]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
3c5e155066490f42cd4ef76c6b664da123ea005f
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/ocsp.h>
16 #include <openssl/conf.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/dh.h>
19 #include <openssl/bn.h>
20 #include "ssl_locl.h"
21 #include <openssl/ct.h>
22
23 SSL3_ENC_METHOD const TLSv1_enc_data = {
24 tls1_enc,
25 tls1_mac,
26 tls1_setup_key_block,
27 tls1_generate_master_secret,
28 tls1_change_cipher_state,
29 tls1_final_finish_mac,
30 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
31 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
32 tls1_alert_code,
33 tls1_export_keying_material,
34 0,
35 ssl3_set_handshake_header,
36 tls_close_construct_packet,
37 ssl3_handshake_write
38 };
39
40 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
41 tls1_enc,
42 tls1_mac,
43 tls1_setup_key_block,
44 tls1_generate_master_secret,
45 tls1_change_cipher_state,
46 tls1_final_finish_mac,
47 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
48 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
49 tls1_alert_code,
50 tls1_export_keying_material,
51 SSL_ENC_FLAG_EXPLICIT_IV,
52 ssl3_set_handshake_header,
53 tls_close_construct_packet,
54 ssl3_handshake_write
55 };
56
57 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
58 tls1_enc,
59 tls1_mac,
60 tls1_setup_key_block,
61 tls1_generate_master_secret,
62 tls1_change_cipher_state,
63 tls1_final_finish_mac,
64 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
65 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
66 tls1_alert_code,
67 tls1_export_keying_material,
68 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
69 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
70 ssl3_set_handshake_header,
71 tls_close_construct_packet,
72 ssl3_handshake_write
73 };
74
75 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
76 tls13_enc,
77 tls1_mac,
78 tls13_setup_key_block,
79 tls13_generate_master_secret,
80 tls13_change_cipher_state,
81 tls13_final_finish_mac,
82 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls13_alert_code,
85 tls1_export_keying_material,
86 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
87 ssl3_set_handshake_header,
88 tls_close_construct_packet,
89 ssl3_handshake_write
90 };
91
92 long tls1_default_timeout(void)
93 {
94 /*
95 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
96 * http, the cache would over fill
97 */
98 return (60 * 60 * 2);
99 }
100
101 int tls1_new(SSL *s)
102 {
103 if (!ssl3_new(s))
104 return 0;
105 if (!s->method->ssl_clear(s))
106 return 0;
107
108 return 1;
109 }
110
111 void tls1_free(SSL *s)
112 {
113 OPENSSL_free(s->ext.session_ticket);
114 ssl3_free(s);
115 }
116
117 int tls1_clear(SSL *s)
118 {
119 if (!ssl3_clear(s))
120 return 0;
121
122 if (s->method->version == TLS_ANY_VERSION)
123 s->version = TLS_MAX_VERSION;
124 else
125 s->version = s->method->version;
126
127 return 1;
128 }
129
130 #ifndef OPENSSL_NO_EC
131
132 typedef struct {
133 int nid; /* Curve NID */
134 int secbits; /* Bits of security (from SP800-57) */
135 unsigned int flags; /* Flags: currently just field type */
136 } tls_curve_info;
137
138 /*
139 * Table of curve information.
140 * Do not delete entries or reorder this array! It is used as a lookup
141 * table: the index of each entry is one less than the TLS curve id.
142 */
143 static const tls_curve_info nid_list[] = {
144 {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
145 {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
146 {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
147 {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
148 {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
149 {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
150 {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
151 {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
152 {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
153 {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
154 {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
155 {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
156 {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
157 {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
158 {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
159 {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
160 {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
161 {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
162 {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
163 {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
164 {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
165 {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
166 {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
167 {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
168 {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
169 {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
170 {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
171 {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
172 {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
173 };
174
175 static const unsigned char ecformats_default[] = {
176 TLSEXT_ECPOINTFORMAT_uncompressed,
177 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
178 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
179 };
180
181 /* The default curves */
182 static const unsigned char eccurves_default[] = {
183 0, 29, /* X25519 (29) */
184 0, 23, /* secp256r1 (23) */
185 0, 25, /* secp521r1 (25) */
186 0, 24, /* secp384r1 (24) */
187 };
188
189 static const unsigned char suiteb_curves[] = {
190 0, TLSEXT_curve_P_256,
191 0, TLSEXT_curve_P_384
192 };
193
194 int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
195 {
196 const tls_curve_info *cinfo;
197 /* ECC curves from RFC 4492 and RFC 7027 */
198 if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
199 return 0;
200 cinfo = nid_list + curve_id - 1;
201 if (pflags)
202 *pflags = cinfo->flags;
203 return cinfo->nid;
204 }
205
206 int tls1_ec_nid2curve_id(int nid)
207 {
208 size_t i;
209 for (i = 0; i < OSSL_NELEM(nid_list); i++) {
210 if (nid_list[i].nid == nid)
211 return (int)(i + 1);
212 }
213 return 0;
214 }
215
216 /*
217 * Get curves list, if "sess" is set return client curves otherwise
218 * preferred list.
219 * Sets |num_curves| to the number of curves in the list, i.e.,
220 * the length of |pcurves| is 2 * num_curves.
221 * Returns 1 on success and 0 if the client curves list has invalid format.
222 * The latter indicates an internal error: we should not be accepting such
223 * lists in the first place.
224 * TODO(emilia): we should really be storing the curves list in explicitly
225 * parsed form instead. (However, this would affect binary compatibility
226 * so cannot happen in the 1.0.x series.)
227 */
228 int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
229 size_t *num_curves)
230 {
231 size_t pcurveslen = 0;
232
233 if (sess) {
234 *pcurves = s->session->ext.supportedgroups;
235 pcurveslen = s->session->ext.supportedgroups_len;
236 } else {
237 /* For Suite B mode only include P-256, P-384 */
238 switch (tls1_suiteb(s)) {
239 case SSL_CERT_FLAG_SUITEB_128_LOS:
240 *pcurves = suiteb_curves;
241 pcurveslen = sizeof(suiteb_curves);
242 break;
243
244 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
245 *pcurves = suiteb_curves;
246 pcurveslen = 2;
247 break;
248
249 case SSL_CERT_FLAG_SUITEB_192_LOS:
250 *pcurves = suiteb_curves + 2;
251 pcurveslen = 2;
252 break;
253 default:
254 *pcurves = s->ext.supportedgroups;
255 pcurveslen = s->ext.supportedgroups_len;
256 }
257 if (!*pcurves) {
258 *pcurves = eccurves_default;
259 pcurveslen = sizeof(eccurves_default);
260 }
261 }
262
263 /* We do not allow odd length arrays to enter the system. */
264 if (pcurveslen & 1) {
265 SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
266 *num_curves = 0;
267 return 0;
268 }
269 *num_curves = pcurveslen / 2;
270 return 1;
271 }
272
273 /* See if curve is allowed by security callback */
274 int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
275 {
276 const tls_curve_info *cinfo;
277 if (curve[0])
278 return 1;
279 if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
280 return 0;
281 cinfo = &nid_list[curve[1] - 1];
282 # ifdef OPENSSL_NO_EC2M
283 if (cinfo->flags & TLS_CURVE_CHAR2)
284 return 0;
285 # endif
286 return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
287 }
288
289 /* Check a curve is one of our preferences */
290 int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
291 {
292 const unsigned char *curves;
293 size_t num_curves, i;
294 unsigned int suiteb_flags = tls1_suiteb(s);
295 if (len != 3 || p[0] != NAMED_CURVE_TYPE)
296 return 0;
297 /* Check curve matches Suite B preferences */
298 if (suiteb_flags) {
299 unsigned long cid = s->s3->tmp.new_cipher->id;
300 if (p[1])
301 return 0;
302 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
303 if (p[2] != TLSEXT_curve_P_256)
304 return 0;
305 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
306 if (p[2] != TLSEXT_curve_P_384)
307 return 0;
308 } else /* Should never happen */
309 return 0;
310 }
311 if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
312 return 0;
313 for (i = 0; i < num_curves; i++, curves += 2) {
314 if (p[1] == curves[0] && p[2] == curves[1])
315 return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
316 }
317 return 0;
318 }
319
320 /*-
321 * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
322 * if there is no match.
323 * For nmatch == -1, return number of matches
324 * For nmatch == -2, return the NID of the group to use for
325 * an EC tmp key, or NID_undef if there is no match.
326 */
327 int tls1_shared_group(SSL *s, int nmatch)
328 {
329 const unsigned char *pref, *supp;
330 size_t num_pref, num_supp, i, j;
331 int k;
332
333 /* Can't do anything on client side */
334 if (s->server == 0)
335 return -1;
336 if (nmatch == -2) {
337 if (tls1_suiteb(s)) {
338 /*
339 * For Suite B ciphersuite determines curve: we already know
340 * these are acceptable due to previous checks.
341 */
342 unsigned long cid = s->s3->tmp.new_cipher->id;
343
344 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
345 return NID_X9_62_prime256v1; /* P-256 */
346 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
347 return NID_secp384r1; /* P-384 */
348 /* Should never happen */
349 return NID_undef;
350 }
351 /* If not Suite B just return first preference shared curve */
352 nmatch = 0;
353 }
354 /*
355 * Avoid truncation. tls1_get_curvelist takes an int
356 * but s->options is a long...
