]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/ssl_lib.c
a943414255f5e408de1ed79e8469884ab021fa1d
[thirdparty/openssl.git] / ssl / ssl_lib.c
1 /*
2 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the Apache License 2.0 (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12 #include <stdio.h>
13 #include "ssl_locl.h"
14 #include "e_os.h"
15 #include <openssl/objects.h>
16 #include <openssl/x509v3.h>
17 #include <openssl/rand.h>
18 #include <openssl/rand_drbg.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/dh.h>
21 #include <openssl/engine.h>
22 #include <openssl/async.h>
23 #include <openssl/ct.h>
24 #include <openssl/trace.h>
25 #include "internal/cryptlib.h"
26 #include "internal/refcount.h"
27 #include "internal/ktls.h"
28
29 static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
30 {
31 (void)r;
32 (void)s;
33 (void)t;
34 return ssl_undefined_function(ssl);
35 }
36
37 static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
38 int t)
39 {
40 (void)r;
41 (void)s;
42 (void)t;
43 return ssl_undefined_function(ssl);
44 }
45
46 static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
47 unsigned char *s, size_t t, size_t *u)
48 {
49 (void)r;
50 (void)s;
51 (void)t;
52 (void)u;
53 return ssl_undefined_function(ssl);
54 }
55
56 static int ssl_undefined_function_4(SSL *ssl, int r)
57 {
58 (void)r;
59 return ssl_undefined_function(ssl);
60 }
61
62 static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
63 unsigned char *t)
64 {
65 (void)r;
66 (void)s;
67 (void)t;
68 return ssl_undefined_function(ssl);
69 }
70
71 static int ssl_undefined_function_6(int r)
72 {
73 (void)r;
74 return ssl_undefined_function(NULL);
75 }
76
77 static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
78 const char *t, size_t u,
79 const unsigned char *v, size_t w, int x)
80 {
81 (void)r;
82 (void)s;
83 (void)t;
84 (void)u;
85 (void)v;
86 (void)w;
87 (void)x;
88 return ssl_undefined_function(ssl);
89 }
90
91 SSL3_ENC_METHOD ssl3_undef_enc_method = {
92 ssl_undefined_function_1,
93 ssl_undefined_function_2,
94 ssl_undefined_function,
95 ssl_undefined_function_3,
96 ssl_undefined_function_4,
97 ssl_undefined_function_5,
98 NULL, /* client_finished_label */
99 0, /* client_finished_label_len */
100 NULL, /* server_finished_label */
101 0, /* server_finished_label_len */
102 ssl_undefined_function_6,
103 ssl_undefined_function_7,
104 };
105
106 struct ssl_async_args {
107 SSL *s;
108 void *buf;
109 size_t num;
110 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
111 union {
112 int (*func_read) (SSL *, void *, size_t, size_t *);
113 int (*func_write) (SSL *, const void *, size_t, size_t *);
114 int (*func_other) (SSL *);
115 } f;
116 };
117
118 static const struct {
119 uint8_t mtype;
120 uint8_t ord;
121 int nid;
122 } dane_mds[] = {
123 {
124 DANETLS_MATCHING_FULL, 0, NID_undef
125 },
126 {
127 DANETLS_MATCHING_2256, 1, NID_sha256
128 },
129 {
130 DANETLS_MATCHING_2512, 2, NID_sha512
131 },
132 };
133
134 static int dane_ctx_enable(struct dane_ctx_st *dctx)
135 {
136 const EVP_MD **mdevp;
137 uint8_t *mdord;
138 uint8_t mdmax = DANETLS_MATCHING_LAST;
139 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
140 size_t i;
141
142 if (dctx->mdevp != NULL)
143 return 1;
144
145 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
146 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
147
148 if (mdord == NULL || mdevp == NULL) {
149 OPENSSL_free(mdord);
150 OPENSSL_free(mdevp);
151 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
152 return 0;
153 }
154
155 /* Install default entries */
156 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
157 const EVP_MD *md;
158
159 if (dane_mds[i].nid == NID_undef ||
160 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
161 continue;
162 mdevp[dane_mds[i].mtype] = md;
163 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
164 }
165
166 dctx->mdevp = mdevp;
167 dctx->mdord = mdord;
168 dctx->mdmax = mdmax;
169
170 return 1;
171 }
172
173 static void dane_ctx_final(struct dane_ctx_st *dctx)
174 {
175 OPENSSL_free(dctx->mdevp);
176 dctx->mdevp = NULL;
177
178 OPENSSL_free(dctx->mdord);
179 dctx->mdord = NULL;
180 dctx->mdmax = 0;
181 }
182
183 static void tlsa_free(danetls_record *t)
184 {
185 if (t == NULL)
186 return;
187 OPENSSL_free(t->data);
188 EVP_PKEY_free(t->spki);
189 OPENSSL_free(t);
190 }
191
192 static void dane_final(SSL_DANE *dane)
193 {
194 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
195 dane->trecs = NULL;
196
197 sk_X509_pop_free(dane->certs, X509_free);
198 dane->certs = NULL;
199
200 X509_free(dane->mcert);
201 dane->mcert = NULL;
202 dane->mtlsa = NULL;
203 dane->mdpth = -1;
204 dane->pdpth = -1;
205 }
206
207 /*
208 * dane_copy - Copy dane configuration, sans verification state.
209 */
210 static int ssl_dane_dup(SSL *to, SSL *from)
211 {
212 int num;
213 int i;
214
215 if (!DANETLS_ENABLED(&from->dane))
216 return 1;
217
218 num = sk_danetls_record_num(from->dane.trecs);
219 dane_final(&to->dane);
220 to->dane.flags = from->dane.flags;
221 to->dane.dctx = &to->ctx->dane;
222 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
223
224 if (to->dane.trecs == NULL) {
225 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
226 return 0;
227 }
228
229 for (i = 0; i < num; ++i) {
230 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
231
232 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
233 t->data, t->dlen) <= 0)
234 return 0;
235 }
236 return 1;
237 }
238
239 static int dane_mtype_set(struct dane_ctx_st *dctx,
240 const EVP_MD *md, uint8_t mtype, uint8_t ord)
241 {
242 int i;
243
244 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
245 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
246 return 0;
247 }
248
249 if (mtype > dctx->mdmax) {
250 const EVP_MD **mdevp;
251 uint8_t *mdord;
252 int n = ((int)mtype) + 1;
253
254 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
255 if (mdevp == NULL) {
256 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
257 return -1;
258 }
259 dctx->mdevp = mdevp;
260
261 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
262 if (mdord == NULL) {
263 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
264 return -1;
265 }
266 dctx->mdord = mdord;
267
268 /* Zero-fill any gaps */
269 for (i = dctx->mdmax + 1; i < mtype; ++i) {
270 mdevp[i] = NULL;
271 mdord[i] = 0;
272 }
273
274 dctx->mdmax = mtype;
275 }
276
277 dctx->mdevp[mtype] = md;
278 /* Coerce ordinal of disabled matching types to 0 */
279 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
280
281 return 1;
282 }
283
284 static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
285 {
286 if (mtype > dane->dctx->mdmax)
287 return NULL;
288 return dane->dctx->mdevp[mtype];
289 }
290
291 static int dane_tlsa_add(SSL_DANE *dane,
292 uint8_t usage,
293 uint8_t selector,
294 uint8_t mtype, unsigned const char *data, size_t dlen)
295 {
296 danetls_record *t;
297 const EVP_MD *md = NULL;
298 int ilen = (int)dlen;
299 int i;
300 int num;
301
302 if (dane->trecs == NULL) {
303 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
304 return -1;
305 }
306
307 if (ilen < 0 || dlen != (size_t)ilen) {
308 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
309 return 0;
310 }
311
312 if (usage > DANETLS_USAGE_LAST) {
313 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
314 return 0;
315 }
316
317 if (selector > DANETLS_SELECTOR_LAST) {
318 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
319 return 0;
320 }
321
322 if (mtype != DANETLS_MATCHING_FULL) {
323 md = tlsa_md_get(dane, mtype);
324 if (md == NULL) {
325 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
326 return 0;
327 }
328 }
329
330 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
331 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
332 return 0;
333 }
334 if (!data) {
335 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
336 return 0;
337 }
338
339 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
340 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
341 return -1;
342 }
343
344 t->usage = usage;
345 t->selector = selector;
346 t->mtype = mtype;
347 t->data = OPENSSL_malloc(dlen);
348 if (t->data == NULL) {
349 tlsa_free(t);
350 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
351 return -1;
352 }
353 memcpy(t->data, data, dlen);
354 t->dlen = dlen;
355
356 /* Validate and cache full certificate or public key */
357 if (mtype == DANETLS_MATCHING_FULL) {
358 const unsigned char *p = data;
359 X509 *cert = NULL;
360 EVP_PKEY *pkey = NULL;
361
362 switch (selector) {
363 case DANETLS_SELECTOR_CERT:
364 if (!d2i_X509(&cert, &p, ilen) || p < data ||
365 dlen != (size_t)(p - data)) {
366 tlsa_free(t);
367 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
368 return 0;
369 }
370 if (X509_get0_pubkey(cert) == NULL) {
371 tlsa_free(t);
372 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
373 return 0;
374 }
375
376 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
377 X509_free(cert);
378 break;
379 }
380
381 /*
382 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
383 * records that contain full certificates of trust-anchors that are
384 * not present in the wire chain. For usage PKIX-TA(0), we augment
385 * the chain with untrusted Full(0) certificates from DNS, in case
386 * they are missing from the chain.
387 */
388 if ((dane->certs == NULL &&
389 (dane->certs = sk_X509_new_null()) == NULL) ||
390 !sk_X509_push(dane->certs, cert)) {
391 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
392 X509_free(cert);
393 tlsa_free(t);
394 return -1;
395 }
396 break;
397
398 case DANETLS_SELECTOR_SPKI:
399 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
400 dlen != (size_t)(p - data)) {
401 tlsa_free(t);
402 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
403 return 0;
404 }
405
406 /*
407 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
408 * records that contain full bare keys of trust-anchors that are
409 * not present in the wire chain.
410 */
411 if (usage == DANETLS_USAGE_DANE_TA)
412 t->spki = pkey;
413 else
414 EVP_PKEY_free(pkey);
415 break;
416 }
417 }
418
419 /*-
420 * Find the right insertion point for the new record.
421 *
422 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
423 * they can be processed first, as they require no chain building, and no
424 * expiration or hostname checks. Because DANE-EE(3) is numerically
425 * largest, this is accomplished via descending sort by "usage".
426 *
427 * We also sort in descending order by matching ordinal to simplify
428 * the implementation of digest agility in the verification code.
429 *
430 * The choice of order for the selector is not significant, so we
431 * use the same descending order for consistency.
432 */
433 num = sk_danetls_record_num(dane->trecs);
434 for (i = 0; i < num; ++i) {
435 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
436
437 if (rec->usage > usage)
438 continue;
439 if (rec->usage < usage)
440 break;
441 if (rec->selector > selector)
442 continue;
443 if (rec->selector < selector)
444 break;
445 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
446 continue;
447 break;
448 }
449
450 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
451 tlsa_free(t);
452 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
453 return -1;
454 }
455 dane->umask |= DANETLS_USAGE_BIT(usage);
456
457 return 1;
458 }
459
460 /*
461 * Return 0 if there is only one version configured and it was disabled
462 * at configure time. Return 1 otherwise.
463 */
464 static int ssl_check_allowed_versions(int min_version, int max_version)
465 {
466 int minisdtls = 0, maxisdtls = 0;
467
468 /* Figure out if we're doing DTLS versions or TLS versions */
469 if (min_version == DTLS1_BAD_VER
470 || min_version >> 8 == DTLS1_VERSION_MAJOR)
471 minisdtls = 1;
472 if (max_version == DTLS1_BAD_VER
473 || max_version >> 8 == DTLS1_VERSION_MAJOR)
474 maxisdtls = 1;
475 /* A wildcard version of 0 could be DTLS or TLS. */
476 if ((minisdtls && !maxisdtls && max_version != 0)
477 || (maxisdtls && !minisdtls && min_version != 0)) {
478 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
479 return 0;
480 }
481
482 if (minisdtls || maxisdtls) {
483 /* Do DTLS version checks. */
484 if (min_version == 0)
485 /* Ignore DTLS1_BAD_VER */
486 min_version = DTLS1_VERSION;
487 if (max_version == 0)
488 max_version = DTLS1_2_VERSION;
489 #ifdef OPENSSL_NO_DTLS1_2
490 if (max_version == DTLS1_2_VERSION)
491 max_version = DTLS1_VERSION;
492 #endif
493 #ifdef OPENSSL_NO_DTLS1
494 if (min_version == DTLS1_VERSION)
495 min_version = DTLS1_2_VERSION;
496 #endif
497 /* Done massaging versions; do the check. */
498 if (0
499 #ifdef OPENSSL_NO_DTLS1
500 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
501 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
502 #endif
503 #ifdef OPENSSL_NO_DTLS1_2
504 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
505 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
506 #endif
507 )
508 return 0;
509 } else {
510 /* Regular TLS version checks. */
511 if (min_version == 0)
512 min_version = SSL3_VERSION;
513 if (max_version == 0)
514 max_version = TLS1_3_VERSION;
515 #ifdef OPENSSL_NO_TLS1_3
516 if (max_version == TLS1_3_VERSION)
517 max_version = TLS1_2_VERSION;
518 #endif
519 #ifdef OPENSSL_NO_TLS1_2
520 if (max_version == TLS1_2_VERSION)
521 max_version = TLS1_1_VERSION;
522 #endif
523 #ifdef OPENSSL_NO_TLS1_1
524 if (max_version == TLS1_1_VERSION)
525 max_version = TLS1_VERSION;
526 #endif
527 #ifdef OPENSSL_NO_TLS1
528 if (max_version == TLS1_VERSION)
529 max_version = SSL3_VERSION;
530 #endif
531 #ifdef OPENSSL_NO_SSL3
532 if (min_version == SSL3_VERSION)
533 min_version = TLS1_VERSION;
534 #endif
535 #ifdef OPENSSL_NO_TLS1
536 if (min_version == TLS1_VERSION)
537 min_version = TLS1_1_VERSION;
538 #endif
539 #ifdef OPENSSL_NO_TLS1_1
540 if (min_version == TLS1_1_VERSION)
541 min_version = TLS1_2_VERSION;
542 #endif
543 #ifdef OPENSSL_NO_TLS1_2
544 if (min_version == TLS1_2_VERSION)
545 min_version = TLS1_3_VERSION;
546 #endif
547 /* Done massaging versions; do the check. */
548 if (0
549 #ifdef OPENSSL_NO_SSL3
550 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
551 #endif
552 #ifdef OPENSSL_NO_TLS1
553 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
554 #endif
555 #ifdef OPENSSL_NO_TLS1_1
556 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
557 #endif
558 #ifdef OPENSSL_NO_TLS1_2
559 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
560 #endif
561 #ifdef OPENSSL_NO_TLS1_3
562 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
563 #endif
564 )
565 return 0;
566 }
567 return 1;
568 }
569
570 static void clear_ciphers(SSL *s)
571 {
572 /* clear the current cipher */
573 ssl_clear_cipher_ctx(s);
574 ssl_clear_hash_ctx(&s->read_hash);
575 ssl_clear_hash_ctx(&s->write_hash);
576 }
577
578 int SSL_clear(SSL *s)
579 {
580 if (s->method == NULL) {
581 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
582 return 0;
583 }
584
585 if (ssl_clear_bad_session(s)) {
586 SSL_SESSION_free(s->session);
587 s->session = NULL;
588 }
589 SSL_SESSION_free(s->psksession);
590 s->psksession = NULL;
591 OPENSSL_free(s->psksession_id);
592 s->psksession_id = NULL;
593 s->psksession_id_len = 0;
594 s->hello_retry_request = 0;
595 s->sent_tickets = 0;
596
597 s->error = 0;
598 s->hit = 0;
599 s->shutdown = 0;
600
601 if (s->renegotiate) {
602 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
603 return 0;
604 }
605
606 ossl_statem_clear(s);
607
608 s->version = s->method->version;
609 s->client_version = s->version;
610 s->rwstate = SSL_NOTHING;
611
612 BUF_MEM_free(s->init_buf);
613 s->init_buf = NULL;
614 clear_ciphers(s);
615 s->first_packet = 0;
616
617 s->key_update = SSL_KEY_UPDATE_NONE;
618
619 EVP_MD_CTX_free(s->pha_dgst);
620 s->pha_dgst = NULL;
621
622 /* Reset DANE verification result state */
623 s->dane.mdpth = -1;
624 s->dane.pdpth = -1;
625 X509_free(s->dane.mcert);
626 s->dane.mcert = NULL;
627 s->dane.mtlsa = NULL;
628
629 /* Clear the verification result peername */
630 X509_VERIFY_PARAM_move_peername(s->param, NULL);
631
632 /* Clear any shared connection state */
633 OPENSSL_free(s->shared_sigalgs);
634 s->shared_sigalgs = NULL;
635 s->shared_sigalgslen = 0;
636
637 /*
638 * Check to see if we were changed into a different method, if so, revert
639 * back.
640 */
641 if (s->method != s->ctx->method) {
642 s->method->ssl_free(s);
643 s->method = s->ctx->method;
644 if (!s->method->ssl_new(s))
645 return 0;
646 } else {
647 if (!s->method->ssl_clear(s))
648 return 0;
649 }
650
651 RECORD_LAYER_clear(&s->rlayer);
652
653 return 1;
654 }
655
656 /** Used to change an SSL_CTXs default SSL method type */
657 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
658 {
659 STACK_OF(SSL_CIPHER) *sk;
660
661 ctx->method = meth;
662
663 if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) {
664 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
665 return 0;
666 }
667 sk = ssl_create_cipher_list(ctx->method,
668 ctx->tls13_ciphersuites,
669 &(ctx->cipher_list),
670 &(ctx->cipher_list_by_id),
671 OSSL_default_cipher_list(), ctx->cert);
672 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
673 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
674 return 0;
675 }
676 return 1;
677 }
678
679 SSL *SSL_new(SSL_CTX *ctx)
680 {
681 SSL *s;
682
683 if (ctx == NULL) {
684 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
685 return NULL;
686 }
687 if (ctx->method == NULL) {
688 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
689 return NULL;
690 }
691
692 s = OPENSSL_zalloc(sizeof(*s));
693 if (s == NULL)
694 goto err;
695
696 s->references = 1;
697 s->lock = CRYPTO_THREAD_lock_new();
698 if (s->lock == NULL) {
699 OPENSSL_free(s);
700 s = NULL;
701 goto err;
702 }
703
704 RECORD_LAYER_init(&s->rlayer, s);
705
706 s->options = ctx->options;
707 s->dane.flags = ctx->dane.flags;
708 s->min_proto_version = ctx->min_proto_version;
709 s->max_proto_version = ctx->max_proto_version;
710 s->mode = ctx->mode;
711 s->max_cert_list = ctx->max_cert_list;
712 s->max_early_data = ctx->max_early_data;
713 s->recv_max_early_data = ctx->recv_max_early_data;
714 s->num_tickets = ctx->num_tickets;
715 s->pha_enabled = ctx->pha_enabled;
716
717 /* Shallow copy of the ciphersuites stack */
718 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
719 if (s->tls13_ciphersuites == NULL)
720 goto err;
721
722 /*
723 * Earlier library versions used to copy the pointer to the CERT, not
724 * its contents; only when setting new parameters for the per-SSL
725 * copy, ssl_cert_new would be called (and the direct reference to
726 * the per-SSL_CTX settings would be lost, but those still were
727 * indirectly accessed for various purposes, and for that reason they
728 * used to be known as s->ctx->default_cert). Now we don't look at the
729 * SSL_CTX's CERT after having duplicated it once.
