]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
571a1ec2c46207c1ee513e84fc33b80e27bcb377
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <openssl/objects.h>
13 #include <openssl/evp.h>
14 #include <openssl/hmac.h>
15 #include <openssl/core_names.h>
16 #include <openssl/ocsp.h>
17 #include <openssl/conf.h>
18 #include <openssl/x509v3.h>
19 #include <openssl/dh.h>
20 #include <openssl/bn.h>
21 #include <openssl/provider.h>
22 #include <openssl/param_build.h>
23 #include "internal/nelem.h"
24 #include "internal/sizes.h"
25 #include "internal/tlsgroups.h"
26 #include "ssl_local.h"
27 #include <openssl/ct.h>
28
29 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
30 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
31
32 SSL3_ENC_METHOD const TLSv1_enc_data = {
33 tls1_enc,
34 tls1_mac,
35 tls1_setup_key_block,
36 tls1_generate_master_secret,
37 tls1_change_cipher_state,
38 tls1_final_finish_mac,
39 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41 tls1_alert_code,
42 tls1_export_keying_material,
43 0,
44 ssl3_set_handshake_header,
45 tls_close_construct_packet,
46 ssl3_handshake_write
47 };
48
49 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50 tls1_enc,
51 tls1_mac,
52 tls1_setup_key_block,
53 tls1_generate_master_secret,
54 tls1_change_cipher_state,
55 tls1_final_finish_mac,
56 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
57 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
58 tls1_alert_code,
59 tls1_export_keying_material,
60 SSL_ENC_FLAG_EXPLICIT_IV,
61 ssl3_set_handshake_header,
62 tls_close_construct_packet,
63 ssl3_handshake_write
64 };
65
66 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
67 tls1_enc,
68 tls1_mac,
69 tls1_setup_key_block,
70 tls1_generate_master_secret,
71 tls1_change_cipher_state,
72 tls1_final_finish_mac,
73 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
74 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
75 tls1_alert_code,
76 tls1_export_keying_material,
77 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
78 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
79 ssl3_set_handshake_header,
80 tls_close_construct_packet,
81 ssl3_handshake_write
82 };
83
84 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
85 tls13_enc,
86 tls1_mac,
87 tls13_setup_key_block,
88 tls13_generate_master_secret,
89 tls13_change_cipher_state,
90 tls13_final_finish_mac,
91 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
92 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
93 tls13_alert_code,
94 tls13_export_keying_material,
95 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
96 ssl3_set_handshake_header,
97 tls_close_construct_packet,
98 ssl3_handshake_write
99 };
100
101 long tls1_default_timeout(void)
102 {
103 /*
104 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
105 * http, the cache would over fill
106 */
107 return (60 * 60 * 2);
108 }
109
110 int tls1_new(SSL *s)
111 {
112 if (!ssl3_new(s))
113 return 0;
114 if (!s->method->ssl_clear(s))
115 return 0;
116
117 return 1;
118 }
119
120 void tls1_free(SSL *s)
121 {
122 OPENSSL_free(s->ext.session_ticket);
123 ssl3_free(s);
124 }
125
126 int tls1_clear(SSL *s)
127 {
128 if (!ssl3_clear(s))
129 return 0;
130
131 if (s->method->version == TLS_ANY_VERSION)
132 s->version = TLS_MAX_VERSION_INTERNAL;
133 else
134 s->version = s->method->version;
135
136 return 1;
137 }
138
139 /* Legacy NID to group_id mapping. Only works for groups we know about */
140 static struct {
141 int nid;
142 uint16_t group_id;
143 } nid_to_group[] = {
144 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
145 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
146 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
147 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
148 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
149 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
150 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
151 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
152 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
153 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
154 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
155 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
156 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
157 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
158 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
159 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
160 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
161 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
162 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
163 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
164 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
165 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
166 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
167 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
168 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
169 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
170 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
171 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
172 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
173 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
174 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
175 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
176 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
177 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
178 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
179 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
180 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
181 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
182 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
183 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
184 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
185 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
186 };
187
188 #ifndef OPENSSL_NO_EC
189 static const unsigned char ecformats_default[] = {
190 TLSEXT_ECPOINTFORMAT_uncompressed,
191 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193 };
194 #endif /* !defined(OPENSSL_NO_EC) */
195
196 /* The default curves */
197 static const uint16_t supported_groups_default[] = {
198 29, /* X25519 (29) */
199 23, /* secp256r1 (23) */
200 30, /* X448 (30) */
201 25, /* secp521r1 (25) */
202 24, /* secp384r1 (24) */
203 34, /* GC256A (34) */
204 35, /* GC256B (35) */
205 36, /* GC256C (36) */
206 37, /* GC256D (37) */
207 38, /* GC512A (38) */
208 39, /* GC512B (39) */
209 40, /* GC512C (40) */
210 0x100, /* ffdhe2048 (0x100) */
211 0x101, /* ffdhe3072 (0x101) */
212 0x102, /* ffdhe4096 (0x102) */
213 0x103, /* ffdhe6144 (0x103) */
214 0x104, /* ffdhe8192 (0x104) */
215 };
216
217 #ifndef OPENSSL_NO_EC
218 static const uint16_t suiteb_curves[] = {
219 TLSEXT_curve_P_256,
220 TLSEXT_curve_P_384
221 };
222 #endif
223
224 struct provider_group_data_st {
225 SSL_CTX *ctx;
226 OSSL_PROVIDER *provider;
227 };
228
229 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
230 static OSSL_CALLBACK add_provider_groups;
231 static int add_provider_groups(const OSSL_PARAM params[], void *data)
232 {
233 struct provider_group_data_st *pgd = data;
234 SSL_CTX *ctx = pgd->ctx;
235 OSSL_PROVIDER *provider = pgd->provider;
236 const OSSL_PARAM *p;
237 TLS_GROUP_INFO *ginf = NULL;
238 EVP_KEYMGMT *keymgmt;
239 unsigned int gid;
240 unsigned int is_kem = 0;
241 int ret = 0;
242
243 if (ctx->group_list_max_len == ctx->group_list_len) {
244 TLS_GROUP_INFO *tmp = NULL;
245
246 if (ctx->group_list_max_len == 0)
247 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
248 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
249 else
250 tmp = OPENSSL_realloc(ctx->group_list,
251 (ctx->group_list_max_len
252 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
253 * sizeof(TLS_GROUP_INFO));
254 if (tmp == NULL) {
255 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
256 return 0;
257 }
258 ctx->group_list = tmp;
259 memset(tmp + ctx->group_list_max_len,
260 0,
261 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
262 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
263 }
264
265 ginf = &ctx->group_list[ctx->group_list_len];
266
267 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
268 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
269 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
270 goto err;
271 }
272 ginf->tlsname = OPENSSL_strdup(p->data);
273 if (ginf->tlsname == NULL) {
274 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
275 goto err;
276 }
277
278 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
279 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
280 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
281 goto err;
282 }
283 ginf->realname = OPENSSL_strdup(p->data);
284 if (ginf->realname == NULL) {
285 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
286 goto err;
287 }
288
289 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
290 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
291 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
292 goto err;
293 }
294 ginf->group_id = (uint16_t)gid;
295
296 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
297 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
298 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299 goto err;
300 }
301 ginf->algorithm = OPENSSL_strdup(p->data);
302 if (ginf->algorithm == NULL) {
303 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
304 goto err;
305 }
306
307 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
308 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
309 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310 goto err;
311 }
312
313 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
314 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
315 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316 goto err;
317 }
318 ginf->is_kem = 1 & is_kem;
319
320 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
321 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
322 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
323 goto err;
324 }
325
326 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
327 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
328 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
329 goto err;
330 }
331
332 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
333 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
334 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
335 goto err;
336 }
337
338 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
339 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
340 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
341 goto err;
342 }
343 /*
344 * Now check that the algorithm is actually usable for our property query
345 * string. Regardless of the result we still return success because we have
346 * successfully processed this group, even though we may decide not to use
347 * it.
348 */
349 ret = 1;
350 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
351 if (keymgmt != NULL) {
352 /*
353 * We have successfully fetched the algorithm - however if the provider
354 * doesn't match this one then we ignore it.
355 *
356 * Note: We're cheating a little here. Technically if the same algorithm
357 * is available from more than one provider then it is undefined which
358 * implementation you will get back. Theoretically this could be
359 * different every time...we assume here that you'll always get the
360 * same one back if you repeat the exact same fetch. Is this a reasonable
361 * assumption to make (in which case perhaps we should document this
362 * behaviour)?
363 */
364 if (EVP_KEYMGMT_provider(keymgmt) == provider) {
365 /* We have a match - so we will use this group */
366 ctx->group_list_len++;
367 ginf = NULL;
368 }
369 EVP_KEYMGMT_free(keymgmt);
370 }
371 err:
372 if (ginf != NULL) {
373 OPENSSL_free(ginf->tlsname);
374 OPENSSL_free(ginf->realname);
375 OPENSSL_free(ginf->algorithm);
376 ginf->tlsname = ginf->realname = NULL;
377 }
378 return ret;
379 }
380
381 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
382 {
383 struct provider_group_data_st pgd;
384
385 pgd.ctx = vctx;
386 pgd.provider = provider;
387 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
388 add_provider_groups, &pgd);
389 }
390
391 int ssl_load_groups(SSL_CTX *ctx)
392 {
393 size_t i, j, num_deflt_grps = 0;
394 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
395
396 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
397 return 0;
398
399 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
400 for (j = 0; j < ctx->group_list_len; j++) {
401 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
402 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
403 break;
404 }
405 }
406 }
407
408 if (num_deflt_grps == 0)
409 return 1;
410
411 ctx->ext.supported_groups_default
412 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
413
414 if (ctx->ext.supported_groups_default == NULL) {
415 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
416 return 0;
417 }
418
419 memcpy(ctx->ext.supported_groups_default,
420 tmp_supp_groups,
421 num_deflt_grps * sizeof(tmp_supp_groups[0]));
422 ctx->ext.supported_groups_default_len = num_deflt_grps;
423
424 return 1;
425 }
426
427 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
428 {
429 size_t i;
430 int nid = NID_undef;
431
432 /* See if we can identify a nid for this name */
433 #ifndef OPENSSL_NO_EC
434 nid = EC_curve_nist2nid(name);
435 #endif
436 if (nid == NID_undef)
437 nid = OBJ_sn2nid(name);
438 if (nid == NID_undef)
439 nid = OBJ_ln2nid(name);
440
441 for (i = 0; i < ctx->group_list_len; i++) {
442 if (strcmp(ctx->group_list[i].tlsname, name) == 0
443 || strcmp(ctx->group_list[i].realname, name) == 0)
444 return ctx->group_list[i].group_id;
445 }
446
447 return 0;
448 }
449
450 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
451 {
452 size_t i;
453
454 for (i = 0; i < ctx->group_list_len; i++) {
455 if (ctx->group_list[i].group_id == group_id)
456 return &ctx->group_list[i];
457 }
458
459 return NULL;
460 }
461
462 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
463 {
464 size_t i;
465
466 if (group_id == 0)
467 return NID_undef;
468
469 /*
470 * Return well known Group NIDs - for backwards compatibility. This won't
471 * work for groups we don't know about.
472 */
473 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
474 {
475 if (nid_to_group[i].group_id == group_id)
476 return nid_to_group[i].nid;
477 }
478 if (!include_unknown)
479 return NID_undef;
480 return TLSEXT_nid_unknown | (int)group_id;
481 }
482
483 uint16_t tls1_nid2group_id(int nid)
484 {
485 size_t i;
486
487 /*
488 * Return well known Group ids - for backwards compatibility. This won't
489 * work for groups we don't know about.
490 */
491 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
492 {
493 if (nid_to_group[i].nid == nid)
494 return nid_to_group[i].group_id;
495 }
496
497 return 0;
498 }
499
500 /*
501 * Set *pgroups to the supported groups list and *pgroupslen to
502 * the number of groups supported.
