]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
b2752cd03d8a5de3017069a1f18face53a1246bb
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need access to the deprecated low level HMAC APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <openssl/objects.h>
16 #include <openssl/evp.h>
17 #include <openssl/hmac.h>
18 #include <openssl/core_names.h>
19 #include <openssl/ocsp.h>
20 #include <openssl/conf.h>
21 #include <openssl/x509v3.h>
22 #include <openssl/dh.h>
23 #include <openssl/bn.h>
24 #include <openssl/provider.h>
25 #include "internal/nelem.h"
26 #include "internal/evp.h"
27 #include "internal/tlsgroups.h"
28 #include "ssl_local.h"
29 #include <openssl/ct.h>
30
31 DEFINE_STACK_OF_CONST(SSL_CIPHER)
32 DEFINE_STACK_OF(X509)
33 DEFINE_STACK_OF(X509_NAME)
34
35 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
36 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
37
38 SSL3_ENC_METHOD const TLSv1_enc_data = {
39 tls1_enc,
40 tls1_mac,
41 tls1_setup_key_block,
42 tls1_generate_master_secret,
43 tls1_change_cipher_state,
44 tls1_final_finish_mac,
45 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
46 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
47 tls1_alert_code,
48 tls1_export_keying_material,
49 0,
50 ssl3_set_handshake_header,
51 tls_close_construct_packet,
52 ssl3_handshake_write
53 };
54
55 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
56 tls1_enc,
57 tls1_mac,
58 tls1_setup_key_block,
59 tls1_generate_master_secret,
60 tls1_change_cipher_state,
61 tls1_final_finish_mac,
62 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
63 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
64 tls1_alert_code,
65 tls1_export_keying_material,
66 SSL_ENC_FLAG_EXPLICIT_IV,
67 ssl3_set_handshake_header,
68 tls_close_construct_packet,
69 ssl3_handshake_write
70 };
71
72 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
73 tls1_enc,
74 tls1_mac,
75 tls1_setup_key_block,
76 tls1_generate_master_secret,
77 tls1_change_cipher_state,
78 tls1_final_finish_mac,
79 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
80 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
81 tls1_alert_code,
82 tls1_export_keying_material,
83 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
84 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
85 ssl3_set_handshake_header,
86 tls_close_construct_packet,
87 ssl3_handshake_write
88 };
89
90 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
91 tls13_enc,
92 tls1_mac,
93 tls13_setup_key_block,
94 tls13_generate_master_secret,
95 tls13_change_cipher_state,
96 tls13_final_finish_mac,
97 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
98 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
99 tls13_alert_code,
100 tls13_export_keying_material,
101 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
102 ssl3_set_handshake_header,
103 tls_close_construct_packet,
104 ssl3_handshake_write
105 };
106
107 long tls1_default_timeout(void)
108 {
109 /*
110 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
111 * http, the cache would over fill
112 */
113 return (60 * 60 * 2);
114 }
115
116 int tls1_new(SSL *s)
117 {
118 if (!ssl3_new(s))
119 return 0;
120 if (!s->method->ssl_clear(s))
121 return 0;
122
123 return 1;
124 }
125
126 void tls1_free(SSL *s)
127 {
128 OPENSSL_free(s->ext.session_ticket);
129 ssl3_free(s);
130 }
131
132 int tls1_clear(SSL *s)
133 {
134 if (!ssl3_clear(s))
135 return 0;
136
137 if (s->method->version == TLS_ANY_VERSION)
138 s->version = TLS_MAX_VERSION_INTERNAL;
139 else
140 s->version = s->method->version;
141
142 return 1;
143 }
144
145 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
146 /* Legacy NID to group_id mapping. Only works for groups we know about */
147 static struct {
148 int nid;
149 uint16_t group_id;
150 } nid_to_group[] = {
151 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
152 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
153 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
154 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
155 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
156 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
157 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
158 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
159 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
160 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
161 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
162 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
163 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
164 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
165 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
166 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
167 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
168 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
169 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
170 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
171 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
172 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
173 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
174 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
175 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
176 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
177 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
178 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
179 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
180 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
181 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
182 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
183 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
184 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
185 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
186 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
187 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
188 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
189 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
190 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
191 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
192 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
193 };
194 #endif
195
196 #ifndef OPENSSL_NO_EC
197 static const unsigned char ecformats_default[] = {
198 TLSEXT_ECPOINTFORMAT_uncompressed,
199 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
200 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
201 };
202 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
203
204 /* The default curves */
205 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
206 static const uint16_t supported_groups_default[] = {
207 # ifndef OPENSSL_NO_EC
208 29, /* X25519 (29) */
209 23, /* secp256r1 (23) */
210 30, /* X448 (30) */
211 25, /* secp521r1 (25) */
212 24, /* secp384r1 (24) */
213 # endif
214 # ifndef OPENSSL_NO_GOST
215 34, /* GC256A (34) */
216 35, /* GC256B (35) */
217 36, /* GC256C (36) */
218 37, /* GC256D (37) */
219 38, /* GC512A (38) */
220 39, /* GC512B (39) */
221 40, /* GC512C (40) */
222 # endif
223 # ifndef OPENSSL_NO_DH
224 0x100, /* ffdhe2048 (0x100) */
225 0x101, /* ffdhe3072 (0x101) */
226 0x102, /* ffdhe4096 (0x102) */
227 0x103, /* ffdhe6144 (0x103) */
228 0x104, /* ffdhe8192 (0x104) */
229 # endif
230 };
231 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
232
233 #ifndef OPENSSL_NO_EC
234 static const uint16_t suiteb_curves[] = {
235 TLSEXT_curve_P_256,
236 TLSEXT_curve_P_384
237 };
238 #endif
239
240 struct provider_group_data_st {
241 SSL_CTX *ctx;
242 OSSL_PROVIDER *provider;
243 };
244
245 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
246 static OSSL_CALLBACK add_provider_groups;
247 static int add_provider_groups(const OSSL_PARAM params[], void *data)
248 {
249 struct provider_group_data_st *pgd = data;
250 SSL_CTX *ctx = pgd->ctx;
251 OSSL_PROVIDER *provider = pgd->provider;
252 const OSSL_PARAM *p;
253 TLS_GROUP_INFO *ginf = NULL;
254 EVP_KEYMGMT *keymgmt;
255 unsigned int gid;
256 int ret = 0;
257
258 if (ctx->group_list_max_len == ctx->group_list_len) {
259 TLS_GROUP_INFO *tmp = NULL;
260
261 if (ctx->group_list_max_len == 0)
262 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
263 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
264 else
265 tmp = OPENSSL_realloc(ctx->group_list,
266 (ctx->group_list_max_len
267 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
268 * sizeof(TLS_GROUP_INFO));
269 if (tmp == NULL) {
270 SSLerr(0, ERR_R_MALLOC_FAILURE);
271 return 0;
272 }
273 ctx->group_list = tmp;
274 memset(tmp + ctx->group_list_max_len,
275 0,
276 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
277 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
278 }
279
280 ginf = &ctx->group_list[ctx->group_list_len];
281
282 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
283 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
284 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
285 goto err;
286 }
287 ginf->tlsname = OPENSSL_strdup(p->data);
288 if (ginf->tlsname == NULL) {
289 SSLerr(0, ERR_R_MALLOC_FAILURE);
290 goto err;
291 }
292
293 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
294 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
296 goto err;
297 }
298 ginf->realname = OPENSSL_strdup(p->data);
299 if (ginf->realname == NULL) {
300 SSLerr(0, ERR_R_MALLOC_FAILURE);
301 goto err;
302 }
303
304 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
305 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
306 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
307 goto err;
308 }
309 ginf->group_id = (uint16_t)gid;
310
311 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
312 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
313 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
314 goto err;
315 }
316 ginf->algorithm = OPENSSL_strdup(p->data);
317 if (ginf->algorithm == NULL) {
318 SSLerr(0, ERR_R_MALLOC_FAILURE);
319 goto err;
320 }
321
322 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
323 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
324 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
325 goto err;
326 }
327
328 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
329 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
330 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
331 goto err;
332 }
333
334 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
335 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
336 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
337 return 0;
338 }
339
340 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
341 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
342 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
343 goto err;
344 }
345
346 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
347 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
348 SSLerr(0, ERR_R_PASSED_INVALID_ARGUMENT);
349 goto err;
350 }
351 /*
352 * Now check that the algorithm is actually usable for our property query
353 * string. Regardless of the result we still return success because we have
354 * successfully processed this group, even though we may decide not to use
355 * it.
356 */
357 ret = 1;
358 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
359 if (keymgmt != NULL) {
360 /*
361 * We have successfully fetched the algorithm - however if the provider
362 * doesn't match this one then we ignore it.
363 *
364 * Note: We're cheating a little here. Technically if the same algorithm
365 * is available from more than one provider then it is undefined which
366 * implementation you will get back. Theoretically this could be
367 * different every time...we assume here that you'll always get the
368 * same one back if you repeat the exact same fetch. Is this a reasonable
369 * assumption to make (in which case perhaps we should document this
370 * behaviour)?
371 */
372 if (EVP_KEYMGMT_provider(keymgmt) == provider) {
373 /* We have a match - so we will use this group */
374 ctx->group_list_len++;
375 ginf = NULL;
376 }
377 EVP_KEYMGMT_free(keymgmt);
378 }
379 err:
380 if (ginf != NULL) {
381 OPENSSL_free(ginf->tlsname);
382 OPENSSL_free(ginf->realname);
383 OPENSSL_free(ginf->algorithm);
384 ginf->tlsname = ginf->realname = NULL;
385 }
386 return ret;
387 }
388
389 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
390 {
391 struct provider_group_data_st pgd;
392
393 pgd.ctx = vctx;
394 pgd.provider = provider;
395 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
396 add_provider_groups, &pgd);
397 }
398
399 int ssl_load_groups(SSL_CTX *ctx)
400 {
401 return OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx);
402 }
403
404 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
405 {
406 size_t i;
407 int nid = NID_undef;
408
409 /* See if we can identify a nid for this name */
410 #ifndef OPENSSL_NO_EC
411 nid = EC_curve_nist2nid(name);
412 #endif
413 if (nid == NID_undef)
414 nid = OBJ_sn2nid(name);
415 if (nid == NID_undef)
416 nid = OBJ_ln2nid(name);
417
418 for (i = 0; i < ctx->group_list_len; i++) {
419 if (strcmp(ctx->group_list[i].tlsname, name) == 0
420 || (nid != NID_undef
421 && nid == tls1_group_id2nid(ctx->group_list[i].group_id,
422 0)))
423 return ctx->group_list[i].group_id;
424 }
425
426 return 0;
427 }
428
429 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
430 {
431 size_t i;
432
433 for (i = 0; i < ctx->group_list_len; i++) {
434 if (ctx->group_list[i].group_id == group_id)
435 return &ctx->group_list[i];
436 }
437
438 return NULL;
439 }
440
441 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_EC)
442 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
443 {
444 size_t i;
445
446 if (group_id == 0)
447 return NID_undef;
448
449 /*
450 * Return well known Group NIDs - for backwards compatibility. This won't
451 * work for groups we don't know about.
452 */
453 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
454 {
455 if (nid_to_group[i].group_id == group_id)
456 return nid_to_group[i].nid;
457 }
458 if (!include_unknown)
459 return NID_undef;
460 return TLSEXT_nid_unknown | (int)group_id;
461 }
462
463 static uint16_t tls1_nid2group_id(int nid)
464 {
465 size_t i;
466
467 /*
468 * Return well known Group ids - for backwards compatibility. This won't
469 * work for groups we don't know about.
470 */
471 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
472 {
473 if (nid_to_group[i].nid == nid)
474 return nid_to_group[i].group_id;
475 }
476
477 return 0;
478 }
479 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
480
481 /*
482 * Set *pgroups to the supported groups list and *pgroupslen to
483 * the number of groups supported.
