]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
tree-wide: define iterator inside of the macro
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "memory-util.h"
11 #include "resolved-dns-dnssec.h"
12 #include "resolved-dns-packet.h"
13 #include "resolved-dns-rr.h"
14 #include "string-table.h"
15 #include "string-util.h"
16 #include "strv.h"
17 #include "terminal-util.h"
18
19 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
20 DnsResourceKey *k;
21 size_t l;
22
23 assert(name);
24
25 l = strlen(name);
26 k = malloc0(sizeof(DnsResourceKey) + l + 1);
27 if (!k)
28 return NULL;
29
30 k->n_ref = 1;
31 k->class = class;
32 k->type = type;
33
34 strcpy((char*) k + sizeof(DnsResourceKey), name);
35
36 return k;
37 }
38
39 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
40 int r;
41
42 assert(key);
43 assert(cname);
44
45 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
46
47 if (cname->key->type == DNS_TYPE_CNAME)
48 return dns_resource_key_new(key->class, key->type, cname->cname.name);
49 else {
50 DnsResourceKey *k;
51 char *destination = NULL;
52
53 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
54 if (r < 0)
55 return NULL;
56 if (r == 0)
57 return dns_resource_key_ref((DnsResourceKey*) key);
58
59 k = dns_resource_key_new_consume(key->class, key->type, destination);
60 if (!k)
61 return mfree(destination);
62
63 return k;
64 }
65 }
66
67 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
68 DnsResourceKey *new_key;
69 char *joined;
70 int r;
71
72 assert(ret);
73 assert(key);
74 assert(name);
75
76 if (dns_name_is_root(name)) {
77 *ret = dns_resource_key_ref(key);
78 return 0;
79 }
80
81 r = dns_name_concat(dns_resource_key_name(key), name, 0, &joined);
82 if (r < 0)
83 return r;
84
85 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
86 if (!new_key) {
87 free(joined);
88 return -ENOMEM;
89 }
90
91 *ret = new_key;
92 return 0;
93 }
94
95 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
96 DnsResourceKey *k;
97
98 assert(name);
99
100 k = new0(DnsResourceKey, 1);
101 if (!k)
102 return NULL;
103
104 k->n_ref = 1;
105 k->class = class;
106 k->type = type;
107 k->_name = name;
108
109 return k;
110 }
111
112 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
113
114 if (!k)
115 return NULL;
116
117 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
118 * set this to -1, they should not be reffed/unreffed */
119 assert(k->n_ref != (unsigned) -1);
120
121 assert(k->n_ref > 0);
122 k->n_ref++;
123
124 return k;
125 }
126
127 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
128 if (!k)
129 return NULL;
130
131 assert(k->n_ref != (unsigned) -1);
132 assert(k->n_ref > 0);
133
134 if (k->n_ref == 1) {
135 free(k->_name);
136 free(k);
137 } else
138 k->n_ref--;
139
140 return NULL;
141 }
142
143 const char* dns_resource_key_name(const DnsResourceKey *key) {
144 const char *name;
145
146 if (!key)
147 return NULL;
148
149 if (key->_name)
150 name = key->_name;
151 else
152 name = (char*) key + sizeof(DnsResourceKey);
153
154 if (dns_name_is_root(name))
155 return ".";
156 else
157 return name;
158 }
159
160 bool dns_resource_key_is_address(const DnsResourceKey *key) {
161 assert(key);
162
163 /* Check if this is an A or AAAA resource key */
164
165 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
166 }
167
168 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
169 assert(key);
170
171 /* Check if this is a PTR resource key used in
172 Service Instance Enumeration as described in RFC6763 p4.1. */
173
174 if (key->type != DNS_TYPE_PTR)
175 return false;
176
177 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
178 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
179 }
180
181 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
182 int r;
183
184 if (a == b)
185 return 1;
186
187 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
188 if (r <= 0)
189 return r;
190
191 if (a->class != b->class)
192 return 0;
193
194 if (a->type != b->type)
195 return 0;
196
197 return 1;
198 }
199
200 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
201 int r;
202
203 assert(key);
204 assert(rr);
205
206 if (key == rr->key)
207 return 1;
208
209 /* Checks if an rr matches the specified key. If a search
210 * domain is specified, it will also be checked if the key
211 * with the search domain suffixed might match the RR. */
212
213 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
214 return 0;
215
216 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
217 return 0;
218
219 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
220 if (r != 0)
221 return r;
222
223 if (search_domain) {
224 _cleanup_free_ char *joined = NULL;
225
226 r = dns_name_concat(dns_resource_key_name(key), search_domain, 0, &joined);
227 if (r < 0)
228 return r;
229
230 return dns_name_equal(dns_resource_key_name(rr->key), joined);
231 }
232
233 return 0;
234 }
235
236 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
237 int r;
238
239 assert(key);
240 assert(cname);
241
242 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
243 return 0;
244
245 if (cname->type == DNS_TYPE_CNAME)
246 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
247 else if (cname->type == DNS_TYPE_DNAME)
248 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
249 else
250 return 0;
251
252 if (r != 0)
253 return r;
254
255 if (search_domain) {
256 _cleanup_free_ char *joined = NULL;
257
258 r = dns_name_concat(dns_resource_key_name(key), search_domain, 0, &joined);
259 if (r < 0)
260 return r;
261
262 if (cname->type == DNS_TYPE_CNAME)
263 return dns_name_equal(joined, dns_resource_key_name(cname));
264 else if (cname->type == DNS_TYPE_DNAME)