503 */
504 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
505 size_t *pgroupslen)
506 {
507 /* For Suite B mode only include P-256, P-384 */
508 switch (tls1_suiteb(s)) {
509 # ifndef OPENSSL_NO_EC
510 case SSL_CERT_FLAG_SUITEB_128_LOS:
511 *pgroups = suiteb_curves;
512 *pgroupslen = OSSL_NELEM(suiteb_curves);
513 break;
514
515 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
516 *pgroups = suiteb_curves;
517 *pgroupslen = 1;
518 break;
519
520 case SSL_CERT_FLAG_SUITEB_192_LOS:
521 *pgroups = suiteb_curves + 1;
522 *pgroupslen = 1;
523 break;
524 # endif
525
526 default:
527 if (s->ext.supportedgroups == NULL) {
528 *pgroups = s->ctx->ext.supported_groups_default;
529 *pgroupslen = s->ctx->ext.supported_groups_default_len;
530 } else {
531 *pgroups = s->ext.supportedgroups;
532 *pgroupslen = s->ext.supportedgroups_len;
533 }
534 break;
535 }
536 }
537
538 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
539 int isec, int *okfortls13)
540 {
541 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
542 int ret;
543
544 if (okfortls13 != NULL)
545 okfortls13 = 0;
546
547 if (ginfo == NULL)
548 return 0;
549
550 if (SSL_IS_DTLS(s)) {
551 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
552 return 0;
553 if (ginfo->maxdtls == 0)
554 ret = 1;
555 else
556 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
557 if (ginfo->mindtls > 0)
558 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
559 } else {
560 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
561 return 0;
562 if (ginfo->maxtls == 0)
563 ret = 1;
564 else
565 ret = (minversion <= ginfo->maxtls);
566 if (ginfo->mintls > 0)
567 ret &= (maxversion >= ginfo->mintls);
568 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
569 *okfortls13 = (ginfo->maxtls == 0)
570 || (ginfo->maxtls >= TLS1_3_VERSION);
571 }
572 ret &= !isec
573 || strcmp(ginfo->algorithm, "EC") == 0
574 || strcmp(ginfo->algorithm, "X25519") == 0
575 || strcmp(ginfo->algorithm, "X448") == 0;
576
577 return ret;
578 }
579
580 /* See if group is allowed by security callback */
581 int tls_group_allowed(SSL *s, uint16_t group, int op)
582 {
583 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
584 unsigned char gtmp[2];
585
586 if (ginfo == NULL)
587 return 0;
588
589 gtmp[0] = group >> 8;
590 gtmp[1] = group & 0xff;
591 return ssl_security(s, op, ginfo->secbits,
592 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
593 }
594
595 /* Return 1 if "id" is in "list" */
596 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
597 {
598 size_t i;
599 for (i = 0; i < listlen; i++)
600 if (list[i] == id)
601 return 1;
602 return 0;
603 }
604
605 /*-
606 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
607 * if there is no match.
608 * For nmatch == -1, return number of matches
609 * For nmatch == -2, return the id of the group to use for
610 * a tmp key, or 0 if there is no match.
611 */
612 uint16_t tls1_shared_group(SSL *s, int nmatch)
613 {
614 const uint16_t *pref, *supp;
615 size_t num_pref, num_supp, i;
616 int k;
617
618 /* Can't do anything on client side */
619 if (s->server == 0)
620 return 0;
621 if (nmatch == -2) {
622 if (tls1_suiteb(s)) {
623 /*
624 * For Suite B ciphersuite determines curve: we already know
625 * these are acceptable due to previous checks.
626 */
627 unsigned long cid = s->s3.tmp.new_cipher->id;
628
629 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
630 return TLSEXT_curve_P_256;
631 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
632 return TLSEXT_curve_P_384;
633 /* Should never happen */
634 return 0;
635 }
636 /* If not Suite B just return first preference shared curve */
637 nmatch = 0;
638 }
639 /*
640 * If server preference set, our groups are the preference order
641 * otherwise peer decides.
642 */
643 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
644 tls1_get_supported_groups(s, &pref, &num_pref);
645 tls1_get_peer_groups(s, &supp, &num_supp);
646 } else {
647 tls1_get_peer_groups(s, &pref, &num_pref);
648 tls1_get_supported_groups(s, &supp, &num_supp);
649 }
650
651 for (k = 0, i = 0; i < num_pref; i++) {
652 uint16_t id = pref[i];
653
654 if (!tls1_in_list(id, supp, num_supp)
655 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
656 continue;
657 if (nmatch == k)
658 return id;
659 k++;
660 }
661 if (nmatch == -1)
662 return k;
663 /* Out of range (nmatch > k). */
664 return 0;
665 }
666
667 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
668 int *groups, size_t ngroups)
669 {
670 uint16_t *glist;
671 size_t i;
672 /*
673 * Bitmap of groups included to detect duplicates: two variables are added
674 * to detect duplicates as some values are more than 32.
675 */
676 unsigned long *dup_list = NULL;
677 unsigned long dup_list_egrp = 0;
678 unsigned long dup_list_dhgrp = 0;
679
680 if (ngroups == 0) {
681 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
682 return 0;
683 }
684 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
685 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
686 return 0;
687 }
688 for (i = 0; i < ngroups; i++) {
689 unsigned long idmask;
690 uint16_t id;
691 id = tls1_nid2group_id(groups[i]);
692 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
693 goto err;
694 idmask = 1L << (id & 0x00FF);
695 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
696 if (!id || ((*dup_list) & idmask))
697 goto err;
698 *dup_list |= idmask;
699 glist[i] = id;
700 }
701 OPENSSL_free(*pext);
702 *pext = glist;
703 *pextlen = ngroups;
704 return 1;
705 err:
706 OPENSSL_free(glist);
707 return 0;
708 }
709
710 /* TODO(3.0): An arbitrary amount for now. Take another look at this */
711 # define MAX_GROUPLIST 40
712
713 typedef struct {
714 SSL_CTX *ctx;
715 size_t gidcnt;
716 uint16_t gid_arr[MAX_GROUPLIST];
717 } gid_cb_st;
718
719 static int gid_cb(const char *elem, int len, void *arg)
720 {
721 gid_cb_st *garg = arg;
722 size_t i;
723 uint16_t gid = 0;
724 char etmp[20];
725
726 if (elem == NULL)
727 return 0;
728 if (garg->gidcnt == MAX_GROUPLIST)
729 return 0;
730 if (len > (int)(sizeof(etmp) - 1))
731 return 0;
732 memcpy(etmp, elem, len);
733 etmp[len] = 0;
734
735 gid = tls1_group_name2id(garg->ctx, etmp);
736 if (gid == 0)
737 return 0;
738 for (i = 0; i < garg->gidcnt; i++)
739 if (garg->gid_arr[i] == gid)
740 return 0;
741 garg->gid_arr[garg->gidcnt++] = gid;
742 return 1;
743 }
744
745 /* Set groups based on a colon separated list */
746 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
747 const char *str)
748 {
749 gid_cb_st gcb;
750 uint16_t *tmparr;
751
752 gcb.gidcnt = 0;
753 gcb.ctx = ctx;
754 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
755 return 0;
756 if (pext == NULL)
757 return 1;
758
759 /*
760 * gid_cb ensurse there are no duplicates so we can just go ahead and set
761 * the result
762 */
763 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
764 if (tmparr == NULL)
765 return 0;
766 *pext = tmparr;
767 *pextlen = gcb.gidcnt;
768 return 1;
769 }
770
771 /* Check a group id matches preferences */
772 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
773 {
774 const uint16_t *groups;
775 size_t groups_len;
776
777 if (group_id == 0)
778 return 0;
779
780 /* Check for Suite B compliance */
781 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
782 unsigned long cid = s->s3.tmp.new_cipher->id;
783
784 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
785 if (group_id != TLSEXT_curve_P_256)
786 return 0;
787 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
788 if (group_id != TLSEXT_curve_P_384)
789 return 0;
790 } else {
791 /* Should never happen */
792 return 0;
793 }
794 }
795
796 if (check_own_groups) {
797 /* Check group is one of our preferences */
798 tls1_get_supported_groups(s, &groups, &groups_len);
799 if (!tls1_in_list(group_id, groups, groups_len))
800 return 0;
801 }
802
803 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
804 return 0;
805
806 /* For clients, nothing more to check */
807 if (!s->server)
808 return 1;
809
810 /* Check group is one of peers preferences */
811 tls1_get_peer_groups(s, &groups, &groups_len);
812
813 /*
814 * RFC 4492 does not require the supported elliptic curves extension
815 * so if it is not sent we can just choose any curve.
816 * It is invalid to send an empty list in the supported groups
817 * extension, so groups_len == 0 always means no extension.
818 */
819 if (groups_len == 0)
820 return 1;
821 return tls1_in_list(group_id, groups, groups_len);
822 }
823
824 #ifndef OPENSSL_NO_EC
825 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
826 size_t *num_formats)
827 {
828 /*
829 * If we have a custom point format list use it otherwise use default
830 */
831 if (s->ext.ecpointformats) {
832 *pformats = s->ext.ecpointformats;
833 *num_formats = s->ext.ecpointformats_len;
834 } else {
835 *pformats = ecformats_default;
836 /* For Suite B we don't support char2 fields */
837 if (tls1_suiteb(s))
838 *num_formats = sizeof(ecformats_default) - 1;
839 else
840 *num_formats = sizeof(ecformats_default);
841 }
842 }
843
844 /* Check a key is compatible with compression extension */
845 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
846 {
847 unsigned char comp_id;
848 size_t i;
849 int point_conv;
850
851 /* If not an EC key nothing to check */
852 if (!EVP_PKEY_is_a(pkey, "EC"))
853 return 1;
854
855
856 /* Get required compression id */
857 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
858 if (point_conv == 0)
859 return 0;
860 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
861 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
862 } else if (SSL_IS_TLS13(s)) {
863 /*
864 * ec_point_formats extension is not used in TLSv1.3 so we ignore
865 * this check.
866 */
867 return 1;
868 } else {
869 int field_type = EVP_PKEY_get_field_type(pkey);
870
871 if (field_type == NID_X9_62_prime_field)
872 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
873 else if (field_type == NID_X9_62_characteristic_two_field)
874 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
875 else
876 return 0;
877 }
878 /*
879 * If point formats extension present check it, otherwise everything is
880 * supported (see RFC4492).
881 */
882 if (s->ext.peer_ecpointformats == NULL)
883 return 1;
884
885 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
886 if (s->ext.peer_ecpointformats[i] == comp_id)
887 return 1;
888 }
889 return 0;
890 }
891
892 /* Return group id of a key */
893 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
894 {
895 int curve_nid = ssl_get_EC_curve_nid(pkey);
896
897 if (curve_nid == NID_undef)
898 return 0;
899 return tls1_nid2group_id(curve_nid);
900 }
901
902 /*
903 * Check cert parameters compatible with extensions: currently just checks EC
904 * certificates have compatible curves and compression.
905 */
906 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
907 {
908 uint16_t group_id;
909 EVP_PKEY *pkey;
910 pkey = X509_get0_pubkey(x);
911 if (pkey == NULL)
912 return 0;
913 /* If not EC nothing to do */
914 if (!EVP_PKEY_is_a(pkey, "EC"))
915 return 1;
916 /* Check compression */
917 if (!tls1_check_pkey_comp(s, pkey))
918 return 0;
919 group_id = tls1_get_group_id(pkey);
920 /*
921 * For a server we allow the certificate to not be in our list of supported
922 * groups.
923 */
924 if (!tls1_check_group_id(s, group_id, !s->server))
925 return 0;
926 /*
927 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
928 * SHA384+P-384.
929 */
930 if (check_ee_md && tls1_suiteb(s)) {
931 int check_md;
932 size_t i;
933
934 /* Check to see we have necessary signing algorithm */
935 if (group_id == TLSEXT_curve_P_256)
936 check_md = NID_ecdsa_with_SHA256;
937 else if (group_id == TLSEXT_curve_P_384)
938 check_md = NID_ecdsa_with_SHA384;
939 else
940 return 0; /* Should never happen */
941 for (i = 0; i < s->shared_sigalgslen; i++) {
942 if (check_md == s->shared_sigalgs[i]->sigandhash)
943 return 1;;
944 }
945 return 0;
946 }
947 return 1;
948 }
949
950 /*
951 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
952 * @s: SSL connection
953 * @cid: Cipher ID we're considering using
954 *
955 * Checks that the kECDHE cipher suite we're considering using
956 * is compatible with the client extensions.
957 *
958 * Returns 0 when the cipher can't be used or 1 when it can.