730 */
731 s->cert = ssl_cert_dup(ctx->cert);
732 if (s->cert == NULL)
733 goto err;
734
735 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
736 s->msg_callback = ctx->msg_callback;
737 s->msg_callback_arg = ctx->msg_callback_arg;
738 s->verify_mode = ctx->verify_mode;
739 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
740 s->record_padding_cb = ctx->record_padding_cb;
741 s->record_padding_arg = ctx->record_padding_arg;
742 s->block_padding = ctx->block_padding;
743 s->sid_ctx_length = ctx->sid_ctx_length;
744 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
745 goto err;
746 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
747 s->verify_callback = ctx->default_verify_callback;
748 s->generate_session_id = ctx->generate_session_id;
749
750 s->param = X509_VERIFY_PARAM_new();
751 if (s->param == NULL)
752 goto err;
753 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
754 s->quiet_shutdown = ctx->quiet_shutdown;
755
756 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
757 s->max_send_fragment = ctx->max_send_fragment;
758 s->split_send_fragment = ctx->split_send_fragment;
759 s->max_pipelines = ctx->max_pipelines;
760 if (s->max_pipelines > 1)
761 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
762 if (ctx->default_read_buf_len > 0)
763 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
764
765 SSL_CTX_up_ref(ctx);
766 s->ctx = ctx;
767 s->ext.debug_cb = 0;
768 s->ext.debug_arg = NULL;
769 s->ext.ticket_expected = 0;
770 s->ext.status_type = ctx->ext.status_type;
771 s->ext.status_expected = 0;
772 s->ext.ocsp.ids = NULL;
773 s->ext.ocsp.exts = NULL;
774 s->ext.ocsp.resp = NULL;
775 s->ext.ocsp.resp_len = 0;
776 SSL_CTX_up_ref(ctx);
777 s->session_ctx = ctx;
778 #ifndef OPENSSL_NO_EC
779 if (ctx->ext.ecpointformats) {
780 s->ext.ecpointformats =
781 OPENSSL_memdup(ctx->ext.ecpointformats,
782 ctx->ext.ecpointformats_len);
783 if (!s->ext.ecpointformats)
784 goto err;
785 s->ext.ecpointformats_len =
786 ctx->ext.ecpointformats_len;
787 }
788 #endif
789 if (ctx->ext.supportedgroups) {
790 s->ext.supportedgroups =
791 OPENSSL_memdup(ctx->ext.supportedgroups,
792 ctx->ext.supportedgroups_len
793 * sizeof(*ctx->ext.supportedgroups));
794 if (!s->ext.supportedgroups)
795 goto err;
796 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
797 }
798
799 #ifndef OPENSSL_NO_NEXTPROTONEG
800 s->ext.npn = NULL;
801 #endif
802
803 if (s->ctx->ext.alpn) {
804 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
805 if (s->ext.alpn == NULL)
806 goto err;
807 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
808 s->ext.alpn_len = s->ctx->ext.alpn_len;
809 }
810
811 s->verified_chain = NULL;
812 s->verify_result = X509_V_OK;
813
814 s->default_passwd_callback = ctx->default_passwd_callback;
815 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
816
817 s->method = ctx->method;
818
819 s->key_update = SSL_KEY_UPDATE_NONE;
820
821 s->allow_early_data_cb = ctx->allow_early_data_cb;
822 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
823
824 if (!s->method->ssl_new(s))
825 goto err;
826
827 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
828
829 if (!SSL_clear(s))
830 goto err;
831
832 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
833 goto err;
834
835 #ifndef OPENSSL_NO_PSK
836 s->psk_client_callback = ctx->psk_client_callback;
837 s->psk_server_callback = ctx->psk_server_callback;
838 #endif
839 s->psk_find_session_cb = ctx->psk_find_session_cb;
840 s->psk_use_session_cb = ctx->psk_use_session_cb;
841
842 s->async_cb = ctx->async_cb;
843 s->async_cb_arg = ctx->async_cb_arg;
844
845 s->job = NULL;
846
847 #ifndef OPENSSL_NO_CT
848 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
849 ctx->ct_validation_callback_arg))
850 goto err;
851 #endif
852
853 return s;
854 err:
855 SSL_free(s);
856 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
857 return NULL;
858 }
859
860 int SSL_is_dtls(const SSL *s)
861 {
862 return SSL_IS_DTLS(s) ? 1 : 0;
863 }
864
865 int SSL_up_ref(SSL *s)
866 {
867 int i;
868
869 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
870 return 0;
871
872 REF_PRINT_COUNT("SSL", s);
873 REF_ASSERT_ISNT(i < 2);
874 return ((i > 1) ? 1 : 0);
875 }
876
877 int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
878 unsigned int sid_ctx_len)
879 {
880 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
881 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
882 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
883 return 0;
884 }
885 ctx->sid_ctx_length = sid_ctx_len;
886 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
887
888 return 1;
889 }
890
891 int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
892 unsigned int sid_ctx_len)
893 {
894 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
895 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
896 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
897 return 0;
898 }
899 ssl->sid_ctx_length = sid_ctx_len;
900 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
901
902 return 1;
903 }
904
905 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
906 {
907 CRYPTO_THREAD_write_lock(ctx->lock);
908 ctx->generate_session_id = cb;
909 CRYPTO_THREAD_unlock(ctx->lock);
910 return 1;
911 }
912
913 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
914 {
915 CRYPTO_THREAD_write_lock(ssl->lock);
916 ssl->generate_session_id = cb;
917 CRYPTO_THREAD_unlock(ssl->lock);
918 return 1;
919 }
920
921 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
922 unsigned int id_len)
923 {
924 /*
925 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
926 * we can "construct" a session to give us the desired check - i.e. to
927 * find if there's a session in the hash table that would conflict with
928 * any new session built out of this id/id_len and the ssl_version in use
929 * by this SSL.
930 */
931 SSL_SESSION r, *p;
932
933 if (id_len > sizeof(r.session_id))
934 return 0;
935
936 r.ssl_version = ssl->version;
937 r.session_id_length = id_len;
938 memcpy(r.session_id, id, id_len);
939
940 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
941 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
942 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
943 return (p != NULL);
944 }
945
946 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
947 {
948 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
949 }
950
951 int SSL_set_purpose(SSL *s, int purpose)
952 {
953 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
954 }
955
956 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
957 {
958 return X509_VERIFY_PARAM_set_trust(s->param, trust);
959 }
960
961 int SSL_set_trust(SSL *s, int trust)
962 {
963 return X509_VERIFY_PARAM_set_trust(s->param, trust);
964 }
965
966 int SSL_set1_host(SSL *s, const char *hostname)
967 {
968 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
969 }
970
971 int SSL_add1_host(SSL *s, const char *hostname)
972 {
973 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
974 }
975
976 void SSL_set_hostflags(SSL *s, unsigned int flags)
977 {
978 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
979 }
980
981 const char *SSL_get0_peername(SSL *s)
982 {
983 return X509_VERIFY_PARAM_get0_peername(s->param);
984 }
985
986 int SSL_CTX_dane_enable(SSL_CTX *ctx)
987 {
988 return dane_ctx_enable(&ctx->dane);
989 }
990
991 unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
992 {
993 unsigned long orig = ctx->dane.flags;
994
995 ctx->dane.flags |= flags;
996 return orig;
997 }
998
999 unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1000 {
1001 unsigned long orig = ctx->dane.flags;
1002
1003 ctx->dane.flags &= ~flags;
1004 return orig;
1005 }
1006
1007 int SSL_dane_enable(SSL *s, const char *basedomain)
1008 {
1009 SSL_DANE *dane = &s->dane;
1010
1011 if (s->ctx->dane.mdmax == 0) {
1012 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1013 return 0;
1014 }
1015 if (dane->trecs != NULL) {
1016 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1017 return 0;
1018 }
1019
1020 /*
1021 * Default SNI name. This rejects empty names, while set1_host below
1022 * accepts them and disables host name checks. To avoid side-effects with
1023 * invalid input, set the SNI name first.
1024 */
1025 if (s->ext.hostname == NULL) {
1026 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1027 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1028 return -1;
1029 }
1030 }
1031
1032 /* Primary RFC6125 reference identifier */
1033 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1034 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1035 return -1;
1036 }
1037
1038 dane->mdpth = -1;
1039 dane->pdpth = -1;
1040 dane->dctx = &s->ctx->dane;
1041 dane->trecs = sk_danetls_record_new_null();
1042
1043 if (dane->trecs == NULL) {
1044 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1045 return -1;
1046 }
1047 return 1;
1048 }
1049
1050 unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1051 {
1052 unsigned long orig = ssl->dane.flags;
1053
1054 ssl->dane.flags |= flags;
1055 return orig;
1056 }
1057
1058 unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1059 {
1060 unsigned long orig = ssl->dane.flags;
1061
1062 ssl->dane.flags &= ~flags;
1063 return orig;
1064 }
1065
1066 int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1067 {
1068 SSL_DANE *dane = &s->dane;
1069
1070 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1071 return -1;
1072 if (dane->mtlsa) {
1073 if (mcert)
1074 *mcert = dane->mcert;
1075 if (mspki)
1076 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1077 }
1078 return dane->mdpth;
1079 }
1080
1081 int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1082 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1083 {
1084 SSL_DANE *dane = &s->dane;
1085
1086 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1087 return -1;
1088 if (dane->mtlsa) {
1089 if (usage)
1090 *usage = dane->mtlsa->usage;
1091 if (selector)
1092 *selector = dane->mtlsa->selector;
1093 if (mtype)
1094 *mtype = dane->mtlsa->mtype;
1095 if (data)
1096 *data = dane->mtlsa->data;
1097 if (dlen)
1098 *dlen = dane->mtlsa->dlen;
1099 }
1100 return dane->mdpth;
1101 }
1102
1103 SSL_DANE *SSL_get0_dane(SSL *s)
1104 {
1105 return &s->dane;
1106 }
1107
1108 int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1109 uint8_t mtype, unsigned const char *data, size_t dlen)
1110 {
1111 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1112 }
1113
1114 int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1115 uint8_t ord)
1116 {
1117 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1118 }
1119
1120 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1121 {
1122 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1123 }
1124
1125 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1126 {
1127 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1128 }
1129
1130 X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1131 {
1132 return ctx->param;
1133 }
1134
1135 X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1136 {
1137 return ssl->param;
1138 }
1139
1140 void SSL_certs_clear(SSL *s)
1141 {
1142 ssl_cert_clear_certs(s->cert);
1143 }
1144
1145 void SSL_free(SSL *s)
1146 {
1147 int i;
1148
1149 if (s == NULL)
1150 return;
1151 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1152 REF_PRINT_COUNT("SSL", s);
1153 if (i > 0)
1154 return;
1155 REF_ASSERT_ISNT(i < 0);
1156
1157 X509_VERIFY_PARAM_free(s->param);
1158 dane_final(&s->dane);
1159 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1160
1161 RECORD_LAYER_release(&s->rlayer);
1162
1163 /* Ignore return value */
1164 ssl_free_wbio_buffer(s);
1165
1166 BIO_free_all(s->wbio);
1167 s->wbio = NULL;
1168 BIO_free_all(s->rbio);
1169 s->rbio = NULL;
1170
1171 BUF_MEM_free(s->init_buf);
1172
1173 /* add extra stuff */
1174 sk_SSL_CIPHER_free(s->cipher_list);
1175 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1176 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1177 sk_SSL_CIPHER_free(s->peer_ciphers);
1178
1179 /* Make the next call work :-) */
1180 if (s->session != NULL) {
1181 ssl_clear_bad_session(s);
1182 SSL_SESSION_free(s->session);
1183 }
1184 SSL_SESSION_free(s->psksession);
1185 OPENSSL_free(s->psksession_id);
1186
1187 clear_ciphers(s);
1188
1189 ssl_cert_free(s->cert);
1190 OPENSSL_free(s->shared_sigalgs);
1191 /* Free up if allocated */
1192
1193 OPENSSL_free(s->ext.hostname);
1194 SSL_CTX_free(s->session_ctx);
1195 #ifndef OPENSSL_NO_EC
1196 OPENSSL_free(s->ext.ecpointformats);
1197 OPENSSL_free(s->ext.peer_ecpointformats);
1198 OPENSSL_free(s->ext.supportedgroups);
1199 OPENSSL_free(s->ext.peer_supportedgroups);
1200 #endif /* OPENSSL_NO_EC */
1201 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1202 #ifndef OPENSSL_NO_OCSP
1203 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1204 #endif
1205 #ifndef OPENSSL_NO_CT
1206 SCT_LIST_free(s->scts);
1207 OPENSSL_free(s->ext.scts);
1208 #endif
1209 OPENSSL_free(s->ext.ocsp.resp);
1210 OPENSSL_free(s->ext.alpn);
1211 OPENSSL_free(s->ext.tls13_cookie);
1212 OPENSSL_free(s->clienthello);
1213 OPENSSL_free(s->pha_context);
1214 EVP_MD_CTX_free(s->pha_dgst);
1215
1216 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1217 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1218
1219 sk_X509_pop_free(s->verified_chain, X509_free);
1220
1221 if (s->method != NULL)
1222 s->method->ssl_free(s);
1223
1224 SSL_CTX_free(s->ctx);
1225
1226 ASYNC_WAIT_CTX_free(s->waitctx);
1227
1228 #if !defined(OPENSSL_NO_NEXTPROTONEG)
1229 OPENSSL_free(s->ext.npn);
1230 #endif
1231
1232 #ifndef OPENSSL_NO_SRTP
1233 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1234 #endif
1235
1236 CRYPTO_THREAD_lock_free(s->lock);
1237
1238 OPENSSL_free(s);
1239 }
1240
1241 void SSL_set0_rbio(SSL *s, BIO *rbio)
1242 {
1243 BIO_free_all(s->rbio);
1244 s->rbio = rbio;
1245 }
1246
1247 void SSL_set0_wbio(SSL *s, BIO *wbio)
1248 {
1249 /*
1250 * If the output buffering BIO is still in place, remove it
1251 */
1252 if (s->bbio != NULL)
1253 s->wbio = BIO_pop(s->wbio);
1254
1255 BIO_free_all(s->wbio);
1256 s->wbio = wbio;
1257
1258 /* Re-attach |bbio| to the new |wbio|. */
1259 if (s->bbio != NULL)
1260 s->wbio = BIO_push(s->bbio, s->wbio);
1261 }
1262
1263 void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1264 {
1265 /*
1266 * For historical reasons, this function has many different cases in
1267 * ownership handling.
1268 */
1269
1270 /* If nothing has changed, do nothing */
1271 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1272 return;
1273
1274 /*
1275 * If the two arguments are equal then one fewer reference is granted by the
1276 * caller than we want to take
1277 */
1278 if (rbio != NULL && rbio == wbio)
1279 BIO_up_ref(rbio);
1280
1281 /*
1282 * If only the wbio is changed only adopt one reference.
1283 */
1284 if (rbio == SSL_get_rbio(s)) {
1285 SSL_set0_wbio(s, wbio);
1286 return;
1287 }
1288 /*
1289 * There is an asymmetry here for historical reasons. If only the rbio is
1290 * changed AND the rbio and wbio were originally different, then we only
1291 * adopt one reference.
1292 */
1293 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1294 SSL_set0_rbio(s, rbio);
1295 return;
1296 }
1297
1298 /* Otherwise, adopt both references. */
1299 SSL_set0_rbio(s, rbio);
1300 SSL_set0_wbio(s, wbio);
1301 }
1302
1303 BIO *SSL_get_rbio(const SSL *s)
1304 {
1305 return s->rbio;
1306 }
1307
1308 BIO *SSL_get_wbio(const SSL *s)
1309 {
1310 if (s->bbio != NULL) {
1311 /*
1312 * If |bbio| is active, the true caller-configured BIO is its
1313 * |next_bio|.
1314 */
1315 return BIO_next(s->bbio);
1316 }
1317 return s->wbio;
1318 }
1319
1320 int SSL_get_fd(const SSL *s)
1321 {
1322 return SSL_get_rfd(s);
1323 }
1324
1325 int SSL_get_rfd(const SSL *s)
1326 {
1327 int ret = -1;
1328 BIO *b, *r;
1329
1330 b = SSL_get_rbio(s);
1331 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1332 if (r != NULL)
1333 BIO_get_fd(r, &ret);
1334 return ret;
1335 }
1336
1337 int SSL_get_wfd(const SSL *s)
1338 {
1339 int ret = -1;
1340 BIO *b, *r;
1341
1342 b = SSL_get_wbio(s);
1343 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1344 if (r != NULL)
1345 BIO_get_fd(r, &ret);
1346 return ret;
1347 }
1348
1349 #ifndef OPENSSL_NO_SOCK
1350 int SSL_set_fd(SSL *s, int fd)
1351 {
1352 int ret = 0;
1353 BIO *bio = NULL;
1354
1355 bio = BIO_new(BIO_s_socket());
1356
1357 if (bio == NULL) {
1358 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1359 goto err;
1360 }
1361 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1362 SSL_set_bio(s, bio, bio);
1363 #ifndef OPENSSL_NO_KTLS
1364 /*
1365 * The new socket is created successfully regardless of ktls_enable.
1366 * ktls_enable doesn't change any functionality of the socket, except
1367 * changing the setsockopt to enable the processing of ktls_start.
1368 * Thus, it is not a problem to call it for non-TLS sockets.
1369 */
1370 ktls_enable(fd);
1371 #endif /* OPENSSL_NO_KTLS */
1372 ret = 1;
1373 err:
1374 return ret;
1375 }
1376
1377 int SSL_set_wfd(SSL *s, int fd)
1378 {
1379 BIO *rbio = SSL_get_rbio(s);
1380
1381 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1382 || (int)BIO_get_fd(rbio, NULL) != fd) {
1383 BIO *bio = BIO_new(BIO_s_socket());
1384
1385 if (bio == NULL) {
1386 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1387 return 0;
1388 }
1389 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1390 SSL_set0_wbio(s, bio);
1391 #ifndef OPENSSL_NO_KTLS
1392 /*
1393 * The new socket is created successfully regardless of ktls_enable.
1394 * ktls_enable doesn't change any functionality of the socket, except
1395 * changing the setsockopt to enable the processing of ktls_start.
1396 * Thus, it is not a problem to call it for non-TLS sockets.