484 */
485 void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
486 size_t *pgroupslen)
487 {
488 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
489 /* For Suite B mode only include P-256, P-384 */
490 switch (tls1_suiteb(s)) {
491 # ifndef OPENSSL_NO_EC
492 case SSL_CERT_FLAG_SUITEB_128_LOS:
493 *pgroups = suiteb_curves;
494 *pgroupslen = OSSL_NELEM(suiteb_curves);
495 break;
496
497 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
498 *pgroups = suiteb_curves;
499 *pgroupslen = 1;
500 break;
501
502 case SSL_CERT_FLAG_SUITEB_192_LOS:
503 *pgroups = suiteb_curves + 1;
504 *pgroupslen = 1;
505 break;
506 # endif
507
508 default:
509 if (s->ext.supportedgroups == NULL) {
510 *pgroups = supported_groups_default;
511 *pgroupslen = OSSL_NELEM(supported_groups_default);
512 } else {
513 *pgroups = s->ext.supportedgroups;
514 *pgroupslen = s->ext.supportedgroups_len;
515 }
516 break;
517 }
518 #else
519 *pgroups = NULL;
520 *pgroupslen = 0;
521 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
522 }
523
524 int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion)
525 {
526 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
527 int ret;
528
529 if (ginfo == NULL)
530 return 0;
531
532 if (SSL_IS_DTLS(s)) {
533 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
534 return 0;
535 if (ginfo->maxdtls == 0)
536 ret = 1;
537 else
538 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
539 if (ginfo->mindtls > 0)
540 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
541 } else {
542 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
543 return 0;
544 if (ginfo->maxtls == 0)
545 ret = 1;
546 else
547 ret = (minversion <= ginfo->maxtls);
548 if (ginfo->mintls > 0)
549 ret &= (maxversion >= ginfo->mintls);
550 }
551
552 return ret;
553 }
554
555 /* See if group is allowed by security callback */
556 int tls_group_allowed(SSL *s, uint16_t group, int op)
557 {
558 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
559 unsigned char gtmp[2];
560
561 if (ginfo == NULL)
562 return 0;
563
564 gtmp[0] = group >> 8;
565 gtmp[1] = group & 0xff;
566 return ssl_security(s, op, ginfo->secbits,
567 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
568 }
569
570 /* Return 1 if "id" is in "list" */
571 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
572 {
573 size_t i;
574 for (i = 0; i < listlen; i++)
575 if (list[i] == id)
576 return 1;
577 return 0;
578 }
579
580 /*-
581 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
582 * if there is no match.
583 * For nmatch == -1, return number of matches
584 * For nmatch == -2, return the id of the group to use for
585 * a tmp key, or 0 if there is no match.
586 */
587 uint16_t tls1_shared_group(SSL *s, int nmatch)
588 {
589 const uint16_t *pref, *supp;
590 size_t num_pref, num_supp, i;
591 int k;
592
593 /* Can't do anything on client side */
594 if (s->server == 0)
595 return 0;
596 if (nmatch == -2) {
597 if (tls1_suiteb(s)) {
598 /*
599 * For Suite B ciphersuite determines curve: we already know
600 * these are acceptable due to previous checks.
601 */
602 unsigned long cid = s->s3.tmp.new_cipher->id;
603
604 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
605 return TLSEXT_curve_P_256;
606 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
607 return TLSEXT_curve_P_384;
608 /* Should never happen */
609 return 0;
610 }
611 /* If not Suite B just return first preference shared curve */
612 nmatch = 0;
613 }
614 /*
615 * If server preference set, our groups are the preference order
616 * otherwise peer decides.
617 */
618 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
619 tls1_get_supported_groups(s, &pref, &num_pref);
620 tls1_get_peer_groups(s, &supp, &num_supp);
621 } else {
622 tls1_get_peer_groups(s, &pref, &num_pref);
623 tls1_get_supported_groups(s, &supp, &num_supp);
624 }
625
626 for (k = 0, i = 0; i < num_pref; i++) {
627 uint16_t id = pref[i];
628
629 if (!tls1_in_list(id, supp, num_supp)
630 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
631 continue;
632 if (nmatch == k)
633 return id;
634 k++;
635 }
636 if (nmatch == -1)
637 return k;
638 /* Out of range (nmatch > k). */
639 return 0;
640 }
641
642 int tls1_set_groups(uint16_t **pext, size_t *pextlen,
643 int *groups, size_t ngroups)
644 {
645 #if !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH)
646 uint16_t *glist;
647 size_t i;
648 /*
649 * Bitmap of groups included to detect duplicates: two variables are added
650 * to detect duplicates as some values are more than 32.
651 */
652 unsigned long *dup_list = NULL;
653 unsigned long dup_list_egrp = 0;
654 unsigned long dup_list_dhgrp = 0;
655
656 if (ngroups == 0) {
657 SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH);
658 return 0;
659 }
660 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
661 SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE);
662 return 0;
663 }
664 for (i = 0; i < ngroups; i++) {
665 unsigned long idmask;
666 uint16_t id;
667 id = tls1_nid2group_id(groups[i]);
668 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
669 goto err;
670 idmask = 1L << (id & 0x00FF);
671 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
672 if (!id || ((*dup_list) & idmask))
673 goto err;
674 *dup_list |= idmask;
675 glist[i] = id;
676 }
677 OPENSSL_free(*pext);
678 *pext = glist;
679 *pextlen = ngroups;
680 return 1;
681 err:
682 OPENSSL_free(glist);
683 return 0;
684 #else
685 return 0;
686 #endif /* !defined(OPENSSL_NO_EC) || !defined(OPENSSL_NO_DH) */
687 }
688
689 /* TODO(3.0): An arbitrary amount for now. Take another look at this */
690 # define MAX_GROUPLIST 40
691
692 typedef struct {
693 SSL_CTX *ctx;
694 size_t gidcnt;
695 uint16_t gid_arr[MAX_GROUPLIST];
696 } gid_cb_st;
697
698 static int gid_cb(const char *elem, int len, void *arg)
699 {
700 gid_cb_st *garg = arg;
701 size_t i;
702 uint16_t gid = 0;
703 char etmp[20];
704
705 if (elem == NULL)
706 return 0;
707 if (garg->gidcnt == MAX_GROUPLIST)
708 return 0;
709 if (len > (int)(sizeof(etmp) - 1))
710 return 0;
711 memcpy(etmp, elem, len);
712 etmp[len] = 0;
713
714 gid = tls1_group_name2id(garg->ctx, etmp);
715 if (gid == 0)
716 return 0;
717 for (i = 0; i < garg->gidcnt; i++)
718 if (garg->gid_arr[i] == gid)
719 return 0;
720 garg->gid_arr[garg->gidcnt++] = gid;
721 return 1;
722 }
723
724 /* Set groups based on a colon separated list */
725 int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
726 const char *str)
727 {
728 gid_cb_st gcb;
729 uint16_t *tmparr;
730
731 gcb.gidcnt = 0;
732 gcb.ctx = ctx;
733 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
734 return 0;
735 if (pext == NULL)
736 return 1;
737
738 /*
739 * gid_cb ensurse there are no duplicates so we can just go ahead and set
740 * the result
741 */
742 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
743 if (tmparr == NULL)
744 return 0;
745 *pext = tmparr;
746 *pextlen = gcb.gidcnt;
747 return 1;
748 }
749
750 /* Check a group id matches preferences */
751 int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
752 {
753 const uint16_t *groups;
754 size_t groups_len;
755
756 if (group_id == 0)
757 return 0;
758
759 /* Check for Suite B compliance */
760 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
761 unsigned long cid = s->s3.tmp.new_cipher->id;
762
763 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
764 if (group_id != TLSEXT_curve_P_256)
765 return 0;
766 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
767 if (group_id != TLSEXT_curve_P_384)
768 return 0;
769 } else {
770 /* Should never happen */
771 return 0;
772 }
773 }
774
775 if (check_own_groups) {
776 /* Check group is one of our preferences */
777 tls1_get_supported_groups(s, &groups, &groups_len);
778 if (!tls1_in_list(group_id, groups, groups_len))
779 return 0;
780 }
781
782 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
783 return 0;
784
785 /* For clients, nothing more to check */
786 if (!s->server)
787 return 1;
788
789 /* Check group is one of peers preferences */
790 tls1_get_peer_groups(s, &groups, &groups_len);
791
792 /*
793 * RFC 4492 does not require the supported elliptic curves extension
794 * so if it is not sent we can just choose any curve.
795 * It is invalid to send an empty list in the supported groups
796 * extension, so groups_len == 0 always means no extension.
797 */
798 if (groups_len == 0)
799 return 1;
800 return tls1_in_list(group_id, groups, groups_len);
801 }
802
803 #ifndef OPENSSL_NO_EC
804 void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
805 size_t *num_formats)
806 {
807 /*
808 * If we have a custom point format list use it otherwise use default
809 */
810 if (s->ext.ecpointformats) {
811 *pformats = s->ext.ecpointformats;
812 *num_formats = s->ext.ecpointformats_len;
813 } else {
814 *pformats = ecformats_default;
815 /* For Suite B we don't support char2 fields */
816 if (tls1_suiteb(s))
817 *num_formats = sizeof(ecformats_default) - 1;
818 else
819 *num_formats = sizeof(ecformats_default);
820 }
821 }
822
823 /* Check a key is compatible with compression extension */
824 static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
825 {
826 const EC_KEY *ec;
827 const EC_GROUP *grp;
828 unsigned char comp_id;
829 size_t i;
830
831 /* If not an EC key nothing to check */
832 if (!EVP_PKEY_is_a(pkey, "EC"))
833 return 1;
834 ec = EVP_PKEY_get0_EC_KEY(pkey);
835 grp = EC_KEY_get0_group(ec);
836
837 /* Get required compression id */
838 if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
839 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
840 } else if (SSL_IS_TLS13(s)) {
841 /*
842 * ec_point_formats extension is not used in TLSv1.3 so we ignore
843 * this check.
844 */
845 return 1;
846 } else {
847 int field_type = EC_GROUP_get_field_type(grp);
848
849 if (field_type == NID_X9_62_prime_field)
850 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
851 else if (field_type == NID_X9_62_characteristic_two_field)
852 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
853 else
854 return 0;
855 }
856 /*
857 * If point formats extension present check it, otherwise everything is
858 * supported (see RFC4492).
859 */
860 if (s->ext.peer_ecpointformats == NULL)
861 return 1;
862
863 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
864 if (s->ext.peer_ecpointformats[i] == comp_id)
865 return 1;
866 }
867 return 0;
868 }
869
870 /* Return group id of a key */
871 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
872 {
873 int curve_nid = evp_pkey_get_EC_KEY_curve_nid(pkey);
874
875 if (curve_nid == NID_undef)
876 return 0;
877 return tls1_nid2group_id(curve_nid);
878 }
879
880 /*
881 * Check cert parameters compatible with extensions: currently just checks EC
882 * certificates have compatible curves and compression.
883 */
884 static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
885 {
886 uint16_t group_id;
887 EVP_PKEY *pkey;
888 pkey = X509_get0_pubkey(x);
889 if (pkey == NULL)
890 return 0;
891 /* If not EC nothing to do */
892 if (!EVP_PKEY_is_a(pkey, "EC"))
893 return 1;
894 /* Check compression */
895 if (!tls1_check_pkey_comp(s, pkey))
896 return 0;
897 group_id = tls1_get_group_id(pkey);
898 /*
899 * For a server we allow the certificate to not be in our list of supported
900 * groups.
901 */
902 if (!tls1_check_group_id(s, group_id, !s->server))
903 return 0;
904 /*
905 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
906 * SHA384+P-384.
907 */
908 if (check_ee_md && tls1_suiteb(s)) {
909 int check_md;
910 size_t i;
911
912 /* Check to see we have necessary signing algorithm */
913 if (group_id == TLSEXT_curve_P_256)
914 check_md = NID_ecdsa_with_SHA256;
915 else if (group_id == TLSEXT_curve_P_384)
916 check_md = NID_ecdsa_with_SHA384;
917 else
918 return 0; /* Should never happen */
919 for (i = 0; i < s->shared_sigalgslen; i++) {
920 if (check_md == s->shared_sigalgs[i]->sigandhash)
921 return 1;;
922 }
923 return 0;
924 }
925 return 1;
926 }
927
928 /*
929 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
930 * @s: SSL connection
931 * @cid: Cipher ID we're considering using
932 *
933 * Checks that the kECDHE cipher suite we're considering using
934 * is compatible with the client extensions.
935 *
936 * Returns 0 when the cipher can't be used or 1 when it can.
937 */
938 int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
939 {
940 /* If not Suite B just need a shared group */
941 if (!tls1_suiteb(s))
942 return tls1_shared_group(s, 0) != 0;
943 /*
944 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
945 * curves permitted.