959 */
960 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
961 {
962 /* If not Suite B just need a shared group */
963 if (!tls1_suiteb(s))
964 return tls1_shared_group(s, 0) != 0;
965 /*
966 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
967 * curves permitted.
968 */
969 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
970 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
971 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
972 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
973
974 return 0;
975 }
976
977 #else
978
979 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
980 {
981 return 1;
982 }
983
984 #endif /* OPENSSL_NO_EC */
985
986 /* Default sigalg schemes */
987 static const uint16_t tls12_sigalgs[] = {
988 #ifndef OPENSSL_NO_EC
989 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
990 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
991 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
992 TLSEXT_SIGALG_ed25519,
993 TLSEXT_SIGALG_ed448,
994 #endif
995
996 TLSEXT_SIGALG_rsa_pss_pss_sha256,
997 TLSEXT_SIGALG_rsa_pss_pss_sha384,
998 TLSEXT_SIGALG_rsa_pss_pss_sha512,
999 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1000 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1001 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1002
1003 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1004 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1005 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1006
1007 #ifndef OPENSSL_NO_EC
1008 TLSEXT_SIGALG_ecdsa_sha224,
1009 TLSEXT_SIGALG_ecdsa_sha1,
1010 #endif
1011 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1012 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1013 #ifndef OPENSSL_NO_DSA
1014 TLSEXT_SIGALG_dsa_sha224,
1015 TLSEXT_SIGALG_dsa_sha1,
1016
1017 TLSEXT_SIGALG_dsa_sha256,
1018 TLSEXT_SIGALG_dsa_sha384,
1019 TLSEXT_SIGALG_dsa_sha512,
1020 #endif
1021 #ifndef OPENSSL_NO_GOST
1022 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1023 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1024 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1025 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1026 TLSEXT_SIGALG_gostr34102001_gostr3411,
1027 #endif
1028 };
1029
1030 #ifndef OPENSSL_NO_EC
1031 static const uint16_t suiteb_sigalgs[] = {
1032 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1033 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1034 };
1035 #endif
1036
1037 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1038 #ifndef OPENSSL_NO_EC
1039 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1040 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1041 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1042 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1043 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1044 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1045 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1046 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1047 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1048 {"ed25519", TLSEXT_SIGALG_ed25519,
1049 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1050 NID_undef, NID_undef, 1},
1051 {"ed448", TLSEXT_SIGALG_ed448,
1052 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1053 NID_undef, NID_undef, 1},
1054 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1055 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1056 NID_ecdsa_with_SHA224, NID_undef, 1},
1057 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1058 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1059 NID_ecdsa_with_SHA1, NID_undef, 1},
1060 #endif
1061 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1062 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1063 NID_undef, NID_undef, 1},
1064 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1065 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1066 NID_undef, NID_undef, 1},
1067 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1068 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1069 NID_undef, NID_undef, 1},
1070 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1071 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1072 NID_undef, NID_undef, 1},
1073 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1074 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1075 NID_undef, NID_undef, 1},
1076 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1077 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1078 NID_undef, NID_undef, 1},
1079 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1080 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1081 NID_sha256WithRSAEncryption, NID_undef, 1},
1082 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1083 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1084 NID_sha384WithRSAEncryption, NID_undef, 1},
1085 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1086 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1087 NID_sha512WithRSAEncryption, NID_undef, 1},
1088 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1089 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1090 NID_sha224WithRSAEncryption, NID_undef, 1},
1091 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1092 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1093 NID_sha1WithRSAEncryption, NID_undef, 1},
1094 #ifndef OPENSSL_NO_DSA
1095 {NULL, TLSEXT_SIGALG_dsa_sha256,
1096 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1097 NID_dsa_with_SHA256, NID_undef, 1},
1098 {NULL, TLSEXT_SIGALG_dsa_sha384,
1099 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1100 NID_undef, NID_undef, 1},
1101 {NULL, TLSEXT_SIGALG_dsa_sha512,
1102 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1103 NID_undef, NID_undef, 1},
1104 {NULL, TLSEXT_SIGALG_dsa_sha224,
1105 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1106 NID_undef, NID_undef, 1},
1107 {NULL, TLSEXT_SIGALG_dsa_sha1,
1108 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1109 NID_dsaWithSHA1, NID_undef, 1},
1110 #endif
1111 #ifndef OPENSSL_NO_GOST
1112 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1113 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1114 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1115 NID_undef, NID_undef, 1},
1116 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1117 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1118 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1119 NID_undef, NID_undef, 1},
1120 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1121 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1122 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1123 NID_undef, NID_undef, 1},
1124 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1125 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1126 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1127 NID_undef, NID_undef, 1},
1128 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1129 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1130 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1131 NID_undef, NID_undef, 1}
1132 #endif
1133 };
1134 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1135 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1136 "rsa_pkcs1_md5_sha1", 0,
1137 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1138 EVP_PKEY_RSA, SSL_PKEY_RSA,
1139 NID_undef, NID_undef, 1
1140 };
1141
1142 /*
1143 * Default signature algorithm values used if signature algorithms not present.
1144 * From RFC5246. Note: order must match certificate index order.
1145 */
1146 static const uint16_t tls_default_sigalg[] = {
1147 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1148 0, /* SSL_PKEY_RSA_PSS_SIGN */
1149 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1150 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1151 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1152 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1153 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1154 0, /* SSL_PKEY_ED25519 */
1155 0, /* SSL_PKEY_ED448 */
1156 };
1157
1158 int ssl_setup_sig_algs(SSL_CTX *ctx)
1159 {
1160 size_t i;
1161 const SIGALG_LOOKUP *lu;
1162 SIGALG_LOOKUP *cache
1163 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1164 EVP_PKEY *tmpkey = EVP_PKEY_new();
1165 int ret = 0;
1166
1167 if (cache == NULL || tmpkey == NULL)
1168 goto err;
1169
1170 ERR_set_mark();
1171 for (i = 0, lu = sigalg_lookup_tbl;
1172 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1173 EVP_PKEY_CTX *pctx;
1174
1175 cache[i] = *lu;
1176
1177 /*
1178 * Check hash is available.
1179 * TODO(3.0): This test is not perfect. A provider could have support
1180 * for a signature scheme, but not a particular hash. However the hash
1181 * could be available from some other loaded provider. In that case it
1182 * could be that the signature is available, and the hash is available
1183 * independently - but not as a combination. We ignore this for now.
1184 */
1185 if (lu->hash != NID_undef
1186 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1187 cache[i].enabled = 0;
1188 continue;
1189 }
1190
1191 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1192 cache[i].enabled = 0;
1193 continue;
1194 }
1195 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1196 /* If unable to create pctx we assume the sig algorithm is unavailable */
1197 if (pctx == NULL)
1198 cache[i].enabled = 0;
1199 EVP_PKEY_CTX_free(pctx);
1200 }
1201 ERR_pop_to_mark();
1202 ctx->sigalg_lookup_cache = cache;
1203 cache = NULL;
1204
1205 ret = 1;
1206 err:
1207 OPENSSL_free(cache);
1208 EVP_PKEY_free(tmpkey);
1209 return ret;
1210 }
1211
1212 /* Lookup TLS signature algorithm */
1213 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1214 {
1215 size_t i;
1216 const SIGALG_LOOKUP *lu;
1217
1218 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1219 /* cache should have the same number of elements as sigalg_lookup_tbl */
1220 i < OSSL_NELEM(sigalg_lookup_tbl);
1221 lu++, i++) {
1222 if (lu->sigalg == sigalg)
1223 return lu;
1224 }
1225 return NULL;
1226 }
1227 /* Lookup hash: return 0 if invalid or not enabled */
1228 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1229 {
1230 const EVP_MD *md;
1231 if (lu == NULL)
1232 return 0;
1233 /* lu->hash == NID_undef means no associated digest */
1234 if (lu->hash == NID_undef) {
1235 md = NULL;
1236 } else {
1237 md = ssl_md(ctx, lu->hash_idx);
1238 if (md == NULL)
1239 return 0;
1240 }
1241 if (pmd)
1242 *pmd = md;
1243 return 1;
1244 }
1245
1246 /*
1247 * Check if key is large enough to generate RSA-PSS signature.
1248 *
1249 * The key must greater than or equal to 2 * hash length + 2.
1250 * SHA512 has a hash length of 64 bytes, which is incompatible
1251 * with a 128 byte (1024 bit) key.
1252 */
1253 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
1254 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1255 const SIGALG_LOOKUP *lu)
1256 {
1257 const EVP_MD *md;
1258
1259 if (pkey == NULL)
1260 return 0;
1261 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1262 return 0;
1263 if (EVP_PKEY_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1264 return 0;
1265 return 1;
1266 }
1267
1268 /*
1269 * Returns a signature algorithm when the peer did not send a list of supported
1270 * signature algorithms. The signature algorithm is fixed for the certificate
1271 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1272 * certificate type from |s| will be used.
1273 * Returns the signature algorithm to use, or NULL on error.
1274 */
1275 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1276 {
1277 if (idx == -1) {
1278 if (s->server) {
1279 size_t i;
1280
1281 /* Work out index corresponding to ciphersuite */
1282 for (i = 0; i < SSL_PKEY_NUM; i++) {
1283 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1284
1285 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1286 idx = i;
1287 break;
1288 }
1289 }
1290
1291 /*
1292 * Some GOST ciphersuites allow more than one signature algorithms
1293 * */
1294 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1295 int real_idx;
1296
1297 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1298 real_idx--) {
1299 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1300 idx = real_idx;
1301 break;
1302 }
1303 }
1304 }
1305 /*
1306 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1307 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1308 */
1309 else if (idx == SSL_PKEY_GOST12_256) {
1310 int real_idx;
1311
1312 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1313 real_idx--) {
1314 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1315 idx = real_idx;
1316 break;
1317 }
1318 }
1319 }
1320 } else {
1321 idx = s->cert->key - s->cert->pkeys;
1322 }
1323 }
1324 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1325 return NULL;
1326 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1327 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1328
1329 if (!tls1_lookup_md(s->ctx, lu, NULL))
1330 return NULL;
1331 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1332 return NULL;
1333 return lu;
1334 }
1335 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1336 return NULL;
1337 return &legacy_rsa_sigalg;
1338 }
1339 /* Set peer sigalg based key type */
1340 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1341 {
1342 size_t idx;
1343 const SIGALG_LOOKUP *lu;
1344
1345 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1346 return 0;
1347 lu = tls1_get_legacy_sigalg(s, idx);
1348 if (lu == NULL)
1349 return 0;
1350 s->s3.tmp.peer_sigalg = lu;
1351 return 1;
1352 }
1353
1354 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1355 {
1356 /*
1357 * If Suite B mode use Suite B sigalgs only, ignore any other
1358 * preferences.
1359 */
1360 #ifndef OPENSSL_NO_EC
1361 switch (tls1_suiteb(s)) {
1362 case SSL_CERT_FLAG_SUITEB_128_LOS:
1363 *psigs = suiteb_sigalgs;
1364 return OSSL_NELEM(suiteb_sigalgs);
1365
1366 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1367 *psigs = suiteb_sigalgs;
1368 return 1;
1369
1370 case SSL_CERT_FLAG_SUITEB_192_LOS:
1371 *psigs = suiteb_sigalgs + 1;
1372 return 1;
1373 }
1374 #endif
1375 /*
1376 * We use client_sigalgs (if not NULL) if we're a server
1377 * and sending a certificate request or if we're a client and
1378 * determining which shared algorithm to use.
1379 */
1380 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1381 *psigs = s->cert->client_sigalgs;
1382 return s->cert->client_sigalgslen;
1383 } else if (s->cert->conf_sigalgs) {
1384 *psigs = s->cert->conf_sigalgs;
1385 return s->cert->conf_sigalgslen;
1386 } else {
1387 *psigs = tls12_sigalgs;
1388 return OSSL_NELEM(tls12_sigalgs);
1389 }
1390 }
1391
1392 #ifndef OPENSSL_NO_EC
1393 /*
1394 * Called by servers only. Checks that we have a sig alg that supports the
1395 * specified EC curve.