265 return dns_name_endswith(joined, dns_resource_key_name(cname));
266 }
267
268 return 0;
269 }
270
271 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
272 assert(soa);
273 assert(key);
274
275 /* Checks whether 'soa' is a SOA record for the specified key. */
276
277 if (soa->class != key->class)
278 return 0;
279
280 if (soa->type != DNS_TYPE_SOA)
281 return 0;
282
283 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
284 }
285
286 static void dns_resource_key_hash_func(const DnsResourceKey *k, struct siphash *state) {
287 assert(k);
288
289 dns_name_hash_func(dns_resource_key_name(k), state);
290 siphash24_compress(&k->class, sizeof(k->class), state);
291 siphash24_compress(&k->type, sizeof(k->type), state);
292 }
293
294 static int dns_resource_key_compare_func(const DnsResourceKey *x, const DnsResourceKey *y) {
295 int ret;
296
297 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
298 if (ret != 0)
299 return ret;
300
301 ret = CMP(x->type, y->type);
302 if (ret != 0)
303 return ret;
304
305 ret = CMP(x->class, y->class);
306 if (ret != 0)
307 return ret;
308
309 return 0;
310 }
311
312 DEFINE_HASH_OPS(dns_resource_key_hash_ops, DnsResourceKey, dns_resource_key_hash_func, dns_resource_key_compare_func);
313
314 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
315 const char *c, *t;
316 char *ans = buf;
317
318 /* If we cannot convert the CLASS/TYPE into a known string,
319 use the format recommended by RFC 3597, Section 5. */
320
321 c = dns_class_to_string(key->class);
322 t = dns_type_to_string(key->type);
323
324 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
325 dns_resource_key_name(key),
326 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
327 strempty(t), t ? "" : "TYPE", t ? 0 : key->type);
328
329 return ans;
330 }
331
332 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
333 assert(a);
334 assert(b);
335
336 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
337 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
338 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
339 * superficial data. */
340
341 if (!*a)
342 return false;
343 if (!*b)
344 return false;
345
346 /* We refuse merging const keys */
347 if ((*a)->n_ref == (unsigned) -1)
348 return false;
349 if ((*b)->n_ref == (unsigned) -1)
350 return false;
351
352 /* Already the same? */
353 if (*a == *b)
354 return true;
355
356 /* Are they really identical? */
357 if (dns_resource_key_equal(*a, *b) <= 0)
358 return false;
359
360 /* Keep the one which already has more references. */
361 if ((*a)->n_ref > (*b)->n_ref) {
362 dns_resource_key_unref(*b);
363 *b = dns_resource_key_ref(*a);
364 } else {
365 dns_resource_key_unref(*a);
366 *a = dns_resource_key_ref(*b);
367 }
368
369 return true;
370 }
371
372 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
373 DnsResourceRecord *rr;
374
375 rr = new0(DnsResourceRecord, 1);
376 if (!rr)
377 return NULL;
378
379 rr->n_ref = 1;
380 rr->key = dns_resource_key_ref(key);
381 rr->expiry = USEC_INFINITY;
382 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
383
384 return rr;
385 }
386
387 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
388 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
389
390 key = dns_resource_key_new(class, type, name);
391 if (!key)
392 return NULL;
393
394 return dns_resource_record_new(key);
395 }
396
397 static DnsResourceRecord* dns_resource_record_free(DnsResourceRecord *rr) {
398 assert(rr);
399
400 if (rr->key) {
401 switch(rr->key->type) {
402
403 case DNS_TYPE_SRV:
404 free(rr->srv.name);
405 break;
406
407 case DNS_TYPE_PTR:
408 case DNS_TYPE_NS:
409 case DNS_TYPE_CNAME:
410 case DNS_TYPE_DNAME:
411 free(rr->ptr.name);
412 break;
413
414 case DNS_TYPE_HINFO:
415 free(rr->hinfo.cpu);
416 free(rr->hinfo.os);
417 break;
418
419 case DNS_TYPE_TXT:
420 case DNS_TYPE_SPF:
421 dns_txt_item_free_all(rr->txt.items);
422 break;
423
424 case DNS_TYPE_SOA:
425 free(rr->soa.mname);
426 free(rr->soa.rname);
427 break;
428
429 case DNS_TYPE_MX:
430 free(rr->mx.exchange);
431 break;
432
433 case DNS_TYPE_DS:
434 free(rr->ds.digest);
435 break;
436
437 case DNS_TYPE_SSHFP:
438 free(rr->sshfp.fingerprint);
439 break;
440
441 case DNS_TYPE_DNSKEY:
442 free(rr->dnskey.key);
443 break;
444
445 case DNS_TYPE_RRSIG:
446 free(rr->rrsig.signer);
447 free(rr->rrsig.signature);
448 break;
449
450 case DNS_TYPE_NSEC:
451 free(rr->nsec.next_domain_name);
452 bitmap_free(rr->nsec.types);
453 break;
454
455 case DNS_TYPE_NSEC3:
456 free(rr->nsec3.next_hashed_name);
457 free(rr->nsec3.salt);
458 bitmap_free(rr->nsec3.types);
459 break;
460
461 case DNS_TYPE_LOC:
462 case DNS_TYPE_A:
463 case DNS_TYPE_AAAA:
464 break;
465
466 case DNS_TYPE_TLSA:
467 free(rr->tlsa.data);
468 break;
469
470 case DNS_TYPE_CAA:
471 free(rr->caa.tag);
472 free(rr->caa.value);
473 break;
474
475 case DNS_TYPE_OPENPGPKEY:
476 default:
477 if (!rr->unparsable)
478 free(rr->generic.data);
479 }
480
481 if (rr->unparsable)
482 free(rr->generic.data);
483
484 free(rr->wire_format);
485 dns_resource_key_unref(rr->key);
486 }
487
488 free(rr->to_string);
489 return mfree(rr);
490 }
491
492 DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsResourceRecord, dns_resource_record, dns_resource_record_free);
493
494 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
495 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
496 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
497 _cleanup_free_ char *ptr = NULL;
498 int r;
499
500 assert(ret);
501 assert(address);
502 assert(hostname);
503
504 r = dns_name_reverse(family, address, &ptr);
505 if (r < 0)
506 return r;
507
508 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