357 */
358 if (!tls1_get_curvelist(s,
359 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
360 &supp, &num_supp))
361 /* In practice, NID_undef == 0 but let's be precise. */
362 return nmatch == -1 ? 0 : NID_undef;
363 if (!tls1_get_curvelist(s,
364 (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
365 &pref, &num_pref))
366 return nmatch == -1 ? 0 : NID_undef;
367
368 for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
369 const unsigned char *tsupp = supp;
370
371 for (j = 0; j < num_supp; j++, tsupp += 2) {
372 if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
373 if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
374 continue;
375 if (nmatch == k) {
376 int id = (pref[0] << 8) | pref[1];
377
378 return tls1_ec_curve_id2nid(id, NULL);
379 }
380 k++;
381 }
382 }
383 }
384 if (nmatch == -1)
385 return k;
386 /* Out of range (nmatch > k). */
387 return NID_undef;
388 }
389
390 int tls1_set_groups(unsigned char **pext, size_t *pextlen,
391 int *groups, size_t ngroups)
392 {
393 unsigned char *glist, *p;
394 size_t i;
395 /*
396 * Bitmap of groups included to detect duplicates: only works while group
397 * ids < 32
398 */
399 unsigned long dup_list = 0;
400 glist = OPENSSL_malloc(ngroups * 2);
401 if (glist == NULL)
402 return 0;
403 for (i = 0, p = glist; i < ngroups; i++) {
404 unsigned long idmask;
405 int id;
406 /* TODO(TLS1.3): Convert for DH groups */
407 id = tls1_ec_nid2curve_id(groups[i]);
408 idmask = 1L << id;
409 if (!id || (dup_list & idmask)) {
410 OPENSSL_free(glist);
411 return 0;
412 }
413 dup_list |= idmask;
414 s2n(id, p);
415 }
416 OPENSSL_free(*pext);
417 *pext = glist;
418 *pextlen = ngroups * 2;
419 return 1;
420 }
421
422 # define MAX_CURVELIST 28
423
424 typedef struct {
425 size_t nidcnt;
426 int nid_arr[MAX_CURVELIST];
427 } nid_cb_st;
428
429 static int nid_cb(const char *elem, int len, void *arg)
430 {
431 nid_cb_st *narg = arg;
432 size_t i;
433 int nid;
434 char etmp[20];
435 if (elem == NULL)
436 return 0;
437 if (narg->nidcnt == MAX_CURVELIST)
438 return 0;
439 if (len > (int)(sizeof(etmp) - 1))
440 return 0;
441 memcpy(etmp, elem, len);
442 etmp[len] = 0;
443 nid = EC_curve_nist2nid(etmp);
444 if (nid == NID_undef)
445 nid = OBJ_sn2nid(etmp);
446 if (nid == NID_undef)
447 nid = OBJ_ln2nid(etmp);
448 if (nid == NID_undef)
449 return 0;
450 for (i = 0; i < narg->nidcnt; i++)
451 if (narg->nid_arr[i] == nid)
452 return 0;
453 narg->nid_arr[narg->nidcnt++] = nid;
454 return 1;
455 }
456
457 /* Set groups based on a colon separate list */
458 int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
459 {
460 nid_cb_st ncb;
461 ncb.nidcnt = 0;
462 if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
463 return 0;
464 if (pext == NULL)
465 return 1;
466 return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
467 }
468
469 /* For an EC key set TLS id and required compression based on parameters */
470 static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
471 EC_KEY *ec)
472 {
473 int id;
474 const EC_GROUP *grp;
475 if (!ec)
476 return 0;
477 /* Determine if it is a prime field */
478 grp = EC_KEY_get0_group(ec);
479 if (!grp)
480 return 0;
481 /* Determine curve ID */
482 id = EC_GROUP_get_curve_name(grp);
483 id = tls1_ec_nid2curve_id(id);
484 /* If no id return error: we don't support arbitrary explicit curves */
485 if (id == 0)
486 return 0;
487 curve_id[0] = 0;
488 curve_id[1] = (unsigned char)id;
489 if (comp_id) {
490 if (EC_KEY_get0_public_key(ec) == NULL)
491 return 0;
492 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
493 *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
494 } else {
495 if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
496 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
497 else
498 *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
499 }
500 }
501 return 1;
502 }
503
504 /* Check an EC key is compatible with extensions */
505 static int tls1_check_ec_key(SSL *s,
506 unsigned char *curve_id, unsigned char *comp_id)
507 {
508 const unsigned char *pformats, *pcurves;
509 size_t num_formats, num_curves, i;
510 int j;
511 /*
512 * If point formats extension present check it, otherwise everything is
513 * supported (see RFC4492).
514 */
515 if (comp_id && s->session->ext.ecpointformats) {
516 pformats = s->session->ext.ecpointformats;
517 num_formats = s->session->ext.ecpointformats_len;
518 for (i = 0; i < num_formats; i++, pformats++) {
519 if (*comp_id == *pformats)
520 break;
521 }
522 if (i == num_formats)
523 return 0;
524 }
525 if (!curve_id)
526 return 1;
527 /* Check curve is consistent with client and server preferences */
528 for (j = 0; j <= 1; j++) {
529 if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
530 return 0;
531 if (j == 1 && num_curves == 0) {
532 /*
533 * If we've not received any curves then skip this check.
534 * RFC 4492 does not require the supported elliptic curves extension
535 * so if it is not sent we can just choose any curve.
536 * It is invalid to send an empty list in the elliptic curves
537 * extension, so num_curves == 0 always means no extension.
538 */
539 break;
540 }
541 for (i = 0; i < num_curves; i++, pcurves += 2) {
542 if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
543 break;
544 }
545 if (i == num_curves)
546 return 0;
547 /* For clients can only check sent curve list */
548 if (!s->server)
549 break;
550 }
551 return 1;
552 }
553
554 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
555 size_t *num_formats)
556 {
557 /*
558 * If we have a custom point format list use it otherwise use default
559 */
560 if (s->ext.ecpointformats) {
561 *pformats = s->ext.ecpointformats;
562 *num_formats = s->ext.ecpointformats_len;
563 } else {
564 *pformats = ecformats_default;
565 /* For Suite B we don't support char2 fields */
566 if (tls1_suiteb(s))
567 *num_formats = sizeof(ecformats_default) - 1;
568 else
569 *num_formats = sizeof(ecformats_default);
570 }
571 }
572
573 /*
574 * Check cert parameters compatible with extensions: currently just checks EC
575 * certificates have compatible curves and compression.
576 */
577 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
578 {
579 unsigned char comp_id, curve_id[2];
580 EVP_PKEY *pkey;
581 int rv;
582 pkey = X509_get0_pubkey(x);
583 if (!pkey)
584 return 0;
585 /* If not EC nothing to do */
586 if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
587 return 1;
588 rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
589 if (!rv)
590 return 0;
591 /*
592 * Can't check curve_id for client certs as we don't have a supported
593 * curves extension.
594 */
595 rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
596 if (!rv)
597 return 0;
598 /*
599 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
600 * SHA384+P-384.
601 */
602 if (check_ee_md && tls1_suiteb(s)) {
603 int check_md;
604 size_t i;
605 CERT *c = s->cert;
606 if (curve_id[0])
607 return 0;
608 /* Check to see we have necessary signing algorithm */
609 if (curve_id[1] == TLSEXT_curve_P_256)
610 check_md = NID_ecdsa_with_SHA256;
611 else if (curve_id[1] == TLSEXT_curve_P_384)
612 check_md = NID_ecdsa_with_SHA384;
613 else
614 return 0; /* Should never happen */
615 for (i = 0; i < c->shared_sigalgslen; i++)
616 if (check_md == c->shared_sigalgs[i]->sigandhash)
617 break;
618 if (i == c->shared_sigalgslen)
619 return 0;
620 }
621 return rv;
622 }
623
624 /*
625 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
626 * @s: SSL connection
627 * @cid: Cipher ID we're considering using
628 *
629 * Checks that the kECDHE cipher suite we're considering using
630 * is compatible with the client extensions.
631 *
632 * Returns 0 when the cipher can't be used or 1 when it can.
633 */
634 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
635 {
636 /*
637 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
638 * curves permitted.