1396 */
1397 int tls_check_sigalg_curve(const SSL *s, int curve)
1398 {
1399 const uint16_t *sigs;
1400 size_t siglen, i;
1401
1402 if (s->cert->conf_sigalgs) {
1403 sigs = s->cert->conf_sigalgs;
1404 siglen = s->cert->conf_sigalgslen;
1405 } else {
1406 sigs = tls12_sigalgs;
1407 siglen = OSSL_NELEM(tls12_sigalgs);
1408 }
1409
1410 for (i = 0; i < siglen; i++) {
1411 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1412
1413 if (lu == NULL)
1414 continue;
1415 if (lu->sig == EVP_PKEY_EC
1416 && lu->curve != NID_undef
1417 && curve == lu->curve)
1418 return 1;
1419 }
1420
1421 return 0;
1422 }
1423 #endif
1424
1425 /*
1426 * Return the number of security bits for the signature algorithm, or 0 on
1427 * error.
1428 */
1429 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1430 {
1431 const EVP_MD *md = NULL;
1432 int secbits = 0;
1433
1434 if (!tls1_lookup_md(ctx, lu, &md))
1435 return 0;
1436 if (md != NULL)
1437 {
1438 int md_type = EVP_MD_type(md);
1439
1440 /* Security bits: half digest bits */
1441 secbits = EVP_MD_size(md) * 4;
1442 /*
1443 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1444 * they're no longer accepted at security level 1. The real values don't
1445 * really matter as long as they're lower than 80, which is our
1446 * security level 1.
1447 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1448 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1449 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1450 * puts a chosen-prefix attack for MD5 at 2^39.
1451 */
1452 if (md_type == NID_sha1)
1453 secbits = 64;
1454 else if (md_type == NID_md5_sha1)
1455 secbits = 67;
1456 else if (md_type == NID_md5)
1457 secbits = 39;
1458 } else {
1459 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1460 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1461 secbits = 128;
1462 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1463 secbits = 224;
1464 }
1465 return secbits;
1466 }
1467
1468 /*
1469 * Check signature algorithm is consistent with sent supported signature
1470 * algorithms and if so set relevant digest and signature scheme in
1471 * s.
1472 */
1473 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1474 {
1475 const uint16_t *sent_sigs;
1476 const EVP_MD *md = NULL;
1477 char sigalgstr[2];
1478 size_t sent_sigslen, i, cidx;
1479 int pkeyid = -1;
1480 const SIGALG_LOOKUP *lu;
1481 int secbits = 0;
1482
1483 pkeyid = EVP_PKEY_id(pkey);
1484 /* Should never happen */
1485 if (pkeyid == -1)
1486 return -1;
1487 if (SSL_IS_TLS13(s)) {
1488 /* Disallow DSA for TLS 1.3 */
1489 if (pkeyid == EVP_PKEY_DSA) {
1490 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1491 return 0;
1492 }
1493 /* Only allow PSS for TLS 1.3 */
1494 if (pkeyid == EVP_PKEY_RSA)
1495 pkeyid = EVP_PKEY_RSA_PSS;
1496 }
1497 lu = tls1_lookup_sigalg(s, sig);
1498 /*
1499 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1500 * is consistent with signature: RSA keys can be used for RSA-PSS
1501 */
1502 if (lu == NULL
1503 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1504 || (pkeyid != lu->sig
1505 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1506 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1507 return 0;
1508 }
1509 /* Check the sigalg is consistent with the key OID */
1510 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1511 || lu->sig_idx != (int)cidx) {
1512 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1513 return 0;
1514 }
1515
1516 #ifndef OPENSSL_NO_EC
1517 if (pkeyid == EVP_PKEY_EC) {
1518
1519 /* Check point compression is permitted */
1520 if (!tls1_check_pkey_comp(s, pkey)) {
1521 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1522 SSL_R_ILLEGAL_POINT_COMPRESSION);
1523 return 0;
1524 }
1525
1526 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1527 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1528 int curve = ssl_get_EC_curve_nid(pkey);
1529
1530 if (lu->curve != NID_undef && curve != lu->curve) {
1531 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1532 return 0;
1533 }
1534 }
1535 if (!SSL_IS_TLS13(s)) {
1536 /* Check curve matches extensions */
1537 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1538 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1539 return 0;
1540 }
1541 if (tls1_suiteb(s)) {
1542 /* Check sigalg matches a permissible Suite B value */
1543 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1544 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1545 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1546 SSL_R_WRONG_SIGNATURE_TYPE);
1547 return 0;
1548 }
1549 }
1550 }
1551 } else if (tls1_suiteb(s)) {
1552 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1553 return 0;
1554 }
1555 #endif
1556
1557 /* Check signature matches a type we sent */
1558 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1559 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1560 if (sig == *sent_sigs)
1561 break;
1562 }
1563 /* Allow fallback to SHA1 if not strict mode */
1564 if (i == sent_sigslen && (lu->hash != NID_sha1
1565 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1566 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1567 return 0;
1568 }
1569 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1570 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1571 return 0;
1572 }
1573 /*
1574 * Make sure security callback allows algorithm. For historical
1575 * reasons we have to pass the sigalg as a two byte char array.
1576 */
1577 sigalgstr[0] = (sig >> 8) & 0xff;
1578 sigalgstr[1] = sig & 0xff;
1579 secbits = sigalg_security_bits(s->ctx, lu);
1580 if (secbits == 0 ||
1581 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1582 md != NULL ? EVP_MD_type(md) : NID_undef,
1583 (void *)sigalgstr)) {
1584 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1585 return 0;
1586 }
1587 /* Store the sigalg the peer uses */
1588 s->s3.tmp.peer_sigalg = lu;
1589 return 1;
1590 }
1591
1592 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1593 {
1594 if (s->s3.tmp.peer_sigalg == NULL)
1595 return 0;
1596 *pnid = s->s3.tmp.peer_sigalg->sig;
1597 return 1;
1598 }
1599
1600 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1601 {
1602 if (s->s3.tmp.sigalg == NULL)
1603 return 0;
1604 *pnid = s->s3.tmp.sigalg->sig;
1605 return 1;
1606 }
1607
1608 /*
1609 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1610 * supported, doesn't appear in supported signature algorithms, isn't supported
1611 * by the enabled protocol versions or by the security level.
1612 *
1613 * This function should only be used for checking which ciphers are supported
1614 * by the client.
1615 *
1616 * Call ssl_cipher_disabled() to check that it's enabled or not.
1617 */
1618 int ssl_set_client_disabled(SSL *s)
1619 {
1620 s->s3.tmp.mask_a = 0;
1621 s->s3.tmp.mask_k = 0;
1622 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1623 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1624 &s->s3.tmp.max_ver, NULL) != 0)
1625 return 0;
1626 #ifndef OPENSSL_NO_PSK
1627 /* with PSK there must be client callback set */
1628 if (!s->psk_client_callback) {
1629 s->s3.tmp.mask_a |= SSL_aPSK;
1630 s->s3.tmp.mask_k |= SSL_PSK;
1631 }
1632 #endif /* OPENSSL_NO_PSK */
1633 #ifndef OPENSSL_NO_SRP
1634 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1635 s->s3.tmp.mask_a |= SSL_aSRP;
1636 s->s3.tmp.mask_k |= SSL_kSRP;
1637 }
1638 #endif
1639 return 1;
1640 }
1641
1642 /*
1643 * ssl_cipher_disabled - check that a cipher is disabled or not
1644 * @s: SSL connection that you want to use the cipher on
1645 * @c: cipher to check
1646 * @op: Security check that you want to do
1647 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1648 *
1649 * Returns 1 when it's disabled, 0 when enabled.
1650 */
1651 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1652 {
1653 if (c->algorithm_mkey & s->s3.tmp.mask_k
1654 || c->algorithm_auth & s->s3.tmp.mask_a)
1655 return 1;
1656 if (s->s3.tmp.max_ver == 0)
1657 return 1;
1658 if (!SSL_IS_DTLS(s)) {
1659 int min_tls = c->min_tls;
1660
1661 /*
1662 * For historical reasons we will allow ECHDE to be selected by a server
1663 * in SSLv3 if we are a client
1664 */
1665 if (min_tls == TLS1_VERSION && ecdhe
1666 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1667 min_tls = SSL3_VERSION;
1668
1669 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1670 return 1;
1671 }
1672 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1673 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1674 return 1;
1675
1676 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1677 }
1678
1679 int tls_use_ticket(SSL *s)
1680 {
1681 if ((s->options & SSL_OP_NO_TICKET))
1682 return 0;
1683 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1684 }
1685
1686 int tls1_set_server_sigalgs(SSL *s)
1687 {
1688 size_t i;
1689
1690 /* Clear any shared signature algorithms */
1691 OPENSSL_free(s->shared_sigalgs);
1692 s->shared_sigalgs = NULL;
1693 s->shared_sigalgslen = 0;
1694 /* Clear certificate validity flags */
1695 for (i = 0; i < SSL_PKEY_NUM; i++)
1696 s->s3.tmp.valid_flags[i] = 0;
1697 /*
1698 * If peer sent no signature algorithms check to see if we support
1699 * the default algorithm for each certificate type
1700 */
1701 if (s->s3.tmp.peer_cert_sigalgs == NULL
1702 && s->s3.tmp.peer_sigalgs == NULL) {
1703 const uint16_t *sent_sigs;
1704 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1705
1706 for (i = 0; i < SSL_PKEY_NUM; i++) {
1707 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1708 size_t j;
1709
1710 if (lu == NULL)
1711 continue;
1712 /* Check default matches a type we sent */
1713 for (j = 0; j < sent_sigslen; j++) {
1714 if (lu->sigalg == sent_sigs[j]) {
1715 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1716 break;
1717 }
1718 }
1719 }
1720 return 1;
1721 }
1722
1723 if (!tls1_process_sigalgs(s)) {
1724 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1725 return 0;
1726 }
1727 if (s->shared_sigalgs != NULL)
1728 return 1;
1729
1730 /* Fatal error if no shared signature algorithms */
1731 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1732 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1733 return 0;
1734 }
1735
1736 /*-
1737 * Gets the ticket information supplied by the client if any.
1738 *
1739 * hello: The parsed ClientHello data
1740 * ret: (output) on return, if a ticket was decrypted, then this is set to
1741 * point to the resulting session.
1742 */
1743 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1744 SSL_SESSION **ret)
1745 {
1746 size_t size;
1747 RAW_EXTENSION *ticketext;
1748
1749 *ret = NULL;
1750 s->ext.ticket_expected = 0;
1751
1752 /*
1753 * If tickets disabled or not supported by the protocol version
1754 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1755 * resumption.
1756 */
1757 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1758 return SSL_TICKET_NONE;
1759
1760 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1761 if (!ticketext->present)
1762 return SSL_TICKET_NONE;
1763
1764 size = PACKET_remaining(&ticketext->data);
1765
1766 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1767 hello->session_id, hello->session_id_len, ret);
1768 }
1769
1770 /*-
1771 * tls_decrypt_ticket attempts to decrypt a session ticket.
1772 *
1773 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1774 * expecting a pre-shared key ciphersuite, in which case we have no use for
1775 * session tickets and one will never be decrypted, nor will
1776 * s->ext.ticket_expected be set to 1.
1777 *
1778 * Side effects:
1779 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1780 * a new session ticket to the client because the client indicated support
1781 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1782 * a session ticket or we couldn't use the one it gave us, or if
1783 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1784 * Otherwise, s->ext.ticket_expected is set to 0.
1785 *
1786 * etick: points to the body of the session ticket extension.
1787 * eticklen: the length of the session tickets extension.
1788 * sess_id: points at the session ID.
1789 * sesslen: the length of the session ID.
1790 * psess: (output) on return, if a ticket was decrypted, then this is set to
1791 * point to the resulting session.
1792 */
1793 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1794 size_t eticklen, const unsigned char *sess_id,
1795 size_t sesslen, SSL_SESSION **psess)
1796 {
1797 SSL_SESSION *sess = NULL;
1798 unsigned char *sdec;
1799 const unsigned char *p;
1800 int slen, renew_ticket = 0, declen;
1801 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1802 size_t mlen;
1803 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1804 SSL_HMAC *hctx = NULL;
1805 EVP_CIPHER_CTX *ctx = NULL;
1806 SSL_CTX *tctx = s->session_ctx;
1807
1808 if (eticklen == 0) {
1809 /*
1810 * The client will accept a ticket but doesn't currently have
1811 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1812 */
1813 ret = SSL_TICKET_EMPTY;
1814 goto end;
1815 }
1816 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1817 /*
1818 * Indicate that the ticket couldn't be decrypted rather than
1819 * generating the session from ticket now, trigger
1820 * abbreviated handshake based on external mechanism to
1821 * calculate the master secret later.
