]> git.ipfire.org Git - thirdparty/openssl.git/blob - ssl/t1_lib.c
1f873ed8ca1b710c0de7aa743065e5f6dcc488e1
[thirdparty/openssl.git] / ssl / t1_lib.c
1 /*
2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <ctype.h>
13 #include <openssl/objects.h>
14 #include <openssl/evp.h>
15 #include <openssl/hmac.h>
16 #include <openssl/core_names.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/conf.h>
19 #include <openssl/x509v3.h>
20 #include <openssl/dh.h>
21 #include <openssl/bn.h>
22 #include <openssl/provider.h>
23 #include <openssl/param_build.h>
24 #include "internal/nelem.h"
25 #include "internal/sizes.h"
26 #include "internal/tlsgroups.h"
27 #include "internal/ssl_unwrap.h"
28 #include "ssl_local.h"
29 #include "quic/quic_local.h"
30 #include <openssl/ct.h>
31
32 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35 SSL3_ENC_METHOD const TLSv1_enc_data = {
36 tls1_setup_key_block,
37 tls1_generate_master_secret,
38 tls1_change_cipher_state,
39 tls1_final_finish_mac,
40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42 tls1_alert_code,
43 tls1_export_keying_material,
44 0,
45 ssl3_set_handshake_header,
46 tls_close_construct_packet,
47 ssl3_handshake_write
48 };
49
50 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 0,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_setup_key_block,
67 tls1_generate_master_secret,
68 tls1_change_cipher_state,
69 tls1_final_finish_mac,
70 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72 tls1_alert_code,
73 tls1_export_keying_material,
74 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76 ssl3_set_handshake_header,
77 tls_close_construct_packet,
78 ssl3_handshake_write
79 };
80
81 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82 tls13_setup_key_block,
83 tls13_generate_master_secret,
84 tls13_change_cipher_state,
85 tls13_final_finish_mac,
86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88 tls13_alert_code,
89 tls13_export_keying_material,
90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91 ssl3_set_handshake_header,
92 tls_close_construct_packet,
93 ssl3_handshake_write
94 };
95
96 OSSL_TIME tls1_default_timeout(void)
97 {
98 /*
99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100 * http, the cache would over fill
101 */
102 return ossl_seconds2time(60 * 60 * 2);
103 }
104
105 int tls1_new(SSL *s)
106 {
107 if (!ssl3_new(s))
108 return 0;
109 if (!s->method->ssl_clear(s))
110 return 0;
111
112 return 1;
113 }
114
115 void tls1_free(SSL *s)
116 {
117 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119 if (sc == NULL)
120 return;
121
122 OPENSSL_free(sc->ext.session_ticket);
123 ssl3_free(s);
124 }
125
126 int tls1_clear(SSL *s)
127 {
128 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130 if (sc == NULL)
131 return 0;
132
133 if (!ssl3_clear(s))
134 return 0;
135
136 if (s->method->version == TLS_ANY_VERSION)
137 sc->version = TLS_MAX_VERSION_INTERNAL;
138 else
139 sc->version = s->method->version;
140
141 return 1;
142 }
143
144 /* Legacy NID to group_id mapping. Only works for groups we know about */
145 static const struct {
146 int nid;
147 uint16_t group_id;
148 } nid_to_group[] = {
149 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194 };
195
196 static const unsigned char ecformats_default[] = {
197 TLSEXT_ECPOINTFORMAT_uncompressed
198 };
199
200 static const unsigned char ecformats_all[] = {
201 TLSEXT_ECPOINTFORMAT_uncompressed,
202 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
203 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
204 };
205
206 /* Group list string of the built-in pseudo group DEFAULT */
207 #define DEFAULT_GROUP_NAME "DEFAULT"
208 #define TLS_DEFAULT_GROUP_LIST \
209 "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
210
211 static const uint16_t suiteb_curves[] = {
212 OSSL_TLS_GROUP_ID_secp256r1,
213 OSSL_TLS_GROUP_ID_secp384r1,
214 };
215
216 /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
217 #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
218 #define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
219
220 struct provider_ctx_data_st {
221 SSL_CTX *ctx;
222 OSSL_PROVIDER *provider;
223 };
224
225 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
226 static OSSL_CALLBACK add_provider_groups;
227 static int add_provider_groups(const OSSL_PARAM params[], void *data)
228 {
229 struct provider_ctx_data_st *pgd = data;
230 SSL_CTX *ctx = pgd->ctx;
231 const OSSL_PARAM *p;
232 TLS_GROUP_INFO *ginf = NULL;
233 EVP_KEYMGMT *keymgmt;
234 unsigned int gid;
235 unsigned int is_kem = 0;
236 int ret = 0;
237
238 if (ctx->group_list_max_len == ctx->group_list_len) {
239 TLS_GROUP_INFO *tmp = NULL;
240
241 if (ctx->group_list_max_len == 0)
242 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
243 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
244 else
245 tmp = OPENSSL_realloc(ctx->group_list,
246 (ctx->group_list_max_len
247 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
248 * sizeof(TLS_GROUP_INFO));
249 if (tmp == NULL)
250 return 0;
251 ctx->group_list = tmp;
252 memset(tmp + ctx->group_list_max_len,
253 0,
254 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
255 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
256 }
257
258 ginf = &ctx->group_list[ctx->group_list_len];
259
260 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
261 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
262 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
263 goto err;
264 }
265 ginf->tlsname = OPENSSL_strdup(p->data);
266 if (ginf->tlsname == NULL)
267 goto err;
268
269 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
270 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
271 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
272 goto err;
273 }
274 ginf->realname = OPENSSL_strdup(p->data);
275 if (ginf->realname == NULL)
276 goto err;
277
278 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
279 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
280 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
281 goto err;
282 }
283 ginf->group_id = (uint16_t)gid;
284
285 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
286 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
287 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
288 goto err;
289 }
290 ginf->algorithm = OPENSSL_strdup(p->data);
291 if (ginf->algorithm == NULL)
292 goto err;
293
294 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
295 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
296 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
297 goto err;
298 }
299
300 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
301 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
302 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
303 goto err;
304 }
305 ginf->is_kem = 1 & is_kem;
306
307 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
308 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
309 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
310 goto err;
311 }
312
313 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
314 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
315 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
316 goto err;
317 }
318
319 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
320 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
321 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
322 goto err;
323 }
324
325 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
326 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
327 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
328 goto err;
329 }
330 /*
331 * Now check that the algorithm is actually usable for our property query
332 * string. Regardless of the result we still return success because we have
333 * successfully processed this group, even though we may decide not to use
334 * it.
335 */
336 ret = 1;
337 ERR_set_mark();
338 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
339 if (keymgmt != NULL) {
340 /* We have successfully fetched the algorithm, we can use the group. */
341 ctx->group_list_len++;
342 ginf = NULL;
343 EVP_KEYMGMT_free(keymgmt);
344 }
345 ERR_pop_to_mark();
346 err:
347 if (ginf != NULL) {
348 OPENSSL_free(ginf->tlsname);
349 OPENSSL_free(ginf->realname);
350 OPENSSL_free(ginf->algorithm);
351 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
352 }
353 return ret;
354 }
355
356 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
357 {
358 struct provider_ctx_data_st pgd;
359
360 pgd.ctx = vctx;
361 pgd.provider = provider;
362 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
363 add_provider_groups, &pgd);
364 }
365
366 int ssl_load_groups(SSL_CTX *ctx)
367 {
368 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
369 return 0;
370
371 return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
372 }
373
374 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
375 static OSSL_CALLBACK add_provider_sigalgs;
376 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
377 {
378 struct provider_ctx_data_st *pgd = data;
379 SSL_CTX *ctx = pgd->ctx;
380 OSSL_PROVIDER *provider = pgd->provider;
381 const OSSL_PARAM *p;
382 TLS_SIGALG_INFO *sinf = NULL;
383 EVP_KEYMGMT *keymgmt;
384 const char *keytype;
385 unsigned int code_point = 0;
386 int ret = 0;
387
388 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
389 TLS_SIGALG_INFO *tmp = NULL;
390
391 if (ctx->sigalg_list_max_len == 0)
392 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
393 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
394 else
395 tmp = OPENSSL_realloc(ctx->sigalg_list,
396 (ctx->sigalg_list_max_len
397 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
398 * sizeof(TLS_SIGALG_INFO));
399 if (tmp == NULL)
400 return 0;
401 ctx->sigalg_list = tmp;
402 memset(tmp + ctx->sigalg_list_max_len, 0,
403 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
404 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
405 }
406
407 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
408
409 /* First, mandatory parameters */
410 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
411 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
412 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
413 goto err;
414 }
415 OPENSSL_free(sinf->sigalg_name);
416 sinf->sigalg_name = OPENSSL_strdup(p->data);
417 if (sinf->sigalg_name == NULL)
418 goto err;
419
420 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
421 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
422 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
423 goto err;
424 }
425 OPENSSL_free(sinf->name);
426 sinf->name = OPENSSL_strdup(p->data);
427 if (sinf->name == NULL)
428 goto err;
429
430 p = OSSL_PARAM_locate_const(params,
431 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
432 if (p == NULL
433 || !OSSL_PARAM_get_uint(p, &code_point)
434 || code_point > UINT16_MAX) {
435 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
436 goto err;
437 }
438 sinf->code_point = (uint16_t)code_point;
439
440 p = OSSL_PARAM_locate_const(params,
441 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
442 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
443 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
444 goto err;
445 }
446
447 /* Now, optional parameters */
448 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
449 if (p == NULL) {
450 sinf->sigalg_oid = NULL;
451 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
452 goto err;
453 } else {
454 OPENSSL_free(sinf->sigalg_oid);
455 sinf->sigalg_oid = OPENSSL_strdup(p->data);
456 if (sinf->sigalg_oid == NULL)
457 goto err;
458 }
459
460 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
461 if (p == NULL) {
462 sinf->sig_name = NULL;
463 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
464 goto err;
465 } else {
466 OPENSSL_free(sinf->sig_name);
467 sinf->sig_name = OPENSSL_strdup(p->data);
468 if (sinf->sig_name == NULL)
469 goto err;
470 }
471
472 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
473 if (p == NULL) {
474 sinf->sig_oid = NULL;
475 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
476 goto err;
477 } else {
478 OPENSSL_free(sinf->sig_oid);
479 sinf->sig_oid = OPENSSL_strdup(p->data);
480 if (sinf->sig_oid == NULL)
481 goto err;
482 }
483
484 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
485 if (p == NULL) {
486 sinf->hash_name = NULL;
487 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
488 goto err;
489 } else {
490 OPENSSL_free(sinf->hash_name);
491 sinf->hash_name = OPENSSL_strdup(p->data);
492 if (sinf->hash_name == NULL)
493 goto err;
494 }
495
496 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
497 if (p == NULL) {
498 sinf->hash_oid = NULL;
499 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
500 goto err;
501 } else {
502 OPENSSL_free(sinf->hash_oid);
503 sinf->hash_oid = OPENSSL_strdup(p->data);
504 if (sinf->hash_oid == NULL)
505 goto err;
506 }
507
508 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
509 if (p == NULL) {
510 sinf->keytype = NULL;
511 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
512 goto err;
513 } else {
514 OPENSSL_free(sinf->keytype);
515 sinf->keytype = OPENSSL_strdup(p->data);
516 if (sinf->keytype == NULL)
517 goto err;
518 }
519
520 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
521 if (p == NULL) {
522 sinf->keytype_oid = NULL;
523 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
524 goto err;
525 } else {
526 OPENSSL_free(sinf->keytype_oid);
527 sinf->keytype_oid = OPENSSL_strdup(p->data);
528 if (sinf->keytype_oid == NULL)
529 goto err;
530 }
531
532 /* Optional, not documented prior to 3.5 */
533 sinf->mindtls = sinf->maxdtls = -1;
534 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
535 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
536 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
537 goto err;
538 }
539 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
540 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
541 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
542 goto err;
543 }
544 /* DTLS version numbers grow downward */
545 if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
546 ((sinf->maxdtls > sinf->mindtls))) {
547 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
548 goto err;
549 }
550 /* No provider sigalgs are supported in DTLS, reset after checking. */
551 sinf->mindtls = sinf->maxdtls = -1;
552
553 /* The remaining parameters below are mandatory again */
554 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
555 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
556 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
557 goto err;
558 }
559 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
560 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
561 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
562 goto err;
563 }
564 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
565 ((sinf->maxtls < sinf->mintls))) {
566 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
567 goto err;
568 }
569 if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
570 ((sinf->mintls > TLS1_3_VERSION)))
571 sinf->mintls = sinf->maxtls = -1;
572 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
573 ((sinf->maxtls < TLS1_3_VERSION)))
574 sinf->mintls = sinf->maxtls = -1;
575
576 /* Ignore unusable sigalgs */
577 if (sinf->mintls == -1 && sinf->mindtls == -1) {
578 ret = 1;
579 goto err;
580 }
581
582 /*
583 * Now check that the algorithm is actually usable for our property query
584 * string. Regardless of the result we still return success because we have
585 * successfully processed this signature, even though we may decide not to
586 * use it.
