077 start *= secsz;
2078
2079 if (partition_type_exclude(&type))
2080 continue;
2081
2082 np = partition_new();
2083 if (!np)
2084 return log_oom();
2085
2086 np->type = type;
2087 np->new_uuid = id;
2088 np->new_uuid_is_set = true;
2089 np->size_min = np->size_max = sz;
2090 np->new_label = TAKE_PTR(label_copy);
2091
2092 np->definition_path = strdup(src);
2093 if (!np->definition_path)
2094 return log_oom();
2095
2096 r = determine_current_padding(c, t, p, secsz, grainsz, &padding);
2097 if (r < 0)
2098 return r;
2099
2100 np->padding_min = np->padding_max = padding;
2101
2102 np->copy_blocks_path = strdup(src);
2103 if (!np->copy_blocks_path)
2104 return log_oom();
2105
2106 np->copy_blocks_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
2107 if (np->copy_blocks_fd < 0)
2108 return log_error_errno(r, "Failed to duplicate file descriptor of %s: %m", src);
2109
2110 np->copy_blocks_offset = start;
2111 np->copy_blocks_size = sz;
2112
2113 r = fdisk_partition_get_attrs_as_uint64(p, &np->gpt_flags);
2114 if (r < 0)
2115 return log_error_errno(r, "Failed to get partition flags: %m");
2116
2117 LIST_INSERT_AFTER(partitions, context->partitions, last, np);
2118 last = TAKE_PTR(np);
2119 context->n_partitions++;
2120 }
2121
2122 return 0;
2123 }
2124
2125 static int context_copy_from(Context *context) {
2126 int r;
2127
2128 assert(context);
2129
2130 STRV_FOREACH(src, arg_copy_from) {
2131 r = context_copy_from_one(context, *src);
2132 if (r < 0)
2133 return r;
2134 }
2135
2136 return 0;
2137 }
2138
2139 static int context_read_definitions(Context *context) {
2140 _cleanup_strv_free_ char **files = NULL;
2141 Partition *last = LIST_FIND_TAIL(partitions, context->partitions);
2142 const char *const *dirs;
2143 int r;
2144
2145 assert(context);
2146
2147 dirs = (const char* const*) (arg_definitions ?: CONF_PATHS_STRV("repart.d"));
2148
2149 r = conf_files_list_strv(&files, ".conf", arg_definitions ? NULL : arg_root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, dirs);
2150 if (r < 0)
2151 return log_error_errno(r, "Failed to enumerate *.conf files: %m");
2152
2153 STRV_FOREACH(f, files) {
2154 _cleanup_(partition_freep) Partition *p = NULL;
2155
2156 p = partition_new();
2157 if (!p)
2158 return log_oom();
2159
2160 p->definition_path = strdup(*f);
2161 if (!p->definition_path)
2162 return log_oom();
2163
2164 r = partition_read_definition(p, *f, dirs);
2165 if (r < 0)
2166 return r;
2167 if (r == 0)
2168 continue;
2169
2170 LIST_INSERT_AFTER(partitions, context->partitions, last, p);
2171 last = TAKE_PTR(p);
2172 context->n_partitions++;
2173 }
2174
2175 /* Check that each configured verity hash/data partition has a matching verity data/hash partition. */
2176
2177 LIST_FOREACH(partitions, p, context->partitions) {
2178 if (p->verity == VERITY_OFF)
2179 continue;
2180
2181 for (VerityMode mode = VERITY_OFF + 1; mode < _VERITY_MODE_MAX; mode++) {
2182 Partition *q = NULL;
2183
2184 if (p->verity == mode)
2185 continue;
2186
2187 if (p->siblings[mode])
2188 continue;
2189
2190 r = find_verity_sibling(context, p, mode, &q);
2191 if (r == -ENXIO) {
2192 if (mode != VERITY_SIG)
2193 return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
2194 "Missing verity %s partition for verity %s partition with VerityMatchKey=%s",
2195 verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key);
2196 } else if (r == -ENOTUNIQ)
2197 return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
2198 "Multiple verity %s partitions found for verity %s partition with VerityMatchKey=%s",
2199 verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key);
2200 else if (r < 0)
2201 return log_syntax(NULL, LOG_ERR, p->definition_path, 1, r,
2202 "Failed to find verity %s partition for verity %s partition with VerityMatchKey=%s",
2203 verity_mode_to_string(mode), verity_mode_to_string(p->verity), p->verity_match_key);
2204
2205 if (q) {
2206 if (q->priority != p->priority)
2207 return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
2208 "Priority mismatch (%i != %i) for verity sibling partitions with VerityMatchKey=%s",
2209 p->priority, q->priority, p->verity_match_key);
2210
2211 p->siblings[mode] = q;
2212 }
2213 }
2214 }
2215
2216 LIST_FOREACH(partitions, p, context->partitions) {
2217 Partition *dp;
2218
2219 if (p->verity != VERITY_HASH)
2220 continue;
2221
2222 if (p->minimize == MINIMIZE_OFF)
2223 continue;
2224
2225 assert_se(dp = p->siblings[VERITY_DATA]);
2226
2227 if (dp->minimize == MINIMIZE_OFF && !(dp->copy_blocks_path || dp->copy_blocks_auto))
2228 return log_syntax(NULL, LOG_ERR, p->definition_path, 1, SYNTHETIC_ERRNO(EINVAL),
2229 "Minimize= set for verity hash partition but data partition does "
2230 "not set CopyBlocks= or Minimize=");
2231
2232 }
2233
2234 return 0;
2235 }
2236
2237 static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) {
2238 _cleanup_free_ char *ids = NULL;
2239 int r;
2240
2241 if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING)
2242 return -EINVAL;
2243
2244 ids = new(char, SD_ID128_UUID_STRING_MAX);
2245 if (!ids)
2246 return -ENOMEM;
2247
2248 r = fdisk_ask_string_set_result(ask, sd_id128_to_uuid_string(*(sd_id128_t*) data, ids));
2249 if (r < 0)
2250 return r;
2251
2252 TAKE_PTR(ids);
2253 return 0;
2254 }
2255
2256 static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) {
2257 int r;
2258
2259 r = fdisk_set_ask(c, fdisk_ask_cb, &id);
2260 if (r < 0)
2261 return r;
2262
2263 r = fdisk_set_disklabel_id(c);
2264 if (r < 0)
2265 return r;
2266
2267 return fdisk_set_ask(c, NULL, NULL);
2268 }
2269
2270 static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) {
2271 union {
2272 uint8_t md[SHA256_DIGEST_SIZE];
2273 sd_id128_t id;
2274 } result;
2275
2276 assert(token);
2277 assert(ret);
2278
2279 /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we
2280 * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the
2281 * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's
2282 * the machine ID we don't want to leak. */
2283
2284 hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), result.md);
2285
2286 /* Take the first half, mark it as v4 UUID */
2287 assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
2288 *ret = id128_make_v4_uuid(result.id);
2289 return 0;
2290 }
2291
2292 static void derive_salt(sd_id128_t base, const char *token, uint8_t ret[static SHA256_DIGEST_SIZE]) {
2293 assert(token);
2294
2295 hmac_sha256(base.bytes, sizeof(base.bytes), token, strlen(token), ret);
2296 }
2297
2298 static int context_load_partition_table(Context *context) {
2299 _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
2300 _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
2301 uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors;
2302 _cleanup_free_ char *disk_uuid_string = NULL;
2303 bool from_scratch = false;
2304 sd_id128_t disk_uuid;
2305 size_t n_partitions;
2306 unsigned long secsz;
2307 uint64_t grainsz, fs_secsz = DEFAULT_FILESYSTEM_SECTOR_SIZE;
2308 int r;
2309
2310 assert(context);
2311 assert(!context->fdisk_context);
2312 assert(!context->free_areas);
2313 assert(context->start == UINT64_MAX);
2314 assert(context->end == UINT64_MAX);
2315 assert(context->total == UINT64_MAX);
2316
2317 c = fdisk_new_context();
2318 if (!c)
2319 return log_oom();
2320
2321 if (arg_sector_size > 0) {
2322 fs_secsz = arg_sector_size;
2323 r = fdisk_save_user_sector_size(c, /* phy= */ 0, arg_sector_size);
2324 } else {
2325 uint32_t ssz;
2326 struct stat st;
2327
2328 r = context_open_and_lock_backing_fd(context->node, arg_dry_run ? LOCK_SH : LOCK_EX,
2329 &context->backing_fd);
2330 if (r < 0)
2331 return r;
2332
2333 if (fstat(context->backing_fd, &st) < 0)
2334 return log_error_errno(errno, "Failed to stat %s: %m", context->node);
2335
2336 /* Auto-detect sector size if not specified. */
2337 r = probe_sector_size_prefer_ioctl(context->backing_fd, &ssz);
2338 if (r < 0)
2339 return log_error_errno(r, "Failed to probe sector size of '%s': %m", context->node);
2340
2341 /* If we found the sector size and we're operating on a block device, use it as the file
2342 * system sector size as well, as we know its the sector size of the actual block device and
2343 * not just the offset at which we found the GPT header. */
2344 if (r > 0 && S_ISBLK(st.st_mode))
2345 fs_secsz = ssz;
2346
2347 r = fdisk_save_user_sector_size(c, /* phy= */ 0, ssz);
2348 }
2349 if (r < 0)
2350 return log_error_errno(r, "Failed to set sector size: %m");
2351
2352 /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the
2353 * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */
2354 r = fdisk_assign_device(
2355 c,
2356 context->backing_fd >= 0 ? FORMAT_PROC_FD_PATH(context->backing_fd) : context->node,
2357 arg_dry_run);
2358 if (r == -EINVAL && arg_size_auto) {
2359 struct stat st;
2360
2361 /* libfdisk returns EINVAL if opening a file of size zero. Let's check for that, and accept
2362 * it if automatic sizing is requested. */
2363
2364 if (context->backing_fd < 0)
2365 r = stat(context->node, &st);
2366 else
2367 r = fstat(context->backing_fd, &st);
2368 if (r < 0)
2369 return log_error_errno(errno, "Failed to stat block device '%s': %m", context->node);
2370
2371 if (S_ISREG(st.st_mode) && st.st_size == 0) {
2372 /* Use the fallback values if we have no better idea */
2373 context->sector_size = fdisk_get_sector_size(c);
2374 context->fs_sector_size = fs_secsz;
2375 context->grain_size = 4096;
2376 return /* from_scratch = */ true;
2377 }
2378
2379 r = -EINVAL;
2380 }
2381 if (r < 0)
2382 return log_error_errno(r, "Failed to open device '%s': %m", context->node);
2383
2384 if (context->backing_fd < 0) {
2385 /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */
2386 r = context_open_and_lock_backing_fd(FORMAT_PROC_FD_PATH(fdisk_get_devfd(c)),
2387 arg_dry_run ? LOCK_SH : LOCK_EX,
2388 &context->backing_fd);
2389 if (r < 0)
2390 return r;
2391 }
2392
2393 /* The offsets/sizes libfdisk returns to us will be in multiple of the sector size of the
2394 * device. This is typically 512, and sometimes 4096. Let's query libfdisk once for it, and then use
2395 * it for all our needs. Note that the values we use ourselves always are in bytes though, thus mean
2396 * the same thing universally. Also note that regardless what kind of sector size is in use we'll
2397 * place partitions at multiples of 4K. */
2398 secsz = fdisk_get_sector_size(c);
2399
2400 /* Insist on a power of two, and that it's a multiple of 512, i.e. the traditional sector size. */
2401 if (secsz < 512 || !ISPOWEROF2(secsz))
2402 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Sector size %lu is not a power of two larger than 512? Refusing.", secsz);
2403
2404 /* Use at least 4K, and ensure it's a multiple of the sector size, regardless if that is smaller or
2405 * larger */
2406 grainsz = secsz < 4096 ? 4096 : secsz;
2407
2408 log_debug("Sector size of device is %lu bytes. Using grain size of %" PRIu64 ".", secsz, grainsz);
2409
2410 switch (arg_empty) {
2411
2412 case EMPTY_REFUSE:
2413 /* Refuse empty disks, insist on an existing GPT partition table */
2414 if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
2415 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", context->node);
2416
2417 break;
2418
2419 case EMPTY_REQUIRE:
2420 /* Require an empty disk, refuse any existing partition table */
2421 r = fdisk_has_label(c);
2422 if (r < 0)
2423 return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", context->node);
2424 if (r > 0)
2425 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", context->node);
2426
2427 from_scratch = true;
2428 break;
2429
2430 case EMPTY_ALLOW:
2431 /* Allow both an empty disk and an existing partition table, but only GPT */
2432 r = fdisk_has_label(c);
2433 if (r < 0)
2434 return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", context->node);
2435 if (r > 0) {
2436 if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
2437 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", context->node);
2438 } else
2439 from_scratch = true;
2440
2441 break;
2442
2443 case EMPTY_FORCE:
2444 case EMPTY_CREATE:
2445 /* Always reinitiaize the disk, don't consider what there was on the disk before */
2446 from_scratch = true;
2447 break;
2448
2449 default:
2450 assert_not_reached();
2451 }
2452
2453 if (from_scratch) {
2454 r = fdisk_create_disklabel(c, "gpt");
2455 if (r < 0)
2456 return log_error_errno(r, "Failed to create GPT disk label: %m");
2457
2458 r = derive_uuid(context->seed, "disk-uuid", &disk_uuid);
2459 if (r < 0)
2460 return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
2461
2462 r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid);
2463 if (r < 0)
2464 return log_error_errno(r, "Failed to set GPT disk label: %m");
2465
2466 goto add_initial_free_area;
2467 }
2468
2469 r = fdisk_get_disklabel_id(c, &disk_uuid_string);
2470 if (r < 0)
2471 return log_error_errno(r, "Failed to get current GPT disk label UUID: %m");
2472
2473 r = id128_from_string_nonzero(disk_uuid_string, &disk_uuid);
2474 if (r == -ENXIO) {
2475 r = derive_uuid(context->seed, "disk-uuid", &disk_uuid);
2476 if (r < 0)
2477 return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
2478
2479 r = fdisk_set_disklabel_id(c);
2480 if (r < 0)
2481 return log_error_errno(r, "Failed to set GPT disk label: %m");
2482 } else if (r < 0)
2483 return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m");
2484
2485 r = fdisk_get_partitions(c, &t);
2486 if (r < 0)
2487 return log_error_errno(r, "Failed to acquire partition table: %m");
2488
2489 n_partitions = fdisk_table_get_nents(t);
2490 for (size_t i = 0; i < n_partitions; i++) {
2491 _cleanup_free_ char *label_copy = NULL;
2492 Partition *last = NULL;
2493 struct fdisk_partition *p;
2494 const char *label;
2495 uint64_t sz, start;
2496 bool found = false;
2497 sd_id128_t ptid, id;
2498 size_t partno;
2499
2500 p = fdisk_table_get_partition(t, i);
2501 if (!p)
2502 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
2503
2504 if (fdisk_partition_is_used(p) <= 0)
2505 continue;
2506
2507 if (fdisk_partition_has_start(p) <= 0 ||
2508 fdisk_partition_has_size(p) <= 0 ||
2509 fdisk_partition_has_partno(p) <= 0)
2510 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
2511
2512 r = fdisk_partition_get_type_as_id128(p, &ptid);
2513 if (r < 0)
2514 return log_error_errno(r, "Failed to query partition type UUID: %m");
2515
2516 r = fdisk_partition_get_uuid_as_id128(p, &id);
2517 if (r < 0)
2518 return log_error_errno(r, "Failed to query partition UUID: %m");
2519
2520 label = fdisk_partition_get_name(p);
2521 if (!isempty(label)) {
2522 label_copy = strdup(label);
2523 if (!label_copy)
2524 return log_oom();
2525 }
2526
2527 sz = fdisk_partition_get_size(p);
2528 assert(sz <= UINT64_MAX/secsz);
2529 sz *= secsz;
2530
2531 start = fdisk_partition_get_start(p);
2532 assert(start <= UINT64_MAX/secsz);
2533 start *= secsz;
2534
2535 partno = fdisk_partition_get_partno(p);
2536
2537 if (left_boundary == UINT64_MAX || left_boundary > start)
2538 left_boundary = start;
2539
2540 /* Assign this existing partition to the first partition of the right type that doesn't have
2541 * an existing one assigned yet. */
2542 LIST_FOREACH(partitions, pp, context->partitions) {
2543 last = pp;
2544
2545 if (!sd_id128_equal(pp->type.uuid, ptid))
2546 continue;
2547
2548 if (!pp->current_partition) {
2549 pp->current_uuid = id;
2550 pp->current_size = sz;
2551 pp->offset = start;
2552 pp->partno = partno;
2553 pp->current_label = TAKE_PTR(label_copy);
2554
2555 pp->current_partition = p;
2556 fdisk_ref_partition(p);
2557
2558 r = determine_current_padding(c, t, p, secsz, grainsz, &pp->current_padding);
2559 if (r < 0)
2560 return r;
2561
2562 if (pp->current_padding > 0) {
2563 r = context_add_free_area(context, pp->current_padding, pp);
2564 if (r < 0)
2565 return r;
2566 }
2567
2568 found = true;
2569 break;
2570 }
2571 }
2572
2573 /* If we have no matching definition, create a new one. */
2574 if (!found) {
2575 _cleanup_(partition_freep) Partition *np = NULL;
2576
2577 np = partition_new();
2578 if (!np)
2579 return log_oom();
2580
2581 np->current_uuid = id;
2582 np->type = gpt_partition_type_from_uuid(ptid);
2583 np->current_size = sz;
2584 np->offset = start;
2585 np->partno = partno;
2586 np->current_label = TAKE_PTR(label_copy);
2587
2588 np->current_partition = p;
2589 fdisk_ref_partition(p);
2590
2591 r = determine_current_padding(c, t, p, secsz, grainsz, &np->current_padding);
2592 if (r < 0)
2593 return r;
2594
2595 if (np->current_padding > 0) {
2596 r = context_add_free_area(context, np->current_padding, np);
2597 if (r < 0)
2598 return r;
2599 }
2600
2601 LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np));
2602 context->n_partitions++;
2603 }
2604 }
2605
2606 add_initial_free_area:
2607 nsectors = fdisk_get_nsectors(c);
2608 assert(nsectors <= UINT64_MAX/secsz);
2609 nsectors *= secsz;
2610
2611 first_lba = fdisk_get_first_lba(c);
2612 assert(first_lba <= UINT64_MAX/secsz);
2613 first_lba *= secsz;
2614
2615 last_lba = fdisk_get_last_lba(c);
2616 assert(last_lba < UINT64_MAX);
2617 last_lba++;
2618 assert(last_lba <= UINT64_MAX/secsz);
2619 last_lba *= secsz;
2620
2621 assert(last_lba >= first_lba);
2622
2623 if (left_boundary == UINT64_MAX) {
2624 /* No partitions at all? Then the whole disk is up for grabs. */
2625
2626 first_lba = round_up_size(first_lba, grainsz);
2627 last_lba = round_down_size(last_lba, grainsz);
2628
2629 if (last_lba > first_lba) {
2630 r = context_add_free_area(context, last_lba - first_lba, NULL);
2631 if (r < 0)
2632 return r;
2633 }
2634 } else {
2635 /* Add space left of first partition */
2636 assert(left_boundary >= first_lba);
2637
2638 first_lba = round_up_size(first_lba, grainsz);
2639 left_boundary = round_down_size(left_boundary, grainsz);
2640 last_lba = round_down_size(last_lba, grainsz);
2641
2642 if (left_boundary > first_lba) {
2643 r = context_add_free_area(context, left_boundary - first_lba, NULL);
2644 if (r < 0)
2645 return r;
2646 }
2647 }
2648
2649 context->start = first_lba;
2650 context->end = last_lba;
2651 context->total = nsectors;
2652 context->sector_size = secsz;
2653 context->fs_sector_size = fs_secsz;
2654 context->grain_size = grainsz;
2655 context->fdisk_context = TAKE_PTR(c);
2656
2657 return from_scratch;
2658 }
2659
2660 static void context_unload_partition_table(Context *context) {
2661 assert(context);
2662
2663 LIST_FOREACH(partitions, p, context->partitions) {
2664
2665 /* Entirely remove partitions that have no configuration */
2666 if (PARTITION_IS_FOREIGN(p)) {
2667 partition_unlink_and_free(context, p);
2668 continue;
2669 }
2670
2671 /* Otherwise drop all data we read off the block device and everything we might have
2672 * calculated based on it */
2673
2674 p->dropped = false;
2675 p->current_size = UINT64_MAX;
2676 p->new_size = UINT64_MAX;
2677 p->current_padding = UINT64_MAX;
2678 p->new_padding = UINT64_MAX;
2679 p->partno = UINT64_MAX;
2680 p->offset = UINT64_MAX;
2681
2682 if (p->current_partition) {
2683 fdisk_unref_partition(p->current_partition);
2684 p->current_partition = NULL;
2685 }
2686
2687 if (p->new_partition) {
2688 fdisk_unref_partition(p->new_partition);
2689 p->new_partition = NULL;
2690 }
2691
2692 p->padding_area = NULL;
2693 p->allocated_to_area = NULL;
2694
2695 p->current_uuid = SD_ID128_NULL;
2696 p->current_label = mfree(p->current_label);
2697 }
2698
2699 context->start = UINT64_MAX;
2700 context->end = UINT64_MAX;
2701 context->total = UINT64_MAX;
2702
2703 if (context->fdisk_context) {
2704 fdisk_unref_context(context->fdisk_context);
2705 context->fdisk_context = NULL;
2706 }
2707
2708 context_free_free_areas(context);
2709 }
2710
2711 static int format_size_change(uint64_t from, uint64_t to, char **ret) {
2712 char *t;
2713
2714 if (from != UINT64_MAX) {
2715 if (from == to || to == UINT64_MAX)
2716 t = strdup(FORMAT_BYTES(from));
2717 else
2718 t = strjoin(FORMAT_BYTES(from), " ", special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to));
2719 } else if (to != UINT64_MAX)
2720 t = strjoin(special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), " ", FORMAT_BYTES(to));
2721 else {
2722 *ret = NULL;
2723 return 0;
2724 }
2725
2726 if (!t)
2727 return log_oom();
2728
2729 *ret = t;
2730 return 1;
2731 }
2732
2733 static const char *partition_label(const Partition *p) {
2734 assert(p);
2735
2736 if (p->new_label)
2737 return p->new_label;
2738
2739 if (p->current_label)
2740 return p->current_label;
2741
2742 return gpt_partition_type_uuid_to_string(p->type.uuid);
2743 }
2744
2745 static int context_dump_partitions(Context *context) {
2746 _cleanup_(table_unrefp) Table *t = NULL;
2747 uint64_t sum_padding = 0, sum_size = 0;
2748 int r;
2749 const size_t roothash_col = 14, dropin_files_col = 15, split_path_col = 16;
2750 bool has_roothash = false, has_dropin_files = false, has_split_path = false;
2751
2752 if ((arg_json_format_flags & JSON_FORMAT_OFF) && context->n_partitions == 0) {
2753 log_info("Empty partition table.");
2754 return 0;
2755 }
2756
2757 t = table_new("type",
2758 "label",
2759 "uuid",
2760 "partno",
2761 "file",
2762 "node",
2763 "offset",
2764 "old size",
2765 "raw size",
2766 "size",
2767 "old padding",
2768 "raw padding",
2769 "padding",
2770 "activity",
2771 "roothash",
2772 "drop-in files",
2773 "split path");
2774 if (!t)
2775 return log_oom();
2776
2777 if (!DEBUG_LOGGING) {
2778 if (arg_json_format_flags & JSON_FORMAT_OFF)
2779 (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4,
2780 (size_t) 8, (size_t) 9, (size_t) 12, roothash_col, dropin_files_col,
2781 split_path_col);
2782 else
2783 (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4,
2784 (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 8, (size_t) 10,
2785 (size_t) 11, (size_t) 13, roothash_col, dropin_files_col,
2786 split_path_col);
2787 }
2788
2789 (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100);
2790 (void) table_set_align_percent(t, table_get_cell(t, 0, 6), 100);