1822 */
1823 ret = SSL_TICKET_NO_DECRYPT;
1824 goto end;
1825 }
1826
1827 /* Need at least keyname + iv */
1828 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1829 ret = SSL_TICKET_NO_DECRYPT;
1830 goto end;
1831 }
1832
1833 /* Initialize session ticket encryption and HMAC contexts */
1834 hctx = ssl_hmac_new(tctx);
1835 if (hctx == NULL) {
1836 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1837 goto end;
1838 }
1839 ctx = EVP_CIPHER_CTX_new();
1840 if (ctx == NULL) {
1841 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1842 goto end;
1843 }
1844 #ifndef OPENSSL_NO_DEPRECATED_3_0
1845 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1846 #else
1847 if (tctx->ext.ticket_key_evp_cb != NULL)
1848 #endif
1849 {
1850 unsigned char *nctick = (unsigned char *)etick;
1851 int rv = 0;
1852
1853 if (tctx->ext.ticket_key_evp_cb != NULL)
1854 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1855 nctick + TLSEXT_KEYNAME_LENGTH,
1856 ctx,
1857 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1858 0);
1859 #ifndef OPENSSL_NO_DEPRECATED_3_0
1860 else if (tctx->ext.ticket_key_cb != NULL)
1861 /* if 0 is returned, write an empty ticket */
1862 rv = tctx->ext.ticket_key_cb(s, nctick,
1863 nctick + TLSEXT_KEYNAME_LENGTH,
1864 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1865 #endif
1866 if (rv < 0) {
1867 ret = SSL_TICKET_FATAL_ERR_OTHER;
1868 goto end;
1869 }
1870 if (rv == 0) {
1871 ret = SSL_TICKET_NO_DECRYPT;
1872 goto end;
1873 }
1874 if (rv == 2)
1875 renew_ticket = 1;
1876 } else {
1877 EVP_CIPHER *aes256cbc = NULL;
1878
1879 /* Check key name matches */
1880 if (memcmp(etick, tctx->ext.tick_key_name,
1881 TLSEXT_KEYNAME_LENGTH) != 0) {
1882 ret = SSL_TICKET_NO_DECRYPT;
1883 goto end;
1884 }
1885
1886 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1887 s->ctx->propq);
1888 if (aes256cbc == NULL
1889 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1890 sizeof(tctx->ext.secure->tick_hmac_key),
1891 "SHA256") <= 0
1892 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1893 tctx->ext.secure->tick_aes_key,
1894 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1895 EVP_CIPHER_free(aes256cbc);
1896 ret = SSL_TICKET_FATAL_ERR_OTHER;
1897 goto end;
1898 }
1899 EVP_CIPHER_free(aes256cbc);
1900 if (SSL_IS_TLS13(s))
1901 renew_ticket = 1;
1902 }
1903 /*
1904 * Attempt to process session ticket, first conduct sanity and integrity
1905 * checks on ticket.
1906 */
1907 mlen = ssl_hmac_size(hctx);
1908 if (mlen == 0) {
1909 ret = SSL_TICKET_FATAL_ERR_OTHER;
1910 goto end;
1911 }
1912
1913 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1914 if (eticklen <=
1915 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1916 ret = SSL_TICKET_NO_DECRYPT;
1917 goto end;
1918 }
1919 eticklen -= mlen;
1920 /* Check HMAC of encrypted ticket */
1921 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1922 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1923 ret = SSL_TICKET_FATAL_ERR_OTHER;
1924 goto end;
1925 }
1926
1927 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1928 ret = SSL_TICKET_NO_DECRYPT;
1929 goto end;
1930 }
1931 /* Attempt to decrypt session data */
1932 /* Move p after IV to start of encrypted ticket, update length */
1933 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1934 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1935 sdec = OPENSSL_malloc(eticklen);
1936 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1937 (int)eticklen) <= 0) {
1938 OPENSSL_free(sdec);
1939 ret = SSL_TICKET_FATAL_ERR_OTHER;
1940 goto end;
1941 }
1942 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1943 OPENSSL_free(sdec);
1944 ret = SSL_TICKET_NO_DECRYPT;
1945 goto end;
1946 }
1947 slen += declen;
1948 p = sdec;
1949
1950 sess = d2i_SSL_SESSION(NULL, &p, slen);
1951 slen -= p - sdec;
1952 OPENSSL_free(sdec);
1953 if (sess) {
1954 /* Some additional consistency checks */
1955 if (slen != 0) {
1956 SSL_SESSION_free(sess);
1957 sess = NULL;
1958 ret = SSL_TICKET_NO_DECRYPT;
1959 goto end;
1960 }
1961 /*
1962 * The session ID, if non-empty, is used by some clients to detect
1963 * that the ticket has been accepted. So we copy it to the session
1964 * structure. If it is empty set length to zero as required by
1965 * standard.
1966 */
1967 if (sesslen) {
1968 memcpy(sess->session_id, sess_id, sesslen);
1969 sess->session_id_length = sesslen;
1970 }
1971 if (renew_ticket)
1972 ret = SSL_TICKET_SUCCESS_RENEW;
1973 else
1974 ret = SSL_TICKET_SUCCESS;
1975 goto end;
1976 }
1977 ERR_clear_error();
1978 /*
1979 * For session parse failure, indicate that we need to send a new ticket.
1980 */
1981 ret = SSL_TICKET_NO_DECRYPT;
1982
1983 end:
1984 EVP_CIPHER_CTX_free(ctx);
1985 ssl_hmac_free(hctx);
1986
1987 /*
1988 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1989 * detected above. The callback is responsible for checking |ret| before it
1990 * performs any action
1991 */
1992 if (s->session_ctx->decrypt_ticket_cb != NULL
1993 && (ret == SSL_TICKET_EMPTY
1994 || ret == SSL_TICKET_NO_DECRYPT
1995 || ret == SSL_TICKET_SUCCESS
1996 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1997 size_t keyname_len = eticklen;
1998 int retcb;
1999
2000 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2001 keyname_len = TLSEXT_KEYNAME_LENGTH;
2002 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
2003 ret,
2004 s->session_ctx->ticket_cb_data);
2005 switch (retcb) {
2006 case SSL_TICKET_RETURN_ABORT:
2007 ret = SSL_TICKET_FATAL_ERR_OTHER;
2008 break;
2009
2010 case SSL_TICKET_RETURN_IGNORE:
2011 ret = SSL_TICKET_NONE;
2012 SSL_SESSION_free(sess);
2013 sess = NULL;
2014 break;
2015
2016 case SSL_TICKET_RETURN_IGNORE_RENEW:
2017 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2018 ret = SSL_TICKET_NO_DECRYPT;
2019 /* else the value of |ret| will already do the right thing */
2020 SSL_SESSION_free(sess);
2021 sess = NULL;
2022 break;
2023
2024 case SSL_TICKET_RETURN_USE:
2025 case SSL_TICKET_RETURN_USE_RENEW:
2026 if (ret != SSL_TICKET_SUCCESS
2027 && ret != SSL_TICKET_SUCCESS_RENEW)
2028 ret = SSL_TICKET_FATAL_ERR_OTHER;
2029 else if (retcb == SSL_TICKET_RETURN_USE)
2030 ret = SSL_TICKET_SUCCESS;
2031 else
2032 ret = SSL_TICKET_SUCCESS_RENEW;
2033 break;
2034
2035 default:
2036 ret = SSL_TICKET_FATAL_ERR_OTHER;
2037 }
2038 }
2039
2040 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2041 switch (ret) {
2042 case SSL_TICKET_NO_DECRYPT:
2043 case SSL_TICKET_SUCCESS_RENEW:
2044 case SSL_TICKET_EMPTY:
2045 s->ext.ticket_expected = 1;
2046 }
2047 }
2048
2049 *psess = sess;
2050
2051 return ret;
2052 }
2053
2054 /* Check to see if a signature algorithm is allowed */
2055 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2056 {
2057 unsigned char sigalgstr[2];
2058 int secbits;
2059
2060 if (lu == NULL || !lu->enabled)
2061 return 0;
2062 /* DSA is not allowed in TLS 1.3 */
2063 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2064 return 0;
2065 /*
2066 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2067 * spec
2068 */
2069 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2070 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2071 || lu->hash_idx == SSL_MD_MD5_IDX
2072 || lu->hash_idx == SSL_MD_SHA224_IDX))
2073 return 0;
2074
2075 /* See if public key algorithm allowed */
2076 if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2077 return 0;
2078
2079 if (lu->sig == NID_id_GostR3410_2012_256
2080 || lu->sig == NID_id_GostR3410_2012_512
2081 || lu->sig == NID_id_GostR3410_2001) {
2082 /* We never allow GOST sig algs on the server with TLSv1.3 */
2083 if (s->server && SSL_IS_TLS13(s))
2084 return 0;
2085 if (!s->server
2086 && s->method->version == TLS_ANY_VERSION
2087 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2088 int i, num;
2089 STACK_OF(SSL_CIPHER) *sk;
2090
2091 /*
2092 * We're a client that could negotiate TLSv1.3. We only allow GOST
2093 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2094 * ciphersuites enabled.
2095 */
2096
2097 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2098 return 0;
2099
2100 sk = SSL_get_ciphers(s);
2101 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2102 for (i = 0; i < num; i++) {
2103 const SSL_CIPHER *c;
2104
2105 c = sk_SSL_CIPHER_value(sk, i);
2106 /* Skip disabled ciphers */
2107 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2108 continue;
2109
2110 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2111 break;
2112 }
2113 if (i == num)
2114 return 0;
2115 }
2116 }
2117
2118 /* Finally see if security callback allows it */
2119 secbits = sigalg_security_bits(s->ctx, lu);
2120 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2121 sigalgstr[1] = lu->sigalg & 0xff;
2122 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2123 }
2124
2125 /*
2126 * Get a mask of disabled public key algorithms based on supported signature
2127 * algorithms. For example if no signature algorithm supports RSA then RSA is
2128 * disabled.
2129 */
2130
2131 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2132 {
2133 const uint16_t *sigalgs;
2134 size_t i, sigalgslen;
2135 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2136 /*
2137 * Go through all signature algorithms seeing if we support any
2138 * in disabled_mask.