587 */
588 ret = 1;
589 ERR_set_mark();
590 keytype = (sinf->keytype != NULL
591 ? sinf->keytype
592 : (sinf->sig_name != NULL
593 ? sinf->sig_name
594 : sinf->sigalg_name));
595 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
596 if (keymgmt != NULL) {
597 /*
598 * We have successfully fetched the algorithm - however if the provider
599 * doesn't match this one then we ignore it.
600 *
601 * Note: We're cheating a little here. Technically if the same algorithm
602 * is available from more than one provider then it is undefined which
603 * implementation you will get back. Theoretically this could be
604 * different every time...we assume here that you'll always get the
605 * same one back if you repeat the exact same fetch. Is this a reasonable
606 * assumption to make (in which case perhaps we should document this
607 * behaviour)?
608 */
609 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
610 /*
611 * We have a match - so we could use this signature;
612 * Check proper object registration first, though.
613 * Don't care about return value as this may have been
614 * done within providers or previous calls to
615 * add_provider_sigalgs.
616 */
617 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
618 /* sanity check: Without successful registration don't use alg */
619 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
620 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
621 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
622 goto err;
623 }
624 if (sinf->sig_name != NULL)
625 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
626 if (sinf->keytype != NULL)
627 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
628 if (sinf->hash_name != NULL)
629 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
630 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
631 (sinf->hash_name != NULL
632 ? OBJ_txt2nid(sinf->hash_name)
633 : NID_undef),
634 OBJ_txt2nid(keytype));
635 ctx->sigalg_list_len++;
636 sinf = NULL;
637 }
638 EVP_KEYMGMT_free(keymgmt);
639 }
640 ERR_pop_to_mark();
641 err:
642 if (sinf != NULL) {
643 OPENSSL_free(sinf->name);
644 sinf->name = NULL;
645 OPENSSL_free(sinf->sigalg_name);
646 sinf->sigalg_name = NULL;
647 OPENSSL_free(sinf->sigalg_oid);
648 sinf->sigalg_oid = NULL;
649 OPENSSL_free(sinf->sig_name);
650 sinf->sig_name = NULL;
651 OPENSSL_free(sinf->sig_oid);
652 sinf->sig_oid = NULL;
653 OPENSSL_free(sinf->hash_name);
654 sinf->hash_name = NULL;
655 OPENSSL_free(sinf->hash_oid);
656 sinf->hash_oid = NULL;
657 OPENSSL_free(sinf->keytype);
658 sinf->keytype = NULL;
659 OPENSSL_free(sinf->keytype_oid);
660 sinf->keytype_oid = NULL;
661 }
662 return ret;
663 }
664
665 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
666 {
667 struct provider_ctx_data_st pgd;
668
669 pgd.ctx = vctx;
670 pgd.provider = provider;
671 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
672 add_provider_sigalgs, &pgd);
673 /*
674 * Always OK, even if provider doesn't support the capability:
675 * Reconsider testing retval when legacy sigalgs are also loaded this way.
676 */
677 return 1;
678 }
679
680 int ssl_load_sigalgs(SSL_CTX *ctx)
681 {
682 size_t i;
683 SSL_CERT_LOOKUP lu;
684
685 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
686 return 0;
687
688 /* now populate ctx->ssl_cert_info */
689 if (ctx->sigalg_list_len > 0) {
690 OPENSSL_free(ctx->ssl_cert_info);
691 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
692 if (ctx->ssl_cert_info == NULL)
693 return 0;
694 for(i = 0; i < ctx->sigalg_list_len; i++) {
695 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
696 ctx->ssl_cert_info[i].amask = SSL_aANY;
697 }
698 }
699
700 /*
701 * For now, leave it at this: legacy sigalgs stay in their own
702 * data structures until "legacy cleanup" occurs.
703 */
704
705 return 1;
706 }
707
708 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
709 {
710 size_t i;
711
712 for (i = 0; i < ctx->group_list_len; i++) {
713 if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
714 || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
715 return ctx->group_list[i].group_id;
716 }
717
718 return 0;
719 }
720
721 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
722 {
723 size_t i;
724
725 for (i = 0; i < ctx->group_list_len; i++) {
726 if (ctx->group_list[i].group_id == group_id)
727 return &ctx->group_list[i];
728 }
729
730 return NULL;
731 }
732
733 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
734 {
735 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
736
737 if (tls_group_info == NULL)
738 return NULL;
739
740 return tls_group_info->tlsname;
741 }
742
743 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
744 {
745 size_t i;
746
747 if (group_id == 0)
748 return NID_undef;
749
750 /*
751 * Return well known Group NIDs - for backwards compatibility. This won't
752 * work for groups we don't know about.
753 */
754 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
755 {
756 if (nid_to_group[i].group_id == group_id)
757 return nid_to_group[i].nid;
758 }
759 if (!include_unknown)
760 return NID_undef;
761 return TLSEXT_nid_unknown | (int)group_id;
762 }
763
764 uint16_t tls1_nid2group_id(int nid)
765 {
766 size_t i;
767
768 /*
769 * Return well known Group ids - for backwards compatibility. This won't
770 * work for groups we don't know about.
771 */
772 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
773 {
774 if (nid_to_group[i].nid == nid)
775 return nid_to_group[i].group_id;
776 }
777
778 return 0;
779 }
780
781 /*
782 * Set *pgroups to the supported groups list and *pgroupslen to
783 * the number of groups supported.
784 */
785 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
786 size_t *pgroupslen)
787 {
788 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
789
790 /* For Suite B mode only include P-256, P-384 */
791 switch (tls1_suiteb(s)) {
792 case SSL_CERT_FLAG_SUITEB_128_LOS:
793 *pgroups = suiteb_curves;
794 *pgroupslen = OSSL_NELEM(suiteb_curves);
795 break;
796
797 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
798 *pgroups = suiteb_curves;
799 *pgroupslen = 1;
800 break;
801
802 case SSL_CERT_FLAG_SUITEB_192_LOS:
803 *pgroups = suiteb_curves + 1;
804 *pgroupslen = 1;
805 break;
806
807 default:
808 if (s->ext.supportedgroups == NULL) {
809 *pgroups = sctx->ext.supportedgroups;
810 *pgroupslen = sctx->ext.supportedgroups_len;
811 } else {
812 *pgroups = s->ext.supportedgroups;
813 *pgroupslen = s->ext.supportedgroups_len;
814 }
815 break;
816 }
817 }
818
819 /*
820 * Some comments for the function below:
821 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
822 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
823 * eligible group from the legacy list. Therefore, we provide the entire list of supported
824 * groups in this case.
825 *
826 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
827 * but the groupID to 0.
828 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
829 * the "list of requested key share groups" is used, or the "list of supported groups" in
830 * combination with setting add_only_one = 1 is applied.
831 */
832 void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
833 size_t *pgroupslen)
834 {
835 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
836
837 if (s->ext.supportedgroups == NULL) {
838 *pgroups = sctx->ext.supportedgroups;
839 *pgroupslen = sctx->ext.supportedgroups_len;
840 } else {
841 *pgroups = s->ext.keyshares;
842 *pgroupslen = s->ext.keyshares_len;
843 }
844 }
845
846 void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
847 size_t *ptupleslen)
848 {
849 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
850
851 if (s->ext.supportedgroups == NULL) {
852 *ptuples = sctx->ext.tuples;
853 *ptupleslen = sctx->ext.tuples_len;
854 } else {
855 *ptuples = s->ext.tuples;
856 *ptupleslen = s->ext.tuples_len;
857 }
858 }
859
860 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
861 int minversion, int maxversion,
862 int isec, int *okfortls13)
863 {
864 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
865 group_id);
866 int ret;
867 int group_minversion, group_maxversion;
868
869 if (okfortls13 != NULL)
870 *okfortls13 = 0;
871
872 if (ginfo == NULL)
873 return 0;
874
875 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
876 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
877
878 if (group_minversion < 0 || group_maxversion < 0)
879 return 0;
880 if (group_maxversion == 0)
881 ret = 1;
882 else
883 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
884 if (group_minversion > 0)
885 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
886
887 if (!SSL_CONNECTION_IS_DTLS(s)) {
888 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
889 *okfortls13 = (group_maxversion == 0)
890 || (group_maxversion >= TLS1_3_VERSION);
891 }
892 ret &= !isec
893 || strcmp(ginfo->algorithm, "EC") == 0
894 || strcmp(ginfo->algorithm, "X25519") == 0
895 || strcmp(ginfo->algorithm, "X448") == 0;
896
897 return ret;
898 }
899
900 /* See if group is allowed by security callback */
901 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
902 {
903 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
904 group);
905 unsigned char gtmp[2];
906
907 if (ginfo == NULL)
908 return 0;
909
910 gtmp[0] = group >> 8;
911 gtmp[1] = group & 0xff;
912 return ssl_security(s, op, ginfo->secbits,
913 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
914 }
915
916 /* Return 1 if "id" is in "list" */
917 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
918 {
919 size_t i;
920 for (i = 0; i < listlen; i++)
921 if (list[i] == id)
922 return 1;
923 return 0;
924 }
925
926 typedef struct {
927 TLS_GROUP_INFO *grp;
928 size_t ix;
929 } TLS_GROUP_IX;
930
931 DEFINE_STACK_OF(TLS_GROUP_IX)
932
933 static void free_wrapper(TLS_GROUP_IX *a)
934 {
935 OPENSSL_free(a);
936 }
937
938 static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
939 const TLS_GROUP_IX *const *b)
940 {
941 int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
942 int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
943 int ixcmpab = (*a)->ix < (*b)->ix;
944 int ixcmpba = (*b)->ix < (*a)->ix;
945
946 /* Ascending by group id */
947 if (idcmpab != idcmpba)
948 return (idcmpba - idcmpab);
949 /* Ascending by original appearance index */
950 return ixcmpba - ixcmpab;
951 }
952
953 int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
954 TLS_GROUP_INFO *grps, size_t num, long all,
955 STACK_OF(OPENSSL_CSTRING) *out)
956 {
957 STACK_OF(TLS_GROUP_IX) *collect = NULL;
958 TLS_GROUP_IX *gix;
959 uint16_t id = 0;
960 int ret = 0;
961 int ix;
962
963 if (grps == NULL || out == NULL || num > INT_MAX)
964 return 0;
965 if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
966 return 0;
967 for (ix = 0; ix < (int)num; ++ix, ++grps) {
968 if (grps->mintls > 0 && max_proto_version > 0
969 && grps->mintls > max_proto_version)
970 continue;
971 if (grps->maxtls > 0 && min_proto_version > 0
972 && grps->maxtls < min_proto_version)
973 continue;
974
975 if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
976 goto end;
977 gix->grp = grps;
978 gix->ix = ix;
979 if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
980 OPENSSL_free(gix);
981 goto end;
982 }
983 }
984
985 sk_TLS_GROUP_IX_sort(collect);
986 num = sk_TLS_GROUP_IX_num(collect);
987 for (ix = 0; ix < (int)num; ++ix) {
988 gix = sk_TLS_GROUP_IX_value(collect, ix);
989 if (!all && gix->grp->group_id == id)
990 continue;
991 id = gix->grp->group_id;
992 if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
993 goto end;
994 }
995 ret = 1;
996
997 end:
998 sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
999 return ret;
1000 }
1001
1002 /*-
1003 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1004 * if there is no match.