509 if (!key)
510 return -ENOMEM;
511
512 ptr = NULL;
513
514 rr = dns_resource_record_new(key);
515 if (!rr)
516 return -ENOMEM;
517
518 rr->ptr.name = strdup(hostname);
519 if (!rr->ptr.name)
520 return -ENOMEM;
521
522 *ret = TAKE_PTR(rr);
523
524 return 0;
525 }
526
527 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
528 DnsResourceRecord *rr;
529
530 assert(ret);
531 assert(address);
532 assert(family);
533
534 if (family == AF_INET) {
535
536 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
537 if (!rr)
538 return -ENOMEM;
539
540 rr->a.in_addr = address->in;
541
542 } else if (family == AF_INET6) {
543
544 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
545 if (!rr)
546 return -ENOMEM;
547
548 rr->aaaa.in6_addr = address->in6;
549 } else
550 return -EAFNOSUPPORT;
551
552 *ret = rr;
553
554 return 0;
555 }
556
557 #define FIELD_EQUAL(a, b, field) \
558 ((a).field ## _size == (b).field ## _size && \
559 memcmp_safe((a).field, (b).field, (a).field ## _size) == 0)
560
561 int dns_resource_record_payload_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
562 int r;
563
564 /* Check if a and b are the same, but don't look at their keys */
565
566 if (a->unparsable != b->unparsable)
567 return 0;
568
569 switch (a->unparsable ? _DNS_TYPE_INVALID : a->key->type) {
570
571 case DNS_TYPE_SRV:
572 r = dns_name_equal(a->srv.name, b->srv.name);
573 if (r <= 0)
574 return r;
575
576 return a->srv.priority == b->srv.priority &&
577 a->srv.weight == b->srv.weight &&
578 a->srv.port == b->srv.port;
579
580 case DNS_TYPE_PTR:
581 case DNS_TYPE_NS:
582 case DNS_TYPE_CNAME:
583 case DNS_TYPE_DNAME:
584 return dns_name_equal(a->ptr.name, b->ptr.name);
585
586 case DNS_TYPE_HINFO:
587 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
588 strcaseeq(a->hinfo.os, b->hinfo.os);
589
590 case DNS_TYPE_SPF: /* exactly the same as TXT */
591 case DNS_TYPE_TXT:
592 return dns_txt_item_equal(a->txt.items, b->txt.items);
593
594 case DNS_TYPE_A:
595 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
596
597 case DNS_TYPE_AAAA:
598 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
599
600 case DNS_TYPE_SOA:
601 r = dns_name_equal(a->soa.mname, b->soa.mname);
602 if (r <= 0)
603 return r;
604 r = dns_name_equal(a->soa.rname, b->soa.rname);
605 if (r <= 0)
606 return r;
607
608 return a->soa.serial == b->soa.serial &&
609 a->soa.refresh == b->soa.refresh &&
610 a->soa.retry == b->soa.retry &&
611 a->soa.expire == b->soa.expire &&
612 a->soa.minimum == b->soa.minimum;
613
614 case DNS_TYPE_MX:
615 if (a->mx.priority != b->mx.priority)
616 return 0;
617
618 return dns_name_equal(a->mx.exchange, b->mx.exchange);
619
620 case DNS_TYPE_LOC:
621 assert(a->loc.version == b->loc.version);
622
623 return a->loc.size == b->loc.size &&
624 a->loc.horiz_pre == b->loc.horiz_pre &&
625 a->loc.vert_pre == b->loc.vert_pre &&
626 a->loc.latitude == b->loc.latitude &&
627 a->loc.longitude == b->loc.longitude &&
628 a->loc.altitude == b->loc.altitude;
629
630 case DNS_TYPE_DS:
631 return a->ds.key_tag == b->ds.key_tag &&
632 a->ds.algorithm == b->ds.algorithm &&
633 a->ds.digest_type == b->ds.digest_type &&
634 FIELD_EQUAL(a->ds, b->ds, digest);
635
636 case DNS_TYPE_SSHFP:
637 return a->sshfp.algorithm == b->sshfp.algorithm &&
638 a->sshfp.fptype == b->sshfp.fptype &&
639 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
640
641 case DNS_TYPE_DNSKEY:
642 return a->dnskey.flags == b->dnskey.flags &&
643 a->dnskey.protocol == b->dnskey.protocol &&
644 a->dnskey.algorithm == b->dnskey.algorithm &&
645 FIELD_EQUAL(a->dnskey, b->dnskey, key);
646
647 case DNS_TYPE_RRSIG:
648 /* do the fast comparisons first */
649 return a->rrsig.type_covered == b->rrsig.type_covered &&
650 a->rrsig.algorithm == b->rrsig.algorithm &&
651 a->rrsig.labels == b->rrsig.labels &&
652 a->rrsig.original_ttl == b->rrsig.original_ttl &&
653 a->rrsig.expiration == b->rrsig.expiration &&
654 a->rrsig.inception == b->rrsig.inception &&
655 a->rrsig.key_tag == b->rrsig.key_tag &&
656 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
657 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
658
659 case DNS_TYPE_NSEC:
660 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
661 bitmap_equal(a->nsec.types, b->nsec.types);
662
663 case DNS_TYPE_NSEC3:
664 return a->nsec3.algorithm == b->nsec3.algorithm &&
665 a->nsec3.flags == b->nsec3.flags &&
666 a->nsec3.iterations == b->nsec3.iterations &&
667 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
668 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
669 bitmap_equal(a->nsec3.types, b->nsec3.types);
670
671 case DNS_TYPE_TLSA:
672 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
673 a->tlsa.selector == b->tlsa.selector &&
674 a->tlsa.matching_type == b->tlsa.matching_type &&
675 FIELD_EQUAL(a->tlsa, b->tlsa, data);
676
677 case DNS_TYPE_CAA:
678 return a->caa.flags == b->caa.flags &&
679 streq(a->caa.tag, b->caa.tag) &&
680 FIELD_EQUAL(a->caa, b->caa, value);
681
682 case DNS_TYPE_OPENPGPKEY:
683 default:
684 return FIELD_EQUAL(a->generic, b->generic, data);
685 }
686 }
687
688 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
689 int r;
690
691 assert(a);
692 assert(b);
693
694 if (a == b)
695 return 1;
696
697 r = dns_resource_key_equal(a->key, b->key);
698 if (r <= 0)
699 return r;
700
701 return dns_resource_record_payload_equal(a, b);
702 }
703
704 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
705 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
706 char *s;
707 char NS = latitude >= 1U<<31 ? 'N' : 'S';
708 char EW = longitude >= 1U<<31 ? 'E' : 'W';
709
710 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
