]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_ciph.c
6127cb7a4b480c45d27520aa8b104a94d682eb2d
[thirdparty/openssl.git] / ssl / ssl_ciph.c
1 /*
2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include <ctype.h>
14 #include <openssl/objects.h>
15 #include <openssl/comp.h>
16 #include <openssl/engine.h>
17 #include <openssl/crypto.h>
18 #include <openssl/conf.h>
19 #include <openssl/trace.h>
20 #include "internal/nelem.h"
21 #include "ssl_local.h"
22 #include "internal/thread_once.h"
23 #include "internal/cryptlib.h"
24 #include "internal/comp.h"
25 #include "internal/ssl_unwrap.h"
26
27 /* NB: make sure indices in these tables match values above */
28
29 typedef struct {
30 uint32_t mask;
31 int nid;
32 } ssl_cipher_table;
33
34 /* Table of NIDs for each cipher */
35 static const ssl_cipher_table ssl_cipher_table_cipher[SSL_ENC_NUM_IDX] = {
36 {SSL_DES, NID_des_cbc}, /* SSL_ENC_DES_IDX 0 */
37 {SSL_3DES, NID_des_ede3_cbc}, /* SSL_ENC_3DES_IDX 1 */
38 {SSL_RC4, NID_rc4}, /* SSL_ENC_RC4_IDX 2 */
39 {SSL_RC2, NID_rc2_cbc}, /* SSL_ENC_RC2_IDX 3 */
40 {SSL_IDEA, NID_idea_cbc}, /* SSL_ENC_IDEA_IDX 4 */
41 {SSL_eNULL, NID_undef}, /* SSL_ENC_NULL_IDX 5 */
42 {SSL_AES128, NID_aes_128_cbc}, /* SSL_ENC_AES128_IDX 6 */
43 {SSL_AES256, NID_aes_256_cbc}, /* SSL_ENC_AES256_IDX 7 */
44 {SSL_CAMELLIA128, NID_camellia_128_cbc}, /* SSL_ENC_CAMELLIA128_IDX 8 */
45 {SSL_CAMELLIA256, NID_camellia_256_cbc}, /* SSL_ENC_CAMELLIA256_IDX 9 */
46 {SSL_eGOST2814789CNT, NID_gost89_cnt}, /* SSL_ENC_GOST89_IDX 10 */
47 {SSL_SEED, NID_seed_cbc}, /* SSL_ENC_SEED_IDX 11 */
48 {SSL_AES128GCM, NID_aes_128_gcm}, /* SSL_ENC_AES128GCM_IDX 12 */
49 {SSL_AES256GCM, NID_aes_256_gcm}, /* SSL_ENC_AES256GCM_IDX 13 */
50 {SSL_AES128CCM, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM_IDX 14 */
51 {SSL_AES256CCM, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM_IDX 15 */
52 {SSL_AES128CCM8, NID_aes_128_ccm}, /* SSL_ENC_AES128CCM8_IDX 16 */
53 {SSL_AES256CCM8, NID_aes_256_ccm}, /* SSL_ENC_AES256CCM8_IDX 17 */
54 {SSL_eGOST2814789CNT12, NID_gost89_cnt_12}, /* SSL_ENC_GOST8912_IDX 18 */
55 {SSL_CHACHA20POLY1305, NID_chacha20_poly1305}, /* SSL_ENC_CHACHA_IDX 19 */
56 {SSL_ARIA128GCM, NID_aria_128_gcm}, /* SSL_ENC_ARIA128GCM_IDX 20 */
57 {SSL_ARIA256GCM, NID_aria_256_gcm}, /* SSL_ENC_ARIA256GCM_IDX 21 */
58 {SSL_MAGMA, NID_magma_ctr_acpkm}, /* SSL_ENC_MAGMA_IDX */
59 {SSL_KUZNYECHIK, NID_kuznyechik_ctr_acpkm}, /* SSL_ENC_KUZNYECHIK_IDX */
60 };
61
62 /* NB: make sure indices in this table matches values above */
63 static const ssl_cipher_table ssl_cipher_table_mac[SSL_MD_NUM_IDX] = {
64 {SSL_MD5, NID_md5}, /* SSL_MD_MD5_IDX 0 */
65 {SSL_SHA1, NID_sha1}, /* SSL_MD_SHA1_IDX 1 */
66 {SSL_GOST94, NID_id_GostR3411_94}, /* SSL_MD_GOST94_IDX 2 */
67 {SSL_GOST89MAC, NID_id_Gost28147_89_MAC}, /* SSL_MD_GOST89MAC_IDX 3 */
68 {SSL_SHA256, NID_sha256}, /* SSL_MD_SHA256_IDX 4 */
69 {SSL_SHA384, NID_sha384}, /* SSL_MD_SHA384_IDX 5 */
70 {SSL_GOST12_256, NID_id_GostR3411_2012_256}, /* SSL_MD_GOST12_256_IDX 6 */
71 {SSL_GOST89MAC12, NID_gost_mac_12}, /* SSL_MD_GOST89MAC12_IDX 7 */
72 {SSL_GOST12_512, NID_id_GostR3411_2012_512}, /* SSL_MD_GOST12_512_IDX 8 */
73 {0, NID_md5_sha1}, /* SSL_MD_MD5_SHA1_IDX 9 */
74 {0, NID_sha224}, /* SSL_MD_SHA224_IDX 10 */
75 {0, NID_sha512}, /* SSL_MD_SHA512_IDX 11 */
76 {SSL_MAGMAOMAC, NID_magma_mac}, /* sSL_MD_MAGMAOMAC_IDX */
77 {SSL_KUZNYECHIKOMAC, NID_kuznyechik_mac} /* SSL_MD_KUZNYECHIKOMAC_IDX */
78 };
79
80 /* *INDENT-OFF* */
81 static const ssl_cipher_table ssl_cipher_table_kx[] = {
82 {SSL_kRSA, NID_kx_rsa},
83 {SSL_kECDHE, NID_kx_ecdhe},
84 {SSL_kDHE, NID_kx_dhe},
85 {SSL_kECDHEPSK, NID_kx_ecdhe_psk},
86 {SSL_kDHEPSK, NID_kx_dhe_psk},
87 {SSL_kRSAPSK, NID_kx_rsa_psk},
88 {SSL_kPSK, NID_kx_psk},
89 {SSL_kSRP, NID_kx_srp},
90 {SSL_kGOST, NID_kx_gost},
91 {SSL_kGOST18, NID_kx_gost18},
92 {SSL_kANY, NID_kx_any}
93 };
94
95 static const ssl_cipher_table ssl_cipher_table_auth[] = {
96 {SSL_aRSA, NID_auth_rsa},
97 {SSL_aECDSA, NID_auth_ecdsa},
98 {SSL_aPSK, NID_auth_psk},
99 {SSL_aDSS, NID_auth_dss},
100 {SSL_aGOST01, NID_auth_gost01},
101 {SSL_aGOST12, NID_auth_gost12},
102 {SSL_aSRP, NID_auth_srp},
103 {SSL_aNULL, NID_auth_null},
104 {SSL_aANY, NID_auth_any}
105 };
106 /* *INDENT-ON* */
107
108 /* Utility function for table lookup */
109 static int ssl_cipher_info_find(const ssl_cipher_table *table,
110 size_t table_cnt, uint32_t mask)
111 {
112 size_t i;
113 for (i = 0; i < table_cnt; i++, table++) {
114 if (table->mask == mask)
115 return (int)i;
116 }
117 return -1;
118 }
119
120 #define ssl_cipher_info_lookup(table, x) \
121 ssl_cipher_info_find(table, OSSL_NELEM(table), x)
122
123 /*
124 * PKEY_TYPE for GOST89MAC is known in advance, but, because implementation
125 * is engine-provided, we'll fill it only if corresponding EVP_PKEY_METHOD is
126 * found
127 */
128 static const int default_mac_pkey_id[SSL_MD_NUM_IDX] = {
129 /* MD5, SHA, GOST94, MAC89 */
130 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
131 /* SHA256, SHA384, GOST2012_256, MAC89-12 */
132 EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, NID_undef,
133 /* GOST2012_512 */
134 EVP_PKEY_HMAC,
135 /* MD5/SHA1, SHA224, SHA512, MAGMAOMAC, KUZNYECHIKOMAC */
136 NID_undef, NID_undef, NID_undef, NID_undef, NID_undef
137 };
138
139 #define CIPHER_ADD 1
140 #define CIPHER_KILL 2
141 #define CIPHER_DEL 3
142 #define CIPHER_ORD 4
143 #define CIPHER_SPECIAL 5
144 /*
145 * Bump the ciphers to the top of the list.
146 * This rule isn't currently supported by the public cipherstring API.
147 */
148 #define CIPHER_BUMP 6
149
150 typedef struct cipher_order_st {
151 const SSL_CIPHER *cipher;
152 int active;
153 int dead;
154 struct cipher_order_st *next, *prev;
155 } CIPHER_ORDER;
156
157 static const SSL_CIPHER cipher_aliases[] = {
158 /* "ALL" doesn't include eNULL (must be specifically enabled) */
159 {0, SSL_TXT_ALL, NULL, 0, 0, 0, ~SSL_eNULL},
160 /* "COMPLEMENTOFALL" */
161 {0, SSL_TXT_CMPALL, NULL, 0, 0, 0, SSL_eNULL},
162
163 /*
164 * "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in
165 * ALL!)