1005 * For nmatch == -1, return number of matches
1006 * For nmatch == -2, return the id of the group to use for
1007 * a tmp key, or 0 if there is no match.
1008 */
1009 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1010 {
1011 const uint16_t *pref, *supp;
1012 size_t num_pref, num_supp, i;
1013 int k;
1014 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1015
1016 /* Can't do anything on client side */
1017 if (s->server == 0)
1018 return 0;
1019 if (nmatch == -2) {
1020 if (tls1_suiteb(s)) {
1021 /*
1022 * For Suite B ciphersuite determines curve: we already know
1023 * these are acceptable due to previous checks.
1024 */
1025 unsigned long cid = s->s3.tmp.new_cipher->id;
1026
1027 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1028 return OSSL_TLS_GROUP_ID_secp256r1;
1029 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1030 return OSSL_TLS_GROUP_ID_secp384r1;
1031 /* Should never happen */
1032 return 0;
1033 }
1034 /* If not Suite B just return first preference shared curve */
1035 nmatch = 0;
1036 }
1037 /*
1038 * If server preference set, our groups are the preference order
1039 * otherwise peer decides.
1040 */
1041 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1042 tls1_get_supported_groups(s, &pref, &num_pref);
1043 tls1_get_peer_groups(s, &supp, &num_supp);
1044 } else {
1045 tls1_get_peer_groups(s, &pref, &num_pref);
1046 tls1_get_supported_groups(s, &supp, &num_supp);
1047 }
1048
1049 for (k = 0, i = 0; i < num_pref; i++) {
1050 uint16_t id = pref[i];
1051 const TLS_GROUP_INFO *inf;
1052 int minversion, maxversion;
1053
1054 if (!tls1_in_list(id, supp, num_supp)
1055 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1056 continue;
1057 inf = tls1_group_id_lookup(ctx, id);
1058 if (!ossl_assert(inf != NULL))
1059 return 0;
1060
1061 minversion = SSL_CONNECTION_IS_DTLS(s)
1062 ? inf->mindtls : inf->mintls;
1063 maxversion = SSL_CONNECTION_IS_DTLS(s)
1064 ? inf->maxdtls : inf->maxtls;
1065 if (maxversion == -1)
1066 continue;
1067 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1068 || (maxversion != 0
1069 && ssl_version_cmp(s, s->version, maxversion) > 0))
1070 continue;
1071
1072 if (nmatch == k)
1073 return id;
1074 k++;
1075 }
1076 if (nmatch == -1)
1077 return k;
1078 /* Out of range (nmatch > k). */
1079 return 0;
1080 }
1081
1082 int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1083 uint16_t **ksext, size_t *ksextlen,
1084 size_t **tplext, size_t *tplextlen,
1085 int *groups, size_t ngroups)
1086 {
1087 uint16_t *glist = NULL, *kslist = NULL;
1088 size_t *tpllist = NULL;
1089 size_t i;
1090 /*
1091 * Bitmap of groups included to detect duplicates: two variables are added
1092 * to detect duplicates as some values are more than 32.
1093 */
1094 unsigned long *dup_list = NULL;
1095 unsigned long dup_list_egrp = 0;
1096 unsigned long dup_list_dhgrp = 0;
1097
1098 if (ngroups == 0) {
1099 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1100 return 0;
1101 }
1102 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1103 goto err;
1104 if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1105 goto err;
1106 if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1107 goto err;
1108 for (i = 0; i < ngroups; i++) {
1109 unsigned long idmask;
1110 uint16_t id;
1111 id = tls1_nid2group_id(groups[i]);
1112 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1113 goto err;
1114 idmask = 1L << (id & 0x00FF);
1115 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1116 if (!id || ((*dup_list) & idmask))
1117 goto err;
1118 *dup_list |= idmask;
1119 glist[i] = id;
1120 }
1121 OPENSSL_free(*grpext);
1122 OPENSSL_free(*ksext);
1123 OPENSSL_free(*tplext);
1124 *grpext = glist;
1125 *grpextlen = ngroups;
1126 kslist[0] = glist[0];
1127 *ksext = kslist;
1128 *ksextlen = 1;
1129 tpllist[0] = ngroups;
1130 *tplext = tpllist;
1131 *tplextlen = 1;
1132 return 1;
1133 err:
1134 OPENSSL_free(glist);
1135 OPENSSL_free(kslist);
1136 OPENSSL_free(tpllist);
1137 return 0;
1138 }
1139
1140 /*
1141 * Definition of DEFAULT[_XYZ] pseudo group names.
1142 * A pseudo group name is actually a full list of groups, including prefixes
1143 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1144 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1145 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1146 */
1147 typedef struct {
1148 const char *list_name; /* The name of this pseudo group */
1149 const char *group_string; /* The group string of this pseudo group */
1150 } default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1151
1152 /* Built-in pseudo group-names must start with a (D or d) */
1153 static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1154
1155 /* The list of all built-in pseudo-group-name structures */
1156 static const default_group_string_st default_group_strings[] = {
1157 {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1158 {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1159 };
1160
1161 /*
1162 * Some GOST names are not resolved by tls1_group_name2id,
1163 * hence we'll check for those manually
1164 */
1165 typedef struct {
1166 const char *group_name;
1167 uint16_t groupID;
1168 } name2id_st;
1169 static const name2id_st name2id_arr[] = {
1170 {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1171 {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1172 {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1173 {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1174 {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1175 {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1176 {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1177 };
1178
1179 /*
1180 * Group list management:
1181 * We establish three lists along with their related size counters:
1182 * 1) List of (unique) groups
1183 * 2) List of number of groups per group-priority-tuple
1184 * 3) List of (unique) key share groups
1185 */
1186 #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1187 #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1188
1189 /*
1190 * Preparation of the prefix used to indicate the desire to send a key share,
1191 * the characters used as separators between groups or tuples of groups, the
1192 * character to indicate that an unknown group should be ignored, and the
1193 * character to indicate that a group should be deleted from a list
1194 */
1195 #ifndef TUPLE_DELIMITER_CHARACTER
1196 /* The prefix characters to indicate group tuple boundaries */
1197 # define TUPLE_DELIMITER_CHARACTER '/'
1198 #endif
1199 #ifndef GROUP_DELIMITER_CHARACTER
1200 /* The prefix characters to indicate group tuple boundaries */
1201 # define GROUP_DELIMITER_CHARACTER ':'
1202 #endif
1203 #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1204 /* The prefix character to ignore unknown groups */
1205 # define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1206 #endif
1207 #ifndef KEY_SHARE_INDICATOR_CHARACTER
1208 /* The prefix character to trigger a key share addition */
1209 # define KEY_SHARE_INDICATOR_CHARACTER '*'
1210 #endif
1211 #ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1212 /* The prefix character to trigger a key share removal */
1213 # define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1214 #endif
1215 static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1216 GROUP_DELIMITER_CHARACTER,
1217 IGNORE_UNKNOWN_GROUP_CHARACTER,
1218 KEY_SHARE_INDICATOR_CHARACTER,
1219 REMOVE_GROUP_INDICATOR_CHARACTER,
1220 '\0'};
1221
1222 /*
1223 * High-level description of how group strings are analyzed:
1224 * A first call back function (tuple_cb) is used to process group tuples, and a
1225 * second callback function (gid_cb) is used to process the groups inside a tuple.
1226 * Those callback functions are (indirectly) called by CONF_parse_list with
1227 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1228 * is used to keep track of the parsing results between the various calls
1229 */
1230
1231 typedef struct {
1232 SSL_CTX *ctx;
1233 /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1234 size_t gidmax; /* The memory allocation chunk size for the group IDs */
1235 size_t gidcnt; /* Number of groups */
1236 uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1237 size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1238 size_t tplcnt; /* Number of tuples */
1239 size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1240 size_t ksidmax; /* The memory allocation chunk size */
1241 size_t ksidcnt; /* Number of key shares */
1242 uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1243 /* Variable to keep state between execution of callback or helper functions */
1244 size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1245 int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1246 } gid_cb_st;
1247
1248 /* Forward declaration of tuple callback function */
1249 static int tuple_cb(const char *tuple, int len, void *arg);
1250
1251 /*
1252 * Extract and process the individual groups (and their prefixes if present)
1253 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1254 * and must be appended by a \0 if used as \0-terminated string
1255 */
1256 static int gid_cb(const char *elem, int len, void *arg)
1257 {
1258 gid_cb_st *garg = arg;
1259 size_t i, j, k;
1260 uint16_t gid = 0;
1261 int found_group = 0;
1262 char etmp[GROUP_NAME_BUFFER_LENGTH];
1263 int retval = 1; /* We assume success */
1264 char *current_prefix;
1265 int ignore_unknown = 0;
1266 int add_keyshare = 0;
1267 int remove_group = 0;
1268 size_t restored_prefix_index = 0;
1269 char *restored_default_group_string;
1270 int continue_while_loop = 1;
1271
1272 /* Sanity checks */
1273 if (garg == NULL || elem == NULL || len <= 0) {
1274 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1275 return 0;
1276 }
1277
1278 /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1279 while (continue_while_loop && len > 0
1280 && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1281 || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1282
1283 switch (*current_prefix) {
1284 case TUPLE_DELIMITER_CHARACTER:
1285 /* tuple delimiter not allowed here -> syntax error */
1286 return -1;
1287 break;
1288 case GROUP_DELIMITER_CHARACTER:
1289 return -1; /* Not a valid prefix for a single group name-> syntax error */
1290 break;
1291 case KEY_SHARE_INDICATOR_CHARACTER:
1292 if (add_keyshare)
1293 return -1; /* Only single key share prefix allowed -> syntax error */
1294 add_keyshare = 1;
1295 ++elem;
1296 --len;
1297 break;
1298 case REMOVE_GROUP_INDICATOR_CHARACTER:
1299 if (remove_group)
1300 return -1; /* Only single remove group prefix allowed -> syntax error */
1301 remove_group = 1;
1302 ++elem;
1303 --len;
1304 break;
1305 case IGNORE_UNKNOWN_GROUP_CHARACTER:
1306 if (ignore_unknown)
1307 return -1; /* Only single ? allowed -> syntax error */
1308 ignore_unknown = 1;
1309 ++elem;
1310 --len;
1311 break;
1312 default:
1313 /*
1314 * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1315 * list of groups) should be added
1316 */
1317 for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1318 if ((size_t)len == (strlen(default_group_strings[i].list_name))
1319 && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1320 /*
1321 * We're asked to insert an entire list of groups from a
1322 * DEFAULT[_XYZ] 'pseudo group' which we do by
1323 * recursively calling this function (indirectly via
1324 * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1325 * group string like a tuple which is appended to the current tuple
1326 * rather then starting a new tuple. Variable tuple_mode is the flag which
1327 * controls append tuple vs start new tuple.