2791 (void) table_set_align_percent(t, table_get_cell(t, 0, 7), 100);
2792 (void) table_set_align_percent(t, table_get_cell(t, 0, 8), 100);
2793 (void) table_set_align_percent(t, table_get_cell(t, 0, 9), 100);
2794 (void) table_set_align_percent(t, table_get_cell(t, 0, 10), 100);
2795 (void) table_set_align_percent(t, table_get_cell(t, 0, 11), 100);
2796
2797 LIST_FOREACH(partitions, p, context->partitions) {
2798 _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL, *rh = NULL;
2799 char uuid_buffer[SD_ID128_UUID_STRING_MAX];
2800 const char *label, *activity = NULL;
2801
2802 if (p->dropped)
2803 continue;
2804
2805 if (p->current_size == UINT64_MAX)
2806 activity = "create";
2807 else if (p->current_size != p->new_size)
2808 activity = "resize";
2809
2810 label = partition_label(p);
2811 partname = p->partno != UINT64_MAX ? fdisk_partname(context->node, p->partno+1) : NULL;
2812
2813 r = format_size_change(p->current_size, p->new_size, &size_change);
2814 if (r < 0)
2815 return r;
2816
2817 r = format_size_change(p->current_padding, p->new_padding, &padding_change);
2818 if (r < 0)
2819 return r;
2820
2821 if (p->new_size != UINT64_MAX)
2822 sum_size += p->new_size;
2823 if (p->new_padding != UINT64_MAX)
2824 sum_padding += p->new_padding;
2825
2826 if (p->verity != VERITY_OFF) {
2827 Partition *hp = p->verity == VERITY_HASH ? p : p->siblings[VERITY_HASH];
2828
2829 rh = iovec_is_set(&hp->roothash) ? hexmem(hp->roothash.iov_base, hp->roothash.iov_len) : strdup("TBD");
2830 if (!rh)
2831 return log_oom();
2832 }
2833
2834 r = table_add_many(
2835 t,
2836 TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type.uuid, uuid_buffer),
2837 TABLE_STRING, empty_to_null(label) ?: "-", TABLE_SET_COLOR, empty_to_null(label) ? NULL : ansi_grey(),
2838 TABLE_UUID, p->new_uuid_is_set ? p->new_uuid : p->current_uuid,
2839 TABLE_UINT64, p->partno,
2840 TABLE_PATH_BASENAME, p->definition_path, TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(),
2841 TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(),
2842 TABLE_UINT64, p->offset,
2843 TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size,
2844 TABLE_UINT64, p->new_size,
2845 TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL,
2846 TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding,
2847 TABLE_UINT64, p->new_padding,
2848 TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL,
2849 TABLE_STRING, activity ?: "unchanged",
2850 TABLE_STRING, rh,
2851 TABLE_STRV, p->drop_in_files,
2852 TABLE_STRING, empty_to_null(p->split_path) ?: "-");
2853 if (r < 0)
2854 return table_log_add_error(r);
2855
2856 has_roothash = has_roothash || !isempty(rh);
2857 has_dropin_files = has_dropin_files || !strv_isempty(p->drop_in_files);
2858 has_split_path = has_split_path || !isempty(p->split_path);
2859 }
2860
2861 if ((arg_json_format_flags & JSON_FORMAT_OFF) && (sum_padding > 0 || sum_size > 0)) {
2862 const char *a, *b;
2863
2864 a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_size));
2865 b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", FORMAT_BYTES(sum_padding));
2866
2867 r = table_add_many(
2868 t,
2869 TABLE_EMPTY,
2870 TABLE_EMPTY,
2871 TABLE_EMPTY,
2872 TABLE_EMPTY,
2873 TABLE_EMPTY,
2874 TABLE_EMPTY,
2875 TABLE_EMPTY,
2876 TABLE_EMPTY,
2877 TABLE_EMPTY,
2878 TABLE_STRING, a,
2879 TABLE_EMPTY,
2880 TABLE_EMPTY,
2881 TABLE_STRING, b,
2882 TABLE_EMPTY,
2883 TABLE_EMPTY,
2884 TABLE_EMPTY,
2885 TABLE_EMPTY);
2886 if (r < 0)
2887 return table_log_add_error(r);
2888 }
2889
2890 if (!has_roothash) {
2891 r = table_hide_column_from_display(t, roothash_col);
2892 if (r < 0)
2893 return log_error_errno(r, "Failed to set columns to display: %m");
2894 }
2895
2896 if (!has_dropin_files) {
2897 r = table_hide_column_from_display(t, dropin_files_col);
2898 if (r < 0)
2899 return log_error_errno(r, "Failed to set columns to display: %m");
2900 }
2901
2902 if (!has_split_path) {
2903 r = table_hide_column_from_display(t, split_path_col);
2904 if (r < 0)
2905 return log_error_errno(r, "Failed to set columns to display: %m");
2906 }
2907
2908 return table_print_with_pager(t, arg_json_format_flags, arg_pager_flags, arg_legend);
2909 }
2910
2911 static void context_bar_char_process_partition(
2912 Context *context,
2913 Partition *bar[],
2914 size_t n,
2915 Partition *p,
2916 size_t *ret_start) {
2917
2918 uint64_t from, to, total;
2919 size_t x, y;
2920
2921 assert(context);
2922 assert(bar);
2923 assert(n > 0);
2924 assert(p);
2925
2926 if (p->dropped)
2927 return;
2928
2929 assert(p->offset != UINT64_MAX);
2930 assert(p->new_size != UINT64_MAX);
2931
2932 from = p->offset;
2933 to = from + p->new_size;
2934
2935 assert(context->total > 0);
2936 total = context->total;
2937
2938 assert(from <= total);
2939 x = from * n / total;
2940
2941 assert(to <= total);
2942 y = to * n / total;
2943
2944 assert(x <= y);
2945 assert(y <= n);
2946
2947 for (size_t i = x; i < y; i++)
2948 bar[i] = p;
2949
2950 *ret_start = x;
2951 }
2952
2953 static int partition_hint(const Partition *p, const char *node, char **ret) {
2954 _cleanup_free_ char *buf = NULL;
2955 const char *label;
2956 sd_id128_t id;
2957
2958 /* Tries really hard to find a suitable description for this partition */
2959
2960 if (p->definition_path)
2961 return path_extract_filename(p->definition_path, ret);
2962
2963 label = partition_label(p);
2964 if (!isempty(label)) {
2965 buf = strdup(label);
2966 goto done;
2967 }
2968
2969 if (p->partno != UINT64_MAX) {
2970 buf = fdisk_partname(node, p->partno+1);
2971 goto done;
2972 }
2973
2974 if (p->new_uuid_is_set)
2975 id = p->new_uuid;
2976 else if (!sd_id128_is_null(p->current_uuid))
2977 id = p->current_uuid;
2978 else
2979 id = p->type.uuid;
2980
2981 buf = strdup(SD_ID128_TO_UUID_STRING(id));
2982
2983 done:
2984 if (!buf)
2985 return -ENOMEM;
2986
2987 *ret = TAKE_PTR(buf);
2988 return 0;
2989 }
2990
2991 static int context_dump_partition_bar(Context *context) {
2992 _cleanup_free_ Partition **bar = NULL;
2993 _cleanup_free_ size_t *start_array = NULL;
2994 Partition *last = NULL;
2995 bool z = false;
2996 size_t c, j = 0;
2997
2998 assert_se((c = columns()) >= 2);
2999 c -= 2; /* We do not use the leftmost and rightmost character cell */
3000
3001 bar = new0(Partition*, c);
3002 if (!bar)
3003 return log_oom();
3004
3005 start_array = new(size_t, context->n_partitions);
3006 if (!start_array)
3007 return log_oom();
3008
3009 LIST_FOREACH(partitions, p, context->partitions)
3010 context_bar_char_process_partition(context, bar, c, p, start_array + j++);
3011
3012 putc(' ', stdout);
3013
3014 for (size_t i = 0; i < c; i++) {
3015 if (bar[i]) {
3016 if (last != bar[i])
3017 z = !z;
3018
3019 fputs(z ? ansi_green() : ansi_yellow(), stdout);
3020 fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout);
3021 } else {
3022 fputs(ansi_normal(), stdout);
3023 fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout);
3024 }
3025
3026 last = bar[i];
3027 }
3028
3029 fputs(ansi_normal(), stdout);
3030 putc('\n', stdout);
3031
3032 for (size_t i = 0; i < context->n_partitions; i++) {
3033 _cleanup_free_ char **line = NULL;
3034
3035 line = new0(char*, c);
3036 if (!line)
3037 return log_oom();
3038
3039 j = 0;
3040 LIST_FOREACH(partitions, p, context->partitions) {
3041 _cleanup_free_ char *d = NULL;
3042 j++;
3043
3044 if (i < context->n_partitions - j) {
3045
3046 if (line[start_array[j-1]]) {
3047 const char *e;
3048
3049 /* Upgrade final corner to the right with a branch to the right */
3050 e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT));
3051 if (e) {
3052 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e);
3053 if (!d)
3054 return log_oom();
3055 }
3056 }
3057
3058 if (!d) {
3059 d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL));
3060 if (!d)
3061 return log_oom();
3062 }
3063
3064 } else if (i == context->n_partitions - j) {
3065 _cleanup_free_ char *hint = NULL;
3066
3067 (void) partition_hint(p, context->node, &hint);
3068
3069 if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)))
3070 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint));
3071 else
3072 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint));
3073
3074 if (!d)
3075 return log_oom();
3076 }
3077
3078 if (d)
3079 free_and_replace(line[start_array[j-1]], d);
3080 }
3081
3082 putc(' ', stdout);
3083
3084 j = 0;
3085 while (j < c) {
3086 if (line[j]) {
3087 fputs(line[j], stdout);
3088 j += utf8_console_width(line[j]);
3089 } else {
3090 putc(' ', stdout);
3091 j++;
3092 }
3093 }
3094
3095 putc('\n', stdout);
3096
3097 for (j = 0; j < c; j++)
3098 free(line[j]);
3099 }
3100
3101 return 0;
3102 }
3103
3104 static bool context_has_roothash(Context *context) {
3105 LIST_FOREACH(partitions, p, context->partitions)
3106 if (iovec_is_set(&p->roothash))
3107 return true;
3108
3109 return false;
3110 }
3111
3112 static int context_dump(Context *context, bool late) {
3113 int r;
3114
3115 assert(context);
3116
3117 if (arg_pretty == 0 && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF))
3118 return 0;
3119
3120 /* If we're outputting JSON, only dump after doing all operations so we can include the roothashes
3121 * in the output. */
3122 if (!late && !FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF))
3123 return 0;
3124
3125 /* If we're not outputting JSON, only dump again after doing all operations if there are any
3126 * roothashes that we need to communicate to the user. */
3127 if (late && FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !context_has_roothash(context))
3128 return 0;
3129
3130 r = context_dump_partitions(context);
3131 if (r < 0)
3132 return r;
3133
3134 /* Make sure we only write the partition bar once, even if we're writing the partition table twice to
3135 * communicate roothashes. */
3136 if (FLAGS_SET(arg_json_format_flags, JSON_FORMAT_OFF) && !late) {
3137 putc('\n', stdout);
3138
3139 r = context_dump_partition_bar(context);
3140 if (r < 0)
3141 return r;
3142
3143 putc('\n', stdout);
3144 }
3145
3146 fflush(stdout);
3147
3148 return 0;
3149 }
3150
3151
3152 static bool context_changed(const Context *context) {
3153 assert(context);
3154
3155 LIST_FOREACH(partitions, p, context->partitions) {
3156 if (p->dropped)
3157 continue;
3158
3159 if (p->allocated_to_area)
3160 return true;
3161
3162 if (p->new_size != p->current_size)
3163 return true;
3164 }
3165
3166 return false;
3167 }
3168
3169 static int context_wipe_range(Context *context, uint64_t offset, uint64_t size) {
3170 _cleanup_(blkid_free_probep) blkid_probe probe = NULL;
3171 int r;
3172
3173 assert(context);
3174 assert(offset != UINT64_MAX);
3175 assert(size != UINT64_MAX);
3176
3177 probe = blkid_new_probe();
3178 if (!probe)
3179 return log_oom();
3180
3181 errno = 0;
3182 r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), offset, size);
3183 if (r < 0)
3184 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for wiping.");
3185
3186 errno = 0;
3187 if (blkid_probe_enable_superblocks(probe, true) < 0 ||
3188 blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 ||
3189 blkid_probe_enable_partitions(probe, true) < 0 ||
3190 blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0)
3191 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing.");
3192
3193 for (;;) {
3194 errno = 0;
3195 r = blkid_do_probe(probe);
3196 if (r < 0)
3197 return log_error_errno(errno_or_else(EIO), "Failed to probe for file systems.");
3198 if (r > 0)
3199 break;
3200
3201 errno = 0;
3202 if (blkid_do_wipe(probe, false) < 0)
3203 return log_error_errno(errno_or_else(EIO), "Failed to wipe file system signature.");
3204 }
3205
3206 return 0;
3207 }
3208
3209 static int context_wipe_partition(Context *context, Partition *p) {
3210 int r;
3211
3212 assert(context);
3213 assert(p);
3214 assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */
3215
3216 assert(p->offset != UINT64_MAX);
3217 assert(p->new_size != UINT64_MAX);
3218
3219 r = context_wipe_range(context, p->offset, p->new_size);
3220 if (r < 0)
3221 return r;
3222
3223 log_info("Successfully wiped file system signatures from future partition %" PRIu64 ".", p->partno);
3224 return 0;
3225 }
3226
3227 static int context_discard_range(
3228 Context *context,
3229 uint64_t offset,
3230 uint64_t size) {
3231
3232 struct stat st;
3233 int fd;
3234
3235 assert(context);
3236 assert(offset != UINT64_MAX);
3237 assert(size != UINT64_MAX);
3238
3239 if (size <= 0)
3240 return 0;
3241
3242 assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
3243
3244 if (fstat(fd, &st) < 0)
3245 return -errno;
3246
3247 if (S_ISREG(st.st_mode)) {
3248 if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) {
3249 if (ERRNO_IS_NOT_SUPPORTED(errno))
3250 return -EOPNOTSUPP;
3251
3252 return -errno;
3253 }
3254
3255 return 1;
3256 }
3257
3258 if (S_ISBLK(st.st_mode)) {
3259 uint64_t range[2], end;
3260
3261 range[0] = round_up_size(offset, context->sector_size);
3262
3263 if (offset > UINT64_MAX - size)
3264 return -ERANGE;
3265
3266 end = offset + size;
3267 if (end <= range[0])
3268 return 0;
3269
3270 range[1] = round_down_size(end - range[0], context->sector_size);
3271 if (range[1] <= 0)
3272 return 0;
3273
3274 if (ioctl(fd, BLKDISCARD, range) < 0) {
3275 if (ERRNO_IS_NOT_SUPPORTED(errno))
3276 return -EOPNOTSUPP;
3277
3278 return -errno;
3279 }
3280
3281 return 1;
3282 }
3283
3284 return -EOPNOTSUPP;
3285 }
3286
3287 static int context_discard_partition(Context *context, Partition *p) {
3288 int r;
3289
3290 assert(context);
3291 assert(p);
3292
3293 assert(p->offset != UINT64_MAX);
3294 assert(p->new_size != UINT64_MAX);
3295 assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */
3296
3297 if (!arg_discard)
3298 return 0;
3299
3300 r = context_discard_range(context, p->offset, p->new_size);
3301 if (r == -EOPNOTSUPP) {
3302 log_info("Storage does not support discard, not discarding data in future partition %" PRIu64 ".", p->partno);
3303 return 0;
3304 }
3305 if (r == -EBUSY) {
3306 /* Let's handle this gracefully: https://bugzilla.kernel.org/show_bug.cgi?id=211167 */
3307 log_info("Block device is busy, not discarding partition %" PRIu64 " because it probably is mounted.", p->partno);
3308 return 0;
3309 }
3310 if (r == 0) {
3311 log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno);
3312 return 0;
3313 }
3314 if (r < 0)
3315 return log_error_errno(r, "Failed to discard data for future partition %" PRIu64 ".", p->partno);
3316
3317 log_info("Successfully discarded data from future partition %" PRIu64 ".", p->partno);
3318 return 1;
3319 }
3320
3321 static int context_discard_gap_after(Context *context, Partition *p) {
3322 uint64_t gap, next = UINT64_MAX;
3323 int r;
3324
3325 assert(context);
3326 assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX));
3327
3328 if (!arg_discard)
3329 return 0;
3330
3331 if (p)
3332 gap = p->offset + p->new_size;
3333 else
3334 /* The context start gets rounded up to grain_size, however
3335 * existing partitions may be before that so ensure the gap
3336 * starts at the first actually usable lba
3337 */
3338 gap = fdisk_get_first_lba(context->fdisk_context) * context->sector_size;
3339
3340 LIST_FOREACH(partitions, q, context->partitions) {
3341 if (q->dropped)
3342 continue;
3343
3344 assert(q->offset != UINT64_MAX);
3345 assert(q->new_size != UINT64_MAX);
3346
3347 if (q->offset < gap)
3348 continue;
3349
3350 if (next == UINT64_MAX || q->offset < next)
3351 next = q->offset;
3352 }
3353
3354 if (next == UINT64_MAX) {
3355 next = (fdisk_get_last_lba(context->fdisk_context) + 1) * context->sector_size;
3356 if (gap > next)
3357 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
3358 }
3359
3360 assert(next >= gap);
3361 r = context_discard_range(context, gap, next - gap);
3362 if (r == -EOPNOTSUPP) {
3363 if (p)
3364 log_info("Storage does not support discard, not discarding gap after partition %" PRIu64 ".", p->partno);
3365 else
3366 log_info("Storage does not support discard, not discarding gap at beginning of disk.");
3367 return 0;
3368 }
3369 if (r == 0) /* Too short */
3370 return 0;
3371 if (r < 0) {
3372 if (p)
3373 return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno);
3374 else
3375 return log_error_errno(r, "Failed to discard gap at beginning of disk.");
3376 }
3377
3378 if (p)
3379 log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno);
3380 else
3381 log_info("Successfully discarded gap at beginning of disk.");
3382
3383 return 0;
3384 }
3385
3386 static int context_wipe_and_discard(Context *context) {
3387 int r;
3388
3389 assert(context);
3390
3391 if (arg_empty == EMPTY_CREATE) /* If we just created the image, no need to wipe */
3392 return 0;
3393
3394 /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if
3395 * we were supposed to start from scratch anyway, as in that case we just discard the whole block
3396 * device in one go early on. */
3397
3398 LIST_FOREACH(partitions, p, context->partitions) {
3399
3400 if (!p->allocated_to_area)
3401 continue;
3402
3403 if (partition_type_defer(&p->type))
3404 continue;
3405
3406 r = context_wipe_partition(context, p);
3407 if (r < 0)
3408 return r;
3409
3410 if (!context->from_scratch) {
3411 r = context_discard_partition(context, p);
3412 if (r < 0)
3413 return r;
3414
3415 r = context_discard_gap_after(context, p);
3416 if (r < 0)
3417 return r;
3418 }
3419 }
3420
3421 if (!context->from_scratch) {
3422 r = context_discard_gap_after(context, NULL);
3423 if (r < 0)
3424 return r;
3425 }
3426
3427 return 0;
3428 }
3429
3430 typedef struct DecryptedPartitionTarget {
3431 int fd;
3432 char *dm_name;
3433 char *volume;
3434 struct crypt_device *device;
3435 } DecryptedPartitionTarget;
3436
3437 static DecryptedPartitionTarget* decrypted_partition_target_free(DecryptedPartitionTarget *t) {
3438 #if HAVE_LIBCRYPTSETUP
3439 int r;
3440
3441 if (!t)
3442 return NULL;
3443
3444 safe_close(t->fd);
3445
3446 /* udev or so might access out block device in the background while we are done. Let's hence
3447 * force detach the volume. We sync'ed before, hence this should be safe. */
3448 r = sym_crypt_deactivate_by_name(t->device, t->dm_name, CRYPT_DEACTIVATE_FORCE);
3449 if (r < 0)
3450 log_warning_errno(r, "Failed to deactivate LUKS device, ignoring: %m");
3451
3452 sym_crypt_free(t->device);
3453 free(t->dm_name);
3454 free(t->volume);
3455 free(t);
3456 #endif
3457 return NULL;
3458 }
3459
3460 typedef struct {
3461 LoopDevice *loop;
3462 int fd;
3463 char *path;
3464 int whole_fd;
3465 DecryptedPartitionTarget *decrypted;
3466 } PartitionTarget;
3467
3468 static int partition_target_fd(PartitionTarget *t) {
3469 assert(t);
3470 assert(t->loop || t->fd >= 0 || t->whole_fd >= 0);
3471
3472 if (t->decrypted)
3473 return t->decrypted->fd;
3474
3475 if (t->loop)
3476 return t->loop->fd;
3477
3478 if (t->fd >= 0)
3479 return t->fd;
3480
3481 return t->whole_fd;
3482 }
3483
3484 static const char* partition_target_path(PartitionTarget *t) {
3485 assert(t);
3486 assert(t->loop || t->path);
3487
3488 if (t->decrypted)
3489 return t->decrypted->volume;
3490
3491 if (t->loop)
3492 return t->loop->node;
3493
3494 return t->path;
3495 }
3496
3497 static PartitionTarget *partition_target_free(PartitionTarget *t) {
3498 if (!t)
3499 return NULL;
3500
3501 decrypted_partition_target_free(t->decrypted);
3502 loop_device_unref(t->loop);
3503 safe_close(t->fd);
3504 unlink_and_free(t->path);
3505
3506 return mfree(t);
3507 }
3508
3509 DEFINE_TRIVIAL_CLEANUP_FUNC(PartitionTarget*, partition_target_free);
3510
3511 static int prepare_temporary_file(PartitionTarget *t, uint64_t size) {
3512 _cleanup_(unlink_and_freep) char *temp = NULL;
3513 _cleanup_close_ int fd = -EBADF;
3514 const char *vt;
3515 int r;
3516
3517 assert(t);
3518
3519 r = var_tmp_dir(&vt);
3520 if (r < 0)
3521 return log_error_errno(r, "Could not determine temporary directory: %m");
3522
3523 temp = path_join(vt, "repart-XXXXXX");
3524 if (!temp)
3525 return log_oom();
3526
3527 fd = mkostemp_safe(temp);
3528 if (fd < 0)
3529 return log_error_errno(fd, "Failed to create temporary file: %m");
3530
3531 if (ftruncate(fd, size) < 0)
3532 return log_error_errno(errno, "Failed to truncate temporary file to %s: %m",
3533 FORMAT_BYTES(size));
3534
3535 t->fd = TAKE_FD(fd);
3536 t->path = TAKE_PTR(temp);
3537
3538 return 0;
3539 }
3540
3541 static int partition_target_prepare(
3542 Context *context,
3543 Partition *p,
3544 uint64_t size,
3545 bool need_path,
3546 PartitionTarget **ret) {
3547
3548 _cleanup_(partition_target_freep) PartitionTarget *t = NULL;
3549 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
3550 int whole_fd, r;
3551
3552 assert(context);
3553 assert(p);
3554 assert(ret);
3555
3556 assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
3557
3558 t = new(PartitionTarget, 1);
3559 if (!t)
3560 return log_oom();
3561 *t = (PartitionTarget) {
3562 .fd = -EBADF,
3563 .whole_fd = -EBADF,
3564 };
3565
3566 if (!need_path) {
3567 if (lseek(whole_fd, p->offset, SEEK_SET) < 0)
3568 return log_error_errno(errno, "Failed to seek to partition offset: %m");
3569
3570 t->whole_fd = whole_fd;
3571 *ret = TAKE_PTR(t);
3572 return 0;
3573 }
3574
3575 /* Loopback block devices are not only useful to turn regular files into block devices, but
3576 * also to cut out sections of block devices into new block devices. */
3577
3578 if (arg_offline <= 0) {
3579 r = loop_device_make(whole_fd, O_RDWR, p->offset, size, context->sector_size, 0, LOCK_EX, &d);
3580 if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes)))
3581 return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno);
3582 if (r >= 0) {
3583 t->loop = TAKE_PTR(d);
3584 *ret = TAKE_PTR(t);
3585 return 0;
3586 }
3587
3588 log_debug_errno(r, "No access to loop devices, falling back to a regular file");
3589 }
3590
3591 /* If we can't allocate a loop device, let's write to a regular file that we copy into the final
3592 * image so we can run in containers and without needing root privileges. On filesystems with
3593 * reflinking support, we can take advantage of this and just reflink the result into the image.