711 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
712 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
713 double siz = (size >> 4) * exp10((double) (size & 0xF));
714 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
715 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
716
717 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
718 (lat / 60000 / 60),
719 (lat / 60000) % 60,
720 (lat % 60000) / 1000.,
721 NS,
722 (lon / 60000 / 60),
723 (lon / 60000) % 60,
724 (lon % 60000) / 1000.,
725 EW,
726 alt / 100.,
727 siz / 100.,
728 hor / 100.,
729 ver / 100.) < 0)
730 return NULL;
731
732 return s;
733 }
734
735 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
736 struct tm tm;
737
738 assert(buf);
739 assert(l > STRLEN("YYYYMMDDHHmmSS"));
740
741 if (!gmtime_r(&sec, &tm))
742 return -EINVAL;
743
744 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
745 return -EINVAL;
746
747 return 0;
748 }
749
750 static char *format_types(Bitmap *types) {
751 _cleanup_strv_free_ char **strv = NULL;
752 _cleanup_free_ char *str = NULL;
753 unsigned type;
754 int r;
755
756 BITMAP_FOREACH(type, types) {
757 if (dns_type_to_string(type)) {
758 r = strv_extend(&strv, dns_type_to_string(type));
759 if (r < 0)
760 return NULL;
761 } else {
762 char *t;
763
764 r = asprintf(&t, "TYPE%u", type);
765 if (r < 0)
766 return NULL;
767
768 r = strv_consume(&strv, t);
769 if (r < 0)
770 return NULL;
771 }
772 }
773
774 str = strv_join(strv, " ");
775 if (!str)
776 return NULL;
777
778 return strjoin("( ", str, " )");
779 }
780
781 static char *format_txt(DnsTxtItem *first) {
782 DnsTxtItem *i;
783 size_t c = 1;
784 char *p, *s;
785
786 LIST_FOREACH(items, i, first)
787 c += i->length * 4 + 3;
788
789 p = s = new(char, c);
790 if (!s)
791 return NULL;
792
793 LIST_FOREACH(items, i, first) {
794 size_t j;
795
796 if (i != first)
797 *(p++) = ' ';
798
799 *(p++) = '"';
800
801 for (j = 0; j < i->length; j++) {
802 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
803 *(p++) = '\\';
804 *(p++) = '0' + (i->data[j] / 100);
805 *(p++) = '0' + ((i->data[j] / 10) % 10);
806 *(p++) = '0' + (i->data[j] % 10);
807 } else
808 *(p++) = i->data[j];
809 }
810
811 *(p++) = '"';
812 }
813
814 *p = 0;
815 return s;
816 }
817
818 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
819 _cleanup_free_ char *t = NULL;
820 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
821 int r;
822
823 assert(rr);
824
825 if (rr->to_string)
826 return rr->to_string;
827
828 dns_resource_key_to_string(rr->key, k, sizeof(k));
829
830 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
831
832 case DNS_TYPE_SRV:
833 r = asprintf(&s, "%s %u %u %u %s",
834 k,
835 rr->srv.priority,
836 rr->srv.weight,
837 rr->srv.port,
838 strna(rr->srv.name));
839 if (r < 0)
840 return NULL;
841 break;
842
843 case DNS_TYPE_PTR:
844 case DNS_TYPE_NS:
845 case DNS_TYPE_CNAME:
846 case DNS_TYPE_DNAME:
847 s = strjoin(k, " ", rr->ptr.name);
848 if (!s)
849 return NULL;
850
851 break;
852
853 case DNS_TYPE_HINFO:
854 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
855 if (!s)
856 return NULL;
857 break;
858
859 case DNS_TYPE_SPF: /* exactly the same as TXT */
860 case DNS_TYPE_TXT:
861 t = format_txt(rr->txt.items);
862 if (!t)
863 return NULL;
864
865 s = strjoin(k, " ", t);
866 if (!s)
867 return NULL;
868 break;
869
870 case DNS_TYPE_A: {
871 _cleanup_free_ char *x = NULL;
872
873 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
874 if (r < 0)
875 return NULL;
876
877 s = strjoin(k, " ", x);
878 if (!s)
879 return NULL;
880 break;
881 }
882
883 case DNS_TYPE_AAAA:
884 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
885 if (r < 0)
886 return NULL;
887
888 s = strjoin(k, " ", t);
889 if (!s)
890 return NULL;
891 break;
892
893 case DNS_TYPE_SOA:
894 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
895 k,
896 strna(rr->soa.mname),
897 strna(rr->soa.rname),
898 rr->soa.serial,
899 rr->soa.refresh,
900 rr->soa.retry,
901 rr->soa.expire,
902 rr->soa.minimum);
903 if (r < 0)
904 return NULL;
905 break;
906
907 case DNS_TYPE_MX:
908 r = asprintf(&s, "%s %u %s",
909 k,
910 rr->mx.priority,
911 rr->mx.exchange);
912 if (r < 0)
913 return NULL;
914 break;
915
916 case DNS_TYPE_LOC:
917 assert(rr->loc.version == 0);
918
919 t = format_location(rr->loc.latitude,
920 rr->loc.longitude,
921 rr->loc.altitude,
922 rr->loc.size,
923 rr->loc.horiz_pre,
924 rr->loc.vert_pre);
925 if (!t)
926 return NULL;
927
928 s = strjoin(k, " ", t);
929 if (!s)
930 return NULL;
931 break;
932
933 case DNS_TYPE_DS:
934 t = hexmem(rr->ds.digest, rr->ds.digest_size);
935 if (!t)
936 return NULL;
937
938 r = asprintf(&s, "%s %u %u %u %s",
939 k,
940 rr->ds.key_tag,
941 rr->ds.algorithm,
942 rr->ds.digest_type,
943 t);
944 if (r < 0)
945 return NULL;
946 break;
947
948 case DNS_TYPE_SSHFP:
949 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
950 if (!t)
951 return NULL;
952
953 r = asprintf(&s, "%s %u %u %s",
954 k,
955 rr->sshfp.algorithm,
956 rr->sshfp.fptype,
957 t);
958 if (r < 0)
959 return NULL;
960 break;
961
962 case DNS_TYPE_DNSKEY: {
963 _cleanup_free_ char *alg = NULL;
964 char *ss;
965 uint16_t key_tag;
966
967 key_tag = dnssec_keytag(rr, true);
968
969 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
970 if (r < 0)
971 return NULL;
972
973 r = asprintf(&s, "%s %u %u %s",
974 k,
975 rr->dnskey.flags,
976 rr->dnskey.protocol,
977 alg);
978 if (r < 0)
979 return NULL;
980
981 r = base64_append(&s, r,
982 rr->dnskey.key, rr->dnskey.key_size,
983 8, columns());
984 if (r < 0)
985 return NULL;
986
987 r = asprintf(&ss, "%s\n"
988 " -- Flags:%s%s%s\n"
989 " -- Key tag: %u",
990 s,
991 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