1328 */
1329
1330 if (ignore_unknown || remove_group)
1331 return -1; /* removal or ignore not allowed here -> syntax error */
1332
1333 /*
1334 * First, we restore any keyshare prefix in a new zero-terminated string
1335 * (if not already present)
1336 */
1337 restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1338 strlen(default_group_strings[i].group_string) +
1339 1 /* \0 */) * sizeof(char));
1340 if (restored_default_group_string == NULL)
1341 return 0;
1342 if (add_keyshare
1343 /* Remark: we tolerate a duplicated keyshare indicator here */
1344 && default_group_strings[i].group_string[0]
1345 != KEY_SHARE_INDICATOR_CHARACTER)
1346 restored_default_group_string[restored_prefix_index++] =
1347 KEY_SHARE_INDICATOR_CHARACTER;
1348
1349 memcpy(restored_default_group_string + restored_prefix_index,
1350 default_group_strings[i].group_string,
1351 strlen(default_group_strings[i].group_string));
1352 restored_default_group_string[strlen(default_group_strings[i].group_string) +
1353 restored_prefix_index] = '\0';
1354 /* We execute the recursive call */
1355 garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1356 /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1357 garg->tuple_mode = 0;
1358 /* We use the tuple_cb callback to process the pseudo group tuple */
1359 retval = CONF_parse_list(restored_default_group_string,
1360 TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1361 garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1362 garg->ignore_unknown_default = 0; /* reset to original value */
1363 /* We don't need the \0-terminated string anymore */
1364 OPENSSL_free(restored_default_group_string);
1365
1366 return retval;
1367 }
1368 }
1369 /*
1370 * If we reached this point, a group name started with a 'd' or 'D', but no request
1371 * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1372 * name can continue as usual (= the while loop checking prefixes can end)
1373 */
1374 continue_while_loop = 0;
1375 break;
1376 }
1377 }
1378
1379 if (len == 0)
1380 return -1; /* Seems we have prefxes without a group name -> syntax error */
1381
1382 if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1383 ignore_unknown = 1;
1384
1385 /* Memory management in case more groups are present compared to initial allocation */
1386 if (garg->gidcnt == garg->gidmax) {
1387 uint16_t *tmp =
1388 OPENSSL_realloc(garg->gid_arr,
1389 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1390
1391 if (tmp == NULL)
1392 return 0;
1393
1394 garg->gidmax += GROUPLIST_INCREMENT;
1395 garg->gid_arr = tmp;
1396 }
1397 /* Memory management for key share groups */
1398 if (garg->ksidcnt == garg->ksidmax) {
1399 uint16_t *tmp =
1400 OPENSSL_realloc(garg->ksid_arr,
1401 (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1402
1403 if (tmp == NULL)
1404 return 0;
1405 garg->ksidmax += GROUPLIST_INCREMENT;
1406 garg->ksid_arr = tmp;
1407 }
1408
1409 if (len > (int)(sizeof(etmp) - 1))
1410 return -1; /* group name to long -> syntax error */
1411
1412 /*
1413 * Prepare addition or removal of a single group by converting
1414 * a group name into its groupID equivalent
1415 */
1416
1417 /* Create a \0-terminated string and get the gid for this group if possible */
1418 memcpy(etmp, elem, len);
1419 etmp[len] = 0;
1420
1421 /* Get the groupID */
1422 gid = tls1_group_name2id(garg->ctx, etmp);
1423 /*
1424 * Handle the case where no valid groupID was returned
1425 * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1426 */
1427 if (gid == 0) {
1428 /* Is it one of the GOST groups ? */
1429 for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1430 if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1431 gid = name2id_arr[i].groupID;
1432 break;
1433 }
1434 }
1435 if (gid == 0) { /* still not found */
1436 /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1437 retval = ignore_unknown;
1438 goto done;
1439 }
1440 }
1441
1442 /* Make sure that at least one provider is supporting this groupID */
1443 found_group = 0;
1444 for (j = 0; j < garg->ctx->group_list_len; j++)
1445 if (garg->ctx->group_list[j].group_id == gid) {
1446 found_group = 1;
1447 break;
1448 }
1449
1450 /*
1451 * No provider supports this group - ignore if
1452 * ignore_unknown; trigger error otherwise
1453 */
1454 if (found_group == 0) {
1455 retval = ignore_unknown;
1456 goto done;
1457 }
1458 /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1459 if (remove_group) {
1460 /* Is the current group specified anywhere in the entire list so far? */
1461 found_group = 0;
1462 for (i = 0; i < garg->gidcnt; i++)
1463 if (garg->gid_arr[i] == gid) {
1464 found_group = 1;
1465 break;
1466 }
1467 /* The group to remove is at position i in the list of (zero indexed) groups */
1468 if (found_group) {
1469 /* We remove that group from its position (which is at i)... */
1470 for (j = i; j < (garg->gidcnt - 1); j++)
1471 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1472 garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1473
1474 /*
1475 * We also must update the number of groups either in a previous tuple (which we
1476 * must identify and check whether it becomes empty due to the deletion) or in
1477 * the current tuple, pending where the deleted group resides
1478 */
1479 k = 0;
1480 for (j = 0; j < garg->tplcnt; j++) {
1481 k += garg->tuplcnt_arr[j];
1482 /* Remark: i is zero-indexed, k is one-indexed */
1483 if (k > i) { /* remove from one of the previous tuples */
1484 garg->tuplcnt_arr[j]--;
1485 break; /* We took care not to have group duplicates, hence we can stop here */
1486 }
1487 }
1488 if (k <= i) /* remove from current tuple */
1489 garg->tuplcnt_arr[j]--;
1490
1491 /* We also remove the group from the list of keyshares (if present) */
1492 found_group = 0;
1493 for (i = 0; i < garg->ksidcnt; i++)
1494 if (garg->ksid_arr[i] == gid) {
1495 found_group = 1;
1496 break;
1497 }
1498 if (found_group) {
1499 /* Found, hence we remove that keyshare from its position (which is at i)... */
1500 for (j = i; j < (garg->ksidcnt - 1); j++)
1501 garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1502 /* ... and update the book keeping */
1503 garg->ksidcnt--;
1504 }
1505 }
1506 } else { /* Processing addition of a single new group */
1507
1508 /* Check for duplicates */
1509 for (i = 0; i < garg->gidcnt; i++)
1510 if (garg->gid_arr[i] == gid) {
1511 /* Duplicate group anywhere in the list of groups - ignore */
1512 goto done;
1513 }
1514
1515 /* Add the current group to the 'flat' list of groups */
1516 garg->gid_arr[garg->gidcnt++] = gid;
1517 /* and update the book keeping for the number of groups in current tuple */
1518 garg->tuplcnt_arr[garg->tplcnt]++;
1519
1520 /* We memorize if needed that we want to add a key share for the current group */
1521 if (add_keyshare)
1522 garg->ksid_arr[garg->ksidcnt++] = gid;
1523 }
1524
1525 done:
1526 return retval;
1527 }
1528
1529 /* Extract and process a tuple of groups */
1530 static int tuple_cb(const char *tuple, int len, void *arg)
1531 {
1532 gid_cb_st *garg = arg;
1533 int retval = 1; /* We assume success */
1534 char *restored_tuple_string;
1535
1536 /* Sanity checks */
1537 if (garg == NULL || tuple == NULL || len <= 0) {
1538 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1539 return 0;
1540 }
1541
1542 /* Memory management for tuples */
1543 if (garg->tplcnt == garg->tplmax) {
1544 size_t *tmp =
1545 OPENSSL_realloc(garg->tuplcnt_arr,
1546 (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1547
1548 if (tmp == NULL)
1549 return 0;
1550 garg->tplmax += GROUPLIST_INCREMENT;
1551 garg->tuplcnt_arr = tmp;
1552 }
1553
1554 /* Convert to \0-terminated string */
1555 restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1556 if (restored_tuple_string == NULL)
1557 return 0;
1558 memcpy(restored_tuple_string, tuple, len);
1559 restored_tuple_string[len] = '\0';
1560
1561 /* Analyze group list of this tuple */
1562 retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1563
1564 /* We don't need the \o-terminated string anymore */
1565 OPENSSL_free(restored_tuple_string);
1566
1567 if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1568 if (garg->tuple_mode) {
1569 /* We 'close' the tuple */
1570 garg->tplcnt++;
1571 garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1572 garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1573 }
1574 }
1575
1576 return retval;
1577 }
1578
1579 /*
1580 * Set groups and prepare generation of keyshares based on a string of groupnames,
1581 * names separated by the group or the tuple delimiter, with per-group prefixes to
1582 * (1) add a key share for this group, (2) ignore the group if unkown to the current
1583 * context, (3) delete a previous occurrence of the group in the current tuple.
1584 *
1585 * The list parsing is done in two hierachical steps: The top-level step extracts the
1586 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1587 * parse and process the groups inside a tuple
1588 */
1589 int tls1_set_groups_list(SSL_CTX *ctx,
1590 uint16_t **grpext, size_t *grpextlen,
1591 uint16_t **ksext, size_t *ksextlen,
1592 size_t **tplext, size_t *tplextlen,
1593 const char *str)
1594 {
1595 size_t i = 0, j;
1596 int ret = 0, parse_ret = 0;
1597 gid_cb_st gcb;
1598
1599 /* Sanity check */
1600 if (ctx == NULL) {
1601 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1602 return 0;
1603 }
1604
1605 memset(&gcb, 0, sizeof(gcb));
1606 gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1607 gcb.ignore_unknown_default = 0;
1608 gcb.gidmax = GROUPLIST_INCREMENT;
1609 gcb.tplmax = GROUPLIST_INCREMENT;
1610 gcb.ksidmax = GROUPLIST_INCREMENT;
1611 gcb.ctx = ctx;
1612
1613 /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1614 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1615 if (gcb.gid_arr == NULL)
1616 goto end;
1617 gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1618 if (gcb.tuplcnt_arr == NULL)
1619 goto end;
1620 gcb.tuplcnt_arr[0] = 0;
1621 gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1622 if (gcb.ksid_arr == NULL)
1623 goto end;
1624
1625 while (str[0] != '\0' && isspace((unsigned char)*str))
1626 str++;
1627 if (str[0] == '\0')
1628 goto empty_list;
1629
1630 /*
1631 * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1632 * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1633 */
1634 parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1635
1636 if (parse_ret == 0)
1637 goto end;
1638 if (parse_ret == -1) {
1639 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1640 "Syntax error in '%s'", str);
1641 goto end;
1642 }
1643
1644 /*
1645 * We check whether a tuple was completly emptied by using "-" prefix
1646 * excessively, in which case we remove the tuple
1647 */
1648 for (i = j = 0; j < gcb.tplcnt; j++) {
1649 if (gcb.tuplcnt_arr[j] == 0)
1650 continue;
1651 /* If there's a gap, move to first unfilled slot */
1652 if (j == i)
1653 ++i;
1654 else
1655 gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1656 }
1657 gcb.tplcnt = i;
1658
1659 if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1660 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1661 "To many keyshares requested in '%s' (max = %d)",
1662 str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1663 goto end;
1664 }
1665
1666 /*
1667 * For backward compatibility we let the rest of the code know that a key share
1668 * for the first valid group should be added if no "*" prefix was used anywhere
1669 */
1670 if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1671 /*
1672 * No key share group prefix character was used, hence we indicate that a single
1673 * key share should be sent and flag that it should come from the supported_groups list
1674 */
1675 gcb.ksidcnt = 1;
1676 gcb.ksid_arr[0] = 0;
1677 }
1678
1679 empty_list:
1680 /*
1681 * A call to tls1_set_groups_list with any of the args (other than ctx) set
1682 * to NULL only does a syntax check, hence we're done here and report success
1683 */
1684 if (grpext == NULL || ksext == NULL || tplext == NULL ||
1685 grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1686 ret = 1;
1687 goto end;
1688 }
1689
1690 /*
1691 * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1692 * can just go ahead and set the results (after diposing the existing)
1693 */
1694 OPENSSL_free(*grpext);
1695 *grpext = gcb.gid_arr;
1696 *grpextlen = gcb.gidcnt;
1697 OPENSSL_free(*ksext);
1698 *ksext = gcb.ksid_arr;
1699 *ksextlen = gcb.ksidcnt;
1700 OPENSSL_free(*tplext);
1701 *tplext = gcb.tuplcnt_arr;
1702 *tplextlen = gcb.tplcnt;
1703
1704 return 1;
1705
1706 end:
1707 OPENSSL_free(gcb.gid_arr);
1708 OPENSSL_free(gcb.tuplcnt_arr);
1709 OPENSSL_free(gcb.ksid_arr);
1710 return ret;
1711 }
1712
1713 /* Check a group id matches preferences */
1714 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1715 int check_own_groups)
1716 {
1717 const uint16_t *groups;
1718 size_t groups_len;
1719
1720 if (group_id == 0)
1721 return 0;
1722
1723 /* Check for Suite B compliance */
1724 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1725 unsigned long cid = s->s3.tmp.new_cipher->id;
1726
1727 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1728 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1729 return 0;
1730 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1731 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1732 return 0;
1733 } else {
1734 /* Should never happen */
1735 return 0;
1736 }
1737 }
1738
1739 if (check_own_groups) {
1740 /* Check group is one of our preferences */
1741 tls1_get_supported_groups(s, &groups, &groups_len);
1742 if (!tls1_in_list(group_id, groups, groups_len))
1743 return 0;
1744 }
1745
1746 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1747 return 0;
1748
1749 /* For clients, nothing more to check */
1750 if (!s->server)
1751 return 1;
1752
1753 /* Check group is one of peers preferences */
1754 tls1_get_peer_groups(s, &groups, &groups_len);
1755
1756 /*
1757 * RFC 4492 does not require the supported elliptic curves extension
1758 * so if it is not sent we can just choose any curve.