3594 */
3595
3596 r = prepare_temporary_file(t, size);
3597 if (r < 0)
3598 return r;
3599
3600 *ret = TAKE_PTR(t);
3601
3602 return 0;
3603 }
3604
3605 static int partition_target_grow(PartitionTarget *t, uint64_t size) {
3606 int r;
3607
3608 assert(t);
3609 assert(!t->decrypted);
3610
3611 if (t->loop) {
3612 r = loop_device_refresh_size(t->loop, UINT64_MAX, size);
3613 if (r < 0)
3614 return log_error_errno(r, "Failed to refresh loopback device size: %m");
3615 } else if (t->fd >= 0) {
3616 if (ftruncate(t->fd, size) < 0)
3617 return log_error_errno(errno, "Failed to grow '%s' to %s by truncation: %m",
3618 t->path, FORMAT_BYTES(size));
3619 }
3620
3621 return 0;
3622 }
3623
3624 static int partition_target_sync(Context *context, Partition *p, PartitionTarget *t) {
3625 int whole_fd, r;
3626
3627 assert(context);
3628 assert(p);
3629 assert(t);
3630
3631 assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
3632
3633 if (t->decrypted && fsync(t->decrypted->fd) < 0)
3634 return log_error_errno(errno, "Failed to sync changes to '%s': %m", t->decrypted->volume);
3635
3636 if (t->loop) {
3637 r = loop_device_sync(t->loop);
3638 if (r < 0)
3639 return log_error_errno(r, "Failed to sync loopback device: %m");
3640 } else if (t->fd >= 0) {
3641 struct stat st;
3642
3643 if (lseek(whole_fd, p->offset, SEEK_SET) < 0)
3644 return log_error_errno(errno, "Failed to seek to partition offset: %m");
3645
3646 if (lseek(t->fd, 0, SEEK_SET) < 0)
3647 return log_error_errno(errno, "Failed to seek to start of temporary file: %m");
3648
3649 if (fstat(t->fd, &st) < 0)
3650 return log_error_errno(errno, "Failed to stat temporary file: %m");
3651
3652 if (st.st_size > (off_t) p->new_size)
3653 return log_error_errno(SYNTHETIC_ERRNO(ENOSPC),
3654 "Partition %" PRIu64 "'s contents (%s) don't fit in the partition (%s)",
3655 p->partno, FORMAT_BYTES(st.st_size), FORMAT_BYTES(p->new_size));
3656
3657 r = copy_bytes(t->fd, whole_fd, UINT64_MAX, COPY_REFLINK|COPY_HOLES|COPY_FSYNC);
3658 if (r < 0)
3659 return log_error_errno(r, "Failed to copy bytes to partition: %m");
3660 } else {
3661 if (fsync(t->whole_fd) < 0)
3662 return log_error_errno(errno, "Failed to sync changes: %m");
3663 }
3664
3665 return 0;
3666 }
3667
3668 static int partition_encrypt(Context *context, Partition *p, PartitionTarget *target, bool offline) {
3669 #if HAVE_LIBCRYPTSETUP && HAVE_CRYPT_SET_DATA_OFFSET && HAVE_CRYPT_REENCRYPT_INIT_BY_PASSPHRASE && HAVE_CRYPT_REENCRYPT
3670 const char *node = partition_target_path(target);
3671 struct crypt_params_luks2 luks_params = {
3672 .label = strempty(ASSERT_PTR(p)->new_label),
3673 .sector_size = ASSERT_PTR(context)->fs_sector_size,
3674 .data_device = offline ? node : NULL,
3675 };
3676 struct crypt_params_reencrypt reencrypt_params = {
3677 .mode = CRYPT_REENCRYPT_ENCRYPT,
3678 .direction = CRYPT_REENCRYPT_BACKWARD,
3679 .resilience = "datashift",
3680 .data_shift = LUKS2_METADATA_SIZE / 512,
3681 .luks2 = &luks_params,
3682 .flags = CRYPT_REENCRYPT_INITIALIZE_ONLY|CRYPT_REENCRYPT_MOVE_FIRST_SEGMENT,
3683 };
3684 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
3685 _cleanup_(erase_and_freep) char *base64_encoded = NULL;
3686 _cleanup_fclose_ FILE *h = NULL;
3687 _cleanup_free_ char *hp = NULL, *vol = NULL, *dm_name = NULL;
3688 const char *passphrase = NULL;
3689 size_t passphrase_size = 0;
3690 const char *vt;
3691 int r;
3692
3693 assert(context);
3694 assert(p);
3695 assert(p->encrypt != ENCRYPT_OFF);
3696
3697 r = dlopen_cryptsetup();
3698 if (r < 0)
3699 return log_error_errno(r, "libcryptsetup not found, cannot encrypt: %m");
3700
3701 log_info("Encrypting future partition %" PRIu64 "...", p->partno);
3702
3703 if (offline) {
3704 r = var_tmp_dir(&vt);
3705 if (r < 0)
3706 return log_error_errno(r, "Failed to determine temporary files directory: %m");
3707
3708 r = fopen_temporary_child(vt, &h, &hp);
3709 if (r < 0)
3710 return log_error_errno(r, "Failed to create temporary LUKS header file: %m");
3711
3712 /* Weird cryptsetup requirement which requires the header file to be the size of at least one
3713 * sector. */
3714 if (ftruncate(fileno(h), luks_params.sector_size) < 0)
3715 return log_error_errno(errno, "Failed to grow temporary LUKS header file: %m");
3716 } else {
3717 if (asprintf(&dm_name, "luks-repart-%08" PRIx64, random_u64()) < 0)
3718 return log_oom();
3719
3720 vol = path_join("/dev/mapper/", dm_name);
3721 if (!vol)
3722 return log_oom();
3723 }
3724
3725 r = sym_crypt_init(&cd, offline ? hp : node);
3726 if (r < 0)
3727 return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", hp);
3728
3729 cryptsetup_enable_logging(cd);
3730
3731 if (offline) {
3732 /* Disable kernel keyring usage by libcryptsetup as a workaround for
3733 * https://gitlab.com/cryptsetup/cryptsetup/-/merge_requests/273. This makes sure that we can
3734 * do offline encryption even when repart is running in a container. */
3735 r = sym_crypt_volume_key_keyring(cd, false);
3736 if (r < 0)
3737 return log_error_errno(r, "Failed to disable kernel keyring: %m");
3738
3739 r = sym_crypt_metadata_locking(cd, false);
3740 if (r < 0)
3741 return log_error_errno(r, "Failed to disable metadata locking: %m");
3742
3743 r = sym_crypt_set_data_offset(cd, LUKS2_METADATA_SIZE / 512);
3744 if (r < 0)
3745 return log_error_errno(r, "Failed to set data offset: %m");
3746 }
3747
3748 r = sym_crypt_format(
3749 cd,
3750 CRYPT_LUKS2,
3751 "aes",
3752 "xts-plain64",
3753 SD_ID128_TO_UUID_STRING(p->luks_uuid),
3754 NULL,
3755 VOLUME_KEY_SIZE,
3756 &luks_params);
3757 if (r < 0)
3758 return log_error_errno(r, "Failed to LUKS2 format future partition: %m");
3759
3760 if (IN_SET(p->encrypt, ENCRYPT_KEY_FILE, ENCRYPT_KEY_FILE_TPM2)) {
3761 r = sym_crypt_keyslot_add_by_volume_key(
3762 cd,
3763 CRYPT_ANY_SLOT,
3764 NULL,
3765 VOLUME_KEY_SIZE,
3766 strempty(arg_key),
3767 arg_key_size);
3768 if (r < 0)
3769 return log_error_errno(r, "Failed to add LUKS2 key: %m");
3770
3771 passphrase = strempty(arg_key);
3772 passphrase_size = arg_key_size;
3773 }
3774
3775 if (IN_SET(p->encrypt, ENCRYPT_TPM2, ENCRYPT_KEY_FILE_TPM2)) {
3776 #if HAVE_TPM2
3777 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
3778 _cleanup_(erase_and_freep) void *secret = NULL;
3779 _cleanup_free_ void *pubkey = NULL;
3780 _cleanup_free_ void *blob = NULL, *srk_buf = NULL;
3781 size_t secret_size, blob_size, pubkey_size = 0, srk_buf_size = 0;
3782 ssize_t base64_encoded_size;
3783 int keyslot;
3784 TPM2Flags flags = 0;
3785
3786 if (arg_tpm2_public_key_pcr_mask != 0) {
3787 r = tpm2_load_pcr_public_key(arg_tpm2_public_key, &pubkey, &pubkey_size);
3788 if (r < 0) {
3789 if (arg_tpm2_public_key || r != -ENOENT)
3790 return log_error_errno(r, "Failed to read TPM PCR public key: %m");
3791
3792 log_debug_errno(r, "Failed to read TPM2 PCR public key, proceeding without: %m");
3793 arg_tpm2_public_key_pcr_mask = 0;
3794 }
3795 }
3796
3797 TPM2B_PUBLIC public;
3798 if (pubkey) {
3799 r = tpm2_tpm2b_public_from_pem(pubkey, pubkey_size, &public);
3800 if (r < 0)
3801 return log_error_errno(r, "Could not convert public key to TPM2B_PUBLIC: %m");
3802 }
3803
3804 _cleanup_(tpm2_pcrlock_policy_done) Tpm2PCRLockPolicy pcrlock_policy = {};
3805 if (arg_tpm2_pcrlock) {
3806 r = tpm2_pcrlock_policy_load(arg_tpm2_pcrlock, &pcrlock_policy);
3807 if (r < 0)
3808 return r;
3809
3810 flags |= TPM2_FLAGS_USE_PCRLOCK;
3811 }
3812
3813 _cleanup_(tpm2_context_unrefp) Tpm2Context *tpm2_context = NULL;
3814 TPM2B_PUBLIC device_key_public = {};
3815 if (arg_tpm2_device_key) {
3816 r = tpm2_load_public_key_file(arg_tpm2_device_key, &device_key_public);
3817 if (r < 0)
3818 return r;
3819
3820 if (!tpm2_pcr_values_has_all_values(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values))
3821 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
3822 "Must provide all PCR values when using TPM2 device key.");
3823 } else {
3824 r = tpm2_context_new(arg_tpm2_device, &tpm2_context);
3825 if (r < 0)
3826 return log_error_errno(r, "Failed to create TPM2 context: %m");
3827
3828 if (!tpm2_pcr_values_has_all_values(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values)) {
3829 r = tpm2_pcr_read_missing_values(tpm2_context, arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values);
3830 if (r < 0)
3831 return log_error_errno(r, "Could not read pcr values: %m");
3832 }
3833 }
3834
3835 uint16_t hash_pcr_bank = 0;
3836 uint32_t hash_pcr_mask = 0;
3837 if (arg_tpm2_n_hash_pcr_values > 0) {
3838 size_t hash_count;
3839 r = tpm2_pcr_values_hash_count(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, &hash_count);
3840 if (r < 0)
3841 return log_error_errno(r, "Could not get hash count: %m");
3842
3843 if (hash_count > 1)
3844 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Multiple PCR banks selected.");
3845
3846 hash_pcr_bank = arg_tpm2_hash_pcr_values[0].hash;
3847 r = tpm2_pcr_values_to_mask(arg_tpm2_hash_pcr_values, arg_tpm2_n_hash_pcr_values, hash_pcr_bank, &hash_pcr_mask);
3848 if (r < 0)
3849 return log_error_errno(r, "Could not get hash mask: %m");
3850 }
3851
3852 TPM2B_DIGEST policy = TPM2B_DIGEST_MAKE(NULL, TPM2_SHA256_DIGEST_SIZE);
3853 r = tpm2_calculate_sealing_policy(
3854 arg_tpm2_hash_pcr_values,
3855 arg_tpm2_n_hash_pcr_values,
3856 pubkey ? &public : NULL,
3857 /* use_pin= */ false,
3858 arg_tpm2_pcrlock ? &pcrlock_policy : NULL,
3859 &policy);
3860 if (r < 0)
3861 return log_error_errno(r, "Could not calculate sealing policy digest: %m");
3862
3863 if (arg_tpm2_device_key)
3864 r = tpm2_calculate_seal(
3865 arg_tpm2_seal_key_handle,
3866 &device_key_public,
3867 /* attributes= */ NULL,
3868 /* secret= */ NULL, /* secret_size= */ 0,
3869 &policy,
3870 /* pin= */ NULL,
3871 &secret, &secret_size,
3872 &blob, &blob_size,
3873 &srk_buf, &srk_buf_size);
3874 else
3875 r = tpm2_seal(tpm2_context,
3876 arg_tpm2_seal_key_handle,
3877 &policy,
3878 /* pin= */ NULL,
3879 &secret, &secret_size,
3880 &blob, &blob_size,
3881 /* ret_primary_alg= */ NULL,
3882 &srk_buf, &srk_buf_size);
3883 if (r < 0)
3884 return log_error_errno(r, "Failed to seal to TPM2: %m");
3885
3886 base64_encoded_size = base64mem(secret, secret_size, &base64_encoded);
3887 if (base64_encoded_size < 0)
3888 return log_error_errno(base64_encoded_size, "Failed to base64 encode secret key: %m");
3889
3890 r = cryptsetup_set_minimal_pbkdf(cd);
3891 if (r < 0)
3892 return log_error_errno(r, "Failed to set minimal PBKDF: %m");
3893
3894 keyslot = sym_crypt_keyslot_add_by_volume_key(
3895 cd,
3896 CRYPT_ANY_SLOT,
3897 /* volume_key= */ NULL,
3898 /* volume_key_size= */ VOLUME_KEY_SIZE,
3899 base64_encoded,
3900 base64_encoded_size);
3901 if (keyslot < 0)
3902 return log_error_errno(keyslot, "Failed to add new TPM2 key: %m");
3903
3904 r = tpm2_make_luks2_json(
3905 keyslot,
3906 hash_pcr_mask,
3907 hash_pcr_bank,
3908 pubkey, pubkey_size,
3909 arg_tpm2_public_key_pcr_mask,
3910 /* primary_alg= */ 0,
3911 blob, blob_size,
3912 policy.buffer, policy.size,
3913 NULL, 0, /* no salt because tpm2_seal has no pin */
3914 srk_buf, srk_buf_size,
3915 flags,
3916 &v);
3917 if (r < 0)
3918 return log_error_errno(r, "Failed to prepare TPM2 JSON token object: %m");
3919
3920 r = cryptsetup_add_token_json(cd, v);
3921 if (r < 0)
3922 return log_error_errno(r, "Failed to add TPM2 JSON token to LUKS2 header: %m");
3923
3924 passphrase = base64_encoded;
3925 passphrase_size = strlen(base64_encoded);
3926 #else
3927 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
3928 "Support for TPM2 enrollment not enabled.");
3929 #endif
3930 }
3931
3932 if (offline) {
3933 r = sym_crypt_reencrypt_init_by_passphrase(
3934 cd,
3935 NULL,
3936 passphrase,
3937 passphrase_size,
3938 CRYPT_ANY_SLOT,
3939 0,
3940 sym_crypt_get_cipher(cd),
3941 sym_crypt_get_cipher_mode(cd),
3942 &reencrypt_params);
3943 if (r < 0)
3944 return log_error_errno(r, "Failed to prepare for reencryption: %m");
3945
3946 /* crypt_reencrypt_init_by_passphrase() doesn't actually put the LUKS header at the front, we
3947 * have to do that ourselves. */
3948
3949 sym_crypt_free(cd);
3950 cd = NULL;
3951
3952 r = sym_crypt_init(&cd, node);
3953 if (r < 0)
3954 return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", node);
3955
3956 r = sym_crypt_header_restore(cd, CRYPT_LUKS2, hp);
3957 if (r < 0)
3958 return log_error_errno(r, "Failed to place new LUKS header at head of %s: %m", node);
3959
3960 reencrypt_params.flags &= ~CRYPT_REENCRYPT_INITIALIZE_ONLY;
3961
3962 r = sym_crypt_reencrypt_init_by_passphrase(
3963 cd,
3964 NULL,
3965 passphrase,
3966 passphrase_size,
3967 CRYPT_ANY_SLOT,
3968 0,
3969 NULL,
3970 NULL,
3971 &reencrypt_params);
3972 if (r < 0)
3973 return log_error_errno(r, "Failed to load reencryption context: %m");
3974
3975 r = sym_crypt_reencrypt(cd, NULL);
3976 if (r < 0)
3977 return log_error_errno(r, "Failed to encrypt %s: %m", node);
3978 } else {
3979 _cleanup_free_ DecryptedPartitionTarget *t = NULL;
3980 _cleanup_close_ int dev_fd = -1;
3981
3982 r = sym_crypt_activate_by_volume_key(
3983 cd,
3984 dm_name,
3985 NULL,
3986 VOLUME_KEY_SIZE,
3987 arg_discard ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0);
3988 if (r < 0)
3989 return log_error_errno(r, "Failed to activate LUKS superblock: %m");
3990
3991 dev_fd = open(vol, O_RDWR|O_CLOEXEC|O_NOCTTY);
3992 if (dev_fd < 0)
3993 return log_error_errno(errno, "Failed to open LUKS volume '%s': %m", vol);
3994
3995 if (flock(dev_fd, LOCK_EX) < 0)
3996 return log_error_errno(errno, "Failed to lock '%s': %m", vol);
3997
3998 t = new(DecryptedPartitionTarget, 1);
3999 if (!t)
4000 return log_oom();
4001
4002 *t = (DecryptedPartitionTarget) {
4003 .fd = TAKE_FD(dev_fd),
4004 .dm_name = TAKE_PTR(dm_name),
4005 .volume = TAKE_PTR(vol),
4006 .device = TAKE_PTR(cd),
4007 };
4008
4009 target->decrypted = TAKE_PTR(t);
4010 }
4011
4012 log_info("Successfully encrypted future partition %" PRIu64 ".", p->partno);
4013
4014 return 0;
4015 #else
4016 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
4017 "libcryptsetup is not supported or is missing required symbols, cannot encrypt: %m");
4018 #endif
4019 }
4020
4021 static int partition_format_verity_hash(
4022 Context *context,
4023 Partition *p,
4024 const char *node,
4025 const char *data_node) {
4026
4027 #if HAVE_LIBCRYPTSETUP
4028 Partition *dp;
4029 _cleanup_(partition_target_freep) PartitionTarget *t = NULL;
4030 _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL;
4031 _cleanup_free_ char *hint = NULL;
4032 int r;
4033
4034 assert(context);
4035 assert(p);
4036 assert(p->verity == VERITY_HASH);
4037 assert(data_node);
4038
4039 if (p->dropped)
4040 return 0;
4041
4042 if (PARTITION_EXISTS(p)) /* Never format existing partitions */
4043 return 0;
4044
4045 /* Minimized partitions will use the copy blocks logic so let's make sure to skip those here. */
4046 if (p->copy_blocks_fd >= 0)
4047 return 0;
4048
4049 assert_se(dp = p->siblings[VERITY_DATA]);
4050 assert(!dp->dropped);
4051
4052 (void) partition_hint(p, node, &hint);
4053
4054 r = dlopen_cryptsetup();
4055 if (r < 0)
4056 return log_error_errno(r, "libcryptsetup not found, cannot setup verity: %m");
4057
4058 if (!node) {
4059 r = partition_target_prepare(context, p, p->new_size, /*need_path=*/ true, &t);
4060 if (r < 0)
4061 return r;
4062
4063 node = partition_target_path(t);
4064 }
4065
4066 if (p->verity_data_block_size == UINT64_MAX)
4067 p->verity_data_block_size = context->fs_sector_size;
4068 if (p->verity_hash_block_size == UINT64_MAX)
4069 p->verity_hash_block_size = context->fs_sector_size;
4070
4071 r = sym_crypt_init(&cd, node);
4072 if (r < 0)
4073 return log_error_errno(r, "Failed to allocate libcryptsetup context for %s: %m", node);
4074
4075 cryptsetup_enable_logging(cd);
4076
4077 r = sym_crypt_format(
4078 cd, CRYPT_VERITY, NULL, NULL, SD_ID128_TO_UUID_STRING(p->verity_uuid), NULL, 0,
4079 &(struct crypt_params_verity){
4080 .data_device = data_node,
4081 .flags = CRYPT_VERITY_CREATE_HASH,
4082 .hash_name = "sha256",
4083 .hash_type = 1,
4084 .data_block_size = p->verity_data_block_size,
4085 .hash_block_size = p->verity_hash_block_size,
4086 .salt_size = sizeof(p->verity_salt),
4087 .salt = (const char*)p->verity_salt,
4088 });
4089 if (r < 0) {
4090 /* libcryptsetup reports non-descriptive EIO errors for every I/O failure. Luckily, it
4091 * doesn't clobber errno so let's check for ENOSPC so we can report a better error if the
4092 * partition is too small. */
4093 if (r == -EIO && errno == ENOSPC)
4094 return log_error_errno(errno,
4095 "Verity hash data does not fit in partition %s with size %s",
4096 strna(hint), FORMAT_BYTES(p->new_size));
4097
4098 return log_error_errno(r, "Failed to setup verity hash data of partition %s: %m", strna(hint));
4099 }
4100
4101 if (t) {
4102 r = partition_target_sync(context, p, t);
4103 if (r < 0)
4104 return r;
4105 }
4106
4107 r = sym_crypt_get_volume_key_size(cd);
4108 if (r < 0)
4109 return log_error_errno(r, "Failed to determine verity root hash size of partition %s: %m", strna(hint));
4110
4111 _cleanup_(iovec_done) struct iovec rh = {
4112 .iov_base = malloc(r),
4113 .iov_len = r,
4114 };
4115 if (!rh.iov_base)
4116 return log_oom();
4117
4118 r = sym_crypt_volume_key_get(cd, CRYPT_ANY_SLOT, (char *) rh.iov_base, &rh.iov_len, NULL, 0);
4119 if (r < 0)
4120 return log_error_errno(r, "Failed to get verity root hash of partition %s: %m", strna(hint));
4121
4122 assert(rh.iov_len >= sizeof(sd_id128_t) * 2);
4123
4124 if (!dp->new_uuid_is_set) {
4125 memcpy_safe(dp->new_uuid.bytes, rh.iov_base, sizeof(sd_id128_t));
4126 dp->new_uuid_is_set = true;
4127 }
4128
4129 if (!p->new_uuid_is_set) {
4130 memcpy_safe(p->new_uuid.bytes, (uint8_t*) rh.iov_base + (rh.iov_len - sizeof(sd_id128_t)), sizeof(sd_id128_t));
4131 p->new_uuid_is_set = true;
4132 }
4133
4134 p->roothash = TAKE_STRUCT(rh);
4135
4136 return 0;
4137 #else
4138 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot setup verity hashes: %m");
4139 #endif
4140 }
4141
4142 static int sign_verity_roothash(
4143 const struct iovec *roothash,
4144 struct iovec *ret_signature) {
4145
4146 #if HAVE_OPENSSL
4147 _cleanup_(BIO_freep) BIO *rb = NULL;
4148 _cleanup_(PKCS7_freep) PKCS7 *p7 = NULL;
4149 _cleanup_free_ char *hex = NULL;
4150 _cleanup_free_ uint8_t *sig = NULL;
4151 int sigsz;
4152
4153 assert(roothash);
4154 assert(iovec_is_set(roothash));
4155 assert(ret_signature);
4156
4157 hex = hexmem(roothash->iov_base, roothash->iov_len);
4158 if (!hex)
4159 return log_oom();
4160
4161 rb = BIO_new_mem_buf(hex, -1);
4162 if (!rb)
4163 return log_oom();
4164
4165 p7 = PKCS7_sign(arg_certificate, arg_private_key, NULL, rb, PKCS7_DETACHED|PKCS7_NOATTR|PKCS7_BINARY);
4166 if (!p7)
4167 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to calculate PKCS7 signature: %s",
4168 ERR_error_string(ERR_get_error(), NULL));
4169
4170 sigsz = i2d_PKCS7(p7, &sig);
4171 if (sigsz < 0)
4172 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to convert PKCS7 signature to DER: %s",
4173 ERR_error_string(ERR_get_error(), NULL));
4174
4175 ret_signature->iov_base = TAKE_PTR(sig);
4176 ret_signature->iov_len = sigsz;
4177
4178 return 0;
4179 #else
4180 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot setup verity signature: %m");
4181 #endif
4182 }
4183
4184 static int partition_format_verity_sig(Context *context, Partition *p) {
4185 _cleanup_(json_variant_unrefp) JsonVariant *v = NULL;
4186 _cleanup_(iovec_done) struct iovec sig = {};
4187 _cleanup_free_ char *text = NULL, *hint = NULL;
4188 Partition *hp;
4189 uint8_t fp[X509_FINGERPRINT_SIZE];
4190 int whole_fd, r;
4191
4192 assert(p->verity == VERITY_SIG);
4193
4194 if (p->dropped)
4195 return 0;
4196
4197 if (PARTITION_EXISTS(p))
4198 return 0;
4199
4200 (void) partition_hint(p, context->node, &hint);
4201
4202 assert_se(hp = p->siblings[VERITY_HASH]);
4203 assert(!hp->dropped);
4204
4205 assert(arg_certificate);
4206
4207 assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
4208
4209 r = sign_verity_roothash(&hp->roothash, &sig);
4210 if (r < 0)
4211 return r;
4212
4213 r = x509_fingerprint(arg_certificate, fp);
4214 if (r < 0)
4215 return log_error_errno(r, "Unable to calculate X509 certificate fingerprint: %m");
4216
4217 r = json_build(&v,
4218 JSON_BUILD_OBJECT(
4219 JSON_BUILD_PAIR("rootHash", JSON_BUILD_HEX(hp->roothash.iov_base, hp->roothash.iov_len)),
4220 JSON_BUILD_PAIR(
4221 "certificateFingerprint",
4222 JSON_BUILD_HEX(fp, sizeof(fp))
4223 ),
4224 JSON_BUILD_PAIR("signature", JSON_BUILD_IOVEC_BASE64(&sig))
4225 )
4226 );
4227 if (r < 0)
4228 return log_error_errno(r, "Failed to build verity signature JSON object: %m");
4229
4230 r = json_variant_format(v, 0, &text);
4231 if (r < 0)
4232 return log_error_errno(r, "Failed to format verity signature JSON object: %m");
4233
4234 if (strlen(text)+1 > p->new_size)
4235 return log_error_errno(SYNTHETIC_ERRNO(E2BIG), "Verity signature too long for partition: %m");
4236
4237 r = strgrowpad0(&text, p->new_size);
4238 if (r < 0)
4239 return log_error_errno(r, "Failed to pad string to %s", FORMAT_BYTES(p->new_size));
4240
4241 if (lseek(whole_fd, p->offset, SEEK_SET) < 0)
4242 return log_error_errno(errno, "Failed to seek to partition %s offset: %m", strna(hint));
4243
4244 r = loop_write(whole_fd, text, p->new_size);
4245 if (r < 0)
4246 return log_error_errno(r, "Failed to write verity signature to partition %s: %m", strna(hint));
4247
4248 if (fsync(whole_fd) < 0)
4249 return log_error_errno(errno, "Failed to synchronize partition %s: %m", strna(hint));
4250
4251 return 0;
4252 }
4253
4254 static int context_copy_blocks(Context *context) {
4255 int r;
4256
4257 assert(context);
4258
4259 /* Copy in file systems on the block level */
4260
4261 LIST_FOREACH(partitions, p, context->partitions) {
4262 _cleanup_(partition_target_freep) PartitionTarget *t = NULL;
4263
4264 if (p->copy_blocks_fd < 0)
4265 continue;
4266
4267 if (p->dropped)
4268 continue;
4269
4270 if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */
4271 continue;
4272
4273 if (partition_type_defer(&p->type))
4274 continue;
4275
4276 assert(p->new_size != UINT64_MAX);
4277 assert(p->copy_blocks_size != UINT64_MAX);
4278 assert(p->new_size >= p->copy_blocks_size + (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0));
4279
4280 usec_t start_timestamp = now(CLOCK_MONOTONIC);
4281
4282 r = partition_target_prepare(context, p, p->new_size,
4283 /*need_path=*/ p->encrypt != ENCRYPT_OFF || p->siblings[VERITY_HASH],
4284 &t);
4285 if (r < 0)
4286 return r;
4287
4288 if (p->encrypt != ENCRYPT_OFF && t->loop) {
4289 r = partition_encrypt(context, p, t, /* offline = */ false);
4290 if (r < 0)
4291 return r;
4292 }
4293
4294 if (p->copy_blocks_offset == UINT64_MAX)
4295 log_info("Copying in '%s' (%s) on block level into future partition %" PRIu64 ".",
4296 p->copy_blocks_path, FORMAT_BYTES(p->copy_blocks_size), p->partno);
4297 else {
4298 log_info("Copying in '%s' @ %" PRIu64 " (%s) on block level into future partition %" PRIu64 ".",
4299 p->copy_blocks_path, p->copy_blocks_offset, FORMAT_BYTES(p->copy_blocks_size), p->partno);
4300
4301 if (lseek(p->copy_blocks_fd, p->copy_blocks_offset, SEEK_SET) < 0)
4302 return log_error_errno(errno, "Failed to seek to copy blocks offset in %s: %m", p->copy_blocks_path);
4303 }
4304
4305 r = copy_bytes(p->copy_blocks_fd, partition_target_fd(t), p->copy_blocks_size, COPY_REFLINK);
4306 if (r < 0)
4307 return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path);
4308
4309 log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path);
4310
4311 if (p->encrypt != ENCRYPT_OFF && !t->loop) {
4312 r = partition_encrypt(context, p, t, /* offline = */ true);
4313 if (r < 0)
4314 return r;
4315 }
4316
4317 r = partition_target_sync(context, p, t);
4318 if (r < 0)
4319 return r;
4320
4321 usec_t time_spent = usec_sub_unsigned(now(CLOCK_MONOTONIC), start_timestamp);
4322 if (time_spent > 250 * USEC_PER_MSEC) /* Show throughput, but not if we spent too little time on it, since it's just noise then */