2139 */
2140 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2141 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2142 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2143 const SSL_CERT_LOOKUP *clu;
2144
2145 if (lu == NULL)
2146 continue;
2147
2148 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2149 if (clu == NULL)
2150 continue;
2151
2152 /* If algorithm is disabled see if we can enable it */
2153 if ((clu->amask & disabled_mask) != 0
2154 && tls12_sigalg_allowed(s, op, lu))
2155 disabled_mask &= ~clu->amask;
2156 }
2157 *pmask_a |= disabled_mask;
2158 }
2159
2160 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2161 const uint16_t *psig, size_t psiglen)
2162 {
2163 size_t i;
2164 int rv = 0;
2165
2166 for (i = 0; i < psiglen; i++, psig++) {
2167 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2168
2169 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2170 continue;
2171 if (!WPACKET_put_bytes_u16(pkt, *psig))
2172 return 0;
2173 /*
2174 * If TLS 1.3 must have at least one valid TLS 1.3 message
2175 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2176 */
2177 if (rv == 0 && (!SSL_IS_TLS13(s)
2178 || (lu->sig != EVP_PKEY_RSA
2179 && lu->hash != NID_sha1
2180 && lu->hash != NID_sha224)))
2181 rv = 1;
2182 }
2183 if (rv == 0)
2184 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2185 return rv;
2186 }
2187
2188 /* Given preference and allowed sigalgs set shared sigalgs */
2189 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2190 const uint16_t *pref, size_t preflen,
2191 const uint16_t *allow, size_t allowlen)
2192 {
2193 const uint16_t *ptmp, *atmp;
2194 size_t i, j, nmatch = 0;
2195 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2196 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2197
2198 /* Skip disabled hashes or signature algorithms */
2199 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2200 continue;
2201 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2202 if (*ptmp == *atmp) {
2203 nmatch++;
2204 if (shsig)
2205 *shsig++ = lu;
2206 break;
2207 }
2208 }
2209 }
2210 return nmatch;
2211 }
2212
2213 /* Set shared signature algorithms for SSL structures */
2214 static int tls1_set_shared_sigalgs(SSL *s)
2215 {
2216 const uint16_t *pref, *allow, *conf;
2217 size_t preflen, allowlen, conflen;
2218 size_t nmatch;
2219 const SIGALG_LOOKUP **salgs = NULL;
2220 CERT *c = s->cert;
2221 unsigned int is_suiteb = tls1_suiteb(s);
2222
2223 OPENSSL_free(s->shared_sigalgs);
2224 s->shared_sigalgs = NULL;
2225 s->shared_sigalgslen = 0;
2226 /* If client use client signature algorithms if not NULL */
2227 if (!s->server && c->client_sigalgs && !is_suiteb) {
2228 conf = c->client_sigalgs;
2229 conflen = c->client_sigalgslen;
2230 } else if (c->conf_sigalgs && !is_suiteb) {
2231 conf = c->conf_sigalgs;
2232 conflen = c->conf_sigalgslen;
2233 } else
2234 conflen = tls12_get_psigalgs(s, 0, &conf);
2235 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2236 pref = conf;
2237 preflen = conflen;
2238 allow = s->s3.tmp.peer_sigalgs;
2239 allowlen = s->s3.tmp.peer_sigalgslen;
2240 } else {
2241 allow = conf;
2242 allowlen = conflen;
2243 pref = s->s3.tmp.peer_sigalgs;
2244 preflen = s->s3.tmp.peer_sigalgslen;
2245 }
2246 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2247 if (nmatch) {
2248 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2249 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2250 return 0;
2251 }
2252 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2253 } else {
2254 salgs = NULL;
2255 }
2256 s->shared_sigalgs = salgs;
2257 s->shared_sigalgslen = nmatch;
2258 return 1;
2259 }
2260
2261 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2262 {
2263 unsigned int stmp;
2264 size_t size, i;
2265 uint16_t *buf;
2266
2267 size = PACKET_remaining(pkt);
2268
2269 /* Invalid data length */
2270 if (size == 0 || (size & 1) != 0)
2271 return 0;
2272
2273 size >>= 1;
2274
2275 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2276 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2277 return 0;
2278 }
2279 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2280 buf[i] = stmp;
2281
2282 if (i != size) {
2283 OPENSSL_free(buf);
2284 return 0;
2285 }
2286
2287 OPENSSL_free(*pdest);
2288 *pdest = buf;
2289 *pdestlen = size;
2290
2291 return 1;
2292 }
2293
2294 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2295 {
2296 /* Extension ignored for inappropriate versions */
2297 if (!SSL_USE_SIGALGS(s))
2298 return 1;
2299 /* Should never happen */
2300 if (s->cert == NULL)
2301 return 0;
2302
2303 if (cert)
2304 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2305 &s->s3.tmp.peer_cert_sigalgslen);
2306 else
2307 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2308 &s->s3.tmp.peer_sigalgslen);
2309
2310 }
2311
2312 /* Set preferred digest for each key type */
2313
2314 int tls1_process_sigalgs(SSL *s)
2315 {
2316 size_t i;
2317 uint32_t *pvalid = s->s3.tmp.valid_flags;
2318
2319 if (!tls1_set_shared_sigalgs(s))
2320 return 0;
2321
2322 for (i = 0; i < SSL_PKEY_NUM; i++)
2323 pvalid[i] = 0;
2324
2325 for (i = 0; i < s->shared_sigalgslen; i++) {
2326 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2327 int idx = sigptr->sig_idx;
2328
2329 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2330 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2331 continue;
2332 /* If not disabled indicate we can explicitly sign */
2333 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2334 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2335 }
2336 return 1;
2337 }
2338
2339 int SSL_get_sigalgs(SSL *s, int idx,
2340 int *psign, int *phash, int *psignhash,
2341 unsigned char *rsig, unsigned char *rhash)
2342 {
2343 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2344 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2345 if (psig == NULL || numsigalgs > INT_MAX)
2346 return 0;
2347 if (idx >= 0) {
2348 const SIGALG_LOOKUP *lu;
2349
2350 if (idx >= (int)numsigalgs)
2351 return 0;
2352 psig += idx;
2353 if (rhash != NULL)
2354 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2355 if (rsig != NULL)
2356 *rsig = (unsigned char)(*psig & 0xff);
2357 lu = tls1_lookup_sigalg(s, *psig);
2358 if (psign != NULL)
2359 *psign = lu != NULL ? lu->sig : NID_undef;
2360 if (phash != NULL)
2361 *phash = lu != NULL ? lu->hash : NID_undef;
2362 if (psignhash != NULL)
2363 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2364 }
2365 return (int)numsigalgs;
2366 }
2367
2368 int SSL_get_shared_sigalgs(SSL *s, int idx,
2369 int *psign, int *phash, int *psignhash,
2370 unsigned char *rsig, unsigned char *rhash)
2371 {
2372 const SIGALG_LOOKUP *shsigalgs;
2373 if (s->shared_sigalgs == NULL
2374 || idx < 0
2375 || idx >= (int)s->shared_sigalgslen
2376 || s->shared_sigalgslen > INT_MAX)
2377 return 0;
2378 shsigalgs = s->shared_sigalgs[idx];
2379 if (phash != NULL)
2380 *phash = shsigalgs->hash;
2381 if (psign != NULL)
2382 *psign = shsigalgs->sig;
2383 if (psignhash != NULL)
2384 *psignhash = shsigalgs->sigandhash;
2385 if (rsig != NULL)
2386 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2387 if (rhash != NULL)
2388 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2389 return (int)s->shared_sigalgslen;
2390 }
2391
2392 /* Maximum possible number of unique entries in sigalgs array */
2393 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2394
2395 typedef struct {
2396 size_t sigalgcnt;
2397 /* TLSEXT_SIGALG_XXX values */
2398 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2399 } sig_cb_st;
2400
2401 static void get_sigorhash(int *psig, int *phash, const char *str)
2402 {
2403 if (strcmp(str, "RSA") == 0) {
2404 *psig = EVP_PKEY_RSA;
2405 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2406 *psig = EVP_PKEY_RSA_PSS;
2407 } else if (strcmp(str, "DSA") == 0) {
2408 *psig = EVP_PKEY_DSA;
2409 } else if (strcmp(str, "ECDSA") == 0) {
2410 *psig = EVP_PKEY_EC;
2411 } else {
2412 *phash = OBJ_sn2nid(str);
2413 if (*phash == NID_undef)
2414 *phash = OBJ_ln2nid(str);
2415 }
2416 }
2417 /* Maximum length of a signature algorithm string component */
2418 #define TLS_MAX_SIGSTRING_LEN 40
2419
2420 static int sig_cb(const char *elem, int len, void *arg)
2421 {
2422 sig_cb_st *sarg = arg;
2423 size_t i;
2424 const SIGALG_LOOKUP *s;
2425 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2426 int sig_alg = NID_undef, hash_alg = NID_undef;
2427 if (elem == NULL)
2428 return 0;
2429 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2430 return 0;
2431 if (len > (int)(sizeof(etmp) - 1))
2432 return 0;
2433 memcpy(etmp, elem, len);
2434 etmp[len] = 0;
2435 p = strchr(etmp, '+');
2436 /*
2437 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2438 * if there's no '+' in the provided name, look for the new-style combined
2439 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2440 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2441 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2442 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2443 * in the table.
2444 */
2445 if (p == NULL) {
2446 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2447 i++, s++) {
2448 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2449 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2450 break;
2451 }
2452 }
2453 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2454 return 0;
2455 } else {
2456 *p = 0;
2457 p++;
2458 if (*p == 0)
2459 return 0;
2460 get_sigorhash(&sig_alg, &hash_alg, etmp);
2461 get_sigorhash(&sig_alg, &hash_alg, p);
2462 if (sig_alg == NID_undef || hash_alg == NID_undef)
2463 return 0;
2464 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2465 i++, s++) {
2466 if (s->hash == hash_alg && s->sig == sig_alg) {
2467 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2468 break;
2469 }
2470 }
2471 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2472 return 0;
2473 }
2474
2475 /* Reject duplicates */
2476 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2477 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2478 sarg->sigalgcnt--;
2479 return 0;
2480 }
2481 }
2482 return 1;
2483 }
2484
2485 /*
2486 * Set supported signature algorithms based on a colon separated list of the
2487 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2488 */
2489 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2490 {
2491 sig_cb_st sig;
2492 sig.sigalgcnt = 0;
2493 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2494 return 0;
2495 if (c == NULL)
2496 return 1;
2497 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2498 }
2499
2500 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2501 int client)
2502 {
2503 uint16_t *sigalgs;
2504
2505 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2506 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2507 return 0;
2508 }
2509 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2510
2511 if (client) {
2512 OPENSSL_free(c->client_sigalgs);
2513 c->client_sigalgs = sigalgs;
2514 c->client_sigalgslen = salglen;
2515 } else {
2516 OPENSSL_free(c->conf_sigalgs);
2517 c->conf_sigalgs = sigalgs;
2518 c->conf_sigalgslen = salglen;
2519 }
2520
2521 return 1;
2522 }
2523
2524 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2525 {
2526 uint16_t *sigalgs, *sptr;
2527 size_t i;
2528
2529 if (salglen & 1)
2530 return 0;
2531 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2532 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2533 return 0;
2534 }
2535 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2536 size_t j;
2537 const SIGALG_LOOKUP *curr;
2538 int md_id = *psig_nids++;
2539 int sig_id = *psig_nids++;
2540
2541 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2542 j++, curr++) {
2543 if (curr->hash == md_id && curr->sig == sig_id) {
2544 *sptr++ = curr->sigalg;
2545 break;
2546 }
2547 }
2548
2549 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2550 goto err;
2551 }
2552
2553 if (client) {
2554 OPENSSL_free(c->client_sigalgs);
2555 c->client_sigalgs = sigalgs;
2556 c->client_sigalgslen = salglen / 2;
2557 } else {
2558 OPENSSL_free(c->conf_sigalgs);
2559 c->conf_sigalgs = sigalgs;
2560 c->conf_sigalgslen = salglen / 2;
2561 }
2562
2563 return 1;
2564
2565 err:
2566 OPENSSL_free(sigalgs);
2567 return 0;
2568 }
2569
2570 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2571 {
2572 int sig_nid, use_pc_sigalgs = 0;
2573 size_t i;
2574 const SIGALG_LOOKUP *sigalg;
2575 size_t sigalgslen;
2576 if (default_nid == -1)
2577 return 1;
2578 sig_nid = X509_get_signature_nid(x);
2579 if (default_nid)
2580 return sig_nid == default_nid ? 1 : 0;
2581
2582 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2583 /*
2584 * If we're in TLSv1.3 then we only get here if we're checking the
2585 * chain. If the peer has specified peer_cert_sigalgs then we use them
2586 * otherwise we default to normal sigalgs.
2587 */
2588 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2589 use_pc_sigalgs = 1;
2590 } else {
2591 sigalgslen = s->shared_sigalgslen;
2592 }
2593 for (i = 0; i < sigalgslen; i++) {
2594 sigalg = use_pc_sigalgs
2595 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2596 : s->shared_sigalgs[i];
2597 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2598 return 1;
2599 }
2600 return 0;
2601 }
2602
2603 /* Check to see if a certificate issuer name matches list of CA names */
2604 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2605 {
2606 const X509_NAME *nm;
2607 int i;
2608 nm = X509_get_issuer_name(x);
2609 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2610 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2611 return 1;
2612 }
2613 return 0;
2614 }
2615
2616 /*
2617 * Check certificate chain is consistent with TLS extensions and is usable by
2618 * server. This servers two purposes: it allows users to check chains before
2619 * passing them to the server and it allows the server to check chains before
2620 * attempting to use them.