1759 * It is invalid to send an empty list in the supported groups
1760 * extension, so groups_len == 0 always means no extension.
1761 */
1762 if (groups_len == 0)
1763 return 1;
1764 return tls1_in_list(group_id, groups, groups_len);
1765 }
1766
1767 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1768 size_t *num_formats)
1769 {
1770 /*
1771 * If we have a custom point format list use it otherwise use default
1772 */
1773 if (s->ext.ecpointformats) {
1774 *pformats = s->ext.ecpointformats;
1775 *num_formats = s->ext.ecpointformats_len;
1776 } else if ((s->options & SSL_OP_LEGACY_EC_POINT_FORMATS) != 0) {
1777 *pformats = ecformats_all;
1778 /* For Suite B we don't support char2 fields */
1779 if (tls1_suiteb(s))
1780 *num_formats = sizeof(ecformats_all) - 1;
1781 else
1782 *num_formats = sizeof(ecformats_all);
1783 } else {
1784 *pformats = ecformats_default;
1785 *num_formats = sizeof(ecformats_default);
1786 }
1787 }
1788
1789 /* Check a key is compatible with compression extension */
1790 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1791 {
1792 unsigned char comp_id;
1793 size_t i;
1794 int point_conv;
1795
1796 /* If not an EC key nothing to check */
1797 if (!EVP_PKEY_is_a(pkey, "EC"))
1798 return 1;
1799
1800
1801 /* Get required compression id */
1802 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1803 if (point_conv == 0)
1804 return 0;
1805 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1806 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1807 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1808 /*
1809 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1810 * this check.
1811 */
1812 return 1;
1813 } else {
1814 int field_type = EVP_PKEY_get_field_type(pkey);
1815
1816 if (field_type == NID_X9_62_prime_field)
1817 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1818 else if (field_type == NID_X9_62_characteristic_two_field)
1819 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1820 else
1821 return 0;
1822 }
1823 /*
1824 * If point formats extension present check it, otherwise everything is
1825 * supported (see RFC4492).
1826 */
1827 if (s->ext.peer_ecpointformats == NULL)
1828 return 1;
1829
1830 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1831 if (s->ext.peer_ecpointformats[i] == comp_id)
1832 return 1;
1833 }
1834 return 0;
1835 }
1836
1837 /* Return group id of a key */
1838 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1839 {
1840 int curve_nid = ssl_get_EC_curve_nid(pkey);
1841
1842 if (curve_nid == NID_undef)
1843 return 0;
1844 return tls1_nid2group_id(curve_nid);
1845 }
1846
1847 /*
1848 * Check cert parameters compatible with extensions: currently just checks EC
1849 * certificates have compatible curves and compression.
1850 */
1851 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1852 {
1853 uint16_t group_id;
1854 EVP_PKEY *pkey;
1855 pkey = X509_get0_pubkey(x);
1856 if (pkey == NULL)
1857 return 0;
1858 /* If not EC nothing to do */
1859 if (!EVP_PKEY_is_a(pkey, "EC"))
1860 return 1;
1861 /* Check compression */
1862 if (!tls1_check_pkey_comp(s, pkey))
1863 return 0;
1864 group_id = tls1_get_group_id(pkey);
1865 /*
1866 * For a server we allow the certificate to not be in our list of supported
1867 * groups.
1868 */
1869 if (!tls1_check_group_id(s, group_id, !s->server))
1870 return 0;
1871 /*
1872 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1873 * SHA384+P-384.
1874 */
1875 if (check_ee_md && tls1_suiteb(s)) {
1876 int check_md;
1877 size_t i;
1878
1879 /* Check to see we have necessary signing algorithm */
1880 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1881 check_md = NID_ecdsa_with_SHA256;
1882 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1883 check_md = NID_ecdsa_with_SHA384;
1884 else
1885 return 0; /* Should never happen */
1886 for (i = 0; i < s->shared_sigalgslen; i++) {
1887 if (check_md == s->shared_sigalgs[i]->sigandhash)
1888 return 1;
1889 }
1890 return 0;
1891 }
1892 return 1;
1893 }
1894
1895 /*
1896 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1897 * @s: SSL connection
1898 * @cid: Cipher ID we're considering using
1899 *
1900 * Checks that the kECDHE cipher suite we're considering using
1901 * is compatible with the client extensions.
1902 *
1903 * Returns 0 when the cipher can't be used or 1 when it can.
1904 */
1905 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1906 {
1907 /* If not Suite B just need a shared group */
1908 if (!tls1_suiteb(s))
1909 return tls1_shared_group(s, 0) != 0;
1910 /*
1911 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1912 * curves permitted.
1913 */
1914 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1915 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1916 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1917 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1918
1919 return 0;
1920 }
1921
1922 /* Default sigalg schemes */
1923 static const uint16_t tls12_sigalgs[] = {
1924 TLSEXT_SIGALG_mldsa65,
1925 TLSEXT_SIGALG_mldsa87,
1926 TLSEXT_SIGALG_mldsa44,
1927 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1928 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1929 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1930 TLSEXT_SIGALG_ed25519,
1931 TLSEXT_SIGALG_ed448,
1932 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1933 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1934 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1935
1936 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1937 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1938 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1939 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1940 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1941 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1942
1943 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1944 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1945 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1946
1947 TLSEXT_SIGALG_ecdsa_sha224,
1948 TLSEXT_SIGALG_ecdsa_sha1,
1949
1950 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1951 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1952
1953 TLSEXT_SIGALG_dsa_sha224,
1954 TLSEXT_SIGALG_dsa_sha1,
1955
1956 TLSEXT_SIGALG_dsa_sha256,
1957 TLSEXT_SIGALG_dsa_sha384,
1958 TLSEXT_SIGALG_dsa_sha512,
1959
1960 #ifndef OPENSSL_NO_GOST
1961 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1962 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1963 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1964 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1965 TLSEXT_SIGALG_gostr34102001_gostr3411,
1966 #endif
1967 };
1968
1969
1970 static const uint16_t suiteb_sigalgs[] = {
1971 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1972 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1973 };
1974
1975 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1976 {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1977 "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1978 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1979 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1980 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1981 {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1982 "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1983 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1984 NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1985 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1986 {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1987 "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1988 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1989 NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1990 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1991
1992 {TLSEXT_SIGALG_ed25519_name,
1993 NULL, TLSEXT_SIGALG_ed25519,
1994 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1995 NID_undef, NID_undef, 1, 0,
1996 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1997 {TLSEXT_SIGALG_ed448_name,
1998 NULL, TLSEXT_SIGALG_ed448,
1999 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
2000 NID_undef, NID_undef, 1, 0,
2001 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2002
2003 {TLSEXT_SIGALG_ecdsa_sha224_name,
2004 "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
2005 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2006 NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2007 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2008 {TLSEXT_SIGALG_ecdsa_sha1_name,
2009 "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2010 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011 NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2012 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2013
2014 {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2015 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2016 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2017 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2018 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2019 TLS1_3_VERSION, 0, -1, -1},
2020 {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2021 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2022 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2023 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2024 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2025 TLS1_3_VERSION, 0, -1, -1},
2026 {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2027 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2028 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2029 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2030 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2031 TLS1_3_VERSION, 0, -1, -1},
2032
2033 {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2034 "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2035 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2036 NID_undef, NID_undef, 1, 0,
2037 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2038 {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2039 "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2040 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2041 NID_undef, NID_undef, 1, 0,
2042 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2043 {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2044 "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2045 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2046 NID_undef, NID_undef, 1, 0,
2047 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2048
2049 {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2050 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2051 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2052 NID_undef, NID_undef, 1, 0,
2053 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2054 {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2055 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2056 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2057 NID_undef, NID_undef, 1, 0,
2058 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2059 {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2060 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2061 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2062 NID_undef, NID_undef, 1, 0,
2063 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2064
2065 {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2066 "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2067 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2068 NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2069 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2070 {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2071 "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2072 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2073 NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2074 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2075 {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2076 "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2077 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2078 NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2079 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2080
2081 {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2082 "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2083 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2084 NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2085 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2086 {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2087 "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2088 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2089 NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2090 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2091
2092 {TLSEXT_SIGALG_dsa_sha256_name,
2093 "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2094 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2095 NID_dsa_with_SHA256, NID_undef, 1, 0,
2096 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2097 {TLSEXT_SIGALG_dsa_sha384_name,
2098 "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2099 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2100 NID_undef, NID_undef, 1, 0,
2101 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2102 {TLSEXT_SIGALG_dsa_sha512_name,
2103 "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2104 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2105 NID_undef, NID_undef, 1, 0,
2106 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2107 {TLSEXT_SIGALG_dsa_sha224_name,
2108 "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2109 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2110 NID_undef, NID_undef, 1, 0,
2111 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2112 {TLSEXT_SIGALG_dsa_sha1_name,
2113 "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2114 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2115 NID_dsaWithSHA1, NID_undef, 1, 0,
2116 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2117
2118 #ifndef OPENSSL_NO_GOST
2119 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2122 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2123 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2124 NID_undef, NID_undef, 1, 0,
2125 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2126 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2127 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2128 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2129 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2130 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2131 NID_undef, NID_undef, 1, 0,
2132 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133
2134 {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2135 NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2136 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2137 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2138 NID_undef, NID_undef, 1, 0,
2139 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2140 {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2141 NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2142 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2143 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2144 NID_undef, NID_undef, 1, 0,
2145 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2146 {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2147 NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2148 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2149 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2150 NID_undef, NID_undef, 1, 0,
2151 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2152 #endif
2153 };
2154 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2155 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2156 "rsa_pkcs1_md5_sha1", NULL, 0,
2157 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2158 EVP_PKEY_RSA, SSL_PKEY_RSA,
2159 NID_undef, NID_undef, 1, 0,
2160 TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2161 };
2162
2163 /*
2164 * Default signature algorithm values used if signature algorithms not present.
2165 * From RFC5246. Note: order must match certificate index order.
2166 */
2167 static const uint16_t tls_default_sigalg[] = {
2168 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2169 0, /* SSL_PKEY_RSA_PSS_SIGN */
2170 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2171 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2172 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2173 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2174 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2175 0, /* SSL_PKEY_ED25519 */
2176 0, /* SSL_PKEY_ED448 */
2177 };
2178
2179 int ssl_setup_sigalgs(SSL_CTX *ctx)
2180 {
2181 size_t i, cache_idx, sigalgs_len, enabled;
2182 const SIGALG_LOOKUP *lu;
2183 SIGALG_LOOKUP *cache = NULL;
2184 uint16_t *tls12_sigalgs_list = NULL;
2185 EVP_PKEY *tmpkey = EVP_PKEY_new();
2186 int istls;
2187 int ret = 0;
2188
2189 if (ctx == NULL)
2190 goto err;
2191
2192 istls = !SSL_CTX_IS_DTLS(ctx);
2193
2194 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2195
2196 cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2197 if (cache == NULL || tmpkey == NULL)
2198 goto err;
2199
2200 tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2201 if (tls12_sigalgs_list == NULL)
2202 goto err;
2203
2204 ERR_set_mark();
2205 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2206 for (i = 0, lu = sigalg_lookup_tbl;
2207 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2208 EVP_PKEY_CTX *pctx;
2209
2210 cache[i] = *lu;
2211
2212 /*
2213 * Check hash is available.
2214 * This test is not perfect. A provider could have support
2215 * for a signature scheme, but not a particular hash. However the hash
2216 * could be available from some other loaded provider. In that case it
2217 * could be that the signature is available, and the hash is available
2218 * independently - but not as a combination. We ignore this for now.