639 */
640 if (tls1_suiteb(s)) {
641 unsigned char curve_id[2];
642 /* Curve to check determined by ciphersuite */
643 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
644 curve_id[1] = TLSEXT_curve_P_256;
645 else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
646 curve_id[1] = TLSEXT_curve_P_384;
647 else
648 return 0;
649 curve_id[0] = 0;
650 /* Check this curve is acceptable */
651 if (!tls1_check_ec_key(s, curve_id, NULL))
652 return 0;
653 return 1;
654 }
655 /* Need a shared curve */
656 if (tls1_shared_group(s, 0))
657 return 1;
658 return 0;
659 }
660
661 #else
662
663 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
664 {
665 return 1;
666 }
667
668 #endif /* OPENSSL_NO_EC */
669
670 /* Default sigalg schemes */
671 static const uint16_t tls12_sigalgs[] = {
672 #ifndef OPENSSL_NO_EC
673 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
674 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
675 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
676 #endif
677
678 TLSEXT_SIGALG_rsa_pss_sha256,
679 TLSEXT_SIGALG_rsa_pss_sha384,
680 TLSEXT_SIGALG_rsa_pss_sha512,
681
682 TLSEXT_SIGALG_rsa_pkcs1_sha256,
683 TLSEXT_SIGALG_rsa_pkcs1_sha384,
684 TLSEXT_SIGALG_rsa_pkcs1_sha512,
685
686 #ifndef OPENSSL_NO_EC
687 TLSEXT_SIGALG_ecdsa_sha224,
688 TLSEXT_SIGALG_ecdsa_sha1,
689 #endif
690 TLSEXT_SIGALG_rsa_pkcs1_sha224,
691 TLSEXT_SIGALG_rsa_pkcs1_sha1,
692 #ifndef OPENSSL_NO_DSA
693 TLSEXT_SIGALG_dsa_sha224,
694 TLSEXT_SIGALG_dsa_sha1,
695
696 TLSEXT_SIGALG_dsa_sha256,
697 TLSEXT_SIGALG_dsa_sha384,
698 TLSEXT_SIGALG_dsa_sha512
699 #endif
700 };
701
702 #ifndef OPENSSL_NO_EC
703 static const uint16_t suiteb_sigalgs[] = {
704 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
705 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
706 };
707 #endif
708
709 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
710 #ifndef OPENSSL_NO_EC
711 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
712 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
713 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
714 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
715 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
716 NID_ecdsa_with_SHA384, NID_secp384r1},
717 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
718 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
719 NID_ecdsa_with_SHA512, NID_secp521r1},
720 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
721 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
722 NID_ecdsa_with_SHA224, NID_undef},
723 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
724 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
725 NID_ecdsa_with_SHA1, NID_undef},
726 #endif
727 {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
728 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
729 NID_undef, NID_undef},
730 {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
731 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
732 NID_undef, NID_undef},
733 {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
734 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
735 NID_undef, NID_undef},
736 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
737 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
738 NID_sha256WithRSAEncryption, NID_undef},
739 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
740 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
741 NID_sha384WithRSAEncryption, NID_undef},
742 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
743 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
744 NID_sha512WithRSAEncryption, NID_undef},
745 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
746 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
747 NID_sha224WithRSAEncryption, NID_undef},
748 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
749 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
750 NID_sha1WithRSAEncryption, NID_undef},
751 #ifndef OPENSSL_NO_DSA
752 {NULL, TLSEXT_SIGALG_dsa_sha256,
753 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
754 NID_dsa_with_SHA256, NID_undef},
755 {NULL, TLSEXT_SIGALG_dsa_sha384,
756 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
757 NID_undef, NID_undef},
758 {NULL, TLSEXT_SIGALG_dsa_sha512,
759 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
760 NID_undef, NID_undef},
761 {NULL, TLSEXT_SIGALG_dsa_sha224,
762 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
763 NID_undef, NID_undef},
764 {NULL, TLSEXT_SIGALG_dsa_sha1,
765 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
766 NID_dsaWithSHA1, NID_undef},
767 #endif
768 #ifndef OPENSSL_NO_GOST
769 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
770 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
771 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
772 NID_undef, NID_undef},
773 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
774 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
775 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
776 NID_undef, NID_undef},
777 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
778 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
779 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
780 NID_undef, NID_undef}
781 #endif
782 };
783 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
784 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
785 "rsa_pkcs1_md5_sha1", 0,
786 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
787 EVP_PKEY_RSA, SSL_PKEY_RSA,
788 NID_undef, NID_undef
789 };
790
791 /*
792 * Default signature algorithm values used if signature algorithms not present.
793 * From RFC5246. Note: order must match certificate index order.
794 */
795 static const uint16_t tls_default_sigalg[] = {
796 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
797 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
798 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
799 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
800 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
801 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 /* SSL_PKEY_GOST12_512 */
802 };
803
804 /* Lookup TLS signature algorithm */
805 static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
806 {
807 size_t i;
808 const SIGALG_LOOKUP *s;
809
810 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
811 i++, s++) {
812 if (s->sigalg == sigalg)
813 return s;
814 }
815 return NULL;
816 }
817 /*
818 * Return a signature algorithm for TLS < 1.2 where the signature type
819 * is fixed by the certificate type.
820 */
821 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
822 {
823 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
824 return NULL;
825 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
826 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
827
828 if (lu == NULL || ssl_md(lu->hash_idx) == NULL) {
829 return NULL;
830 }
831 return lu;
832 }
833 return &legacy_rsa_sigalg;
834 }
835 /* Set peer sigalg based key type */
836 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
837 {
838 int idx = ssl_cert_type(NULL, pkey);
839
840 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, idx);
841 if (lu == NULL)
842 return 0;
843 s->s3->tmp.peer_sigalg = lu;
844 return 1;
845 }
846
847 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
848 {
849 /*
850 * If Suite B mode use Suite B sigalgs only, ignore any other
851 * preferences.
852 */
853 #ifndef OPENSSL_NO_EC
854 switch (tls1_suiteb(s)) {
855 case SSL_CERT_FLAG_SUITEB_128_LOS:
856 *psigs = suiteb_sigalgs;
857 return OSSL_NELEM(suiteb_sigalgs);
858
859 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
860 *psigs = suiteb_sigalgs;
861 return 1;
862
863 case SSL_CERT_FLAG_SUITEB_192_LOS:
864 *psigs = suiteb_sigalgs + 1;
865 return 1;
866 }
867 #endif
868 /*
869 * We use client_sigalgs (if not NULL) if we're a server
870 * and sending a certificate request or if we're a client and
871 * determining which shared algorithm to use.
872 */
873 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
874 *psigs = s->cert->client_sigalgs;
875 return s->cert->client_sigalgslen;
876 } else if (s->cert->conf_sigalgs) {
877 *psigs = s->cert->conf_sigalgs;
878 return s->cert->conf_sigalgslen;
879 } else {
880 *psigs = tls12_sigalgs;
881 return OSSL_NELEM(tls12_sigalgs);
882 }
883 }
884
885 /*
886 * Check signature algorithm is consistent with sent supported signature
887 * algorithms and if so set relevant digest and signature scheme in
888 * s.
889 */
890 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
891 {
892 const uint16_t *sent_sigs;
893 const EVP_MD *md = NULL;
894 char sigalgstr[2];
895 size_t sent_sigslen, i;
896 int pkeyid = EVP_PKEY_id(pkey);
897 const SIGALG_LOOKUP *lu;
898
899 /* Should never happen */
900 if (pkeyid == -1)
901 return -1;
902 if (SSL_IS_TLS13(s)) {
903 /* Disallow DSA for TLS 1.3 */
904 if (pkeyid == EVP_PKEY_DSA) {
905 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
906 return 0;
907 }
908 /* Only allow PSS for TLS 1.3 */
909 if (pkeyid == EVP_PKEY_RSA)
910 pkeyid = EVP_PKEY_RSA_PSS;
911 }
912 lu = tls1_lookup_sigalg(sig);
913 /*
914 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
915 * is consistent with signature: RSA keys can be used for RSA-PSS
916 */
917 if (lu == NULL
918 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
919 || (pkeyid != lu->sig
920 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
921 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
922 return 0;
923 }
924 #ifndef OPENSSL_NO_EC
925 if (pkeyid == EVP_PKEY_EC) {
926 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
927 int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
928
929 if (SSL_IS_TLS13(s)) {
930 if (EC_KEY_get_conv_form(ec) != POINT_CONVERSION_UNCOMPRESSED) {
931 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
932 SSL_R_ILLEGAL_POINT_COMPRESSION);
933 return 0;
934 }
935 /* For TLS 1.3 check curve matches signature algorithm */
936 if (lu->curve != NID_undef && curve != lu->curve) {
937 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
938 return 0;
939 }
940 } else {
941 unsigned char curve_id[2], comp_id;
942
943 /* Check compression and curve matches extensions */
944 if (!tls1_set_ec_id(curve_id, &comp_id, ec))
945 return 0;
946 if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
947 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
948 return 0;
949 }
950 if (tls1_suiteb(s)) {
951 /* Check sigalg matches a permissible Suite B value */
952 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
953 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
954 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
955 SSL_R_WRONG_SIGNATURE_TYPE);
956 return 0;
957 }
958 /*
959 * Suite B also requires P-256+SHA256 and P-384+SHA384:
960 * this matches the TLS 1.3 requirements so we can just
961 * check the curve is the expected TLS 1.3 value.
962 * If this fails an inappropriate digest is being used.
963 */
964 if (curve != lu->curve) {
965 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
966 SSL_R_ILLEGAL_SUITEB_DIGEST);
967 return 0;
968 }
969 }
970 }
971 } else if (tls1_suiteb(s)) {
972 return 0;
973 }
974 #endif
975
976 /* Check signature matches a type we sent */
977 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
978 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
979 if (sig == *sent_sigs)
980 break;
981 }
982 /* Allow fallback to SHA1 if not strict mode */
983 if (i == sent_sigslen && (lu->hash != NID_sha1
984 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
985 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
986 return 0;
987 }
988 md = ssl_md(lu->hash_idx);
989 if (md == NULL) {
990 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
991 return 0;
992 }
993 /*
994 * Make sure security callback allows algorithm. For historical reasons we
995 * have to pass the sigalg as a two byte char array.
996 */
997 sigalgstr[0] = (sig >> 8) & 0xff;
998 sigalgstr[1] = sig & 0xff;
999 if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
1000 EVP_MD_size(md) * 4, EVP_MD_type(md),
1001 (void *)sigalgstr)) {
1002 SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
1003 return 0;
1004 }
1005 /* Store the sigalg the peer uses */
1006 s->s3->tmp.peer_sigalg = lu;
1007 return 1;
1008 }
1009
1010 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1011 {
1012 if (s->s3->tmp.peer_sigalg == NULL)
1013 return 0;
1014 *pnid = s->s3->tmp.peer_sigalg->sig;
1015 return 1;
1016 }
1017
1018 /*
1019 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1020 * supported, doesn't appear in supported signature algorithms, isn't supported
1021 * by the enabled protocol versions or by the security level.