1397 */
1398 ktls_enable(fd);
1399 #endif /* OPENSSL_NO_KTLS */
1400 } else {
1401 BIO_up_ref(rbio);
1402 SSL_set0_wbio(s, rbio);
1403 }
1404 return 1;
1405 }
1406
1407 int SSL_set_rfd(SSL *s, int fd)
1408 {
1409 BIO *wbio = SSL_get_wbio(s);
1410
1411 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1412 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1413 BIO *bio = BIO_new(BIO_s_socket());
1414
1415 if (bio == NULL) {
1416 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1417 return 0;
1418 }
1419 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1420 SSL_set0_rbio(s, bio);
1421 } else {
1422 BIO_up_ref(wbio);
1423 SSL_set0_rbio(s, wbio);
1424 }
1425
1426 return 1;
1427 }
1428 #endif
1429
1430 /* return length of latest Finished message we sent, copy to 'buf' */
1431 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1432 {
1433 size_t ret = 0;
1434
1435 ret = s->s3.tmp.finish_md_len;
1436 if (count > ret)
1437 count = ret;
1438 memcpy(buf, s->s3.tmp.finish_md, count);
1439 return ret;
1440 }
1441
1442 /* return length of latest Finished message we expected, copy to 'buf' */
1443 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1444 {
1445 size_t ret = 0;
1446
1447 ret = s->s3.tmp.peer_finish_md_len;
1448 if (count > ret)
1449 count = ret;
1450 memcpy(buf, s->s3.tmp.peer_finish_md, count);
1451 return ret;
1452 }
1453
1454 int SSL_get_verify_mode(const SSL *s)
1455 {
1456 return s->verify_mode;
1457 }
1458
1459 int SSL_get_verify_depth(const SSL *s)
1460 {
1461 return X509_VERIFY_PARAM_get_depth(s->param);
1462 }
1463
1464 int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1465 return s->verify_callback;
1466 }
1467
1468 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1469 {
1470 return ctx->verify_mode;
1471 }
1472
1473 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1474 {
1475 return X509_VERIFY_PARAM_get_depth(ctx->param);
1476 }
1477
1478 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1479 return ctx->default_verify_callback;
1480 }
1481
1482 void SSL_set_verify(SSL *s, int mode,
1483 int (*callback) (int ok, X509_STORE_CTX *ctx))
1484 {
1485 s->verify_mode = mode;
1486 if (callback != NULL)
1487 s->verify_callback = callback;
1488 }
1489
1490 void SSL_set_verify_depth(SSL *s, int depth)
1491 {
1492 X509_VERIFY_PARAM_set_depth(s->param, depth);
1493 }
1494
1495 void SSL_set_read_ahead(SSL *s, int yes)
1496 {
1497 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1498 }
1499
1500 int SSL_get_read_ahead(const SSL *s)
1501 {
1502 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1503 }
1504
1505 int SSL_pending(const SSL *s)
1506 {
1507 size_t pending = s->method->ssl_pending(s);
1508
1509 /*
1510 * SSL_pending cannot work properly if read-ahead is enabled
1511 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1512 * impossible to fix since SSL_pending cannot report errors that may be
1513 * observed while scanning the new data. (Note that SSL_pending() is
1514 * often used as a boolean value, so we'd better not return -1.)
1515 *
1516 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1517 * we just return INT_MAX.
1518 */
1519 return pending < INT_MAX ? (int)pending : INT_MAX;
1520 }
1521
1522 int SSL_has_pending(const SSL *s)
1523 {
1524 /*
1525 * Similar to SSL_pending() but returns a 1 to indicate that we have
1526 * unprocessed data available or 0 otherwise (as opposed to the number of
1527 * bytes available). Unlike SSL_pending() this will take into account
1528 * read_ahead data. A 1 return simply indicates that we have unprocessed
1529 * data. That data may not result in any application data, or we may fail
1530 * to parse the records for some reason.
1531 */
1532 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1533 return 1;
1534
1535 return RECORD_LAYER_read_pending(&s->rlayer);
1536 }
1537
1538 X509 *SSL_get_peer_certificate(const SSL *s)
1539 {
1540 X509 *r;
1541
1542 if ((s == NULL) || (s->session == NULL))
1543 r = NULL;
1544 else
1545 r = s->session->peer;
1546
1547 if (r == NULL)
1548 return r;
1549
1550 X509_up_ref(r);
1551
1552 return r;
1553 }
1554
1555 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1556 {
1557 STACK_OF(X509) *r;
1558
1559 if ((s == NULL) || (s->session == NULL))
1560 r = NULL;
1561 else
1562 r = s->session->peer_chain;
1563
1564 /*
1565 * If we are a client, cert_chain includes the peer's own certificate; if
1566 * we are a server, it does not.
1567 */
1568
1569 return r;
1570 }
1571
1572 /*
1573 * Now in theory, since the calling process own 't' it should be safe to
1574 * modify. We need to be able to read f without being hassled
1575 */
1576 int SSL_copy_session_id(SSL *t, const SSL *f)
1577 {
1578 int i;
1579 /* Do we need to to SSL locking? */
1580 if (!SSL_set_session(t, SSL_get_session(f))) {
1581 return 0;
1582 }
1583
1584 /*
1585 * what if we are setup for one protocol version but want to talk another
1586 */
1587 if (t->method != f->method) {
1588 t->method->ssl_free(t);
1589 t->method = f->method;
1590 if (t->method->ssl_new(t) == 0)
1591 return 0;
1592 }
1593
1594 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1595 ssl_cert_free(t->cert);
1596 t->cert = f->cert;
1597 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1598 return 0;
1599 }
1600
1601 return 1;
1602 }
1603
1604 /* Fix this so it checks all the valid key/cert options */
1605 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1606 {
1607 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1608 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1609 return 0;
1610 }
1611 if (ctx->cert->key->privatekey == NULL) {
1612 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1613 return 0;
1614 }
1615 return X509_check_private_key
1616 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1617 }
1618
1619 /* Fix this function so that it takes an optional type parameter */
1620 int SSL_check_private_key(const SSL *ssl)
1621 {
1622 if (ssl == NULL) {
1623 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1624 return 0;
1625 }
1626 if (ssl->cert->key->x509 == NULL) {
1627 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1628 return 0;
1629 }
1630 if (ssl->cert->key->privatekey == NULL) {
1631 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1632 return 0;
1633 }
1634 return X509_check_private_key(ssl->cert->key->x509,
1635 ssl->cert->key->privatekey);
1636 }
1637
1638 int SSL_waiting_for_async(SSL *s)
1639 {
1640 if (s->job)
1641 return 1;
1642
1643 return 0;
1644 }
1645
1646 int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1647 {
1648 ASYNC_WAIT_CTX *ctx = s->waitctx;
1649
1650 if (ctx == NULL)
1651 return 0;
1652 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1653 }
1654
1655 int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1656 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1657 {
1658 ASYNC_WAIT_CTX *ctx = s->waitctx;
1659
1660 if (ctx == NULL)
1661 return 0;
1662 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1663 numdelfds);
1664 }
1665
1666 int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback)
1667 {
1668 ctx->async_cb = callback;
1669 return 1;
1670 }
1671
1672 int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg)
1673 {
1674 ctx->async_cb_arg = arg;
1675 return 1;
1676 }
1677
1678 int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback)
1679 {
1680 s->async_cb = callback;
1681 return 1;
1682 }
1683
1684 int SSL_set_async_callback_arg(SSL *s, void *arg)
1685 {
1686 s->async_cb_arg = arg;
1687 return 1;
1688 }
1689
1690 int SSL_get_async_status(SSL *s, int *status)
1691 {
1692 ASYNC_WAIT_CTX *ctx = s->waitctx;
1693
1694 if (ctx == NULL)
1695 return 0;
1696 *status = ASYNC_WAIT_CTX_get_status(ctx);
1697 return 1;
1698 }
1699
1700 int SSL_accept(SSL *s)
1701 {
1702 if (s->handshake_func == NULL) {
1703 /* Not properly initialized yet */
1704 SSL_set_accept_state(s);
1705 }
1706
1707 return SSL_do_handshake(s);
1708 }
1709
1710 int SSL_connect(SSL *s)
1711 {
1712 if (s->handshake_func == NULL) {
1713 /* Not properly initialized yet */
1714 SSL_set_connect_state(s);
1715 }
1716
1717 return SSL_do_handshake(s);
1718 }
1719
1720 long SSL_get_default_timeout(const SSL *s)
1721 {
1722 return s->method->get_timeout();
1723 }
1724
1725 static int ssl_async_wait_ctx_cb(void *arg)
1726 {
1727 SSL *s = (SSL *)arg;
1728
1729 return s->async_cb(s, s->async_cb_arg);
1730 }
1731
1732 static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1733 int (*func) (void *))
1734 {
1735 int ret;
1736 if (s->waitctx == NULL) {
1737 s->waitctx = ASYNC_WAIT_CTX_new();
1738 if (s->waitctx == NULL)
1739 return -1;
1740 if (s->async_cb != NULL
1741 && !ASYNC_WAIT_CTX_set_callback
1742 (s->waitctx, ssl_async_wait_ctx_cb, s))
1743 return -1;
1744 }
1745 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1746 sizeof(struct ssl_async_args))) {
1747 case ASYNC_ERR:
1748 s->rwstate = SSL_NOTHING;
1749 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1750 return -1;
1751 case ASYNC_PAUSE:
1752 s->rwstate = SSL_ASYNC_PAUSED;
1753 return -1;
1754 case ASYNC_NO_JOBS:
1755 s->rwstate = SSL_ASYNC_NO_JOBS;
1756 return -1;
1757 case ASYNC_FINISH:
1758 s->job = NULL;
1759 return ret;
1760 default:
1761 s->rwstate = SSL_NOTHING;
1762 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1763 /* Shouldn't happen */
1764 return -1;
1765 }
1766 }
1767
1768 static int ssl_io_intern(void *vargs)
1769 {
1770 struct ssl_async_args *args;
1771 SSL *s;
1772 void *buf;
1773 size_t num;
1774
1775 args = (struct ssl_async_args *)vargs;
1776 s = args->s;
1777 buf = args->buf;
1778 num = args->num;
1779 switch (args->type) {
1780 case READFUNC:
1781 return args->f.func_read(s, buf, num, &s->asyncrw);
1782 case WRITEFUNC:
1783 return args->f.func_write(s, buf, num, &s->asyncrw);
1784 case OTHERFUNC:
1785 return args->f.func_other(s);
1786 }
1787 return -1;
1788 }
1789
1790 int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1791 {
1792 if (s->handshake_func == NULL) {
1793 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1794 return -1;
1795 }
1796
1797 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1798 s->rwstate = SSL_NOTHING;
1799 return 0;
1800 }
1801
1802 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1803 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1804 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1805 return 0;
1806 }
1807 /*
1808 * If we are a client and haven't received the ServerHello etc then we
1809 * better do that
1810 */
1811 ossl_statem_check_finish_init(s, 0);
1812
1813 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1814 struct ssl_async_args args;
1815 int ret;
1816
1817 args.s = s;
1818 args.buf = buf;
1819 args.num = num;
1820 args.type = READFUNC;
1821 args.f.func_read = s->method->ssl_read;
1822
1823 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1824 *readbytes = s->asyncrw;
1825 return ret;
1826 } else {
1827 return s->method->ssl_read(s, buf, num, readbytes);
1828 }
1829 }
1830
1831 int SSL_read(SSL *s, void *buf, int num)
1832 {
1833 int ret;
1834 size_t readbytes;
1835
1836 if (num < 0) {
1837 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1838 return -1;
1839 }
1840
1841 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1842
1843 /*
1844 * The cast is safe here because ret should be <= INT_MAX because num is
1845 * <= INT_MAX
1846 */
1847 if (ret > 0)
1848 ret = (int)readbytes;
1849
1850 return ret;
1851 }
1852
1853 int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1854 {
1855 int ret = ssl_read_internal(s, buf, num, readbytes);
1856
1857 if (ret < 0)
1858 ret = 0;
1859 return ret;
1860 }
1861
1862 int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1863 {
1864 int ret;
1865
1866 if (!s->server) {
1867 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1868 return SSL_READ_EARLY_DATA_ERROR;
1869 }
1870
1871 switch (s->early_data_state) {
1872 case SSL_EARLY_DATA_NONE:
1873 if (!SSL_in_before(s)) {
1874 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1875 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1876 return SSL_READ_EARLY_DATA_ERROR;
1877 }
1878 /* fall through */
1879
1880 case SSL_EARLY_DATA_ACCEPT_RETRY:
1881 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1882 ret = SSL_accept(s);
1883 if (ret <= 0) {
1884 /* NBIO or error */
1885 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1886 return SSL_READ_EARLY_DATA_ERROR;
1887 }
1888 /* fall through */
1889
1890 case SSL_EARLY_DATA_READ_RETRY:
1891 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1892 s->early_data_state = SSL_EARLY_DATA_READING;
1893 ret = SSL_read_ex(s, buf, num, readbytes);
1894 /*
1895 * State machine will update early_data_state to
1896 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1897 * message
1898 */
1899 if (ret > 0 || (ret <= 0 && s->early_data_state
1900 != SSL_EARLY_DATA_FINISHED_READING)) {
1901 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1902 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1903 : SSL_READ_EARLY_DATA_ERROR;
1904 }
1905 } else {
1906 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1907 }
1908 *readbytes = 0;
1909 return SSL_READ_EARLY_DATA_FINISH;
1910
1911 default:
1912 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1913 return SSL_READ_EARLY_DATA_ERROR;
1914 }
1915 }
1916
1917 int SSL_get_early_data_status(const SSL *s)
1918 {
1919 return s->ext.early_data;
1920 }
1921
1922 static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1923 {
1924 if (s->handshake_func == NULL) {
1925 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1926 return -1;
1927 }
1928
1929 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1930 return 0;
1931 }
1932 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1933 struct ssl_async_args args;
1934 int ret;
1935
1936 args.s = s;
1937 args.buf = buf;
1938 args.num = num;
1939 args.type = READFUNC;
1940 args.f.func_read = s->method->ssl_peek;
1941
1942 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1943 *readbytes = s->asyncrw;
1944 return ret;
1945 } else {
1946 return s->method->ssl_peek(s, buf, num, readbytes);
1947 }
1948 }
1949
1950 int SSL_peek(SSL *s, void *buf, int num)
1951 {
1952 int ret;
1953 size_t readbytes;
1954
1955 if (num < 0) {
1956 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1957 return -1;
1958 }
1959
1960 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1961
1962 /*
1963 * The cast is safe here because ret should be <= INT_MAX because num is
1964 * <= INT_MAX
1965 */
1966 if (ret > 0)
1967 ret = (int)readbytes;
1968
1969 return ret;
1970 }
1971
1972
1973 int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1974 {
1975 int ret = ssl_peek_internal(s, buf, num, readbytes);
1976
1977 if (ret < 0)
1978 ret = 0;
1979 return ret;
1980 }
1981
1982 int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1983 {
1984 if (s->handshake_func == NULL) {
1985 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1986 return -1;
1987 }
1988
1989 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1990 s->rwstate = SSL_NOTHING;
1991 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1992 return -1;
1993 }
1994
1995 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1996 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1997 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1998 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1999 return 0;
2000 }
2001 /* If we are a client and haven't sent the Finished we better do that */
2002 ossl_statem_check_finish_init(s, 1);
2003
2004 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2005 int ret;
2006 struct ssl_async_args args;
2007
2008 args.s = s;
2009 args.buf = (void *)buf;
2010 args.num = num;
2011 args.type = WRITEFUNC;
2012 args.f.func_write = s->method->ssl_write;
2013
2014 ret = ssl_start_async_job(s, &args, ssl_io_intern);
2015 *written = s->asyncrw;
2016 return ret;
2017 } else {
2018 return s->method->ssl_write(s, buf, num, written);
2019 }
2020 }
2021
2022 ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags)
2023 {
2024 ossl_ssize_t ret;
2025
2026 if (s->handshake_func == NULL) {
2027 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2028 return -1;
2029 }
2030
2031 if (s->shutdown & SSL_SENT_SHUTDOWN) {
2032 s->rwstate = SSL_NOTHING;
2033 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_PROTOCOL_IS_SHUTDOWN);
2034 return -1;
2035 }
2036
2037 if (!BIO_get_ktls_send(s->wbio)) {
2038 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2039 return -1;
2040 }
2041
2042 /* If we have an alert to send, lets send it */
2043 if (s->s3.alert_dispatch) {
2044 ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s);
2045 if (ret <= 0) {
2046 /* SSLfatal() already called if appropriate */
2047 return ret;
2048 }
2049 /* if it went, fall through and send more stuff */
2050 }
2051
2052 s->rwstate = SSL_WRITING;
2053 if (BIO_flush(s->wbio) <= 0) {
2054 if (!BIO_should_retry(s->wbio)) {
2055 s->rwstate = SSL_NOTHING;
2056 } else {
2057 #ifdef EAGAIN
2058 set_sys_error(EAGAIN);
2059 #endif
2060 }
2061 return -1;
2062 }
2063
2064 #ifndef OPENSSL_NO_KTLS
2065 ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags);
2066 #else
2067 ret = -1;
2068 #endif
2069 if (ret < 0) {
2070 #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY)
2071 if ((get_last_sys_error() == EAGAIN) ||
2072 (get_last_sys_error() == EINTR) ||
2073 (get_last_sys_error() == EBUSY))
2074 BIO_set_retry_write(s->wbio);
2075 else
2076 #endif
2077 #ifdef OPENSSL_NO_KTLS
2078 FUNCerr("sendfile", get_last_sys_error());
2079 #else
2080 SSLerr(SSL_F_SSL_SENDFILE, SSL_R_UNINITIALIZED);
2081 #endif
2082 return ret;
2083 }
2084 s->rwstate = SSL_NOTHING;
2085 return ret;
2086 }
2087
2088 int SSL_write(SSL *s, const void *buf, int num)
2089 {
2090 int ret;
2091 size_t written;
2092
2093 if (num < 0) {
2094 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
2095 return -1;
2096 }
2097
2098 ret = ssl_write_internal(s, buf, (size_t)num, &written);
2099
2100 /*
2101 * The cast is safe here because ret should be <= INT_MAX because num is
2102 * <= INT_MAX
2103 */
2104 if (ret > 0)
2105 ret = (int)written;
2106
2107 return ret;
2108 }
2109
2110 int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
2111 {
2112 int ret = ssl_write_internal(s, buf, num, written);
2113
2114 if (ret < 0)
2115 ret = 0;
2116 return ret;
2117 }
2118
2119 int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
2120 {
2121 int ret, early_data_state;
2122 size_t writtmp;
2123 uint32_t partialwrite;
2124
2125 switch (s->early_data_state) {
2126 case SSL_EARLY_DATA_NONE:
2127 if (s->server
2128 || !SSL_in_before(s)
2129 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2130 && (s->psk_use_session_cb == NULL))) {
2131 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
2132 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2133 return 0;
2134 }
2135 /* fall through */
2136
2137 case SSL_EARLY_DATA_CONNECT_RETRY:
2138 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2139 ret = SSL_connect(s);
2140 if (ret <= 0) {
2141 /* NBIO or error */
2142 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2143 return 0;
2144 }
2145 /* fall through */
2146
2147 case SSL_EARLY_DATA_WRITE_RETRY:
2148 s->early_data_state = SSL_EARLY_DATA_WRITING;
2149 /*
2150 * We disable partial write for early data because we don't keep track
2151 * of how many bytes we've written between the SSL_write_ex() call and
2152 * the flush if the flush needs to be retried)
2153 */
2154 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2155 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2156 ret = SSL_write_ex(s, buf, num, &writtmp);
2157 s->mode |= partialwrite;
2158 if (!ret) {
2159 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2160 return ret;
2161 }
2162 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2163 /* fall through */
2164
2165 case SSL_EARLY_DATA_WRITE_FLUSH:
2166 /* The buffering BIO is still in place so we need to flush it */
2167 if (statem_flush(s) != 1)
2168 return 0;
2169 *written = num;
2170 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2171 return 1;
2172
2173 case SSL_EARLY_DATA_FINISHED_READING:
2174 case SSL_EARLY_DATA_READ_RETRY:
2175 early_data_state = s->early_data_state;
2176 /* We are a server writing to an unauthenticated client */
2177 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2178 ret = SSL_write_ex(s, buf, num, written);
2179 /* The buffering BIO is still in place */
2180 if (ret)
2181 (void)BIO_flush(s->wbio);
2182 s->early_data_state = early_data_state;
2183 return ret;
2184
2185 default:
2186 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2187 return 0;
2188 }
2189 }
2190
2191 int SSL_shutdown(SSL *s)
2192 {
2193 /*
2194 * Note that this function behaves differently from what one might
2195 * expect. Return values are 0 for no success (yet), 1 for success; but
2196 * calling it once is usually not enough, even if blocking I/O is used
2197 * (see ssl3_shutdown).