2219 */
2220 if (lu->hash != NID_undef
2221 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2222 cache[i].available = 0;
2223 continue;
2224 }
2225
2226 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2227 cache[i].available = 0;
2228 continue;
2229 }
2230 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2231 /* If unable to create pctx we assume the sig algorithm is unavailable */
2232 if (pctx == NULL)
2233 cache[i].available = 0;
2234 EVP_PKEY_CTX_free(pctx);
2235 }
2236
2237 /* Now complete cache and tls12_sigalgs list with provider sig information */
2238 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2239 for (i = 0; i < ctx->sigalg_list_len; i++) {
2240 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2241 cache[cache_idx].name = si.name;
2242 cache[cache_idx].name12 = si.sigalg_name;
2243 cache[cache_idx].sigalg = si.code_point;
2244 tls12_sigalgs_list[cache_idx] = si.code_point;
2245 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2246 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2247 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2248 cache[cache_idx].sig_idx = (int)(i + SSL_PKEY_NUM);
2249 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2250 cache[cache_idx].curve = NID_undef;
2251 cache[cache_idx].mintls = TLS1_3_VERSION;
2252 cache[cache_idx].maxtls = TLS1_3_VERSION;
2253 cache[cache_idx].mindtls = -1;
2254 cache[cache_idx].maxdtls = -1;
2255 /* Compatibility with TLS 1.3 is checked on load */
2256 cache[cache_idx].available = istls;
2257 cache[cache_idx].advertise = 0;
2258 cache_idx++;
2259 }
2260 ERR_pop_to_mark();
2261
2262 enabled = 0;
2263 for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2264 SIGALG_LOOKUP *ent = cache;
2265 size_t j;
2266
2267 for (j = 0; j < sigalgs_len; ent++, j++) {
2268 if (ent->sigalg != tls12_sigalgs[i])
2269 continue;
2270 /* Dedup by marking cache entry as default enabled. */
2271 if (ent->available && !ent->advertise) {
2272 ent->advertise = 1;
2273 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2274 }
2275 break;
2276 }
2277 }
2278
2279 /* Append any provider sigalgs not yet handled */
2280 for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2281 SIGALG_LOOKUP *ent = &cache[i];
2282
2283 if (ent->available && !ent->advertise)
2284 tls12_sigalgs_list[enabled++] = ent->sigalg;
2285 }
2286
2287 ctx->sigalg_lookup_cache = cache;
2288 ctx->sigalg_lookup_cache_len = sigalgs_len;
2289 ctx->tls12_sigalgs = tls12_sigalgs_list;
2290 ctx->tls12_sigalgs_len = enabled;
2291 cache = NULL;
2292 tls12_sigalgs_list = NULL;
2293
2294 ret = 1;
2295 err:
2296 OPENSSL_free(cache);
2297 OPENSSL_free(tls12_sigalgs_list);
2298 EVP_PKEY_free(tmpkey);
2299 return ret;
2300 }
2301
2302 #define SIGLEN_BUF_INCREMENT 100
2303
2304 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2305 {
2306 size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2307 const SIGALG_LOOKUP *lu;
2308 EVP_PKEY *tmpkey = EVP_PKEY_new();
2309 char *retval = OPENSSL_malloc(maxretlen);
2310
2311 if (retval == NULL)
2312 return NULL;
2313
2314 /* ensure retval string is NUL terminated */
2315 retval[0] = (char)0;
2316
2317 for (i = 0, lu = sigalg_lookup_tbl;
2318 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2319 EVP_PKEY_CTX *pctx;
2320 int enabled = 1;
2321
2322 ERR_set_mark();
2323 /* Check hash is available in some provider. */
2324 if (lu->hash != NID_undef) {
2325 EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2326
2327 /* If unable to create we assume the hash algorithm is unavailable */
2328 if (hash == NULL) {
2329 enabled = 0;
2330 ERR_pop_to_mark();
2331 continue;
2332 }
2333 EVP_MD_free(hash);
2334 }
2335
2336 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2337 enabled = 0;
2338 ERR_pop_to_mark();
2339 continue;
2340 }
2341 pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2342 /* If unable to create pctx we assume the sig algorithm is unavailable */
2343 if (pctx == NULL)
2344 enabled = 0;
2345 ERR_pop_to_mark();
2346 EVP_PKEY_CTX_free(pctx);
2347
2348 if (enabled) {
2349 const char *sa = lu->name;
2350
2351 if (sa != NULL) {
2352 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2353 char *tmp;
2354
2355 maxretlen += SIGLEN_BUF_INCREMENT;
2356 tmp = OPENSSL_realloc(retval, maxretlen);
2357 if (tmp == NULL) {
2358 OPENSSL_free(retval);
2359 return NULL;
2360 }
2361 retval = tmp;
2362 }
2363 if (strlen(retval) > 0)
2364 OPENSSL_strlcat(retval, ":", maxretlen);
2365 OPENSSL_strlcat(retval, sa, maxretlen);
2366 } else {
2367 /* lu->name must not be NULL */
2368 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2369 }
2370 }
2371 }
2372
2373 EVP_PKEY_free(tmpkey);
2374 return retval;
2375 }
2376
2377 /* Lookup TLS signature algorithm */
2378 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2379 uint16_t sigalg)
2380 {
2381 size_t i;
2382 const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2383
2384 for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2385 if (lu->sigalg == sigalg) {
2386 if (!lu->available)
2387 return NULL;
2388 return lu;
2389 }
2390 }
2391 return NULL;
2392 }
2393
2394 /* Lookup hash: return 0 if invalid or not enabled */
2395 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2396 {
2397 const EVP_MD *md;
2398
2399 if (lu == NULL)
2400 return 0;
2401 /* lu->hash == NID_undef means no associated digest */
2402 if (lu->hash == NID_undef) {
2403 md = NULL;
2404 } else {
2405 md = ssl_md(ctx, lu->hash_idx);
2406 if (md == NULL)
2407 return 0;
2408 }
2409 if (pmd)
2410 *pmd = md;
2411 return 1;
2412 }
2413
2414 /*
2415 * Check if key is large enough to generate RSA-PSS signature.
2416 *
2417 * The key must greater than or equal to 2 * hash length + 2.
2418 * SHA512 has a hash length of 64 bytes, which is incompatible
2419 * with a 128 byte (1024 bit) key.
2420 */
2421 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
2422 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2423 const SIGALG_LOOKUP *lu)
2424 {
2425 const EVP_MD *md;
2426
2427 if (pkey == NULL)
2428 return 0;
2429 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2430 return 0;
2431 if (EVP_MD_get_size(md) <= 0)
2432 return 0;
2433 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2434 return 0;
2435 return 1;
2436 }
2437
2438 /*
2439 * Returns a signature algorithm when the peer did not send a list of supported
2440 * signature algorithms. The signature algorithm is fixed for the certificate
2441 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2442 * certificate type from |s| will be used.
2443 * Returns the signature algorithm to use, or NULL on error.
2444 */
2445 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2446 int idx)
2447 {
2448 if (idx == -1) {
2449 if (s->server) {
2450 size_t i;
2451
2452 /* Work out index corresponding to ciphersuite */
2453 for (i = 0; i < s->ssl_pkey_num; i++) {
2454 const SSL_CERT_LOOKUP *clu
2455 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2456
2457 if (clu == NULL)
2458 continue;
2459 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2460 idx = (int)i;
2461 break;
2462 }
2463 }
2464
2465 /*
2466 * Some GOST ciphersuites allow more than one signature algorithms
2467 * */
2468 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2469 int real_idx;
2470
2471 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2472 real_idx--) {
2473 if (s->cert->pkeys[real_idx].privatekey != NULL) {
2474 idx = real_idx;
2475 break;
2476 }
2477 }
2478 }
2479 /*
2480 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2481 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2482 */
2483 else if (idx == SSL_PKEY_GOST12_256) {
2484 int real_idx;
2485
2486 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2487 real_idx--) {
2488 if (s->cert->pkeys[real_idx].privatekey != NULL) {
2489 idx = real_idx;
2490 break;
2491 }
2492 }
2493 }
2494 } else {
2495 idx = (int)(s->cert->key - s->cert->pkeys);
2496 }
2497 }
2498 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2499 return NULL;
2500
2501 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2502 const SIGALG_LOOKUP *lu =
2503 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2504 tls_default_sigalg[idx]);
2505
2506 if (lu == NULL)
2507 return NULL;
2508 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2509 return NULL;
2510 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2511 return NULL;
2512 return lu;
2513 }
2514 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2515 return NULL;
2516 return &legacy_rsa_sigalg;
2517 }
2518 /* Set peer sigalg based key type */
2519 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2520 {
2521 size_t idx;
2522 const SIGALG_LOOKUP *lu;
2523
2524 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2525 return 0;
2526 lu = tls1_get_legacy_sigalg(s, (int)idx);
2527 if (lu == NULL)
2528 return 0;
2529 s->s3.tmp.peer_sigalg = lu;
2530 return 1;
2531 }
2532
2533 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2534 {
2535 /*
2536 * If Suite B mode use Suite B sigalgs only, ignore any other
2537 * preferences.
2538 */
2539 switch (tls1_suiteb(s)) {
2540 case SSL_CERT_FLAG_SUITEB_128_LOS:
2541 *psigs = suiteb_sigalgs;
2542 return OSSL_NELEM(suiteb_sigalgs);
2543
2544 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2545 *psigs = suiteb_sigalgs;
2546 return 1;
2547
2548 case SSL_CERT_FLAG_SUITEB_192_LOS:
2549 *psigs = suiteb_sigalgs + 1;
2550 return 1;
2551 }
2552 /*
2553 * We use client_sigalgs (if not NULL) if we're a server
2554 * and sending a certificate request or if we're a client and
2555 * determining which shared algorithm to use.
2556 */
2557 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2558 *psigs = s->cert->client_sigalgs;
2559 return s->cert->client_sigalgslen;
2560 } else if (s->cert->conf_sigalgs) {
2561 *psigs = s->cert->conf_sigalgs;
2562 return s->cert->conf_sigalgslen;
2563 } else {
2564 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2565 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2566 }
2567 }
2568
2569 /*
2570 * Called by servers only. Checks that we have a sig alg that supports the
2571 * specified EC curve.
2572 */
2573 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2574 {
2575 const uint16_t *sigs;
2576 size_t siglen, i;
2577
2578 if (s->cert->conf_sigalgs) {
2579 sigs = s->cert->conf_sigalgs;
2580 siglen = s->cert->conf_sigalgslen;
2581 } else {
2582 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2583 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2584 }
2585
2586 for (i = 0; i < siglen; i++) {
2587 const SIGALG_LOOKUP *lu =
2588 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2589
2590 if (lu == NULL)
2591 continue;
2592 if (lu->sig == EVP_PKEY_EC
2593 && lu->curve != NID_undef
2594 && curve == lu->curve)
2595 return 1;
2596 }
2597
2598 return 0;
2599 }
2600
2601 /*
2602 * Return the number of security bits for the signature algorithm, or 0 on
2603 * error.
2604 */
2605 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2606 {
2607 const EVP_MD *md = NULL;
2608 int secbits = 0;
2609
2610 if (!tls1_lookup_md(ctx, lu, &md))
2611 return 0;
2612 if (md != NULL)
2613 {
2614 int md_type = EVP_MD_get_type(md);
2615
2616 /* Security bits: half digest bits */
2617 secbits = EVP_MD_get_size(md) * 4;
2618 if (secbits <= 0)
2619 return 0;
2620 /*
2621 * SHA1 and MD5 are known to be broken. Reduce security bits so that
2622 * they're no longer accepted at security level 1. The real values don't
2623 * really matter as long as they're lower than 80, which is our
2624 * security level 1.
2625 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2626 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2627 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2628 * puts a chosen-prefix attack for MD5 at 2^39.