946 */
947 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
948 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
949 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
950 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
951
952 return 0;
953 }
954
955 #else
956
957 static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
958 {
959 return 1;
960 }
961
962 #endif /* OPENSSL_NO_EC */
963
964 /* Default sigalg schemes */
965 static const uint16_t tls12_sigalgs[] = {
966 #ifndef OPENSSL_NO_EC
967 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
968 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
969 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
970 TLSEXT_SIGALG_ed25519,
971 TLSEXT_SIGALG_ed448,
972 #endif
973
974 TLSEXT_SIGALG_rsa_pss_pss_sha256,
975 TLSEXT_SIGALG_rsa_pss_pss_sha384,
976 TLSEXT_SIGALG_rsa_pss_pss_sha512,
977 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
978 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
979 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
980
981 TLSEXT_SIGALG_rsa_pkcs1_sha256,
982 TLSEXT_SIGALG_rsa_pkcs1_sha384,
983 TLSEXT_SIGALG_rsa_pkcs1_sha512,
984
985 #ifndef OPENSSL_NO_EC
986 TLSEXT_SIGALG_ecdsa_sha224,
987 TLSEXT_SIGALG_ecdsa_sha1,
988 #endif
989 TLSEXT_SIGALG_rsa_pkcs1_sha224,
990 TLSEXT_SIGALG_rsa_pkcs1_sha1,
991 #ifndef OPENSSL_NO_DSA
992 TLSEXT_SIGALG_dsa_sha224,
993 TLSEXT_SIGALG_dsa_sha1,
994
995 TLSEXT_SIGALG_dsa_sha256,
996 TLSEXT_SIGALG_dsa_sha384,
997 TLSEXT_SIGALG_dsa_sha512,
998 #endif
999 #ifndef OPENSSL_NO_GOST
1000 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1001 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1002 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1003 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1004 TLSEXT_SIGALG_gostr34102001_gostr3411,
1005 #endif
1006 };
1007
1008 #ifndef OPENSSL_NO_EC
1009 static const uint16_t suiteb_sigalgs[] = {
1010 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1011 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1012 };
1013 #endif
1014
1015 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1016 #ifndef OPENSSL_NO_EC
1017 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1018 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1019 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1020 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1021 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1022 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1023 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1024 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1025 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1026 {"ed25519", TLSEXT_SIGALG_ed25519,
1027 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1028 NID_undef, NID_undef, 1},
1029 {"ed448", TLSEXT_SIGALG_ed448,
1030 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1031 NID_undef, NID_undef, 1},
1032 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1033 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1034 NID_ecdsa_with_SHA224, NID_undef, 1},
1035 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1036 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1037 NID_ecdsa_with_SHA1, NID_undef, 1},
1038 #endif
1039 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1040 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1041 NID_undef, NID_undef, 1},
1042 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1043 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1044 NID_undef, NID_undef, 1},
1045 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1046 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1047 NID_undef, NID_undef, 1},
1048 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1049 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1050 NID_undef, NID_undef, 1},
1051 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1052 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1053 NID_undef, NID_undef, 1},
1054 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1055 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1056 NID_undef, NID_undef, 1},
1057 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1058 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1059 NID_sha256WithRSAEncryption, NID_undef, 1},
1060 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1061 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1062 NID_sha384WithRSAEncryption, NID_undef, 1},
1063 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1064 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1065 NID_sha512WithRSAEncryption, NID_undef, 1},
1066 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1067 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1068 NID_sha224WithRSAEncryption, NID_undef, 1},
1069 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1070 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1071 NID_sha1WithRSAEncryption, NID_undef, 1},
1072 #ifndef OPENSSL_NO_DSA
1073 {NULL, TLSEXT_SIGALG_dsa_sha256,
1074 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1075 NID_dsa_with_SHA256, NID_undef, 1},
1076 {NULL, TLSEXT_SIGALG_dsa_sha384,
1077 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1078 NID_undef, NID_undef, 1},
1079 {NULL, TLSEXT_SIGALG_dsa_sha512,
1080 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1081 NID_undef, NID_undef, 1},
1082 {NULL, TLSEXT_SIGALG_dsa_sha224,
1083 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1084 NID_undef, NID_undef, 1},
1085 {NULL, TLSEXT_SIGALG_dsa_sha1,
1086 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1087 NID_dsaWithSHA1, NID_undef, 1},
1088 #endif
1089 #ifndef OPENSSL_NO_GOST
1090 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1091 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1092 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1093 NID_undef, NID_undef, 1},
1094 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1095 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1096 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1097 NID_undef, NID_undef, 1},
1098 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1099 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1100 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1101 NID_undef, NID_undef, 1},
1102 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1103 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1104 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1105 NID_undef, NID_undef, 1},
1106 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1107 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1108 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1109 NID_undef, NID_undef, 1}
1110 #endif
1111 };
1112 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1113 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1114 "rsa_pkcs1_md5_sha1", 0,
1115 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1116 EVP_PKEY_RSA, SSL_PKEY_RSA,
1117 NID_undef, NID_undef, 1
1118 };
1119
1120 /*
1121 * Default signature algorithm values used if signature algorithms not present.
1122 * From RFC5246. Note: order must match certificate index order.
1123 */
1124 static const uint16_t tls_default_sigalg[] = {
1125 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1126 0, /* SSL_PKEY_RSA_PSS_SIGN */
1127 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1128 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1129 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1130 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1131 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1132 0, /* SSL_PKEY_ED25519 */
1133 0, /* SSL_PKEY_ED448 */
1134 };
1135
1136 int ssl_setup_sig_algs(SSL_CTX *ctx)
1137 {
1138 size_t i;
1139 const SIGALG_LOOKUP *lu;
1140 SIGALG_LOOKUP *cache
1141 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1142 EVP_PKEY *tmpkey = EVP_PKEY_new();
1143 int ret = 0;
1144
1145 if (cache == NULL || tmpkey == NULL)
1146 goto err;
1147
1148 ERR_set_mark();
1149 for (i = 0, lu = sigalg_lookup_tbl;
1150 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1151 EVP_PKEY_CTX *pctx;
1152
1153 cache[i] = *lu;
1154
1155 /*
1156 * Check hash is available.
1157 * TODO(3.0): This test is not perfect. A provider could have support
1158 * for a signature scheme, but not a particular hash. However the hash
1159 * could be available from some other loaded provider. In that case it
1160 * could be that the signature is available, and the hash is available
1161 * independently - but not as a combination. We ignore this for now.
1162 */
1163 if (lu->hash != NID_undef
1164 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1165 cache[i].enabled = 0;
1166 continue;
1167 }
1168
1169 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1170 cache[i].enabled = 0;
1171 continue;
1172 }
1173 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1174 /* If unable to create pctx we assume the sig algorithm is unavailable */
1175 if (pctx == NULL)
1176 cache[i].enabled = 0;
1177 EVP_PKEY_CTX_free(pctx);
1178 }
1179 ERR_pop_to_mark();
1180 ctx->sigalg_lookup_cache = cache;
1181 cache = NULL;
1182
1183 ret = 1;
1184 err:
1185 OPENSSL_free(cache);
1186 EVP_PKEY_free(tmpkey);
1187 return ret;
1188 }
1189
1190 /* Lookup TLS signature algorithm */
1191 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1192 {
1193 size_t i;
1194 const SIGALG_LOOKUP *lu;
1195
1196 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1197 /* cache should have the same number of elements as sigalg_lookup_tbl */
1198 i < OSSL_NELEM(sigalg_lookup_tbl);
1199 lu++, i++) {
1200 if (lu->sigalg == sigalg)
1201 return lu;
1202 }
1203 return NULL;
1204 }
1205 /* Lookup hash: return 0 if invalid or not enabled */
1206 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1207 {
1208 const EVP_MD *md;
1209 if (lu == NULL)
1210 return 0;
1211 /* lu->hash == NID_undef means no associated digest */
1212 if (lu->hash == NID_undef) {
1213 md = NULL;
1214 } else {
1215 md = ssl_md(ctx, lu->hash_idx);
1216 if (md == NULL)
1217 return 0;
1218 }
1219 if (pmd)
1220 *pmd = md;
1221 return 1;
1222 }
1223
1224 /*
1225 * Check if key is large enough to generate RSA-PSS signature.
1226 *
1227 * The key must greater than or equal to 2 * hash length + 2.
1228 * SHA512 has a hash length of 64 bytes, which is incompatible
1229 * with a 128 byte (1024 bit) key.
1230 */
1231 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2)
1232 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1233 const SIGALG_LOOKUP *lu)
1234 {
1235 const EVP_MD *md;
1236
1237 if (pkey == NULL)
1238 return 0;
1239 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1240 return 0;
1241 if (EVP_PKEY_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1242 return 0;
1243 return 1;
1244 }
1245
1246 /*
1247 * Returns a signature algorithm when the peer did not send a list of supported
1248 * signature algorithms. The signature algorithm is fixed for the certificate
1249 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1250 * certificate type from |s| will be used.
1251 * Returns the signature algorithm to use, or NULL on error.
1252 */
1253 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1254 {
1255 if (idx == -1) {
1256 if (s->server) {
1257 size_t i;
1258
1259 /* Work out index corresponding to ciphersuite */
1260 for (i = 0; i < SSL_PKEY_NUM; i++) {
1261 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1262
1263 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1264 idx = i;
1265 break;
1266 }
1267 }
1268
1269 /*
1270 * Some GOST ciphersuites allow more than one signature algorithms
1271 * */
1272 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1273 int real_idx;
1274
1275 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1276 real_idx--) {
1277 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1278 idx = real_idx;
1279 break;
1280 }
1281 }
1282 }
1283 /*
1284 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1285 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1286 */
1287 else if (idx == SSL_PKEY_GOST12_256) {
1288 int real_idx;
1289
1290 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1291 real_idx--) {
1292 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1293 idx = real_idx;
1294 break;
1295 }
1296 }
1297 }
1298 } else {
1299 idx = s->cert->key - s->cert->pkeys;
1300 }
1301 }
1302 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1303 return NULL;
1304 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1305 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1306
1307 if (!tls1_lookup_md(s->ctx, lu, NULL))
1308 return NULL;
1309 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1310 return NULL;
1311 return lu;
1312 }
1313 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1314 return NULL;
1315 return &legacy_rsa_sigalg;
1316 }
1317 /* Set peer sigalg based key type */
1318 int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1319 {
1320 size_t idx;
1321 const SIGALG_LOOKUP *lu;
1322
1323 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1324 return 0;
1325 lu = tls1_get_legacy_sigalg(s, idx);
1326 if (lu == NULL)
1327 return 0;
1328 s->s3.tmp.peer_sigalg = lu;
1329 return 1;
1330 }
1331
1332 size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1333 {
1334 /*
1335 * If Suite B mode use Suite B sigalgs only, ignore any other
1336 * preferences.
1337 */
1338 #ifndef OPENSSL_NO_EC
1339 switch (tls1_suiteb(s)) {
1340 case SSL_CERT_FLAG_SUITEB_128_LOS:
1341 *psigs = suiteb_sigalgs;
1342 return OSSL_NELEM(suiteb_sigalgs);
1343
1344 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1345 *psigs = suiteb_sigalgs;
1346 return 1;
1347
1348 case SSL_CERT_FLAG_SUITEB_192_LOS:
1349 *psigs = suiteb_sigalgs + 1;
1350 return 1;
1351 }
1352 #endif
1353 /*
1354 * We use client_sigalgs (if not NULL) if we're a server
1355 * and sending a certificate request or if we're a client and
1356 * determining which shared algorithm to use.
1357 */
1358 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1359 *psigs = s->cert->client_sigalgs;
1360 return s->cert->client_sigalgslen;
1361 } else if (s->cert->conf_sigalgs) {
1362 *psigs = s->cert->conf_sigalgs;
1363 return s->cert->conf_sigalgslen;
1364 } else {
1365 *psigs = tls12_sigalgs;
1366 return OSSL_NELEM(tls12_sigalgs);
1367 }
1368 }
1369
1370 #ifndef OPENSSL_NO_EC
1371 /*
1372 * Called by servers only. Checks that we have a sig alg that supports the
1373 * specified EC curve.
1374 */
1375 int tls_check_sigalg_curve(const SSL *s, int curve)
1376 {
1377 const uint16_t *sigs;
1378 size_t siglen, i;
1379
1380 if (s->cert->conf_sigalgs) {
1381 sigs = s->cert->conf_sigalgs;
1382 siglen = s->cert->conf_sigalgslen;
1383 } else {
1384 sigs = tls12_sigalgs;
1385 siglen = OSSL_NELEM(tls12_sigalgs);
1386 }
1387
1388 for (i = 0; i < siglen; i++) {
1389 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1390
1391 if (lu == NULL)
1392 continue;
1393 if (lu->sig == EVP_PKEY_EC
1394 && lu->curve != NID_undef
1395 && curve == lu->curve)
1396 return 1;
1397 }
1398
1399 return 0;
1400 }
1401 #endif
1402
1403 /*
1404 * Return the number of security bits for the signature algorithm, or 0 on
1405 * error.