4323 log_info("Block level copying and synchronization of partition %" PRIu64 " complete in %s (%s/s).",
4324 p->partno, FORMAT_TIMESPAN(time_spent, 0), FORMAT_BYTES((uint64_t) ((double) p->copy_blocks_size / time_spent * USEC_PER_SEC)));
4325 else
4326 log_info("Block level copying and synchronization of partition %" PRIu64 " complete in %s.",
4327 p->partno, FORMAT_TIMESPAN(time_spent, 0));
4328
4329 if (p->siblings[VERITY_HASH] && !partition_type_defer(&p->siblings[VERITY_HASH]->type)) {
4330 r = partition_format_verity_hash(context, p->siblings[VERITY_HASH],
4331 /* node = */ NULL, partition_target_path(t));
4332 if (r < 0)
4333 return r;
4334 }
4335
4336 if (p->siblings[VERITY_SIG] && !partition_type_defer(&p->siblings[VERITY_SIG]->type)) {
4337 r = partition_format_verity_sig(context, p->siblings[VERITY_SIG]);
4338 if (r < 0)
4339 return r;
4340 }
4341 }
4342
4343 return 0;
4344 }
4345
4346 static int add_exclude_path(const char *path, Hashmap **denylist, DenyType type) {
4347 _cleanup_free_ struct stat *st = NULL;
4348 int r;
4349
4350 assert(path);
4351 assert(denylist);
4352
4353 st = new(struct stat, 1);
4354 if (!st)
4355 return log_oom();
4356
4357 r = chase_and_stat(path, arg_copy_source, CHASE_PREFIX_ROOT, NULL, st);
4358 if (r == -ENOENT)
4359 return 0;
4360 if (r < 0)
4361 return log_error_errno(r, "Failed to stat source file '%s/%s': %m", strempty(arg_copy_source), path);
4362
4363 r = hashmap_ensure_put(denylist, &inode_hash_ops, st, INT_TO_PTR(type));
4364 if (r == -EEXIST)
4365 return 0;
4366 if (r < 0)
4367 return log_oom();
4368 if (r > 0)
4369 TAKE_PTR(st);
4370
4371 return 0;
4372 }
4373
4374 static int make_copy_files_denylist(
4375 Context *context,
4376 const Partition *p,
4377 const char *source,
4378 const char *target,
4379 Hashmap **ret) {
4380
4381 _cleanup_hashmap_free_ Hashmap *denylist = NULL;
4382 int r;
4383
4384 assert(context);
4385 assert(p);
4386 assert(source);
4387 assert(target);
4388 assert(ret);
4389
4390 /* Always exclude the top level APIVFS and temporary directories since the contents of these
4391 * directories are almost certainly not intended to end up in an image. */
4392
4393 NULSTR_FOREACH(s, APIVFS_TMP_DIRS_NULSTR) {
4394 r = add_exclude_path(s, &denylist, DENY_CONTENTS);
4395 if (r < 0)
4396 return r;
4397 }
4398
4399 /* Add the user configured excludes. */
4400
4401 STRV_FOREACH(e, p->exclude_files_source) {
4402 r = add_exclude_path(*e, &denylist, endswith(*e, "/") ? DENY_CONTENTS : DENY_INODE);
4403 if (r < 0)
4404 return r;
4405 }
4406
4407 STRV_FOREACH(e, p->exclude_files_target) {
4408 _cleanup_free_ char *path = NULL;
4409
4410 const char *s = path_startswith(*e, target);
4411 if (!s)
4412 continue;
4413
4414 path = path_join(source, s);
4415 if (!path)
4416 return log_oom();
4417
4418 r = add_exclude_path(path, &denylist, endswith(*e, "/") ? DENY_CONTENTS : DENY_INODE);
4419 if (r < 0)
4420 return r;
4421 }
4422
4423 /* If we're populating a root partition, we don't want any files to end up under the APIVFS mount
4424 * points. While we already exclude <source>/proc, users could still do something such as
4425 * "CopyFiles=/abc:/". Now, if /abc has a proc subdirectory with files in it, those will end up in
4426 * the top level proc directory in the root partition, which we want to avoid. To deal with these
4427 * cases, whenever we're populating a root partition and the target of CopyFiles= is the root
4428 * directory of the root partition, we exclude all directories under the source that are named after
4429 * APIVFS directories or named after mount points of other partitions that are also going to be part
4430 * of the image. */
4431
4432 if (p->type.designator == PARTITION_ROOT && empty_or_root(target)) {
4433 LIST_FOREACH(partitions, q, context->partitions) {
4434 if (q->type.designator == PARTITION_ROOT)
4435 continue;
4436
4437 const char *sources = gpt_partition_type_mountpoint_nulstr(q->type);
4438 if (!sources)
4439 continue;
4440
4441 NULSTR_FOREACH(s, sources) {
4442 _cleanup_free_ char *path = NULL;
4443
4444 /* Exclude only the children of partition mount points so that the nested
4445 * partition mount point itself still ends up in the upper partition. */
4446
4447 path = path_join(source, s);
4448 if (!path)
4449 return -ENOMEM;
4450
4451 r = add_exclude_path(path, &denylist, DENY_CONTENTS);
4452 if (r < 0)
4453 return r;
4454 }
4455 }
4456
4457 NULSTR_FOREACH(s, APIVFS_TMP_DIRS_NULSTR) {
4458 _cleanup_free_ char *path = NULL;
4459
4460 path = path_join(source, s);
4461 if (!path)
4462 return -ENOMEM;
4463
4464 r = add_exclude_path(path, &denylist, DENY_CONTENTS);
4465 if (r < 0)
4466 return r;
4467 }
4468 }
4469
4470 *ret = TAKE_PTR(denylist);
4471 return 0;
4472 }
4473
4474 static int add_subvolume_path(const char *path, Set **subvolumes) {
4475 _cleanup_free_ struct stat *st = NULL;
4476 int r;
4477
4478 assert(path);
4479 assert(subvolumes);
4480
4481 st = new(struct stat, 1);
4482 if (!st)
4483 return log_oom();
4484
4485 r = chase_and_stat(path, arg_copy_source, CHASE_PREFIX_ROOT, NULL, st);
4486 if (r == -ENOENT)
4487 return 0;
4488 if (r < 0)
4489 return log_error_errno(r, "Failed to stat source file '%s/%s': %m", strempty(arg_copy_source), path);
4490
4491 r = set_ensure_consume(subvolumes, &inode_hash_ops, TAKE_PTR(st));
4492 if (r < 0)
4493 return log_oom();
4494
4495 return 0;
4496 }
4497
4498 static int make_subvolumes_set(
4499 Context *context,
4500 const Partition *p,
4501 const char *source,
4502 const char *target,
4503 Set **ret) {
4504 _cleanup_set_free_ Set *subvolumes = NULL;
4505 int r;
4506
4507 assert(context);
4508 assert(p);
4509 assert(target);
4510 assert(ret);
4511
4512 STRV_FOREACH(subvolume, p->subvolumes) {
4513 _cleanup_free_ char *path = NULL;
4514
4515 const char *s = path_startswith(*subvolume, target);
4516 if (!s)
4517 continue;
4518
4519 path = path_join(source, s);
4520 if (!path)
4521 return log_oom();
4522
4523 r = add_subvolume_path(path, &subvolumes);
4524 if (r < 0)
4525 return r;
4526 }
4527
4528 *ret = TAKE_PTR(subvolumes);
4529 return 0;
4530 }
4531
4532 static int do_copy_files(Context *context, Partition *p, const char *root) {
4533 int r;
4534
4535 assert(p);
4536 assert(root);
4537
4538 /* copy_tree_at() automatically copies the permissions of source directories to target directories if
4539 * it created them. However, the root directory is created by us, so we have to manually take care
4540 * that it is initialized. We use the first source directory targeting "/" as the metadata source for
4541 * the root directory. */
4542 STRV_FOREACH_PAIR(source, target, p->copy_files) {
4543 _cleanup_close_ int rfd = -EBADF, sfd = -EBADF;
4544
4545 if (!path_equal(*target, "/"))
4546 continue;
4547
4548 rfd = open(root, O_DIRECTORY|O_CLOEXEC|O_NOFOLLOW);
4549 if (rfd < 0)
4550 return -errno;
4551
4552 sfd = chase_and_open(*source, arg_copy_source, CHASE_PREFIX_ROOT, O_PATH|O_DIRECTORY|O_CLOEXEC|O_NOCTTY, NULL);
4553 if (sfd < 0)
4554 return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_copy_source), *source);
4555
4556 (void) copy_xattr(sfd, NULL, rfd, NULL, COPY_ALL_XATTRS);
4557 (void) copy_access(sfd, rfd);
4558 (void) copy_times(sfd, rfd, 0);
4559
4560 break;
4561 }
4562
4563 STRV_FOREACH_PAIR(source, target, p->copy_files) {
4564 _cleanup_hashmap_free_ Hashmap *denylist = NULL;
4565 _cleanup_set_free_ Set *subvolumes_by_source_inode = NULL;
4566 _cleanup_close_ int sfd = -EBADF, pfd = -EBADF, tfd = -EBADF;
4567
4568 r = make_copy_files_denylist(context, p, *source, *target, &denylist);
4569 if (r < 0)
4570 return r;
4571
4572 r = make_subvolumes_set(context, p, *source, *target, &subvolumes_by_source_inode);
4573 if (r < 0)
4574 return r;
4575
4576 sfd = chase_and_open(*source, arg_copy_source, CHASE_PREFIX_ROOT, O_CLOEXEC|O_NOCTTY, NULL);
4577 if (sfd == -ENOENT) {
4578 log_notice_errno(sfd, "Failed to open source file '%s%s', skipping: %m", strempty(arg_copy_source), *source);
4579 continue;
4580 }
4581 if (sfd < 0)
4582 return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_copy_source), *source);
4583
4584 r = fd_verify_regular(sfd);
4585 if (r < 0) {
4586 if (r != -EISDIR)
4587 return log_error_errno(r, "Failed to check type of source file '%s': %m", *source);
4588
4589 /* We are looking at a directory */
4590 tfd = chase_and_open(*target, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL);
4591 if (tfd < 0) {
4592 _cleanup_free_ char *dn = NULL, *fn = NULL;
4593
4594 if (tfd != -ENOENT)
4595 return log_error_errno(tfd, "Failed to open target directory '%s': %m", *target);
4596
4597 r = path_extract_filename(*target, &fn);
4598 if (r < 0)
4599 return log_error_errno(r, "Failed to extract filename from '%s': %m", *target);
4600
4601 r = path_extract_directory(*target, &dn);
4602 if (r < 0)
4603 return log_error_errno(r, "Failed to extract directory from '%s': %m", *target);
4604
4605 r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755, p->subvolumes);
4606 if (r < 0)
4607 return log_error_errno(r, "Failed to create parent directory '%s': %m", dn);
4608
4609 pfd = chase_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL);
4610 if (pfd < 0)
4611 return log_error_errno(pfd, "Failed to open parent directory of target: %m");
4612
4613 r = copy_tree_at(
4614 sfd, ".",
4615 pfd, fn,
4616 UID_INVALID, GID_INVALID,
4617 COPY_REFLINK|COPY_HOLES|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS|COPY_GRACEFUL_WARN|COPY_TRUNCATE,
4618 denylist, subvolumes_by_source_inode);
4619 } else
4620 r = copy_tree_at(
4621 sfd, ".",
4622 tfd, ".",
4623 UID_INVALID, GID_INVALID,
4624 COPY_REFLINK|COPY_HOLES|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS|COPY_ALL_XATTRS|COPY_GRACEFUL_WARN|COPY_TRUNCATE,
4625 denylist, subvolumes_by_source_inode);
4626 if (r < 0)
4627 return log_error_errno(r, "Failed to copy '%s%s' to '%s%s': %m",
4628 strempty(arg_copy_source), *source, strempty(root), *target);
4629 } else {
4630 _cleanup_free_ char *dn = NULL, *fn = NULL;
4631
4632 /* We are looking at a regular file */
4633
4634 r = path_extract_filename(*target, &fn);
4635 if (r == -EADDRNOTAVAIL || r == O_DIRECTORY)
4636 return log_error_errno(SYNTHETIC_ERRNO(EISDIR),
4637 "Target path '%s' refers to a directory, but source path '%s' refers to regular file, can't copy.", *target, *source);
4638 if (r < 0)
4639 return log_error_errno(r, "Failed to extract filename from '%s': %m", *target);
4640
4641 r = path_extract_directory(*target, &dn);
4642 if (r < 0)
4643 return log_error_errno(r, "Failed to extract directory from '%s': %m", *target);
4644
4645 r = mkdir_p_root(root, dn, UID_INVALID, GID_INVALID, 0755, p->subvolumes);
4646 if (r < 0)
4647 return log_error_errno(r, "Failed to create parent directory: %m");
4648
4649 pfd = chase_and_open(dn, root, CHASE_PREFIX_ROOT, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL);
4650 if (pfd < 0)
4651 return log_error_errno(pfd, "Failed to open parent directory of target: %m");
4652
4653 tfd = openat(pfd, fn, O_CREAT|O_EXCL|O_WRONLY|O_CLOEXEC, 0700);
4654 if (tfd < 0)
4655 return log_error_errno(errno, "Failed to create target file '%s': %m", *target);
4656
4657 r = copy_bytes(sfd, tfd, UINT64_MAX, COPY_REFLINK|COPY_HOLES|COPY_SIGINT|COPY_TRUNCATE);
4658 if (r < 0)
4659 return log_error_errno(r, "Failed to copy '%s' to '%s%s': %m", *source, strempty(arg_copy_source), *target);
4660
4661 (void) copy_xattr(sfd, NULL, tfd, NULL, COPY_ALL_XATTRS);
4662 (void) copy_access(sfd, tfd);
4663 (void) copy_times(sfd, tfd, 0);
4664 }
4665 }
4666
4667 return 0;
4668 }
4669
4670 static int do_make_directories(Partition *p, const char *root) {
4671 int r;
4672
4673 assert(p);
4674 assert(root);
4675
4676 STRV_FOREACH(d, p->make_directories) {
4677 r = mkdir_p_root(root, *d, UID_INVALID, GID_INVALID, 0755, p->subvolumes);
4678 if (r < 0)
4679 return log_error_errno(r, "Failed to create directory '%s' in file system: %m", *d);
4680 }
4681
4682 return 0;
4683 }
4684
4685 static bool partition_needs_populate(Partition *p) {
4686 assert(p);
4687 return !strv_isempty(p->copy_files) || !strv_isempty(p->make_directories);
4688 }
4689
4690 static int partition_populate_directory(Context *context, Partition *p, char **ret) {
4691 _cleanup_(rm_rf_physical_and_freep) char *root = NULL;
4692 const char *vt;
4693 int r;
4694
4695 assert(ret);
4696
4697 log_info("Populating %s filesystem.", p->format);
4698
4699 r = var_tmp_dir(&vt);
4700 if (r < 0)
4701 return log_error_errno(r, "Could not determine temporary directory: %m");
4702
4703 r = tempfn_random_child(vt, "repart", &root);
4704 if (r < 0)
4705 return log_error_errno(r, "Failed to generate temporary directory: %m");
4706
4707 r = mkdir(root, 0755);
4708 if (r < 0)
4709 return log_error_errno(errno, "Failed to create temporary directory: %m");
4710
4711 r = do_copy_files(context, p, root);
4712 if (r < 0)
4713 return r;
4714
4715 r = do_make_directories(p, root);
4716 if (r < 0)
4717 return r;
4718
4719 log_info("Successfully populated %s filesystem.", p->format);
4720
4721 *ret = TAKE_PTR(root);
4722 return 0;
4723 }
4724
4725 static int partition_populate_filesystem(Context *context, Partition *p, const char *node) {
4726 int r;
4727
4728 assert(p);
4729 assert(node);
4730
4731 log_info("Populating %s filesystem.", p->format);
4732
4733 /* We copy in a child process, since we have to mount the fs for that, and we don't want that fs to
4734 * appear in the host namespace. Hence we fork a child that has its own file system namespace and
4735 * detached mount propagation. */
4736
4737 r = safe_fork("(sd-copy)", FORK_DEATHSIG_SIGTERM|FORK_LOG|FORK_WAIT|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, NULL);
4738 if (r < 0)
4739 return r;
4740 if (r == 0) {
4741 static const char fs[] = "/run/systemd/mount-root";
4742 /* This is a child process with its own mount namespace and propagation to host turned off */
4743
4744 r = mkdir_p(fs, 0700);
4745 if (r < 0) {
4746 log_error_errno(r, "Failed to create mount point: %m");
4747 _exit(EXIT_FAILURE);
4748 }
4749
4750 if (mount_nofollow_verbose(LOG_ERR, node, fs, p->format, MS_NOATIME|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL) < 0)
4751 _exit(EXIT_FAILURE);
4752
4753 if (do_copy_files(context, p, fs) < 0)
4754 _exit(EXIT_FAILURE);
4755
4756 if (do_make_directories(p, fs) < 0)
4757 _exit(EXIT_FAILURE);
4758
4759 r = syncfs_path(AT_FDCWD, fs);
4760 if (r < 0) {
4761 log_error_errno(r, "Failed to synchronize written files: %m");
4762 _exit(EXIT_FAILURE);
4763 }
4764
4765 _exit(EXIT_SUCCESS);
4766 }
4767
4768 log_info("Successfully populated %s filesystem.", p->format);
4769 return 0;
4770 }
4771
4772 static int context_mkfs(Context *context) {
4773 int r;
4774
4775 assert(context);
4776
4777 /* Make a file system */
4778
4779 LIST_FOREACH(partitions, p, context->partitions) {
4780 _cleanup_(rm_rf_physical_and_freep) char *root = NULL;
4781 _cleanup_(partition_target_freep) PartitionTarget *t = NULL;
4782 _cleanup_strv_free_ char **extra_mkfs_options = NULL;
4783
4784 if (p->dropped)
4785 continue;
4786
4787 if (PARTITION_EXISTS(p)) /* Never format existing partitions */
4788 continue;
4789
4790 if (!p->format)
4791 continue;
4792
4793 /* Minimized partitions will use the copy blocks logic so let's make sure to skip those here. */
4794 if (p->copy_blocks_fd >= 0)
4795 continue;
4796
4797 if (partition_type_defer(&p->type))
4798 continue;
4799
4800 assert(p->offset != UINT64_MAX);
4801 assert(p->new_size != UINT64_MAX);
4802 assert(p->new_size >= (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0));
4803
4804 /* If we're doing encryption, we make sure we keep free space at the end which is required
4805 * for cryptsetup's offline encryption. */
4806 r = partition_target_prepare(context, p,
4807 p->new_size - (p->encrypt != ENCRYPT_OFF ? LUKS2_METADATA_KEEP_FREE : 0),
4808 /*need_path=*/ true,
4809 &t);
4810 if (r < 0)
4811 return r;
4812
4813 if (p->encrypt != ENCRYPT_OFF && t->loop) {
4814 r = partition_target_grow(t, p->new_size);
4815 if (r < 0)
4816 return r;
4817
4818 r = partition_encrypt(context, p, t, /* offline = */ false);
4819 if (r < 0)
4820 return log_error_errno(r, "Failed to encrypt device: %m");
4821 }
4822
4823 log_info("Formatting future partition %" PRIu64 ".", p->partno);
4824
4825 /* If we're not writing to a loop device or if we're populating a read-only filesystem, we
4826 * have to populate using the filesystem's mkfs's --root (or equivalent) option. To do that,
4827 * we need to set up the final directory tree beforehand. */
4828
4829 if (partition_needs_populate(p) && (!t->loop || fstype_is_ro(p->format))) {
4830 if (!mkfs_supports_root_option(p->format))
4831 return log_error_errno(SYNTHETIC_ERRNO(ENODEV),
4832 "Loop device access is required to populate %s filesystems.",
4833 p->format);
4834
4835 r = partition_populate_directory(context, p, &root);
4836 if (r < 0)
4837 return r;
4838 }
4839
4840 r = mkfs_options_from_env("REPART", p->format, &extra_mkfs_options);
4841 if (r < 0)
4842 return log_error_errno(r,
4843 "Failed to determine mkfs command line options for '%s': %m",
4844 p->format);
4845
4846 r = make_filesystem(partition_target_path(t), p->format, strempty(p->new_label), root,
4847 p->fs_uuid, arg_discard, /* quiet = */ false,
4848 context->fs_sector_size, extra_mkfs_options);
4849 if (r < 0)
4850 return r;
4851
4852 /* The mkfs binary we invoked might have removed our temporary file when we're not operating
4853 * on a loop device, so let's make sure we open the file again to make sure our file
4854 * descriptor points to any potential new file. */
4855
4856 if (t->fd >= 0 && t->path && !t->loop) {
4857 safe_close(t->fd);
4858 t->fd = open(t->path, O_RDWR|O_CLOEXEC);
4859 if (t->fd < 0)
4860 return log_error_errno(errno, "Failed to reopen temporary file: %m");
4861 }
4862
4863 log_info("Successfully formatted future partition %" PRIu64 ".", p->partno);
4864
4865 /* If we're writing to a loop device, we can now mount the empty filesystem and populate it. */
4866 if (partition_needs_populate(p) && !root) {
4867 assert(t->loop);
4868
4869 r = partition_populate_filesystem(context, p, partition_target_path(t));
4870 if (r < 0)
4871 return r;
4872 }
4873
4874 if (p->encrypt != ENCRYPT_OFF && !t->loop) {
4875 r = partition_target_grow(t, p->new_size);
4876 if (r < 0)
4877 return r;
4878
4879 r = partition_encrypt(context, p, t, /* offline = */ true);
4880 if (r < 0)
4881 return log_error_errno(r, "Failed to encrypt device: %m");
4882 }
4883
4884 /* Note that we always sync explicitly here, since mkfs.fat doesn't do that on its own, and
4885 * if we don't sync before detaching a block device the in-flight sectors possibly won't hit
4886 * the disk. */
4887
4888 r = partition_target_sync(context, p, t);
4889 if (r < 0)
4890 return r;
4891
4892 if (p->siblings[VERITY_HASH] && !partition_type_defer(&p->siblings[VERITY_HASH]->type)) {
4893 r = partition_format_verity_hash(context, p->siblings[VERITY_HASH],
4894 /* node = */ NULL, partition_target_path(t));
4895 if (r < 0)
4896 return r;
4897 }
4898
4899 if (p->siblings[VERITY_SIG] && !partition_type_defer(&p->siblings[VERITY_SIG]->type)) {
4900 r = partition_format_verity_sig(context, p->siblings[VERITY_SIG]);
4901 if (r < 0)
4902 return r;
4903 }
4904 }
4905
4906 return 0;
4907 }
4908
4909 static int parse_x509_certificate(const char *certificate, size_t certificate_size, X509 **ret) {
4910 #if HAVE_OPENSSL
4911 _cleanup_(X509_freep) X509 *cert = NULL;
4912 _cleanup_(BIO_freep) BIO *cb = NULL;
4913
4914 assert(certificate);
4915 assert(certificate_size > 0);
4916 assert(ret);
4917
4918 cb = BIO_new_mem_buf(certificate, certificate_size);
4919 if (!cb)
4920 return log_oom();
4921
4922 cert = PEM_read_bio_X509(cb, NULL, NULL, NULL);
4923 if (!cert)
4924 return log_error_errno(SYNTHETIC_ERRNO(EBADMSG), "Failed to parse X.509 certificate: %s",
4925 ERR_error_string(ERR_get_error(), NULL));
4926
4927 if (ret)
4928 *ret = TAKE_PTR(cert);
4929
4930 return 0;
4931 #else
4932 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot parse X509 certificate.");
4933 #endif
4934 }
4935
4936 static int parse_private_key(const char *key, size_t key_size, EVP_PKEY **ret) {
4937 #if HAVE_OPENSSL
4938 _cleanup_(BIO_freep) BIO *kb = NULL;
4939 _cleanup_(EVP_PKEY_freep) EVP_PKEY *pk = NULL;
4940
4941 assert(key);
4942 assert(key_size > 0);
4943 assert(ret);
4944
4945 kb = BIO_new_mem_buf(key, key_size);
4946 if (!kb)
4947 return log_oom();
4948
4949 pk = PEM_read_bio_PrivateKey(kb, NULL, NULL, NULL);
4950 if (!pk)
4951 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to parse PEM private key: %s",
4952 ERR_error_string(ERR_get_error(), NULL));
4953
4954 if (ret)
4955 *ret = TAKE_PTR(pk);
4956
4957 return 0;
4958 #else
4959 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "OpenSSL is not supported, cannot parse private key.");
4960 #endif
4961 }
4962
4963 static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) {
4964 struct {
4965 sd_id128_t type_uuid;
4966 uint64_t counter;
4967 } _packed_ plaintext = {};
4968 union {
4969 uint8_t md[SHA256_DIGEST_SIZE];
4970 sd_id128_t id;
4971 } result;
4972
4973 uint64_t k = 0;
4974 int r;
4975
4976 assert(context);
4977 assert(p);
4978 assert(ret);
4979
4980 /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility,
4981 * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely:
4982 * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the
4983 * installation we are processing, but if random behaviour is desired can be random, too. We use the
4984 * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak)
4985 * and the partition type as plaintext. The partition type is suffixed with a counter (only for the
4986 * second and later partition of the same type) if we have more than one partition of the same
4987 * time. Or in other words:
4988 *
4989 * With:
4990 * SEED := /etc/machine-id
4991 *
4992 * If first partition instance of type TYPE_UUID:
4993 * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID)
4994 *
4995 * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number:
4996 * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE)
4997 */
4998
4999 LIST_FOREACH(partitions, q, context->partitions) {
5000 if (p == q)
5001 break;
5002
5003 if (!sd_id128_equal(p->type.uuid, q->type.uuid))
5004 continue;
5005
5006 k++;
5007 }
5008
5009 plaintext.type_uuid = p->type.uuid;
5010 plaintext.counter = htole64(k);
5011
5012 hmac_sha256(context->seed.bytes, sizeof(context->seed.bytes),
5013 &plaintext,
5014 k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext),
5015 result.md);
5016
5017 /* Take the first half, mark it as v4 UUID */
5018 assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
5019 result.id = id128_make_v4_uuid(result.id);
5020
5021 /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */
5022 LIST_FOREACH(partitions, q, context->partitions) {
5023 if (p == q)
5024 continue;
5025
5026 if (sd_id128_in_set(result.id, q->current_uuid, q->new_uuid)) {
5027 log_warning("Partition UUID calculated from seed for partition %" PRIu64 " already used, reverting to randomized UUID.", p->partno);
5028
5029 r = sd_id128_randomize(&result.id);
5030 if (r < 0)
5031 return log_error_errno(r, "Failed to generate randomized UUID: %m");
5032
5033 break;
5034 }
5035 }
5036
5037 *ret = result.id;
5038 return 0;
5039 }
5040
5041 static int partition_acquire_label(Context *context, Partition *p, char **ret) {
5042 _cleanup_free_ char *label = NULL;
5043 const char *prefix;
5044 unsigned k = 1;
5045
5046 assert(context);
5047 assert(p);
5048 assert(ret);
5049
5050 prefix = gpt_partition_type_uuid_to_string(p->type.uuid);
5051 if (!prefix)
5052 prefix = "linux";
5053
5054 for (;;) {
5055 const char *ll = label ?: prefix;
5056 bool retry = false;
5057
5058 LIST_FOREACH(partitions, q, context->partitions) {
5059 if (p == q)
5060 break;
5061