166 */
167 {0, SSL_TXT_CMPDEF, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_NOT_DEFAULT},
168
169 /*
170 * key exchange aliases (some of those using only a single bit here
171 * combine multiple key exchange algs according to the RFCs, e.g. kDHE
172 * combines DHE_DSS and DHE_RSA)
173 */
174 {0, SSL_TXT_kRSA, NULL, 0, SSL_kRSA},
175
176 {0, SSL_TXT_kEDH, NULL, 0, SSL_kDHE},
177 {0, SSL_TXT_kDHE, NULL, 0, SSL_kDHE},
178 {0, SSL_TXT_DH, NULL, 0, SSL_kDHE},
179
180 {0, SSL_TXT_kEECDH, NULL, 0, SSL_kECDHE},
181 {0, SSL_TXT_kECDHE, NULL, 0, SSL_kECDHE},
182 {0, SSL_TXT_ECDH, NULL, 0, SSL_kECDHE},
183
184 {0, SSL_TXT_kPSK, NULL, 0, SSL_kPSK},
185 {0, SSL_TXT_kRSAPSK, NULL, 0, SSL_kRSAPSK},
186 {0, SSL_TXT_kECDHEPSK, NULL, 0, SSL_kECDHEPSK},
187 {0, SSL_TXT_kDHEPSK, NULL, 0, SSL_kDHEPSK},
188 {0, SSL_TXT_kSRP, NULL, 0, SSL_kSRP},
189 {0, SSL_TXT_kGOST, NULL, 0, SSL_kGOST},
190 {0, SSL_TXT_kGOST18, NULL, 0, SSL_kGOST18},
191
192 /* server authentication aliases */
193 {0, SSL_TXT_aRSA, NULL, 0, 0, SSL_aRSA},
194 {0, SSL_TXT_aDSS, NULL, 0, 0, SSL_aDSS},
195 {0, SSL_TXT_DSS, NULL, 0, 0, SSL_aDSS},
196 {0, SSL_TXT_aNULL, NULL, 0, 0, SSL_aNULL},
197 {0, SSL_TXT_aECDSA, NULL, 0, 0, SSL_aECDSA},
198 {0, SSL_TXT_ECDSA, NULL, 0, 0, SSL_aECDSA},
199 {0, SSL_TXT_aPSK, NULL, 0, 0, SSL_aPSK},
200 {0, SSL_TXT_aGOST01, NULL, 0, 0, SSL_aGOST01},
201 {0, SSL_TXT_aGOST12, NULL, 0, 0, SSL_aGOST12},
202 {0, SSL_TXT_aGOST, NULL, 0, 0, SSL_aGOST01 | SSL_aGOST12},
203 {0, SSL_TXT_aSRP, NULL, 0, 0, SSL_aSRP},
204
205 /* aliases combining key exchange and server authentication */
206 {0, SSL_TXT_EDH, NULL, 0, SSL_kDHE, ~SSL_aNULL},
207 {0, SSL_TXT_DHE, NULL, 0, SSL_kDHE, ~SSL_aNULL},
208 {0, SSL_TXT_EECDH, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
209 {0, SSL_TXT_ECDHE, NULL, 0, SSL_kECDHE, ~SSL_aNULL},
210 {0, SSL_TXT_NULL, NULL, 0, 0, 0, SSL_eNULL},
211 {0, SSL_TXT_RSA, NULL, 0, SSL_kRSA, SSL_aRSA},
212 {0, SSL_TXT_ADH, NULL, 0, SSL_kDHE, SSL_aNULL},
213 {0, SSL_TXT_AECDH, NULL, 0, SSL_kECDHE, SSL_aNULL},
214 {0, SSL_TXT_PSK, NULL, 0, SSL_PSK},
215 {0, SSL_TXT_SRP, NULL, 0, SSL_kSRP},
216
217 /* symmetric encryption aliases */
218 {0, SSL_TXT_3DES, NULL, 0, 0, 0, SSL_3DES},
219 {0, SSL_TXT_RC4, NULL, 0, 0, 0, SSL_RC4},
220 {0, SSL_TXT_RC2, NULL, 0, 0, 0, SSL_RC2},
221 {0, SSL_TXT_IDEA, NULL, 0, 0, 0, SSL_IDEA},
222 {0, SSL_TXT_SEED, NULL, 0, 0, 0, SSL_SEED},
223 {0, SSL_TXT_eNULL, NULL, 0, 0, 0, SSL_eNULL},
224 {0, SSL_TXT_GOST, NULL, 0, 0, 0,
225 SSL_eGOST2814789CNT | SSL_eGOST2814789CNT12 | SSL_MAGMA | SSL_KUZNYECHIK},
226 {0, SSL_TXT_AES128, NULL, 0, 0, 0,
227 SSL_AES128 | SSL_AES128GCM | SSL_AES128CCM | SSL_AES128CCM8},
228 {0, SSL_TXT_AES256, NULL, 0, 0, 0,
229 SSL_AES256 | SSL_AES256GCM | SSL_AES256CCM | SSL_AES256CCM8},
230 {0, SSL_TXT_AES, NULL, 0, 0, 0, SSL_AES},
231 {0, SSL_TXT_AES_GCM, NULL, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM},
232 {0, SSL_TXT_AES_CCM, NULL, 0, 0, 0,
233 SSL_AES128CCM | SSL_AES256CCM | SSL_AES128CCM8 | SSL_AES256CCM8},
234 {0, SSL_TXT_AES_CCM_8, NULL, 0, 0, 0, SSL_AES128CCM8 | SSL_AES256CCM8},
235 {0, SSL_TXT_CAMELLIA128, NULL, 0, 0, 0, SSL_CAMELLIA128},
236 {0, SSL_TXT_CAMELLIA256, NULL, 0, 0, 0, SSL_CAMELLIA256},
237 {0, SSL_TXT_CAMELLIA, NULL, 0, 0, 0, SSL_CAMELLIA},
238 {0, SSL_TXT_CHACHA20, NULL, 0, 0, 0, SSL_CHACHA20},
239 {0, SSL_TXT_GOST2012_GOST8912_GOST8912, NULL, 0, 0, 0, SSL_eGOST2814789CNT12},
240
241 {0, SSL_TXT_ARIA, NULL, 0, 0, 0, SSL_ARIA},
242 {0, SSL_TXT_ARIA_GCM, NULL, 0, 0, 0, SSL_ARIA128GCM | SSL_ARIA256GCM},
243 {0, SSL_TXT_ARIA128, NULL, 0, 0, 0, SSL_ARIA128GCM},
244 {0, SSL_TXT_ARIA256, NULL, 0, 0, 0, SSL_ARIA256GCM},
245 {0, SSL_TXT_CBC, NULL, 0, 0, 0, SSL_CBC},
246
247 /* MAC aliases */
248 {0, SSL_TXT_MD5, NULL, 0, 0, 0, 0, SSL_MD5},
249 {0, SSL_TXT_SHA1, NULL, 0, 0, 0, 0, SSL_SHA1},
250 {0, SSL_TXT_SHA, NULL, 0, 0, 0, 0, SSL_SHA1},
251 {0, SSL_TXT_GOST94, NULL, 0, 0, 0, 0, SSL_GOST94},
252 {0, SSL_TXT_GOST89MAC, NULL, 0, 0, 0, 0, SSL_GOST89MAC | SSL_GOST89MAC12},
253 {0, SSL_TXT_SHA256, NULL, 0, 0, 0, 0, SSL_SHA256},
254 {0, SSL_TXT_SHA384, NULL, 0, 0, 0, 0, SSL_SHA384},
255 {0, SSL_TXT_GOST12, NULL, 0, 0, 0, 0, SSL_GOST12_256},
256
257 /* protocol version aliases */
258 {0, SSL_TXT_SSLV3, NULL, 0, 0, 0, 0, 0, SSL3_VERSION},
259 {0, SSL_TXT_TLSV1, NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
260 {0, "TLSv1.0", NULL, 0, 0, 0, 0, 0, TLS1_VERSION},
261 {0, SSL_TXT_TLSV1_2, NULL, 0, 0, 0, 0, 0, TLS1_2_VERSION},
262
263 /* strength classes */
264 {0, SSL_TXT_LOW, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_LOW},
265 {0, SSL_TXT_MEDIUM, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_MEDIUM},
266 {0, SSL_TXT_HIGH, NULL, 0, 0, 0, 0, 0, 0, 0, 0, 0, SSL_HIGH},
267 /* FIPS 140-2 approved ciphersuite */
268 {0, SSL_TXT_FIPS, NULL, 0, 0, 0, ~SSL_eNULL, 0, 0, 0, 0, 0, SSL_FIPS},
269
270 /* "EDH-" aliases to "DHE-" labels (for backward compatibility) */
271 {0, SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA, NULL, 0,
272 SSL_kDHE, SSL_aDSS, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
273 {0, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA, NULL, 0,
274 SSL_kDHE, SSL_aRSA, SSL_3DES, SSL_SHA1, 0, 0, 0, 0, SSL_HIGH | SSL_FIPS},
275
276 };
277
278 /*
279 * Search for public key algorithm with given name and return its pkey_id if
280 * it is available. Otherwise return 0
281 */
282 #ifdef OPENSSL_NO_ENGINE
283
284 static int get_optional_pkey_id(const char *pkey_name)
285 {
286 const EVP_PKEY_ASN1_METHOD *ameth;
287 int pkey_id = 0;
288 ameth = EVP_PKEY_asn1_find_str(NULL, pkey_name, -1);
289 if (ameth && EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
290 ameth) > 0)
291 return pkey_id;
292 return 0;
293 }
294
295 #else
296
297 static int get_optional_pkey_id(const char *pkey_name)
298 {
299 const EVP_PKEY_ASN1_METHOD *ameth;
300 ENGINE *tmpeng = NULL;
301 int pkey_id = 0;
302 ameth = EVP_PKEY_asn1_find_str(&tmpeng, pkey_name, -1);
303 if (ameth) {
304 if (EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL,
305 ameth) <= 0)
306 pkey_id = 0;
307 }
308 tls_engine_finish(tmpeng);
309 return pkey_id;
310 }
311
312 #endif
313
314 int ssl_load_ciphers(SSL_CTX *ctx)
315 {
316 size_t i;
317 const ssl_cipher_table *t;
318 EVP_KEYEXCH *kex = NULL;
319 EVP_SIGNATURE *sig = NULL;
320
321 ctx->disabled_enc_mask = 0;
322 for (i = 0, t = ssl_cipher_table_cipher; i < SSL_ENC_NUM_IDX; i++, t++) {
323 if (t->nid != NID_undef) {
324 const EVP_CIPHER *cipher
325 = ssl_evp_cipher_fetch(ctx->libctx, t->nid, ctx->propq);
326
327 ctx->ssl_cipher_methods[i] = cipher;
328 if (cipher == NULL)
329 ctx->disabled_enc_mask |= t->mask;
330 }
331 }
332 ctx->disabled_mac_mask = 0;
333 for (i = 0, t = ssl_cipher_table_mac; i < SSL_MD_NUM_IDX; i++, t++) {
334 const EVP_MD *md
335 = ssl_evp_md_fetch(ctx->libctx, t->nid, ctx->propq);
336
337 ctx->ssl_digest_methods[i] = md;
338 if (md == NULL) {
339 ctx->disabled_mac_mask |= t->mask;
340 } else {
341 int tmpsize = EVP_MD_get_size(md);
342
343 if (!ossl_assert(tmpsize > 0))
344 return 0;
345 ctx->ssl_mac_secret_size[i] = tmpsize;
346 }
347 }
348
349 ctx->disabled_mkey_mask = 0;
350 ctx->disabled_auth_mask = 0;
351
352 /*
353 * We ignore any errors from the fetches below. They are expected to fail
354 * if these algorithms are not available.