1406 */
1407 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1408 {
1409 const EVP_MD *md = NULL;
1410 int secbits = 0;
1411
1412 if (!tls1_lookup_md(ctx, lu, &md))
1413 return 0;
1414 if (md != NULL)
1415 {
1416 /* Security bits: half digest bits */
1417 secbits = EVP_MD_size(md) * 4;
1418 } else {
1419 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1420 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1421 secbits = 128;
1422 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1423 secbits = 224;
1424 }
1425 return secbits;
1426 }
1427
1428 /*
1429 * Check signature algorithm is consistent with sent supported signature
1430 * algorithms and if so set relevant digest and signature scheme in
1431 * s.
1432 */
1433 int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1434 {
1435 const uint16_t *sent_sigs;
1436 const EVP_MD *md = NULL;
1437 char sigalgstr[2];
1438 size_t sent_sigslen, i, cidx;
1439 int pkeyid = -1;
1440 const SIGALG_LOOKUP *lu;
1441 int secbits = 0;
1442
1443 pkeyid = EVP_PKEY_id(pkey);
1444 /* Should never happen */
1445 if (pkeyid == -1)
1446 return -1;
1447 if (SSL_IS_TLS13(s)) {
1448 /* Disallow DSA for TLS 1.3 */
1449 if (pkeyid == EVP_PKEY_DSA) {
1450 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1451 SSL_R_WRONG_SIGNATURE_TYPE);
1452 return 0;
1453 }
1454 /* Only allow PSS for TLS 1.3 */
1455 if (pkeyid == EVP_PKEY_RSA)
1456 pkeyid = EVP_PKEY_RSA_PSS;
1457 }
1458 lu = tls1_lookup_sigalg(s, sig);
1459 /*
1460 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1461 * is consistent with signature: RSA keys can be used for RSA-PSS
1462 */
1463 if (lu == NULL
1464 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1465 || (pkeyid != lu->sig
1466 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1467 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1468 SSL_R_WRONG_SIGNATURE_TYPE);
1469 return 0;
1470 }
1471 /* Check the sigalg is consistent with the key OID */
1472 if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx)
1473 || lu->sig_idx != (int)cidx) {
1474 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG,
1475 SSL_R_WRONG_SIGNATURE_TYPE);
1476 return 0;
1477 }
1478
1479 #ifndef OPENSSL_NO_EC
1480 if (pkeyid == EVP_PKEY_EC) {
1481
1482 /* Check point compression is permitted */
1483 if (!tls1_check_pkey_comp(s, pkey)) {
1484 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1485 SSL_F_TLS12_CHECK_PEER_SIGALG,
1486 SSL_R_ILLEGAL_POINT_COMPRESSION);
1487 return 0;
1488 }
1489
1490 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1491 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1492 int curve = evp_pkey_get_EC_KEY_curve_nid(pkey);
1493
1494 if (lu->curve != NID_undef && curve != lu->curve) {
1495 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1496 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1497 return 0;
1498 }
1499 }
1500 if (!SSL_IS_TLS13(s)) {
1501 /* Check curve matches extensions */
1502 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1503 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1504 SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
1505 return 0;
1506 }
1507 if (tls1_suiteb(s)) {
1508 /* Check sigalg matches a permissible Suite B value */
1509 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1510 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1511 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1512 SSL_F_TLS12_CHECK_PEER_SIGALG,
1513 SSL_R_WRONG_SIGNATURE_TYPE);
1514 return 0;
1515 }
1516 }
1517 }
1518 } else if (tls1_suiteb(s)) {
1519 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1520 SSL_R_WRONG_SIGNATURE_TYPE);
1521 return 0;
1522 }
1523 #endif
1524
1525 /* Check signature matches a type we sent */
1526 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1527 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1528 if (sig == *sent_sigs)
1529 break;
1530 }
1531 /* Allow fallback to SHA1 if not strict mode */
1532 if (i == sent_sigslen && (lu->hash != NID_sha1
1533 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1534 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1535 SSL_R_WRONG_SIGNATURE_TYPE);
1536 return 0;
1537 }
1538 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1539 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1540 SSL_R_UNKNOWN_DIGEST);
1541 return 0;
1542 }
1543 /*
1544 * Make sure security callback allows algorithm. For historical
1545 * reasons we have to pass the sigalg as a two byte char array.
1546 */
1547 sigalgstr[0] = (sig >> 8) & 0xff;
1548 sigalgstr[1] = sig & 0xff;
1549 secbits = sigalg_security_bits(s->ctx, lu);
1550 if (secbits == 0 ||
1551 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1552 md != NULL ? EVP_MD_type(md) : NID_undef,
1553 (void *)sigalgstr)) {
1554 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG,
1555 SSL_R_WRONG_SIGNATURE_TYPE);
1556 return 0;
1557 }
1558 /* Store the sigalg the peer uses */
1559 s->s3.tmp.peer_sigalg = lu;
1560 return 1;
1561 }
1562
1563 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1564 {
1565 if (s->s3.tmp.peer_sigalg == NULL)
1566 return 0;
1567 *pnid = s->s3.tmp.peer_sigalg->sig;
1568 return 1;
1569 }
1570
1571 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1572 {
1573 if (s->s3.tmp.sigalg == NULL)
1574 return 0;
1575 *pnid = s->s3.tmp.sigalg->sig;
1576 return 1;
1577 }
1578
1579 /*
1580 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1581 * supported, doesn't appear in supported signature algorithms, isn't supported
1582 * by the enabled protocol versions or by the security level.
1583 *
1584 * This function should only be used for checking which ciphers are supported
1585 * by the client.
1586 *
1587 * Call ssl_cipher_disabled() to check that it's enabled or not.
1588 */
1589 int ssl_set_client_disabled(SSL *s)
1590 {
1591 s->s3.tmp.mask_a = 0;
1592 s->s3.tmp.mask_k = 0;
1593 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1594 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1595 &s->s3.tmp.max_ver, NULL) != 0)
1596 return 0;
1597 #ifndef OPENSSL_NO_PSK
1598 /* with PSK there must be client callback set */
1599 if (!s->psk_client_callback) {
1600 s->s3.tmp.mask_a |= SSL_aPSK;
1601 s->s3.tmp.mask_k |= SSL_PSK;
1602 }
1603 #endif /* OPENSSL_NO_PSK */
1604 #ifndef OPENSSL_NO_SRP
1605 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1606 s->s3.tmp.mask_a |= SSL_aSRP;
1607 s->s3.tmp.mask_k |= SSL_kSRP;
1608 }
1609 #endif
1610 return 1;
1611 }
1612
1613 /*
1614 * ssl_cipher_disabled - check that a cipher is disabled or not
1615 * @s: SSL connection that you want to use the cipher on
1616 * @c: cipher to check
1617 * @op: Security check that you want to do
1618 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1619 *
1620 * Returns 1 when it's disabled, 0 when enabled.
1621 */
1622 int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1623 {
1624 if (c->algorithm_mkey & s->s3.tmp.mask_k
1625 || c->algorithm_auth & s->s3.tmp.mask_a)
1626 return 1;
1627 if (s->s3.tmp.max_ver == 0)
1628 return 1;
1629 if (!SSL_IS_DTLS(s)) {
1630 int min_tls = c->min_tls;
1631
1632 /*
1633 * For historical reasons we will allow ECHDE to be selected by a server
1634 * in SSLv3 if we are a client
1635 */
1636 if (min_tls == TLS1_VERSION && ecdhe
1637 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1638 min_tls = SSL3_VERSION;
1639
1640 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1641 return 1;
1642 }
1643 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1644 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1645 return 1;
1646
1647 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1648 }
1649
1650 int tls_use_ticket(SSL *s)
1651 {
1652 if ((s->options & SSL_OP_NO_TICKET))
1653 return 0;
1654 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1655 }
1656
1657 int tls1_set_server_sigalgs(SSL *s)
1658 {
1659 size_t i;
1660
1661 /* Clear any shared signature algorithms */
1662 OPENSSL_free(s->shared_sigalgs);
1663 s->shared_sigalgs = NULL;
1664 s->shared_sigalgslen = 0;
1665 /* Clear certificate validity flags */
1666 for (i = 0; i < SSL_PKEY_NUM; i++)
1667 s->s3.tmp.valid_flags[i] = 0;
1668 /*
1669 * If peer sent no signature algorithms check to see if we support
1670 * the default algorithm for each certificate type
1671 */
1672 if (s->s3.tmp.peer_cert_sigalgs == NULL
1673 && s->s3.tmp.peer_sigalgs == NULL) {
1674 const uint16_t *sent_sigs;
1675 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1676
1677 for (i = 0; i < SSL_PKEY_NUM; i++) {
1678 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1679 size_t j;
1680
1681 if (lu == NULL)
1682 continue;
1683 /* Check default matches a type we sent */
1684 for (j = 0; j < sent_sigslen; j++) {
1685 if (lu->sigalg == sent_sigs[j]) {
1686 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1687 break;
1688 }
1689 }
1690 }
1691 return 1;
1692 }
1693
1694 if (!tls1_process_sigalgs(s)) {
1695 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
1696 SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR);
1697 return 0;
1698 }
1699 if (s->shared_sigalgs != NULL)
1700 return 1;
1701
1702 /* Fatal error if no shared signature algorithms */
1703 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS,
1704 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1705 return 0;
1706 }
1707
1708 /*-
1709 * Gets the ticket information supplied by the client if any.
1710 *
1711 * hello: The parsed ClientHello data
1712 * ret: (output) on return, if a ticket was decrypted, then this is set to
1713 * point to the resulting session.
1714 */
1715 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1716 SSL_SESSION **ret)
1717 {
1718 size_t size;
1719 RAW_EXTENSION *ticketext;
1720
1721 *ret = NULL;
1722 s->ext.ticket_expected = 0;
1723
1724 /*
1725 * If tickets disabled or not supported by the protocol version
1726 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1727 * resumption.
1728 */
1729 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1730 return SSL_TICKET_NONE;
1731
1732 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1733 if (!ticketext->present)
1734 return SSL_TICKET_NONE;
1735
1736 size = PACKET_remaining(&ticketext->data);
1737
1738 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1739 hello->session_id, hello->session_id_len, ret);
1740 }
1741
1742 /*-
1743 * tls_decrypt_ticket attempts to decrypt a session ticket.
1744 *
1745 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1746 * expecting a pre-shared key ciphersuite, in which case we have no use for
1747 * session tickets and one will never be decrypted, nor will
1748 * s->ext.ticket_expected be set to 1.
1749 *
1750 * Side effects:
1751 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1752 * a new session ticket to the client because the client indicated support
1753 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1754 * a session ticket or we couldn't use the one it gave us, or if
1755 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1756 * Otherwise, s->ext.ticket_expected is set to 0.
1757 *
1758 * etick: points to the body of the session ticket extension.
1759 * eticklen: the length of the session tickets extension.
1760 * sess_id: points at the session ID.
1761 * sesslen: the length of the session ID.
1762 * psess: (output) on return, if a ticket was decrypted, then this is set to
1763 * point to the resulting session.
1764 */
1765 SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1766 size_t eticklen, const unsigned char *sess_id,
1767 size_t sesslen, SSL_SESSION **psess)
1768 {
1769 SSL_SESSION *sess = NULL;
1770 unsigned char *sdec;
1771 const unsigned char *p;
1772 int slen, renew_ticket = 0, declen;
1773 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1774 size_t mlen;
1775 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1776 SSL_HMAC *hctx = NULL;
1777 EVP_CIPHER_CTX *ctx = NULL;
1778 SSL_CTX *tctx = s->session_ctx;
1779
1780 if (eticklen == 0) {
1781 /*
1782 * The client will accept a ticket but doesn't currently have
1783 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1784 */
1785 ret = SSL_TICKET_EMPTY;
1786 goto end;
1787 }
1788 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1789 /*
1790 * Indicate that the ticket couldn't be decrypted rather than
1791 * generating the session from ticket now, trigger
1792 * abbreviated handshake based on external mechanism to
1793 * calculate the master secret later.