1022 *
1023 * This function should only be used for checking which ciphers are supported
1024 * by the client.
1025 *
1026 * Call ssl_cipher_disabled() to check that it's enabled or not.
1027 */
1028 void ssl_set_client_disabled(SSL *s)
1029 {
1030 s->s3->tmp.mask_a = 0;
1031 s->s3->tmp.mask_k = 0;
1032 ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1033 ssl_get_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
1034 #ifndef OPENSSL_NO_PSK
1035 /* with PSK there must be client callback set */
1036 if (!s->psk_client_callback) {
1037 s->s3->tmp.mask_a |= SSL_aPSK;
1038 s->s3->tmp.mask_k |= SSL_PSK;
1039 }
1040 #endif /* OPENSSL_NO_PSK */
1041 #ifndef OPENSSL_NO_SRP
1042 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1043 s->s3->tmp.mask_a |= SSL_aSRP;
1044 s->s3->tmp.mask_k |= SSL_kSRP;
1045 }
1046 #endif
1047 }
1048
1049 /*
1050 * ssl_cipher_disabled - check that a cipher is disabled or not
1051 * @s: SSL connection that you want to use the cipher on
1052 * @c: cipher to check
1053 * @op: Security check that you want to do
1054 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1055 *
1056 * Returns 1 when it's disabled, 0 when enabled.
1057 */
1058 int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1059 {
1060 if (c->algorithm_mkey & s->s3->tmp.mask_k
1061 || c->algorithm_auth & s->s3->tmp.mask_a)
1062 return 1;
1063 if (s->s3->tmp.max_ver == 0)
1064 return 1;
1065 if (!SSL_IS_DTLS(s)) {
1066 int min_tls = c->min_tls;
1067
1068 /*
1069 * For historical reasons we will allow ECHDE to be selected by a server
1070 * in SSLv3 if we are a client
1071 */
1072 if (min_tls == TLS1_VERSION && ecdhe
1073 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1074 min_tls = SSL3_VERSION;
1075
1076 if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
1077 return 1;
1078 }
1079 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
1080 || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
1081 return 1;
1082
1083 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1084 }
1085
1086 int tls_use_ticket(SSL *s)
1087 {
1088 if ((s->options & SSL_OP_NO_TICKET))
1089 return 0;
1090 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1091 }
1092
1093 int tls1_set_server_sigalgs(SSL *s)
1094 {
1095 int al;
1096 size_t i;
1097
1098 /* Clear any shared signature algorithms */
1099 OPENSSL_free(s->cert->shared_sigalgs);
1100 s->cert->shared_sigalgs = NULL;
1101 s->cert->shared_sigalgslen = 0;
1102 /* Clear certificate validity flags */
1103 for (i = 0; i < SSL_PKEY_NUM; i++)
1104 s->s3->tmp.valid_flags[i] = 0;
1105 /*
1106 * If peer sent no signature algorithms check to see if we support
1107 * the default algorithm for each certificate type
1108 */
1109 if (s->s3->tmp.peer_sigalgs == NULL) {
1110 const uint16_t *sent_sigs;
1111 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1112
1113 for (i = 0; i < SSL_PKEY_NUM; i++) {
1114 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1115 size_t j;
1116
1117 if (lu == NULL)
1118 continue;
1119 /* Check default matches a type we sent */
1120 for (j = 0; j < sent_sigslen; j++) {
1121 if (lu->sigalg == sent_sigs[j]) {
1122 s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
1123 break;
1124 }
1125 }
1126 }
1127 return 1;
1128 }
1129
1130 if (!tls1_process_sigalgs(s)) {
1131 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
1132 al = SSL_AD_INTERNAL_ERROR;
1133 goto err;
1134 }
1135 if (s->cert->shared_sigalgs != NULL)
1136 return 1;
1137 /* Fatal error if no shared signature algorithms */
1138 SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1139 al = SSL_AD_HANDSHAKE_FAILURE;
1140 err:
1141 ssl3_send_alert(s, SSL3_AL_FATAL, al);
1142 return 0;
1143 }
1144
1145 /*-
1146 * Gets the ticket information supplied by the client if any.
1147 *
1148 * hello: The parsed ClientHello data
1149 * ret: (output) on return, if a ticket was decrypted, then this is set to
1150 * point to the resulting session.
1151 *
1152 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
1153 * ciphersuite, in which case we have no use for session tickets and one will
1154 * never be decrypted, nor will s->ext.ticket_expected be set to 1.
1155 *
1156 * Returns:
1157 * -1: fatal error, either from parsing or decrypting the ticket.
1158 * 0: no ticket was found (or was ignored, based on settings).
1159 * 1: a zero length extension was found, indicating that the client supports
1160 * session tickets but doesn't currently have one to offer.
1161 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
1162 * couldn't be decrypted because of a non-fatal error.
1163 * 3: a ticket was successfully decrypted and *ret was set.
1164 *
1165 * Side effects:
1166 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1167 * a new session ticket to the client because the client indicated support
1168 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1169 * a session ticket or we couldn't use the one it gave us, or if
1170 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1171 * Otherwise, s->ext.ticket_expected is set to 0.
1172 */
1173 TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1174 SSL_SESSION **ret)
1175 {
1176 int retv;
1177 size_t size;
1178 RAW_EXTENSION *ticketext;
1179
1180 *ret = NULL;
1181 s->ext.ticket_expected = 0;
1182
1183 /*
1184 * If tickets disabled or not supported by the protocol version
1185 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1186 * resumption.
1187 */
1188 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1189 return TICKET_NONE;
1190
1191 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1192 if (!ticketext->present)
1193 return TICKET_NONE;
1194
1195 size = PACKET_remaining(&ticketext->data);
1196 if (size == 0) {
1197 /*
1198 * The client will accept a ticket but doesn't currently have
1199 * one.
1200 */
1201 s->ext.ticket_expected = 1;
1202 return TICKET_EMPTY;
1203 }
1204 if (s->ext.session_secret_cb) {
1205 /*
1206 * Indicate that the ticket couldn't be decrypted rather than
1207 * generating the session from ticket now, trigger
1208 * abbreviated handshake based on external mechanism to
1209 * calculate the master secret later.
1210 */
1211 return TICKET_NO_DECRYPT;
1212 }
1213
1214 retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1215 hello->session_id, hello->session_id_len, ret);
1216 switch (retv) {
1217 case TICKET_NO_DECRYPT:
1218 s->ext.ticket_expected = 1;
1219 return TICKET_NO_DECRYPT;
1220
1221 case TICKET_SUCCESS:
1222 return TICKET_SUCCESS;
1223
1224 case TICKET_SUCCESS_RENEW:
1225 s->ext.ticket_expected = 1;
1226 return TICKET_SUCCESS;
1227
1228 default:
1229 return TICKET_FATAL_ERR_OTHER;
1230 }
1231 }
1232
1233 /*-
1234 * tls_decrypt_ticket attempts to decrypt a session ticket.
1235 *
1236 * etick: points to the body of the session ticket extension.
1237 * eticklen: the length of the session tickets extension.
1238 * sess_id: points at the session ID.
1239 * sesslen: the length of the session ID.
1240 * psess: (output) on return, if a ticket was decrypted, then this is set to
1241 * point to the resulting session.
1242 */
1243 TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1244 size_t eticklen, const unsigned char *sess_id,
1245 size_t sesslen, SSL_SESSION **psess)
1246 {
1247 SSL_SESSION *sess;
1248 unsigned char *sdec;
1249 const unsigned char *p;
1250 int slen, renew_ticket = 0, declen;
1251 TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
1252 size_t mlen;
1253 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1254 HMAC_CTX *hctx = NULL;
1255 EVP_CIPHER_CTX *ctx;
1256 SSL_CTX *tctx = s->session_ctx;
1257
1258 /* Initialize session ticket encryption and HMAC contexts */
1259 hctx = HMAC_CTX_new();
1260 if (hctx == NULL)
1261 return TICKET_FATAL_ERR_MALLOC;
1262 ctx = EVP_CIPHER_CTX_new();
1263 if (ctx == NULL) {
1264 ret = TICKET_FATAL_ERR_MALLOC;
1265 goto err;
1266 }
1267 if (tctx->ext.ticket_key_cb) {
1268 unsigned char *nctick = (unsigned char *)etick;
1269 int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
1270 ctx, hctx, 0);
1271 if (rv < 0)
1272 goto err;
1273 if (rv == 0) {
1274 ret = TICKET_NO_DECRYPT;
1275 goto err;
1276 }
1277 if (rv == 2)
1278 renew_ticket = 1;
1279 } else {
1280 /* Check key name matches */
1281 if (memcmp(etick, tctx->ext.tick_key_name,
1282 sizeof(tctx->ext.tick_key_name)) != 0) {
1283 ret = TICKET_NO_DECRYPT;
1284 goto err;
1285 }
1286 if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
1287 sizeof(tctx->ext.tick_hmac_key),
1288 EVP_sha256(), NULL) <= 0
1289 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
1290 tctx->ext.tick_aes_key,
1291 etick
1292 + sizeof(tctx->ext.tick_key_name)) <= 0) {
1293 goto err;
1294 }
1295 }
1296 /*
1297 * Attempt to process session ticket, first conduct sanity and integrity
1298 * checks on ticket.