355 */
356 ERR_set_mark();
357 sig = EVP_SIGNATURE_fetch(ctx->libctx, "DSA", ctx->propq);
358 if (sig == NULL)
359 ctx->disabled_auth_mask |= SSL_aDSS;
360 else
361 EVP_SIGNATURE_free(sig);
362 kex = EVP_KEYEXCH_fetch(ctx->libctx, "DH", ctx->propq);
363 if (kex == NULL)
364 ctx->disabled_mkey_mask |= SSL_kDHE | SSL_kDHEPSK;
365 else
366 EVP_KEYEXCH_free(kex);
367 kex = EVP_KEYEXCH_fetch(ctx->libctx, "ECDH", ctx->propq);
368 if (kex == NULL)
369 ctx->disabled_mkey_mask |= SSL_kECDHE | SSL_kECDHEPSK;
370 else
371 EVP_KEYEXCH_free(kex);
372 sig = EVP_SIGNATURE_fetch(ctx->libctx, "ECDSA", ctx->propq);
373 if (sig == NULL)
374 ctx->disabled_auth_mask |= SSL_aECDSA;
375 else
376 EVP_SIGNATURE_free(sig);
377 ERR_pop_to_mark();
378
379 #ifdef OPENSSL_NO_PSK
380 ctx->disabled_mkey_mask |= SSL_PSK;
381 ctx->disabled_auth_mask |= SSL_aPSK;
382 #endif
383 #ifdef OPENSSL_NO_SRP
384 ctx->disabled_mkey_mask |= SSL_kSRP;
385 #endif
386
387 /*
388 * Check for presence of GOST 34.10 algorithms, and if they are not
389 * present, disable appropriate auth and key exchange
390 */
391 memcpy(ctx->ssl_mac_pkey_id, default_mac_pkey_id,
392 sizeof(ctx->ssl_mac_pkey_id));
393
394 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] =
395 get_optional_pkey_id(SN_id_Gost28147_89_MAC);
396 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX])
397 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX] = 32;
398 else
399 ctx->disabled_mac_mask |= SSL_GOST89MAC;
400
401 ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX] =
402 get_optional_pkey_id(SN_gost_mac_12);
403 if (ctx->ssl_mac_pkey_id[SSL_MD_GOST89MAC12_IDX])
404 ctx->ssl_mac_secret_size[SSL_MD_GOST89MAC12_IDX] = 32;
405 else
406 ctx->disabled_mac_mask |= SSL_GOST89MAC12;
407
408 ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX] =
409 get_optional_pkey_id(SN_magma_mac);
410 if (ctx->ssl_mac_pkey_id[SSL_MD_MAGMAOMAC_IDX])
411 ctx->ssl_mac_secret_size[SSL_MD_MAGMAOMAC_IDX] = 32;
412 else
413 ctx->disabled_mac_mask |= SSL_MAGMAOMAC;
414
415 ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX] =
416 get_optional_pkey_id(SN_kuznyechik_mac);
417 if (ctx->ssl_mac_pkey_id[SSL_MD_KUZNYECHIKOMAC_IDX])
418 ctx->ssl_mac_secret_size[SSL_MD_KUZNYECHIKOMAC_IDX] = 32;
419 else
420 ctx->disabled_mac_mask |= SSL_KUZNYECHIKOMAC;
421
422 if (!get_optional_pkey_id(SN_id_GostR3410_2001))
423 ctx->disabled_auth_mask |= SSL_aGOST01 | SSL_aGOST12;
424 if (!get_optional_pkey_id(SN_id_GostR3410_2012_256))
425 ctx->disabled_auth_mask |= SSL_aGOST12;
426 if (!get_optional_pkey_id(SN_id_GostR3410_2012_512))
427 ctx->disabled_auth_mask |= SSL_aGOST12;
428 /*
429 * Disable GOST key exchange if no GOST signature algs are available *
430 */
431 if ((ctx->disabled_auth_mask & (SSL_aGOST01 | SSL_aGOST12)) ==
432 (SSL_aGOST01 | SSL_aGOST12))
433 ctx->disabled_mkey_mask |= SSL_kGOST;
434
435 if ((ctx->disabled_auth_mask & SSL_aGOST12) == SSL_aGOST12)
436 ctx->disabled_mkey_mask |= SSL_kGOST18;
437
438 return 1;
439 }
440
441 int ssl_cipher_get_evp_cipher(SSL_CTX *ctx, const SSL_CIPHER *sslc,
442 const EVP_CIPHER **enc)
443 {
444 int i = ssl_cipher_info_lookup(ssl_cipher_table_cipher,
445 sslc->algorithm_enc);
446
447 if (i == -1) {
448 *enc = NULL;
449 } else {
450 if (i == SSL_ENC_NULL_IDX) {
451 /*
452 * We assume we don't care about this coming from an ENGINE so
453 * just do a normal EVP_CIPHER_fetch instead of
454 * ssl_evp_cipher_fetch()
455 */
456 *enc = EVP_CIPHER_fetch(ctx->libctx, "NULL", ctx->propq);
457 if (*enc == NULL)
458 return 0;
459 } else {
460 const EVP_CIPHER *cipher = ctx->ssl_cipher_methods[i];
461
462 if (cipher == NULL
463 || !ssl_evp_cipher_up_ref(cipher))
464 return 0;
465 *enc = ctx->ssl_cipher_methods[i];
466 }
467 }
468 return 1;
469 }
470
471 int ssl_cipher_get_evp_md_mac(SSL_CTX *ctx, const SSL_CIPHER *sslc,
472 const EVP_MD **md,
473 int *mac_pkey_type, size_t *mac_secret_size)
474 {
475 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, sslc->algorithm_mac);
476
477 if (i == -1) {
478 *md = NULL;
479 if (mac_pkey_type != NULL)
480 *mac_pkey_type = NID_undef;
481 if (mac_secret_size != NULL)
482 *mac_secret_size = 0;
483 } else {
484 const EVP_MD *digest = ctx->ssl_digest_methods[i];
485
486 if (digest == NULL || !ssl_evp_md_up_ref(digest))
487 return 0;
488
489 *md = digest;
490 if (mac_pkey_type != NULL)
491 *mac_pkey_type = ctx->ssl_mac_pkey_id[i];
492 if (mac_secret_size != NULL)
493 *mac_secret_size = ctx->ssl_mac_secret_size[i];
494 }
495 return 1;
496 }
497
498 int ssl_cipher_get_evp(SSL_CTX *ctx, const SSL_SESSION *s,
499 const EVP_CIPHER **enc, const EVP_MD **md,
500 int *mac_pkey_type, size_t *mac_secret_size,
501 SSL_COMP **comp, int use_etm)
502 {
503 int i;
504 const SSL_CIPHER *c;
505
506 c = s->cipher;
507 if (c == NULL)
508 return 0;
509 if (comp != NULL) {
510 SSL_COMP ctmp;
511 STACK_OF(SSL_COMP) *comp_methods;
512
513 *comp = NULL;
514 ctmp.id = s->compress_meth;
515 comp_methods = SSL_COMP_get_compression_methods();
516 if (comp_methods != NULL) {
517 i = sk_SSL_COMP_find(comp_methods, &ctmp);
518 if (i >= 0)
519 *comp = sk_SSL_COMP_value(comp_methods, i);
520 }
521 /* If were only interested in comp then return success */
522 if ((enc == NULL) && (md == NULL))
523 return 1;
524 }
525
526 if ((enc == NULL) || (md == NULL))
527 return 0;
528
529 if (!ssl_cipher_get_evp_cipher(ctx, c, enc))
530 return 0;
531
532 if (!ssl_cipher_get_evp_md_mac(ctx, c, md, mac_pkey_type,
533 mac_secret_size)) {
534 ssl_evp_cipher_free(*enc);
535 return 0;
536 }
537
538 if ((*enc != NULL)
539 && (*md != NULL
540 || (EVP_CIPHER_get_flags(*enc) & EVP_CIPH_FLAG_AEAD_CIPHER))
541 && (c->algorithm_mac == SSL_AEAD
542 || mac_pkey_type == NULL || *mac_pkey_type != NID_undef)) {
543 const EVP_CIPHER *evp = NULL;
544
545 if (use_etm
546 || s->ssl_version >> 8 != TLS1_VERSION_MAJOR
547 || s->ssl_version < TLS1_VERSION)
548 return 1;
549
550 if (c->algorithm_enc == SSL_RC4
551 && c->algorithm_mac == SSL_MD5)
552 evp = ssl_evp_cipher_fetch(ctx->libctx, NID_rc4_hmac_md5,
553 ctx->propq);
554 else if (c->algorithm_enc == SSL_AES128
555 && c->algorithm_mac == SSL_SHA1)
556 evp = ssl_evp_cipher_fetch(ctx->libctx,
557 NID_aes_128_cbc_hmac_sha1,
558 ctx->propq);
559 else if (c->algorithm_enc == SSL_AES256
560 && c->algorithm_mac == SSL_SHA1)
561 evp = ssl_evp_cipher_fetch(ctx->libctx,
562 NID_aes_256_cbc_hmac_sha1,
563 ctx->propq);
564 else if (c->algorithm_enc == SSL_AES128
565 && c->algorithm_mac == SSL_SHA256)
566 evp = ssl_evp_cipher_fetch(ctx->libctx,
567 NID_aes_128_cbc_hmac_sha256,
568 ctx->propq);
569 else if (c->algorithm_enc == SSL_AES256
570 && c->algorithm_mac == SSL_SHA256)
571 evp = ssl_evp_cipher_fetch(ctx->libctx,
572 NID_aes_256_cbc_hmac_sha256,
573 ctx->propq);
574
575 if (evp != NULL) {
576 ssl_evp_cipher_free(*enc);
577 ssl_evp_md_free(*md);
578 *enc = evp;
579 *md = NULL;
580 }
581 return 1;
582 }
583
584 return 0;
585 }
586
587 const EVP_MD *ssl_md(SSL_CTX *ctx, int idx)
588 {
589 idx &= SSL_HANDSHAKE_MAC_MASK;
590 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
591 return NULL;
592 return ctx->ssl_digest_methods[idx];
593 }
594
595 const EVP_MD *ssl_handshake_md(SSL_CONNECTION *s)
596 {
597 return ssl_md(SSL_CONNECTION_GET_CTX(s), ssl_get_algorithm2(s));
598 }
599
600 const EVP_MD *ssl_prf_md(SSL_CONNECTION *s)
601 {
602 return ssl_md(SSL_CONNECTION_GET_CTX(s),
603 ssl_get_algorithm2(s) >> TLS1_PRF_DGST_SHIFT);
604 }
605
606
607 #define ITEM_SEP(a) \
608 (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
609
610 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
611 CIPHER_ORDER **tail)
612 {
613 if (curr == *tail)
614 return;
615 if (curr == *head)
616 *head = curr->next;
617 if (curr->prev != NULL)
618 curr->prev->next = curr->next;
619 if (curr->next != NULL)
620 curr->next->prev = curr->prev;
621 (*tail)->next = curr;
622 curr->prev = *tail;
623 curr->next = NULL;
624 *tail = curr;
625 }
626
627 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
628 CIPHER_ORDER **tail)
629 {
630 if (curr == *head)
631 return;
632 if (curr == *tail)
633 *tail = curr->prev;
634 if (curr->next != NULL)
635 curr->next->prev = curr->prev;
636 if (curr->prev != NULL)
637 curr->prev->next = curr->next;
638 (*head)->prev = curr;
639 curr->next = *head;
640 curr->prev = NULL;
641 *head = curr;
642 }
643
644 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
645 int num_of_ciphers,
646 uint32_t disabled_mkey,
647 uint32_t disabled_auth,
648 uint32_t disabled_enc,
649 uint32_t disabled_mac,
650 CIPHER_ORDER *co_list,
651 CIPHER_ORDER **head_p,
652 CIPHER_ORDER **tail_p)
653 {
654 int i, co_list_num;
655 const SSL_CIPHER *c;
656
657 /*
658 * We have num_of_ciphers descriptions compiled in, depending on the
659 * method selected (SSLv3, TLSv1 etc).