5062 if (streq_ptr(ll, q->current_label) ||
5063 streq_ptr(ll, q->new_label)) {
5064 retry = true;
5065 break;
5066 }
5067 }
5068
5069 if (!retry)
5070 break;
5071
5072 label = mfree(label);
5073 if (asprintf(&label, "%s-%u", prefix, ++k) < 0)
5074 return log_oom();
5075 }
5076
5077 if (!label) {
5078 label = strdup(prefix);
5079 if (!label)
5080 return log_oom();
5081 }
5082
5083 *ret = TAKE_PTR(label);
5084 return 0;
5085 }
5086
5087 static int context_acquire_partition_uuids_and_labels(Context *context) {
5088 int r;
5089
5090 assert(context);
5091
5092 LIST_FOREACH(partitions, p, context->partitions) {
5093 sd_id128_t uuid;
5094
5095 /* Never touch foreign partitions */
5096 if (PARTITION_IS_FOREIGN(p)) {
5097 p->new_uuid = p->current_uuid;
5098
5099 if (p->current_label) {
5100 r = free_and_strdup_warn(&p->new_label, strempty(p->current_label));
5101 if (r < 0)
5102 return r;
5103 }
5104
5105 continue;
5106 }
5107
5108 if (!sd_id128_is_null(p->current_uuid))
5109 p->new_uuid = uuid = p->current_uuid; /* Never change initialized UUIDs */
5110 else if (p->new_uuid_is_set)
5111 uuid = p->new_uuid;
5112 else {
5113 /* Not explicitly set by user! */
5114 r = partition_acquire_uuid(context, p, &uuid);
5115 if (r < 0)
5116 return r;
5117
5118 /* The final verity hash/data UUIDs can only be determined after formatting the
5119 * verity hash partition. However, we still want to use the generated partition UUID
5120 * to derive other UUIDs to keep things unique and reproducible, so we always
5121 * generate a UUID if none is set, but we only use it as the actual partition UUID if
5122 * verity is not configured. */
5123 if (!IN_SET(p->verity, VERITY_DATA, VERITY_HASH)) {
5124 p->new_uuid = uuid;
5125 p->new_uuid_is_set = true;
5126 }
5127 }
5128
5129 /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid",
5130 * keyed off the partition UUID. */
5131 r = derive_uuid(uuid, "file-system-uuid", &p->fs_uuid);
5132 if (r < 0)
5133 return r;
5134
5135 if (p->encrypt != ENCRYPT_OFF) {
5136 r = derive_uuid(uuid, "luks-uuid", &p->luks_uuid);
5137 if (r < 0)
5138 return r;
5139 }
5140
5141 /* Derive the verity salt and verity superblock UUID from the seed to keep them reproducible */
5142 if (p->verity == VERITY_HASH) {
5143 derive_salt(context->seed, "verity-salt", p->verity_salt);
5144
5145 r = derive_uuid(context->seed, "verity-uuid", &p->verity_uuid);
5146 if (r < 0)
5147 return log_error_errno(r, "Failed to acquire verity uuid: %m");
5148 }
5149
5150 if (!isempty(p->current_label)) {
5151 /* never change initialized labels */
5152 r = free_and_strdup_warn(&p->new_label, p->current_label);
5153 if (r < 0)
5154 return r;
5155 } else if (!p->new_label) {
5156 /* Not explicitly set by user! */
5157
5158 r = partition_acquire_label(context, p, &p->new_label);
5159 if (r < 0)
5160 return r;
5161 }
5162 }
5163
5164 return 0;
5165 }
5166
5167 static int set_gpt_flags(struct fdisk_partition *q, uint64_t flags) {
5168 _cleanup_free_ char *a = NULL;
5169
5170 for (unsigned i = 0; i < sizeof(flags) * 8; i++) {
5171 uint64_t bit = UINT64_C(1) << i;
5172 char buf[DECIMAL_STR_MAX(unsigned)+1];
5173
5174 if (!FLAGS_SET(flags, bit))
5175 continue;
5176
5177 xsprintf(buf, "%u", i);
5178 if (!strextend_with_separator(&a, ",", buf))
5179 return -ENOMEM;
5180 }
5181
5182 return fdisk_partition_set_attrs(q, a);
5183 }
5184
5185 static uint64_t partition_merge_flags(Partition *p) {
5186 uint64_t f;
5187
5188 assert(p);
5189
5190 f = p->gpt_flags;
5191
5192 if (p->no_auto >= 0) {
5193 if (gpt_partition_type_knows_no_auto(p->type))
5194 SET_FLAG(f, SD_GPT_FLAG_NO_AUTO, p->no_auto);
5195 else {
5196 char buffer[SD_ID128_UUID_STRING_MAX];
5197 log_warning("Configured NoAuto=%s for partition type '%s' that doesn't support it, ignoring.",
5198 yes_no(p->no_auto),
5199 gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer));
5200 }
5201 }
5202
5203 if (p->read_only >= 0) {
5204 if (gpt_partition_type_knows_read_only(p->type))
5205 SET_FLAG(f, SD_GPT_FLAG_READ_ONLY, p->read_only);
5206 else {
5207 char buffer[SD_ID128_UUID_STRING_MAX];
5208 log_warning("Configured ReadOnly=%s for partition type '%s' that doesn't support it, ignoring.",
5209 yes_no(p->read_only),
5210 gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer));
5211 }
5212 }
5213
5214 if (p->growfs >= 0) {
5215 if (gpt_partition_type_knows_growfs(p->type))
5216 SET_FLAG(f, SD_GPT_FLAG_GROWFS, p->growfs);
5217 else {
5218 char buffer[SD_ID128_UUID_STRING_MAX];
5219 log_warning("Configured GrowFileSystem=%s for partition type '%s' that doesn't support it, ignoring.",
5220 yes_no(p->growfs),
5221 gpt_partition_type_uuid_to_string_harder(p->type.uuid, buffer));
5222 }
5223 }
5224
5225 return f;
5226 }
5227
5228 static int context_mangle_partitions(Context *context) {
5229 int r;
5230
5231 assert(context);
5232
5233 LIST_FOREACH(partitions, p, context->partitions) {
5234 if (p->dropped)
5235 continue;
5236
5237 if (partition_type_defer(&p->type))
5238 continue;
5239
5240 assert(p->new_size != UINT64_MAX);
5241 assert(p->offset != UINT64_MAX);
5242 assert(p->partno != UINT64_MAX);
5243
5244 if (PARTITION_EXISTS(p)) {
5245 bool changed = false;
5246
5247 assert(p->current_partition);
5248
5249 if (p->new_size != p->current_size) {
5250 assert(p->new_size >= p->current_size);
5251 assert(p->new_size % context->sector_size == 0);
5252
5253 r = fdisk_partition_size_explicit(p->current_partition, true);
5254 if (r < 0)
5255 return log_error_errno(r, "Failed to enable explicit sizing: %m");
5256
5257 r = fdisk_partition_set_size(p->current_partition, p->new_size / context->sector_size);
5258 if (r < 0)
5259 return log_error_errno(r, "Failed to grow partition: %m");
5260
5261 log_info("Growing existing partition %" PRIu64 ".", p->partno);
5262 changed = true;
5263 }
5264
5265 if (!sd_id128_equal(p->new_uuid, p->current_uuid)) {
5266 r = fdisk_partition_set_uuid(p->current_partition, SD_ID128_TO_UUID_STRING(p->new_uuid));
5267 if (r < 0)
5268 return log_error_errno(r, "Failed to set partition UUID: %m");
5269
5270 log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno);
5271 changed = true;
5272 }
5273
5274 if (!streq_ptr(p->new_label, p->current_label)) {
5275 r = fdisk_partition_set_name(p->current_partition, strempty(p->new_label));
5276 if (r < 0)
5277 return log_error_errno(r, "Failed to set partition label: %m");
5278
5279 log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno);
5280 changed = true;
5281 }
5282
5283 if (changed) {
5284 assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */
5285
5286 r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition);
5287 if (r < 0)
5288 return log_error_errno(r, "Failed to update partition: %m");
5289 }
5290 } else {
5291 _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL;
5292 _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL;
5293
5294 assert(!p->new_partition);
5295 assert(p->offset % context->sector_size == 0);
5296 assert(p->new_size % context->sector_size == 0);
5297 assert(p->new_label);
5298
5299 t = fdisk_new_parttype();
5300 if (!t)
5301 return log_oom();
5302
5303 r = fdisk_parttype_set_typestr(t, SD_ID128_TO_UUID_STRING(p->type.uuid));
5304 if (r < 0)
5305 return log_error_errno(r, "Failed to initialize partition type: %m");
5306
5307 q = fdisk_new_partition();
5308 if (!q)
5309 return log_oom();
5310
5311 r = fdisk_partition_set_type(q, t);
5312 if (r < 0)
5313 return log_error_errno(r, "Failed to set partition type: %m");
5314
5315 r = fdisk_partition_size_explicit(q, true);
5316 if (r < 0)
5317 return log_error_errno(r, "Failed to enable explicit sizing: %m");
5318
5319 r = fdisk_partition_set_start(q, p->offset / context->sector_size);
5320 if (r < 0)
5321 return log_error_errno(r, "Failed to position partition: %m");
5322
5323 r = fdisk_partition_set_size(q, p->new_size / context->sector_size);
5324 if (r < 0)
5325 return log_error_errno(r, "Failed to grow partition: %m");
5326
5327 r = fdisk_partition_set_partno(q, p->partno);
5328 if (r < 0)
5329 return log_error_errno(r, "Failed to set partition number: %m");
5330
5331 r = fdisk_partition_set_uuid(q, SD_ID128_TO_UUID_STRING(p->new_uuid));
5332 if (r < 0)
5333 return log_error_errno(r, "Failed to set partition UUID: %m");
5334
5335 r = fdisk_partition_set_name(q, strempty(p->new_label));
5336 if (r < 0)
5337 return log_error_errno(r, "Failed to set partition label: %m");
5338
5339 /* Merge the no auto + read only + growfs setting with the literal flags, and set them for the partition */
5340 r = set_gpt_flags(q, partition_merge_flags(p));
5341 if (r < 0)
5342 return log_error_errno(r, "Failed to set GPT partition flags: %m");
5343
5344 log_info("Adding new partition %" PRIu64 " to partition table.", p->partno);
5345
5346 r = fdisk_add_partition(context->fdisk_context, q, NULL);
5347 if (r < 0)
5348 return log_error_errno(r, "Failed to add partition: %m");
5349
5350 assert(!p->new_partition);
5351 p->new_partition = TAKE_PTR(q);
5352 }
5353 }
5354
5355 return 0;
5356 }
5357
5358 static int split_name_printf(Partition *p, char **ret) {
5359 assert(p);
5360
5361 const Specifier table[] = {
5362 { 't', specifier_string, GPT_PARTITION_TYPE_UUID_TO_STRING_HARDER(p->type.uuid) },
5363 { 'T', specifier_id128, &p->type.uuid },
5364 { 'U', specifier_id128, &p->new_uuid },
5365 { 'n', specifier_uint64, &p->partno },
5366
5367 COMMON_SYSTEM_SPECIFIERS,
5368 {}
5369 };
5370
5371 return specifier_printf(p->split_name_format, NAME_MAX, table, arg_root, p, ret);
5372 }
5373
5374 static int split_node(const char *node, char **ret_base, char **ret_ext) {
5375 _cleanup_free_ char *base = NULL, *ext = NULL;
5376 char *e;
5377 int r;
5378
5379 assert(node);
5380 assert(ret_base);
5381 assert(ret_ext);
5382
5383 r = path_extract_filename(node, &base);
5384 if (r == O_DIRECTORY || r == -EADDRNOTAVAIL)
5385 return log_error_errno(r, "Device node %s cannot be a directory", node);
5386 if (r < 0)
5387 return log_error_errno(r, "Failed to extract filename from %s: %m", node);
5388
5389 e = endswith(base, ".raw");
5390 if (e) {
5391 ext = strdup(e);
5392 if (!ext)
5393 return log_oom();
5394
5395 *e = 0;
5396 }
5397
5398 *ret_base = TAKE_PTR(base);
5399 *ret_ext = TAKE_PTR(ext);
5400
5401 return 0;
5402 }
5403
5404 static int split_name_resolve(Context *context) {
5405 _cleanup_free_ char *parent = NULL, *base = NULL, *ext = NULL;
5406 int r;
5407
5408 assert(context);
5409
5410 r = path_extract_directory(context->node, &parent);
5411 if (r < 0 && r != -EDESTADDRREQ)
5412 return log_error_errno(r, "Failed to extract directory from %s: %m", context->node);
5413
5414 r = split_node(context->node, &base, &ext);
5415 if (r < 0)
5416 return r;
5417
5418 LIST_FOREACH(partitions, p, context->partitions) {
5419 _cleanup_free_ char *resolved = NULL;
5420
5421 if (p->dropped)
5422 continue;
5423
5424 if (!p->split_name_format)
5425 continue;
5426
5427 r = split_name_printf(p, &resolved);
5428 if (r < 0)
5429 return log_error_errno(r, "Failed to resolve specifiers in %s: %m", p->split_name_format);
5430
5431 if (parent)
5432 p->split_path = strjoin(parent, "/", base, ".", resolved, ext);
5433 else
5434 p->split_path = strjoin(base, ".", resolved, ext);
5435 if (!p->split_path)
5436 return log_oom();
5437 }
5438
5439 LIST_FOREACH(partitions, p, context->partitions) {
5440 if (!p->split_path)
5441 continue;
5442
5443 LIST_FOREACH(partitions, q, context->partitions) {
5444 if (p == q)
5445 continue;
5446
5447 if (!q->split_path)
5448 continue;
5449
5450 if (!streq(p->split_path, q->split_path))
5451 continue;
5452
5453 return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ),
5454 "%s and %s have the same resolved split name \"%s\", refusing",
5455 p->definition_path, q->definition_path, p->split_path);
5456 }
5457 }
5458
5459 return 0;
5460 }
5461
5462 static int context_split(Context *context) {
5463 int fd = -EBADF, r;
5464
5465 if (!arg_split)
5466 return 0;
5467
5468 assert(context);
5469
5470 /* We can't do resolution earlier because the partition UUIDs for verity partitions are only filled
5471 * in after they've been generated. */
5472
5473 r = split_name_resolve(context);
5474 if (r < 0)
5475 return r;
5476
5477 LIST_FOREACH(partitions, p, context->partitions) {
5478 _cleanup_close_ int fdt = -EBADF;
5479
5480 if (p->dropped)
5481 continue;
5482
5483 if (!p->split_path)
5484 continue;
5485
5486 if (partition_type_defer(&p->type))
5487 continue;
5488
5489 fdt = open(p->split_path, O_WRONLY|O_NOCTTY|O_CLOEXEC|O_NOFOLLOW|O_CREAT|O_EXCL, 0666);
5490 if (fdt < 0)
5491 return log_error_errno(fdt, "Failed to open split partition file %s: %m", p->split_path);
5492
5493 if (fd < 0)
5494 assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
5495
5496 if (lseek(fd, p->offset, SEEK_SET) < 0)
5497 return log_error_errno(errno, "Failed to seek to partition offset: %m");
5498
5499 r = copy_bytes(fd, fdt, p->new_size, COPY_REFLINK|COPY_HOLES|COPY_TRUNCATE);
5500 if (r < 0)
5501 return log_error_errno(r, "Failed to copy to split partition %s: %m", p->split_path);
5502 }
5503
5504 return 0;
5505 }
5506
5507 static int context_write_partition_table(Context *context) {
5508 _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL;
5509 int capable, r;
5510
5511 assert(context);
5512
5513 if (!context->from_scratch && !context_changed(context)) {
5514 log_info("No changes.");
5515 return 0;
5516 }
5517
5518 if (arg_dry_run) {
5519 log_notice("Refusing to repartition, please re-run with --dry-run=no.");
5520 return 0;
5521 }
5522
5523 log_info("Applying changes to %s.", context->node);
5524
5525 if (context->from_scratch && arg_empty != EMPTY_CREATE) {
5526 /* Erase everything if we operate from scratch, except if the image was just created anyway, and thus is definitely empty. */
5527 r = context_wipe_range(context, 0, context->total);
5528 if (r < 0)
5529 return r;
5530
5531 log_info("Wiped block device.");
5532
5533 if (arg_discard) {
5534 r = context_discard_range(context, 0, context->total);
5535 if (r == -EOPNOTSUPP)
5536 log_info("Storage does not support discard, not discarding entire block device data.");
5537 else if (r < 0)
5538 return log_error_errno(r, "Failed to discard entire block device: %m");
5539 else if (r > 0)
5540 log_info("Discarded entire block device.");
5541 }
5542 }
5543
5544 r = fdisk_get_partitions(context->fdisk_context, &original_table);
5545 if (r < 0)
5546 return log_error_errno(r, "Failed to acquire partition table: %m");
5547
5548 /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the
5549 * gaps between partitions, just to be sure. */
5550 r = context_wipe_and_discard(context);
5551 if (r < 0)
5552 return r;
5553
5554 r = context_copy_blocks(context);
5555 if (r < 0)
5556 return r;
5557
5558 r = context_mkfs(context);
5559 if (r < 0)
5560 return r;
5561
5562 r = context_mangle_partitions(context);
5563 if (r < 0)
5564 return r;
5565
5566 log_info("Writing new partition table.");
5567
5568 r = fdisk_write_disklabel(context->fdisk_context);
5569 if (r < 0)
5570 return log_error_errno(r, "Failed to write partition table: %m");
5571
5572 capable = blockdev_partscan_enabled(fdisk_get_devfd(context->fdisk_context));
5573 if (capable == -ENOTBLK)
5574 log_debug("Not telling kernel to reread partition table, since we are not operating on a block device.");
5575 else if (capable < 0)
5576 return log_error_errno(capable, "Failed to check if block device supports partition scanning: %m");
5577 else if (capable > 0) {
5578 log_info("Telling kernel to reread partition table.");
5579
5580 if (context->from_scratch)
5581 r = fdisk_reread_partition_table(context->fdisk_context);
5582 else
5583 r = fdisk_reread_changes(context->fdisk_context, original_table);
5584 if (r < 0)
5585 return log_error_errno(r, "Failed to reread partition table: %m");
5586 } else
5587 log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices.");
5588
5589 log_info("All done.");
5590
5591 return 0;
5592 }
5593
5594 static int context_read_seed(Context *context, const char *root) {
5595 int r;
5596
5597 assert(context);
5598
5599 if (!sd_id128_is_null(context->seed))
5600 return 0;
5601
5602 if (!arg_randomize) {
5603 r = id128_get_machine(root, &context->seed);
5604 if (r >= 0)
5605 return 0;
5606
5607 if (!ERRNO_IS_MACHINE_ID_UNSET(r))
5608 return log_error_errno(r, "Failed to parse machine ID of image: %m");
5609
5610 log_info("No machine ID set, using randomized partition UUIDs.");
5611 }
5612
5613 r = sd_id128_randomize(&context->seed);
5614 if (r < 0)
5615 return log_error_errno(r, "Failed to generate randomized seed: %m");
5616
5617 return 0;
5618 }
5619
5620 static int context_factory_reset(Context *context) {
5621 size_t n = 0;
5622 int r;
5623
5624 assert(context);
5625
5626 if (arg_factory_reset <= 0)
5627 return 0;
5628
5629 if (context->from_scratch) /* Nothing to reset if we start from scratch */
5630 return 0;
5631
5632 if (arg_dry_run) {
5633 log_notice("Refusing to factory reset, please re-run with --dry-run=no.");
5634 return 0;
5635 }
5636
5637 log_info("Applying factory reset.");
5638
5639 LIST_FOREACH(partitions, p, context->partitions) {
5640
5641 if (!p->factory_reset || !PARTITION_EXISTS(p))
5642 continue;
5643
5644 assert(p->partno != UINT64_MAX);
5645
5646 log_info("Removing partition %" PRIu64 " for factory reset.", p->partno);
5647
5648 r = fdisk_delete_partition(context->fdisk_context, p->partno);
5649 if (r < 0)
5650 return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno);
5651
5652 n++;
5653 }
5654
5655 if (n == 0) {
5656 log_info("Factory reset requested, but no partitions to delete found.");
5657 return 0;
5658 }
5659
5660 r = fdisk_write_disklabel(context->fdisk_context);
5661 if (r < 0)
5662 return log_error_errno(r, "Failed to write disk label: %m");
5663
5664 log_info("Successfully deleted %zu partitions.", n);
5665 return 1;
5666 }
5667
5668 static int context_can_factory_reset(Context *context) {
5669 assert(context);
5670
5671 LIST_FOREACH(partitions, p, context->partitions)
5672 if (p->factory_reset && PARTITION_EXISTS(p))
5673 return true;
5674
5675 return false;
5676 }
5677
5678 static int resolve_copy_blocks_auto_candidate(
5679 dev_t partition_devno,
5680 GptPartitionType partition_type,
5681 dev_t restrict_devno,
5682 sd_id128_t *ret_uuid) {
5683
5684 _cleanup_(blkid_free_probep) blkid_probe b = NULL;
5685 _cleanup_close_ int fd = -EBADF;
5686 _cleanup_free_ char *p = NULL;
5687 const char *pttype, *t;
5688 sd_id128_t pt_parsed, u;
5689 blkid_partition pp;
5690 dev_t whole_devno;
5691 blkid_partlist pl;
5692 int r;
5693
5694 /* Checks if the specified partition has the specified GPT type UUID, and is located on the specified
5695 * 'restrict_devno' device. The type check is particularly relevant if we have Verity volume which is
5696 * backed by two separate partitions: the data and the hash partitions, and we need to find the right
5697 * one of the two. */
5698
5699 r = block_get_whole_disk(partition_devno, &whole_devno);
5700 if (r < 0)
5701 return log_error_errno(
5702 r,
5703 "Unable to determine containing block device of partition %u:%u: %m",
5704 major(partition_devno), minor(partition_devno));
5705
5706 if (restrict_devno != (dev_t) -1 &&
5707 restrict_devno != whole_devno)
5708 return log_error_errno(
5709 SYNTHETIC_ERRNO(EPERM),
5710 "Partition %u:%u is located outside of block device %u:%u, refusing.",
5711 major(partition_devno), minor(partition_devno),
5712 major(restrict_devno), minor(restrict_devno));
5713
5714 fd = r = device_open_from_devnum(S_IFBLK, whole_devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &p);
5715 if (r < 0)
5716 return log_error_errno(r, "Failed to open block device " DEVNUM_FORMAT_STR ": %m",
5717 DEVNUM_FORMAT_VAL(whole_devno));
5718
5719 b = blkid_new_probe();
5720 if (!b)
5721 return log_oom();
5722
5723 errno = 0;
5724 r = blkid_probe_set_device(b, fd, 0, 0);
5725 if (r != 0)
5726 return log_error_errno(errno_or_else(ENOMEM), "Failed to open block device '%s': %m", p);
5727
5728 (void) blkid_probe_enable_partitions(b, 1);
5729 (void) blkid_probe_set_partitions_flags(b, BLKID_PARTS_ENTRY_DETAILS);
5730
5731 errno = 0;
5732 r = blkid_do_safeprobe(b);
5733 if (r == _BLKID_SAFEPROBE_ERROR)
5734 return log_error_errno(errno_or_else(EIO), "Unable to probe for partition table of '%s': %m", p);
5735 if (IN_SET(r, _BLKID_SAFEPROBE_AMBIGUOUS, _BLKID_SAFEPROBE_NOT_FOUND)) {
5736 log_debug("Didn't find partition table on block device '%s'.", p);
5737 return false;
5738 }
5739
5740 assert(r == _BLKID_SAFEPROBE_FOUND);
5741
5742 (void) blkid_probe_lookup_value(b, "PTTYPE", &pttype, NULL);
5743 if (!streq_ptr(pttype, "gpt")) {
5744 log_debug("Didn't find a GPT partition table on '%s'.", p);
5745 return false;
5746 }
5747
5748 errno = 0;
5749 pl = blkid_probe_get_partitions(b);
5750 if (!pl)
5751 return log_error_errno(errno_or_else(EIO), "Unable read partition table of '%s': %m", p);
5752
5753 pp = blkid_partlist_devno_to_partition(pl, partition_devno);
5754 if (!pp) {
5755 log_debug("Partition %u:%u has no matching partition table entry on '%s'.",
5756 major(partition_devno), minor(partition_devno), p);
5757 return false;
5758 }
5759
5760 t = blkid_partition_get_type_string(pp);
5761 if (isempty(t)) {
5762 log_debug("Partition %u:%u has no type on '%s'.",
5763 major(partition_devno), minor(partition_devno), p);
5764 return false;
5765 }
5766
5767 r = sd_id128_from_string(t, &pt_parsed);
5768 if (r < 0) {
5769 log_debug_errno(r, "Failed to parse partition type \"%s\": %m", t);
5770 return false;
5771 }
5772
5773 if (!sd_id128_equal(pt_parsed, partition_type.uuid)) {
5774 log_debug("Partition %u:%u has non-matching partition type " SD_ID128_FORMAT_STR " (needed: " SD_ID128_FORMAT_STR "), ignoring.",
5775 major(partition_devno), minor(partition_devno),
5776 SD_ID128_FORMAT_VAL(pt_parsed), SD_ID128_FORMAT_VAL(partition_type.uuid));
5777 return false;
5778 }
5779
5780 r = blkid_partition_get_uuid_id128(pp, &u);
5781 if (r == -ENXIO) {
5782 log_debug_errno(r, "Partition " DEVNUM_FORMAT_STR " has no UUID.", DEVNUM_FORMAT_VAL(partition_devno));
5783 return false;
5784 }
5785 if (r < 0) {
5786 log_debug_errno(r, "Failed to read partition UUID of " DEVNUM_FORMAT_STR ": %m", DEVNUM_FORMAT_VAL(partition_devno));
5787 return false;
5788 }
5789
5790 log_debug("Automatically found partition " DEVNUM_FORMAT_STR " of right type " SD_ID128_FORMAT_STR ".",
5791 DEVNUM_FORMAT_VAL(partition_devno),
5792 SD_ID128_FORMAT_VAL(pt_parsed));
5793
5794 if (ret_uuid)
5795 *ret_uuid = u;
5796
5797 return true;
5798 }
5799
5800 static int find_backing_devno(
5801 const char *path,
5802 const char *root,
5803 dev_t *ret) {
5804
5805 _cleanup_free_ char *resolved = NULL;
5806 int r;
5807
5808 assert(path);
5809
5810 r = chase(path, root, CHASE_PREFIX_ROOT, &resolved, NULL);
5811 if (r < 0)
5812 return r;
5813
5814 r = path_is_mount_point(resolved, NULL, 0);
5815 if (r < 0)
5816 return r;
5817 if (r == 0) /* Not a mount point, then it's not a partition of its own, let's not automatically use it. */
5818 return -ENOENT;
5819
5820 r = get_block_device(resolved, ret);
5821 if (r < 0)
5822 return r;
5823 if (r == 0) /* Not backed by physical file system, we can't use this */
5824 return -ENOENT;
5825
5826 return 0;
5827 }
5828
5829 static int resolve_copy_blocks_auto(
5830 GptPartitionType type,
5831 const char *root,
5832 dev_t restrict_devno,
5833 dev_t *ret_devno,
5834 sd_id128_t *ret_uuid) {
5835
5836 const char *try1 = NULL, *try2 = NULL;
5837 char p[SYS_BLOCK_PATH_MAX("/slaves")];
5838 _cleanup_closedir_ DIR *d = NULL;
5839 sd_id128_t found_uuid = SD_ID128_NULL;
5840 dev_t devno, found = 0;
5841 int r;
5842
5843 /* Enforce some security restrictions: CopyBlocks=auto should not be an avenue to get outside of the
5844 * --root=/--image= confinement. Specifically, refuse CopyBlocks= in combination with --root= at all,
5845 * and restrict block device references in the --image= case to loopback block device we set up.