1794 */
1795 ret = SSL_TICKET_NO_DECRYPT;
1796 goto end;
1797 }
1798
1799 /* Need at least keyname + iv */
1800 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1801 ret = SSL_TICKET_NO_DECRYPT;
1802 goto end;
1803 }
1804
1805 /* Initialize session ticket encryption and HMAC contexts */
1806 hctx = ssl_hmac_new(tctx);
1807 if (hctx == NULL) {
1808 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1809 goto end;
1810 }
1811 ctx = EVP_CIPHER_CTX_new();
1812 if (ctx == NULL) {
1813 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1814 goto end;
1815 }
1816 #ifndef OPENSSL_NO_DEPRECATED_3_0
1817 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1818 #else
1819 if (tctx->ext.ticket_key_evp_cb != NULL)
1820 #endif
1821 {
1822 unsigned char *nctick = (unsigned char *)etick;
1823 int rv = 0;
1824
1825 if (tctx->ext.ticket_key_evp_cb != NULL)
1826 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1827 nctick + TLSEXT_KEYNAME_LENGTH,
1828 ctx,
1829 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1830 0);
1831 #ifndef OPENSSL_NO_DEPRECATED_3_0
1832 else if (tctx->ext.ticket_key_cb != NULL)
1833 /* if 0 is returned, write an empty ticket */
1834 rv = tctx->ext.ticket_key_cb(s, nctick,
1835 nctick + TLSEXT_KEYNAME_LENGTH,
1836 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1837 #endif
1838 if (rv < 0) {
1839 ret = SSL_TICKET_FATAL_ERR_OTHER;
1840 goto end;
1841 }
1842 if (rv == 0) {
1843 ret = SSL_TICKET_NO_DECRYPT;
1844 goto end;
1845 }
1846 if (rv == 2)
1847 renew_ticket = 1;
1848 } else {
1849 EVP_CIPHER *aes256cbc = NULL;
1850
1851 /* Check key name matches */
1852 if (memcmp(etick, tctx->ext.tick_key_name,
1853 TLSEXT_KEYNAME_LENGTH) != 0) {
1854 ret = SSL_TICKET_NO_DECRYPT;
1855 goto end;
1856 }
1857
1858 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1859 s->ctx->propq);
1860 if (aes256cbc == NULL
1861 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1862 sizeof(tctx->ext.secure->tick_hmac_key),
1863 "SHA256") <= 0
1864 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1865 tctx->ext.secure->tick_aes_key,
1866 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1867 EVP_CIPHER_free(aes256cbc);
1868 ret = SSL_TICKET_FATAL_ERR_OTHER;
1869 goto end;
1870 }
1871 EVP_CIPHER_free(aes256cbc);
1872 if (SSL_IS_TLS13(s))
1873 renew_ticket = 1;
1874 }
1875 /*
1876 * Attempt to process session ticket, first conduct sanity and integrity
1877 * checks on ticket.
1878 */
1879 mlen = ssl_hmac_size(hctx);
1880 if (mlen == 0) {
1881 ret = SSL_TICKET_FATAL_ERR_OTHER;
1882 goto end;
1883 }
1884
1885 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1886 if (eticklen <=
1887 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
1888 ret = SSL_TICKET_NO_DECRYPT;
1889 goto end;
1890 }
1891 eticklen -= mlen;
1892 /* Check HMAC of encrypted ticket */
1893 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1894 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1895 ret = SSL_TICKET_FATAL_ERR_OTHER;
1896 goto end;
1897 }
1898
1899 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1900 ret = SSL_TICKET_NO_DECRYPT;
1901 goto end;
1902 }
1903 /* Attempt to decrypt session data */
1904 /* Move p after IV to start of encrypted ticket, update length */
1905 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1906 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
1907 sdec = OPENSSL_malloc(eticklen);
1908 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1909 (int)eticklen) <= 0) {
1910 OPENSSL_free(sdec);
1911 ret = SSL_TICKET_FATAL_ERR_OTHER;
1912 goto end;
1913 }
1914 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1915 OPENSSL_free(sdec);
1916 ret = SSL_TICKET_NO_DECRYPT;
1917 goto end;
1918 }
1919 slen += declen;
1920 p = sdec;
1921
1922 sess = d2i_SSL_SESSION(NULL, &p, slen);
1923 slen -= p - sdec;
1924 OPENSSL_free(sdec);
1925 if (sess) {
1926 /* Some additional consistency checks */
1927 if (slen != 0) {
1928 SSL_SESSION_free(sess);
1929 sess = NULL;
1930 ret = SSL_TICKET_NO_DECRYPT;
1931 goto end;
1932 }
1933 /*
1934 * The session ID, if non-empty, is used by some clients to detect
1935 * that the ticket has been accepted. So we copy it to the session
1936 * structure. If it is empty set length to zero as required by
1937 * standard.
1938 */
1939 if (sesslen) {
1940 memcpy(sess->session_id, sess_id, sesslen);
1941 sess->session_id_length = sesslen;
1942 }
1943 if (renew_ticket)
1944 ret = SSL_TICKET_SUCCESS_RENEW;
1945 else
1946 ret = SSL_TICKET_SUCCESS;
1947 goto end;
1948 }
1949 ERR_clear_error();
1950 /*
1951 * For session parse failure, indicate that we need to send a new ticket.
1952 */
1953 ret = SSL_TICKET_NO_DECRYPT;
1954
1955 end:
1956 EVP_CIPHER_CTX_free(ctx);
1957 ssl_hmac_free(hctx);
1958
1959 /*
1960 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1961 * detected above. The callback is responsible for checking |ret| before it
1962 * performs any action
1963 */
1964 if (s->session_ctx->decrypt_ticket_cb != NULL
1965 && (ret == SSL_TICKET_EMPTY
1966 || ret == SSL_TICKET_NO_DECRYPT
1967 || ret == SSL_TICKET_SUCCESS
1968 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1969 size_t keyname_len = eticklen;
1970 int retcb;
1971
1972 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1973 keyname_len = TLSEXT_KEYNAME_LENGTH;
1974 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1975 ret,
1976 s->session_ctx->ticket_cb_data);
1977 switch (retcb) {
1978 case SSL_TICKET_RETURN_ABORT:
1979 ret = SSL_TICKET_FATAL_ERR_OTHER;
1980 break;
1981
1982 case SSL_TICKET_RETURN_IGNORE:
1983 ret = SSL_TICKET_NONE;
1984 SSL_SESSION_free(sess);
1985 sess = NULL;
1986 break;
1987
1988 case SSL_TICKET_RETURN_IGNORE_RENEW:
1989 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
1990 ret = SSL_TICKET_NO_DECRYPT;
1991 /* else the value of |ret| will already do the right thing */
1992 SSL_SESSION_free(sess);
1993 sess = NULL;
1994 break;
1995
1996 case SSL_TICKET_RETURN_USE:
1997 case SSL_TICKET_RETURN_USE_RENEW:
1998 if (ret != SSL_TICKET_SUCCESS
1999 && ret != SSL_TICKET_SUCCESS_RENEW)
2000 ret = SSL_TICKET_FATAL_ERR_OTHER;
2001 else if (retcb == SSL_TICKET_RETURN_USE)
2002 ret = SSL_TICKET_SUCCESS;
2003 else
2004 ret = SSL_TICKET_SUCCESS_RENEW;
2005 break;
2006
2007 default:
2008 ret = SSL_TICKET_FATAL_ERR_OTHER;
2009 }
2010 }
2011
2012 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2013 switch (ret) {
2014 case SSL_TICKET_NO_DECRYPT:
2015 case SSL_TICKET_SUCCESS_RENEW:
2016 case SSL_TICKET_EMPTY:
2017 s->ext.ticket_expected = 1;
2018 }
2019 }
2020
2021 *psess = sess;
2022
2023 return ret;
2024 }
2025
2026 /* Check to see if a signature algorithm is allowed */
2027 static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2028 {
2029 unsigned char sigalgstr[2];
2030 int secbits;
2031
2032 if (lu == NULL || !lu->enabled)
2033 return 0;
2034 /* DSA is not allowed in TLS 1.3 */
2035 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2036 return 0;
2037 /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
2038 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2039 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2040 || lu->hash_idx == SSL_MD_MD5_IDX
2041 || lu->hash_idx == SSL_MD_SHA224_IDX))
2042 return 0;
2043
2044 /* See if public key algorithm allowed */
2045 if (ssl_cert_is_disabled(lu->sig_idx))
2046 return 0;
2047
2048 if (lu->sig == NID_id_GostR3410_2012_256
2049 || lu->sig == NID_id_GostR3410_2012_512
2050 || lu->sig == NID_id_GostR3410_2001) {
2051 /* We never allow GOST sig algs on the server with TLSv1.3 */
2052 if (s->server && SSL_IS_TLS13(s))
2053 return 0;
2054 if (!s->server
2055 && s->method->version == TLS_ANY_VERSION
2056 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2057 int i, num;
2058 STACK_OF(SSL_CIPHER) *sk;
2059
2060 /*
2061 * We're a client that could negotiate TLSv1.3. We only allow GOST
2062 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2063 * ciphersuites enabled.
2064 */
2065
2066 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2067 return 0;
2068
2069 sk = SSL_get_ciphers(s);
2070 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2071 for (i = 0; i < num; i++) {
2072 const SSL_CIPHER *c;
2073
2074 c = sk_SSL_CIPHER_value(sk, i);
2075 /* Skip disabled ciphers */
2076 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2077 continue;
2078
2079 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2080 break;
2081 }
2082 if (i == num)
2083 return 0;
2084 }
2085 }
2086
2087 /* Finally see if security callback allows it */
2088 secbits = sigalg_security_bits(s->ctx, lu);
2089 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2090 sigalgstr[1] = lu->sigalg & 0xff;
2091 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2092 }
2093
2094 /*
2095 * Get a mask of disabled public key algorithms based on supported signature
2096 * algorithms. For example if no signature algorithm supports RSA then RSA is
2097 * disabled.
2098 */
2099
2100 void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2101 {
2102 const uint16_t *sigalgs;
2103 size_t i, sigalgslen;
2104 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2105 /*
2106 * Go through all signature algorithms seeing if we support any
2107 * in disabled_mask.