992 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
993 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
994 key_tag);
995 if (r < 0)
996 return NULL;
997 free(s);
998 s = ss;
999
1000 break;
1001 }
1002
1003 case DNS_TYPE_RRSIG: {
1004 _cleanup_free_ char *alg = NULL;
1005 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1006 const char *type;
1007
1008 type = dns_type_to_string(rr->rrsig.type_covered);
1009
1010 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1011 if (r < 0)
1012 return NULL;
1013
1014 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1015 if (r < 0)
1016 return NULL;
1017
1018 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1019 if (r < 0)
1020 return NULL;
1021
1022 /* TYPE?? follows
1023 * http://tools.ietf.org/html/rfc3597#section-5 */
1024
1025 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s",
1026 k,
1027 type ?: "TYPE",
1028 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1029 alg,
1030 rr->rrsig.labels,
1031 rr->rrsig.original_ttl,
1032 expiration,
1033 inception,
1034 rr->rrsig.key_tag,
1035 rr->rrsig.signer);
1036 if (r < 0)
1037 return NULL;
1038
1039 r = base64_append(&s, r,
1040 rr->rrsig.signature, rr->rrsig.signature_size,
1041 8, columns());
1042 if (r < 0)
1043 return NULL;
1044
1045 break;
1046 }
1047
1048 case DNS_TYPE_NSEC:
1049 t = format_types(rr->nsec.types);
1050 if (!t)
1051 return NULL;
1052
1053 r = asprintf(&s, "%s %s %s",
1054 k,
1055 rr->nsec.next_domain_name,
1056 t);
1057 if (r < 0)
1058 return NULL;
1059 break;
1060
1061 case DNS_TYPE_NSEC3: {
1062 _cleanup_free_ char *salt = NULL, *hash = NULL;
1063
1064 if (rr->nsec3.salt_size > 0) {
1065 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1066 if (!salt)
1067 return NULL;
1068 }
1069
1070 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1071 if (!hash)
1072 return NULL;
1073
1074 t = format_types(rr->nsec3.types);
1075 if (!t)
1076 return NULL;
1077
1078 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1079 k,
1080 rr->nsec3.algorithm,
1081 rr->nsec3.flags,
1082 rr->nsec3.iterations,
1083 rr->nsec3.salt_size > 0 ? salt : "-",
1084 hash,
1085 t);
1086 if (r < 0)
1087 return NULL;
1088
1089 break;
1090 }
1091
1092 case DNS_TYPE_TLSA: {
1093 const char *cert_usage, *selector, *matching_type;
1094
1095 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1096 selector = tlsa_selector_to_string(rr->tlsa.selector);
1097 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1098
1099 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1100 if (!t)
1101 return NULL;
1102
1103 r = asprintf(&s,
1104 "%s %u %u %u %s\n"
1105 " -- Cert. usage: %s\n"
1106 " -- Selector: %s\n"
1107 " -- Matching type: %s",
1108 k,
1109 rr->tlsa.cert_usage,
1110 rr->tlsa.selector,
1111 rr->tlsa.matching_type,
1112 t,
1113 cert_usage,
1114 selector,
1115 matching_type);
1116 if (r < 0)
1117 return NULL;
1118
1119 break;
1120 }
1121
1122 case DNS_TYPE_CAA: {
1123 _cleanup_free_ char *value;
1124
1125 value = octescape(rr->caa.value, rr->caa.value_size);
1126 if (!value)
1127 return NULL;
1128
1129 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1130 k,
1131 rr->caa.flags,
1132 rr->caa.tag,
1133 value,
1134 rr->caa.flags ? "\n -- Flags:" : "",
1135 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1136 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1137 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1138 if (r < 0)
1139 return NULL;
1140
1141 break;
1142 }
1143
1144 case DNS_TYPE_OPENPGPKEY: {
1145 r = asprintf(&s, "%s", k);
1146 if (r < 0)
1147 return NULL;
1148
1149 r = base64_append(&s, r,
1150 rr->generic.data, rr->generic.data_size,
1151 8, columns());
1152 if (r < 0)
1153 return NULL;
1154 break;
1155 }
1156
1157 default:
1158 t = hexmem(rr->generic.data, rr->generic.data_size);
1159 if (!t)
1160 return NULL;
1161
1162 /* Format as documented in RFC 3597, Section 5 */
1163 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1164 if (r < 0)
1165 return NULL;
1166 break;
1167 }
1168
1169 rr->to_string = s;
1170 return s;
1171 }
1172
1173 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1174 assert(rr);
1175 assert(out);
1176
1177 switch(rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
1178 case DNS_TYPE_SRV:
1179 case DNS_TYPE_PTR:
1180 case DNS_TYPE_NS:
1181 case DNS_TYPE_CNAME:
1182 case DNS_TYPE_DNAME:
1183 case DNS_TYPE_HINFO:
1184 case DNS_TYPE_SPF:
1185 case DNS_TYPE_TXT:
1186 case DNS_TYPE_A:
1187 case DNS_TYPE_AAAA:
1188 case DNS_TYPE_SOA:
1189 case DNS_TYPE_MX:
1190 case DNS_TYPE_LOC:
1191 case DNS_TYPE_DS:
1192 case DNS_TYPE_DNSKEY:
1193 case DNS_TYPE_RRSIG:
1194 case DNS_TYPE_NSEC:
1195 case DNS_TYPE_NSEC3:
1196 return -EINVAL;
1197
1198 case DNS_TYPE_SSHFP:
1199 *out = rr->sshfp.fingerprint;
1200 return rr->sshfp.fingerprint_size;
1201
1202 case DNS_TYPE_TLSA:
1203 *out = rr->tlsa.data;
1204 return rr->tlsa.data_size;
1205
1206 case DNS_TYPE_OPENPGPKEY:
1207 default:
1208 *out = rr->generic.data;
1209 return rr->generic.data_size;
1210 }
1211 }
1212
1213 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1214
1215 DnsPacket packet = {
1216 .n_ref = 1,
1217 .protocol = DNS_PROTOCOL_DNS,
1218 .on_stack = true,
1219 .refuse_compression = true,
1220 .canonical_form = canonical,
1221 };
1222
1223 size_t start, rds;
1224 int r;
1225
1226 assert(rr);
1227
1228 /* Generates the RR in wire-format, optionally in the
1229 * canonical form as discussed in the DNSSEC RFC 4034, Section
1230 * 6.2. We allocate a throw-away DnsPacket object on the stack
1231 * here, because we need some book-keeping for memory
1232 * management, and can reuse the DnsPacket serializer, that