5846 *
5847 * restrict_devno contain the dev_t of the loop back device we operate on in case of --image=, and
5848 * thus declares which device (and its partition subdevices) we shall limit access to. If
5849 * restrict_devno is zero no device probing access shall be allowed at all (used for --root=) and if
5850 * it is (dev_t) -1 then free access shall be allowed (if neither switch is used). */
5851
5852 if (restrict_devno == 0)
5853 return log_error_errno(SYNTHETIC_ERRNO(EPERM),
5854 "Automatic discovery of backing block devices not permitted in --root= mode, refusing.");
5855
5856 /* Handles CopyBlocks=auto, and finds the right source partition to copy from. We look for matching
5857 * partitions in the host, using the appropriate directory as key and ensuring that the partition
5858 * type matches. */
5859
5860 if (type.designator == PARTITION_ROOT)
5861 try1 = "/";
5862 else if (type.designator == PARTITION_USR)
5863 try1 = "/usr/";
5864 else if (type.designator == PARTITION_ROOT_VERITY)
5865 try1 = "/";
5866 else if (type.designator == PARTITION_USR_VERITY)
5867 try1 = "/usr/";
5868 else if (type.designator == PARTITION_ESP) {
5869 try1 = "/efi/";
5870 try2 = "/boot/";
5871 } else if (type.designator == PARTITION_XBOOTLDR)
5872 try1 = "/boot/";
5873 else
5874 return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP),
5875 "Partition type " SD_ID128_FORMAT_STR " not supported from automatic source block device discovery.",
5876 SD_ID128_FORMAT_VAL(type.uuid));
5877
5878 r = find_backing_devno(try1, root, &devno);
5879 if (r == -ENOENT && try2)
5880 r = find_backing_devno(try2, root, &devno);
5881 if (r < 0)
5882 return log_error_errno(r, "Failed to resolve automatic CopyBlocks= path for partition type " SD_ID128_FORMAT_STR ", sorry: %m",
5883 SD_ID128_FORMAT_VAL(type.uuid));
5884
5885 xsprintf_sys_block_path(p, "/slaves", devno);
5886 d = opendir(p);
5887 if (d) {
5888 struct dirent *de;
5889
5890 for (;;) {
5891 _cleanup_free_ char *q = NULL, *t = NULL;
5892 sd_id128_t u;
5893 dev_t sl;
5894
5895 errno = 0;
5896 de = readdir_no_dot(d);
5897 if (!de) {
5898 if (errno != 0)
5899 return log_error_errno(errno, "Failed to read directory '%s': %m", p);
5900
5901 break;
5902 }
5903
5904 if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN))
5905 continue;
5906
5907 q = path_join(p, de->d_name, "/dev");
5908 if (!q)
5909 return log_oom();
5910
5911 r = read_one_line_file(q, &t);
5912 if (r < 0)
5913 return log_error_errno(r, "Failed to read %s: %m", q);
5914
5915 r = parse_devnum(t, &sl);
5916 if (r < 0) {
5917 log_debug_errno(r, "Failed to parse %s, ignoring: %m", q);
5918 continue;
5919 }
5920 if (major(sl) == 0) {
5921 log_debug("Device backing %s is special, ignoring.", q);
5922 continue;
5923 }
5924
5925 r = resolve_copy_blocks_auto_candidate(sl, type, restrict_devno, &u);
5926 if (r < 0)
5927 return r;
5928 if (r > 0) {
5929 /* We found a matching one! */
5930 if (found != 0)
5931 return log_error_errno(SYNTHETIC_ERRNO(ENOTUNIQ),
5932 "Multiple matching partitions found, refusing.");
5933
5934 found = sl;
5935 found_uuid = u;
5936 }
5937 }
5938 } else if (errno != ENOENT)
5939 return log_error_errno(errno, "Failed open %s: %m", p);
5940 else {
5941 r = resolve_copy_blocks_auto_candidate(devno, type, restrict_devno, &found_uuid);
5942 if (r < 0)
5943 return r;
5944 if (r > 0)
5945 found = devno;
5946 }
5947
5948 if (found == 0)
5949 return log_error_errno(SYNTHETIC_ERRNO(ENXIO),
5950 "Unable to automatically discover suitable partition to copy blocks from.");
5951
5952 if (ret_devno)
5953 *ret_devno = found;
5954
5955 if (ret_uuid)
5956 *ret_uuid = found_uuid;
5957
5958 return 0;
5959 }
5960
5961 static int context_open_copy_block_paths(
5962 Context *context,
5963 dev_t restrict_devno) {
5964
5965 int r;
5966
5967 assert(context);
5968
5969 LIST_FOREACH(partitions, p, context->partitions) {
5970 _cleanup_close_ int source_fd = -EBADF;
5971 _cleanup_free_ char *opened = NULL;
5972 sd_id128_t uuid = SD_ID128_NULL;
5973 uint64_t size;
5974 struct stat st;
5975
5976 if (p->copy_blocks_fd >= 0)
5977 continue;
5978
5979 assert(p->copy_blocks_size == UINT64_MAX);
5980
5981 if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */
5982 continue;
5983
5984 if (p->copy_blocks_path) {
5985
5986 source_fd = chase_and_open(p->copy_blocks_path, p->copy_blocks_root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened);
5987 if (source_fd < 0)
5988 return log_error_errno(source_fd, "Failed to open '%s': %m", p->copy_blocks_path);
5989
5990 if (fstat(source_fd, &st) < 0)
5991 return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened);
5992
5993 if (!S_ISREG(st.st_mode) && restrict_devno != (dev_t) -1)
5994 return log_error_errno(SYNTHETIC_ERRNO(EPERM),
5995 "Copying from block device node is not permitted in --image=/--root= mode, refusing.");
5996
5997 } else if (p->copy_blocks_auto) {
5998 dev_t devno = 0; /* Fake initialization to appease gcc. */
5999
6000 r = resolve_copy_blocks_auto(p->type, p->copy_blocks_root, restrict_devno, &devno, &uuid);
6001 if (r < 0)
6002 return r;
6003 assert(devno != 0);
6004
6005 source_fd = r = device_open_from_devnum(S_IFBLK, devno, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &opened);
6006 if (r < 0)
6007 return log_error_errno(r, "Failed to open automatically determined source block copy device " DEVNUM_FORMAT_STR ": %m",
6008 DEVNUM_FORMAT_VAL(devno));
6009
6010 if (fstat(source_fd, &st) < 0)
6011 return log_error_errno(errno, "Failed to stat block copy file '%s': %m", opened);
6012 } else
6013 continue;
6014
6015 if (S_ISDIR(st.st_mode)) {
6016 _cleanup_free_ char *bdev = NULL;
6017 dev_t devt;
6018
6019 /* If the file is a directory, automatically find the backing block device */
6020
6021 if (major(st.st_dev) != 0)
6022 devt = st.st_dev;
6023 else {
6024 /* Special support for btrfs */
6025 r = btrfs_get_block_device_fd(source_fd, &devt);
6026 if (r == -EUCLEAN)
6027 return btrfs_log_dev_root(LOG_ERR, r, opened);
6028 if (r < 0)
6029 return log_error_errno(r, "Unable to determine backing block device of '%s': %m", opened);
6030 }
6031
6032 safe_close(source_fd);
6033
6034 source_fd = r = device_open_from_devnum(S_IFBLK, devt, O_RDONLY|O_CLOEXEC|O_NONBLOCK, &bdev);
6035 if (r < 0)
6036 return log_error_errno(r, "Failed to open block device backing '%s': %m", opened);
6037
6038 if (fstat(source_fd, &st) < 0)
6039 return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev);
6040 }
6041
6042 if (S_ISREG(st.st_mode))
6043 size = st.st_size;
6044 else if (S_ISBLK(st.st_mode)) {
6045 r = blockdev_get_device_size(source_fd, &size);
6046 if (r < 0)
6047 return log_error_errno(r, "Failed to determine size of block device to copy from: %m");
6048 } else
6049 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", opened);
6050
6051 if (size <= 0)
6052 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", opened);
6053 if (size % 512 != 0)
6054 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", opened);
6055
6056 p->copy_blocks_fd = TAKE_FD(source_fd);
6057 p->copy_blocks_size = size;
6058
6059 free_and_replace(p->copy_blocks_path, opened);
6060
6061 /* When copying from an existing partition copy that partitions UUID if none is configured explicitly */
6062 if (!p->new_uuid_is_set && !sd_id128_is_null(uuid)) {
6063 p->new_uuid = uuid;
6064 p->new_uuid_is_set = true;
6065 }
6066 }
6067
6068 return 0;
6069 }
6070
6071 static int fd_apparent_size(int fd, uint64_t *ret) {
6072 off_t initial = 0;
6073 uint64_t size = 0;
6074
6075 assert(fd >= 0);
6076 assert(ret);
6077
6078 initial = lseek(fd, 0, SEEK_CUR);
6079 if (initial < 0)
6080 return log_error_errno(errno, "Failed to get file offset: %m");
6081
6082 for (off_t off = 0;;) {
6083 off_t r;
6084
6085 r = lseek(fd, off, SEEK_DATA);
6086 if (r < 0 && errno == ENXIO)
6087 /* If errno == ENXIO, that means we've reached the final hole of the file and
6088 * that hole isn't followed by more data. */
6089 break;
6090 if (r < 0)
6091 return log_error_errno(errno, "Failed to seek data in file from offset %"PRIi64": %m", off);
6092
6093 off = r; /* Set the offset to the start of the data segment. */
6094
6095 /* After copying a potential hole, find the end of the data segment by looking for
6096 * the next hole. If we get ENXIO, we're at EOF. */
6097 r = lseek(fd, off, SEEK_HOLE);
6098 if (r < 0) {
6099 if (errno == ENXIO)
6100 break;
6101 return log_error_errno(errno, "Failed to seek hole in file from offset %"PRIi64": %m", off);
6102 }
6103
6104 size += r - off;
6105 off = r;
6106 }
6107
6108 if (lseek(fd, initial, SEEK_SET) < 0)
6109 return log_error_errno(errno, "Failed to reset file offset: %m");
6110
6111 *ret = size;
6112
6113 return 0;
6114 }
6115
6116 static int context_minimize(Context *context) {
6117 const char *vt = NULL;
6118 int r;
6119
6120 assert(context);
6121
6122 LIST_FOREACH(partitions, p, context->partitions) {
6123 _cleanup_(rm_rf_physical_and_freep) char *root = NULL;
6124 _cleanup_(unlink_and_freep) char *temp = NULL;
6125 _cleanup_(loop_device_unrefp) LoopDevice *d = NULL;
6126 _cleanup_strv_free_ char **extra_mkfs_options = NULL;
6127 _cleanup_close_ int fd = -EBADF;
6128 _cleanup_free_ char *hint = NULL;
6129 sd_id128_t fs_uuid;
6130 struct stat st;
6131 uint64_t fsz;
6132
6133 if (p->dropped)
6134 continue;
6135
6136 if (PARTITION_EXISTS(p)) /* Never format existing partitions */
6137 continue;
6138
6139 if (!p->format)
6140 continue;
6141
6142 if (p->copy_blocks_fd >= 0)
6143 continue;
6144
6145 if (p->minimize == MINIMIZE_OFF)
6146 continue;
6147
6148 if (!partition_needs_populate(p))
6149 continue;
6150
6151 assert(!p->copy_blocks_path);
6152
6153 (void) partition_hint(p, context->node, &hint);
6154
6155 log_info("Pre-populating %s filesystem of partition %s twice to calculate minimal partition size",
6156 p->format, strna(hint));
6157
6158 if (!vt) {
6159 r = var_tmp_dir(&vt);
6160 if (r < 0)
6161 return log_error_errno(r, "Could not determine temporary directory: %m");
6162 }
6163
6164 r = tempfn_random_child(vt, "repart", &temp);
6165 if (r < 0)
6166 return log_error_errno(r, "Failed to generate temporary file path: %m");
6167
6168 if (fstype_is_ro(p->format))
6169 fs_uuid = p->fs_uuid;
6170 else {
6171 fd = open(temp, O_CREAT|O_EXCL|O_CLOEXEC|O_RDWR|O_NOCTTY, 0600);
6172 if (fd < 0)
6173 return log_error_errno(errno, "Failed to open temporary file %s: %m", temp);
6174
6175 /* This may seem huge but it will be created sparse so it doesn't take up any space
6176 * on disk until written to. */
6177 if (ftruncate(fd, 1024ULL * 1024ULL * 1024ULL * 1024ULL) < 0)
6178 return log_error_errno(errno, "Failed to truncate temporary file to %s: %m",
6179 FORMAT_BYTES(1024ULL * 1024ULL * 1024ULL * 1024ULL));
6180
6181 if (arg_offline <= 0) {
6182 r = loop_device_make(fd, O_RDWR, 0, UINT64_MAX, context->sector_size, 0, LOCK_EX, &d);
6183 if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes)))
6184 return log_error_errno(r, "Failed to make loopback device of %s: %m", temp);
6185 }
6186
6187 /* We're going to populate this filesystem twice so use a random UUID the first time
6188 * to avoid UUID conflicts. */
6189 r = sd_id128_randomize(&fs_uuid);
6190 if (r < 0)
6191 return r;
6192 }
6193
6194 if (!d || fstype_is_ro(p->format)) {
6195 if (!mkfs_supports_root_option(p->format))
6196 return log_error_errno(SYNTHETIC_ERRNO(ENODEV),
6197 "Loop device access is required to populate %s filesystems",
6198 p->format);
6199
6200 r = partition_populate_directory(context, p, &root);
6201 if (r < 0)
6202 return r;
6203 }
6204
6205 r = mkfs_options_from_env("REPART", p->format, &extra_mkfs_options);
6206 if (r < 0)
6207 return log_error_errno(r,
6208 "Failed to determine mkfs command line options for '%s': %m",
6209 p->format);
6210
6211 r = make_filesystem(d ? d->node : temp,
6212 p->format,
6213 strempty(p->new_label),
6214 root,
6215 fs_uuid,
6216 arg_discard, /* quiet = */ false,
6217 context->fs_sector_size,
6218 extra_mkfs_options);
6219 if (r < 0)
6220 return r;
6221
6222 /* Read-only filesystems are minimal from the first try because they create and size the
6223 * loopback file for us. */
6224 if (fstype_is_ro(p->format)) {
6225 assert(fd < 0);
6226
6227 fd = open(temp, O_RDONLY|O_CLOEXEC|O_NONBLOCK);
6228 if (fd < 0)
6229 return log_error_errno(errno, "Failed to open temporary file %s: %m", temp);
6230
6231 if (fstat(fd, &st) < 0)
6232 return log_error_errno(errno, "Failed to stat temporary file: %m");
6233
6234 log_info("Minimal partition size of %s filesystem of partition %s is %s",
6235 p->format, strna(hint), FORMAT_BYTES(st.st_size));
6236
6237 p->copy_blocks_path = TAKE_PTR(temp);
6238 p->copy_blocks_path_is_our_file = true;
6239 p->copy_blocks_fd = TAKE_FD(fd);
6240 p->copy_blocks_size = st.st_size;
6241 continue;
6242 }
6243
6244 if (!root) {
6245 assert(d);
6246
6247 r = partition_populate_filesystem(context, p, d->node);
6248 if (r < 0)
6249 return r;
6250 }
6251
6252 /* Other filesystems need to be provided with a pre-sized loopback file and will adapt to
6253 * fully occupy it. Because we gave the filesystem a 1T sparse file, we need to shrink the
6254 * filesystem down to a reasonable size again to fit it in the disk image. While there are
6255 * some filesystems that support shrinking, it doesn't always work properly (e.g. shrinking
6256 * btrfs gives us a 2.0G filesystem regardless of what we put in it). Instead, let's populate
6257 * the filesystem again, but this time, instead of providing the filesystem with a 1T sparse
6258 * loopback file, let's size the loopback file based on the actual data used by the
6259 * filesystem in the sparse file after the first attempt. This should be a good guess of the
6260 * minimal amount of space needed in the filesystem to fit all the required data.