660 * These will later be sorted in a linked list with at most num
661 * entries.
662 */
663
664 /* Get the initial list of ciphers */
665 co_list_num = 0; /* actual count of ciphers */
666 for (i = 0; i < num_of_ciphers; i++) {
667 c = ssl_method->get_cipher(i);
668 /* drop those that use any of that is not available */
669 if (c == NULL || !c->valid)
670 continue;
671 if ((c->algorithm_mkey & disabled_mkey) ||
672 (c->algorithm_auth & disabled_auth) ||
673 (c->algorithm_enc & disabled_enc) ||
674 (c->algorithm_mac & disabled_mac))
675 continue;
676 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) == 0) &&
677 c->min_tls == 0)
678 continue;
679 if (((ssl_method->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS) != 0) &&
680 c->min_dtls == 0)
681 continue;
682
683 co_list[co_list_num].cipher = c;
684 co_list[co_list_num].next = NULL;
685 co_list[co_list_num].prev = NULL;
686 co_list[co_list_num].active = 0;
687 co_list_num++;
688 }
689
690 /*
691 * Prepare linked list from list entries
692 */
693 if (co_list_num > 0) {
694 co_list[0].prev = NULL;
695
696 if (co_list_num > 1) {
697 co_list[0].next = &co_list[1];
698
699 for (i = 1; i < co_list_num - 1; i++) {
700 co_list[i].prev = &co_list[i - 1];
701 co_list[i].next = &co_list[i + 1];
702 }
703
704 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
705 }
706
707 co_list[co_list_num - 1].next = NULL;
708
709 *head_p = &co_list[0];
710 *tail_p = &co_list[co_list_num - 1];
711 }
712 }
713
714 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
715 int num_of_group_aliases,
716 uint32_t disabled_mkey,
717 uint32_t disabled_auth,
718 uint32_t disabled_enc,
719 uint32_t disabled_mac,
720 CIPHER_ORDER *head)
721 {
722 CIPHER_ORDER *ciph_curr;
723 const SSL_CIPHER **ca_curr;
724 int i;
725 uint32_t mask_mkey = ~disabled_mkey;
726 uint32_t mask_auth = ~disabled_auth;
727 uint32_t mask_enc = ~disabled_enc;
728 uint32_t mask_mac = ~disabled_mac;
729
730 /*
731 * First, add the real ciphers as already collected
732 */
733 ciph_curr = head;
734 ca_curr = ca_list;
735 while (ciph_curr != NULL) {
736 *ca_curr = ciph_curr->cipher;
737 ca_curr++;
738 ciph_curr = ciph_curr->next;
739 }
740
741 /*
742 * Now we add the available ones from the cipher_aliases[] table.
743 * They represent either one or more algorithms, some of which
744 * in any affected category must be supported (set in enabled_mask),
745 * or represent a cipher strength value (will be added in any case because algorithms=0).
746 */
747 for (i = 0; i < num_of_group_aliases; i++) {
748 uint32_t algorithm_mkey = cipher_aliases[i].algorithm_mkey;
749 uint32_t algorithm_auth = cipher_aliases[i].algorithm_auth;
750 uint32_t algorithm_enc = cipher_aliases[i].algorithm_enc;
751 uint32_t algorithm_mac = cipher_aliases[i].algorithm_mac;
752
753 if (algorithm_mkey)
754 if ((algorithm_mkey & mask_mkey) == 0)
755 continue;
756
757 if (algorithm_auth)
758 if ((algorithm_auth & mask_auth) == 0)
759 continue;
760
761 if (algorithm_enc)
762 if ((algorithm_enc & mask_enc) == 0)
763 continue;
764
765 if (algorithm_mac)
766 if ((algorithm_mac & mask_mac) == 0)
767 continue;
768
769 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
770 ca_curr++;
771 }
772
773 *ca_curr = NULL; /* end of list */
774 }
775
776 static void ssl_cipher_apply_rule(uint32_t cipher_id, uint32_t alg_mkey,
777 uint32_t alg_auth, uint32_t alg_enc,
778 uint32_t alg_mac, int min_tls,
779 uint32_t algo_strength, int rule,
780 int32_t strength_bits, CIPHER_ORDER **head_p,
781 CIPHER_ORDER **tail_p)
782 {
783 CIPHER_ORDER *head, *tail, *curr, *next, *last;
784 const SSL_CIPHER *cp;
785 int reverse = 0;
786
787 OSSL_TRACE_BEGIN(TLS_CIPHER) {
788 BIO_printf(trc_out,
789 "Applying rule %d with %08x/%08x/%08x/%08x/%08x %08x (%d)\n",
790 rule, (unsigned int)alg_mkey, (unsigned int)alg_auth,
791 (unsigned int)alg_enc, (unsigned int)alg_mac, min_tls,
792 (unsigned int)algo_strength, (int)strength_bits);
793 }
794
795 if (rule == CIPHER_DEL || rule == CIPHER_BUMP)
796 reverse = 1; /* needed to maintain sorting between currently
797 * deleted ciphers */
798
799 head = *head_p;
800 tail = *tail_p;
801
802 if (reverse) {
803 next = tail;
804 last = head;
805 } else {
806 next = head;
807 last = tail;
808 }
809
810 curr = NULL;
811 for (;;) {
812 if (curr == last)
813 break;
814
815 curr = next;
816
817 if (curr == NULL)
818 break;
819
820 next = reverse ? curr->prev : curr->next;
821
822 cp = curr->cipher;
823
824 /*
825 * Selection criteria is either the value of strength_bits
826 * or the algorithms used.
827 */
828 if (strength_bits >= 0) {
829 if (strength_bits != cp->strength_bits)
830 continue;
831 } else {
832 if (trc_out != NULL) {
833 BIO_printf(trc_out,
834 "\nName: %s:"
835 "\nAlgo = %08x/%08x/%08x/%08x/%08x Algo_strength = %08x\n",
836 cp->name,
837 (unsigned int)cp->algorithm_mkey,
838 (unsigned int)cp->algorithm_auth,
839 (unsigned int)cp->algorithm_enc,
840 (unsigned int)cp->algorithm_mac,
841 cp->min_tls,
842 (unsigned int)cp->algo_strength);
843 }
844 if (cipher_id != 0 && (cipher_id != cp->id))
845 continue;
846 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
847 continue;
848 if (alg_auth && !(alg_auth & cp->algorithm_auth))
849 continue;
850 if (alg_enc && !(alg_enc & cp->algorithm_enc))
851 continue;
852 if (alg_mac && !(alg_mac & cp->algorithm_mac))
853 continue;
854 if (min_tls && (min_tls != cp->min_tls))
855 continue;
856 if ((algo_strength & SSL_STRONG_MASK)
857 && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength))
858 continue;
859 if ((algo_strength & SSL_DEFAULT_MASK)
860 && !(algo_strength & SSL_DEFAULT_MASK & cp->algo_strength))
861 continue;
862 }
863
864 if (trc_out != NULL)
865 BIO_printf(trc_out, "Action = %d\n", rule);
866
867 /* add the cipher if it has not been added yet. */
868 if (rule == CIPHER_ADD) {
869 /* reverse == 0 */
870 if (!curr->active) {
871 ll_append_tail(&head, curr, &tail);
872 curr->active = 1;
873 }
874 }
875 /* Move the added cipher to this location */
876 else if (rule == CIPHER_ORD) {
877 /* reverse == 0 */
878 if (curr->active) {
879 ll_append_tail(&head, curr, &tail);
880 }
881 } else if (rule == CIPHER_DEL) {
882 /* reverse == 1 */
883 if (curr->active) {
884 /*
885 * most recently deleted ciphersuites get best positions for
886 * any future CIPHER_ADD (note that the CIPHER_DEL loop works
887 * in reverse to maintain the order)
888 */
889 ll_append_head(&head, curr, &tail);
890 curr->active = 0;
891 }
892 } else if (rule == CIPHER_BUMP) {
893 if (curr->active)
894 ll_append_head(&head, curr, &tail);
895 } else if (rule == CIPHER_KILL) {
896 /* reverse == 0 */
897 if (head == curr)
898 head = curr->next;
899 else
900 curr->prev->next = curr->next;
901 if (tail == curr)
902 tail = curr->prev;
903 curr->active = 0;
904 if (curr->next != NULL)
905 curr->next->prev = curr->prev;
906 if (curr->prev != NULL)
907 curr->prev->next = curr->next;
908 curr->next = NULL;
909 curr->prev = NULL;
910 }
911 }
912
913 *head_p = head;
914 *tail_p = tail;
915
916 OSSL_TRACE_END(TLS_CIPHER);
917 }
918
919 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
920 CIPHER_ORDER **tail_p)
921 {
922 int32_t max_strength_bits;
923 int i, *number_uses;
924 CIPHER_ORDER *curr;
925
926 /*
927 * This routine sorts the ciphers with descending strength. The sorting
928 * must keep the pre-sorted sequence, so we apply the normal sorting
929 * routine as '+' movement to the end of the list.
930 */
931 max_strength_bits = 0;
932 curr = *head_p;
933 while (curr != NULL) {
934 if (curr->active && (curr->cipher->strength_bits > max_strength_bits))
935 max_strength_bits = curr->cipher->strength_bits;
936 curr = curr->next;
937 }
938
939 number_uses = OPENSSL_zalloc(sizeof(int) * (max_strength_bits + 1));
940 if (number_uses == NULL)
941 return 0;
942
943 /*
944 * Now find the strength_bits values actually used
945 */
946 curr = *head_p;
947 while (curr != NULL) {
948 if (curr->active)
949 number_uses[curr->cipher->strength_bits]++;
950 curr = curr->next;
951 }
952 /*
953 * Go through the list of used strength_bits values in descending
954 * order.