1233 * can generate the canonical form, too, but also knows label
1234 * compression and suchlike. */
1235
1236 if (rr->wire_format && rr->wire_format_canonical == canonical)
1237 return 0;
1238
1239 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1240 if (r < 0)
1241 return r;
1242
1243 assert(start == 0);
1244 assert(packet._data);
1245
1246 free(rr->wire_format);
1247 rr->wire_format = packet._data;
1248 rr->wire_format_size = packet.size;
1249 rr->wire_format_rdata_offset = rds;
1250 rr->wire_format_canonical = canonical;
1251
1252 packet._data = NULL;
1253 dns_packet_unref(&packet);
1254
1255 return 0;
1256 }
1257
1258 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1259 const char *n;
1260 int r;
1261
1262 assert(rr);
1263 assert(ret);
1264
1265 /* Returns the RRset's signer, if it is known. */
1266
1267 if (rr->n_skip_labels_signer == (unsigned) -1)
1268 return -ENODATA;
1269
1270 n = dns_resource_key_name(rr->key);
1271 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1272 if (r < 0)
1273 return r;
1274 if (r == 0)
1275 return -EINVAL;
1276
1277 *ret = n;
1278 return 0;
1279 }
1280
1281 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1282 const char *n;
1283 int r;
1284
1285 assert(rr);
1286 assert(ret);
1287
1288 /* Returns the RRset's synthesizing source, if it is known. */
1289
1290 if (rr->n_skip_labels_source == (unsigned) -1)
1291 return -ENODATA;
1292
1293 n = dns_resource_key_name(rr->key);
1294 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1295 if (r < 0)
1296 return r;
1297 if (r == 0)
1298 return -EINVAL;
1299
1300 *ret = n;
1301 return 0;
1302 }
1303
1304 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1305 const char *signer;
1306 int r;
1307
1308 assert(rr);
1309
1310 r = dns_resource_record_signer(rr, &signer);
1311 if (r < 0)
1312 return r;
1313
1314 return dns_name_equal(zone, signer);
1315 }
1316
1317 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1318 int r;
1319
1320 assert(rr);
1321
1322 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1323
1324 if (rr->n_skip_labels_source == (unsigned) -1)
1325 return -ENODATA;
1326
1327 if (rr->n_skip_labels_source == 0)
1328 return 0;
1329
1330 if (rr->n_skip_labels_source > 1)
1331 return 1;
1332
1333 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1334 if (r < 0)
1335 return r;
1336
1337 return !r;
1338 }
1339
1340 void dns_resource_record_hash_func(const DnsResourceRecord *rr, struct siphash *state) {
1341 assert(rr);
1342
1343 dns_resource_key_hash_func(rr->key, state);
1344
1345 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
1346
1347 case DNS_TYPE_SRV:
1348 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1349 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1350 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1351 dns_name_hash_func(rr->srv.name, state);
1352 break;
1353
1354 case DNS_TYPE_PTR:
1355 case DNS_TYPE_NS:
1356 case DNS_TYPE_CNAME:
1357 case DNS_TYPE_DNAME:
1358 dns_name_hash_func(rr->ptr.name, state);
1359 break;
1360
1361 case DNS_TYPE_HINFO:
1362 string_hash_func(rr->hinfo.cpu, state);
1363 string_hash_func(rr->hinfo.os, state);
1364 break;
1365
1366 case DNS_TYPE_TXT:
1367 case DNS_TYPE_SPF: {
1368 DnsTxtItem *j;
1369
1370 LIST_FOREACH(items, j, rr->txt.items) {
1371 siphash24_compress(j->data, j->length, state);
1372
1373 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1374 * followed by "". */
1375 siphash24_compress_byte(0, state);
1376 }
1377 break;
1378 }
1379
1380 case DNS_TYPE_A:
1381 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1382 break;
1383
1384 case DNS_TYPE_AAAA:
1385 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1386 break;
1387
1388 case DNS_TYPE_SOA:
1389 dns_name_hash_func(rr->soa.mname, state);
1390 dns_name_hash_func(rr->soa.rname, state);
1391 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1392 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1393 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1394 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1395 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1396 break;
1397
1398 case DNS_TYPE_MX:
1399 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1400 dns_name_hash_func(rr->mx.exchange, state);
1401 break;
1402
1403 case DNS_TYPE_LOC:
1404 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1405 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1406 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1407 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1408 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1409 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1410 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1411 break;
1412
1413 case DNS_TYPE_SSHFP:
1414 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1415 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1416 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1417 break;
1418
1419 case DNS_TYPE_DNSKEY:
1420 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1421 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1422 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1423 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1424 break;
1425
1426 case DNS_TYPE_RRSIG:
1427 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1428 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1429 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1430 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1431 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1432 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1433 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1434 dns_name_hash_func(rr->rrsig.signer, state);