2108 */
2109 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2110 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2111 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2112 const SSL_CERT_LOOKUP *clu;
2113
2114 if (lu == NULL)
2115 continue;
2116
2117 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2118 if (clu == NULL)
2119 continue;
2120
2121 /* If algorithm is disabled see if we can enable it */
2122 if ((clu->amask & disabled_mask) != 0
2123 && tls12_sigalg_allowed(s, op, lu))
2124 disabled_mask &= ~clu->amask;
2125 }
2126 *pmask_a |= disabled_mask;
2127 }
2128
2129 int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2130 const uint16_t *psig, size_t psiglen)
2131 {
2132 size_t i;
2133 int rv = 0;
2134
2135 for (i = 0; i < psiglen; i++, psig++) {
2136 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2137
2138 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2139 continue;
2140 if (!WPACKET_put_bytes_u16(pkt, *psig))
2141 return 0;
2142 /*
2143 * If TLS 1.3 must have at least one valid TLS 1.3 message
2144 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2145 */
2146 if (rv == 0 && (!SSL_IS_TLS13(s)
2147 || (lu->sig != EVP_PKEY_RSA
2148 && lu->hash != NID_sha1
2149 && lu->hash != NID_sha224)))
2150 rv = 1;
2151 }
2152 if (rv == 0)
2153 SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2154 return rv;
2155 }
2156
2157 /* Given preference and allowed sigalgs set shared sigalgs */
2158 static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2159 const uint16_t *pref, size_t preflen,
2160 const uint16_t *allow, size_t allowlen)
2161 {
2162 const uint16_t *ptmp, *atmp;
2163 size_t i, j, nmatch = 0;
2164 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2165 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2166
2167 /* Skip disabled hashes or signature algorithms */
2168 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2169 continue;
2170 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2171 if (*ptmp == *atmp) {
2172 nmatch++;
2173 if (shsig)
2174 *shsig++ = lu;
2175 break;
2176 }
2177 }
2178 }
2179 return nmatch;
2180 }
2181
2182 /* Set shared signature algorithms for SSL structures */
2183 static int tls1_set_shared_sigalgs(SSL *s)
2184 {
2185 const uint16_t *pref, *allow, *conf;
2186 size_t preflen, allowlen, conflen;
2187 size_t nmatch;
2188 const SIGALG_LOOKUP **salgs = NULL;
2189 CERT *c = s->cert;
2190 unsigned int is_suiteb = tls1_suiteb(s);
2191
2192 OPENSSL_free(s->shared_sigalgs);
2193 s->shared_sigalgs = NULL;
2194 s->shared_sigalgslen = 0;
2195 /* If client use client signature algorithms if not NULL */
2196 if (!s->server && c->client_sigalgs && !is_suiteb) {
2197 conf = c->client_sigalgs;
2198 conflen = c->client_sigalgslen;
2199 } else if (c->conf_sigalgs && !is_suiteb) {
2200 conf = c->conf_sigalgs;
2201 conflen = c->conf_sigalgslen;
2202 } else
2203 conflen = tls12_get_psigalgs(s, 0, &conf);
2204 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2205 pref = conf;
2206 preflen = conflen;
2207 allow = s->s3.tmp.peer_sigalgs;
2208 allowlen = s->s3.tmp.peer_sigalgslen;
2209 } else {
2210 allow = conf;
2211 allowlen = conflen;
2212 pref = s->s3.tmp.peer_sigalgs;
2213 preflen = s->s3.tmp.peer_sigalgslen;
2214 }
2215 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2216 if (nmatch) {
2217 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2218 SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE);
2219 return 0;
2220 }
2221 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2222 } else {
2223 salgs = NULL;
2224 }
2225 s->shared_sigalgs = salgs;
2226 s->shared_sigalgslen = nmatch;
2227 return 1;
2228 }
2229
2230 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2231 {
2232 unsigned int stmp;
2233 size_t size, i;
2234 uint16_t *buf;
2235
2236 size = PACKET_remaining(pkt);
2237
2238 /* Invalid data length */
2239 if (size == 0 || (size & 1) != 0)
2240 return 0;
2241
2242 size >>= 1;
2243
2244 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2245 SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE);
2246 return 0;
2247 }
2248 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2249 buf[i] = stmp;
2250
2251 if (i != size) {
2252 OPENSSL_free(buf);
2253 return 0;
2254 }
2255
2256 OPENSSL_free(*pdest);
2257 *pdest = buf;
2258 *pdestlen = size;
2259
2260 return 1;
2261 }
2262
2263 int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2264 {
2265 /* Extension ignored for inappropriate versions */
2266 if (!SSL_USE_SIGALGS(s))
2267 return 1;
2268 /* Should never happen */
2269 if (s->cert == NULL)
2270 return 0;
2271
2272 if (cert)
2273 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2274 &s->s3.tmp.peer_cert_sigalgslen);
2275 else
2276 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2277 &s->s3.tmp.peer_sigalgslen);
2278
2279 }
2280
2281 /* Set preferred digest for each key type */
2282
2283 int tls1_process_sigalgs(SSL *s)
2284 {
2285 size_t i;
2286 uint32_t *pvalid = s->s3.tmp.valid_flags;
2287
2288 if (!tls1_set_shared_sigalgs(s))
2289 return 0;
2290
2291 for (i = 0; i < SSL_PKEY_NUM; i++)
2292 pvalid[i] = 0;
2293
2294 for (i = 0; i < s->shared_sigalgslen; i++) {
2295 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2296 int idx = sigptr->sig_idx;
2297
2298 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2299 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2300 continue;
2301 /* If not disabled indicate we can explicitly sign */
2302 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
2303 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2304 }
2305 return 1;
2306 }
2307
2308 int SSL_get_sigalgs(SSL *s, int idx,
2309 int *psign, int *phash, int *psignhash,
2310 unsigned char *rsig, unsigned char *rhash)
2311 {
2312 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2313 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2314 if (psig == NULL || numsigalgs > INT_MAX)
2315 return 0;
2316 if (idx >= 0) {
2317 const SIGALG_LOOKUP *lu;
2318
2319 if (idx >= (int)numsigalgs)
2320 return 0;
2321 psig += idx;
2322 if (rhash != NULL)
2323 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2324 if (rsig != NULL)
2325 *rsig = (unsigned char)(*psig & 0xff);
2326 lu = tls1_lookup_sigalg(s, *psig);
2327 if (psign != NULL)
2328 *psign = lu != NULL ? lu->sig : NID_undef;
2329 if (phash != NULL)
2330 *phash = lu != NULL ? lu->hash : NID_undef;
2331 if (psignhash != NULL)
2332 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2333 }
2334 return (int)numsigalgs;
2335 }
2336
2337 int SSL_get_shared_sigalgs(SSL *s, int idx,
2338 int *psign, int *phash, int *psignhash,
2339 unsigned char *rsig, unsigned char *rhash)
2340 {
2341 const SIGALG_LOOKUP *shsigalgs;
2342 if (s->shared_sigalgs == NULL
2343 || idx < 0
2344 || idx >= (int)s->shared_sigalgslen
2345 || s->shared_sigalgslen > INT_MAX)
2346 return 0;
2347 shsigalgs = s->shared_sigalgs[idx];
2348 if (phash != NULL)
2349 *phash = shsigalgs->hash;
2350 if (psign != NULL)
2351 *psign = shsigalgs->sig;
2352 if (psignhash != NULL)
2353 *psignhash = shsigalgs->sigandhash;
2354 if (rsig != NULL)
2355 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2356 if (rhash != NULL)
2357 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2358 return (int)s->shared_sigalgslen;
2359 }
2360
2361 /* Maximum possible number of unique entries in sigalgs array */
2362 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2363
2364 typedef struct {
2365 size_t sigalgcnt;
2366 /* TLSEXT_SIGALG_XXX values */
2367 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2368 } sig_cb_st;
2369
2370 static void get_sigorhash(int *psig, int *phash, const char *str)
2371 {
2372 if (strcmp(str, "RSA") == 0) {
2373 *psig = EVP_PKEY_RSA;
2374 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2375 *psig = EVP_PKEY_RSA_PSS;
2376 } else if (strcmp(str, "DSA") == 0) {
2377 *psig = EVP_PKEY_DSA;
2378 } else if (strcmp(str, "ECDSA") == 0) {
2379 *psig = EVP_PKEY_EC;
2380 } else {
2381 *phash = OBJ_sn2nid(str);
2382 if (*phash == NID_undef)
2383 *phash = OBJ_ln2nid(str);
2384 }
2385 }
2386 /* Maximum length of a signature algorithm string component */
2387 #define TLS_MAX_SIGSTRING_LEN 40
2388
2389 static int sig_cb(const char *elem, int len, void *arg)
2390 {
2391 sig_cb_st *sarg = arg;
2392 size_t i;
2393 const SIGALG_LOOKUP *s;
2394 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2395 int sig_alg = NID_undef, hash_alg = NID_undef;
2396 if (elem == NULL)
2397 return 0;
2398 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2399 return 0;
2400 if (len > (int)(sizeof(etmp) - 1))
2401 return 0;
2402 memcpy(etmp, elem, len);
2403 etmp[len] = 0;
2404 p = strchr(etmp, '+');
2405 /*
2406 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2407 * if there's no '+' in the provided name, look for the new-style combined
2408 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2409 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2410 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2411 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2412 * in the table.
2413 */
2414 if (p == NULL) {
2415 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2416 i++, s++) {
2417 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2418 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2419 break;
2420 }
2421 }
2422 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2423 return 0;
2424 } else {
2425 *p = 0;
2426 p++;
2427 if (*p == 0)
2428 return 0;
2429 get_sigorhash(&sig_alg, &hash_alg, etmp);
2430 get_sigorhash(&sig_alg, &hash_alg, p);
2431 if (sig_alg == NID_undef || hash_alg == NID_undef)
2432 return 0;
2433 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2434 i++, s++) {
2435 if (s->hash == hash_alg && s->sig == sig_alg) {
2436 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2437 break;
2438 }
2439 }
2440 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2441 return 0;
2442 }
2443
2444 /* Reject duplicates */
2445 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2446 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2447 sarg->sigalgcnt--;
2448 return 0;
2449 }
2450 }
2451 return 1;
2452 }
2453
2454 /*
2455 * Set supported signature algorithms based on a colon separated list of the
2456 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2457 */
2458 int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2459 {
2460 sig_cb_st sig;
2461 sig.sigalgcnt = 0;
2462 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2463 return 0;
2464 if (c == NULL)
2465 return 1;
2466 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2467 }
2468
2469 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2470 int client)
2471 {
2472 uint16_t *sigalgs;
2473
2474 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2475 SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE);
2476 return 0;
2477 }
2478 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2479
2480 if (client) {
2481 OPENSSL_free(c->client_sigalgs);
2482 c->client_sigalgs = sigalgs;
2483 c->client_sigalgslen = salglen;
2484 } else {
2485 OPENSSL_free(c->conf_sigalgs);
2486 c->conf_sigalgs = sigalgs;
2487 c->conf_sigalgslen = salglen;
2488 }
2489
2490 return 1;
2491 }
2492
2493 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2494 {
2495 uint16_t *sigalgs, *sptr;
2496 size_t i;
2497
2498 if (salglen & 1)
2499 return 0;
2500 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2501 SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE);
2502 return 0;
2503 }
2504 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2505 size_t j;
2506 const SIGALG_LOOKUP *curr;
2507 int md_id = *psig_nids++;
2508 int sig_id = *psig_nids++;
2509
2510 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2511 j++, curr++) {
2512 if (curr->hash == md_id && curr->sig == sig_id) {
2513 *sptr++ = curr->sigalg;
2514 break;
2515 }
2516 }
2517
2518 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2519 goto err;
2520 }
2521
2522 if (client) {
2523 OPENSSL_free(c->client_sigalgs);
2524 c->client_sigalgs = sigalgs;
2525 c->client_sigalgslen = salglen / 2;
2526 } else {
2527 OPENSSL_free(c->conf_sigalgs);
2528 c->conf_sigalgs = sigalgs;
2529 c->conf_sigalgslen = salglen / 2;
2530 }
2531
2532 return 1;
2533
2534 err:
2535 OPENSSL_free(sigalgs);
2536 return 0;
2537 }
2538
2539 static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2540 {
2541 int sig_nid, use_pc_sigalgs = 0;
2542 size_t i;
2543 const SIGALG_LOOKUP *sigalg;
2544 size_t sigalgslen;
2545 if (default_nid == -1)
2546 return 1;
2547 sig_nid = X509_get_signature_nid(x);
2548 if (default_nid)
2549 return sig_nid == default_nid ? 1 : 0;
2550
2551 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2552 /*
2553 * If we're in TLSv1.3 then we only get here if we're checking the
2554 * chain. If the peer has specified peer_cert_sigalgs then we use them
2555 * otherwise we default to normal sigalgs.
2556 */
2557 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2558 use_pc_sigalgs = 1;
2559 } else {
2560 sigalgslen = s->shared_sigalgslen;
2561 }
2562 for (i = 0; i < sigalgslen; i++) {
2563 sigalg = use_pc_sigalgs
2564 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2565 : s->shared_sigalgs[i];
2566 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2567 return 1;
2568 }
2569 return 0;
2570 }
2571
2572 /* Check to see if a certificate issuer name matches list of CA names */
2573 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2574 {
2575 const X509_NAME *nm;
2576 int i;
2577 nm = X509_get_issuer_name(x);
2578 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2579 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2580 return 1;
2581 }
2582 return 0;
2583 }
2584
2585 /*
2586 * Check certificate chain is consistent with TLS extensions and is usable by
2587 * server. This servers two purposes: it allows users to check chains before
2588 * passing them to the server and it allows the server to check chains before
2589 * attempting to use them.
2590 */
2591
2592 /* Flags which need to be set for a certificate when strict mode not set */
2593
2594 #define CERT_PKEY_VALID_FLAGS \
2595 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2596 /* Strict mode flags */
2597 #define CERT_PKEY_STRICT_FLAGS \
2598 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2599 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2600
2601 int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2602 int idx)
2603 {
2604 int i;
2605 int rv = 0;
2606 int check_flags = 0, strict_mode;
2607 CERT_PKEY *cpk = NULL;
2608 CERT *c = s->cert;
2609 uint32_t *pvalid;
2610 unsigned int suiteb_flags = tls1_suiteb(s);
2611 /* idx == -1 means checking server chains */
2612 if (idx != -1) {
2613 /* idx == -2 means checking client certificate chains */
2614 if (idx == -2) {
2615 cpk = c->key;
2616 idx = (int)(cpk - c->pkeys);
2617 } else
2618 cpk = c->pkeys + idx;
2619 pvalid = s->s3.tmp.valid_flags + idx;
2620 x = cpk->x509;
2621 pk = cpk->privatekey;
2622 chain = cpk->chain;
2623 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2624 /* If no cert or key, forget it */
2625 if (!x || !pk)
2626 goto end;
2627 } else {
2628 size_t certidx;
2629
2630 if (!x || !pk)
2631 return 0;
2632
2633 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2634 return 0;
2635 idx = certidx;
2636 pvalid = s->s3.tmp.valid_flags + idx;
2637
2638 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2639 check_flags = CERT_PKEY_STRICT_FLAGS;
2640 else
2641 check_flags = CERT_PKEY_VALID_FLAGS;
2642 strict_mode = 1;
2643 }
2644
2645 if (suiteb_flags) {
2646 int ok;
2647 if (check_flags)
2648 check_flags |= CERT_PKEY_SUITEB;
2649 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2650 if (ok == X509_V_OK)
2651 rv |= CERT_PKEY_SUITEB;
2652 else if (!check_flags)
2653 goto end;
2654 }
2655
2656 /*
2657 * Check all signature algorithms are consistent with signature
2658 * algorithms extension if TLS 1.2 or later and strict mode.