955 */
956 for (i = max_strength_bits; i >= 0; i--)
957 if (number_uses[i] > 0)
958 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, head_p,
959 tail_p);
960
961 OPENSSL_free(number_uses);
962 return 1;
963 }
964
965 static int ssl_cipher_process_rulestr(const char *rule_str,
966 CIPHER_ORDER **head_p,
967 CIPHER_ORDER **tail_p,
968 const SSL_CIPHER **ca_list, CERT *c)
969 {
970 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, algo_strength;
971 int min_tls;
972 const char *l, *buf;
973 int j, multi, found, rule, retval, ok, buflen;
974 uint32_t cipher_id = 0;
975 char ch;
976
977 retval = 1;
978 l = rule_str;
979 for (;;) {
980 ch = *l;
981
982 if (ch == '\0')
983 break; /* done */
984 if (ch == '-') {
985 rule = CIPHER_DEL;
986 l++;
987 } else if (ch == '+') {
988 rule = CIPHER_ORD;
989 l++;
990 } else if (ch == '!') {
991 rule = CIPHER_KILL;
992 l++;
993 } else if (ch == '@') {
994 rule = CIPHER_SPECIAL;
995 l++;
996 } else {
997 rule = CIPHER_ADD;
998 }
999
1000 if (ITEM_SEP(ch)) {
1001 l++;
1002 continue;
1003 }
1004
1005 alg_mkey = 0;
1006 alg_auth = 0;
1007 alg_enc = 0;
1008 alg_mac = 0;
1009 min_tls = 0;
1010 algo_strength = 0;
1011
1012 for (;;) {
1013 ch = *l;
1014 buf = l;
1015 buflen = 0;
1016 #ifndef CHARSET_EBCDIC
1017 while (((ch >= 'A') && (ch <= 'Z')) ||
1018 ((ch >= '0') && (ch <= '9')) ||
1019 ((ch >= 'a') && (ch <= 'z')) ||
1020 (ch == '-') || (ch == '_') || (ch == '.') || (ch == '='))
1021 #else
1022 while (isalnum((unsigned char)ch) || (ch == '-') || (ch == '_') || (ch == '.')
1023 || (ch == '='))
1024 #endif
1025 {
1026 ch = *(++l);
1027 buflen++;
1028 }
1029
1030 if (buflen == 0) {
1031 /*
1032 * We hit something we cannot deal with,
1033 * it is no command or separator nor
1034 * alphanumeric, so we call this an error.
1035 */
1036 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1037 return 0;
1038 }
1039
1040 if (rule == CIPHER_SPECIAL) {
1041 found = 0; /* unused -- avoid compiler warning */
1042 break; /* special treatment */
1043 }
1044
1045 /* check for multi-part specification */
1046 if (ch == '+') {
1047 multi = 1;
1048 l++;
1049 } else {
1050 multi = 0;
1051 }
1052
1053 /*
1054 * Now search for the cipher alias in the ca_list. Be careful
1055 * with the strncmp, because the "buflen" limitation
1056 * will make the rule "ADH:SOME" and the cipher
1057 * "ADH-MY-CIPHER" look like a match for buflen=3.
1058 * So additionally check whether the cipher name found
1059 * has the correct length. We can save a strlen() call:
1060 * just checking for the '\0' at the right place is
1061 * sufficient, we have to strncmp() anyway. (We cannot
1062 * use strcmp(), because buf is not '\0' terminated.)
1063 */
1064 j = found = 0;
1065 cipher_id = 0;
1066 while (ca_list[j]) {
1067 if (strncmp(buf, ca_list[j]->name, buflen) == 0
1068 && (ca_list[j]->name[buflen] == '\0')) {
1069 found = 1;
1070 break;
1071 } else if (ca_list[j]->stdname != NULL
1072 && strncmp(buf, ca_list[j]->stdname, buflen) == 0
1073 && ca_list[j]->stdname[buflen] == '\0') {
1074 found = 1;
1075 break;
1076 } else
1077 j++;
1078 }
1079
1080 if (!found)
1081 break; /* ignore this entry */
1082
1083 if (ca_list[j]->algorithm_mkey) {
1084 if (alg_mkey) {
1085 alg_mkey &= ca_list[j]->algorithm_mkey;
1086 if (!alg_mkey) {
1087 found = 0;
1088 break;
1089 }
1090 } else {
1091 alg_mkey = ca_list[j]->algorithm_mkey;
1092 }
1093 }
1094
1095 if (ca_list[j]->algorithm_auth) {
1096 if (alg_auth) {
1097 alg_auth &= ca_list[j]->algorithm_auth;
1098 if (!alg_auth) {
1099 found = 0;
1100 break;
1101 }
1102 } else {
1103 alg_auth = ca_list[j]->algorithm_auth;
1104 }
1105 }
1106
1107 if (ca_list[j]->algorithm_enc) {
1108 if (alg_enc) {
1109 alg_enc &= ca_list[j]->algorithm_enc;
1110 if (!alg_enc) {
1111 found = 0;
1112 break;
1113 }
1114 } else {
1115 alg_enc = ca_list[j]->algorithm_enc;
1116 }
1117 }
1118
1119 if (ca_list[j]->algorithm_mac) {
1120 if (alg_mac) {
1121 alg_mac &= ca_list[j]->algorithm_mac;
1122 if (!alg_mac) {
1123 found = 0;
1124 break;
1125 }
1126 } else {
1127 alg_mac = ca_list[j]->algorithm_mac;
1128 }
1129 }
1130
1131 if (ca_list[j]->algo_strength & SSL_STRONG_MASK) {
1132 if (algo_strength & SSL_STRONG_MASK) {
1133 algo_strength &=
1134 (ca_list[j]->algo_strength & SSL_STRONG_MASK) |
1135 ~SSL_STRONG_MASK;
1136 if (!(algo_strength & SSL_STRONG_MASK)) {
1137 found = 0;
1138 break;
1139 }
1140 } else {
1141 algo_strength = ca_list[j]->algo_strength & SSL_STRONG_MASK;
1142 }
1143 }
1144
1145 if (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) {
1146 if (algo_strength & SSL_DEFAULT_MASK) {
1147 algo_strength &=
1148 (ca_list[j]->algo_strength & SSL_DEFAULT_MASK) |
1149 ~SSL_DEFAULT_MASK;
1150 if (!(algo_strength & SSL_DEFAULT_MASK)) {
1151 found = 0;
1152 break;
1153 }
1154 } else {
1155 algo_strength |=
1156 ca_list[j]->algo_strength & SSL_DEFAULT_MASK;
1157 }
1158 }
1159
1160 if (ca_list[j]->valid) {
1161 /*
1162 * explicit ciphersuite found; its protocol version does not
1163 * become part of the search pattern!
1164 */
1165
1166 cipher_id = ca_list[j]->id;
1167 } else {
1168 /*
1169 * not an explicit ciphersuite; only in this case, the
1170 * protocol version is considered part of the search pattern
1171 */
1172
1173 if (ca_list[j]->min_tls) {
1174 if (min_tls != 0 && min_tls != ca_list[j]->min_tls) {
1175 found = 0;
1176 break;
1177 } else {
1178 min_tls = ca_list[j]->min_tls;
1179 }
1180 }
1181 }
1182
1183 if (!multi)
1184 break;
1185 }
1186
1187 /*
1188 * Ok, we have the rule, now apply it
1189 */
1190 if (rule == CIPHER_SPECIAL) { /* special command */
1191 ok = 0;
1192 if ((buflen == 8) && HAS_PREFIX(buf, "STRENGTH")) {
1193 ok = ssl_cipher_strength_sort(head_p, tail_p);
1194 } else if (buflen == 10 && CHECK_AND_SKIP_PREFIX(buf, "SECLEVEL=")) {
1195 int level = *buf - '0';
1196 if (level < 0 || level > 5) {
1197 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1198 } else {
1199 c->sec_level = level;
1200 ok = 1;
1201 }
1202 } else {
1203 ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_COMMAND);
1204 }
1205 if (ok == 0)
1206 retval = 0;
1207 /*
1208 * We do not support any "multi" options
1209 * together with "@", so throw away the
1210 * rest of the command, if any left, until
1211 * end or ':' is found.
1212 */
1213 while ((*l != '\0') && !ITEM_SEP(*l))
1214 l++;
1215 } else if (found) {
1216 ssl_cipher_apply_rule(cipher_id,
1217 alg_mkey, alg_auth, alg_enc, alg_mac,
1218 min_tls, algo_strength, rule, -1, head_p,
1219 tail_p);
1220 } else {
1221 while ((*l != '\0') && !ITEM_SEP(*l))
1222 l++;
1223 }
1224 if (*l == '\0')
1225 break; /* done */
1226 }
1227
1228 return retval;
1229 }
1230
1231 static int check_suiteb_cipher_list(const SSL_METHOD *meth, CERT *c,
1232 const char **prule_str)
1233 {
1234 unsigned int suiteb_flags = 0, suiteb_comb2 = 0;
1235 if (HAS_PREFIX(*prule_str, "SUITEB128ONLY")) {
1236 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS_ONLY;
1237 } else if (HAS_PREFIX(*prule_str, "SUITEB128C2")) {
1238 suiteb_comb2 = 1;
1239 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1240 } else if (HAS_PREFIX(*prule_str, "SUITEB128")) {
1241 suiteb_flags = SSL_CERT_FLAG_SUITEB_128_LOS;
1242 } else if (HAS_PREFIX(*prule_str, "SUITEB192")) {
1243 suiteb_flags = SSL_CERT_FLAG_SUITEB_192_LOS;
1244 }
1245
1246 if (suiteb_flags) {
1247 c->cert_flags &= ~SSL_CERT_FLAG_SUITEB_128_LOS;
1248 c->cert_flags |= suiteb_flags;
1249 } else {
1250 suiteb_flags = c->cert_flags & SSL_CERT_FLAG_SUITEB_128_LOS;
1251 }
1252
1253 if (!suiteb_flags)
1254 return 1;
1255 /* Check version: if TLS 1.2 ciphers allowed we can use Suite B */
1256
1257 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)) {
1258 ERR_raise(ERR_LIB_SSL, SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE);
1259 return 0;
1260 }
1261
1262 switch (suiteb_flags) {
1263 case SSL_CERT_FLAG_SUITEB_128_LOS:
1264 if (suiteb_comb2)
1265 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1266 else
1267 *prule_str =
1268 "ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384";
1269 break;
1270 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1271 *prule_str = "ECDHE-ECDSA-AES128-GCM-SHA256";
1272 break;
1273 case SSL_CERT_FLAG_SUITEB_192_LOS:
1274 *prule_str = "ECDHE-ECDSA-AES256-GCM-SHA384";
1275 break;
1276 }
1277 return 1;
1278 }
1279
1280 static int ciphersuite_cb(const char *elem, int len, void *arg)
1281 {
1282 STACK_OF(SSL_CIPHER) *ciphersuites = (STACK_OF(SSL_CIPHER) *)arg;
1283 const SSL_CIPHER *cipher;
1284 /* Arbitrary sized temp buffer for the cipher name. Should be big enough */
1285 char name[80];
1286
1287 if (len > (int)(sizeof(name) - 1))
1288 /* Anyway return 1 so we can parse rest of the list */
1289 return 1;
1290
1291 memcpy(name, elem, len);
1292 name[len] = '\0';
1293
1294 cipher = ssl3_get_cipher_by_std_name(name);
1295 if (cipher == NULL)
1296 /* Ciphersuite not found but return 1 to parse rest of the list */
1297 return 1;
1298
1299 if (!sk_SSL_CIPHER_push(ciphersuites, cipher)) {
1300 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
1301 return 0;
1302 }
1303
1304 return 1;
1305 }
1306
1307 static __owur int set_ciphersuites(STACK_OF(SSL_CIPHER) **currciphers, const char *str)
1308 {
1309 STACK_OF(SSL_CIPHER) *newciphers = sk_SSL_CIPHER_new_null();
1310
1311 if (newciphers == NULL)
1312 return 0;
1313
1314 /* Parse the list. We explicitly allow an empty list */
1315 if (*str != '\0'
1316 && (CONF_parse_list(str, ':', 1, ciphersuite_cb, newciphers) <= 0
1317 || sk_SSL_CIPHER_num(newciphers) == 0)) {
1318 ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH);
1319 sk_SSL_CIPHER_free(newciphers);
1320 return 0;
1321 }
1322 sk_SSL_CIPHER_free(*currciphers);
1323 *currciphers = newciphers;
1324
1325 return 1;
1326 }
1327
1328 static int update_cipher_list_by_id(STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1329 STACK_OF(SSL_CIPHER) *cipherstack)
1330 {
1331 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1332
1333 if (tmp_cipher_list == NULL) {
1334 return 0;
1335 }
1336
1337 sk_SSL_CIPHER_free(*cipher_list_by_id);
1338 *cipher_list_by_id = tmp_cipher_list;
1339
1340 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp);
1341 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1342
1343 return 1;
1344 }
1345
1346 static int update_cipher_list(SSL_CTX *ctx,
1347 STACK_OF(SSL_CIPHER) **cipher_list,
1348 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1349 STACK_OF(SSL_CIPHER) *tls13_ciphersuites)
1350 {
1351 int i;
1352 STACK_OF(SSL_CIPHER) *tmp_cipher_list = sk_SSL_CIPHER_dup(*cipher_list);
1353
1354 if (tmp_cipher_list == NULL)
1355 return 0;
1356
1357 /*
1358 * Delete any existing TLSv1.3 ciphersuites. These are always first in the
1359 * list.