1299 */
1300 mlen = HMAC_size(hctx);
1301 if (mlen == 0) {
1302 goto err;
1303 }
1304 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1305 if (eticklen <=
1306 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1307 ret = TICKET_NO_DECRYPT;
1308 goto err;
1309 }
1310 eticklen -= mlen;
1311 /* Check HMAC of encrypted ticket */
1312 if (HMAC_Update(hctx, etick, eticklen) <= 0
1313 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
1314 goto err;
1315 }
1316 HMAC_CTX_free(hctx);
1317 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1318 EVP_CIPHER_CTX_free(ctx);
1319 return TICKET_NO_DECRYPT;
1320 }
1321 /* Attempt to decrypt session data */
1322 /* Move p after IV to start of encrypted ticket, update length */
1323 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1324 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1325 sdec = OPENSSL_malloc(eticklen);
1326 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1327 (int)eticklen) <= 0) {
1328 EVP_CIPHER_CTX_free(ctx);
1329 OPENSSL_free(sdec);
1330 return TICKET_FATAL_ERR_OTHER;
1331 }
1332 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1333 EVP_CIPHER_CTX_free(ctx);
1334 OPENSSL_free(sdec);
1335 return TICKET_NO_DECRYPT;
1336 }
1337 slen += declen;
1338 EVP_CIPHER_CTX_free(ctx);
1339 ctx = NULL;
1340 p = sdec;
1341
1342 sess = d2i_SSL_SESSION(NULL, &p, slen);
1343 slen -= p - sdec;
1344 OPENSSL_free(sdec);
1345 if (sess) {
1346 /* Some additional consistency checks */
1347 if (slen != 0 || sess->session_id_length != 0) {
1348 SSL_SESSION_free(sess);
1349 return TICKET_NO_DECRYPT;
1350 }
1351 /*
1352 * The session ID, if non-empty, is used by some clients to detect
1353 * that the ticket has been accepted. So we copy it to the session
1354 * structure. If it is empty set length to zero as required by
1355 * standard.
1356 */
1357 if (sesslen)
1358 memcpy(sess->session_id, sess_id, sesslen);
1359 sess->session_id_length = sesslen;
1360 *psess = sess;
1361 if (renew_ticket)
1362 return TICKET_SUCCESS_RENEW;
1363 else
1364 return TICKET_SUCCESS;
1365 }
1366 ERR_clear_error();
1367 /*
1368 * For session parse failure, indicate that we need to send a new ticket.
1369 */
1370 return TICKET_NO_DECRYPT;
1371 err:
1372 EVP_CIPHER_CTX_free(ctx);
1373 HMAC_CTX_free(hctx);
1374 return ret;
1375 }
1376
1377 static int tls12_get_pkey_idx(int sig_nid)
1378 {
1379 switch (sig_nid) {
1380 #ifndef OPENSSL_NO_RSA
1381 case EVP_PKEY_RSA:
1382 return SSL_PKEY_RSA;
1383 /*
1384 * For now return RSA key for PSS. When we support PSS only keys
1385 * this will need to be updated.
1386 */
1387 case EVP_PKEY_RSA_PSS:
1388 return SSL_PKEY_RSA;
1389 #endif
1390 #ifndef OPENSSL_NO_DSA
1391 case EVP_PKEY_DSA:
1392 return SSL_PKEY_DSA_SIGN;
1393 #endif
1394 #ifndef OPENSSL_NO_EC
1395 case EVP_PKEY_EC:
1396 return SSL_PKEY_ECC;
1397 #endif
1398 #ifndef OPENSSL_NO_GOST
1399 case NID_id_GostR3410_2001:
1400 return SSL_PKEY_GOST01;
1401
1402 case NID_id_GostR3410_2012_256:
1403 return SSL_PKEY_GOST12_256;
1404
1405 case NID_id_GostR3410_2012_512:
1406 return SSL_PKEY_GOST12_512;
1407 #endif
1408 }
1409 return -1;
1410 }
1411
1412 /* Check to see if a signature algorithm is allowed */
1413 static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu)
1414 {
1415 unsigned char sigalgstr[2];
1416 int secbits;
1417
1418 /* See if sigalgs is recognised and if hash is enabled */
1419 if (lu == NULL || ssl_md(lu->hash_idx) == NULL)
1420 return 0;
1421 /* DSA is not allowed in TLS 1.3 */
1422 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
1423 return 0;
1424 /* See if public key algorithm allowed */
1425 if (tls12_get_pkey_idx(lu->sig) == -1)
1426 return 0;
1427 /* Security bits: half digest bits */
1428 secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
1429 /* Finally see if security callback allows it */
1430 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
1431 sigalgstr[1] = lu->sigalg & 0xff;
1432 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
1433 }
1434
1435 /*
1436 * Get a mask of disabled public key algorithms based on supported signature
1437 * algorithms. For example if no signature algorithm supports RSA then RSA is
1438 * disabled.
1439 */
1440
1441 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
1442 {
1443 const uint16_t *sigalgs;
1444 size_t i, sigalgslen;
1445 int have_rsa = 0, have_dsa = 0, have_ecdsa = 0;
1446 /*
1447 * Now go through all signature algorithms seeing if we support any for
1448 * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep
1449 * down calls to security callback only check if we have to.
1450 */
1451 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
1452 for (i = 0; i < sigalgslen; i ++, sigalgs++) {
1453 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
1454
1455 if (lu == NULL)
1456 continue;
1457 switch (lu->sig) {
1458 #ifndef OPENSSL_NO_RSA
1459 /* Any RSA-PSS signature algorithms also mean we allow RSA */
1460 case EVP_PKEY_RSA_PSS:
1461 case EVP_PKEY_RSA:
1462 if (!have_rsa && tls12_sigalg_allowed(s, op, lu))
1463 have_rsa = 1;
1464 break;
1465 #endif
1466 #ifndef OPENSSL_NO_DSA
1467 case EVP_PKEY_DSA:
1468 if (!have_dsa && tls12_sigalg_allowed(s, op, lu))
1469 have_dsa = 1;
1470 break;
1471 #endif
1472 #ifndef OPENSSL_NO_EC
1473 case EVP_PKEY_EC:
1474 if (!have_ecdsa && tls12_sigalg_allowed(s, op, lu))
1475 have_ecdsa = 1;
1476 break;
1477 #endif
1478 }
1479 }
1480 if (!have_rsa)
1481 *pmask_a |= SSL_aRSA;
1482 if (!have_dsa)
1483 *pmask_a |= SSL_aDSS;
1484 if (!have_ecdsa)
1485 *pmask_a |= SSL_aECDSA;
1486 }
1487
1488 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
1489 const uint16_t *psig, size_t psiglen)
1490 {
1491 size_t i;
1492 int rv = 0;
1493
1494 for (i = 0; i < psiglen; i++, psig++) {
1495 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
1496
1497 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1498 continue;
1499 if (!WPACKET_put_bytes_u16(pkt, *psig))
1500 return 0;
1501 /*
1502 * If TLS 1.3 must have at least one valid TLS 1.3 message
1503 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
1504 */
1505 if (rv == 0 && (!SSL_IS_TLS13(s)
1506 || (lu->sig != EVP_PKEY_RSA
1507 && lu->hash != NID_sha1
1508 && lu->hash != NID_sha224)))
1509 rv = 1;
1510 }
1511 if (rv == 0)
1512 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
1513 return rv;
1514 }
1515
1516 /* Given preference and allowed sigalgs set shared sigalgs */
1517 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
1518 const uint16_t *pref, size_t preflen,
1519 const uint16_t *allow, size_t allowlen)
1520 {
1521 const uint16_t *ptmp, *atmp;
1522 size_t i, j, nmatch = 0;
1523 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
1524 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
1525
1526 /* Skip disabled hashes or signature algorithms */
1527 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
1528 continue;
1529 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
1530 if (*ptmp == *atmp) {
1531 nmatch++;
1532 if (shsig)
1533 *shsig++ = lu;
1534 break;
1535 }
1536 }
1537 }
1538 return nmatch;
1539 }
1540
1541 /* Set shared signature algorithms for SSL structures */
1542 static int tls1_set_shared_sigalgs(SSL *s)
1543 {
1544 const uint16_t *pref, *allow, *conf;
1545 size_t preflen, allowlen, conflen;
1546 size_t nmatch;
1547 const SIGALG_LOOKUP **salgs = NULL;
1548 CERT *c = s->cert;
1549 unsigned int is_suiteb = tls1_suiteb(s);
1550
1551 OPENSSL_free(c->shared_sigalgs);
1552 c->shared_sigalgs = NULL;
1553 c->shared_sigalgslen = 0;
1554 /* If client use client signature algorithms if not NULL */
1555 if (!s->server && c->client_sigalgs && !is_suiteb) {
1556 conf = c->client_sigalgs;
1557 conflen = c->client_sigalgslen;
1558 } else if (c->conf_sigalgs && !is_suiteb) {
1559 conf = c->conf_sigalgs;
1560 conflen = c->conf_sigalgslen;
1561 } else
1562 conflen = tls12_get_psigalgs(s, 0, &conf);
1563 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
1564 pref = conf;
1565 preflen = conflen;
1566 allow = s->s3->tmp.peer_sigalgs;
1567 allowlen = s->s3->tmp.peer_sigalgslen;
1568 } else {
1569 allow = conf;
1570 allowlen = conflen;
1571 pref = s->s3->tmp.peer_sigalgs;
1572 preflen = s->s3->tmp.peer_sigalgslen;
1573 }
1574 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
1575 if (nmatch) {
1576 salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