6261 */
6262 r = fd_apparent_size(fd, &fsz);
6263 if (r < 0)
6264 return r;
6265
6266 /* Massage the size a bit because just going by actual data used in the sparse file isn't
6267 * fool-proof. */
6268 uint64_t heuristic = streq(p->format, "xfs") ? fsz : fsz / 2;
6269 fsz = round_up_size(fsz + heuristic, context->grain_size);
6270 if (minimal_size_by_fs_name(p->format) != UINT64_MAX)
6271 fsz = MAX(minimal_size_by_fs_name(p->format), fsz);
6272
6273 log_info("Minimal partition size of %s filesystem of partition %s is %s",
6274 p->format, strna(hint), FORMAT_BYTES(fsz));
6275
6276 d = loop_device_unref(d);
6277
6278 /* Erase the previous filesystem first. */
6279 if (ftruncate(fd, 0) < 0)
6280 return log_error_errno(errno, "Failed to erase temporary file: %m");
6281
6282 if (ftruncate(fd, fsz) < 0)
6283 return log_error_errno(errno, "Failed to truncate temporary file to %s: %m", FORMAT_BYTES(fsz));
6284
6285 if (arg_offline <= 0) {
6286 r = loop_device_make(fd, O_RDWR, 0, UINT64_MAX, context->sector_size, 0, LOCK_EX, &d);
6287 if (r < 0 && (arg_offline == 0 || (r != -ENOENT && !ERRNO_IS_PRIVILEGE(r)) || !strv_isempty(p->subvolumes)))
6288 return log_error_errno(r, "Failed to make loopback device of %s: %m", temp);
6289 }
6290
6291 r = make_filesystem(d ? d->node : temp,
6292 p->format,
6293 strempty(p->new_label),
6294 root,
6295 p->fs_uuid,
6296 arg_discard,
6297 /* quiet = */ false,
6298 context->fs_sector_size,
6299 extra_mkfs_options);
6300 if (r < 0)
6301 return r;
6302
6303 if (!root) {
6304 assert(d);
6305
6306 r = partition_populate_filesystem(context, p, d->node);
6307 if (r < 0)
6308 return r;
6309 }
6310
6311 if (fstat(fd, &st) < 0)
6312 return log_error_errno(errno, "Failed to stat temporary file: %m");
6313
6314 p->copy_blocks_path = TAKE_PTR(temp);
6315 p->copy_blocks_path_is_our_file = true;
6316 p->copy_blocks_fd = TAKE_FD(fd);
6317 p->copy_blocks_size = st.st_size;
6318 }
6319
6320 /* Now that we've done the data partitions, do the verity hash partitions. We do these in a separate
6321 * step because they might depend on data generated in the previous step. */
6322
6323 LIST_FOREACH(partitions, p, context->partitions) {
6324 _cleanup_(unlink_and_freep) char *temp = NULL;
6325 _cleanup_free_ char *hint = NULL;
6326 _cleanup_close_ int fd = -EBADF;
6327 struct stat st;
6328 Partition *dp;
6329
6330 if (p->dropped)
6331 continue;
6332
6333 if (PARTITION_EXISTS(p)) /* Never format existing partitions */
6334 continue;
6335
6336 if (p->minimize == MINIMIZE_OFF)
6337 continue;
6338
6339 if (p->verity != VERITY_HASH)
6340 continue;
6341
6342 assert_se(dp = p->siblings[VERITY_DATA]);
6343 assert(!dp->dropped);
6344 assert(dp->copy_blocks_path);
6345
6346 (void) partition_hint(p, context->node, &hint);
6347
6348 log_info("Pre-populating verity hash data of partition %s to calculate minimal partition size",
6349 strna(hint));
6350
6351 if (!vt) {
6352 r = var_tmp_dir(&vt);
6353 if (r < 0)
6354 return log_error_errno(r, "Could not determine temporary directory: %m");
6355 }
6356
6357 r = tempfn_random_child(vt, "repart", &temp);
6358 if (r < 0)
6359 return log_error_errno(r, "Failed to generate temporary file path: %m");
6360
6361 r = touch(temp);
6362 if (r < 0)
6363 return log_error_errno(r, "Failed to create temporary file: %m");
6364
6365 r = partition_format_verity_hash(context, p, temp, dp->copy_blocks_path);
6366 if (r < 0)
6367 return r;
6368
6369 fd = open(temp, O_RDONLY|O_CLOEXEC|O_NONBLOCK);
6370 if (fd < 0)
6371 return log_error_errno(errno, "Failed to open temporary file %s: %m", temp);
6372
6373 if (fstat(fd, &st) < 0)
6374 return log_error_errno(errno, "Failed to stat temporary file: %m");
6375
6376 log_info("Minimal partition size of verity hash partition %s is %s",
6377 strna(hint), FORMAT_BYTES(st.st_size));
6378
6379 p->copy_blocks_path = TAKE_PTR(temp);
6380 p->copy_blocks_path_is_our_file = true;
6381 p->copy_blocks_fd = TAKE_FD(fd);
6382 p->copy_blocks_size = st.st_size;
6383 }
6384
6385 return 0;
6386 }
6387
6388 static int parse_partition_types(const char *p, GptPartitionType **partitions, size_t *n_partitions) {
6389 int r;
6390
6391 assert(partitions);
6392 assert(n_partitions);
6393
6394 for (;;) {
6395 _cleanup_free_ char *name = NULL;
6396 GptPartitionType type;
6397
6398 r = extract_first_word(&p, &name, ",", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS);
6399 if (r == 0)
6400 break;
6401 if (r < 0)
6402 return log_error_errno(r, "Failed to extract partition type identifier or GUID: %s", p);
6403
6404 r = gpt_partition_type_from_string(name, &type);
6405 if (r < 0)
6406 return log_error_errno(r, "'%s' is not a valid partition type identifier or GUID", name);
6407
6408 if (!GREEDY_REALLOC(*partitions, *n_partitions + 1))
6409 return log_oom();
6410
6411 (*partitions)[(*n_partitions)++] = type;
6412 }
6413
6414 return 0;
6415 }
6416
6417 static int help(void) {
6418 _cleanup_free_ char *link = NULL;
6419 int r;
6420
6421 r = terminal_urlify_man("systemd-repart", "8", &link);
6422 if (r < 0)
6423 return log_oom();
6424
6425 printf("%s [OPTIONS...] [DEVICE]\n"
6426 "\n%sGrow and add partitions to partition table.%s\n\n"
6427 " -h --help Show this help\n"
6428 " --version Show package version\n"
6429 " --no-pager Do not pipe output into a pager\n"
6430 " --no-legend Do not show the headers and footers\n"
6431 " --dry-run=BOOL Whether to run dry-run operation\n"
6432 " --empty=MODE One of refuse, allow, require, force, create; controls\n"
6433 " how to handle empty disks lacking partition tables\n"
6434 " --discard=BOOL Whether to discard backing blocks for new partitions\n"
6435 " --pretty=BOOL Whether to show pretty summary before doing changes\n"
6436 " --factory-reset=BOOL Whether to remove data partitions before recreating\n"
6437 " them\n"
6438 " --can-factory-reset Test whether factory reset is defined\n"
6439 " --root=PATH Operate relative to root path\n"
6440 " --image=PATH Operate relative to image file\n"
6441 " --image-policy=POLICY\n"
6442 " Specify disk image dissection policy\n"
6443 " --definitions=DIR Find partition definitions in specified directory\n"
6444 " --key-file=PATH Key to use when encrypting partitions\n"
6445 " --private-key=PATH Private key to use when generating verity roothash\n"
6446 " signatures\n"
6447 " --certificate=PATH PEM certificate to use when generating verity\n"
6448 " roothash signatures\n"
6449 " --tpm2-device=PATH Path to TPM2 device node to use\n"
6450 " --tpm2-device-key=PATH\n"
6451 " Enroll a TPM2 device using its public key\n"
6452 " --tpm2-seal-key-handle=HANDLE\n"
6453 " Specify handle of key to use for sealing\n"
6454 " --tpm2-pcrs=PCR1+PCR2+PCR3+…\n"
6455 " TPM2 PCR indexes to use for TPM2 enrollment\n"
6456 " --tpm2-public-key=PATH\n"
6457 " Enroll signed TPM2 PCR policy against PEM public key\n"
6458 " --tpm2-public-key-pcrs=PCR1+PCR2+PCR3+…\n"
6459 " Enroll signed TPM2 PCR policy for specified TPM2 PCRs\n"
6460 " --tpm2-pcrlock=PATH\n"
6461 " Specify pcrlock policy to lock against\n"
6462 " --seed=UUID 128-bit seed UUID to derive all UUIDs from\n"
6463 " --size=BYTES Grow loopback file to specified size\n"
6464 " --json=pretty|short|off\n"
6465 " Generate JSON output\n"
6466 " --split=BOOL Whether to generate split artifacts\n"
6467 " --include-partitions=PARTITION1,PARTITION2,PARTITION3,…\n"
6468 " Ignore partitions not of the specified types\n"
6469 " --exclude-partitions=PARTITION1,PARTITION2,PARTITION3,…\n"
6470 " Ignore partitions of the specified types\n"
6471 " --defer-partitions=PARTITION1,PARTITION2,PARTITION3,…\n"
6472 " Take partitions of the specified types into account\n"
6473 " but don't populate them yet\n"
6474 " --sector-size=SIZE Set the logical sector size for the image\n"
6475 " --architecture=ARCH Set the generic architecture for the image\n"
6476 " --offline=BOOL Whether to build the image offline\n"
6477 " -s --copy-source=PATH Specify the primary source tree to copy files from\n"
6478 " --copy-from=IMAGE Copy partitions from the given image(s)\n"
6479 " -S --make-ddi=sysext Make a system extension DDI\n"
6480 " -C --make-ddi=confext Make a configuration extension DDI\n"
6481 " -P --make-ddi=portable Make a portable service DDI\n"
6482 "\nSee the %s for details.\n",
6483 program_invocation_short_name,
6484 ansi_highlight(),
6485 ansi_normal(),
6486 link);
6487
6488 return 0;
6489 }
6490
6491 static int parse_argv(int argc, char *argv[]) {
6492
6493 enum {
6494 ARG_VERSION = 0x100,
6495 ARG_NO_PAGER,
6496 ARG_NO_LEGEND,
6497 ARG_DRY_RUN,
6498 ARG_EMPTY,
6499 ARG_DISCARD,
6500 ARG_FACTORY_RESET,
6501 ARG_CAN_FACTORY_RESET,
6502 ARG_ROOT,
6503 ARG_IMAGE,
6504 ARG_IMAGE_POLICY,
6505 ARG_SEED,
6506 ARG_PRETTY,
6507 ARG_DEFINITIONS,
6508 ARG_SIZE,
6509 ARG_JSON,
6510 ARG_KEY_FILE,
6511 ARG_PRIVATE_KEY,
6512 ARG_CERTIFICATE,
6513 ARG_TPM2_DEVICE,
6514 ARG_TPM2_DEVICE_KEY,
6515 ARG_TPM2_SEAL_KEY_HANDLE,
6516 ARG_TPM2_PCRS,
6517 ARG_TPM2_PUBLIC_KEY,
6518 ARG_TPM2_PUBLIC_KEY_PCRS,
6519 ARG_TPM2_PCRLOCK,
6520 ARG_SPLIT,
6521 ARG_INCLUDE_PARTITIONS,
6522 ARG_EXCLUDE_PARTITIONS,
6523 ARG_DEFER_PARTITIONS,
6524 ARG_SECTOR_SIZE,
6525 ARG_SKIP_PARTITIONS,
6526 ARG_ARCHITECTURE,
6527 ARG_OFFLINE,
6528 ARG_COPY_FROM,
6529 ARG_MAKE_DDI,
6530 };
6531
6532 static const struct option options[] = {
6533 { "help", no_argument, NULL, 'h' },
6534 { "version", no_argument, NULL, ARG_VERSION },
6535 { "no-pager", no_argument, NULL, ARG_NO_PAGER },
6536 { "no-legend", no_argument, NULL, ARG_NO_LEGEND },
6537 { "dry-run", required_argument, NULL, ARG_DRY_RUN },
6538 { "empty", required_argument, NULL, ARG_EMPTY },
6539 { "discard", required_argument, NULL, ARG_DISCARD },
6540 { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET },
6541 { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET },
6542 { "root", required_argument, NULL, ARG_ROOT },
6543 { "image", required_argument, NULL, ARG_IMAGE },
6544 { "image-policy", required_argument, NULL, ARG_IMAGE_POLICY },
6545 { "seed", required_argument, NULL, ARG_SEED },
6546 { "pretty", required_argument, NULL, ARG_PRETTY },
6547 { "definitions", required_argument, NULL, ARG_DEFINITIONS },
6548 { "size", required_argument, NULL, ARG_SIZE },
6549 { "json", required_argument, NULL, ARG_JSON },
6550 { "key-file", required_argument, NULL, ARG_KEY_FILE },
6551 { "private-key", required_argument, NULL, ARG_PRIVATE_KEY },
6552 { "certificate", required_argument, NULL, ARG_CERTIFICATE },
6553 { "tpm2-device", required_argument, NULL, ARG_TPM2_DEVICE },
6554 { "tpm2-device-key", required_argument, NULL, ARG_TPM2_DEVICE_KEY },
6555 { "tpm2-seal-key-handle", required_argument, NULL, ARG_TPM2_SEAL_KEY_HANDLE },
6556 { "tpm2-pcrs", required_argument, NULL, ARG_TPM2_PCRS },
6557 { "tpm2-public-key", required_argument, NULL, ARG_TPM2_PUBLIC_KEY },
6558 { "tpm2-public-key-pcrs", required_argument, NULL, ARG_TPM2_PUBLIC_KEY_PCRS },
6559 { "tpm2-pcrlock", required_argument, NULL, ARG_TPM2_PCRLOCK },
6560 { "split", required_argument, NULL, ARG_SPLIT },
6561 { "include-partitions", required_argument, NULL, ARG_INCLUDE_PARTITIONS },
6562 { "exclude-partitions", required_argument, NULL, ARG_EXCLUDE_PARTITIONS },
6563 { "defer-partitions", required_argument, NULL, ARG_DEFER_PARTITIONS },
6564 { "sector-size", required_argument, NULL, ARG_SECTOR_SIZE },
6565 { "architecture", required_argument, NULL, ARG_ARCHITECTURE },
6566 { "offline", required_argument, NULL, ARG_OFFLINE },
6567 { "copy-from", required_argument, NULL, ARG_COPY_FROM },
6568 { "copy-source", required_argument, NULL, 's' },
6569 { "make-ddi", required_argument, NULL, ARG_MAKE_DDI },
6570 {}
6571 };
6572
6573 bool auto_hash_pcr_values = true, auto_public_key_pcr_mask = true, auto_pcrlock = true;
6574 int c, r;
6575
6576 assert(argc >= 0);
6577 assert(argv);
6578
6579 while ((c = getopt_long(argc, argv, "hs:SCP", options, NULL)) >= 0)
6580
6581 switch (c) {
6582
6583 case 'h':
6584 return help();
6585
6586 case ARG_VERSION:
6587 return version();
6588
6589 case ARG_NO_PAGER:
6590 arg_pager_flags |= PAGER_DISABLE;
6591 break;
6592
6593 case ARG_NO_LEGEND:
6594 arg_legend = false;
6595 break;
6596
6597 case ARG_DRY_RUN:
6598 r = parse_boolean_argument("--dry-run=", optarg, &arg_dry_run);
6599 if (r < 0)
6600 return r;
6601 break;
6602
6603 case ARG_EMPTY:
6604 if (isempty(optarg)) {
6605 arg_empty = EMPTY_UNSET;
6606 break;
6607 }
6608
6609 arg_empty = empty_mode_from_string(optarg);
6610 if (arg_empty < 0)
6611 return log_error_errno(arg_empty, "Failed to parse --empty= parameter: %s", optarg);
6612
6613 break;
6614
6615 case ARG_DISCARD:
6616 r = parse_boolean_argument("--discard=", optarg, &arg_discard);
6617 if (r < 0)
6618 return r;
6619 break;
6620
6621 case ARG_FACTORY_RESET:
6622 r = parse_boolean_argument("--factory-reset=", optarg, NULL);
6623 if (r < 0)
6624 return r;
6625 arg_factory_reset = r;
6626 break;
6627
6628 case ARG_CAN_FACTORY_RESET:
6629 arg_can_factory_reset = true;
6630 break;
6631
6632 case ARG_ROOT:
6633 r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_root);
6634 if (r < 0)
6635 return r;
6636 break;
6637
6638 case ARG_IMAGE:
6639 r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_image);
6640 if (r < 0)
6641 return r;
6642 break;
6643
6644 case ARG_IMAGE_POLICY:
6645 r = parse_image_policy_argument(optarg, &arg_image_policy);
6646 if (r < 0)
6647 return r;
6648 break;
6649
6650 case ARG_SEED:
6651 if (isempty(optarg)) {
6652 arg_seed = SD_ID128_NULL;
6653 arg_randomize = false;
6654 } else if (streq(optarg, "random"))
6655 arg_randomize = true;
6656 else {
6657 r = sd_id128_from_string(optarg, &arg_seed);
6658 if (r < 0)
6659 return log_error_errno(r, "Failed to parse seed: %s", optarg);
6660
6661 arg_randomize = false;
6662 }
6663
6664 break;
6665
6666 case ARG_PRETTY:
6667 r = parse_boolean_argument("--pretty=", optarg, NULL);
6668 if (r < 0)
6669 return r;
6670 arg_pretty = r;
6671 break;
6672
6673 case ARG_DEFINITIONS: {
6674 _cleanup_free_ char *path = NULL;
6675 r = parse_path_argument(optarg, false, &path);
6676 if (r < 0)
6677 return r;
6678 if (strv_consume(&arg_definitions, TAKE_PTR(path)) < 0)
6679 return log_oom();
6680 break;
6681 }
6682
6683 case ARG_SIZE: {
6684 uint64_t parsed, rounded;
6685
6686 if (streq(optarg, "auto")) {
6687 arg_size = UINT64_MAX;
6688 arg_size_auto = true;
6689 break;
6690 }
6691
6692 r = parse_size(optarg, 1024, &parsed);
6693 if (r < 0)
6694 return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg);
6695
6696 rounded = round_up_size(parsed, 4096);
6697 if (rounded == 0)
6698 return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing.");
6699 if (rounded == UINT64_MAX)
6700 return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing.");
6701
6702 if (rounded != parsed)
6703 log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " %s %" PRIu64 ")",
6704 parsed, special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), rounded);
6705
6706 arg_size = rounded;
6707 arg_size_auto = false;
6708 break;
6709 }
6710
6711 case ARG_JSON:
6712 r = parse_json_argument(optarg, &arg_json_format_flags);
6713 if (r <= 0)
6714 return r;
6715
6716 break;
6717
6718 case ARG_KEY_FILE: {
6719 _cleanup_(erase_and_freep) char *k = NULL;
6720 size_t n = 0;
6721
6722 r = read_full_file_full(
6723 AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX,
6724 READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET,
6725 NULL,
6726 &k, &n);
6727 if (r < 0)
6728 return log_error_errno(r, "Failed to read key file '%s': %m", optarg);
6729
6730 erase_and_free(arg_key);
6731 arg_key = TAKE_PTR(k);
6732 arg_key_size = n;
6733 break;
6734 }
6735
6736 case ARG_PRIVATE_KEY: {
6737 _cleanup_(erase_and_freep) char *k = NULL;
6738 size_t n = 0;
6739
6740 r = read_full_file_full(
6741 AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX,
6742 READ_FULL_FILE_SECURE|READ_FULL_FILE_WARN_WORLD_READABLE|READ_FULL_FILE_CONNECT_SOCKET,
6743 NULL,
6744 &k, &n);
6745 if (r < 0)
6746 return log_error_errno(r, "Failed to read key file '%s': %m", optarg);
6747
6748 EVP_PKEY_free(arg_private_key);
6749 arg_private_key = NULL;
6750 r = parse_private_key(k, n, &arg_private_key);
6751 if (r < 0)
6752 return r;
6753 break;
6754 }
6755
6756 case ARG_CERTIFICATE: {
6757 _cleanup_free_ char *cert = NULL;
6758 size_t n = 0;
6759
6760 r = read_full_file_full(
6761 AT_FDCWD, optarg, UINT64_MAX, SIZE_MAX,
6762 READ_FULL_FILE_CONNECT_SOCKET,
6763 NULL,
6764 &cert, &n);
6765 if (r < 0)
6766 return log_error_errno(r, "Failed to read certificate file '%s': %m", optarg);
6767
6768 X509_free(arg_certificate);
6769 arg_certificate = NULL;
6770 r = parse_x509_certificate(cert, n, &arg_certificate);
6771 if (r < 0)
6772 return r;
6773 break;
6774 }
6775
6776 case ARG_TPM2_DEVICE: {
6777 _cleanup_free_ char *device = NULL;
6778
6779 if (streq(optarg, "list"))
6780 return tpm2_list_devices();
6781
6782 if (!streq(optarg, "auto")) {
6783 device = strdup(optarg);
6784 if (!device)
6785 return log_oom();
6786 }
6787
6788 free(arg_tpm2_device);
6789 arg_tpm2_device = TAKE_PTR(device);
6790 break;
6791 }
6792
6793 case ARG_TPM2_DEVICE_KEY:
6794 r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_device_key);
6795 if (r < 0)
6796 return r;
6797
6798 break;
6799
6800 case ARG_TPM2_SEAL_KEY_HANDLE:
6801 r = safe_atou32_full(optarg, 16, &arg_tpm2_seal_key_handle);
6802 if (r < 0)
6803 return log_error_errno(r, "Could not parse TPM2 seal key handle index '%s': %m", optarg);
6804
6805 break;
6806
6807 case ARG_TPM2_PCRS:
6808 auto_hash_pcr_values = false;
6809 r = tpm2_parse_pcr_argument_append(optarg, &arg_tpm2_hash_pcr_values, &arg_tpm2_n_hash_pcr_values);
6810 if (r < 0)
6811 return r;
6812
6813 break;
6814
6815 case ARG_TPM2_PUBLIC_KEY:
6816 r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_public_key);
6817 if (r < 0)
6818 return r;
6819
6820 break;
6821
6822 case ARG_TPM2_PUBLIC_KEY_PCRS:
6823 auto_public_key_pcr_mask = false;
6824 r = tpm2_parse_pcr_argument_to_mask(optarg, &arg_tpm2_public_key_pcr_mask);
6825 if (r < 0)
6826 return r;
6827
6828 break;
6829
6830 case ARG_TPM2_PCRLOCK:
6831 r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_tpm2_pcrlock);
6832 if (r < 0)
6833 return r;
6834
6835 auto_pcrlock = false;
6836 break;
6837
6838 case ARG_SPLIT:
6839 r = parse_boolean_argument("--split=", optarg, NULL);
6840 if (r < 0)
6841 return r;
6842
6843 arg_split = r;
6844 break;
6845
6846 case ARG_INCLUDE_PARTITIONS:
6847 if (arg_filter_partitions_type == FILTER_PARTITIONS_EXCLUDE)
6848 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
6849 "Combination of --include-partitions= and --exclude-partitions= is invalid.");
6850
6851 r = parse_partition_types(optarg, &arg_filter_partitions, &arg_n_filter_partitions);
6852 if (r < 0)
6853 return r;
6854
6855 arg_filter_partitions_type = FILTER_PARTITIONS_INCLUDE;
6856
6857 break;
6858
6859 case ARG_EXCLUDE_PARTITIONS:
6860 if (arg_filter_partitions_type == FILTER_PARTITIONS_INCLUDE)
6861 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
6862 "Combination of --include-partitions= and --exclude-partitions= is invalid.");
6863
6864 r = parse_partition_types(optarg, &arg_filter_partitions, &arg_n_filter_partitions);
6865 if (r < 0)
6866 return r;
6867
6868 arg_filter_partitions_type = FILTER_PARTITIONS_EXCLUDE;
6869
6870 break;
6871
6872 case ARG_DEFER_PARTITIONS:
6873 r = parse_partition_types(optarg, &arg_defer_partitions, &arg_n_defer_partitions);
6874 if (r < 0)
6875 return r;
6876
6877 break;
6878
6879 case ARG_SECTOR_SIZE:
6880 r = parse_sector_size(optarg, &arg_sector_size);
6881 if (r < 0)
6882 return r;
6883
6884 break;
6885
6886 case ARG_ARCHITECTURE:
6887 r = architecture_from_string(optarg);
6888 if (r < 0)
6889 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid architecture '%s'", optarg);
6890
6891 arg_architecture = r;
6892 break;
6893
6894 case ARG_OFFLINE:
6895 if (streq(optarg, "auto"))
6896 arg_offline = -1;
6897 else {
6898 r = parse_boolean_argument("--offline=", optarg, NULL);
6899 if (r < 0)
6900 return r;
6901
6902 arg_offline = r;
6903 }
6904
6905 break;
6906
6907 case ARG_COPY_FROM: {
6908 _cleanup_free_ char *p = NULL;
6909
6910 r = parse_path_argument(optarg, /* suppress_root= */ false, &p);
6911 if (r < 0)
6912 return r;
6913
6914 if (strv_consume(&arg_copy_from, TAKE_PTR(p)) < 0)
6915 return log_oom();
6916
6917 break;
6918 }
6919
6920 case 's':
6921 r = parse_path_argument(optarg, /* suppress_root= */ false, &arg_copy_source);
6922 if (r < 0)
6923 return r;
6924 break;
6925
6926 case ARG_MAKE_DDI:
6927 if (!filename_is_valid(optarg))
6928 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Invalid DDI type: %s", optarg);
6929
6930 r = free_and_strdup_warn(&arg_make_ddi, optarg);
6931 if (r < 0)
6932 return r;
6933 break;
6934
6935 case 'S':
6936 r = free_and_strdup_warn(&arg_make_ddi, "sysext");
6937 if (r < 0)
6938 return r;
6939 break;
6940
6941 case 'C':
6942 r = free_and_strdup_warn(&arg_make_ddi, "confext");
6943 if (r < 0)
6944 return r;
6945 break;
6946
6947 case 'P':
6948 r = free_and_strdup_warn(&arg_make_ddi, "portable");
6949 if (r < 0)
6950 return r;
6951 break;
6952
6953 case '?':
6954 return -EINVAL;
6955
6956 default:
6957 assert_not_reached();
6958 }
6959
6960 if (argc - optind > 1)
6961 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
6962 "Expected at most one argument, the path to the block device or image file.");
6963
6964 if (arg_make_ddi) {
6965 if (arg_definitions)
6966 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --make-ddi= and --definitions= is not supported.");
6967 if (!IN_SET(arg_empty, EMPTY_UNSET, EMPTY_CREATE))
6968 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Combination of --make-ddi= and --empty=%s is not supported.", empty_mode_to_string(arg_empty));
6969
6970 /* Imply automatic sizing in DDI mode */
6971 if (arg_size == UINT64_MAX)
6972 arg_size_auto = true;
6973
6974 if (!arg_copy_source)
6975 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "No --copy-source= specified, refusing.");
6976
6977 r = dir_is_empty(arg_copy_source, /* ignore_hidden_or_backup= */ false);
6978 if (r < 0)
6979 return log_error_errno(r, "Failed to determine if '%s' is empty: %m", arg_copy_source);
6980 if (r > 0)
6981 return log_error_errno(SYNTHETIC_ERRNO(ENOENT), "Source directory '%s' is empty, refusing to create empty image.", arg_copy_source);
6982
6983 if (sd_id128_is_null(arg_seed) && !arg_randomize) {
6984 /* We don't want that /etc/machine-id leaks into any image built this way, hence
6985 * let's randomize the seed if not specified explicitly */
6986 log_notice("No seed value specified, randomizing generated UUIDs, resulting image will not be reproducible.");
6987 arg_randomize = true;
6988 }
6989
6990 arg_empty = EMPTY_CREATE;
6991 }
6992
6993 if (arg_empty == EMPTY_UNSET) /* default to refuse mode, if not otherwise specified */
6994 arg_empty = EMPTY_REFUSE;
6995
6996 if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE))
6997 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
6998 "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid.");
6999
7000 if (arg_can_factory_reset)
7001 arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence
7002 * non-dry-run mode makes no sense. Thus, imply dry run mode so that we
7003 * open things strictly read-only. */
7004 else if (arg_empty == EMPTY_CREATE)
7005 arg_dry_run = false; /* Imply --dry-run=no if we create the loopback file anew. After all we
7006 * cannot really break anyone's partition tables that way. */
7007
7008 /* Disable pager once we are not just reviewing, but doing things. */