1360 */
1361 while (sk_SSL_CIPHER_num(tmp_cipher_list) > 0
1362 && sk_SSL_CIPHER_value(tmp_cipher_list, 0)->min_tls
1363 == TLS1_3_VERSION)
1364 (void)sk_SSL_CIPHER_delete(tmp_cipher_list, 0);
1365
1366 /* Insert the new TLSv1.3 ciphersuites */
1367 for (i = sk_SSL_CIPHER_num(tls13_ciphersuites) - 1; i >= 0; i--) {
1368 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1369
1370 /* Don't include any TLSv1.3 ciphersuites that are disabled */
1371 if ((sslc->algorithm_enc & ctx->disabled_enc_mask) == 0
1372 && (ssl_cipher_table_mac[sslc->algorithm2
1373 & SSL_HANDSHAKE_MAC_MASK].mask
1374 & ctx->disabled_mac_mask) == 0) {
1375 sk_SSL_CIPHER_unshift(tmp_cipher_list, sslc);
1376 }
1377 }
1378
1379 if (!update_cipher_list_by_id(cipher_list_by_id, tmp_cipher_list)) {
1380 sk_SSL_CIPHER_free(tmp_cipher_list);
1381 return 0;
1382 }
1383
1384 sk_SSL_CIPHER_free(*cipher_list);
1385 *cipher_list = tmp_cipher_list;
1386
1387 return 1;
1388 }
1389
1390 int SSL_CTX_set_ciphersuites(SSL_CTX *ctx, const char *str)
1391 {
1392 int ret = set_ciphersuites(&(ctx->tls13_ciphersuites), str);
1393
1394 if (ret && ctx->cipher_list != NULL)
1395 return update_cipher_list(ctx, &ctx->cipher_list, &ctx->cipher_list_by_id,
1396 ctx->tls13_ciphersuites);
1397
1398 return ret;
1399 }
1400
1401 int SSL_set_ciphersuites(SSL *s, const char *str)
1402 {
1403 STACK_OF(SSL_CIPHER) *cipher_list;
1404 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
1405 int ret;
1406
1407 if (sc == NULL)
1408 return 0;
1409
1410 ret = set_ciphersuites(&(sc->tls13_ciphersuites), str);
1411
1412 if (sc->cipher_list == NULL) {
1413 if ((cipher_list = SSL_get_ciphers(s)) != NULL)
1414 sc->cipher_list = sk_SSL_CIPHER_dup(cipher_list);
1415 }
1416 if (ret && sc->cipher_list != NULL)
1417 return update_cipher_list(s->ctx, &sc->cipher_list,
1418 &sc->cipher_list_by_id,
1419 sc->tls13_ciphersuites);
1420
1421 return ret;
1422 }
1423
1424 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(SSL_CTX *ctx,
1425 STACK_OF(SSL_CIPHER) *tls13_ciphersuites,
1426 STACK_OF(SSL_CIPHER) **cipher_list,
1427 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1428 const char *rule_str,
1429 CERT *c)
1430 {
1431 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases, i;
1432 uint32_t disabled_mkey, disabled_auth, disabled_enc, disabled_mac;
1433 STACK_OF(SSL_CIPHER) *cipherstack;
1434 const char *rule_p;
1435 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1436 const SSL_CIPHER **ca_list = NULL;
1437 const SSL_METHOD *ssl_method = ctx->method;
1438
1439 /*
1440 * Return with error if nothing to do.
1441 */
1442 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
1443 return NULL;
1444
1445 if (!check_suiteb_cipher_list(ssl_method, c, &rule_str))
1446 return NULL;
1447
1448 /*
1449 * To reduce the work to do we only want to process the compiled
1450 * in algorithms, so we first get the mask of disabled ciphers.
1451 */
1452
1453 disabled_mkey = ctx->disabled_mkey_mask;
1454 disabled_auth = ctx->disabled_auth_mask;
1455 disabled_enc = ctx->disabled_enc_mask;
1456 disabled_mac = ctx->disabled_mac_mask;
1457
1458 /*
1459 * Now we have to collect the available ciphers from the compiled
1460 * in ciphers. We cannot get more than the number compiled in, so
1461 * it is used for allocation.
1462 */
1463 num_of_ciphers = ssl_method->num_ciphers();
1464
1465 if (num_of_ciphers > 0) {
1466 co_list = OPENSSL_malloc(sizeof(*co_list) * num_of_ciphers);
1467 if (co_list == NULL)
1468 return NULL; /* Failure */
1469 }
1470
1471 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1472 disabled_mkey, disabled_auth, disabled_enc,
1473 disabled_mac, co_list, &head, &tail);
1474
1475 /* Now arrange all ciphers by preference. */
1476
1477 /*
1478 * Everything else being equal, prefer ephemeral ECDH over other key
1479 * exchange mechanisms.
1480 * For consistency, prefer ECDSA over RSA (though this only matters if the
1481 * server has both certificates, and is using the DEFAULT, or a client
1482 * preference).
1483 */
1484 ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD,
1485 -1, &head, &tail);
1486 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head,
1487 &tail);
1488 ssl_cipher_apply_rule(0, SSL_kECDHE, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head,
1489 &tail);
1490
1491 /* Within each strength group, we prefer GCM over CHACHA... */
1492 ssl_cipher_apply_rule(0, 0, 0, SSL_AESGCM, 0, 0, 0, CIPHER_ADD, -1,
1493 &head, &tail);
1494 ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20, 0, 0, 0, CIPHER_ADD, -1,
1495 &head, &tail);
1496
1497 /*
1498 * ...and generally, our preferred cipher is AES.
1499 * Note that AEADs will be bumped to take preference after sorting by
1500 * strength.
1501 */
1502 ssl_cipher_apply_rule(0, 0, 0, SSL_AES ^ SSL_AESGCM, 0, 0, 0, CIPHER_ADD,
1503 -1, &head, &tail);
1504
1505 /* Temporarily enable everything else for sorting */
1506 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail);
1507
1508 /* Low priority for MD5 */
1509 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,
1510 &tail);
1511
1512 /*
1513 * Move anonymous ciphers to the end. Usually, these will remain
1514 * disabled. (For applications that allow them, they aren't too bad, but
1515 * we prefer authenticated ciphers.)
1516 */
1517 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1518 &tail);
1519
1520 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1521 &tail);
1522 ssl_cipher_apply_rule(0, SSL_kPSK, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1523 &tail);
1524
1525 /* RC4 is sort-of broken -- move to the end */
1526 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,
1527 &tail);
1528
1529 /*
1530 * Now sort by symmetric encryption strength. The above ordering remains
1531 * in force within each class
1532 */
1533 if (!ssl_cipher_strength_sort(&head, &tail)) {
1534 OPENSSL_free(co_list);
1535 return NULL;
1536 }
1537
1538 /*
1539 * Partially overrule strength sort to prefer TLS 1.2 ciphers/PRFs.
1540 */
1541 ssl_cipher_apply_rule(0, 0, 0, 0, 0, TLS1_2_VERSION, 0, CIPHER_BUMP, -1,
1542 &head, &tail);
1543
1544 /*
1545 * Irrespective of strength, enforce the following order:
1546 * (EC)DHE + AEAD > (EC)DHE > rest of AEAD > rest.
1547 * Within each group, ciphers remain sorted by strength and previous
1548 * preference, i.e.,
1549 * 1) ECDHE > DHE
1550 * 2) GCM > CHACHA
1551 * 3) AES > rest
1552 * 4) TLS 1.2 > legacy
1553 *
1554 * Because we now bump ciphers to the top of the list, we proceed in
1555 * reverse order of preference.
1556 */
1557 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_AEAD, 0, 0, CIPHER_BUMP, -1,
1558 &head, &tail);
1559 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, 0, 0, 0,
1560 CIPHER_BUMP, -1, &head, &tail);
1561 ssl_cipher_apply_rule(0, SSL_kDHE | SSL_kECDHE, 0, 0, SSL_AEAD, 0, 0,
1562 CIPHER_BUMP, -1, &head, &tail);
1563
1564 /* Now disable everything (maintaining the ordering!) */
1565 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail);
1566
1567 /*
1568 * We also need cipher aliases for selecting based on the rule_str.
1569 * There might be two types of entries in the rule_str: 1) names
1570 * of ciphers themselves 2) aliases for groups of ciphers.
1571 * For 1) we need the available ciphers and for 2) the cipher
1572 * groups of cipher_aliases added together in one list (otherwise
1573 * we would be happy with just the cipher_aliases table).
1574 */
1575 num_of_group_aliases = OSSL_NELEM(cipher_aliases);
1576 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1577 ca_list = OPENSSL_malloc(sizeof(*ca_list) * num_of_alias_max);
1578 if (ca_list == NULL) {
1579 OPENSSL_free(co_list);
1580 return NULL; /* Failure */
1581 }
1582 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1583 disabled_mkey, disabled_auth, disabled_enc,
1584 disabled_mac, head);
1585
1586 /*
1587 * If the rule_string begins with DEFAULT, apply the default rule
1588 * before using the (possibly available) additional rules.