1577 if (salgs == NULL)
1578 return 0;
1579 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
1580 } else {
1581 salgs = NULL;
1582 }
1583 c->shared_sigalgs = salgs;
1584 c->shared_sigalgslen = nmatch;
1585 return 1;
1586 }
1587
1588 /* Set preferred digest for each key type */
1589
1590 int tls1_save_sigalgs(SSL *s, PACKET *pkt)
1591 {
1592 CERT *c = s->cert;
1593 unsigned int stmp;
1594 size_t size, i;
1595
1596 /* Extension ignored for inappropriate versions */
1597 if (!SSL_USE_SIGALGS(s))
1598 return 1;
1599 /* Should never happen */
1600 if (!c)
1601 return 0;
1602
1603 size = PACKET_remaining(pkt);
1604
1605 /* Invalid data length */
1606 if (size == 0 || (size & 1) != 0)
1607 return 0;
1608
1609 size >>= 1;
1610
1611 OPENSSL_free(s->s3->tmp.peer_sigalgs);
1612 s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
1613 * sizeof(*s->s3->tmp.peer_sigalgs));
1614 if (s->s3->tmp.peer_sigalgs == NULL)
1615 return 0;
1616 s->s3->tmp.peer_sigalgslen = size;
1617 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
1618 s->s3->tmp.peer_sigalgs[i] = stmp;
1619
1620 if (i != size)
1621 return 0;
1622
1623 return 1;
1624 }
1625
1626 int tls1_process_sigalgs(SSL *s)
1627 {
1628 size_t i;
1629 uint32_t *pvalid = s->s3->tmp.valid_flags;
1630 CERT *c = s->cert;
1631
1632 if (!tls1_set_shared_sigalgs(s))
1633 return 0;
1634
1635 for (i = 0; i < SSL_PKEY_NUM; i++)
1636 pvalid[i] = 0;
1637
1638 for (i = 0; i < c->shared_sigalgslen; i++) {
1639 const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
1640 int idx = sigptr->sig_idx;
1641
1642 /* Ignore PKCS1 based sig algs in TLSv1.3 */
1643 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
1644 continue;
1645 /* If not disabled indicate we can explicitly sign */
1646 if (pvalid[idx] == 0 && tls12_get_pkey_idx(sigptr->sig) != -1)
1647 pvalid[sigptr->sig_idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
1648 }
1649 return 1;
1650 }
1651
1652 int SSL_get_sigalgs(SSL *s, int idx,
1653 int *psign, int *phash, int *psignhash,
1654 unsigned char *rsig, unsigned char *rhash)
1655 {
1656 uint16_t *psig = s->s3->tmp.peer_sigalgs;
1657 size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
1658 if (psig == NULL || numsigalgs > INT_MAX)
1659 return 0;
1660 if (idx >= 0) {
1661 const SIGALG_LOOKUP *lu;
1662
1663 if (idx >= (int)numsigalgs)
1664 return 0;
1665 psig += idx;
1666 if (rhash != NULL)
1667 *rhash = (unsigned char)((*psig >> 8) & 0xff);
1668 if (rsig != NULL)
1669 *rsig = (unsigned char)(*psig & 0xff);
1670 lu = tls1_lookup_sigalg(*psig);
1671 if (psign != NULL)
1672 *psign = lu != NULL ? lu->sig : NID_undef;
1673 if (phash != NULL)
1674 *phash = lu != NULL ? lu->hash : NID_undef;
1675 if (psignhash != NULL)
1676 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
1677 }
1678 return (int)numsigalgs;
1679 }
1680
1681 int SSL_get_shared_sigalgs(SSL *s, int idx,
1682 int *psign, int *phash, int *psignhash,
1683 unsigned char *rsig, unsigned char *rhash)
1684 {
1685 const SIGALG_LOOKUP *shsigalgs;
1686 if (s->cert->shared_sigalgs == NULL
1687 || idx < 0
1688 || idx >= (int)s->cert->shared_sigalgslen
1689 || s->cert->shared_sigalgslen > INT_MAX)
1690 return 0;
1691 shsigalgs = s->cert->shared_sigalgs[idx];
1692 if (phash != NULL)
1693 *phash = shsigalgs->hash;
1694 if (psign != NULL)
1695 *psign = shsigalgs->sig;
1696 if (psignhash != NULL)
1697 *psignhash = shsigalgs->sigandhash;
1698 if (rsig != NULL)
1699 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
1700 if (rhash != NULL)
1701 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
1702 return (int)s->cert->shared_sigalgslen;
1703 }
1704
1705 /* Maximum possible number of unique entries in sigalgs array */
1706 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
1707
1708 typedef struct {
1709 size_t sigalgcnt;
1710 int sigalgs[TLS_MAX_SIGALGCNT];
1711 } sig_cb_st;
1712
1713 static void get_sigorhash(int *psig, int *phash, const char *str)
1714 {
1715 if (strcmp(str, "RSA") == 0) {
1716 *psig = EVP_PKEY_RSA;
1717 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
1718 *psig = EVP_PKEY_RSA_PSS;
1719 } else if (strcmp(str, "DSA") == 0) {
1720 *psig = EVP_PKEY_DSA;
1721 } else if (strcmp(str, "ECDSA") == 0) {
1722 *psig = EVP_PKEY_EC;
1723 } else {
1724 *phash = OBJ_sn2nid(str);
1725 if (*phash == NID_undef)
1726 *phash = OBJ_ln2nid(str);
1727 }
1728 }
1729 /* Maximum length of a signature algorithm string component */
1730 #define TLS_MAX_SIGSTRING_LEN 40
1731
1732 static int sig_cb(const char *elem, int len, void *arg)
1733 {
1734 sig_cb_st *sarg = arg;
1735 size_t i;
1736 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
1737 int sig_alg = NID_undef, hash_alg = NID_undef;
1738 if (elem == NULL)
1739 return 0;
1740 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
1741 return 0;
1742 if (len > (int)(sizeof(etmp) - 1))
1743 return 0;
1744 memcpy(etmp, elem, len);
1745 etmp[len] = 0;
1746 p = strchr(etmp, '+');
1747 /* See if we have a match for TLS 1.3 names */
1748 if (p == NULL) {
1749 const SIGALG_LOOKUP *s;
1750
1751 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
1752 i++, s++) {
1753 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
1754 sig_alg = s->sig;
1755 hash_alg = s->hash;
1756 break;
1757 }
1758 }
1759 } else {
1760 *p = 0;
1761 p++;
1762 if (*p == 0)
1763 return 0;
1764 get_sigorhash(&sig_alg, &hash_alg, etmp);
1765 get_sigorhash(&sig_alg, &hash_alg, p);
1766 }
1767
1768 if (sig_alg == NID_undef || hash_alg == NID_undef)
1769 return 0;
1770
1771 for (i = 0; i < sarg->sigalgcnt; i += 2) {
1772 if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
1773 return 0;
1774 }
1775 sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
1776 sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
1777 return 1;
1778 }
1779
1780 /*
1781 * Set supported signature algorithms based on a colon separated list of the
1782 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
1783 */
1784 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
1785 {
1786 sig_cb_st sig;
1787 sig.sigalgcnt = 0;
1788 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
1789 return 0;
1790 if (c == NULL)
1791 return 1;
1792 return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
1793 }
1794
1795 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
1796 {
1797 uint16_t *sigalgs, *sptr;
1798 size_t i;
1799
1800 if (salglen & 1)
1801 return 0;
1802 sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
1803 if (sigalgs == NULL)
1804 return 0;
1805 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
1806 size_t j;
1807 const SIGALG_LOOKUP *curr;
1808 int md_id = *psig_nids++;
1809 int sig_id = *psig_nids++;
1810
1811 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
1812 j++, curr++) {
1813 if (curr->hash == md_id && curr->sig == sig_id) {
1814 *sptr++ = curr->sigalg;
1815 break;
1816 }
1817 }
1818
1819 if (j == OSSL_NELEM(sigalg_lookup_tbl))
1820 goto err;
1821 }
1822
1823 if (client) {
1824 OPENSSL_free(c->client_sigalgs);
1825 c->client_sigalgs = sigalgs;
1826 c->client_sigalgslen = salglen / 2;
1827 } else {
1828 OPENSSL_free(c->conf_sigalgs);
1829 c->conf_sigalgs = sigalgs;
1830 c->conf_sigalgslen = salglen / 2;
1831 }
1832
1833 return 1;
1834
1835 err:
1836 OPENSSL_free(sigalgs);
1837 return 0;
1838 }
1839
1840 static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
1841 {
1842 int sig_nid;
1843 size_t i;
1844 if (default_nid == -1)
1845 return 1;
1846 sig_nid = X509_get_signature_nid(x);
1847 if (default_nid)
1848 return sig_nid == default_nid ? 1 : 0;
1849 for (i = 0; i < c->shared_sigalgslen; i++)
1850 if (sig_nid == c->shared_sigalgs[i]->sigandhash)
1851 return 1;
1852 return 0;
1853 }
1854
1855 /* Check to see if a certificate issuer name matches list of CA names */
1856 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
1857 {
1858 X509_NAME *nm;
1859 int i;
1860 nm = X509_get_issuer_name(x);
1861 for (i = 0; i < sk_X509_NAME_num(names); i++) {
1862 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
1863 return 1;
1864 }
1865 return 0;
1866 }
1867
1868 /*
1869 * Check certificate chain is consistent with TLS extensions and is usable by
1870 * server. This servers two purposes: it allows users to check chains before
1871 * passing them to the server and it allows the server to check chains before
1872 * attempting to use them.