2659 */
2660 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2661 int default_nid;
2662 int rsign = 0;
2663 if (s->s3.tmp.peer_cert_sigalgs != NULL
2664 || s->s3.tmp.peer_sigalgs != NULL) {
2665 default_nid = 0;
2666 /* If no sigalgs extension use defaults from RFC5246 */
2667 } else {
2668 switch (idx) {
2669 case SSL_PKEY_RSA:
2670 rsign = EVP_PKEY_RSA;
2671 default_nid = NID_sha1WithRSAEncryption;
2672 break;
2673
2674 case SSL_PKEY_DSA_SIGN:
2675 rsign = EVP_PKEY_DSA;
2676 default_nid = NID_dsaWithSHA1;
2677 break;
2678
2679 case SSL_PKEY_ECC:
2680 rsign = EVP_PKEY_EC;
2681 default_nid = NID_ecdsa_with_SHA1;
2682 break;
2683
2684 case SSL_PKEY_GOST01:
2685 rsign = NID_id_GostR3410_2001;
2686 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2687 break;
2688
2689 case SSL_PKEY_GOST12_256:
2690 rsign = NID_id_GostR3410_2012_256;
2691 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2692 break;
2693
2694 case SSL_PKEY_GOST12_512:
2695 rsign = NID_id_GostR3410_2012_512;
2696 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2697 break;
2698
2699 default:
2700 default_nid = -1;
2701 break;
2702 }
2703 }
2704 /*
2705 * If peer sent no signature algorithms extension and we have set
2706 * preferred signature algorithms check we support sha1.
2707 */
2708 if (default_nid > 0 && c->conf_sigalgs) {
2709 size_t j;
2710 const uint16_t *p = c->conf_sigalgs;
2711 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2712 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2713
2714 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2715 break;
2716 }
2717 if (j == c->conf_sigalgslen) {
2718 if (check_flags)
2719 goto skip_sigs;
2720 else
2721 goto end;
2722 }
2723 }
2724 /* Check signature algorithm of each cert in chain */
2725 if (SSL_IS_TLS13(s)) {
2726 /*
2727 * We only get here if the application has called SSL_check_chain(),
2728 * so check_flags is always set.
2729 */
2730 if (find_sig_alg(s, x, pk) != NULL)
2731 rv |= CERT_PKEY_EE_SIGNATURE;
2732 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2733 if (!check_flags)
2734 goto end;
2735 } else
2736 rv |= CERT_PKEY_EE_SIGNATURE;
2737 rv |= CERT_PKEY_CA_SIGNATURE;
2738 for (i = 0; i < sk_X509_num(chain); i++) {
2739 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2740 if (check_flags) {
2741 rv &= ~CERT_PKEY_CA_SIGNATURE;
2742 break;
2743 } else
2744 goto end;
2745 }
2746 }
2747 }
2748 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2749 else if (check_flags)
2750 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2751 skip_sigs:
2752 /* Check cert parameters are consistent */
2753 if (tls1_check_cert_param(s, x, 1))
2754 rv |= CERT_PKEY_EE_PARAM;
2755 else if (!check_flags)
2756 goto end;
2757 if (!s->server)
2758 rv |= CERT_PKEY_CA_PARAM;
2759 /* In strict mode check rest of chain too */
2760 else if (strict_mode) {
2761 rv |= CERT_PKEY_CA_PARAM;
2762 for (i = 0; i < sk_X509_num(chain); i++) {
2763 X509 *ca = sk_X509_value(chain, i);
2764 if (!tls1_check_cert_param(s, ca, 0)) {
2765 if (check_flags) {
2766 rv &= ~CERT_PKEY_CA_PARAM;
2767 break;
2768 } else
2769 goto end;
2770 }
2771 }
2772 }
2773 if (!s->server && strict_mode) {
2774 STACK_OF(X509_NAME) *ca_dn;
2775 int check_type = 0;
2776
2777 if (EVP_PKEY_is_a(pk, "RSA"))
2778 check_type = TLS_CT_RSA_SIGN;
2779 else if (EVP_PKEY_is_a(pk, "DSA"))
2780 check_type = TLS_CT_DSS_SIGN;
2781 else if (EVP_PKEY_is_a(pk, "EC"))
2782 check_type = TLS_CT_ECDSA_SIGN;
2783
2784 if (check_type) {
2785 const uint8_t *ctypes = s->s3.tmp.ctype;
2786 size_t j;
2787
2788 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2789 if (*ctypes == check_type) {
2790 rv |= CERT_PKEY_CERT_TYPE;
2791 break;
2792 }
2793 }
2794 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2795 goto end;
2796 } else {
2797 rv |= CERT_PKEY_CERT_TYPE;
2798 }
2799
2800 ca_dn = s->s3.tmp.peer_ca_names;
2801
2802 if (!sk_X509_NAME_num(ca_dn))
2803 rv |= CERT_PKEY_ISSUER_NAME;
2804
2805 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2806 if (ssl_check_ca_name(ca_dn, x))
2807 rv |= CERT_PKEY_ISSUER_NAME;
2808 }
2809 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2810 for (i = 0; i < sk_X509_num(chain); i++) {
2811 X509 *xtmp = sk_X509_value(chain, i);
2812 if (ssl_check_ca_name(ca_dn, xtmp)) {
2813 rv |= CERT_PKEY_ISSUER_NAME;
2814 break;
2815 }
2816 }
2817 }
2818 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2819 goto end;
2820 } else
2821 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2822
2823 if (!check_flags || (rv & check_flags) == check_flags)
2824 rv |= CERT_PKEY_VALID;
2825
2826 end:
2827
2828 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2829 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2830 else
2831 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2832
2833 /*
2834 * When checking a CERT_PKEY structure all flags are irrelevant if the
2835 * chain is invalid.
2836 */
2837 if (!check_flags) {
2838 if (rv & CERT_PKEY_VALID) {
2839 *pvalid = rv;
2840 } else {
2841 /* Preserve sign and explicit sign flag, clear rest */
2842 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2843 return 0;
2844 }
2845 }
2846 return rv;
2847 }
2848
2849 /* Set validity of certificates in an SSL structure */
2850 void tls1_set_cert_validity(SSL *s)
2851 {
2852 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2853 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2854 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2855 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2856 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2857 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2858 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2859 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2860 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2861 }
2862
2863 /* User level utility function to check a chain is suitable */
2864 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2865 {
2866 return tls1_check_chain(s, x, pk, chain, -1);
2867 }
2868
2869 #ifndef OPENSSL_NO_DH
2870 DH *ssl_get_auto_dh(SSL *s)
2871 {
2872 DH *dhp;
2873 BIGNUM *p, *g;
2874 int dh_secbits = 80;
2875 if (s->cert->dh_tmp_auto != 2) {
2876 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2877 if (s->s3.tmp.new_cipher->strength_bits == 256)
2878 dh_secbits = 128;
2879 else
2880 dh_secbits = 80;
2881 } else {
2882 if (s->s3.tmp.cert == NULL)
2883 return NULL;
2884 dh_secbits = EVP_PKEY_security_bits(s->s3.tmp.cert->privatekey);
2885 }
2886 }
2887
2888 dhp = DH_new();
2889 if (dhp == NULL)
2890 return NULL;
2891 g = BN_new();
2892 if (g == NULL || !BN_set_word(g, 2)) {
2893 DH_free(dhp);
2894 BN_free(g);
2895 return NULL;
2896 }
2897 if (dh_secbits >= 192)
2898 p = BN_get_rfc3526_prime_8192(NULL);
2899 else if (dh_secbits >= 152)
2900 p = BN_get_rfc3526_prime_4096(NULL);
2901 else if (dh_secbits >= 128)
2902 p = BN_get_rfc3526_prime_3072(NULL);
2903 else if (dh_secbits >= 112)
2904 p = BN_get_rfc3526_prime_2048(NULL);
2905 else
2906 p = BN_get_rfc2409_prime_1024(NULL);
2907 if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
2908 DH_free(dhp);
2909 BN_free(p);
2910 BN_free(g);
2911 return NULL;
2912 }
2913 return dhp;
2914 }
2915 #endif
2916
2917 static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2918 {
2919 int secbits = -1;
2920 EVP_PKEY *pkey = X509_get0_pubkey(x);
2921 if (pkey) {
2922 /*
2923 * If no parameters this will return -1 and fail using the default
2924 * security callback for any non-zero security level. This will
2925 * reject keys which omit parameters but this only affects DSA and
2926 * omission of parameters is never (?) done in practice.
2927 */
2928 secbits = EVP_PKEY_security_bits(pkey);
2929 }
2930 if (s)
2931 return ssl_security(s, op, secbits, 0, x);
2932 else
2933 return ssl_ctx_security(ctx, op, secbits, 0, x);
2934 }
2935
2936 static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2937 {
2938 /* Lookup signature algorithm digest */
2939 int secbits, nid, pknid;
2940 /* Don't check signature if self signed */
2941 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2942 return 1;
2943 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2944 secbits = -1;
2945 /* If digest NID not defined use signature NID */
2946 if (nid == NID_undef)
2947 nid = pknid;
2948 if (s)
2949 return ssl_security(s, op, secbits, nid, x);
2950 else
2951 return ssl_ctx_security(ctx, op, secbits, nid, x);
2952 }
2953
2954 int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2955 {
2956 if (vfy)
2957 vfy = SSL_SECOP_PEER;
2958 if (is_ee) {
2959 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2960 return SSL_R_EE_KEY_TOO_SMALL;
2961 } else {
2962 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2963 return SSL_R_CA_KEY_TOO_SMALL;
2964 }
2965 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2966 return SSL_R_CA_MD_TOO_WEAK;
2967 return 1;
2968 }
2969
2970 /*
2971 * Check security of a chain, if |sk| includes the end entity certificate then
2972 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
2973 * one to the peer. Return values: 1 if ok otherwise error code to use
2974 */
2975
2976 int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
2977 {
2978 int rv, start_idx, i;
2979 if (x == NULL) {
2980 x = sk_X509_value(sk, 0);
2981 start_idx = 1;
2982 } else
2983 start_idx = 0;
2984
2985 rv = ssl_security_cert(s, NULL, x, vfy, 1);
2986 if (rv != 1)
2987 return rv;
2988
2989 for (i = start_idx; i < sk_X509_num(sk); i++) {
2990 x = sk_X509_value(sk, i);
2991 rv = ssl_security_cert(s, NULL, x, vfy, 0);
2992 if (rv != 1)
2993 return rv;
2994 }
2995 return 1;
2996 }
2997
2998 /*
2999 * For TLS 1.2 servers check if we have a certificate which can be used
3000 * with the signature algorithm "lu" and return index of certificate.
3001 */
3002
3003 static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3004 {
3005 int sig_idx = lu->sig_idx;
3006 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3007
3008 /* If not recognised or not supported by cipher mask it is not suitable */
3009 if (clu == NULL
3010 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3011 || (clu->nid == EVP_PKEY_RSA_PSS
3012 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3013 return -1;
3014
3015 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3016 }
3017
3018 /*
3019 * Checks the given cert against signature_algorithm_cert restrictions sent by
3020 * the peer (if any) as well as whether the hash from the sigalg is usable with
3021 * the key.
3022 * Returns true if the cert is usable and false otherwise.
3023 */
3024 static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3025 EVP_PKEY *pkey)
3026 {
3027 const SIGALG_LOOKUP *lu;
3028 int mdnid, pknid, supported;
3029 size_t i;
3030
3031 /*
3032 * If the given EVP_PKEY cannot supporting signing with this sigalg,
3033 * the answer is simply 'no'.