1589 */
1590 ok = 1;
1591 rule_p = rule_str;
1592 if (HAS_PREFIX(rule_str, "DEFAULT")) {
1593 ok = ssl_cipher_process_rulestr(OSSL_default_cipher_list(),
1594 &head, &tail, ca_list, c);
1595 rule_p += 7;
1596 if (*rule_p == ':')
1597 rule_p++;
1598 }
1599
1600 if (ok && (rule_p[0] != '\0'))
1601 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list, c);
1602
1603 OPENSSL_free(ca_list); /* Not needed anymore */
1604
1605 if (!ok) { /* Rule processing failure */
1606 OPENSSL_free(co_list);
1607 return NULL;
1608 }
1609
1610 /*
1611 * Allocate new "cipherstack" for the result, return with error
1612 * if we cannot get one.
1613 */
1614 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) {
1615 OPENSSL_free(co_list);
1616 return NULL;
1617 }
1618
1619 /* Add TLSv1.3 ciphers first - we always prefer those if possible */
1620 for (i = 0; i < sk_SSL_CIPHER_num(tls13_ciphersuites); i++) {
1621 const SSL_CIPHER *sslc = sk_SSL_CIPHER_value(tls13_ciphersuites, i);
1622
1623 /* Don't include any TLSv1.3 ciphers that are disabled */
1624 if ((sslc->algorithm_enc & disabled_enc) != 0
1625 || (ssl_cipher_table_mac[sslc->algorithm2
1626 & SSL_HANDSHAKE_MAC_MASK].mask
1627 & ctx->disabled_mac_mask) != 0) {
1628 sk_SSL_CIPHER_delete(tls13_ciphersuites, i);
1629 i--;
1630 continue;
1631 }
1632
1633 if (!sk_SSL_CIPHER_push(cipherstack, sslc)) {
1634 OPENSSL_free(co_list);
1635 sk_SSL_CIPHER_free(cipherstack);
1636 return NULL;
1637 }
1638 }
1639
1640 OSSL_TRACE_BEGIN(TLS_CIPHER) {
1641 BIO_printf(trc_out, "cipher selection:\n");
1642 }
1643 /*
1644 * The cipher selection for the list is done. The ciphers are added
1645 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1646 */
1647 for (curr = head; curr != NULL; curr = curr->next) {
1648 if (curr->active) {
1649 if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1650 OPENSSL_free(co_list);
1651 sk_SSL_CIPHER_free(cipherstack);
1652 OSSL_TRACE_CANCEL(TLS_CIPHER);
1653 return NULL;
1654 }
1655 if (trc_out != NULL)
1656 BIO_printf(trc_out, "<%s>\n", curr->cipher->name);
1657 }
1658 }
1659 OPENSSL_free(co_list); /* Not needed any longer */
1660 OSSL_TRACE_END(TLS_CIPHER);
1661
1662 if (!update_cipher_list_by_id(cipher_list_by_id, cipherstack)) {
1663 sk_SSL_CIPHER_free(cipherstack);
1664 return NULL;
1665 }
1666 sk_SSL_CIPHER_free(*cipher_list);
1667 *cipher_list = cipherstack;
1668
1669 return cipherstack;
1670 }
1671
1672 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1673 {
1674 const char *ver;
1675 const char *kx, *au, *enc, *mac;
1676 uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1677 static const char *const format = "%-30s %-7s Kx=%-8s Au=%-5s Enc=%-22s Mac=%-4s\n";
1678
1679 if (buf == NULL) {
1680 len = 128;
1681 if ((buf = OPENSSL_malloc(len)) == NULL)
1682 return NULL;
1683 } else if (len < 128) {
1684 return NULL;
1685 }
1686
1687 alg_mkey = cipher->algorithm_mkey;
1688 alg_auth = cipher->algorithm_auth;
1689 alg_enc = cipher->algorithm_enc;
1690 alg_mac = cipher->algorithm_mac;
1691
1692 ver = ssl_protocol_to_string(cipher->min_tls);
1693
1694 switch (alg_mkey) {
1695 case SSL_kRSA:
1696 kx = "RSA";
1697 break;
1698 case SSL_kDHE:
1699 kx = "DH";
1700 break;
1701 case SSL_kECDHE:
1702 kx = "ECDH";
1703 break;
1704 case SSL_kPSK:
1705 kx = "PSK";
1706 break;
1707 case SSL_kRSAPSK:
1708 kx = "RSAPSK";
1709 break;
1710 case SSL_kECDHEPSK:
1711 kx = "ECDHEPSK";
1712 break;
1713 case SSL_kDHEPSK:
1714 kx = "DHEPSK";
1715 break;
1716 case SSL_kSRP:
1717 kx = "SRP";
1718 break;
1719 case SSL_kGOST:
1720 kx = "GOST";
1721 break;
1722 case SSL_kGOST18:
1723 kx = "GOST18";
1724 break;
1725 case SSL_kANY:
1726 kx = "any";
1727 break;
1728 default:
1729 kx = "unknown";
1730 }
1731
1732 switch (alg_auth) {
1733 case SSL_aRSA:
1734 au = "RSA";
1735 break;
1736 case SSL_aDSS:
1737 au = "DSS";
1738 break;
1739 case SSL_aNULL:
1740 au = "None";
1741 break;
1742 case SSL_aECDSA:
1743 au = "ECDSA";
1744 break;
1745 case SSL_aPSK:
1746 au = "PSK";
1747 break;
1748 case SSL_aSRP:
1749 au = "SRP";
1750 break;
1751 case SSL_aGOST01:
1752 au = "GOST01";
1753 break;
1754 /* New GOST ciphersuites have both SSL_aGOST12 and SSL_aGOST01 bits */
1755 case (SSL_aGOST12 | SSL_aGOST01):
1756 au = "GOST12";
1757 break;
1758 case SSL_aANY:
1759 au = "any";
1760 break;
1761 default:
1762 au = "unknown";
1763 break;
1764 }
1765
1766 switch (alg_enc) {
1767 case SSL_DES:
1768 enc = "DES(56)";
1769 break;
1770 case SSL_3DES:
1771 enc = "3DES(168)";
1772 break;
1773 case SSL_RC4:
1774 enc = "RC4(128)";
1775 break;
1776 case SSL_RC2:
1777 enc = "RC2(128)";
1778 break;
1779 case SSL_IDEA:
1780 enc = "IDEA(128)";
1781 break;
1782 case SSL_eNULL:
1783 enc = "None";
1784 break;
1785 case SSL_AES128:
1786 enc = "AES(128)";
1787 break;
1788 case SSL_AES256:
1789 enc = "AES(256)";
1790 break;
1791 case SSL_AES128GCM:
1792 enc = "AESGCM(128)";
1793 break;
1794 case SSL_AES256GCM:
1795 enc = "AESGCM(256)";
1796 break;
1797 case SSL_AES128CCM:
1798 enc = "AESCCM(128)";
1799 break;
1800 case SSL_AES256CCM:
1801 enc = "AESCCM(256)";
1802 break;
1803 case SSL_AES128CCM8:
1804 enc = "AESCCM8(128)";
1805 break;
1806 case SSL_AES256CCM8:
1807 enc = "AESCCM8(256)";
1808 break;
1809 case SSL_CAMELLIA128:
1810 enc = "Camellia(128)";
1811 break;
1812 case SSL_CAMELLIA256:
1813 enc = "Camellia(256)";
1814 break;
1815 case SSL_ARIA128GCM:
1816 enc = "ARIAGCM(128)";
1817 break;
1818 case SSL_ARIA256GCM:
1819 enc = "ARIAGCM(256)";
1820 break;
1821 case SSL_SEED:
1822 enc = "SEED(128)";
1823 break;
1824 case SSL_eGOST2814789CNT:
1825 case SSL_eGOST2814789CNT12:
1826 enc = "GOST89(256)";
1827 break;
1828 case SSL_MAGMA:
1829 enc = "MAGMA";
1830 break;
1831 case SSL_KUZNYECHIK:
1832 enc = "KUZNYECHIK";
1833 break;
1834 case SSL_CHACHA20POLY1305:
1835 enc = "CHACHA20/POLY1305(256)";
1836 break;
1837 default:
1838 enc = "unknown";
1839 break;
1840 }
1841
1842 switch (alg_mac) {
1843 case SSL_MD5:
1844 mac = "MD5";
1845 break;
1846 case SSL_SHA1:
1847 mac = "SHA1";
1848 break;
1849 case SSL_SHA256:
1850 mac = "SHA256";
1851 break;
1852 case SSL_SHA384:
1853 mac = "SHA384";
1854 break;
1855 case SSL_AEAD:
1856 mac = "AEAD";
1857 break;
1858 case SSL_GOST89MAC:
1859 case SSL_GOST89MAC12:
1860 mac = "GOST89";
1861 break;
1862 case SSL_GOST94:
1863 mac = "GOST94";
1864 break;
1865 case SSL_GOST12_256:
1866 case SSL_GOST12_512:
1867 mac = "GOST2012";
1868 break;
1869 default:
1870 mac = "unknown";
1871 break;
1872 }
1873
1874 BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
1875
1876 return buf;
1877 }
1878
1879 const char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1880 {
1881 if (c == NULL)
1882 return "(NONE)";
1883
1884 /*
1885 * Backwards-compatibility crutch. In almost all contexts we report TLS
1886 * 1.0 as "TLSv1", but for ciphers we report "TLSv1.0".