2198 */
2199
2200 if (s->handshake_func == NULL) {
2201 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2202 return -1;
2203 }
2204
2205 if (!SSL_in_init(s)) {
2206 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2207 struct ssl_async_args args;
2208
2209 args.s = s;
2210 args.type = OTHERFUNC;
2211 args.f.func_other = s->method->ssl_shutdown;
2212
2213 return ssl_start_async_job(s, &args, ssl_io_intern);
2214 } else {
2215 return s->method->ssl_shutdown(s);
2216 }
2217 } else {
2218 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2219 return -1;
2220 }
2221 }
2222
2223 int SSL_key_update(SSL *s, int updatetype)
2224 {
2225 /*
2226 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2227 * negotiated, and that it is appropriate to call SSL_key_update() instead
2228 * of SSL_renegotiate().
2229 */
2230 if (!SSL_IS_TLS13(s)) {
2231 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2232 return 0;
2233 }
2234
2235 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2236 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2237 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2238 return 0;
2239 }
2240
2241 if (!SSL_is_init_finished(s)) {
2242 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2243 return 0;
2244 }
2245
2246 ossl_statem_set_in_init(s, 1);
2247 s->key_update = updatetype;
2248 return 1;
2249 }
2250
2251 int SSL_get_key_update_type(const SSL *s)
2252 {
2253 return s->key_update;
2254 }
2255
2256 int SSL_renegotiate(SSL *s)
2257 {
2258 if (SSL_IS_TLS13(s)) {
2259 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2260 return 0;
2261 }
2262
2263 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2264 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2265 return 0;
2266 }
2267
2268 s->renegotiate = 1;
2269 s->new_session = 1;
2270
2271 return s->method->ssl_renegotiate(s);
2272 }
2273
2274 int SSL_renegotiate_abbreviated(SSL *s)
2275 {
2276 if (SSL_IS_TLS13(s)) {
2277 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2278 return 0;
2279 }
2280
2281 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2282 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2283 return 0;
2284 }
2285
2286 s->renegotiate = 1;
2287 s->new_session = 0;
2288
2289 return s->method->ssl_renegotiate(s);
2290 }
2291
2292 int SSL_renegotiate_pending(const SSL *s)
2293 {
2294 /*
2295 * becomes true when negotiation is requested; false again once a
2296 * handshake has finished
2297 */
2298 return (s->renegotiate != 0);
2299 }
2300
2301 long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2302 {
2303 long l;
2304
2305 switch (cmd) {
2306 case SSL_CTRL_GET_READ_AHEAD:
2307 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2308 case SSL_CTRL_SET_READ_AHEAD:
2309 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2310 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2311 return l;
2312
2313 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2314 s->msg_callback_arg = parg;
2315 return 1;
2316
2317 case SSL_CTRL_MODE:
2318 return (s->mode |= larg);
2319 case SSL_CTRL_CLEAR_MODE:
2320 return (s->mode &= ~larg);
2321 case SSL_CTRL_GET_MAX_CERT_LIST:
2322 return (long)s->max_cert_list;
2323 case SSL_CTRL_SET_MAX_CERT_LIST:
2324 if (larg < 0)
2325 return 0;
2326 l = (long)s->max_cert_list;
2327 s->max_cert_list = (size_t)larg;
2328 return l;
2329 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2330 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2331 return 0;
2332 #ifndef OPENSSL_NO_KTLS
2333 if (s->wbio != NULL && BIO_get_ktls_send(s->wbio))
2334 return 0;
2335 #endif /* OPENSSL_NO_KTLS */
2336 s->max_send_fragment = larg;
2337 if (s->max_send_fragment < s->split_send_fragment)
2338 s->split_send_fragment = s->max_send_fragment;
2339 return 1;
2340 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2341 if ((size_t)larg > s->max_send_fragment || larg == 0)
2342 return 0;
2343 s->split_send_fragment = larg;
2344 return 1;
2345 case SSL_CTRL_SET_MAX_PIPELINES:
2346 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2347 return 0;
2348 s->max_pipelines = larg;
2349 if (larg > 1)
2350 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2351 return 1;
2352 case SSL_CTRL_GET_RI_SUPPORT:
2353 return s->s3.send_connection_binding;
2354 case SSL_CTRL_CERT_FLAGS:
2355 return (s->cert->cert_flags |= larg);
2356 case SSL_CTRL_CLEAR_CERT_FLAGS:
2357 return (s->cert->cert_flags &= ~larg);
2358
2359 case SSL_CTRL_GET_RAW_CIPHERLIST:
2360 if (parg) {
2361 if (s->s3.tmp.ciphers_raw == NULL)
2362 return 0;
2363 *(unsigned char **)parg = s->s3.tmp.ciphers_raw;
2364 return (int)s->s3.tmp.ciphers_rawlen;
2365 } else {
2366 return TLS_CIPHER_LEN;
2367 }
2368 case SSL_CTRL_GET_EXTMS_SUPPORT:
2369 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2370 return -1;
2371 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2372 return 1;
2373 else
2374 return 0;
2375 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2376 return ssl_check_allowed_versions(larg, s->max_proto_version)
2377 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2378 &s->min_proto_version);
2379 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2380 return s->min_proto_version;
2381 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2382 return ssl_check_allowed_versions(s->min_proto_version, larg)
2383 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2384 &s->max_proto_version);
2385 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2386 return s->max_proto_version;
2387 default:
2388 return s->method->ssl_ctrl(s, cmd, larg, parg);
2389 }
2390 }
2391
2392 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2393 {
2394 switch (cmd) {
2395 case SSL_CTRL_SET_MSG_CALLBACK:
2396 s->msg_callback = (void (*)
2397 (int write_p, int version, int content_type,
2398 const void *buf, size_t len, SSL *ssl,
2399 void *arg))(fp);
2400 return 1;
2401
2402 default:
2403 return s->method->ssl_callback_ctrl(s, cmd, fp);
2404 }
2405 }
2406
2407 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2408 {
2409 return ctx->sessions;
2410 }
2411
2412 long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2413 {
2414 long l;
2415 /* For some cases with ctx == NULL perform syntax checks */
2416 if (ctx == NULL) {
2417 switch (cmd) {
2418 #ifndef OPENSSL_NO_EC
2419 case SSL_CTRL_SET_GROUPS_LIST:
2420 return tls1_set_groups_list(NULL, NULL, parg);
2421 #endif
2422 case SSL_CTRL_SET_SIGALGS_LIST:
2423 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2424 return tls1_set_sigalgs_list(NULL, parg, 0);
2425 default:
2426 return 0;
2427 }
2428 }
2429
2430 switch (cmd) {
2431 case SSL_CTRL_GET_READ_AHEAD:
2432 return ctx->read_ahead;
2433 case SSL_CTRL_SET_READ_AHEAD:
2434 l = ctx->read_ahead;
2435 ctx->read_ahead = larg;
2436 return l;
2437
2438 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2439 ctx->msg_callback_arg = parg;
2440 return 1;
2441
2442 case SSL_CTRL_GET_MAX_CERT_LIST:
2443 return (long)ctx->max_cert_list;
2444 case SSL_CTRL_SET_MAX_CERT_LIST:
2445 if (larg < 0)
2446 return 0;
2447 l = (long)ctx->max_cert_list;
2448 ctx->max_cert_list = (size_t)larg;
2449 return l;
2450
2451 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2452 if (larg < 0)
2453 return 0;
2454 l = (long)ctx->session_cache_size;
2455 ctx->session_cache_size = (size_t)larg;
2456 return l;
2457 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2458 return (long)ctx->session_cache_size;
2459 case SSL_CTRL_SET_SESS_CACHE_MODE:
2460 l = ctx->session_cache_mode;
2461 ctx->session_cache_mode = larg;
2462 return l;
2463 case SSL_CTRL_GET_SESS_CACHE_MODE:
2464 return ctx->session_cache_mode;
2465
2466 case SSL_CTRL_SESS_NUMBER:
2467 return lh_SSL_SESSION_num_items(ctx->sessions);
2468 case SSL_CTRL_SESS_CONNECT:
2469 return tsan_load(&ctx->stats.sess_connect);
2470 case SSL_CTRL_SESS_CONNECT_GOOD:
2471 return tsan_load(&ctx->stats.sess_connect_good);
2472 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2473 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2474 case SSL_CTRL_SESS_ACCEPT:
2475 return tsan_load(&ctx->stats.sess_accept);
2476 case SSL_CTRL_SESS_ACCEPT_GOOD:
2477 return tsan_load(&ctx->stats.sess_accept_good);
2478 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2479 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2480 case SSL_CTRL_SESS_HIT:
2481 return tsan_load(&ctx->stats.sess_hit);
2482 case SSL_CTRL_SESS_CB_HIT:
2483 return tsan_load(&ctx->stats.sess_cb_hit);
2484 case SSL_CTRL_SESS_MISSES:
2485 return tsan_load(&ctx->stats.sess_miss);
2486 case SSL_CTRL_SESS_TIMEOUTS:
2487 return tsan_load(&ctx->stats.sess_timeout);
2488 case SSL_CTRL_SESS_CACHE_FULL:
2489 return tsan_load(&ctx->stats.sess_cache_full);
2490 case SSL_CTRL_MODE:
2491 return (ctx->mode |= larg);
2492 case SSL_CTRL_CLEAR_MODE:
2493 return (ctx->mode &= ~larg);
2494 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2495 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2496 return 0;
2497 ctx->max_send_fragment = larg;
2498 if (ctx->max_send_fragment < ctx->split_send_fragment)
2499 ctx->split_send_fragment = ctx->max_send_fragment;
2500 return 1;
2501 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2502 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2503 return 0;
2504 ctx->split_send_fragment = larg;
2505 return 1;
2506 case SSL_CTRL_SET_MAX_PIPELINES:
2507 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2508 return 0;
2509 ctx->max_pipelines = larg;
2510 return 1;
2511 case SSL_CTRL_CERT_FLAGS:
2512 return (ctx->cert->cert_flags |= larg);
2513 case SSL_CTRL_CLEAR_CERT_FLAGS:
2514 return (ctx->cert->cert_flags &= ~larg);
2515 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2516 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2517 && ssl_set_version_bound(ctx->method->version, (int)larg,
2518 &ctx->min_proto_version);
2519 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2520 return ctx->min_proto_version;
2521 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2522 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2523 && ssl_set_version_bound(ctx->method->version, (int)larg,
2524 &ctx->max_proto_version);
2525 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2526 return ctx->max_proto_version;
2527 default:
2528 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2529 }
2530 }
2531
2532 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2533 {
2534 switch (cmd) {
2535 case SSL_CTRL_SET_MSG_CALLBACK:
2536 ctx->msg_callback = (void (*)
2537 (int write_p, int version, int content_type,
2538 const void *buf, size_t len, SSL *ssl,
2539 void *arg))(fp);
2540 return 1;
2541
2542 default:
2543 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2544 }
2545 }
2546
2547 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2548 {
2549 if (a->id > b->id)
2550 return 1;
2551 if (a->id < b->id)
2552 return -1;
2553 return 0;
2554 }
2555
2556 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2557 const SSL_CIPHER *const *bp)
2558 {
2559 if ((*ap)->id > (*bp)->id)
2560 return 1;
2561 if ((*ap)->id < (*bp)->id)
2562 return -1;
2563 return 0;
2564 }
2565
2566 /** return a STACK of the ciphers available for the SSL and in order of
2567 * preference */
2568 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2569 {
2570 if (s != NULL) {
2571 if (s->cipher_list != NULL) {
2572 return s->cipher_list;
2573 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2574 return s->ctx->cipher_list;
2575 }
2576 }
2577 return NULL;
2578 }
2579
2580 STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2581 {
2582 if ((s == NULL) || !s->server)
2583 return NULL;
2584 return s->peer_ciphers;
2585 }
2586
2587 STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2588 {
2589 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2590 int i;
2591
2592 ciphers = SSL_get_ciphers(s);
2593 if (!ciphers)
2594 return NULL;
2595 if (!ssl_set_client_disabled(s))
2596 return NULL;
2597 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2598 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2599 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2600 if (!sk)
2601 sk = sk_SSL_CIPHER_new_null();
2602 if (!sk)
2603 return NULL;
2604 if (!sk_SSL_CIPHER_push(sk, c)) {
2605 sk_SSL_CIPHER_free(sk);
2606 return NULL;
2607 }
2608 }
2609 }
2610 return sk;
2611 }
2612
2613 /** return a STACK of the ciphers available for the SSL and in order of
2614 * algorithm id */
2615 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2616 {
2617 if (s != NULL) {
2618 if (s->cipher_list_by_id != NULL) {
2619 return s->cipher_list_by_id;
2620 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2621 return s->ctx->cipher_list_by_id;
2622 }
2623 }
2624 return NULL;
2625 }
2626
2627 /** The old interface to get the same thing as SSL_get_ciphers() */
2628 const char *SSL_get_cipher_list(const SSL *s, int n)
2629 {
2630 const SSL_CIPHER *c;
2631 STACK_OF(SSL_CIPHER) *sk;
2632
2633 if (s == NULL)
2634 return NULL;
2635 sk = SSL_get_ciphers(s);
2636 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2637 return NULL;
2638 c = sk_SSL_CIPHER_value(sk, n);
2639 if (c == NULL)
2640 return NULL;
2641 return c->name;
2642 }
2643
2644 /** return a STACK of the ciphers available for the SSL_CTX and in order of
2645 * preference */
2646 STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2647 {
2648 if (ctx != NULL)
2649 return ctx->cipher_list;
2650 return NULL;
2651 }
2652
2653 /*
2654 * Distinguish between ciphers controlled by set_ciphersuite() and
2655 * set_cipher_list() when counting.
2656 */
2657 static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2658 {
2659 int i, num = 0;
2660 const SSL_CIPHER *c;
2661
2662 if (sk == NULL)
2663 return 0;
2664 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2665 c = sk_SSL_CIPHER_value(sk, i);
2666 if (c->min_tls >= TLS1_3_VERSION)
2667 continue;
2668 num++;
2669 }
2670 return num;
2671 }
2672
2673 /** specify the ciphers to be used by default by the SSL_CTX */
2674 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2675 {
2676 STACK_OF(SSL_CIPHER) *sk;
2677
2678 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2679 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2680 ctx->cert);
2681 /*
2682 * ssl_create_cipher_list may return an empty stack if it was unable to
2683 * find a cipher matching the given rule string (for example if the rule
2684 * string specifies a cipher which has been disabled). This is not an
2685 * error as far as ssl_create_cipher_list is concerned, and hence
2686 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2687 */
2688 if (sk == NULL)
2689 return 0;
2690 else if (cipher_list_tls12_num(sk) == 0) {
2691 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2692 return 0;
2693 }
2694 return 1;
2695 }
2696
2697 /** specify the ciphers to be used by the SSL */
2698 int SSL_set_cipher_list(SSL *s, const char *str)
2699 {
2700 STACK_OF(SSL_CIPHER) *sk;
2701
2702 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2703 &s->cipher_list, &s->cipher_list_by_id, str,
2704 s->cert);
2705 /* see comment in SSL_CTX_set_cipher_list */
2706 if (sk == NULL)
2707 return 0;
2708 else if (cipher_list_tls12_num(sk) == 0) {
2709 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2710 return 0;
2711 }
2712 return 1;
2713 }
2714
2715 char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2716 {
2717 char *p;
2718 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2719 const SSL_CIPHER *c;
2720 int i;
2721
2722 if (!s->server
2723 || s->peer_ciphers == NULL
2724 || size < 2)
2725 return NULL;
2726
2727 p = buf;
2728 clntsk = s->peer_ciphers;
2729 srvrsk = SSL_get_ciphers(s);
2730 if (clntsk == NULL || srvrsk == NULL)
2731 return NULL;
2732
2733 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2734 return NULL;
2735
2736 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2737 int n;
2738
2739 c = sk_SSL_CIPHER_value(clntsk, i);
2740 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2741 continue;
2742
2743 n = strlen(c->name);
2744 if (n + 1 > size) {
2745 if (p != buf)
2746 --p;
2747 *p = '\0';
2748 return buf;
2749 }
2750 strcpy(p, c->name);
2751 p += n;
2752 *(p++) = ':';
2753 size -= n + 1;
2754 }
2755 p[-1] = '\0';
2756 return buf;
2757 }
2758
2759 /** return a servername extension value if provided in Client Hello, or NULL.
2760 * So far, only host_name types are defined (RFC 3546).
2761 */
2762
2763 const char *SSL_get_servername(const SSL *s, const int type)
2764 {
2765 if (type != TLSEXT_NAMETYPE_host_name)
2766 return NULL;
2767
2768 /*
2769 * SNI is not negotiated in pre-TLS-1.3 resumption flows, so fake up an
2770 * SNI value to return if we are resuming/resumed. N.B. that we still
2771 * call the relevant callbacks for such resumption flows, and callbacks
2772 * might error out if there is not a SNI value available.
2773 */
2774 if (s->hit)
2775 return s->session->ext.hostname;
2776 return s->ext.hostname;
2777 }
2778
2779 int SSL_get_servername_type(const SSL *s)
2780 {
2781 if (s->session
2782 && (!s->ext.hostname ? s->session->
2783 ext.hostname : s->ext.hostname))
2784 return TLSEXT_NAMETYPE_host_name;
2785 return -1;
2786 }
2787
2788 /*
2789 * SSL_select_next_proto implements the standard protocol selection. It is
2790 * expected that this function is called from the callback set by
2791 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2792 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2793 * not included in the length. A byte string of length 0 is invalid. No byte
2794 * string may be truncated. The current, but experimental algorithm for
2795 * selecting the protocol is: 1) If the server doesn't support NPN then this
2796 * is indicated to the callback. In this case, the client application has to
2797 * abort the connection or have a default application level protocol. 2) If
2798 * the server supports NPN, but advertises an empty list then the client
2799 * selects the first protocol in its list, but indicates via the API that this
2800 * fallback case was enacted. 3) Otherwise, the client finds the first
2801 * protocol in the server's list that it supports and selects this protocol.
2802 * This is because it's assumed that the server has better information about
2803 * which protocol a client should use. 4) If the client doesn't support any
2804 * of the server's advertised protocols, then this is treated the same as
2805 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2806 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2807 */
2808 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2809 const unsigned char *server,
2810 unsigned int server_len,
2811 const unsigned char *client, unsigned int client_len)
2812 {
2813 unsigned int i, j;
2814 const unsigned char *result;
2815 int status = OPENSSL_NPN_UNSUPPORTED;
2816
2817 /*
2818 * For each protocol in server preference order, see if we support it.