2629 */
2630 if (md_type == NID_sha1)
2631 secbits = 64;
2632 else if (md_type == NID_md5_sha1)
2633 secbits = 67;
2634 else if (md_type == NID_md5)
2635 secbits = 39;
2636 } else {
2637 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2638 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2639 secbits = 128;
2640 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2641 secbits = 224;
2642 }
2643 /*
2644 * For provider-based sigalgs we have secbits information available
2645 * in the (provider-loaded) sigalg_list structure
2646 */
2647 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2648 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2649 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2650 }
2651 return secbits;
2652 }
2653
2654 static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2655 {
2656 int minversion, maxversion;
2657 int minproto, maxproto;
2658
2659 if (!lu->available)
2660 return 0;
2661
2662 if (SSL_CONNECTION_IS_DTLS(sc)) {
2663 if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2664 minproto = sc->min_proto_version;
2665 maxproto = sc->max_proto_version;
2666 } else {
2667 maxproto = minproto = sc->version;
2668 }
2669 minversion = lu->mindtls;
2670 maxversion = lu->maxdtls;
2671 } else {
2672 if (sc->ssl.method->version == TLS_ANY_VERSION) {
2673 minproto = sc->min_proto_version;
2674 maxproto = sc->max_proto_version;
2675 } else {
2676 maxproto = minproto = sc->version;
2677 }
2678 minversion = lu->mintls;
2679 maxversion = lu->maxtls;
2680 }
2681 if (minversion == -1 || maxversion == -1
2682 || (minversion != 0 && maxproto != 0
2683 && ssl_version_cmp(sc, minversion, maxproto) > 0)
2684 || (maxversion != 0 && minproto != 0
2685 && ssl_version_cmp(sc, maxversion, minproto) < 0)
2686 || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2687 return 0;
2688 return 1;
2689 }
2690
2691 /*
2692 * Check signature algorithm is consistent with sent supported signature
2693 * algorithms and if so set relevant digest and signature scheme in
2694 * s.
2695 */
2696 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2697 {
2698 const uint16_t *sent_sigs;
2699 const EVP_MD *md = NULL;
2700 char sigalgstr[2];
2701 size_t sent_sigslen, i, cidx;
2702 int pkeyid = -1;
2703 const SIGALG_LOOKUP *lu;
2704 int secbits = 0;
2705
2706 pkeyid = EVP_PKEY_get_id(pkey);
2707
2708 if (SSL_CONNECTION_IS_TLS13(s)) {
2709 /* Disallow DSA for TLS 1.3 */
2710 if (pkeyid == EVP_PKEY_DSA) {
2711 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2712 return 0;
2713 }
2714 /* Only allow PSS for TLS 1.3 */
2715 if (pkeyid == EVP_PKEY_RSA)
2716 pkeyid = EVP_PKEY_RSA_PSS;
2717 }
2718
2719 /* Is this code point available and compatible with the protocol */
2720 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2721 if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2722 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2723 return 0;
2724 }
2725
2726 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2727 if (pkeyid == EVP_PKEY_KEYMGMT)
2728 pkeyid = lu->sig;
2729
2730 /* Should never happen */
2731 if (pkeyid == -1) {
2732 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2733 return -1;
2734 }
2735
2736 /*
2737 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2738 * is consistent with signature: RSA keys can be used for RSA-PSS
2739 */
2740 if ((SSL_CONNECTION_IS_TLS13(s)
2741 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2742 || (pkeyid != lu->sig
2743 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2744 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2745 return 0;
2746 }
2747 /* Check the sigalg is consistent with the key OID */
2748 if (!ssl_cert_lookup_by_nid(
2749 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2750 &cidx, SSL_CONNECTION_GET_CTX(s))
2751 || lu->sig_idx != (int)cidx) {
2752 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2753 return 0;
2754 }
2755
2756 if (pkeyid == EVP_PKEY_EC) {
2757
2758 /* Check point compression is permitted */
2759 if (!tls1_check_pkey_comp(s, pkey)) {
2760 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2761 SSL_R_ILLEGAL_POINT_COMPRESSION);
2762 return 0;
2763 }
2764
2765 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2766 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2767 int curve = ssl_get_EC_curve_nid(pkey);
2768
2769 if (lu->curve != NID_undef && curve != lu->curve) {
2770 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2771 return 0;
2772 }
2773 }
2774 if (!SSL_CONNECTION_IS_TLS13(s)) {
2775 /* Check curve matches extensions */
2776 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2777 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2778 return 0;
2779 }
2780 if (tls1_suiteb(s)) {
2781 /* Check sigalg matches a permissible Suite B value */
2782 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2783 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2784 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2785 SSL_R_WRONG_SIGNATURE_TYPE);
2786 return 0;
2787 }
2788 }
2789 }
2790 } else if (tls1_suiteb(s)) {
2791 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2792 return 0;
2793 }
2794
2795 /* Check signature matches a type we sent */
2796 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2797 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2798 if (sig == *sent_sigs)
2799 break;
2800 }
2801 /* Allow fallback to SHA1 if not strict mode */
2802 if (i == sent_sigslen && (lu->hash != NID_sha1
2803 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2804 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2805 return 0;
2806 }
2807 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2808 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2809 return 0;
2810 }
2811 /*
2812 * Make sure security callback allows algorithm. For historical
2813 * reasons we have to pass the sigalg as a two byte char array.
2814 */
2815 sigalgstr[0] = (sig >> 8) & 0xff;
2816 sigalgstr[1] = sig & 0xff;
2817 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2818 if (secbits == 0 ||
2819 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2820 md != NULL ? EVP_MD_get_type(md) : NID_undef,
2821 (void *)sigalgstr)) {
2822 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2823 return 0;
2824 }
2825 /* Store the sigalg the peer uses */
2826 s->s3.tmp.peer_sigalg = lu;
2827 return 1;
2828 }
2829
2830 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2831 {
2832 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2833
2834 if (sc == NULL)
2835 return 0;
2836
2837 if (sc->s3.tmp.peer_sigalg == NULL)
2838 return 0;
2839 *pnid = sc->s3.tmp.peer_sigalg->sig;
2840 return 1;
2841 }
2842
2843 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2844 {
2845 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2846
2847 if (sc == NULL)
2848 return 0;
2849
2850 if (sc->s3.tmp.sigalg == NULL)
2851 return 0;
2852 *pnid = sc->s3.tmp.sigalg->sig;
2853 return 1;
2854 }
2855
2856 /*
2857 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2858 * supported, doesn't appear in supported signature algorithms, isn't supported
2859 * by the enabled protocol versions or by the security level.
2860 *
2861 * This function should only be used for checking which ciphers are supported
2862 * by the client.
2863 *
2864 * Call ssl_cipher_disabled() to check that it's enabled or not.
2865 */
2866 int ssl_set_client_disabled(SSL_CONNECTION *s)
2867 {
2868 s->s3.tmp.mask_a = 0;
2869 s->s3.tmp.mask_k = 0;
2870 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2871 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2872 &s->s3.tmp.max_ver, NULL) != 0)
2873 return 0;
2874 #ifndef OPENSSL_NO_PSK
2875 /* with PSK there must be client callback set */
2876 if (!s->psk_client_callback) {
2877 s->s3.tmp.mask_a |= SSL_aPSK;
2878 s->s3.tmp.mask_k |= SSL_PSK;
2879 }
2880 #endif /* OPENSSL_NO_PSK */
2881 #ifndef OPENSSL_NO_SRP
2882 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2883 s->s3.tmp.mask_a |= SSL_aSRP;
2884 s->s3.tmp.mask_k |= SSL_kSRP;
2885 }
2886 #endif
2887 return 1;
2888 }
2889
2890 /*
2891 * ssl_cipher_disabled - check that a cipher is disabled or not
2892 * @s: SSL connection that you want to use the cipher on
2893 * @c: cipher to check
2894 * @op: Security check that you want to do
2895 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2896 *
2897 * Returns 1 when it's disabled, 0 when enabled.
2898 */
2899 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2900 int op, int ecdhe)
2901 {
2902 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2903 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2904
2905 if (c->algorithm_mkey & s->s3.tmp.mask_k
2906 || c->algorithm_auth & s->s3.tmp.mask_a)
2907 return 1;
2908 if (s->s3.tmp.max_ver == 0)
2909 return 1;
2910
2911 if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2912 /* For QUIC, only allow these ciphersuites. */
2913 switch (SSL_CIPHER_get_id(c)) {
2914 case TLS1_3_CK_AES_128_GCM_SHA256:
2915 case TLS1_3_CK_AES_256_GCM_SHA384:
2916 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2917 break;
2918 default:
2919 return 1;
2920 }
2921
2922 /*
2923 * For historical reasons we will allow ECHDE to be selected by a server
2924 * in SSLv3 if we are a client
2925 */
2926 if (minversion == TLS1_VERSION
2927 && ecdhe
2928 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2929 minversion = SSL3_VERSION;
2930
2931 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2932 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2933 return 1;
2934
2935 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2936 }
2937
2938 int tls_use_ticket(SSL_CONNECTION *s)
2939 {
2940 if ((s->options & SSL_OP_NO_TICKET))
2941 return 0;
2942 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2943 }
2944
2945 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2946 {
2947 size_t i;
2948
2949 /* Clear any shared signature algorithms */
2950 OPENSSL_free(s->shared_sigalgs);
2951 s->shared_sigalgs = NULL;
2952 s->shared_sigalgslen = 0;
2953
2954 /* Clear certificate validity flags */
2955 if (s->s3.tmp.valid_flags)
2956 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2957 else
2958 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2959 if (s->s3.tmp.valid_flags == NULL)
2960 return 0;
2961 /*
2962 * If peer sent no signature algorithms check to see if we support
2963 * the default algorithm for each certificate type
2964 */
2965 if (s->s3.tmp.peer_cert_sigalgs == NULL
2966 && s->s3.tmp.peer_sigalgs == NULL) {
2967 const uint16_t *sent_sigs;
2968 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2969
2970 for (i = 0; i < s->ssl_pkey_num; i++) {
2971 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, (int)i);
2972 size_t j;
2973
2974 if (lu == NULL)
2975 continue;
2976 /* Check default matches a type we sent */
2977 for (j = 0; j < sent_sigslen; j++) {
2978 if (lu->sigalg == sent_sigs[j]) {
2979 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2980 break;
2981 }
2982 }
2983 }
2984 return 1;
2985 }
2986
2987 if (!tls1_process_sigalgs(s)) {
2988 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2989 return 0;
2990 }
2991 if (s->shared_sigalgs != NULL)
2992 return 1;
2993
2994 /* Fatal error if no shared signature algorithms */
2995 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2996 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2997 return 0;
2998 }
2999
3000 /*-
3001 * Gets the ticket information supplied by the client if any.
3002 *
3003 * hello: The parsed ClientHello data
3004 * ret: (output) on return, if a ticket was decrypted, then this is set to
3005 * point to the resulting session.
3006 */
3007 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3008 CLIENTHELLO_MSG *hello,
3009 SSL_SESSION **ret)
3010 {
3011 size_t size;
3012 RAW_EXTENSION *ticketext;
3013
3014 *ret = NULL;
3015 s->ext.ticket_expected = 0;
3016
3017 /*
3018 * If tickets disabled or not supported by the protocol version
3019 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3020 * resumption.
3021 */
3022 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3023 return SSL_TICKET_NONE;
3024
3025 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3026 if (!ticketext->present)
3027 return SSL_TICKET_NONE;
3028
3029 size = PACKET_remaining(&ticketext->data);
3030
3031 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3032 hello->session_id, hello->session_id_len, ret);
3033 }
3034
3035 /*-
3036 * tls_decrypt_ticket attempts to decrypt a session ticket.
3037 *
3038 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3039 * expecting a pre-shared key ciphersuite, in which case we have no use for
3040 * session tickets and one will never be decrypted, nor will
3041 * s->ext.ticket_expected be set to 1.
3042 *
3043 * Side effects:
3044 * Sets s->ext.ticket_expected to 1 if the server will have to issue
3045 * a new session ticket to the client because the client indicated support
3046 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3047 * a session ticket or we couldn't use the one it gave us, or if
3048 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3049 * Otherwise, s->ext.ticket_expected is set to 0.
3050 *
3051 * etick: points to the body of the session ticket extension.
3052 * eticklen: the length of the session tickets extension.
3053 * sess_id: points at the session ID.
3054 * sesslen: the length of the session ID.