1873 */
1874
1875 /* Flags which need to be set for a certificate when strict mode not set */
1876
1877 #define CERT_PKEY_VALID_FLAGS \
1878 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
1879 /* Strict mode flags */
1880 #define CERT_PKEY_STRICT_FLAGS \
1881 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
1882 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
1883
1884 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
1885 int idx)
1886 {
1887 int i;
1888 int rv = 0;
1889 int check_flags = 0, strict_mode;
1890 CERT_PKEY *cpk = NULL;
1891 CERT *c = s->cert;
1892 uint32_t *pvalid;
1893 unsigned int suiteb_flags = tls1_suiteb(s);
1894 /* idx == -1 means checking server chains */
1895 if (idx != -1) {
1896 /* idx == -2 means checking client certificate chains */
1897 if (idx == -2) {
1898 cpk = c->key;
1899 idx = (int)(cpk - c->pkeys);
1900 } else
1901 cpk = c->pkeys + idx;
1902 pvalid = s->s3->tmp.valid_flags + idx;
1903 x = cpk->x509;
1904 pk = cpk->privatekey;
1905 chain = cpk->chain;
1906 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
1907 /* If no cert or key, forget it */
1908 if (!x || !pk)
1909 goto end;
1910 } else {
1911 if (!x || !pk)
1912 return 0;
1913 idx = ssl_cert_type(x, pk);
1914 if (idx == -1)
1915 return 0;
1916 pvalid = s->s3->tmp.valid_flags + idx;
1917
1918 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
1919 check_flags = CERT_PKEY_STRICT_FLAGS;
1920 else
1921 check_flags = CERT_PKEY_VALID_FLAGS;
1922 strict_mode = 1;
1923 }
1924
1925 if (suiteb_flags) {
1926 int ok;
1927 if (check_flags)
1928 check_flags |= CERT_PKEY_SUITEB;
1929 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
1930 if (ok == X509_V_OK)
1931 rv |= CERT_PKEY_SUITEB;
1932 else if (!check_flags)
1933 goto end;
1934 }
1935
1936 /*
1937 * Check all signature algorithms are consistent with signature
1938 * algorithms extension if TLS 1.2 or later and strict mode.
1939 */
1940 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
1941 int default_nid;
1942 int rsign = 0;
1943 if (s->s3->tmp.peer_sigalgs)
1944 default_nid = 0;
1945 /* If no sigalgs extension use defaults from RFC5246 */
1946 else {
1947 switch (idx) {
1948 case SSL_PKEY_RSA:
1949 rsign = EVP_PKEY_RSA;
1950 default_nid = NID_sha1WithRSAEncryption;
1951 break;
1952
1953 case SSL_PKEY_DSA_SIGN:
1954 rsign = EVP_PKEY_DSA;
1955 default_nid = NID_dsaWithSHA1;
1956 break;
1957
1958 case SSL_PKEY_ECC:
1959 rsign = EVP_PKEY_EC;
1960 default_nid = NID_ecdsa_with_SHA1;
1961 break;
1962
1963 case SSL_PKEY_GOST01:
1964 rsign = NID_id_GostR3410_2001;
1965 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
1966 break;
1967
1968 case SSL_PKEY_GOST12_256:
1969 rsign = NID_id_GostR3410_2012_256;
1970 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
1971 break;
1972
1973 case SSL_PKEY_GOST12_512:
1974 rsign = NID_id_GostR3410_2012_512;
1975 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
1976 break;
1977
1978 default:
1979 default_nid = -1;
1980 break;
1981 }
1982 }
1983 /*
1984 * If peer sent no signature algorithms extension and we have set
1985 * preferred signature algorithms check we support sha1.
1986 */
1987 if (default_nid > 0 && c->conf_sigalgs) {
1988 size_t j;
1989 const uint16_t *p = c->conf_sigalgs;
1990 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
1991 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
1992
1993 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
1994 break;
1995 }
1996 if (j == c->conf_sigalgslen) {
1997 if (check_flags)
1998 goto skip_sigs;
1999 else
2000 goto end;
2001 }
2002 }
2003 /* Check signature algorithm of each cert in chain */
2004 if (!tls1_check_sig_alg(c, x, default_nid)) {
2005 if (!check_flags)
2006 goto end;
2007 } else
2008 rv |= CERT_PKEY_EE_SIGNATURE;
2009 rv |= CERT_PKEY_CA_SIGNATURE;
2010 for (i = 0; i < sk_X509_num(chain); i++) {
2011 if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
2012 if (check_flags) {
2013 rv &= ~CERT_PKEY_CA_SIGNATURE;
2014 break;
2015 } else
2016 goto end;
2017 }
2018 }
2019 }
2020 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2021 else if (check_flags)
2022 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2023 skip_sigs:
2024 /* Check cert parameters are consistent */
2025 if (tls1_check_cert_param(s, x, 1))
2026 rv |= CERT_PKEY_EE_PARAM;
2027 else if (!check_flags)
2028 goto end;
2029 if (!s->server)
2030 rv |= CERT_PKEY_CA_PARAM;
2031 /* In strict mode check rest of chain too */
2032 else if (strict_mode) {
2033 rv |= CERT_PKEY_CA_PARAM;
2034 for (i = 0; i < sk_X509_num(chain); i++) {
2035 X509 *ca = sk_X509_value(chain, i);
2036 if (!tls1_check_cert_param(s, ca, 0)) {
2037 if (check_flags) {
2038 rv &= ~CERT_PKEY_CA_PARAM;
2039 break;
2040 } else
2041 goto end;
2042 }
2043 }
2044 }
2045 if (!s->server && strict_mode) {
2046 STACK_OF(X509_NAME) *ca_dn;
2047 int check_type = 0;
2048 switch (EVP_PKEY_id(pk)) {
2049 case EVP_PKEY_RSA:
2050 check_type = TLS_CT_RSA_SIGN;
2051 break;
2052 case EVP_PKEY_DSA:
2053 check_type = TLS_CT_DSS_SIGN;
2054 break;
2055 case EVP_PKEY_EC:
2056 check_type = TLS_CT_ECDSA_SIGN;
2057 break;
2058 }
2059 if (check_type) {
2060 const uint8_t *ctypes = s->s3->tmp.ctype;
2061 size_t j;
2062
2063 for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
2064 if (*ctypes == check_type) {
2065 rv |= CERT_PKEY_CERT_TYPE;
2066 break;
2067 }
2068 }
2069 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2070 goto end;
2071 } else {
2072 rv |= CERT_PKEY_CERT_TYPE;
2073 }
2074
2075 ca_dn = s->s3->tmp.peer_ca_names;
2076
2077 if (!sk_X509_NAME_num(ca_dn))
2078 rv |= CERT_PKEY_ISSUER_NAME;
2079
2080 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2081 if (ssl_check_ca_name(ca_dn, x))
2082 rv |= CERT_PKEY_ISSUER_NAME;
2083 }
2084 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2085 for (i = 0; i < sk_X509_num(chain); i++) {
2086 X509 *xtmp = sk_X509_value(chain, i);
2087 if (ssl_check_ca_name(ca_dn, xtmp)) {
2088 rv |= CERT_PKEY_ISSUER_NAME;
2089 break;
2090 }
2091 }
2092 }
2093 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2094 goto end;
2095 } else
2096 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2097
2098 if (!check_flags || (rv & check_flags) == check_flags)
2099 rv |= CERT_PKEY_VALID;
2100
2101 end:
2102
2103 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2104 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2105 else
2106 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2107
2108 /*
2109 * When checking a CERT_PKEY structure all flags are irrelevant if the
2110 * chain is invalid.
2111 */
2112 if (!check_flags) {
2113 if (rv & CERT_PKEY_VALID) {
2114 *pvalid = rv;
2115 } else {
2116 /* Preserve sign and explicit sign flag, clear rest */
2117 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2118 return 0;
2119 }
2120 }
2121 return rv;
2122 }
2123
2124 /* Set validity of certificates in an SSL structure */
2125 void tls1_set_cert_validity(SSL *s)
2126 {
2127 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2128 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2129 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2130 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2131 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2132 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2133 }
2134
2135 /* User level utility function to check a chain is suitable */
2136 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2137 {
2138 return tls1_check_chain(s, x, pk, chain, -1);
2139 }
2140
2141 #ifndef OPENSSL_NO_DH
2142 DH *ssl_get_auto_dh(SSL *s)
2143 {
2144 int dh_secbits = 80;
2145 if (s->cert->dh_tmp_auto == 2)
2146 return DH_get_1024_160();
2147 if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2148 if (s->s3->tmp.new_cipher->strength_bits == 256)
2149 dh_secbits = 128;
2150 else
2151 dh_secbits = 80;
2152 } else {
2153 if (s->s3->tmp.cert == NULL)
2154 return NULL;
2155 dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
2156 }
2157
2158 if (dh_secbits >= 128) {
2159 DH *dhp = DH_new();
2160 BIGNUM *p, *g;
2161 if (dhp == NULL)
2162 return NULL;
2163 g = BN_new();
2164 if (g != NULL)
2165 BN_set_word(g, 2);
2166 if (dh_secbits >= 192)
2167 p = BN_get_rfc3526_prime_8192(NULL);
2168 else
2169 p = BN_get_rfc3526_prime_3072(NULL);
2170 if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2171 DH_free(dhp);
2172 BN_free(p);
2173 BN_free(g);
2174 return NULL;
2175 }
2176 return dhp;
2177 }
2178 if (dh_secbits >= 112)
2179 return DH_get_2048_224();
2180 return DH_get_1024_160();
2181 }
2182 #endif
2183
2184 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2185 {
2186 int secbits = -1;
2187 EVP_PKEY *pkey = X509_get0_pubkey(x);
2188 if (pkey) {
2189 /*
2190 * If no parameters this will return -1 and fail using the default
2191 * security callback for any non-zero security level. This will
2192 * reject keys which omit parameters but this only affects DSA and
2193 * omission of parameters is never (?) done in practice.