2819 */
2820 for (i = 0; i < server_len;) {
2821 for (j = 0; j < client_len;) {
2822 if (server[i] == client[j] &&
2823 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2824 /* We found a match */
2825 result = &server[i];
2826 status = OPENSSL_NPN_NEGOTIATED;
2827 goto found;
2828 }
2829 j += client[j];
2830 j++;
2831 }
2832 i += server[i];
2833 i++;
2834 }
2835
2836 /* There's no overlap between our protocols and the server's list. */
2837 result = client;
2838 status = OPENSSL_NPN_NO_OVERLAP;
2839
2840 found:
2841 *out = (unsigned char *)result + 1;
2842 *outlen = result[0];
2843 return status;
2844 }
2845
2846 #ifndef OPENSSL_NO_NEXTPROTONEG
2847 /*
2848 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2849 * client's requested protocol for this connection and returns 0. If the
2850 * client didn't request any protocol, then *data is set to NULL. Note that
2851 * the client can request any protocol it chooses. The value returned from
2852 * this function need not be a member of the list of supported protocols
2853 * provided by the callback.
2854 */
2855 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2856 unsigned *len)
2857 {
2858 *data = s->ext.npn;
2859 if (!*data) {
2860 *len = 0;
2861 } else {
2862 *len = (unsigned int)s->ext.npn_len;
2863 }
2864 }
2865
2866 /*
2867 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2868 * a TLS server needs a list of supported protocols for Next Protocol
2869 * Negotiation. The returned list must be in wire format. The list is
2870 * returned by setting |out| to point to it and |outlen| to its length. This
2871 * memory will not be modified, but one should assume that the SSL* keeps a
2872 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2873 * wishes to advertise. Otherwise, no such extension will be included in the
2874 * ServerHello.
2875 */
2876 void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2877 SSL_CTX_npn_advertised_cb_func cb,
2878 void *arg)
2879 {
2880 ctx->ext.npn_advertised_cb = cb;
2881 ctx->ext.npn_advertised_cb_arg = arg;
2882 }
2883
2884 /*
2885 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2886 * client needs to select a protocol from the server's provided list. |out|
2887 * must be set to point to the selected protocol (which may be within |in|).
2888 * The length of the protocol name must be written into |outlen|. The
2889 * server's advertised protocols are provided in |in| and |inlen|. The
2890 * callback can assume that |in| is syntactically valid. The client must
2891 * select a protocol. It is fatal to the connection if this callback returns
2892 * a value other than SSL_TLSEXT_ERR_OK.
2893 */
2894 void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2895 SSL_CTX_npn_select_cb_func cb,
2896 void *arg)
2897 {
2898 ctx->ext.npn_select_cb = cb;
2899 ctx->ext.npn_select_cb_arg = arg;
2900 }
2901 #endif
2902
2903 /*
2904 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2905 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2906 * length-prefixed strings). Returns 0 on success.
2907 */
2908 int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2909 unsigned int protos_len)
2910 {
2911 OPENSSL_free(ctx->ext.alpn);
2912 ctx->ext.alpn = OPENSSL_memdup(protos, protos_len);
2913 if (ctx->ext.alpn == NULL) {
2914 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2915 return 1;
2916 }
2917 ctx->ext.alpn_len = protos_len;
2918
2919 return 0;
2920 }
2921
2922 /*
2923 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2924 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2925 * length-prefixed strings). Returns 0 on success.
2926 */
2927 int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2928 unsigned int protos_len)
2929 {
2930 OPENSSL_free(ssl->ext.alpn);
2931 ssl->ext.alpn = OPENSSL_memdup(protos, protos_len);
2932 if (ssl->ext.alpn == NULL) {
2933 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2934 return 1;
2935 }
2936 ssl->ext.alpn_len = protos_len;
2937
2938 return 0;
2939 }
2940
2941 /*
2942 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2943 * called during ClientHello processing in order to select an ALPN protocol
2944 * from the client's list of offered protocols.
2945 */
2946 void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2947 SSL_CTX_alpn_select_cb_func cb,
2948 void *arg)
2949 {
2950 ctx->ext.alpn_select_cb = cb;
2951 ctx->ext.alpn_select_cb_arg = arg;
2952 }
2953
2954 /*
2955 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2956 * On return it sets |*data| to point to |*len| bytes of protocol name
2957 * (not including the leading length-prefix byte). If the server didn't
2958 * respond with a negotiated protocol then |*len| will be zero.
2959 */
2960 void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2961 unsigned int *len)
2962 {
2963 *data = ssl->s3.alpn_selected;
2964 if (*data == NULL)
2965 *len = 0;
2966 else
2967 *len = (unsigned int)ssl->s3.alpn_selected_len;
2968 }
2969
2970 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2971 const char *label, size_t llen,
2972 const unsigned char *context, size_t contextlen,
2973 int use_context)
2974 {
2975 if (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER)
2976 return -1;
2977
2978 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2979 llen, context,
2980 contextlen, use_context);
2981 }
2982
2983 int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
2984 const char *label, size_t llen,
2985 const unsigned char *context,
2986 size_t contextlen)
2987 {
2988 if (s->version != TLS1_3_VERSION)
2989 return 0;
2990
2991 return tls13_export_keying_material_early(s, out, olen, label, llen,
2992 context, contextlen);
2993 }
2994
2995 static unsigned long ssl_session_hash(const SSL_SESSION *a)
2996 {
2997 const unsigned char *session_id = a->session_id;
2998 unsigned long l;
2999 unsigned char tmp_storage[4];
3000
3001 if (a->session_id_length < sizeof(tmp_storage)) {
3002 memset(tmp_storage, 0, sizeof(tmp_storage));
3003 memcpy(tmp_storage, a->session_id, a->session_id_length);
3004 session_id = tmp_storage;
3005 }
3006
3007 l = (unsigned long)
3008 ((unsigned long)session_id[0]) |
3009 ((unsigned long)session_id[1] << 8L) |
3010 ((unsigned long)session_id[2] << 16L) |
3011 ((unsigned long)session_id[3] << 24L);
3012 return l;
3013 }
3014
3015 /*
3016 * NB: If this function (or indeed the hash function which uses a sort of
3017 * coarser function than this one) is changed, ensure
3018 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
3019 * being able to construct an SSL_SESSION that will collide with any existing
3020 * session with a matching session ID.
3021 */
3022 static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3023 {
3024 if (a->ssl_version != b->ssl_version)
3025 return 1;
3026 if (a->session_id_length != b->session_id_length)
3027 return 1;
3028 return memcmp(a->session_id, b->session_id, a->session_id_length);
3029 }
3030
3031 /*
3032 * These wrapper functions should remain rather than redeclaring
3033 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3034 * variable. The reason is that the functions aren't static, they're exposed
3035 * via ssl.h.
3036 */
3037
3038 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3039 {
3040 SSL_CTX *ret = NULL;
3041
3042 if (meth == NULL) {
3043 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
3044 return NULL;
3045 }
3046
3047 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3048 return NULL;
3049
3050 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3051 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3052 goto err;
3053 }
3054 ret = OPENSSL_zalloc(sizeof(*ret));
3055 if (ret == NULL)
3056 goto err;
3057
3058 ret->method = meth;
3059 ret->min_proto_version = 0;
3060 ret->max_proto_version = 0;
3061 ret->mode = SSL_MODE_AUTO_RETRY;
3062 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3063 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3064 /* We take the system default. */
3065 ret->session_timeout = meth->get_timeout();
3066 ret->references = 1;
3067 ret->lock = CRYPTO_THREAD_lock_new();
3068 if (ret->lock == NULL) {
3069 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3070 OPENSSL_free(ret);
3071 return NULL;
3072 }
3073 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3074 ret->verify_mode = SSL_VERIFY_NONE;
3075 if ((ret->cert = ssl_cert_new()) == NULL)
3076 goto err;
3077
3078 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3079 if (ret->sessions == NULL)
3080 goto err;
3081 ret->cert_store = X509_STORE_new();
3082 if (ret->cert_store == NULL)
3083 goto err;
3084 #ifndef OPENSSL_NO_CT
3085 ret->ctlog_store = CTLOG_STORE_new();
3086 if (ret->ctlog_store == NULL)
3087 goto err;
3088 #endif
3089
3090 if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites()))
3091 goto err;
3092
3093 if (!ssl_create_cipher_list(ret->method,
3094 ret->tls13_ciphersuites,
3095 &ret->cipher_list, &ret->cipher_list_by_id,
3096 OSSL_default_cipher_list(), ret->cert)
3097 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3098 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3099 goto err2;
3100 }
3101
3102 ret->param = X509_VERIFY_PARAM_new();
3103 if (ret->param == NULL)
3104 goto err;
3105
3106 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
3107 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
3108 goto err2;
3109 }
3110 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
3111 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
3112 goto err2;
3113 }
3114
3115 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3116 goto err;
3117
3118 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3119 goto err;
3120
3121 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3122 goto err;
3123
3124 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3125 goto err;
3126
3127 /* No compression for DTLS */
3128 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3129 ret->comp_methods = SSL_COMP_get_compression_methods();
3130
3131 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3132 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3133
3134 /* Setup RFC5077 ticket keys */
3135 if ((RAND_bytes(ret->ext.tick_key_name,
3136 sizeof(ret->ext.tick_key_name)) <= 0)
3137 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key,
3138 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
3139 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key,
3140 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
3141 ret->options |= SSL_OP_NO_TICKET;
3142
3143 if (RAND_priv_bytes(ret->ext.cookie_hmac_key,
3144 sizeof(ret->ext.cookie_hmac_key)) <= 0)
3145 goto err;
3146
3147 #ifndef OPENSSL_NO_SRP
3148 if (!SSL_CTX_SRP_CTX_init(ret))
3149 goto err;
3150 #endif
3151 #ifndef OPENSSL_NO_ENGINE
3152 # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3153 # define eng_strx(x) #x
3154 # define eng_str(x) eng_strx(x)
3155 /* Use specific client engine automatically... ignore errors */
3156 {
3157 ENGINE *eng;
3158 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3159 if (!eng) {
3160 ERR_clear_error();
3161 ENGINE_load_builtin_engines();
3162 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3163 }
3164 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3165 ERR_clear_error();
3166 }
3167 # endif
3168 #endif
3169 /*
3170 * Default is to connect to non-RI servers. When RI is more widely
3171 * deployed might change this.
3172 */
3173 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3174 /*
3175 * Disable compression by default to prevent CRIME. Applications can
3176 * re-enable compression by configuring
3177 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3178 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3179 * middlebox compatibility by default. This may be disabled by default in
3180 * a later OpenSSL version.
3181 */
3182 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3183
3184 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3185
3186 /*
3187 * We cannot usefully set a default max_early_data here (which gets
3188 * propagated in SSL_new(), for the following reason: setting the
3189 * SSL field causes tls_construct_stoc_early_data() to tell the
3190 * client that early data will be accepted when constructing a TLS 1.3
3191 * session ticket, and the client will accordingly send us early data
3192 * when using that ticket (if the client has early data to send).
3193 * However, in order for the early data to actually be consumed by
3194 * the application, the application must also have calls to
3195 * SSL_read_early_data(); otherwise we'll just skip past the early data
3196 * and ignore it. So, since the application must add calls to
3197 * SSL_read_early_data(), we also require them to add
3198 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3199 * eliminating the bandwidth-wasting early data in the case described
3200 * above.
3201 */
3202 ret->max_early_data = 0;
3203
3204 /*
3205 * Default recv_max_early_data is a fully loaded single record. Could be
3206 * split across multiple records in practice. We set this differently to
3207 * max_early_data so that, in the default case, we do not advertise any
3208 * support for early_data, but if a client were to send us some (e.g.
3209 * because of an old, stale ticket) then we will tolerate it and skip over
3210 * it.
3211 */
3212 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3213
3214 /* By default we send two session tickets automatically in TLSv1.3 */
3215 ret->num_tickets = 2;
3216
3217 ssl_ctx_system_config(ret);
3218
3219 return ret;
3220 err:
3221 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3222 err2:
3223 SSL_CTX_free(ret);
3224 return NULL;
3225 }
3226
3227 int SSL_CTX_up_ref(SSL_CTX *ctx)
3228 {
3229 int i;
3230
3231 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3232 return 0;
3233
3234 REF_PRINT_COUNT("SSL_CTX", ctx);
3235 REF_ASSERT_ISNT(i < 2);
3236 return ((i > 1) ? 1 : 0);
3237 }
3238
3239 void SSL_CTX_free(SSL_CTX *a)
3240 {
3241 int i;
3242
3243 if (a == NULL)
3244 return;
3245
3246 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3247 REF_PRINT_COUNT("SSL_CTX", a);
3248 if (i > 0)
3249 return;
3250 REF_ASSERT_ISNT(i < 0);
3251
3252 X509_VERIFY_PARAM_free(a->param);
3253 dane_ctx_final(&a->dane);
3254
3255 /*
3256 * Free internal session cache. However: the remove_cb() may reference
3257 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3258 * after the sessions were flushed.
3259 * As the ex_data handling routines might also touch the session cache,
3260 * the most secure solution seems to be: empty (flush) the cache, then
3261 * free ex_data, then finally free the cache.
3262 * (See ticket [openssl.org #212].)
3263 */
3264 if (a->sessions != NULL)
3265 SSL_CTX_flush_sessions(a, 0);
3266
3267 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3268 lh_SSL_SESSION_free(a->sessions);
3269 X509_STORE_free(a->cert_store);
3270 #ifndef OPENSSL_NO_CT
3271 CTLOG_STORE_free(a->ctlog_store);
3272 #endif
3273 sk_SSL_CIPHER_free(a->cipher_list);
3274 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3275 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3276 ssl_cert_free(a->cert);
3277 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3278 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3279 sk_X509_pop_free(a->extra_certs, X509_free);
3280 a->comp_methods = NULL;
3281 #ifndef OPENSSL_NO_SRTP
3282 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3283 #endif
3284 #ifndef OPENSSL_NO_SRP
3285 SSL_CTX_SRP_CTX_free(a);
3286 #endif
3287 #ifndef OPENSSL_NO_ENGINE
3288 ENGINE_finish(a->client_cert_engine);
3289 #endif
3290
3291 #ifndef OPENSSL_NO_EC
3292 OPENSSL_free(a->ext.ecpointformats);
3293 OPENSSL_free(a->ext.supportedgroups);
3294 #endif
3295 OPENSSL_free(a->ext.alpn);
3296 OPENSSL_secure_free(a->ext.secure);
3297
3298 CRYPTO_THREAD_lock_free(a->lock);
3299
3300 OPENSSL_free(a);
3301 }
3302
3303 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3304 {
3305 ctx->default_passwd_callback = cb;
3306 }
3307
3308 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3309 {
3310 ctx->default_passwd_callback_userdata = u;
3311 }
3312
3313 pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3314 {
3315 return ctx->default_passwd_callback;
3316 }
3317
3318 void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3319 {
3320 return ctx->default_passwd_callback_userdata;
3321 }
3322
3323 void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3324 {
3325 s->default_passwd_callback = cb;
3326 }
3327
3328 void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3329 {
3330 s->default_passwd_callback_userdata = u;
3331 }
3332
3333 pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3334 {
3335 return s->default_passwd_callback;
3336 }
3337
3338 void *SSL_get_default_passwd_cb_userdata(SSL *s)
3339 {
3340 return s->default_passwd_callback_userdata;
3341 }
3342
3343 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3344 int (*cb) (X509_STORE_CTX *, void *),
3345 void *arg)
3346 {
3347 ctx->app_verify_callback = cb;
3348 ctx->app_verify_arg = arg;
3349 }
3350
3351 void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3352 int (*cb) (int, X509_STORE_CTX *))
3353 {
3354 ctx->verify_mode = mode;
3355 ctx->default_verify_callback = cb;
3356 }
3357
3358 void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3359 {
3360 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3361 }
3362
3363 void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3364 {
3365 ssl_cert_set_cert_cb(c->cert, cb, arg);
3366 }
3367
3368 void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3369 {
3370 ssl_cert_set_cert_cb(s->cert, cb, arg);
3371 }
3372
3373 void ssl_set_masks(SSL *s)
3374 {
3375 CERT *c = s->cert;
3376 uint32_t *pvalid = s->s3.tmp.valid_flags;
3377 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3378 unsigned long mask_k, mask_a;
3379 #ifndef OPENSSL_NO_EC
3380 int have_ecc_cert, ecdsa_ok;
3381 #endif
3382 if (c == NULL)
3383 return;
3384
3385 #ifndef OPENSSL_NO_DH
3386 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3387 #else
3388 dh_tmp = 0;
3389 #endif
3390
3391 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3392 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3393 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3394 #ifndef OPENSSL_NO_EC
3395 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3396 #endif
3397 mask_k = 0;
3398 mask_a = 0;
3399
3400 OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n",
3401 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3402
3403 #ifndef OPENSSL_NO_GOST
3404 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3405 mask_k |= SSL_kGOST;
3406 mask_a |= SSL_aGOST12;
3407 }
3408 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3409 mask_k |= SSL_kGOST;
3410 mask_a |= SSL_aGOST12;
3411 }
3412 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3413 mask_k |= SSL_kGOST;
3414 mask_a |= SSL_aGOST01;
3415 }
3416 #endif
3417
3418 if (rsa_enc)
3419 mask_k |= SSL_kRSA;
3420
3421 if (dh_tmp)
3422 mask_k |= SSL_kDHE;
3423
3424 /*
3425 * If we only have an RSA-PSS certificate allow RSA authentication
3426 * if TLS 1.2 and peer supports it.
3427 */
3428
3429 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3430 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3431 && TLS1_get_version(s) == TLS1_2_VERSION))
3432 mask_a |= SSL_aRSA;
3433
3434 if (dsa_sign) {
3435 mask_a |= SSL_aDSS;
3436 }
3437
3438 mask_a |= SSL_aNULL;
3439
3440 /*
3441 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3442 * depending on the key usage extension.