7009 if (!arg_dry_run)
7010 arg_pager_flags |= PAGER_DISABLE;
7011
7012 if (arg_empty == EMPTY_CREATE && arg_size == UINT64_MAX && !arg_size_auto)
7013 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
7014 "If --empty=create is specified, --size= must be specified, too.");
7015
7016 if (arg_image && arg_root)
7017 return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Please specify either --root= or --image=, the combination of both is not supported.");
7018 else if (!arg_image && !arg_root && in_initrd()) {
7019
7020 /* By default operate on /sysusr/ or /sysroot/ when invoked in the initrd. We prefer the
7021 * former, if it is mounted, so that we have deterministic behaviour on systems where /usr/
7022 * is vendor-supplied but the root fs formatted on first boot. */
7023 r = path_is_mount_point("/sysusr/usr", NULL, 0);
7024 if (r <= 0) {
7025 if (r < 0 && r != -ENOENT)
7026 log_debug_errno(r, "Unable to determine whether /sysusr/usr is a mount point, assuming it is not: %m");
7027
7028 arg_root = strdup("/sysroot");
7029 } else
7030 arg_root = strdup("/sysusr");
7031 if (!arg_root)
7032 return log_oom();
7033 }
7034
7035 arg_node = argc > optind ? argv[optind] : NULL;
7036
7037 if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node && !arg_image)
7038 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
7039 "A path to a device node or image file must be specified when --make-ddi=, --empty=force, --empty=require or --empty=create are used.");
7040
7041 if (arg_split && !arg_node)
7042 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
7043 "A path to an image file must be specified when --split is used.");
7044
7045 if (auto_pcrlock) {
7046 assert(!arg_tpm2_pcrlock);
7047
7048 r = tpm2_pcrlock_search_file(NULL, NULL, &arg_tpm2_pcrlock);
7049 if (r < 0) {
7050 if (r != -ENOENT)
7051 log_warning_errno(r, "Search for pcrlock.json failed, assuming it does not exist: %m");
7052 } else
7053 log_debug("Automatically using pcrlock policy '%s'.", arg_tpm2_pcrlock);
7054 }
7055
7056 if (auto_public_key_pcr_mask) {
7057 assert(arg_tpm2_public_key_pcr_mask == 0);
7058 arg_tpm2_public_key_pcr_mask = INDEX_TO_MASK(uint32_t, TPM2_PCR_KERNEL_BOOT);
7059 }
7060
7061 if (auto_hash_pcr_values && !arg_tpm2_pcrlock) { /* Only lock to PCR 7 if no pcr policy is specified. */
7062 assert(arg_tpm2_n_hash_pcr_values == 0);
7063
7064 if (!GREEDY_REALLOC_APPEND(
7065 arg_tpm2_hash_pcr_values,
7066 arg_tpm2_n_hash_pcr_values,
7067 &TPM2_PCR_VALUE_MAKE(TPM2_PCR_INDEX_DEFAULT, /* hash= */ 0, /* value= */ {}),
7068 1))
7069 return log_oom();
7070 }
7071
7072 if (arg_pretty < 0 && isatty(STDOUT_FILENO))
7073 arg_pretty = true;
7074
7075 if (arg_architecture >= 0) {
7076 FOREACH_ARRAY(p, arg_filter_partitions, arg_n_filter_partitions)
7077 *p = gpt_partition_type_override_architecture(*p, arg_architecture);
7078
7079 FOREACH_ARRAY(p, arg_defer_partitions, arg_n_defer_partitions)
7080 *p = gpt_partition_type_override_architecture(*p, arg_architecture);
7081 }
7082
7083 return 1;
7084 }
7085
7086 static int parse_proc_cmdline_factory_reset(void) {
7087 bool b;
7088 int r;
7089
7090 if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
7091 return 0;
7092
7093 if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */
7094 return 0;
7095
7096 r = proc_cmdline_get_bool("systemd.factory_reset", /* flags = */ 0, &b);
7097 if (r < 0)
7098 return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m");
7099 if (r > 0) {
7100 arg_factory_reset = b;
7101
7102 if (b)
7103 log_notice("Honouring factory reset requested via kernel command line.");
7104 }
7105
7106 return 0;
7107 }
7108
7109 static int parse_efi_variable_factory_reset(void) {
7110 _cleanup_free_ char *value = NULL;
7111 int r;
7112
7113 if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
7114 return 0;
7115
7116 if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */
7117 return 0;
7118
7119 r = efi_get_variable_string(EFI_SYSTEMD_VARIABLE(FactoryReset), &value);
7120 if (r < 0) {
7121 if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
7122 return 0;
7123 return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m");
7124 }
7125
7126 r = parse_boolean(value);
7127 if (r < 0)
7128 return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m");
7129
7130 arg_factory_reset = r;
7131 if (r)
7132 log_notice("Factory reset requested via EFI variable FactoryReset.");
7133
7134 return 0;
7135 }
7136
7137 static int remove_efi_variable_factory_reset(void) {
7138 int r;
7139
7140 r = efi_set_variable(EFI_SYSTEMD_VARIABLE(FactoryReset), NULL, 0);
7141 if (r < 0) {
7142 if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
7143 return 0;
7144 return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m");
7145 }
7146
7147 log_info("Successfully unset EFI variable FactoryReset.");
7148 return 0;
7149 }
7150
7151 static int acquire_root_devno(
7152 const char *p,
7153 const char *root,
7154 int mode,
7155 char **ret,
7156 int *ret_fd) {
7157
7158 _cleanup_free_ char *found_path = NULL, *node = NULL;
7159 dev_t devno, fd_devno = MODE_INVALID;
7160 _cleanup_close_ int fd = -EBADF;
7161 struct stat st;
7162 int r;
7163
7164 assert(p);
7165 assert(ret);
7166 assert(ret_fd);
7167
7168 fd = chase_and_open(p, root, CHASE_PREFIX_ROOT, mode, &found_path);
7169 if (fd < 0)
7170 return fd;
7171
7172 if (fstat(fd, &st) < 0)
7173 return -errno;
7174
7175 if (S_ISREG(st.st_mode)) {
7176 *ret = TAKE_PTR(found_path);
7177 *ret_fd = TAKE_FD(fd);
7178 return 0;
7179 }
7180
7181 if (S_ISBLK(st.st_mode)) {
7182 /* Refuse referencing explicit block devices if a root dir is specified, after all we should
7183 * not be able to leave the image the root path constrains us to. */
7184 if (root)
7185 return -EPERM;
7186
7187 fd_devno = devno = st.st_rdev;
7188 } else if (S_ISDIR(st.st_mode)) {
7189
7190 devno = st.st_dev;
7191 if (major(devno) == 0) {
7192 r = btrfs_get_block_device_fd(fd, &devno);
7193 if (r == -ENOTTY) /* not btrfs */
7194 return -ENODEV;
7195 if (r < 0)
7196 return r;
7197 }
7198 } else
7199 return -ENOTBLK;
7200
7201 /* From dm-crypt to backing partition */
7202 r = block_get_originating(devno, &devno);
7203 if (r == -ENOENT)
7204 log_debug_errno(r, "Device '%s' has no dm-crypt/dm-verity device, no need to look for underlying block device.", p);
7205 else if (r < 0)
7206 log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p);
7207
7208 /* From partition to whole disk containing it */
7209 r = block_get_whole_disk(devno, &devno);
7210 if (r < 0)
7211 log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p);
7212
7213 r = devname_from_devnum(S_IFBLK, devno, &node);
7214 if (r < 0)
7215 return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p);
7216
7217 /* Only if we still look at the same block device we can reuse the fd. Otherwise return an
7218 * invalidated fd. */
7219 if (fd_devno != MODE_INVALID && fd_devno == devno) {
7220 /* Tell udev not to interfere while we are processing the device */
7221 if (flock(fd, arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
7222 return log_error_errno(errno, "Failed to lock device '%s': %m", node);
7223
7224 *ret_fd = TAKE_FD(fd);
7225 } else
7226 *ret_fd = -EBADF;
7227
7228 *ret = TAKE_PTR(node);
7229 return 0;
7230 }
7231
7232 static int find_root(Context *context) {
7233 _cleanup_free_ char *device = NULL;
7234 int r;
7235
7236 assert(context);
7237
7238 if (arg_node) {
7239 if (arg_empty == EMPTY_CREATE) {
7240 _cleanup_close_ int fd = -EBADF;
7241 _cleanup_free_ char *s = NULL;
7242
7243 s = strdup(arg_node);
7244 if (!s)
7245 return log_oom();
7246
7247 fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0666);
7248 if (fd < 0)
7249 return log_error_errno(errno, "Failed to create '%s': %m", arg_node);
7250
7251 context->node = TAKE_PTR(s);
7252 context->node_is_our_file = true;
7253 context->backing_fd = TAKE_FD(fd);
7254 return 0;
7255 }
7256
7257 /* Note that we don't specify a root argument here: if the user explicitly configured a node
7258 * we'll take it relative to the host, not the image */
7259 r = acquire_root_devno(arg_node, NULL, O_RDONLY|O_CLOEXEC, &context->node, &context->backing_fd);
7260 if (r == -EUCLEAN)
7261 return btrfs_log_dev_root(LOG_ERR, r, arg_node);
7262 if (r < 0)
7263 return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node);
7264
7265 return 0;
7266 }
7267
7268 assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW));
7269
7270 /* If the root mount has been replaced by some form of volatile file system (overlayfs), the
7271 * original root block device node is symlinked in /run/systemd/volatile-root. Let's read that
7272 * here. */
7273 r = readlink_malloc("/run/systemd/volatile-root", &device);
7274 if (r == -ENOENT) { /* volatile-root not found */
7275 /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The
7276 * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device
7277 * (think: volatile setups) */
7278
7279 FOREACH_STRING(p, "/", "/usr") {
7280
7281 r = acquire_root_devno(p, arg_root, O_RDONLY|O_DIRECTORY|O_CLOEXEC, &context->node,
7282 &context->backing_fd);
7283 if (r < 0) {
7284 if (r == -EUCLEAN)
7285 return btrfs_log_dev_root(LOG_ERR, r, p);
7286 if (r != -ENODEV)
7287 return log_error_errno(r, "Failed to determine backing device of %s: %m", p);
7288 } else
7289 return 0;
7290 }
7291 } else if (r < 0)
7292 return log_error_errno(r, "Failed to read symlink /run/systemd/volatile-root: %m");
7293 else {
7294 r = acquire_root_devno(device, NULL, O_RDONLY|O_CLOEXEC, &context->node, &context->backing_fd);
7295 if (r == -EUCLEAN)
7296 return btrfs_log_dev_root(LOG_ERR, r, device);
7297 if (r < 0)
7298 return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", device);
7299
7300 return 0;
7301 }
7302
7303 return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device.");
7304 }
7305
7306 static int resize_pt(int fd, uint64_t sector_size) {
7307 _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
7308 int r;
7309
7310 /* After resizing the backing file we need to resize the partition table itself too, so that it takes
7311 * possession of the enlarged backing file. For this it suffices to open the device with libfdisk and
7312 * immediately write it again, with no changes. */
7313
7314 r = fdisk_new_context_at(fd, /* path= */ NULL, /* read_only= */ false, sector_size, &c);
7315 if (r < 0)
7316 return log_error_errno(r, "Failed to open device '%s': %m", FORMAT_PROC_FD_PATH(fd));
7317
7318 r = fdisk_has_label(c);
7319 if (r < 0)
7320 return log_error_errno(r, "Failed to determine whether disk '%s' has a disk label: %m", FORMAT_PROC_FD_PATH(fd));
7321 if (r == 0) {
7322 log_debug("Not resizing partition table, as there currently is none.");
7323 return 0;
7324 }
7325
7326 r = fdisk_write_disklabel(c);
7327 if (r < 0)
7328 return log_error_errno(r, "Failed to write resized partition table: %m");
7329
7330 log_info("Resized partition table.");
7331 return 1;
7332 }
7333
7334 static int resize_backing_fd(
7335 const char *node, /* The primary way we access the disk image to operate on */
7336 int *fd, /* An O_RDONLY fd referring to that inode */
7337 const char *backing_file, /* If the above refers to a loopback device, the backing regular file for that, which we can grow */
7338 LoopDevice *loop_device,
7339 uint64_t sector_size) {
7340
7341 _cleanup_close_ int writable_fd = -EBADF;
7342 uint64_t current_size;
7343 struct stat st;
7344 int r;
7345
7346 assert(node);
7347 assert(fd);
7348
7349 if (arg_size == UINT64_MAX) /* Nothing to do */
7350 return 0;
7351
7352 if (*fd < 0) {
7353 /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to
7354 * keep a reference to the file we can pass around. */
7355 *fd = open(node, O_RDONLY|O_CLOEXEC);
7356 if (*fd < 0)
7357 return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node);
7358 }
7359
7360 if (fstat(*fd, &st) < 0)
7361 return log_error_errno(errno, "Failed to stat '%s': %m", node);
7362
7363 if (S_ISBLK(st.st_mode)) {
7364 if (!backing_file)
7365 return log_error_errno(SYNTHETIC_ERRNO(EBADF), "Cannot resize block device '%s'.", node);
7366
7367 assert(loop_device);
7368
7369 r = blockdev_get_device_size(*fd, &current_size);
7370 if (r < 0)
7371 return log_error_errno(r, "Failed to determine size of block device %s: %m", node);
7372 } else {
7373 r = stat_verify_regular(&st);
7374 if (r < 0)
7375 return log_error_errno(r, "Specified path '%s' is not a regular file or loopback block device, cannot resize: %m", node);
7376
7377 assert(!backing_file);
7378 assert(!loop_device);
7379 current_size = st.st_size;
7380 }
7381
7382 if (current_size >= arg_size) {
7383 log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)",
7384 node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
7385 return 0;
7386 }
7387
7388 if (S_ISBLK(st.st_mode)) {
7389 assert(backing_file);
7390
7391 /* This is a loopback device. We can't really grow those directly, but we can grow the
7392 * backing file, hence let's do that. */
7393
7394 writable_fd = open(backing_file, O_WRONLY|O_CLOEXEC|O_NONBLOCK);
7395 if (writable_fd < 0)
7396 return log_error_errno(errno, "Failed to open backing file '%s': %m", backing_file);
7397
7398 if (fstat(writable_fd, &st) < 0)
7399 return log_error_errno(errno, "Failed to stat() backing file '%s': %m", backing_file);
7400
7401 r = stat_verify_regular(&st);
7402 if (r < 0)
7403 return log_error_errno(r, "Backing file '%s' of block device is not a regular file: %m", backing_file);
7404
7405 if ((uint64_t) st.st_size != current_size)
7406 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
7407 "Size of backing file '%s' of loopback block device '%s' don't match, refusing.",
7408 node, backing_file);
7409 } else {
7410 assert(S_ISREG(st.st_mode));
7411 assert(!backing_file);
7412
7413 /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We
7414 * reopen the file for that temporarily. We keep the writable fd only open for this operation though,
7415 * as fdisk can't accept it anyway. */
7416
7417 writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC);
7418 if (writable_fd < 0)
7419 return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node);
7420 }
7421
7422 if (!arg_discard) {
7423 if (fallocate(writable_fd, 0, 0, arg_size) < 0) {
7424 if (!ERRNO_IS_NOT_SUPPORTED(errno))
7425 return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m",
7426 node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
7427
7428 /* Fallback to truncation, if fallocate() is not supported. */
7429 log_debug("Backing file system does not support fallocate(), falling back to ftruncate().");
7430 } else {
7431 if (current_size == 0) /* Likely regular file just created by us */
7432 log_info("Allocated %s for '%s'.", FORMAT_BYTES(arg_size), node);
7433 else
7434 log_info("File '%s' grown from %s to %s by allocation.",
7435 node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
7436
7437 goto done;
7438 }
7439 }
7440
7441 if (ftruncate(writable_fd, arg_size) < 0)
7442 return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m",
7443 node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
7444
7445 if (current_size == 0) /* Likely regular file just created by us */
7446 log_info("Sized '%s' to %s.", node, FORMAT_BYTES(arg_size));
7447 else
7448 log_info("File '%s' grown from %s to %s by truncation.",
7449 node, FORMAT_BYTES(current_size), FORMAT_BYTES(arg_size));
7450
7451 done:
7452 r = resize_pt(writable_fd, sector_size);
7453 if (r < 0)
7454 return r;
7455
7456 if (loop_device) {
7457 r = loop_device_refresh_size(loop_device, UINT64_MAX, arg_size);
7458 if (r < 0)
7459 return log_error_errno(r, "Failed to update loop device size: %m");
7460 }
7461
7462 return 1;
7463 }
7464
7465 static int determine_auto_size(Context *c) {
7466 uint64_t sum;
7467
7468 assert(c);
7469
7470 sum = round_up_size(GPT_METADATA_SIZE, 4096);
7471
7472 LIST_FOREACH(partitions, p, c->partitions) {
7473 uint64_t m;
7474
7475 if (p->dropped)
7476 continue;
7477
7478 m = partition_min_size_with_padding(c, p);
7479 if (m > UINT64_MAX - sum)
7480 return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Image would grow too large, refusing.");
7481
7482 sum += m;
7483 }
7484
7485 if (c->total != UINT64_MAX)
7486 /* Image already allocated? Then show its size. */
7487 log_info("Automatically determined minimal disk image size as %s, current image size is %s.",
7488 FORMAT_BYTES(sum), FORMAT_BYTES(c->total));
7489 else
7490 /* If the image is being created right now, then it has no previous size, suppress any comment about it hence. */
7491 log_info("Automatically determined minimal disk image size as %s.",
7492 FORMAT_BYTES(sum));
7493
7494 arg_size = sum;
7495 return 0;
7496 }
7497
7498 static int run(int argc, char *argv[]) {
7499 _cleanup_(loop_device_unrefp) LoopDevice *loop_device = NULL;
7500 _cleanup_(umount_and_freep) char *mounted_dir = NULL;
7501 _cleanup_(context_freep) Context* context = NULL;
7502 bool node_is_our_loop = false;
7503 int r;
7504
7505 log_show_color(true);
7506 log_parse_environment();
7507 log_open();
7508
7509 r = parse_argv(argc, argv);
7510 if (r <= 0)
7511 return r;
7512
7513 r = parse_proc_cmdline_factory_reset();
7514 if (r < 0)
7515 return r;
7516
7517 r = parse_efi_variable_factory_reset();
7518 if (r < 0)
7519 return r;
7520
7521 #if HAVE_LIBCRYPTSETUP
7522 cryptsetup_enable_logging(NULL);
7523 #endif
7524
7525 if (arg_image) {
7526 assert(!arg_root);
7527
7528 /* Mount this strictly read-only: we shall modify the partition table, not the file
7529 * systems */
7530 r = mount_image_privately_interactively(
7531 arg_image,
7532 arg_image_policy,
7533 DISSECT_IMAGE_MOUNT_READ_ONLY |
7534 (arg_node ? DISSECT_IMAGE_DEVICE_READ_ONLY : 0) | /* If a different node to make changes to is specified let's open the device in read-only mode) */
7535 DISSECT_IMAGE_GPT_ONLY |
7536 DISSECT_IMAGE_RELAX_VAR_CHECK |
7537 DISSECT_IMAGE_USR_NO_ROOT |
7538 DISSECT_IMAGE_REQUIRE_ROOT,
7539 &mounted_dir,
7540 /* ret_dir_fd= */ NULL,
7541 &loop_device);
7542 if (r < 0)
7543 return r;
7544
7545 arg_root = strdup(mounted_dir);
7546 if (!arg_root)
7547 return log_oom();
7548
7549 if (!arg_node) {
7550 arg_node = strdup(loop_device->node);
7551 if (!arg_node)
7552 return log_oom();
7553
7554 /* Remember that the device we are about to manipulate is actually the one we
7555 * allocated here, and thus to increase its backing file we know what to do */
7556 node_is_our_loop = true;
7557 }
7558 }
7559
7560 if (!arg_copy_source && arg_root) {
7561 /* If no explicit copy source is specified, then use --root=/--image= */
7562 arg_copy_source = strdup(arg_root);
7563 if (!arg_copy_source)
7564 return log_oom();
7565 }
7566
7567 context = context_new(arg_seed);
7568 if (!context)
7569 return log_oom();
7570
7571 r = context_copy_from(context);
7572 if (r < 0)
7573 return r;
7574
7575 if (arg_make_ddi) {
7576 _cleanup_free_ char *d = NULL, *dp = NULL;
7577 assert(!arg_definitions);
7578
7579 d = strjoin(arg_make_ddi, ".repart.d/");
7580 if (!d)
7581 return log_oom();
7582
7583 r = search_and_access(d, F_OK, NULL, CONF_PATHS_USR_STRV("systemd/repart/definitions"), &dp);
7584 if (r < 0)
7585 return log_error_errno(r, "DDI type '%s' is not defined: %m", arg_make_ddi);
7586
7587 if (strv_consume(&arg_definitions, TAKE_PTR(dp)) < 0)
7588 return log_oom();
7589 } else
7590 strv_uniq(arg_definitions);
7591
7592 r = context_read_definitions(context);
7593 if (r < 0)
7594 return r;
7595
7596 r = find_root(context);
7597 if (r == -ENODEV)
7598 return 76; /* Special return value which means "Root block device not found, so not doing
7599 * anything". This isn't really an error when called at boot. */
7600 if (r < 0)
7601 return r;
7602
7603 if (arg_size != UINT64_MAX) {
7604 r = resize_backing_fd(
7605 context->node,
7606 &context->backing_fd,
7607 node_is_our_loop ? arg_image : NULL,
7608 node_is_our_loop ? loop_device : NULL,
7609 context->sector_size);
7610 if (r < 0)
7611 return r;
7612 }
7613
7614 r = context_load_partition_table(context);
7615 if (r == -EHWPOISON)
7616 return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't
7617 * really an error when called at boot. */
7618 if (r < 0)
7619 return r;
7620 context->from_scratch = r > 0; /* Starting from scratch */
7621
7622 if (arg_can_factory_reset) {
7623 r = context_can_factory_reset(context);
7624 if (r < 0)
7625 return r;
7626 if (r == 0)
7627 return EXIT_FAILURE;
7628
7629 return 0;
7630 }
7631
7632 r = context_factory_reset(context);
7633 if (r < 0)
7634 return r;
7635 if (r > 0) {
7636 /* We actually did a factory reset! */
7637 r = remove_efi_variable_factory_reset();
7638 if (r < 0)
7639 return r;
7640
7641 /* Reload the reduced partition table */
7642 context_unload_partition_table(context);
7643 r = context_load_partition_table(context);
7644 if (r < 0)
7645 return r;
7646 }
7647
7648 r = context_read_seed(context, arg_root);
7649 if (r < 0)
7650 return r;
7651
7652 /* Make sure each partition has a unique UUID and unique label */
7653 r = context_acquire_partition_uuids_and_labels(context);
7654 if (r < 0)
7655 return r;
7656
7657 /* Open all files to copy blocks from now, since we want to take their size into consideration */
7658 r = context_open_copy_block_paths(
7659 context,
7660 loop_device ? loop_device->devno : /* if --image= is specified, only allow partitions on the loopback device */
7661 arg_root && !arg_image ? 0 : /* if --root= is specified, don't accept any block device */
7662 (dev_t) -1); /* if neither is specified, make no restrictions */
7663 if (r < 0)
7664 return r;
7665
7666 r = context_minimize(context);
7667 if (r < 0)
7668 return r;
7669
7670 if (arg_size_auto) {
7671 r = determine_auto_size(context);
7672 if (r < 0)
7673 return r;
7674
7675 /* Flush out everything again, and let's grow the file first, then start fresh */
7676 context_unload_partition_table(context);
7677
7678 assert(arg_size != UINT64_MAX);
7679 r = resize_backing_fd(
7680 context->node,
7681 &context->backing_fd,
7682 node_is_our_loop ? arg_image : NULL,
7683 node_is_our_loop ? loop_device : NULL,
7684 context->sector_size);
7685 if (r < 0)
7686 return r;
7687
7688 r = context_load_partition_table(context);
7689 if (r < 0)
7690 return r;
7691 }
7692
7693 /* First try to fit new partitions in, dropping by priority until it fits */
7694 for (;;) {
7695 uint64_t largest_free_area;
7696
7697 if (context_allocate_partitions(context, &largest_free_area))
7698 break; /* Success! */
7699
7700 if (!context_drop_or_foreignize_one_priority(context)) {
7701 r = log_error_errno(SYNTHETIC_ERRNO(ENOSPC),
7702 "Can't fit requested partitions into available free space (%s), refusing.",
7703 FORMAT_BYTES(largest_free_area));
7704 determine_auto_size(context);
7705 return r;
7706 }
7707 }
7708
7709 /* Now assign free space according to the weight logic */
7710 r = context_grow_partitions(context);
7711 if (r < 0)
7712 return r;
7713
7714 /* Now calculate where each new partition gets placed */
7715 context_place_partitions(context);
7716
7717 (void) context_dump(context, /*late=*/ false);
7718
7719 r = context_write_partition_table(context);
7720 if (r < 0)
7721 return r;
7722
7723 r = context_split(context);
7724 if (r < 0)
7725 return r;
7726
7727 (void) context_dump(context, /*late=*/ true);
7728
7729 context->node = mfree(context->node);
7730
7731 LIST_FOREACH(partitions, p, context->partitions)
7732 p->split_path = mfree(p->split_path);
7733
7734 return 0;
7735 }
7736
7737 DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run);