2621 */
2622
2623 /* Flags which need to be set for a certificate when strict mode not set */
2624
2625 #define CERT_PKEY_VALID_FLAGS \
2626 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2627 /* Strict mode flags */
2628 #define CERT_PKEY_STRICT_FLAGS \
2629 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2630 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2631
2632 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2633 int idx)
2634 {
2635 int i;
2636 int rv = 0;
2637 int check_flags = 0, strict_mode;
2638 CERT_PKEY *cpk = NULL;
2639 CERT *c = s->cert;
2640 uint32_t *pvalid;
2641 unsigned int suiteb_flags = tls1_suiteb(s);
2642 /* idx == -1 means checking server chains */
2643 if (idx != -1) {
2644 /* idx == -2 means checking client certificate chains */
2645 if (idx == -2) {
2646 cpk = c->key;
2647 idx = (int)(cpk - c->pkeys);
2648 } else
2649 cpk = c->pkeys + idx;
2650 pvalid = s->s3.tmp.valid_flags + idx;
2651 x = cpk->x509;
2652 pk = cpk->privatekey;
2653 chain = cpk->chain;
2654 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2655 /* If no cert or key, forget it */
2656 if (!x || !pk)
2657 goto end;
2658 } else {
2659 size_t certidx;
2660
2661 if (!x || !pk)
2662 return 0;
2663
2664 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2665 return 0;
2666 idx = certidx;
2667 pvalid = s->s3.tmp.valid_flags + idx;
2668
2669 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2670 check_flags = CERT_PKEY_STRICT_FLAGS;
2671 else
2672 check_flags = CERT_PKEY_VALID_FLAGS;
2673 strict_mode = 1;
2674 }
2675
2676 if (suiteb_flags) {
2677 int ok;
2678 if (check_flags)
2679 check_flags |= CERT_PKEY_SUITEB;
2680 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2681 if (ok == X509_V_OK)
2682 rv |= CERT_PKEY_SUITEB;
2683 else if (!check_flags)
2684 goto end;
2685 }
2686
2687 /*
2688 * Check all signature algorithms are consistent with signature
2689 * algorithms extension if TLS 1.2 or later and strict mode.
2690 */
2691 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2692 int default_nid;
2693 int rsign = 0;
2694 if (s->s3.tmp.peer_cert_sigalgs != NULL
2695 || s->s3.tmp.peer_sigalgs != NULL) {
2696 default_nid = 0;
2697 /* If no sigalgs extension use defaults from RFC5246 */
2698 } else {
2699 switch (idx) {
2700 case SSL_PKEY_RSA:
2701 rsign = EVP_PKEY_RSA;
2702 default_nid = NID_sha1WithRSAEncryption;
2703 break;
2704
2705 case SSL_PKEY_DSA_SIGN:
2706 rsign = EVP_PKEY_DSA;
2707 default_nid = NID_dsaWithSHA1;
2708 break;
2709
2710 case SSL_PKEY_ECC:
2711 rsign = EVP_PKEY_EC;
2712 default_nid = NID_ecdsa_with_SHA1;
2713 break;
2714
2715 case SSL_PKEY_GOST01:
2716 rsign = NID_id_GostR3410_2001;
2717 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2718 break;
2719
2720 case SSL_PKEY_GOST12_256:
2721 rsign = NID_id_GostR3410_2012_256;
2722 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2723 break;
2724
2725 case SSL_PKEY_GOST12_512:
2726 rsign = NID_id_GostR3410_2012_512;
2727 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2728 break;
2729
2730 default:
2731 default_nid = -1;
2732 break;
2733 }
2734 }
2735 /*
2736 * If peer sent no signature algorithms extension and we have set
2737 * preferred signature algorithms check we support sha1.
2738 */
2739 if (default_nid > 0 && c->conf_sigalgs) {
2740 size_t j;
2741 const uint16_t *p = c->conf_sigalgs;
2742 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2743 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2744
2745 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2746 break;
2747 }
2748 if (j == c->conf_sigalgslen) {
2749 if (check_flags)
2750 goto skip_sigs;
2751 else
2752 goto end;
2753 }
2754 }
2755 /* Check signature algorithm of each cert in chain */
2756 if (SSL_IS_TLS13(s)) {
2757 /*
2758 * We only get here if the application has called SSL_check_chain(),
2759 * so check_flags is always set.
2760 */
2761 if (find_sig_alg(s, x, pk) != NULL)
2762 rv |= CERT_PKEY_EE_SIGNATURE;
2763 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2764 if (!check_flags)
2765 goto end;
2766 } else
2767 rv |= CERT_PKEY_EE_SIGNATURE;
2768 rv |= CERT_PKEY_CA_SIGNATURE;
2769 for (i = 0; i < sk_X509_num(chain); i++) {
2770 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2771 if (check_flags) {
2772 rv &= ~CERT_PKEY_CA_SIGNATURE;
2773 break;
2774 } else
2775 goto end;
2776 }
2777 }
2778 }
2779 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2780 else if (check_flags)
2781 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2782 skip_sigs:
2783 /* Check cert parameters are consistent */
2784 if (tls1_check_cert_param(s, x, 1))
2785 rv |= CERT_PKEY_EE_PARAM;
2786 else if (!check_flags)
2787 goto end;
2788 if (!s->server)
2789 rv |= CERT_PKEY_CA_PARAM;
2790 /* In strict mode check rest of chain too */
2791 else if (strict_mode) {
2792 rv |= CERT_PKEY_CA_PARAM;
2793 for (i = 0; i < sk_X509_num(chain); i++) {
2794 X509 *ca = sk_X509_value(chain, i);
2795 if (!tls1_check_cert_param(s, ca, 0)) {
2796 if (check_flags) {
2797 rv &= ~CERT_PKEY_CA_PARAM;
2798 break;
2799 } else
2800 goto end;
2801 }
2802 }
2803 }
2804 if (!s->server && strict_mode) {
2805 STACK_OF(X509_NAME) *ca_dn;
2806 int check_type = 0;
2807
2808 if (EVP_PKEY_is_a(pk, "RSA"))
2809 check_type = TLS_CT_RSA_SIGN;
2810 else if (EVP_PKEY_is_a(pk, "DSA"))
2811 check_type = TLS_CT_DSS_SIGN;
2812 else if (EVP_PKEY_is_a(pk, "EC"))
2813 check_type = TLS_CT_ECDSA_SIGN;
2814
2815 if (check_type) {
2816 const uint8_t *ctypes = s->s3.tmp.ctype;
2817 size_t j;
2818
2819 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2820 if (*ctypes == check_type) {
2821 rv |= CERT_PKEY_CERT_TYPE;
2822 break;
2823 }
2824 }
2825 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2826 goto end;
2827 } else {
2828 rv |= CERT_PKEY_CERT_TYPE;
2829 }
2830
2831 ca_dn = s->s3.tmp.peer_ca_names;
2832
2833 if (!sk_X509_NAME_num(ca_dn))
2834 rv |= CERT_PKEY_ISSUER_NAME;
2835
2836 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2837 if (ssl_check_ca_name(ca_dn, x))
2838 rv |= CERT_PKEY_ISSUER_NAME;
2839 }
2840 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2841 for (i = 0; i < sk_X509_num(chain); i++) {
2842 X509 *xtmp = sk_X509_value(chain, i);
2843 if (ssl_check_ca_name(ca_dn, xtmp)) {
2844 rv |= CERT_PKEY_ISSUER_NAME;
2845 break;
2846 }
2847 }
2848 }
2849 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2850 goto end;
2851 } else
2852 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2853
2854 if (!check_flags || (rv & check_flags) == check_flags)
2855 rv |= CERT_PKEY_VALID;
2856
2857 end:
2858
2859 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2860 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2861 else
2862 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2863
2864 /*
2865 * When checking a CERT_PKEY structure all flags are irrelevant if the
2866 * chain is invalid.
2867 */
2868 if (!check_flags) {
2869 if (rv & CERT_PKEY_VALID) {
2870 *pvalid = rv;
2871 } else {
2872 /* Preserve sign and explicit sign flag, clear rest */
2873 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2874 return 0;
2875 }
2876 }
2877 return rv;
2878 }
2879
2880 /* Set validity of certificates in an SSL structure */
2881 void tls1_set_cert_validity(SSL *s)
2882 {
2883 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2884 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2885 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2886 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2887 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2888 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2889 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2890 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2891 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2892 }
2893
2894 /* User level utility function to check a chain is suitable */
2895 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2896 {
2897 return tls1_check_chain(s, x, pk, chain, -1);
2898 }
2899
2900 EVP_PKEY *ssl_get_auto_dh(SSL *s)
2901 {
2902 EVP_PKEY *dhp = NULL;
2903 BIGNUM *p;
2904 int dh_secbits = 80;
2905 EVP_PKEY_CTX *pctx = NULL;
2906 OSSL_PARAM_BLD *tmpl = NULL;
2907 OSSL_PARAM *params = NULL;
2908
2909 if (s->cert->dh_tmp_auto != 2) {
2910 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2911 if (s->s3.tmp.new_cipher->strength_bits == 256)
2912 dh_secbits = 128;
2913 else
2914 dh_secbits = 80;
2915 } else {
2916 if (s->s3.tmp.cert == NULL)
2917 return NULL;
2918 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2919 }
2920 }
2921
2922 if (dh_secbits >= 192)
2923 p = BN_get_rfc3526_prime_8192(NULL);
2924 else if (dh_secbits >= 152)
2925 p = BN_get_rfc3526_prime_4096(NULL);
2926 else if (dh_secbits >= 128)
2927 p = BN_get_rfc3526_prime_3072(NULL);
2928 else if (dh_secbits >= 112)
2929 p = BN_get_rfc3526_prime_2048(NULL);
2930 else
2931 p = BN_get_rfc2409_prime_1024(NULL);
2932 if (p == NULL)
2933 goto err;
2934
2935 pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2936 if (pctx == NULL
2937 || EVP_PKEY_key_fromdata_init(pctx) != 1)
2938 goto err;
2939
2940 tmpl = OSSL_PARAM_BLD_new();
2941 if (tmpl == NULL
2942 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2943 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2944 goto err;
2945
2946 params = OSSL_PARAM_BLD_to_param(tmpl);
2947 if (params == NULL || EVP_PKEY_fromdata(pctx, &dhp, params) != 1)
2948 goto err;
2949
2950 err:
2951 OSSL_PARAM_BLD_free_params(params);
2952 OSSL_PARAM_BLD_free(tmpl);
2953 EVP_PKEY_CTX_free(pctx);
2954 BN_free(p);
2955 return dhp;
2956 }
2957
2958 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2959 {
2960 int secbits = -1;
2961 EVP_PKEY *pkey = X509_get0_pubkey(x);
2962 if (pkey) {
2963 /*
2964 * If no parameters this will return -1 and fail using the default
2965 * security callback for any non-zero security level. This will
2966 * reject keys which omit parameters but this only affects DSA and
2967 * omission of parameters is never (?) done in practice.
2968 */
2969 secbits = EVP_PKEY_security_bits(pkey);
2970 }
2971 if (s)
2972 return ssl_security(s, op, secbits, 0, x);
2973 else
2974 return ssl_ctx_security(ctx, op, secbits, 0, x);
2975 }
2976
2977 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2978 {
2979 /* Lookup signature algorithm digest */
2980 int secbits, nid, pknid;
2981 /* Don't check signature if self signed */
2982 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2983 return 1;
2984 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2985 secbits = -1;
2986 /* If digest NID not defined use signature NID */
2987 if (nid == NID_undef)
2988 nid = pknid;
2989 if (s)
2990 return ssl_security(s, op, secbits, nid, x);
2991 else
2992 return ssl_ctx_security(ctx, op, secbits, nid, x);
2993 }
2994
2995 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2996 {
2997 if (vfy)
2998 vfy = SSL_SECOP_PEER;
2999 if (is_ee) {
3000 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3001 return SSL_R_EE_KEY_TOO_SMALL;
3002 } else {
3003 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3004 return SSL_R_CA_KEY_TOO_SMALL;
3005 }
3006 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3007 return SSL_R_CA_MD_TOO_WEAK;
3008 return 1;
3009 }
3010
3011 /*
3012 * Check security of a chain, if |sk| includes the end entity certificate then
3013 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3014 * one to the peer. Return values: 1 if ok otherwise error code to use
3015 */
3016
3017 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3018 {
3019 int rv, start_idx, i;
3020 if (x == NULL) {
3021 x = sk_X509_value(sk, 0);
3022 start_idx = 1;
3023 } else
3024 start_idx = 0;
3025
3026 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3027 if (rv != 1)
3028 return rv;
3029
3030 for (i = start_idx; i < sk_X509_num(sk); i++) {
3031 x = sk_X509_value(sk, i);
3032 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3033 if (rv != 1)
3034 return rv;
3035 }
3036 return 1;
3037 }
3038
3039 /*
3040 * For TLS 1.2 servers check if we have a certificate which can be used
3041 * with the signature algorithm "lu" and return index of certificate.