3443 */
3444 #ifndef OPENSSL_NO_EC
3445 if (have_ecc_cert) {
3446 uint32_t ex_kusage;
3447 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3448 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3449 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3450 ecdsa_ok = 0;
3451 if (ecdsa_ok)
3452 mask_a |= SSL_aECDSA;
3453 }
3454 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3455 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3456 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3457 && TLS1_get_version(s) == TLS1_2_VERSION)
3458 mask_a |= SSL_aECDSA;
3459
3460 /* Allow Ed448 for TLS 1.2 if peer supports it */
3461 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3462 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3463 && TLS1_get_version(s) == TLS1_2_VERSION)
3464 mask_a |= SSL_aECDSA;
3465 #endif
3466
3467 #ifndef OPENSSL_NO_EC
3468 mask_k |= SSL_kECDHE;
3469 #endif
3470
3471 #ifndef OPENSSL_NO_PSK
3472 mask_k |= SSL_kPSK;
3473 mask_a |= SSL_aPSK;
3474 if (mask_k & SSL_kRSA)
3475 mask_k |= SSL_kRSAPSK;
3476 if (mask_k & SSL_kDHE)
3477 mask_k |= SSL_kDHEPSK;
3478 if (mask_k & SSL_kECDHE)
3479 mask_k |= SSL_kECDHEPSK;
3480 #endif
3481
3482 s->s3.tmp.mask_k = mask_k;
3483 s->s3.tmp.mask_a = mask_a;
3484 }
3485
3486 #ifndef OPENSSL_NO_EC
3487
3488 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3489 {
3490 if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3491 /* key usage, if present, must allow signing */
3492 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3493 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3494 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3495 return 0;
3496 }
3497 }
3498 return 1; /* all checks are ok */
3499 }
3500
3501 #endif
3502
3503 int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3504 size_t *serverinfo_length)
3505 {
3506 CERT_PKEY *cpk = s->s3.tmp.cert;
3507 *serverinfo_length = 0;
3508
3509 if (cpk == NULL || cpk->serverinfo == NULL)
3510 return 0;
3511
3512 *serverinfo = cpk->serverinfo;
3513 *serverinfo_length = cpk->serverinfo_length;
3514 return 1;
3515 }
3516
3517 void ssl_update_cache(SSL *s, int mode)
3518 {
3519 int i;
3520
3521 /*
3522 * If the session_id_length is 0, we are not supposed to cache it, and it
3523 * would be rather hard to do anyway :-)
3524 */
3525 if (s->session->session_id_length == 0)
3526 return;
3527
3528 /*
3529 * If sid_ctx_length is 0 there is no specific application context
3530 * associated with this session, so when we try to resume it and
3531 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3532 * indication that this is actually a session for the proper application
3533 * context, and the *handshake* will fail, not just the resumption attempt.
3534 * Do not cache (on the server) these sessions that are not resumable
3535 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3536 */
3537 if (s->server && s->session->sid_ctx_length == 0
3538 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3539 return;
3540
3541 i = s->session_ctx->session_cache_mode;
3542 if ((i & mode) != 0
3543 && (!s->hit || SSL_IS_TLS13(s))) {
3544 /*
3545 * Add the session to the internal cache. In server side TLSv1.3 we
3546 * normally don't do this because by default it's a full stateless ticket
3547 * with only a dummy session id so there is no reason to cache it,
3548 * unless:
3549 * - we are doing early_data, in which case we cache so that we can
3550 * detect replays
3551 * - the application has set a remove_session_cb so needs to know about
3552 * session timeout events
3553 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3554 */
3555 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3556 && (!SSL_IS_TLS13(s)
3557 || !s->server
3558 || (s->max_early_data > 0
3559 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3560 || s->session_ctx->remove_session_cb != NULL
3561 || (s->options & SSL_OP_NO_TICKET) != 0))
3562 SSL_CTX_add_session(s->session_ctx, s->session);
3563
3564 /*
3565 * Add the session to the external cache. We do this even in server side
3566 * TLSv1.3 without early data because some applications just want to
3567 * know about the creation of a session and aren't doing a full cache.
3568 */
3569 if (s->session_ctx->new_session_cb != NULL) {
3570 SSL_SESSION_up_ref(s->session);
3571 if (!s->session_ctx->new_session_cb(s, s->session))
3572 SSL_SESSION_free(s->session);
3573 }
3574 }
3575
3576 /* auto flush every 255 connections */
3577 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3578 TSAN_QUALIFIER int *stat;
3579 if (mode & SSL_SESS_CACHE_CLIENT)
3580 stat = &s->session_ctx->stats.sess_connect_good;
3581 else
3582 stat = &s->session_ctx->stats.sess_accept_good;
3583 if ((tsan_load(stat) & 0xff) == 0xff)
3584 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3585 }
3586 }
3587
3588 const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3589 {
3590 return ctx->method;
3591 }
3592
3593 const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3594 {
3595 return s->method;
3596 }
3597
3598 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3599 {
3600 int ret = 1;
3601
3602 if (s->method != meth) {
3603 const SSL_METHOD *sm = s->method;
3604 int (*hf) (SSL *) = s->handshake_func;
3605
3606 if (sm->version == meth->version)
3607 s->method = meth;
3608 else {
3609 sm->ssl_free(s);
3610 s->method = meth;
3611 ret = s->method->ssl_new(s);
3612 }
3613
3614 if (hf == sm->ssl_connect)
3615 s->handshake_func = meth->ssl_connect;
3616 else if (hf == sm->ssl_accept)
3617 s->handshake_func = meth->ssl_accept;
3618 }
3619 return ret;
3620 }
3621
3622 int SSL_get_error(const SSL *s, int i)
3623 {
3624 int reason;
3625 unsigned long l;
3626 BIO *bio;
3627
3628 if (i > 0)
3629 return SSL_ERROR_NONE;
3630
3631 /*
3632 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3633 * where we do encode the error
3634 */
3635 if ((l = ERR_peek_error()) != 0) {
3636 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3637 return SSL_ERROR_SYSCALL;
3638 else
3639 return SSL_ERROR_SSL;
3640 }
3641
3642 if (SSL_want_read(s)) {
3643 bio = SSL_get_rbio(s);
3644 if (BIO_should_read(bio))
3645 return SSL_ERROR_WANT_READ;
3646 else if (BIO_should_write(bio))
3647 /*
3648 * This one doesn't make too much sense ... We never try to write
3649 * to the rbio, and an application program where rbio and wbio
3650 * are separate couldn't even know what it should wait for.
3651 * However if we ever set s->rwstate incorrectly (so that we have
3652 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3653 * wbio *are* the same, this test works around that bug; so it
3654 * might be safer to keep it.
3655 */
3656 return SSL_ERROR_WANT_WRITE;
3657 else if (BIO_should_io_special(bio)) {
3658 reason = BIO_get_retry_reason(bio);
3659 if (reason == BIO_RR_CONNECT)
3660 return SSL_ERROR_WANT_CONNECT;
3661 else if (reason == BIO_RR_ACCEPT)
3662 return SSL_ERROR_WANT_ACCEPT;
3663 else
3664 return SSL_ERROR_SYSCALL; /* unknown */
3665 }
3666 }
3667
3668 if (SSL_want_write(s)) {
3669 /* Access wbio directly - in order to use the buffered bio if present */
3670 bio = s->wbio;
3671 if (BIO_should_write(bio))
3672 return SSL_ERROR_WANT_WRITE;
3673 else if (BIO_should_read(bio))
3674 /*
3675 * See above (SSL_want_read(s) with BIO_should_write(bio))
3676 */
3677 return SSL_ERROR_WANT_READ;
3678 else if (BIO_should_io_special(bio)) {
3679 reason = BIO_get_retry_reason(bio);
3680 if (reason == BIO_RR_CONNECT)
3681 return SSL_ERROR_WANT_CONNECT;
3682 else if (reason == BIO_RR_ACCEPT)
3683 return SSL_ERROR_WANT_ACCEPT;
3684 else
3685 return SSL_ERROR_SYSCALL;
3686 }
3687 }
3688 if (SSL_want_x509_lookup(s))
3689 return SSL_ERROR_WANT_X509_LOOKUP;
3690 if (SSL_want_async(s))
3691 return SSL_ERROR_WANT_ASYNC;
3692 if (SSL_want_async_job(s))
3693 return SSL_ERROR_WANT_ASYNC_JOB;
3694 if (SSL_want_client_hello_cb(s))
3695 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3696
3697 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3698 (s->s3.warn_alert == SSL_AD_CLOSE_NOTIFY))
3699 return SSL_ERROR_ZERO_RETURN;
3700
3701 return SSL_ERROR_SYSCALL;
3702 }
3703
3704 static int ssl_do_handshake_intern(void *vargs)
3705 {
3706 struct ssl_async_args *args;
3707 SSL *s;
3708
3709 args = (struct ssl_async_args *)vargs;
3710 s = args->s;
3711
3712 return s->handshake_func(s);
3713 }
3714
3715 int SSL_do_handshake(SSL *s)
3716 {
3717 int ret = 1;
3718
3719 if (s->handshake_func == NULL) {
3720 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3721 return -1;
3722 }
3723
3724 ossl_statem_check_finish_init(s, -1);
3725
3726 s->method->ssl_renegotiate_check(s, 0);
3727
3728 if (SSL_in_init(s) || SSL_in_before(s)) {
3729 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3730 struct ssl_async_args args;
3731
3732 args.s = s;
3733
3734 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3735 } else {
3736 ret = s->handshake_func(s);
3737 }
3738 }
3739 return ret;
3740 }
3741
3742 void SSL_set_accept_state(SSL *s)
3743 {
3744 s->server = 1;
3745 s->shutdown = 0;
3746 ossl_statem_clear(s);
3747 s->handshake_func = s->method->ssl_accept;
3748 clear_ciphers(s);
3749 }
3750
3751 void SSL_set_connect_state(SSL *s)
3752 {
3753 s->server = 0;
3754 s->shutdown = 0;
3755 ossl_statem_clear(s);
3756 s->handshake_func = s->method->ssl_connect;
3757 clear_ciphers(s);
3758 }
3759
3760 int ssl_undefined_function(SSL *s)
3761 {
3762 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3763 return 0;
3764 }
3765
3766 int ssl_undefined_void_function(void)
3767 {
3768 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3769 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3770 return 0;
3771 }
3772
3773 int ssl_undefined_const_function(const SSL *s)
3774 {
3775 return 0;
3776 }
3777
3778 const SSL_METHOD *ssl_bad_method(int ver)
3779 {
3780 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3781 return NULL;
3782 }
3783
3784 const char *ssl_protocol_to_string(int version)
3785 {
3786 switch(version)
3787 {
3788 case TLS1_3_VERSION:
3789 return "TLSv1.3";
3790
3791 case TLS1_2_VERSION:
3792 return "TLSv1.2";
3793
3794 case TLS1_1_VERSION:
3795 return "TLSv1.1";
3796
3797 case TLS1_VERSION:
3798 return "TLSv1";
3799
3800 case SSL3_VERSION:
3801 return "SSLv3";
3802
3803 case DTLS1_BAD_VER:
3804 return "DTLSv0.9";
3805
3806 case DTLS1_VERSION:
3807 return "DTLSv1";
3808
3809 case DTLS1_2_VERSION:
3810 return "DTLSv1.2";
3811
3812 default:
3813 return "unknown";
3814 }
3815 }
3816
3817 const char *SSL_get_version(const SSL *s)
3818 {
3819 return ssl_protocol_to_string(s->version);
3820 }
3821
3822 static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3823 {
3824 STACK_OF(X509_NAME) *sk;
3825 X509_NAME *xn;
3826 int i;
3827
3828 if (src == NULL) {
3829 *dst = NULL;
3830 return 1;
3831 }
3832
3833 if ((sk = sk_X509_NAME_new_null()) == NULL)
3834 return 0;
3835 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3836 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3837 if (xn == NULL) {
3838 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3839 return 0;
3840 }
3841 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3842 X509_NAME_free(xn);
3843 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3844 return 0;
3845 }
3846 }
3847 *dst = sk;
3848
3849 return 1;
3850 }
3851
3852 SSL *SSL_dup(SSL *s)
3853 {
3854 SSL *ret;
3855 int i;
3856
3857 /* If we're not quiescent, just up_ref! */
3858 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3859 CRYPTO_UP_REF(&s->references, &i, s->lock);
3860 return s;
3861 }
3862
3863 /*
3864 * Otherwise, copy configuration state, and session if set.
3865 */
3866 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3867 return NULL;
3868
3869 if (s->session != NULL) {
3870 /*
3871 * Arranges to share the same session via up_ref. This "copies"
3872 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3873 */
3874 if (!SSL_copy_session_id(ret, s))
3875 goto err;
3876 } else {
3877 /*
3878 * No session has been established yet, so we have to expect that
3879 * s->cert or ret->cert will be changed later -- they should not both
3880 * point to the same object, and thus we can't use
3881 * SSL_copy_session_id.
3882 */
3883 if (!SSL_set_ssl_method(ret, s->method))
3884 goto err;
3885
3886 if (s->cert != NULL) {
3887 ssl_cert_free(ret->cert);
3888 ret->cert = ssl_cert_dup(s->cert);
3889 if (ret->cert == NULL)
3890 goto err;
3891 }
3892
3893 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3894 (int)s->sid_ctx_length))
3895 goto err;
3896 }
3897
3898 if (!ssl_dane_dup(ret, s))
3899 goto err;
3900 ret->version = s->version;
3901 ret->options = s->options;
3902 ret->mode = s->mode;
3903 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3904 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3905 ret->msg_callback = s->msg_callback;
3906 ret->msg_callback_arg = s->msg_callback_arg;
3907 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3908 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3909 ret->generate_session_id = s->generate_session_id;
3910
3911 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3912
3913 /* copy app data, a little dangerous perhaps */
3914 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3915 goto err;
3916
3917 /* setup rbio, and wbio */
3918 if (s->rbio != NULL) {
3919 if (!BIO_dup_state(s->rbio, (char *)&ret->rbio))
3920 goto err;
3921 }
3922 if (s->wbio != NULL) {
3923 if (s->wbio != s->rbio) {
3924 if (!BIO_dup_state(s->wbio, (char *)&ret->wbio))
3925 goto err;
3926 } else {
3927 BIO_up_ref(ret->rbio);
3928 ret->wbio = ret->rbio;
3929 }
3930 }
3931
3932 ret->server = s->server;
3933 if (s->handshake_func) {
3934 if (s->server)
3935 SSL_set_accept_state(ret);
3936 else
3937 SSL_set_connect_state(ret);
3938 }
3939 ret->shutdown = s->shutdown;
3940 ret->hit = s->hit;
3941
3942 ret->default_passwd_callback = s->default_passwd_callback;
3943 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3944
3945 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3946
3947 /* dup the cipher_list and cipher_list_by_id stacks */
3948 if (s->cipher_list != NULL) {
3949 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3950 goto err;
3951 }
3952 if (s->cipher_list_by_id != NULL)
3953 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3954 == NULL)
3955 goto err;
3956
3957 /* Dup the client_CA list */
3958 if (!dup_ca_names(&ret->ca_names, s->ca_names)
3959 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
3960 goto err;
3961
3962 return ret;
3963
3964 err:
3965 SSL_free(ret);
3966 return NULL;
3967 }
3968
3969 void ssl_clear_cipher_ctx(SSL *s)
3970 {
3971 if (s->enc_read_ctx != NULL) {
3972 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3973 s->enc_read_ctx = NULL;
3974 }
3975 if (s->enc_write_ctx != NULL) {
3976 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3977 s->enc_write_ctx = NULL;
3978 }
3979 #ifndef OPENSSL_NO_COMP
3980 COMP_CTX_free(s->expand);
3981 s->expand = NULL;
3982 COMP_CTX_free(s->compress);
3983 s->compress = NULL;
3984 #endif
3985 }
3986
3987 X509 *SSL_get_certificate(const SSL *s)
3988 {
3989 if (s->cert != NULL)
3990 return s->cert->key->x509;
3991 else
3992 return NULL;
3993 }
3994
3995 EVP_PKEY *SSL_get_privatekey(const SSL *s)
3996 {
3997 if (s->cert != NULL)
3998 return s->cert->key->privatekey;
3999 else
4000 return NULL;
4001 }
4002
4003 X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
4004 {
4005 if (ctx->cert != NULL)
4006 return ctx->cert->key->x509;
4007 else
4008 return NULL;
4009 }
4010
4011 EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
4012 {
4013 if (ctx->cert != NULL)
4014 return ctx->cert->key->privatekey;
4015 else
4016 return NULL;
4017 }
4018
4019 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
4020 {
4021 if ((s->session != NULL) && (s->session->cipher != NULL))
4022 return s->session->cipher;
4023 return NULL;
4024 }
4025
4026 const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
4027 {
4028 return s->s3.tmp.new_cipher;
4029 }
4030
4031 const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4032 {
4033 #ifndef OPENSSL_NO_COMP
4034 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4035 #else
4036 return NULL;
4037 #endif
4038 }
4039
4040 const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4041 {
4042 #ifndef OPENSSL_NO_COMP
4043 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4044 #else
4045 return NULL;
4046 #endif
4047 }
4048
4049 int ssl_init_wbio_buffer(SSL *s)
4050 {
4051 BIO *bbio;
4052
4053 if (s->bbio != NULL) {
4054 /* Already buffered. */
4055 return 1;
4056 }
4057
4058 bbio = BIO_new(BIO_f_buffer());
4059 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4060 BIO_free(bbio);
4061 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
4062 return 0;
4063 }
4064 s->bbio = bbio;
4065 s->wbio = BIO_push(bbio, s->wbio);
4066
4067 return 1;
4068 }
4069
4070 int ssl_free_wbio_buffer(SSL *s)
4071 {
4072 /* callers ensure s is never null */
4073 if (s->bbio == NULL)
4074 return 1;
4075
4076 s->wbio = BIO_pop(s->wbio);
4077 BIO_free(s->bbio);
4078 s->bbio = NULL;
4079
4080 return 1;
4081 }
4082
4083 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4084 {
4085 ctx->quiet_shutdown = mode;
4086 }
4087
4088 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4089 {
4090 return ctx->quiet_shutdown;
4091 }
4092
4093 void SSL_set_quiet_shutdown(SSL *s, int mode)
4094 {
4095 s->quiet_shutdown = mode;
4096 }
4097
4098 int SSL_get_quiet_shutdown(const SSL *s)
4099 {
4100 return s->quiet_shutdown;
4101 }
4102
4103 void SSL_set_shutdown(SSL *s, int mode)
4104 {
4105 s->shutdown = mode;
4106 }
4107
4108 int SSL_get_shutdown(const SSL *s)
4109 {
4110 return s->shutdown;
4111 }
4112
4113 int SSL_version(const SSL *s)
4114 {
4115 return s->version;
4116 }
4117
4118 int SSL_client_version(const SSL *s)
4119 {
4120 return s->client_version;
4121 }
4122
4123 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4124 {
4125 return ssl->ctx;
4126 }
4127
4128 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4129 {
4130 CERT *new_cert;
4131 if (ssl->ctx == ctx)
4132 return ssl->ctx;
4133 if (ctx == NULL)
4134 ctx = ssl->session_ctx;
4135 new_cert = ssl_cert_dup(ctx->cert);
4136 if (new_cert == NULL) {
4137 return NULL;
4138 }
4139
4140 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4141 ssl_cert_free(new_cert);
4142 return NULL;
4143 }
4144
4145 ssl_cert_free(ssl->cert);
4146 ssl->cert = new_cert;
4147
4148 /*
4149 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4150 * so setter APIs must prevent invalid lengths from entering the system.
4151 */
4152 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4153 return NULL;
4154
4155 /*
4156 * If the session ID context matches that of the parent SSL_CTX,
4157 * inherit it from the new SSL_CTX as well. If however the context does
4158 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4159 * leave it unchanged.
4160 */
4161 if ((ssl->ctx != NULL) &&
4162 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4163 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4164 ssl->sid_ctx_length = ctx->sid_ctx_length;
4165 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4166 }
4167
4168 SSL_CTX_up_ref(ctx);
4169 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4170 ssl->ctx = ctx;
4171
4172 return ssl->ctx;
4173 }
4174
4175 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4176 {
4177 return X509_STORE_set_default_paths(ctx->cert_store);
4178 }
4179
4180 int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4181 {
4182 X509_LOOKUP *lookup;
4183
4184 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4185 if (lookup == NULL)
4186 return 0;
4187 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4188
4189 /* Clear any errors if the default directory does not exist */
4190 ERR_clear_error();
4191
4192 return 1;
4193 }
4194
4195 int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4196 {
4197 X509_LOOKUP *lookup;
4198
4199 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4200 if (lookup == NULL)
4201 return 0;
4202
4203 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4204
4205 /* Clear any errors if the default file does not exist */
4206 ERR_clear_error();
4207
4208 return 1;
4209 }
4210
4211 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4212 const char *CApath)
4213 {
4214 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
4215 }
4216
4217 void SSL_set_info_callback(SSL *ssl,
4218 void (*cb) (const SSL *ssl, int type, int val))
4219 {
4220 ssl->info_callback = cb;
4221 }
4222
4223 /*
4224 * One compiler (Diab DCC) doesn't like argument names in returned function
4225 * pointer.