1435 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1436 break;
1437
1438 case DNS_TYPE_NSEC:
1439 dns_name_hash_func(rr->nsec.next_domain_name, state);
1440 /* FIXME: we leave out the type bitmap here. Hash
1441 * would be better if we'd take it into account
1442 * too. */
1443 break;
1444
1445 case DNS_TYPE_DS:
1446 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1447 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1448 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1449 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1450 break;
1451
1452 case DNS_TYPE_NSEC3:
1453 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1454 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1455 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1456 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1457 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1458 /* FIXME: We leave the bitmaps out */
1459 break;
1460
1461 case DNS_TYPE_TLSA:
1462 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1463 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1464 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1465 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1466 break;
1467
1468 case DNS_TYPE_CAA:
1469 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1470 string_hash_func(rr->caa.tag, state);
1471 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1472 break;
1473
1474 case DNS_TYPE_OPENPGPKEY:
1475 default:
1476 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1477 break;
1478 }
1479 }
1480
1481 static int dns_resource_record_compare_func(const DnsResourceRecord *x, const DnsResourceRecord *y) {
1482 int r;
1483
1484 r = dns_resource_key_compare_func(x->key, y->key);
1485 if (r != 0)
1486 return r;
1487
1488 if (dns_resource_record_equal(x, y))
1489 return 0;
1490
1491 /* We still use CMP() here, even though don't implement proper
1492 * ordering, since the hashtable doesn't need ordering anyway. */
1493 return CMP(x, y);
1494 }
1495
1496 DEFINE_HASH_OPS(dns_resource_record_hash_ops, DnsResourceRecord, dns_resource_record_hash_func, dns_resource_record_compare_func);
1497
1498 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1499 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1500 DnsResourceRecord *t;
1501
1502 assert(rr);
1503
1504 copy = dns_resource_record_new(rr->key);
1505 if (!copy)
1506 return NULL;
1507
1508 copy->ttl = rr->ttl;
1509 copy->expiry = rr->expiry;
1510 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1511 copy->n_skip_labels_source = rr->n_skip_labels_source;
1512 copy->unparsable = rr->unparsable;
1513
1514 switch (rr->unparsable ? _DNS_TYPE_INVALID : rr->key->type) {
1515
1516 case DNS_TYPE_SRV:
1517 copy->srv.priority = rr->srv.priority;
1518 copy->srv.weight = rr->srv.weight;
1519 copy->srv.port = rr->srv.port;
1520 copy->srv.name = strdup(rr->srv.name);
1521 if (!copy->srv.name)
1522 return NULL;
1523 break;
1524
1525 case DNS_TYPE_PTR:
1526 case DNS_TYPE_NS:
1527 case DNS_TYPE_CNAME:
1528 case DNS_TYPE_DNAME:
1529 copy->ptr.name = strdup(rr->ptr.name);
1530 if (!copy->ptr.name)
1531 return NULL;
1532 break;
1533
1534 case DNS_TYPE_HINFO:
1535 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1536 if (!copy->hinfo.cpu)
1537 return NULL;
1538
1539 copy->hinfo.os = strdup(rr->hinfo.os);
1540 if (!copy->hinfo.os)
1541 return NULL;
1542 break;
1543
1544 case DNS_TYPE_TXT:
1545 case DNS_TYPE_SPF:
1546 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1547 if (!copy->txt.items)
1548 return NULL;
1549 break;
1550
1551 case DNS_TYPE_A:
1552 copy->a = rr->a;
1553 break;
1554
1555 case DNS_TYPE_AAAA:
1556 copy->aaaa = rr->aaaa;
1557 break;
1558
1559 case DNS_TYPE_SOA:
1560 copy->soa.mname = strdup(rr->soa.mname);
1561 if (!copy->soa.mname)
1562 return NULL;
1563 copy->soa.rname = strdup(rr->soa.rname);
1564 if (!copy->soa.rname)
1565 return NULL;
1566 copy->soa.serial = rr->soa.serial;
1567 copy->soa.refresh = rr->soa.refresh;
1568 copy->soa.retry = rr->soa.retry;
1569 copy->soa.expire = rr->soa.expire;
1570 copy->soa.minimum = rr->soa.minimum;
1571 break;
1572
1573 case DNS_TYPE_MX:
1574 copy->mx.priority = rr->mx.priority;
1575 copy->mx.exchange = strdup(rr->mx.exchange);
1576 if (!copy->mx.exchange)
1577 return NULL;
1578 break;
1579
1580 case DNS_TYPE_LOC:
1581 copy->loc = rr->loc;
1582 break;
1583
1584 case DNS_TYPE_SSHFP:
1585 copy->sshfp.algorithm = rr->sshfp.algorithm;
1586 copy->sshfp.fptype = rr->sshfp.fptype;
1587 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1588 if (!copy->sshfp.fingerprint)
1589 return NULL;
1590 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1591 break;
1592
1593 case DNS_TYPE_DNSKEY:
1594 copy->dnskey.flags = rr->dnskey.flags;
1595 copy->dnskey.protocol = rr->dnskey.protocol;
1596 copy->dnskey.algorithm = rr->dnskey.algorithm;
1597 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1598 if (!copy->dnskey.key)
1599 return NULL;
1600 copy->dnskey.key_size = rr->dnskey.key_size;
1601 break;
1602
1603 case DNS_TYPE_RRSIG:
1604 copy->rrsig.type_covered = rr->rrsig.type_covered;
1605 copy->rrsig.algorithm = rr->rrsig.algorithm;
1606 copy->rrsig.labels = rr->rrsig.labels;
1607 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1608 copy->rrsig.expiration = rr->rrsig.expiration;
1609 copy->rrsig.inception = rr->rrsig.inception;
1610 copy->rrsig.key_tag = rr->rrsig.key_tag;
1611 copy->rrsig.signer = strdup(rr->rrsig.signer);
1612 if (!copy->rrsig.signer)
1613 return NULL;
1614 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1615 if (!copy->rrsig.signature)
1616 return NULL;
1617 copy->rrsig.signature_size = rr->rrsig.signature_size;
1618 break;
1619
1620 case DNS_TYPE_NSEC:
1621 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1622 if (!copy->nsec.next_domain_name)
1623 return NULL;
1624 copy->nsec.types = bitmap_copy(rr->nsec.types);
1625 if (!copy->nsec.types)
1626 return NULL;
1627 break;
1628
1629 case DNS_TYPE_DS:
1630 copy->ds.key_tag = rr->ds.key_tag;
1631 copy->ds.algorithm = rr->ds.algorithm;
1632 copy->ds.digest_type = rr->ds.digest_type;
1633 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1634 if (!copy->ds.digest)
1635 return NULL;
1636 copy->ds.digest_size = rr->ds.digest_size;
1637 break;
1638
1639 case DNS_TYPE_NSEC3:
1640 copy->nsec3.algorithm = rr->nsec3.algorithm;
1641 copy->nsec3.flags = rr->nsec3.flags;
1642 copy->nsec3.iterations = rr->nsec3.iterations;
1643 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1644 if (!copy->nsec3.salt)
1645 return NULL;
1646 copy->nsec3.salt_size = rr->nsec3.salt_size;
1647 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1648 if (!copy->nsec3.next_hashed_name_size)
1649 return NULL;
1650 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1651 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1652 if (!copy->nsec3.types)
1653 return NULL;
1654 break;
1655
1656 case DNS_TYPE_TLSA:
1657 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1658 copy->tlsa.selector = rr->tlsa.selector;
1659 copy->tlsa.matching_type = rr->tlsa.matching_type;
1660 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1661 if (!copy->tlsa.data)
1662 return NULL;
1663 copy->tlsa.data_size = rr->tlsa.data_size;
1664 break;
1665
1666 case DNS_TYPE_CAA:
1667 copy->caa.flags = rr->caa.flags;
1668 copy->caa.tag = strdup(rr->caa.tag);
1669 if (!copy->caa.tag)
1670 return NULL;
1671 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1672 if (!copy->caa.value)
1673 return NULL;
1674 copy->caa.value_size = rr->caa.value_size;
1675 break;
1676
1677 case DNS_TYPE_OPT:
1678 default:
1679 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1680 if (!copy->generic.data)
1681 return NULL;
1682 copy->generic.data_size = rr->generic.data_size;
1683 break;
1684 }
1685
1686 t = TAKE_PTR(copy);
1687
1688 return t;
1689 }
1690
1691 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1692 DnsResourceRecord *old_rr, *new_rr;
1693 uint32_t new_ttl;
1694
1695 assert(rr);
1696 old_rr = *rr;
1697
1698 if (old_rr->key->type == DNS_TYPE_OPT)
1699 return -EINVAL;
1700
1701 new_ttl = MIN(old_rr->ttl, max_ttl);
1702 if (new_ttl == old_rr->ttl)
1703 return 0;
1704
1705 if (old_rr->n_ref == 1) {
1706 /* Patch in place */
1707 old_rr->ttl = new_ttl;
1708 return 1;
1709 }
1710
1711 new_rr = dns_resource_record_copy(old_rr);
1712 if (!new_rr)
1713 return -ENOMEM;
1714
1715 new_rr->ttl = new_ttl;
1716
1717 dns_resource_record_unref(*rr);
1718 *rr = new_rr;
1719
1720 return 1;
1721 }
1722
1723 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1724 DnsTxtItem *n;
1725
1726 if (!i)
1727 return NULL;
1728
1729 n = i->items_next;
1730
1731 free(i);
1732 return dns_txt_item_free_all(n);
1733 }
1734
1735 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1736
1737 if (a == b)
1738 return true;
1739
1740 if (!a != !b)
1741 return false;
1742
1743 if (!a)
1744 return true;
1745
1746 if (a->length != b->length)
1747 return false;
1748
1749 if (memcmp(a->data, b->data, a->length) != 0)
1750 return false;
1751
1752 return dns_txt_item_equal(a->items_next, b->items_next);
1753 }
1754
1755 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1756 DnsTxtItem *i, *copy = NULL, *end = NULL;
1757
1758 LIST_FOREACH(items, i, first) {
1759 DnsTxtItem *j;
1760
1761 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1762 if (!j) {
1763 dns_txt_item_free_all(copy);
1764 return NULL;
1765 }
1766
1767 LIST_INSERT_AFTER(items, copy, end, j);
1768 end = j;
1769 }
1770
1771 return copy;
1772 }
1773
1774 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1775 DnsTxtItem *i;
1776
1777 /* RFC 6763, section 6.1 suggests to treat
1778 * empty TXT RRs as equivalent to a TXT record
1779 * with a single empty string. */
1780
1781 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1782 if (!i)
1783 return -ENOMEM;
1784
1785 *ret = i;
1786
1787 return 0;
1788 }
1789
1790 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1791 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1792 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1793 [DNSSEC_ALGORITHM_DH] = "DH",
1794 [DNSSEC_ALGORITHM_DSA] = "DSA",
1795 [DNSSEC_ALGORITHM_ECC] = "ECC",
1796 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1797 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1798 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1799 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1800 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1801 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1802 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1803 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1804 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1805 [DNSSEC_ALGORITHM_ED448] = "ED448",
1806 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1807 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1808 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1809 };
1810 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1811
1812 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1813 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1814 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1815 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1816 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1817 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1818 };
1819 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);