3042 */
3043
3044 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3045 {
3046 int sig_idx = lu->sig_idx;
3047 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3048
3049 /* If not recognised or not supported by cipher mask it is not suitable */
3050 if (clu == NULL
3051 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3052 || (clu->nid == EVP_PKEY_RSA_PSS
3053 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3054 return -1;
3055
3056 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3057 }
3058
3059 /*
3060 * Checks the given cert against signature_algorithm_cert restrictions sent by
3061 * the peer (if any) as well as whether the hash from the sigalg is usable with
3062 * the key.
3063 * Returns true if the cert is usable and false otherwise.
3064 */
3065 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3066 EVP_PKEY *pkey)
3067 {
3068 const SIGALG_LOOKUP *lu;
3069 int mdnid, pknid, supported;
3070 size_t i;
3071
3072 /*
3073 * If the given EVP_PKEY cannot supporting signing with this sigalg,
3074 * the answer is simply 'no'.
3075 */
3076 ERR_set_mark();
3077 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
3078 ERR_pop_to_mark();
3079 if (supported == 0)
3080 return 0;
3081
3082 /*
3083 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3084 * on the sigalg with which the certificate was signed (by its issuer).
3085 */
3086 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3087 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3088 return 0;
3089 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3090 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3091 if (lu == NULL)
3092 continue;
3093
3094 /*
3095 * TODO this does not differentiate between the
3096 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3097 * have a chain here that lets us look at the key OID in the
3098 * signing certificate.
3099 */
3100 if (mdnid == lu->hash && pknid == lu->sig)
3101 return 1;
3102 }
3103 return 0;
3104 }
3105
3106 /*
3107 * Without signat_algorithms_cert, any certificate for which we have
3108 * a viable public key is permitted.
3109 */
3110 return 1;
3111 }
3112
3113 /*
3114 * Returns true if |s| has a usable certificate configured for use
3115 * with signature scheme |sig|.
3116 * "Usable" includes a check for presence as well as applying
3117 * the signature_algorithm_cert restrictions sent by the peer (if any).
3118 * Returns false if no usable certificate is found.
3119 */
3120 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3121 {
3122 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3123 if (idx == -1)
3124 idx = sig->sig_idx;
3125 if (!ssl_has_cert(s, idx))
3126 return 0;
3127
3128 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3129 s->cert->pkeys[idx].privatekey);
3130 }
3131
3132 /*
3133 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3134 * specified signature scheme |sig|, or false otherwise.
3135 */
3136 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3137 EVP_PKEY *pkey)
3138 {
3139 size_t idx;
3140
3141 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3142 return 0;
3143
3144 /* Check the key is consistent with the sig alg */
3145 if ((int)idx != sig->sig_idx)
3146 return 0;
3147
3148 return check_cert_usable(s, sig, x, pkey);
3149 }
3150
3151 /*
3152 * Find a signature scheme that works with the supplied certificate |x| and key
3153 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3154 * available certs/keys to find one that works.
3155 */
3156 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3157 {
3158 const SIGALG_LOOKUP *lu = NULL;
3159 size_t i;
3160 int curve = -1;
3161 EVP_PKEY *tmppkey;
3162
3163 /* Look for a shared sigalgs matching possible certificates */
3164 for (i = 0; i < s->shared_sigalgslen; i++) {
3165 lu = s->shared_sigalgs[i];
3166
3167 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3168 if (lu->hash == NID_sha1
3169 || lu->hash == NID_sha224
3170 || lu->sig == EVP_PKEY_DSA
3171 || lu->sig == EVP_PKEY_RSA)
3172 continue;
3173 /* Check that we have a cert, and signature_algorithms_cert */
3174 if (!tls1_lookup_md(s->ctx, lu, NULL))
3175 continue;
3176 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3177 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3178 continue;
3179
3180 tmppkey = (pkey != NULL) ? pkey
3181 : s->cert->pkeys[lu->sig_idx].privatekey;
3182
3183 if (lu->sig == EVP_PKEY_EC) {
3184 if (curve == -1)
3185 curve = ssl_get_EC_curve_nid(tmppkey);
3186 if (lu->curve != NID_undef && curve != lu->curve)
3187 continue;
3188 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3189 /* validate that key is large enough for the signature algorithm */
3190 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3191 continue;
3192 }
3193 break;
3194 }
3195
3196 if (i == s->shared_sigalgslen)
3197 return NULL;
3198
3199 return lu;
3200 }
3201
3202 /*
3203 * Choose an appropriate signature algorithm based on available certificates
3204 * Sets chosen certificate and signature algorithm.
3205 *
3206 * For servers if we fail to find a required certificate it is a fatal error,
3207 * an appropriate error code is set and a TLS alert is sent.
3208 *
3209 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3210 * a fatal error: we will either try another certificate or not present one
3211 * to the server. In this case no error is set.
3212 */
3213 int tls_choose_sigalg(SSL *s, int fatalerrs)
3214 {
3215 const SIGALG_LOOKUP *lu = NULL;
3216 int sig_idx = -1;
3217
3218 s->s3.tmp.cert = NULL;
3219 s->s3.tmp.sigalg = NULL;
3220
3221 if (SSL_IS_TLS13(s)) {
3222 lu = find_sig_alg(s, NULL, NULL);
3223 if (lu == NULL) {
3224 if (!fatalerrs)
3225 return 1;
3226 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3227 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3228 return 0;
3229 }
3230 } else {
3231 /* If ciphersuite doesn't require a cert nothing to do */
3232 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3233 return 1;
3234 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3235 return 1;
3236
3237 if (SSL_USE_SIGALGS(s)) {
3238 size_t i;
3239 if (s->s3.tmp.peer_sigalgs != NULL) {
3240 int curve = -1;
3241
3242 /* For Suite B need to match signature algorithm to curve */
3243 if (tls1_suiteb(s))
3244 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3245 .privatekey);
3246
3247 /*
3248 * Find highest preference signature algorithm matching
3249 * cert type
3250 */
3251 for (i = 0; i < s->shared_sigalgslen; i++) {
3252 lu = s->shared_sigalgs[i];
3253
3254 if (s->server) {
3255 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3256 continue;
3257 } else {
3258 int cc_idx = s->cert->key - s->cert->pkeys;
3259
3260 sig_idx = lu->sig_idx;
3261 if (cc_idx != sig_idx)
3262 continue;
3263 }
3264 /* Check that we have a cert, and sig_algs_cert */
3265 if (!has_usable_cert(s, lu, sig_idx))
3266 continue;
3267 if (lu->sig == EVP_PKEY_RSA_PSS) {
3268 /* validate that key is large enough for the signature algorithm */
3269 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3270
3271 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3272 continue;
3273 }
3274 if (curve == -1 || lu->curve == curve)
3275 break;
3276 }
3277 #ifndef OPENSSL_NO_GOST
3278 /*
3279 * Some Windows-based implementations do not send GOST algorithms indication
3280 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3281 * we have to assume GOST support.
3282 */
3283 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3284 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3285 if (!fatalerrs)
3286 return 1;
3287 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3288 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3289 return 0;
3290 } else {
3291 i = 0;
3292 sig_idx = lu->sig_idx;
3293 }
3294 }
3295 #endif
3296 if (i == s->shared_sigalgslen) {
3297 if (!fatalerrs)
3298 return 1;
3299 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3300 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3301 return 0;
3302 }
3303 } else {
3304 /*
3305 * If we have no sigalg use defaults
3306 */
3307 const uint16_t *sent_sigs;
3308 size_t sent_sigslen;
3309
3310 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3311 if (!fatalerrs)
3312 return 1;
3313 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3314 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3315 return 0;
3316 }
3317
3318 /* Check signature matches a type we sent */
3319 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3320 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3321 if (lu->sigalg == *sent_sigs
3322 && has_usable_cert(s, lu, lu->sig_idx))
3323 break;
3324 }
3325 if (i == sent_sigslen) {
3326 if (!fatalerrs)
3327 return 1;
3328 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
3329 SSL_R_WRONG_SIGNATURE_TYPE);
3330 return 0;
3331 }
3332 }
3333 } else {
3334 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3335 if (!fatalerrs)
3336 return 1;
3337 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3338 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3339 return 0;
3340 }
3341 }
3342 }
3343 if (sig_idx == -1)
3344 sig_idx = lu->sig_idx;
3345 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3346 s->cert->key = s->s3.tmp.cert;
3347 s->s3.tmp.sigalg = lu;
3348 return 1;
3349 }
3350
3351 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3352 {
3353 if (mode != TLSEXT_max_fragment_length_DISABLED
3354 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3355 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3356 return 0;
3357 }
3358
3359 ctx->ext.max_fragment_len_mode = mode;
3360 return 1;
3361 }
3362
3363 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3364 {
3365 if (mode != TLSEXT_max_fragment_length_DISABLED
3366 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3367 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3368 return 0;
3369 }
3370
3371 ssl->ext.max_fragment_len_mode = mode;
3372 return 1;
3373 }
3374
3375 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3376 {
3377 return session->ext.max_fragment_len_mode;
3378 }
3379
3380 /*
3381 * Helper functions for HMAC access with legacy support included.
3382 */
3383 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3384 {
3385 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3386 EVP_MAC *mac = NULL;
3387
3388 if (ret == NULL)
3389 return NULL;
3390 #ifndef OPENSSL_NO_DEPRECATED_3_0
3391 if (ctx->ext.ticket_key_evp_cb == NULL
3392 && ctx->ext.ticket_key_cb != NULL) {
3393 if (!ssl_hmac_old_new(ret))
3394 goto err;
3395 return ret;
3396 }
3397 #endif
3398 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3399 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3400 goto err;
3401 EVP_MAC_free(mac);
3402 return ret;
3403 err:
3404 EVP_MAC_CTX_free(ret->ctx);
3405 EVP_MAC_free(mac);
3406 OPENSSL_free(ret);
3407 return NULL;
3408 }
3409
3410 void ssl_hmac_free(SSL_HMAC *ctx)
3411 {
3412 if (ctx != NULL) {
3413 EVP_MAC_CTX_free(ctx->ctx);
3414 #ifndef OPENSSL_NO_DEPRECATED_3_0
3415 ssl_hmac_old_free(ctx);
3416 #endif
3417 OPENSSL_free(ctx);
3418 }
3419 }
3420
3421 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3422 {
3423 return ctx->ctx;
3424 }
3425
3426 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3427 {
3428 OSSL_PARAM params[3], *p = params;
3429
3430 if (ctx->ctx != NULL) {
3431 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3432 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3433 *p = OSSL_PARAM_construct_end();
3434 if (EVP_MAC_CTX_set_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3435 return 1;
3436 }
3437 #ifndef OPENSSL_NO_DEPRECATED_3_0
3438 if (ctx->old_ctx != NULL)
3439 return ssl_hmac_old_init(ctx, key, len, md);
3440 #endif
3441 return 0;
3442 }
3443
3444 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3445 {
3446 if (ctx->ctx != NULL)
3447 return EVP_MAC_update(ctx->ctx, data, len);
3448 #ifndef OPENSSL_NO_DEPRECATED_3_0
3449 if (ctx->old_ctx != NULL)
3450 return ssl_hmac_old_update(ctx, data, len);
3451 #endif
3452 return 0;
3453 }
3454
3455 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3456 size_t max_size)
3457 {
3458 if (ctx->ctx != NULL)
3459 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3460 #ifndef OPENSSL_NO_DEPRECATED_3_0
3461 if (ctx->old_ctx != NULL)
3462 return ssl_hmac_old_final(ctx, md, len);
3463 #endif
3464 return 0;
3465 }
3466
3467 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3468 {
3469 if (ctx->ctx != NULL)
3470 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3471 #ifndef OPENSSL_NO_DEPRECATED_3_0
3472 if (ctx->old_ctx != NULL)
3473 return ssl_hmac_old_size(ctx);
3474 #endif
3475 return 0;
3476 }
3477
3478 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3479 {
3480 char gname[OSSL_MAX_NAME_SIZE];
3481
3482 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3483 return OBJ_txt2nid(gname);
3484
3485 return NID_undef;
3486 }