3034 */
3035 ERR_set_mark();
3036 supported = EVP_PKEY_supports_digest_nid(pkey, sig->hash);
3037 ERR_pop_to_mark();
3038 if (supported == 0)
3039 return 0;
3040
3041 /*
3042 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3043 * on the sigalg with which the certificate was signed (by its issuer).
3044 */
3045 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3046 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3047 return 0;
3048 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3049 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3050 if (lu == NULL)
3051 continue;
3052
3053 /*
3054 * TODO this does not differentiate between the
3055 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3056 * have a chain here that lets us look at the key OID in the
3057 * signing certificate.
3058 */
3059 if (mdnid == lu->hash && pknid == lu->sig)
3060 return 1;
3061 }
3062 return 0;
3063 }
3064
3065 /*
3066 * Without signat_algorithms_cert, any certificate for which we have
3067 * a viable public key is permitted.
3068 */
3069 return 1;
3070 }
3071
3072 /*
3073 * Returns true if |s| has a usable certificate configured for use
3074 * with signature scheme |sig|.
3075 * "Usable" includes a check for presence as well as applying
3076 * the signature_algorithm_cert restrictions sent by the peer (if any).
3077 * Returns false if no usable certificate is found.
3078 */
3079 static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3080 {
3081 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3082 if (idx == -1)
3083 idx = sig->sig_idx;
3084 if (!ssl_has_cert(s, idx))
3085 return 0;
3086
3087 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3088 s->cert->pkeys[idx].privatekey);
3089 }
3090
3091 /*
3092 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3093 * specified signature scheme |sig|, or false otherwise.
3094 */
3095 static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3096 EVP_PKEY *pkey)
3097 {
3098 size_t idx;
3099
3100 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3101 return 0;
3102
3103 /* Check the key is consistent with the sig alg */
3104 if ((int)idx != sig->sig_idx)
3105 return 0;
3106
3107 return check_cert_usable(s, sig, x, pkey);
3108 }
3109
3110 /*
3111 * Find a signature scheme that works with the supplied certificate |x| and key
3112 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3113 * available certs/keys to find one that works.
3114 */
3115 static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3116 {
3117 const SIGALG_LOOKUP *lu = NULL;
3118 size_t i;
3119 #ifndef OPENSSL_NO_EC
3120 int curve = -1;
3121 #endif
3122 EVP_PKEY *tmppkey;
3123
3124 /* Look for a shared sigalgs matching possible certificates */
3125 for (i = 0; i < s->shared_sigalgslen; i++) {
3126 lu = s->shared_sigalgs[i];
3127
3128 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3129 if (lu->hash == NID_sha1
3130 || lu->hash == NID_sha224
3131 || lu->sig == EVP_PKEY_DSA
3132 || lu->sig == EVP_PKEY_RSA)
3133 continue;
3134 /* Check that we have a cert, and signature_algorithms_cert */
3135 if (!tls1_lookup_md(s->ctx, lu, NULL))
3136 continue;
3137 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3138 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3139 continue;
3140
3141 tmppkey = (pkey != NULL) ? pkey
3142 : s->cert->pkeys[lu->sig_idx].privatekey;
3143
3144 if (lu->sig == EVP_PKEY_EC) {
3145 #ifndef OPENSSL_NO_EC
3146 if (curve == -1)
3147 curve = evp_pkey_get_EC_KEY_curve_nid(tmppkey);
3148 if (lu->curve != NID_undef && curve != lu->curve)
3149 continue;
3150 #else
3151 continue;
3152 #endif
3153 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3154 /* validate that key is large enough for the signature algorithm */
3155 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3156 continue;
3157 }
3158 break;
3159 }
3160
3161 if (i == s->shared_sigalgslen)
3162 return NULL;
3163
3164 return lu;
3165 }
3166
3167 /*
3168 * Choose an appropriate signature algorithm based on available certificates
3169 * Sets chosen certificate and signature algorithm.
3170 *
3171 * For servers if we fail to find a required certificate it is a fatal error,
3172 * an appropriate error code is set and a TLS alert is sent.
3173 *
3174 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3175 * a fatal error: we will either try another certificate or not present one
3176 * to the server. In this case no error is set.
3177 */
3178 int tls_choose_sigalg(SSL *s, int fatalerrs)
3179 {
3180 const SIGALG_LOOKUP *lu = NULL;
3181 int sig_idx = -1;
3182
3183 s->s3.tmp.cert = NULL;
3184 s->s3.tmp.sigalg = NULL;
3185
3186 if (SSL_IS_TLS13(s)) {
3187 lu = find_sig_alg(s, NULL, NULL);
3188 if (lu == NULL) {
3189 if (!fatalerrs)
3190 return 1;
3191 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG,
3192 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3193 return 0;
3194 }
3195 } else {
3196 /* If ciphersuite doesn't require a cert nothing to do */
3197 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3198 return 1;
3199 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3200 return 1;
3201
3202 if (SSL_USE_SIGALGS(s)) {
3203 size_t i;
3204 if (s->s3.tmp.peer_sigalgs != NULL) {
3205 #ifndef OPENSSL_NO_EC
3206 int curve = -1;
3207
3208 /* For Suite B need to match signature algorithm to curve */
3209 if (tls1_suiteb(s))
3210 curve =
3211 evp_pkey_get_EC_KEY_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3212 .privatekey);
3213 #endif
3214
3215 /*
3216 * Find highest preference signature algorithm matching
3217 * cert type
3218 */
3219 for (i = 0; i < s->shared_sigalgslen; i++) {
3220 lu = s->shared_sigalgs[i];
3221
3222 if (s->server) {
3223 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3224 continue;
3225 } else {
3226 int cc_idx = s->cert->key - s->cert->pkeys;
3227
3228 sig_idx = lu->sig_idx;
3229 if (cc_idx != sig_idx)
3230 continue;
3231 }
3232 /* Check that we have a cert, and sig_algs_cert */
3233 if (!has_usable_cert(s, lu, sig_idx))
3234 continue;
3235 if (lu->sig == EVP_PKEY_RSA_PSS) {
3236 /* validate that key is large enough for the signature algorithm */
3237 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3238
3239 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3240 continue;
3241 }
3242 #ifndef OPENSSL_NO_EC
3243 if (curve == -1 || lu->curve == curve)
3244 #endif
3245 break;
3246 }
3247 #ifndef OPENSSL_NO_GOST
3248 /*
3249 * Some Windows-based implementations do not send GOST algorithms indication
3250 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3251 * we have to assume GOST support.
3252 */
3253 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3254 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3255 if (!fatalerrs)
3256 return 1;
3257 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3258 SSL_F_TLS_CHOOSE_SIGALG,
3259 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3260 return 0;
3261 } else {
3262 i = 0;
3263 sig_idx = lu->sig_idx;
3264 }
3265 }
3266 #endif
3267 if (i == s->shared_sigalgslen) {
3268 if (!fatalerrs)
3269 return 1;
3270 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3271 SSL_F_TLS_CHOOSE_SIGALG,
3272 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3273 return 0;
3274 }
3275 } else {
3276 /*
3277 * If we have no sigalg use defaults
3278 */
3279 const uint16_t *sent_sigs;
3280 size_t sent_sigslen;
3281
3282 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3283 if (!fatalerrs)
3284 return 1;
3285 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3286 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3287 return 0;
3288 }
3289
3290 /* Check signature matches a type we sent */
3291 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3292 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3293 if (lu->sigalg == *sent_sigs
3294 && has_usable_cert(s, lu, lu->sig_idx))
3295 break;
3296 }
3297 if (i == sent_sigslen) {
3298 if (!fatalerrs)
3299 return 1;
3300 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
3301 SSL_F_TLS_CHOOSE_SIGALG,
3302 SSL_R_WRONG_SIGNATURE_TYPE);
3303 return 0;
3304 }
3305 }
3306 } else {
3307 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3308 if (!fatalerrs)
3309 return 1;
3310 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG,
3311 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3312 return 0;
3313 }
3314 }
3315 }
3316 if (sig_idx == -1)
3317 sig_idx = lu->sig_idx;
3318 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3319 s->cert->key = s->s3.tmp.cert;
3320 s->s3.tmp.sigalg = lu;
3321 return 1;
3322 }
3323
3324 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3325 {
3326 if (mode != TLSEXT_max_fragment_length_DISABLED
3327 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3328 SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3329 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3330 return 0;
3331 }
3332
3333 ctx->ext.max_fragment_len_mode = mode;
3334 return 1;
3335 }
3336
3337 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3338 {
3339 if (mode != TLSEXT_max_fragment_length_DISABLED
3340 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3341 SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH,
3342 SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3343 return 0;
3344 }
3345
3346 ssl->ext.max_fragment_len_mode = mode;
3347 return 1;
3348 }
3349
3350 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3351 {
3352 return session->ext.max_fragment_len_mode;
3353 }
3354
3355 /*
3356 * Helper functions for HMAC access with legacy support included.
3357 */
3358 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3359 {
3360 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3361 EVP_MAC *mac = NULL;
3362
3363 if (ret == NULL)
3364 return NULL;
3365 #ifndef OPENSSL_NO_DEPRECATED_3_0
3366 if (ctx->ext.ticket_key_evp_cb == NULL
3367 && ctx->ext.ticket_key_cb != NULL) {
3368 ret->old_ctx = HMAC_CTX_new();
3369 if (ret->old_ctx == NULL)
3370 goto err;
3371 return ret;
3372 }
3373 #endif
3374 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", NULL);
3375 if (mac == NULL || (ret->ctx = EVP_MAC_new_ctx(mac)) == NULL)
3376 goto err;
3377 EVP_MAC_free(mac);
3378 return ret;
3379 err:
3380 EVP_MAC_free_ctx(ret->ctx);
3381 EVP_MAC_free(mac);
3382 OPENSSL_free(ret);
3383 return NULL;
3384 }
3385
3386 void ssl_hmac_free(SSL_HMAC *ctx)
3387 {
3388 if (ctx != NULL) {
3389 EVP_MAC_free_ctx(ctx->ctx);
3390 #ifndef OPENSSL_NO_DEPRECATED_3_0
3391 HMAC_CTX_free(ctx->old_ctx);
3392 #endif
3393 OPENSSL_free(ctx);
3394 }
3395 }
3396
3397 #ifndef OPENSSL_NO_DEPRECATED_3_0
3398 HMAC_CTX *ssl_hmac_get0_HMAC_CTX(SSL_HMAC *ctx)
3399 {
3400 return ctx->old_ctx;
3401 }
3402 #endif
3403
3404 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3405 {
3406 return ctx->ctx;
3407 }
3408
3409 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3410 {
3411 OSSL_PARAM params[3], *p = params;
3412
3413 if (ctx->ctx != NULL) {
3414 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3415 *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_KEY, key, len);
3416 *p = OSSL_PARAM_construct_end();
3417 if (EVP_MAC_set_ctx_params(ctx->ctx, params) && EVP_MAC_init(ctx->ctx))
3418 return 1;
3419 }
3420 #ifndef OPENSSL_NO_DEPRECATED_3_0
3421 if (ctx->old_ctx != NULL)
3422 return HMAC_Init_ex(ctx->old_ctx, key, len,
3423 EVP_get_digestbyname(md), NULL);
3424 #endif
3425 return 0;
3426 }
3427
3428 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3429 {
3430 if (ctx->ctx != NULL)
3431 return EVP_MAC_update(ctx->ctx, data, len);
3432 #ifndef OPENSSL_NO_DEPRECATED_3_0
3433 if (ctx->old_ctx != NULL)
3434 return HMAC_Update(ctx->old_ctx, data, len);
3435 #endif
3436 return 0;
3437 }
3438
3439 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3440 size_t max_size)
3441 {
3442 if (ctx->ctx != NULL)
3443 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3444 #ifndef OPENSSL_NO_DEPRECATED_3_0
3445 if (ctx->old_ctx != NULL) {
3446 unsigned int l;
3447
3448 if (HMAC_Final(ctx->old_ctx, md, &l) > 0) {
3449 if (len != NULL)
3450 *len = l;
3451 return 1;
3452 }
3453 }
3454 #endif
3455 return 0;
3456 }
3457
3458 size_t ssl_hmac_size(const SSL_HMAC *ctx)
3459 {
3460 if (ctx->ctx != NULL)
3461 return EVP_MAC_size(ctx->ctx);
3462 #ifndef OPENSSL_NO_DEPRECATED_3_0
3463 if (ctx->old_ctx != NULL)
3464 return HMAC_size(ctx->old_ctx);
3465 #endif
3466 return 0;
3467 }
3468