4226 */
4227 void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4228 int /* type */ ,
4229 int /* val */ ) {
4230 return ssl->info_callback;
4231 }
4232
4233 void SSL_set_verify_result(SSL *ssl, long arg)
4234 {
4235 ssl->verify_result = arg;
4236 }
4237
4238 long SSL_get_verify_result(const SSL *ssl)
4239 {
4240 return ssl->verify_result;
4241 }
4242
4243 size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4244 {
4245 if (outlen == 0)
4246 return sizeof(ssl->s3.client_random);
4247 if (outlen > sizeof(ssl->s3.client_random))
4248 outlen = sizeof(ssl->s3.client_random);
4249 memcpy(out, ssl->s3.client_random, outlen);
4250 return outlen;
4251 }
4252
4253 size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4254 {
4255 if (outlen == 0)
4256 return sizeof(ssl->s3.server_random);
4257 if (outlen > sizeof(ssl->s3.server_random))
4258 outlen = sizeof(ssl->s3.server_random);
4259 memcpy(out, ssl->s3.server_random, outlen);
4260 return outlen;
4261 }
4262
4263 size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4264 unsigned char *out, size_t outlen)
4265 {
4266 if (outlen == 0)
4267 return session->master_key_length;
4268 if (outlen > session->master_key_length)
4269 outlen = session->master_key_length;
4270 memcpy(out, session->master_key, outlen);
4271 return outlen;
4272 }
4273
4274 int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4275 size_t len)
4276 {
4277 if (len > sizeof(sess->master_key))
4278 return 0;
4279
4280 memcpy(sess->master_key, in, len);
4281 sess->master_key_length = len;
4282 return 1;
4283 }
4284
4285
4286 int SSL_set_ex_data(SSL *s, int idx, void *arg)
4287 {
4288 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4289 }
4290
4291 void *SSL_get_ex_data(const SSL *s, int idx)
4292 {
4293 return CRYPTO_get_ex_data(&s->ex_data, idx);
4294 }
4295
4296 int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4297 {
4298 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4299 }
4300
4301 void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4302 {
4303 return CRYPTO_get_ex_data(&s->ex_data, idx);
4304 }
4305
4306 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4307 {
4308 return ctx->cert_store;
4309 }
4310
4311 void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4312 {
4313 X509_STORE_free(ctx->cert_store);
4314 ctx->cert_store = store;
4315 }
4316
4317 void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4318 {
4319 if (store != NULL)
4320 X509_STORE_up_ref(store);
4321 SSL_CTX_set_cert_store(ctx, store);
4322 }
4323
4324 int SSL_want(const SSL *s)
4325 {
4326 return s->rwstate;
4327 }
4328
4329 /**
4330 * \brief Set the callback for generating temporary DH keys.
4331 * \param ctx the SSL context.
4332 * \param dh the callback
4333 */
4334
4335 #ifndef OPENSSL_NO_DH
4336 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4337 DH *(*dh) (SSL *ssl, int is_export,
4338 int keylength))
4339 {
4340 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4341 }
4342
4343 void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4344 int keylength))
4345 {
4346 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4347 }
4348 #endif
4349
4350 #ifndef OPENSSL_NO_PSK
4351 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4352 {
4353 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4354 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4355 return 0;
4356 }
4357 OPENSSL_free(ctx->cert->psk_identity_hint);
4358 if (identity_hint != NULL) {
4359 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4360 if (ctx->cert->psk_identity_hint == NULL)
4361 return 0;
4362 } else
4363 ctx->cert->psk_identity_hint = NULL;
4364 return 1;
4365 }
4366
4367 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4368 {
4369 if (s == NULL)
4370 return 0;
4371
4372 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4373 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4374 return 0;
4375 }
4376 OPENSSL_free(s->cert->psk_identity_hint);
4377 if (identity_hint != NULL) {
4378 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4379 if (s->cert->psk_identity_hint == NULL)
4380 return 0;
4381 } else
4382 s->cert->psk_identity_hint = NULL;
4383 return 1;
4384 }
4385
4386 const char *SSL_get_psk_identity_hint(const SSL *s)
4387 {
4388 if (s == NULL || s->session == NULL)
4389 return NULL;
4390 return s->session->psk_identity_hint;
4391 }
4392
4393 const char *SSL_get_psk_identity(const SSL *s)
4394 {
4395 if (s == NULL || s->session == NULL)
4396 return NULL;
4397 return s->session->psk_identity;
4398 }
4399
4400 void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4401 {
4402 s->psk_client_callback = cb;
4403 }
4404
4405 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4406 {
4407 ctx->psk_client_callback = cb;
4408 }
4409
4410 void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4411 {
4412 s->psk_server_callback = cb;
4413 }
4414
4415 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4416 {
4417 ctx->psk_server_callback = cb;
4418 }
4419 #endif
4420
4421 void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4422 {
4423 s->psk_find_session_cb = cb;
4424 }
4425
4426 void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4427 SSL_psk_find_session_cb_func cb)
4428 {
4429 ctx->psk_find_session_cb = cb;
4430 }
4431
4432 void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4433 {
4434 s->psk_use_session_cb = cb;
4435 }
4436
4437 void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4438 SSL_psk_use_session_cb_func cb)
4439 {
4440 ctx->psk_use_session_cb = cb;
4441 }
4442
4443 void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4444 void (*cb) (int write_p, int version,
4445 int content_type, const void *buf,
4446 size_t len, SSL *ssl, void *arg))
4447 {
4448 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4449 }
4450
4451 void SSL_set_msg_callback(SSL *ssl,
4452 void (*cb) (int write_p, int version,
4453 int content_type, const void *buf,
4454 size_t len, SSL *ssl, void *arg))
4455 {
4456 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4457 }
4458
4459 void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4460 int (*cb) (SSL *ssl,
4461 int
4462 is_forward_secure))
4463 {
4464 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4465 (void (*)(void))cb);
4466 }
4467
4468 void SSL_set_not_resumable_session_callback(SSL *ssl,
4469 int (*cb) (SSL *ssl,
4470 int is_forward_secure))
4471 {
4472 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4473 (void (*)(void))cb);
4474 }
4475
4476 void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4477 size_t (*cb) (SSL *ssl, int type,
4478 size_t len, void *arg))
4479 {
4480 ctx->record_padding_cb = cb;
4481 }
4482
4483 void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4484 {
4485 ctx->record_padding_arg = arg;
4486 }
4487
4488 void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4489 {
4490 return ctx->record_padding_arg;
4491 }
4492
4493 int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4494 {
4495 /* block size of 0 or 1 is basically no padding */
4496 if (block_size == 1)
4497 ctx->block_padding = 0;
4498 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4499 ctx->block_padding = block_size;
4500 else
4501 return 0;
4502 return 1;
4503 }
4504
4505 void SSL_set_record_padding_callback(SSL *ssl,
4506 size_t (*cb) (SSL *ssl, int type,
4507 size_t len, void *arg))
4508 {
4509 ssl->record_padding_cb = cb;
4510 }
4511
4512 void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4513 {
4514 ssl->record_padding_arg = arg;
4515 }
4516
4517 void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4518 {
4519 return ssl->record_padding_arg;
4520 }
4521
4522 int SSL_set_block_padding(SSL *ssl, size_t block_size)
4523 {
4524 /* block size of 0 or 1 is basically no padding */
4525 if (block_size == 1)
4526 ssl->block_padding = 0;
4527 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4528 ssl->block_padding = block_size;
4529 else
4530 return 0;
4531 return 1;
4532 }
4533
4534 int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4535 {
4536 s->num_tickets = num_tickets;
4537
4538 return 1;
4539 }
4540
4541 size_t SSL_get_num_tickets(const SSL *s)
4542 {
4543 return s->num_tickets;
4544 }
4545
4546 int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4547 {
4548 ctx->num_tickets = num_tickets;
4549
4550 return 1;
4551 }
4552
4553 size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4554 {
4555 return ctx->num_tickets;
4556 }
4557
4558 /*
4559 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4560 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4561 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4562 * Returns the newly allocated ctx;
4563 */
4564
4565 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4566 {
4567 ssl_clear_hash_ctx(hash);
4568 *hash = EVP_MD_CTX_new();
4569 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4570 EVP_MD_CTX_free(*hash);
4571 *hash = NULL;
4572 return NULL;
4573 }
4574 return *hash;
4575 }
4576
4577 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4578 {
4579
4580 EVP_MD_CTX_free(*hash);
4581 *hash = NULL;
4582 }
4583
4584 /* Retrieve handshake hashes */
4585 int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4586 size_t *hashlen)
4587 {
4588 EVP_MD_CTX *ctx = NULL;
4589 EVP_MD_CTX *hdgst = s->s3.handshake_dgst;
4590 int hashleni = EVP_MD_CTX_size(hdgst);
4591 int ret = 0;
4592
4593 if (hashleni < 0 || (size_t)hashleni > outlen) {
4594 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4595 ERR_R_INTERNAL_ERROR);
4596 goto err;
4597 }
4598
4599 ctx = EVP_MD_CTX_new();
4600 if (ctx == NULL)
4601 goto err;
4602
4603 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4604 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4605 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4606 ERR_R_INTERNAL_ERROR);
4607 goto err;
4608 }
4609
4610 *hashlen = hashleni;
4611
4612 ret = 1;
4613 err:
4614 EVP_MD_CTX_free(ctx);
4615 return ret;
4616 }
4617
4618 int SSL_session_reused(const SSL *s)
4619 {
4620 return s->hit;
4621 }
4622
4623 int SSL_is_server(const SSL *s)
4624 {
4625 return s->server;
4626 }
4627
4628 #if !OPENSSL_API_1_1_0
4629 void SSL_set_debug(SSL *s, int debug)
4630 {
4631 /* Old function was do-nothing anyway... */
4632 (void)s;
4633 (void)debug;
4634 }
4635 #endif
4636
4637 void SSL_set_security_level(SSL *s, int level)
4638 {
4639 s->cert->sec_level = level;
4640 }
4641
4642 int SSL_get_security_level(const SSL *s)
4643 {
4644 return s->cert->sec_level;
4645 }
4646
4647 void SSL_set_security_callback(SSL *s,
4648 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4649 int op, int bits, int nid,
4650 void *other, void *ex))
4651 {
4652 s->cert->sec_cb = cb;
4653 }
4654
4655 int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4656 const SSL_CTX *ctx, int op,
4657 int bits, int nid, void *other,
4658 void *ex) {
4659 return s->cert->sec_cb;
4660 }
4661
4662 void SSL_set0_security_ex_data(SSL *s, void *ex)
4663 {
4664 s->cert->sec_ex = ex;
4665 }
4666
4667 void *SSL_get0_security_ex_data(const SSL *s)
4668 {
4669 return s->cert->sec_ex;
4670 }
4671
4672 void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4673 {
4674 ctx->cert->sec_level = level;
4675 }
4676
4677 int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4678 {
4679 return ctx->cert->sec_level;
4680 }
4681
4682 void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4683 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4684 int op, int bits, int nid,
4685 void *other, void *ex))
4686 {
4687 ctx->cert->sec_cb = cb;
4688 }
4689
4690 int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4691 const SSL_CTX *ctx,
4692 int op, int bits,
4693 int nid,
4694 void *other,
4695 void *ex) {
4696 return ctx->cert->sec_cb;
4697 }
4698
4699 void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4700 {
4701 ctx->cert->sec_ex = ex;
4702 }
4703
4704 void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4705 {
4706 return ctx->cert->sec_ex;
4707 }
4708
4709 /*
4710 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4711 * can return unsigned long, instead of the generic long return value from the
4712 * control interface.
4713 */
4714 unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4715 {
4716 return ctx->options;
4717 }
4718
4719 unsigned long SSL_get_options(const SSL *s)
4720 {
4721 return s->options;
4722 }
4723
4724 unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4725 {
4726 return ctx->options |= op;
4727 }
4728
4729 unsigned long SSL_set_options(SSL *s, unsigned long op)
4730 {
4731 return s->options |= op;
4732 }
4733
4734 unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4735 {
4736 return ctx->options &= ~op;
4737 }
4738
4739 unsigned long SSL_clear_options(SSL *s, unsigned long op)
4740 {
4741 return s->options &= ~op;
4742 }
4743
4744 STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4745 {
4746 return s->verified_chain;
4747 }
4748
4749 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4750
4751 #ifndef OPENSSL_NO_CT
4752
4753 /*
4754 * Moves SCTs from the |src| stack to the |dst| stack.
4755 * The source of each SCT will be set to |origin|.
4756 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4757 * the caller.
4758 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4759 */
4760 static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4761 sct_source_t origin)
4762 {
4763 int scts_moved = 0;
4764 SCT *sct = NULL;
4765
4766 if (*dst == NULL) {
4767 *dst = sk_SCT_new_null();
4768 if (*dst == NULL) {
4769 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4770 goto err;
4771 }
4772 }
4773
4774 while ((sct = sk_SCT_pop(src)) != NULL) {
4775 if (SCT_set_source(sct, origin) != 1)
4776 goto err;
4777
4778 if (sk_SCT_push(*dst, sct) <= 0)
4779 goto err;
4780 scts_moved += 1;
4781 }
4782
4783 return scts_moved;
4784 err:
4785 if (sct != NULL)
4786 sk_SCT_push(src, sct); /* Put the SCT back */
4787 return -1;
4788 }
4789
4790 /*
4791 * Look for data collected during ServerHello and parse if found.
4792 * Returns the number of SCTs extracted.
4793 */
4794 static int ct_extract_tls_extension_scts(SSL *s)
4795 {
4796 int scts_extracted = 0;
4797
4798 if (s->ext.scts != NULL) {
4799 const unsigned char *p = s->ext.scts;
4800 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4801
4802 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4803
4804 SCT_LIST_free(scts);
4805 }
4806
4807 return scts_extracted;
4808 }
4809
4810 /*
4811 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4812 * contains an SCT X509 extension. They will be stored in |s->scts|.
4813 * Returns:
4814 * - The number of SCTs extracted, assuming an OCSP response exists.
4815 * - 0 if no OCSP response exists or it contains no SCTs.
4816 * - A negative integer if an error occurs.
4817 */
4818 static int ct_extract_ocsp_response_scts(SSL *s)
4819 {
4820 # ifndef OPENSSL_NO_OCSP
4821 int scts_extracted = 0;
4822 const unsigned char *p;
4823 OCSP_BASICRESP *br = NULL;
4824 OCSP_RESPONSE *rsp = NULL;
4825 STACK_OF(SCT) *scts = NULL;
4826 int i;
4827
4828 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4829 goto err;
4830
4831 p = s->ext.ocsp.resp;
4832 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4833 if (rsp == NULL)
4834 goto err;
4835
4836 br = OCSP_response_get1_basic(rsp);
4837 if (br == NULL)
4838 goto err;
4839
4840 for (i = 0; i < OCSP_resp_count(br); ++i) {
4841 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4842
4843 if (single == NULL)
4844 continue;
4845
4846 scts =
4847 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4848 scts_extracted =
4849 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4850 if (scts_extracted < 0)
4851 goto err;
4852 }
4853 err:
4854 SCT_LIST_free(scts);
4855 OCSP_BASICRESP_free(br);
4856 OCSP_RESPONSE_free(rsp);
4857 return scts_extracted;
4858 # else
4859 /* Behave as if no OCSP response exists */
4860 return 0;
4861 # endif
4862 }
4863
4864 /*
4865 * Attempts to extract SCTs from the peer certificate.
4866 * Return the number of SCTs extracted, or a negative integer if an error
4867 * occurs.
4868 */
4869 static int ct_extract_x509v3_extension_scts(SSL *s)
4870 {
4871 int scts_extracted = 0;
4872 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4873
4874 if (cert != NULL) {
4875 STACK_OF(SCT) *scts =
4876 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4877
4878 scts_extracted =
4879 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4880
4881 SCT_LIST_free(scts);
4882 }
4883
4884 return scts_extracted;
4885 }
4886
4887 /*
4888 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4889 * response (if it exists) and X509v3 extensions in the certificate.
4890 * Returns NULL if an error occurs.
4891 */
4892 const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4893 {
4894 if (!s->scts_parsed) {
4895 if (ct_extract_tls_extension_scts(s) < 0 ||
4896 ct_extract_ocsp_response_scts(s) < 0 ||
4897 ct_extract_x509v3_extension_scts(s) < 0)
4898 goto err;
4899
4900 s->scts_parsed = 1;
4901 }
4902 return s->scts;
4903 err:
4904 return NULL;
4905 }
4906
4907 static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4908 const STACK_OF(SCT) *scts, void *unused_arg)
4909 {
4910 return 1;
4911 }
4912
4913 static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4914 const STACK_OF(SCT) *scts, void *unused_arg)
4915 {
4916 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4917 int i;
4918
4919 for (i = 0; i < count; ++i) {
4920 SCT *sct = sk_SCT_value(scts, i);
4921 int status = SCT_get_validation_status(sct);
4922
4923 if (status == SCT_VALIDATION_STATUS_VALID)
4924 return 1;
4925 }
4926 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4927 return 0;
4928 }
4929
4930 int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4931 void *arg)
4932 {
4933 /*
4934 * Since code exists that uses the custom extension handler for CT, look
4935 * for this and throw an error if they have already registered to use CT.
4936 */
4937 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4938 TLSEXT_TYPE_signed_certificate_timestamp))
4939 {
4940 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4941 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4942 return 0;
4943 }
4944
4945 if (callback != NULL) {
4946 /*
4947 * If we are validating CT, then we MUST accept SCTs served via OCSP
4948 */
4949 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4950 return 0;
4951 }
4952
4953 s->ct_validation_callback = callback;
4954 s->ct_validation_callback_arg = arg;
4955
4956 return 1;
4957 }
4958
4959 int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4960 ssl_ct_validation_cb callback, void *arg)
4961 {
4962 /*
4963 * Since code exists that uses the custom extension handler for CT, look for
4964 * this and throw an error if they have already registered to use CT.
4965 */
4966 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4967 TLSEXT_TYPE_signed_certificate_timestamp))
4968 {
4969 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4970 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4971 return 0;
4972 }
4973
4974 ctx->ct_validation_callback = callback;
4975 ctx->ct_validation_callback_arg = arg;
4976 return 1;
4977 }
4978
4979 int SSL_ct_is_enabled(const SSL *s)
4980 {
4981 return s->ct_validation_callback != NULL;
4982 }
4983
4984 int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4985 {
4986 return ctx->ct_validation_callback != NULL;
4987 }
4988
4989 int ssl_validate_ct(SSL *s)
4990 {
4991 int ret = 0;
4992 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4993 X509 *issuer;
4994 SSL_DANE *dane = &s->dane;
4995 CT_POLICY_EVAL_CTX *ctx = NULL;
4996 const STACK_OF(SCT) *scts;
4997
4998 /*
4999 * If no callback is set, the peer is anonymous, or its chain is invalid,
5000 * skip SCT validation - just return success. Applications that continue
5001 * handshakes without certificates, with unverified chains, or pinned leaf
5002 * certificates are outside the scope of the WebPKI and CT.