1887 */
1888 if (c->min_tls == TLS1_VERSION)
1889 return "TLSv1.0";
1890 return ssl_protocol_to_string(c->min_tls);
1891 }
1892
1893 /* return the actual cipher being used */
1894 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1895 {
1896 if (c != NULL)
1897 return c->name;
1898 return "(NONE)";
1899 }
1900
1901 /* return the actual cipher being used in RFC standard name */
1902 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *c)
1903 {
1904 if (c != NULL)
1905 return c->stdname;
1906 return "(NONE)";
1907 }
1908
1909 /* return the OpenSSL name based on given RFC standard name */
1910 const char *OPENSSL_cipher_name(const char *stdname)
1911 {
1912 const SSL_CIPHER *c;
1913
1914 if (stdname == NULL)
1915 return "(NONE)";
1916 c = ssl3_get_cipher_by_std_name(stdname);
1917 return SSL_CIPHER_get_name(c);
1918 }
1919
1920 /* number of bits for symmetric cipher */
1921 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1922 {
1923 int ret = 0;
1924
1925 if (c != NULL) {
1926 if (alg_bits != NULL)
1927 *alg_bits = (int)c->alg_bits;
1928 ret = (int)c->strength_bits;
1929 }
1930 return ret;
1931 }
1932
1933 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *c)
1934 {
1935 return c->id;
1936 }
1937
1938 uint16_t SSL_CIPHER_get_protocol_id(const SSL_CIPHER *c)
1939 {
1940 return c->id & 0xFFFF;
1941 }
1942
1943 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1944 {
1945 SSL_COMP *ctmp;
1946 SSL_COMP srch_key;
1947 int i;
1948
1949 if ((n == 0) || (sk == NULL))
1950 return NULL;
1951 srch_key.id = n;
1952 i = sk_SSL_COMP_find(sk, &srch_key);
1953 if (i >= 0)
1954 ctmp = sk_SSL_COMP_value(sk, i);
1955 else
1956 ctmp = NULL;
1957
1958 return ctmp;
1959 }
1960
1961 #ifdef OPENSSL_NO_COMP
1962 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1963 {
1964 return NULL;
1965 }
1966
1967 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1968 *meths)
1969 {
1970 return meths;
1971 }
1972
1973 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1974 {
1975 return 1;
1976 }
1977
1978 #else
1979 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1980 {
1981 STACK_OF(SSL_COMP) **rv;
1982
1983 rv = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1984 OSSL_LIB_CTX_COMP_METHODS);
1985 if (rv != NULL)
1986 return *rv;
1987 else
1988 return NULL;
1989 }
1990
1991 STACK_OF(SSL_COMP) *SSL_COMP_set0_compression_methods(STACK_OF(SSL_COMP)
1992 *meths)
1993 {
1994 STACK_OF(SSL_COMP) **comp_methods;
1995 STACK_OF(SSL_COMP) *old_meths;
1996
1997 comp_methods = (STACK_OF(SSL_COMP) **)OSSL_LIB_CTX_get_data(NULL,
1998 OSSL_LIB_CTX_COMP_METHODS);
1999 if (comp_methods == NULL) {
2000 old_meths = meths;
2001 } else {
2002 old_meths = *comp_methods;
2003 *comp_methods = meths;
2004 }
2005
2006 return old_meths;
2007 }
2008
2009 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
2010 {
2011 STACK_OF(SSL_COMP) *comp_methods;
2012 SSL_COMP *comp;
2013
2014 comp_methods = SSL_COMP_get_compression_methods();
2015
2016 if (comp_methods == NULL)
2017 return 1;
2018
2019 if (cm == NULL || COMP_get_type(cm) == NID_undef)
2020 return 1;
2021
2022 /*-
2023 * According to draft-ietf-tls-compression-04.txt, the
2024 * compression number ranges should be the following:
2025 *
2026 * 0 to 63: methods defined by the IETF
2027 * 64 to 192: external party methods assigned by IANA
2028 * 193 to 255: reserved for private use
2029 */
2030 if (id < 193 || id > 255) {
2031 ERR_raise(ERR_LIB_SSL, SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
2032 return 1;
2033 }
2034
2035 comp = OPENSSL_malloc(sizeof(*comp));
2036 if (comp == NULL)
2037 return 1;
2038
2039 comp->id = id;
2040 if (sk_SSL_COMP_find(comp_methods, comp) >= 0) {
2041 OPENSSL_free(comp);
2042 ERR_raise(ERR_LIB_SSL, SSL_R_DUPLICATE_COMPRESSION_ID);
2043 return 1;
2044 }
2045 if (!sk_SSL_COMP_push(comp_methods, comp)) {
2046 OPENSSL_free(comp);
2047 ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB);
2048 return 1;
2049 }
2050
2051 return 0;
2052 }
2053 #endif
2054
2055 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
2056 {
2057 #ifndef OPENSSL_NO_COMP
2058 return comp ? COMP_get_name(comp) : NULL;
2059 #else
2060 return NULL;
2061 #endif
2062 }
2063
2064 const char *SSL_COMP_get0_name(const SSL_COMP *comp)
2065 {
2066 #ifndef OPENSSL_NO_COMP
2067 return comp->name;
2068 #else
2069 return NULL;
2070 #endif
2071 }
2072
2073 int SSL_COMP_get_id(const SSL_COMP *comp)
2074 {
2075 #ifndef OPENSSL_NO_COMP
2076 return comp->id;
2077 #else
2078 return -1;
2079 #endif
2080 }
2081
2082 const SSL_CIPHER *ssl_get_cipher_by_char(SSL_CONNECTION *s,
2083 const unsigned char *ptr,
2084 int all)
2085 {
2086 const SSL_CIPHER *c = SSL_CONNECTION_GET_SSL(s)->method->get_cipher_by_char(ptr);
2087
2088 if (c == NULL || (!all && c->valid == 0))
2089 return NULL;
2090 return c;
2091 }
2092
2093 const SSL_CIPHER *SSL_CIPHER_find(SSL *ssl, const unsigned char *ptr)
2094 {
2095 return ssl->method->get_cipher_by_char(ptr);
2096 }
2097
2098 int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *c)
2099 {
2100 int i;
2101 if (c == NULL)
2102 return NID_undef;
2103 i = ssl_cipher_info_lookup(ssl_cipher_table_cipher, c->algorithm_enc);
2104 if (i == -1)
2105 return NID_undef;
2106 return ssl_cipher_table_cipher[i].nid;
2107 }
2108
2109 int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *c)
2110 {
2111 int i = ssl_cipher_info_lookup(ssl_cipher_table_mac, c->algorithm_mac);
2112
2113 if (i == -1)
2114 return NID_undef;
2115 return ssl_cipher_table_mac[i].nid;
2116 }
2117
2118 int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *c)
2119 {
2120 int i = ssl_cipher_info_lookup(ssl_cipher_table_kx, c->algorithm_mkey);
2121
2122 if (i == -1)
2123 return NID_undef;
2124 return ssl_cipher_table_kx[i].nid;
2125 }
2126
2127 int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *c)
2128 {
2129 int i = ssl_cipher_info_lookup(ssl_cipher_table_auth, c->algorithm_auth);
2130
2131 if (i == -1)
2132 return NID_undef;
2133 return ssl_cipher_table_auth[i].nid;
2134 }
2135
2136 int ssl_get_md_idx(int md_nid) {
2137 int i;
2138
2139 for(i = 0; i < SSL_MD_NUM_IDX; i++) {
2140 if (md_nid == ssl_cipher_table_mac[i].nid)
2141 return i;
2142 }
2143 return -1;
2144 }
2145
2146 const EVP_MD *SSL_CIPHER_get_handshake_digest(const SSL_CIPHER *c)
2147 {
2148 int idx = c->algorithm2 & SSL_HANDSHAKE_MAC_MASK;
2149
2150 if (idx < 0 || idx >= SSL_MD_NUM_IDX)
2151 return NULL;
2152 return EVP_get_digestbynid(ssl_cipher_table_mac[idx].nid);
2153 }
2154
2155 int SSL_CIPHER_is_aead(const SSL_CIPHER *c)
2156 {
2157 return (c->algorithm_mac & SSL_AEAD) ? 1 : 0;
2158 }
2159
2160 int ssl_cipher_get_overhead(const SSL_CIPHER *c, size_t *mac_overhead,
2161 size_t *int_overhead, size_t *blocksize,
2162 size_t *ext_overhead)
2163 {
2164 int mac = 0, in = 0, blk = 0, out = 0;
2165
2166 /* Some hard-coded numbers for the CCM/Poly1305 MAC overhead
2167 * because there are no handy #defines for those. */
2168 if (c->algorithm_enc & (SSL_AESGCM | SSL_ARIAGCM)) {
2169 out = EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
2170 } else if (c->algorithm_enc & (SSL_AES128CCM | SSL_AES256CCM)) {
2171 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 16;
2172 } else if (c->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) {
2173 out = EVP_CCM_TLS_EXPLICIT_IV_LEN + 8;
2174 } else if (c->algorithm_enc & SSL_CHACHA20POLY1305) {
2175 out = 16;
2176 } else if (c->algorithm_mac & SSL_AEAD) {
2177 /* We're supposed to have handled all the AEAD modes above */
2178 return 0;
2179 } else {
2180 /* Non-AEAD modes. Calculate MAC/cipher overhead separately */
2181 int digest_nid = SSL_CIPHER_get_digest_nid(c);
2182 const EVP_MD *e_md = EVP_get_digestbynid(digest_nid);
2183
2184 if (e_md == NULL)
2185 return 0;
2186
2187 mac = EVP_MD_get_size(e_md);
2188 if (mac <= 0)
2189 return 0;
2190 if (c->algorithm_enc != SSL_eNULL) {
2191 int cipher_nid = SSL_CIPHER_get_cipher_nid(c);
2192 const EVP_CIPHER *e_ciph = EVP_get_cipherbynid(cipher_nid);
2193
2194 /* If it wasn't AEAD or SSL_eNULL, we expect it to be a
2195 known CBC cipher. */
2196 if (e_ciph == NULL ||
2197 EVP_CIPHER_get_mode(e_ciph) != EVP_CIPH_CBC_MODE)
2198 return 0;
2199
2200 in = 1; /* padding length byte */
2201 out = EVP_CIPHER_get_iv_length(e_ciph);
2202 if (out < 0)
2203 return 0;
2204 blk = EVP_CIPHER_get_block_size(e_ciph);
2205 if (blk <= 0)
2206 return 0;
2207 }
2208 }
2209
2210 *mac_overhead = (size_t)mac;
2211 *int_overhead = (size_t)in;
2212 *blocksize = (size_t)blk;
2213 *ext_overhead = (size_t)out;
2214
2215 return 1;
2216 }
2217
2218 int ssl_cert_is_disabled(SSL_CTX *ctx, size_t idx)
2219 {
2220 const SSL_CERT_LOOKUP *cl;
2221
2222 /* A provider-loaded key type is always enabled */
2223 if (idx >= SSL_PKEY_NUM)
2224 return 0;
2225
2226 cl = ssl_cert_lookup_by_idx(idx, ctx);
2227 if (cl == NULL || (cl->amask & ctx->disabled_auth_mask) != 0)
2228 return 1;
2229 return 0;
2230 }
2231
2232 /*
2233 * Default list of TLSv1.2 (and earlier) ciphers
2234 * SSL_DEFAULT_CIPHER_LIST deprecated in 3.0.0
2235 * Update both macro and function simultaneously
2236 */
2237 const char *OSSL_default_cipher_list(void)
2238 {
2239 return "ALL:!COMPLEMENTOFDEFAULT:!eNULL";
2240 }
2241
2242 /*
2243 * Default list of TLSv1.3 (and later) ciphers
2244 * TLS_DEFAULT_CIPHERSUITES deprecated in 3.0.0
2245 * Update both macro and function simultaneously
2246 */
2247 const char *OSSL_default_ciphersuites(void)
2248 {
2249 return "TLS_AES_256_GCM_SHA384:"
2250 "TLS_CHACHA20_POLY1305_SHA256:"
2251 "TLS_AES_128_GCM_SHA256";
2252 }