2194 */
2195 secbits = EVP_PKEY_security_bits(pkey);
2196 }
2197 if (s)
2198 return ssl_security(s, op, secbits, 0, x);
2199 else
2200 return ssl_ctx_security(ctx, op, secbits, 0, x);
2201 }
2202
2203 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2204 {
2205 /* Lookup signature algorithm digest */
2206 int secbits = -1, md_nid = NID_undef, sig_nid;
2207 /* Don't check signature if self signed */
2208 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2209 return 1;
2210 sig_nid = X509_get_signature_nid(x);
2211 if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) {
2212 const EVP_MD *md;
2213 if (md_nid && (md = EVP_get_digestbynid(md_nid)))
2214 secbits = EVP_MD_size(md) * 4;
2215 }
2216 if (s)
2217 return ssl_security(s, op, secbits, md_nid, x);
2218 else
2219 return ssl_ctx_security(ctx, op, secbits, md_nid, x);
2220 }
2221
2222 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2223 {
2224 if (vfy)
2225 vfy = SSL_SECOP_PEER;
2226 if (is_ee) {
2227 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2228 return SSL_R_EE_KEY_TOO_SMALL;
2229 } else {
2230 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2231 return SSL_R_CA_KEY_TOO_SMALL;
2232 }
2233 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2234 return SSL_R_CA_MD_TOO_WEAK;
2235 return 1;
2236 }
2237
2238 /*
2239 * Check security of a chain, if |sk| includes the end entity certificate then
2240 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2241 * one to the peer. Return values: 1 if ok otherwise error code to use
2242 */
2243
2244 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2245 {
2246 int rv, start_idx, i;
2247 if (x == NULL) {
2248 x = sk_X509_value(sk, 0);
2249 start_idx = 1;
2250 } else
2251 start_idx = 0;
2252
2253 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2254 if (rv != 1)
2255 return rv;
2256
2257 for (i = start_idx; i < sk_X509_num(sk); i++) {
2258 x = sk_X509_value(sk, i);
2259 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2260 if (rv != 1)
2261 return rv;
2262 }
2263 return 1;
2264 }
2265
2266 /*
2267 * Choose an appropriate signature algorithm based on available certificates
2268 * Sets chosen certificate and signature algorithm.
2269 *
2270 * For servers if we fail to find a required certificate it is a fatal error
2271 * and an appropriate error code is set and the TLS alert set in *al.
2272 *
2273 * For clients al is set to NULL. If a certificate is not suitable it is not
2274 * a fatal error: we will either try another certificate or not present one
2275 * to the server. In this case no error is set.
2276 */
2277 int tls_choose_sigalg(SSL *s, int *al)
2278 {
2279 int idx = -1;
2280 const SIGALG_LOOKUP *lu = NULL;
2281
2282 s->s3->tmp.cert = NULL;
2283 s->s3->tmp.sigalg = NULL;
2284
2285 if (SSL_IS_TLS13(s)) {
2286 size_t i;
2287 #ifndef OPENSSL_NO_EC
2288 int curve = -1, skip_ec = 0;
2289 #endif
2290
2291 /* Look for a certificate matching shared sigalgs */
2292 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2293 lu = s->cert->shared_sigalgs[i];
2294
2295 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
2296 if (lu->hash == NID_sha1
2297 || lu->hash == NID_sha224
2298 || lu->sig == EVP_PKEY_DSA
2299 || lu->sig == EVP_PKEY_RSA)
2300 continue;
2301 if (ssl_md(lu->hash_idx) == NULL)
2302 continue;
2303 idx = lu->sig_idx;
2304 if (!ssl_has_cert(s, idx))
2305 continue;
2306 if (lu->sig == EVP_PKEY_EC) {
2307 #ifndef OPENSSL_NO_EC
2308 if (curve == -1) {
2309 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2310
2311 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2312 if (EC_KEY_get_conv_form(ec)
2313 != POINT_CONVERSION_UNCOMPRESSED)
2314 skip_ec = 1;
2315 }
2316 if (skip_ec || (lu->curve != NID_undef && curve != lu->curve))
2317 continue;
2318 #else
2319 continue;
2320 #endif
2321 }
2322 break;
2323 }
2324 if (i == s->cert->shared_sigalgslen) {
2325 if (al == NULL)
2326 return 1;
2327 *al = SSL_AD_HANDSHAKE_FAILURE;
2328 SSLerr(SSL_F_TLS_CHOOSE_SIGALG,
2329 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2330 return 0;
2331 }
2332 } else {
2333 if (s->server) {
2334 /* Find index corresponding to ciphersuite */
2335 idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
2336 /* If no certificate for ciphersuite return */
2337 if (idx == -1)
2338 return 1;
2339 if (idx == SSL_PKEY_GOST_EC) {
2340 /* Work out which GOST certificate is available */
2341 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
2342 idx = SSL_PKEY_GOST12_512;
2343 } else if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
2344 idx = SSL_PKEY_GOST12_256;
2345 } else if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
2346 idx = SSL_PKEY_GOST01;
2347 } else {
2348 if (al == NULL)
2349 return 1;
2350 *al = SSL_AD_INTERNAL_ERROR;
2351 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2352 return 0;
2353 }
2354 } else if (!ssl_has_cert(s, idx)) {
2355 if (al == NULL)
2356 return 1;
2357 *al = SSL_AD_INTERNAL_ERROR;
2358 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2359 return 0;
2360 }
2361 } else {
2362 /* Find index for client certificate */
2363 idx = s->cert->key - s->cert->pkeys;
2364 if (!ssl_has_cert(s, idx))
2365 return 1;
2366 }
2367
2368 if (SSL_USE_SIGALGS(s)) {
2369 if (s->s3->tmp.peer_sigalgs != NULL) {
2370 size_t i;
2371 #ifndef OPENSSL_NO_EC
2372 int curve;
2373
2374 /* For Suite B need to match signature algorithm to curve */
2375 if (tls1_suiteb(s)) {
2376 EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[idx].privatekey);
2377 curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
2378 } else {
2379 curve = -1;
2380 }
2381 #endif
2382
2383 /*
2384 * Find highest preference signature algorithm matching
2385 * cert type
2386 */
2387 for (i = 0; i < s->cert->shared_sigalgslen; i++) {
2388 lu = s->cert->shared_sigalgs[i];
2389 #ifdef OPENSSL_NO_EC
2390 if (lu->sig_idx == idx)
2391 break;
2392 #else
2393 if (lu->sig_idx == idx
2394 && (curve == -1 || lu->curve == curve))
2395 break;
2396 #endif
2397 if (idx == SSL_PKEY_RSA && lu->sig == EVP_PKEY_RSA_PSS)
2398 break;
2399 }
2400 if (i == s->cert->shared_sigalgslen) {
2401 if (al == NULL)
2402 return 1;
2403 *al = SSL_AD_INTERNAL_ERROR;
2404 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2405 return 0;
2406 }
2407 } else {
2408 /*
2409 * If we have no sigalg use defaults
2410 */
2411 const uint16_t *sent_sigs;
2412 size_t sent_sigslen, i;
2413
2414 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2415 if (al == NULL)
2416 return 1;
2417 *al = SSL_AD_INTERNAL_ERROR;
2418 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2419 return 0;
2420 }
2421
2422 /* Check signature matches a type we sent */
2423 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2424 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2425 if (lu->sigalg == *sent_sigs)
2426 break;
2427 }
2428 if (i == sent_sigslen) {
2429 if (al == NULL)
2430 return 1;
2431 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
2432 *al = SSL_AD_ILLEGAL_PARAMETER;
2433 return 0;
2434 }
2435 }
2436 } else {
2437 if ((lu = tls1_get_legacy_sigalg(s, idx)) == NULL) {
2438 if (al == NULL)
2439 return 1;
2440 *al = SSL_AD_INTERNAL_ERROR;
2441 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2442 return 0;
2443 }
2444 }
2445 }
2446 if (idx == -1) {
2447 if (al != NULL) {
2448 *al = SSL_AD_INTERNAL_ERROR;
2449 SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
2450 }
2451 return 0;
2452 }
2453 s->s3->tmp.cert = &s->cert->pkeys[idx];
2454 s->cert->key = s->s3->tmp.cert;
2455 s->s3->tmp.sigalg = lu;
2456 return 1;
2457 }