5003 *
5004 * The above exclusions notwithstanding the vast majority of peers will
5005 * have rather ordinary certificate chains validated by typical
5006 * applications that perform certificate verification and therefore will
5007 * process SCTs when enabled.
5008 */
5009 if (s->ct_validation_callback == NULL || cert == NULL ||
5010 s->verify_result != X509_V_OK ||
5011 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
5012 return 1;
5013
5014 /*
5015 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
5016 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
5017 */
5018 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
5019 switch (dane->mtlsa->usage) {
5020 case DANETLS_USAGE_DANE_TA:
5021 case DANETLS_USAGE_DANE_EE:
5022 return 1;
5023 }
5024 }
5025
5026 ctx = CT_POLICY_EVAL_CTX_new();
5027 if (ctx == NULL) {
5028 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
5029 ERR_R_MALLOC_FAILURE);
5030 goto end;
5031 }
5032
5033 issuer = sk_X509_value(s->verified_chain, 1);
5034 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5035 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5036 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5037 CT_POLICY_EVAL_CTX_set_time(
5038 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5039
5040 scts = SSL_get0_peer_scts(s);
5041
5042 /*
5043 * This function returns success (> 0) only when all the SCTs are valid, 0
5044 * when some are invalid, and < 0 on various internal errors (out of
5045 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5046 * reason to abort the handshake, that decision is up to the callback.
5047 * Therefore, we error out only in the unexpected case that the return
5048 * value is negative.
5049 *
5050 * XXX: One might well argue that the return value of this function is an
5051 * unfortunate design choice. Its job is only to determine the validation
5052 * status of each of the provided SCTs. So long as it correctly separates
5053 * the wheat from the chaff it should return success. Failure in this case
5054 * ought to correspond to an inability to carry out its duties.
5055 */
5056 if (SCT_LIST_validate(scts, ctx) < 0) {
5057 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5058 SSL_R_SCT_VERIFICATION_FAILED);
5059 goto end;
5060 }
5061
5062 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5063 if (ret < 0)
5064 ret = 0; /* This function returns 0 on failure */
5065 if (!ret)
5066 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5067 SSL_R_CALLBACK_FAILED);
5068
5069 end:
5070 CT_POLICY_EVAL_CTX_free(ctx);
5071 /*
5072 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5073 * failure return code here. Also the application may wish the complete
5074 * the handshake, and then disconnect cleanly at a higher layer, after
5075 * checking the verification status of the completed connection.
5076 *
5077 * We therefore force a certificate verification failure which will be
5078 * visible via SSL_get_verify_result() and cached as part of any resumed
5079 * session.
5080 *
5081 * Note: the permissive callback is for information gathering only, always
5082 * returns success, and does not affect verification status. Only the
5083 * strict callback or a custom application-specified callback can trigger
5084 * connection failure or record a verification error.
5085 */
5086 if (ret <= 0)
5087 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5088 return ret;
5089 }
5090
5091 int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5092 {
5093 switch (validation_mode) {
5094 default:
5095 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5096 return 0;
5097 case SSL_CT_VALIDATION_PERMISSIVE:
5098 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5099 case SSL_CT_VALIDATION_STRICT:
5100 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5101 }
5102 }
5103
5104 int SSL_enable_ct(SSL *s, int validation_mode)
5105 {
5106 switch (validation_mode) {
5107 default:
5108 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5109 return 0;
5110 case SSL_CT_VALIDATION_PERMISSIVE:
5111 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5112 case SSL_CT_VALIDATION_STRICT:
5113 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5114 }
5115 }
5116
5117 int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5118 {
5119 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5120 }
5121
5122 int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5123 {
5124 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5125 }
5126
5127 void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5128 {
5129 CTLOG_STORE_free(ctx->ctlog_store);
5130 ctx->ctlog_store = logs;
5131 }
5132
5133 const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5134 {
5135 return ctx->ctlog_store;
5136 }
5137
5138 #endif /* OPENSSL_NO_CT */
5139
5140 void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5141 void *arg)
5142 {
5143 c->client_hello_cb = cb;
5144 c->client_hello_cb_arg = arg;
5145 }
5146
5147 int SSL_client_hello_isv2(SSL *s)
5148 {
5149 if (s->clienthello == NULL)
5150 return 0;
5151 return s->clienthello->isv2;
5152 }
5153
5154 unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5155 {
5156 if (s->clienthello == NULL)
5157 return 0;
5158 return s->clienthello->legacy_version;
5159 }
5160
5161 size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5162 {
5163 if (s->clienthello == NULL)
5164 return 0;
5165 if (out != NULL)
5166 *out = s->clienthello->random;
5167 return SSL3_RANDOM_SIZE;
5168 }
5169
5170 size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5171 {
5172 if (s->clienthello == NULL)
5173 return 0;
5174 if (out != NULL)
5175 *out = s->clienthello->session_id;
5176 return s->clienthello->session_id_len;
5177 }
5178
5179 size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5180 {
5181 if (s->clienthello == NULL)
5182 return 0;
5183 if (out != NULL)
5184 *out = PACKET_data(&s->clienthello->ciphersuites);
5185 return PACKET_remaining(&s->clienthello->ciphersuites);
5186 }
5187
5188 size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5189 {
5190 if (s->clienthello == NULL)
5191 return 0;
5192 if (out != NULL)
5193 *out = s->clienthello->compressions;
5194 return s->clienthello->compressions_len;
5195 }
5196
5197 int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5198 {
5199 RAW_EXTENSION *ext;
5200 int *present;
5201 size_t num = 0, i;
5202
5203 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5204 return 0;
5205 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5206 ext = s->clienthello->pre_proc_exts + i;
5207 if (ext->present)
5208 num++;
5209 }
5210 if (num == 0) {
5211 *out = NULL;
5212 *outlen = 0;
5213 return 1;
5214 }
5215 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5216 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5217 ERR_R_MALLOC_FAILURE);
5218 return 0;
5219 }
5220 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5221 ext = s->clienthello->pre_proc_exts + i;
5222 if (ext->present) {
5223 if (ext->received_order >= num)
5224 goto err;
5225 present[ext->received_order] = ext->type;
5226 }
5227 }
5228 *out = present;
5229 *outlen = num;
5230 return 1;
5231 err:
5232 OPENSSL_free(present);
5233 return 0;
5234 }
5235
5236 int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5237 size_t *outlen)
5238 {
5239 size_t i;
5240 RAW_EXTENSION *r;
5241
5242 if (s->clienthello == NULL)
5243 return 0;
5244 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5245 r = s->clienthello->pre_proc_exts + i;
5246 if (r->present && r->type == type) {
5247 if (out != NULL)
5248 *out = PACKET_data(&r->data);
5249 if (outlen != NULL)
5250 *outlen = PACKET_remaining(&r->data);
5251 return 1;
5252 }
5253 }
5254 return 0;
5255 }
5256
5257 int SSL_free_buffers(SSL *ssl)
5258 {
5259 RECORD_LAYER *rl = &ssl->rlayer;
5260
5261 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5262 return 0;
5263
5264 RECORD_LAYER_release(rl);
5265 return 1;
5266 }
5267
5268 int SSL_alloc_buffers(SSL *ssl)
5269 {
5270 return ssl3_setup_buffers(ssl);
5271 }
5272
5273 void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5274 {
5275 ctx->keylog_callback = cb;
5276 }
5277
5278 SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5279 {
5280 return ctx->keylog_callback;
5281 }
5282
5283 static int nss_keylog_int(const char *prefix,
5284 SSL *ssl,
5285 const uint8_t *parameter_1,
5286 size_t parameter_1_len,
5287 const uint8_t *parameter_2,
5288 size_t parameter_2_len)
5289 {
5290 char *out = NULL;
5291 char *cursor = NULL;
5292 size_t out_len = 0;
5293 size_t i;
5294 size_t prefix_len;
5295
5296 if (ssl->ctx->keylog_callback == NULL)
5297 return 1;
5298
5299 /*
5300 * Our output buffer will contain the following strings, rendered with
5301 * space characters in between, terminated by a NULL character: first the
5302 * prefix, then the first parameter, then the second parameter. The
5303 * meaning of each parameter depends on the specific key material being
5304 * logged. Note that the first and second parameters are encoded in
5305 * hexadecimal, so we need a buffer that is twice their lengths.
5306 */
5307 prefix_len = strlen(prefix);
5308 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5309 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5310 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5311 ERR_R_MALLOC_FAILURE);
5312 return 0;
5313 }
5314
5315 strcpy(cursor, prefix);
5316 cursor += prefix_len;
5317 *cursor++ = ' ';
5318
5319 for (i = 0; i < parameter_1_len; i++) {
5320 sprintf(cursor, "%02x", parameter_1[i]);
5321 cursor += 2;
5322 }
5323 *cursor++ = ' ';
5324
5325 for (i = 0; i < parameter_2_len; i++) {
5326 sprintf(cursor, "%02x", parameter_2[i]);
5327 cursor += 2;
5328 }
5329 *cursor = '\0';
5330
5331 ssl->ctx->keylog_callback(ssl, (const char *)out);
5332 OPENSSL_clear_free(out, out_len);
5333 return 1;
5334
5335 }
5336
5337 int ssl_log_rsa_client_key_exchange(SSL *ssl,
5338 const uint8_t *encrypted_premaster,
5339 size_t encrypted_premaster_len,
5340 const uint8_t *premaster,
5341 size_t premaster_len)
5342 {
5343 if (encrypted_premaster_len < 8) {
5344 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5345 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5346 return 0;
5347 }
5348
5349 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5350 return nss_keylog_int("RSA",
5351 ssl,
5352 encrypted_premaster,
5353 8,
5354 premaster,
5355 premaster_len);
5356 }
5357
5358 int ssl_log_secret(SSL *ssl,
5359 const char *label,
5360 const uint8_t *secret,
5361 size_t secret_len)
5362 {
5363 return nss_keylog_int(label,
5364 ssl,
5365 ssl->s3.client_random,
5366 SSL3_RANDOM_SIZE,
5367 secret,
5368 secret_len);
5369 }
5370
5371 #define SSLV2_CIPHER_LEN 3
5372
5373 int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5374 {
5375 int n;
5376
5377 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5378
5379 if (PACKET_remaining(cipher_suites) == 0) {
5380 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5381 SSL_R_NO_CIPHERS_SPECIFIED);
5382 return 0;
5383 }
5384
5385 if (PACKET_remaining(cipher_suites) % n != 0) {
5386 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5387 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5388 return 0;
5389 }
5390
5391 OPENSSL_free(s->s3.tmp.ciphers_raw);
5392 s->s3.tmp.ciphers_raw = NULL;
5393 s->s3.tmp.ciphers_rawlen = 0;
5394
5395 if (sslv2format) {
5396 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5397 PACKET sslv2ciphers = *cipher_suites;
5398 unsigned int leadbyte;
5399 unsigned char *raw;
5400
5401 /*
5402 * We store the raw ciphers list in SSLv3+ format so we need to do some
5403 * preprocessing to convert the list first. If there are any SSLv2 only
5404 * ciphersuites with a non-zero leading byte then we are going to
5405 * slightly over allocate because we won't store those. But that isn't a
5406 * problem.
5407 */
5408 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5409 s->s3.tmp.ciphers_raw = raw;
5410 if (raw == NULL) {
5411 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5412 ERR_R_MALLOC_FAILURE);
5413 return 0;
5414 }
5415 for (s->s3.tmp.ciphers_rawlen = 0;
5416 PACKET_remaining(&sslv2ciphers) > 0;
5417 raw += TLS_CIPHER_LEN) {
5418 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5419 || (leadbyte == 0
5420 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5421 TLS_CIPHER_LEN))
5422 || (leadbyte != 0
5423 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5424 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5425 SSL_R_BAD_PACKET);
5426 OPENSSL_free(s->s3.tmp.ciphers_raw);
5427 s->s3.tmp.ciphers_raw = NULL;
5428 s->s3.tmp.ciphers_rawlen = 0;
5429 return 0;
5430 }
5431 if (leadbyte == 0)
5432 s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5433 }
5434 } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw,
5435 &s->s3.tmp.ciphers_rawlen)) {
5436 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5437 ERR_R_INTERNAL_ERROR);
5438 return 0;
5439 }
5440 return 1;
5441 }
5442
5443 int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5444 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5445 STACK_OF(SSL_CIPHER) **scsvs)
5446 {
5447 PACKET pkt;
5448
5449 if (!PACKET_buf_init(&pkt, bytes, len))
5450 return 0;
5451 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5452 }
5453
5454 int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5455 STACK_OF(SSL_CIPHER) **skp,
5456 STACK_OF(SSL_CIPHER) **scsvs_out,
5457 int sslv2format, int fatal)
5458 {
5459 const SSL_CIPHER *c;
5460 STACK_OF(SSL_CIPHER) *sk = NULL;
5461 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5462 int n;
5463 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5464 unsigned char cipher[SSLV2_CIPHER_LEN];
5465
5466 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5467
5468 if (PACKET_remaining(cipher_suites) == 0) {
5469 if (fatal)
5470 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5471 SSL_R_NO_CIPHERS_SPECIFIED);
5472 else
5473 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5474 return 0;
5475 }
5476
5477 if (PACKET_remaining(cipher_suites) % n != 0) {
5478 if (fatal)
5479 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5480 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5481 else
5482 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5483 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5484 return 0;
5485 }
5486
5487 sk = sk_SSL_CIPHER_new_null();
5488 scsvs = sk_SSL_CIPHER_new_null();
5489 if (sk == NULL || scsvs == NULL) {
5490 if (fatal)
5491 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5492 ERR_R_MALLOC_FAILURE);
5493 else
5494 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5495 goto err;
5496 }
5497
5498 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5499 /*
5500 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5501 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5502 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5503 */
5504 if (sslv2format && cipher[0] != '\0')
5505 continue;
5506
5507 /* For SSLv2-compat, ignore leading 0-byte. */
5508 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5509 if (c != NULL) {
5510 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5511 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5512 if (fatal)
5513 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5514 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5515 else
5516 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5517 goto err;
5518 }
5519 }
5520 }
5521 if (PACKET_remaining(cipher_suites) > 0) {
5522 if (fatal)
5523 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5524 SSL_R_BAD_LENGTH);
5525 else
5526 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5527 goto err;
5528 }
5529
5530 if (skp != NULL)
5531 *skp = sk;
5532 else
5533 sk_SSL_CIPHER_free(sk);
5534 if (scsvs_out != NULL)
5535 *scsvs_out = scsvs;
5536 else
5537 sk_SSL_CIPHER_free(scsvs);
5538 return 1;
5539 err:
5540 sk_SSL_CIPHER_free(sk);
5541 sk_SSL_CIPHER_free(scsvs);
5542 return 0;
5543 }
5544
5545 int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5546 {
5547 ctx->max_early_data = max_early_data;
5548
5549 return 1;
5550 }
5551
5552 uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5553 {
5554 return ctx->max_early_data;
5555 }
5556
5557 int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5558 {
5559 s->max_early_data = max_early_data;
5560
5561 return 1;
5562 }
5563
5564 uint32_t SSL_get_max_early_data(const SSL *s)
5565 {
5566 return s->max_early_data;
5567 }
5568
5569 int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5570 {
5571 ctx->recv_max_early_data = recv_max_early_data;
5572
5573 return 1;
5574 }
5575
5576 uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5577 {
5578 return ctx->recv_max_early_data;
5579 }
5580
5581 int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5582 {
5583 s->recv_max_early_data = recv_max_early_data;
5584
5585 return 1;
5586 }
5587
5588 uint32_t SSL_get_recv_max_early_data(const SSL *s)
5589 {
5590 return s->recv_max_early_data;
5591 }
5592
5593 __owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5594 {
5595 /* Return any active Max Fragment Len extension */
5596 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5597 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5598
5599 /* return current SSL connection setting */
5600 return ssl->max_send_fragment;
5601 }
5602
5603 __owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5604 {
5605 /* Return a value regarding an active Max Fragment Len extension */
5606 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5607 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5608 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5609
5610 /* else limit |split_send_fragment| to current |max_send_fragment| */
5611 if (ssl->split_send_fragment > ssl->max_send_fragment)
5612 return ssl->max_send_fragment;
5613
5614 /* return current SSL connection setting */
5615 return ssl->split_send_fragment;
5616 }
5617
5618 int SSL_stateless(SSL *s)
5619 {
5620 int ret;
5621
5622 /* Ensure there is no state left over from a previous invocation */
5623 if (!SSL_clear(s))
5624 return 0;
5625
5626 ERR_clear_error();
5627
5628 s->s3.flags |= TLS1_FLAGS_STATELESS;
5629 ret = SSL_accept(s);
5630 s->s3.flags &= ~TLS1_FLAGS_STATELESS;
5631
5632 if (ret > 0 && s->ext.cookieok)
5633 return 1;
5634
5635 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5636 return 0;
5637
5638 return -1;
5639 }
5640
5641 void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5642 {
5643 ctx->pha_enabled = val;
5644 }
5645
5646 void SSL_set_post_handshake_auth(SSL *ssl, int val)
5647 {
5648 ssl->pha_enabled = val;
5649 }
5650
5651 int SSL_verify_client_post_handshake(SSL *ssl)
5652 {
5653 if (!SSL_IS_TLS13(ssl)) {
5654 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5655 return 0;
5656 }
5657 if (!ssl->server) {
5658 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5659 return 0;
5660 }
5661
5662 if (!SSL_is_init_finished(ssl)) {
5663 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5664 return 0;
5665 }
5666
5667 switch (ssl->post_handshake_auth) {
5668 case SSL_PHA_NONE:
5669 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5670 return 0;
5671 default:
5672 case SSL_PHA_EXT_SENT:
5673 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5674 return 0;
5675 case SSL_PHA_EXT_RECEIVED:
5676 break;
5677 case SSL_PHA_REQUEST_PENDING:
5678 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5679 return 0;
5680 case SSL_PHA_REQUESTED:
5681 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5682 return 0;
5683 }
5684
5685 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5686
5687 /* checks verify_mode and algorithm_auth */
5688 if (!send_certificate_request(ssl)) {
5689 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5690 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5691 return 0;
5692 }
5693
5694 ossl_statem_set_in_init(ssl, 1);
5695 return 1;
5696 }
5697
5698 int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5699 SSL_CTX_generate_session_ticket_fn gen_cb,
5700 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5701 void *arg)
5702 {
5703 ctx->generate_ticket_cb = gen_cb;
5704 ctx->decrypt_ticket_cb = dec_cb;
5705 ctx->ticket_cb_data = arg;
5706 return 1;
5707 }
5708
5709 void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5710 SSL_allow_early_data_cb_fn cb,
5711 void *arg)
5712 {
5713 ctx->allow_early_data_cb = cb;
5714 ctx->allow_early_data_cb_data = arg;
5715 }
5716
5717 void SSL_set_allow_early_data_cb(SSL *s,
5718 SSL_allow_early_data_cb_fn cb,
5719 void *arg)
5720 {
5721 s->allow_early_data_cb = cb;
5722 s->allow_early_data_cb_data = arg;
5723 }