3055 * psess: (output) on return, if a ticket was decrypted, then this is set to
3056 * point to the resulting session.
3057 */
3058 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3059 const unsigned char *etick,
3060 size_t eticklen,
3061 const unsigned char *sess_id,
3062 size_t sesslen, SSL_SESSION **psess)
3063 {
3064 SSL_SESSION *sess = NULL;
3065 unsigned char *sdec;
3066 const unsigned char *p;
3067 int slen, ivlen, renew_ticket = 0, declen;
3068 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3069 size_t mlen;
3070 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3071 SSL_HMAC *hctx = NULL;
3072 EVP_CIPHER_CTX *ctx = NULL;
3073 SSL_CTX *tctx = s->session_ctx;
3074 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3075
3076 if (eticklen == 0) {
3077 /*
3078 * The client will accept a ticket but doesn't currently have
3079 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3080 */
3081 ret = SSL_TICKET_EMPTY;
3082 goto end;
3083 }
3084 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3085 /*
3086 * Indicate that the ticket couldn't be decrypted rather than
3087 * generating the session from ticket now, trigger
3088 * abbreviated handshake based on external mechanism to
3089 * calculate the master secret later.
3090 */
3091 ret = SSL_TICKET_NO_DECRYPT;
3092 goto end;
3093 }
3094
3095 /* Need at least keyname + iv */
3096 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3097 ret = SSL_TICKET_NO_DECRYPT;
3098 goto end;
3099 }
3100
3101 /* Initialize session ticket encryption and HMAC contexts */
3102 hctx = ssl_hmac_new(tctx);
3103 if (hctx == NULL) {
3104 ret = SSL_TICKET_FATAL_ERR_MALLOC;
3105 goto end;
3106 }
3107 ctx = EVP_CIPHER_CTX_new();
3108 if (ctx == NULL) {
3109 ret = SSL_TICKET_FATAL_ERR_MALLOC;
3110 goto end;
3111 }
3112 #ifndef OPENSSL_NO_DEPRECATED_3_0
3113 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3114 #else
3115 if (tctx->ext.ticket_key_evp_cb != NULL)
3116 #endif
3117 {
3118 unsigned char *nctick = (unsigned char *)etick;
3119 int rv = 0;
3120
3121 if (tctx->ext.ticket_key_evp_cb != NULL)
3122 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3123 nctick,
3124 nctick + TLSEXT_KEYNAME_LENGTH,
3125 ctx,
3126 ssl_hmac_get0_EVP_MAC_CTX(hctx),
3127 0);
3128 #ifndef OPENSSL_NO_DEPRECATED_3_0
3129 else if (tctx->ext.ticket_key_cb != NULL)
3130 /* if 0 is returned, write an empty ticket */
3131 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3132 nctick + TLSEXT_KEYNAME_LENGTH,
3133 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3134 #endif
3135 if (rv < 0) {
3136 ret = SSL_TICKET_FATAL_ERR_OTHER;
3137 goto end;
3138 }
3139 if (rv == 0) {
3140 ret = SSL_TICKET_NO_DECRYPT;
3141 goto end;
3142 }
3143 if (rv == 2)
3144 renew_ticket = 1;
3145 } else {
3146 EVP_CIPHER *aes256cbc = NULL;
3147
3148 /* Check key name matches */
3149 if (memcmp(etick, tctx->ext.tick_key_name,
3150 TLSEXT_KEYNAME_LENGTH) != 0) {
3151 ret = SSL_TICKET_NO_DECRYPT;
3152 goto end;
3153 }
3154
3155 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3156 sctx->propq);
3157 if (aes256cbc == NULL
3158 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3159 sizeof(tctx->ext.secure->tick_hmac_key),
3160 "SHA256") <= 0
3161 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3162 tctx->ext.secure->tick_aes_key,
3163 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3164 EVP_CIPHER_free(aes256cbc);
3165 ret = SSL_TICKET_FATAL_ERR_OTHER;
3166 goto end;
3167 }
3168 EVP_CIPHER_free(aes256cbc);
3169 if (SSL_CONNECTION_IS_TLS13(s))
3170 renew_ticket = 1;
3171 }
3172 /*
3173 * Attempt to process session ticket, first conduct sanity and integrity
3174 * checks on ticket.
3175 */
3176 mlen = ssl_hmac_size(hctx);
3177 if (mlen == 0) {
3178 ret = SSL_TICKET_FATAL_ERR_OTHER;
3179 goto end;
3180 }
3181
3182 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3183 if (ivlen < 0) {
3184 ret = SSL_TICKET_FATAL_ERR_OTHER;
3185 goto end;
3186 }
3187
3188 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3189 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3190 ret = SSL_TICKET_NO_DECRYPT;
3191 goto end;
3192 }
3193 eticklen -= mlen;
3194 /* Check HMAC of encrypted ticket */
3195 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3196 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3197 ret = SSL_TICKET_FATAL_ERR_OTHER;
3198 goto end;
3199 }
3200
3201 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3202 ret = SSL_TICKET_NO_DECRYPT;
3203 goto end;
3204 }
3205 /* Attempt to decrypt session data */
3206 /* Move p after IV to start of encrypted ticket, update length */
3207 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3208 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3209 sdec = OPENSSL_malloc(eticklen);
3210 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3211 (int)eticklen) <= 0) {
3212 OPENSSL_free(sdec);
3213 ret = SSL_TICKET_FATAL_ERR_OTHER;
3214 goto end;
3215 }
3216 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3217 OPENSSL_free(sdec);
3218 ret = SSL_TICKET_NO_DECRYPT;
3219 goto end;
3220 }
3221 slen += declen;
3222 p = sdec;
3223
3224 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3225 slen -= (int)(p - sdec);
3226 OPENSSL_free(sdec);
3227 if (sess) {
3228 /* Some additional consistency checks */
3229 if (slen != 0) {
3230 SSL_SESSION_free(sess);
3231 sess = NULL;
3232 ret = SSL_TICKET_NO_DECRYPT;
3233 goto end;
3234 }
3235 /*
3236 * The session ID, if non-empty, is used by some clients to detect
3237 * that the ticket has been accepted. So we copy it to the session
3238 * structure. If it is empty set length to zero as required by
3239 * standard.
3240 */
3241 if (sesslen) {
3242 memcpy(sess->session_id, sess_id, sesslen);
3243 sess->session_id_length = sesslen;
3244 }
3245 if (renew_ticket)
3246 ret = SSL_TICKET_SUCCESS_RENEW;
3247 else
3248 ret = SSL_TICKET_SUCCESS;
3249 goto end;
3250 }
3251 ERR_clear_error();
3252 /*
3253 * For session parse failure, indicate that we need to send a new ticket.
3254 */
3255 ret = SSL_TICKET_NO_DECRYPT;
3256
3257 end:
3258 EVP_CIPHER_CTX_free(ctx);
3259 ssl_hmac_free(hctx);
3260
3261 /*
3262 * If set, the decrypt_ticket_cb() is called unless a fatal error was
3263 * detected above. The callback is responsible for checking |ret| before it
3264 * performs any action
3265 */
3266 if (s->session_ctx->decrypt_ticket_cb != NULL
3267 && (ret == SSL_TICKET_EMPTY
3268 || ret == SSL_TICKET_NO_DECRYPT
3269 || ret == SSL_TICKET_SUCCESS
3270 || ret == SSL_TICKET_SUCCESS_RENEW)) {
3271 size_t keyname_len = eticklen;
3272 int retcb;
3273
3274 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3275 keyname_len = TLSEXT_KEYNAME_LENGTH;
3276 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3277 sess, etick, keyname_len,
3278 ret,
3279 s->session_ctx->ticket_cb_data);
3280 switch (retcb) {
3281 case SSL_TICKET_RETURN_ABORT:
3282 ret = SSL_TICKET_FATAL_ERR_OTHER;
3283 break;
3284
3285 case SSL_TICKET_RETURN_IGNORE:
3286 ret = SSL_TICKET_NONE;
3287 SSL_SESSION_free(sess);
3288 sess = NULL;
3289 break;
3290
3291 case SSL_TICKET_RETURN_IGNORE_RENEW:
3292 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3293 ret = SSL_TICKET_NO_DECRYPT;
3294 /* else the value of |ret| will already do the right thing */
3295 SSL_SESSION_free(sess);
3296 sess = NULL;
3297 break;
3298
3299 case SSL_TICKET_RETURN_USE:
3300 case SSL_TICKET_RETURN_USE_RENEW:
3301 if (ret != SSL_TICKET_SUCCESS
3302 && ret != SSL_TICKET_SUCCESS_RENEW)
3303 ret = SSL_TICKET_FATAL_ERR_OTHER;
3304 else if (retcb == SSL_TICKET_RETURN_USE)
3305 ret = SSL_TICKET_SUCCESS;
3306 else
3307 ret = SSL_TICKET_SUCCESS_RENEW;
3308 break;
3309
3310 default:
3311 ret = SSL_TICKET_FATAL_ERR_OTHER;
3312 }
3313 }
3314
3315 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3316 switch (ret) {
3317 case SSL_TICKET_NO_DECRYPT:
3318 case SSL_TICKET_SUCCESS_RENEW:
3319 case SSL_TICKET_EMPTY:
3320 s->ext.ticket_expected = 1;
3321 }
3322 }
3323
3324 *psess = sess;
3325
3326 return ret;
3327 }
3328
3329 /* Check to see if a signature algorithm is allowed */
3330 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3331 const SIGALG_LOOKUP *lu)
3332 {
3333 unsigned char sigalgstr[2];
3334 int secbits;
3335
3336 if (lu == NULL || !lu->available)
3337 return 0;
3338 /* DSA is not allowed in TLS 1.3 */
3339 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3340 return 0;
3341 /*
3342 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3343 * spec
3344 */
3345 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3346 && s->s3.tmp.min_ver >= TLS1_3_VERSION
3347 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3348 || lu->hash_idx == SSL_MD_MD5_IDX
3349 || lu->hash_idx == SSL_MD_SHA224_IDX))
3350 return 0;
3351
3352 /* See if public key algorithm allowed */
3353 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3354 return 0;
3355
3356 if (lu->sig == NID_id_GostR3410_2012_256
3357 || lu->sig == NID_id_GostR3410_2012_512
3358 || lu->sig == NID_id_GostR3410_2001) {
3359 /* We never allow GOST sig algs on the server with TLSv1.3 */
3360 if (s->server && SSL_CONNECTION_IS_TLS13(s))
3361 return 0;
3362 if (!s->server
3363 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3364 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3365 int i, num;
3366 STACK_OF(SSL_CIPHER) *sk;
3367
3368 /*
3369 * We're a client that could negotiate TLSv1.3. We only allow GOST
3370 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3371 * ciphersuites enabled.
3372 */
3373
3374 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3375 return 0;
3376
3377 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3378 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3379 for (i = 0; i < num; i++) {
3380 const SSL_CIPHER *c;
3381
3382 c = sk_SSL_CIPHER_value(sk, i);
3383 /* Skip disabled ciphers */
3384 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3385 continue;
3386
3387 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3388 break;
3389 }
3390 if (i == num)
3391 return 0;
3392 }
3393 }
3394
3395 /* Finally see if security callback allows it */
3396 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3397 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3398 sigalgstr[1] = lu->sigalg & 0xff;
3399 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3400 }
3401
3402 /*
3403 * Get a mask of disabled public key algorithms based on supported signature
3404 * algorithms. For example if no signature algorithm supports RSA then RSA is
3405 * disabled.
3406 */
3407
3408 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3409 {
3410 const uint16_t *sigalgs;
3411 size_t i, sigalgslen;
3412 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3413 /*
3414 * Go through all signature algorithms seeing if we support any
3415 * in disabled_mask.
3416 */
3417 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3418 for (i = 0; i < sigalgslen; i++, sigalgs++) {
3419 const SIGALG_LOOKUP *lu =
3420 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3421 const SSL_CERT_LOOKUP *clu;
3422
3423 if (lu == NULL)
3424 continue;
3425
3426 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3427 SSL_CONNECTION_GET_CTX(s));
3428 if (clu == NULL)
3429 continue;
3430
3431 /* If algorithm is disabled see if we can enable it */
3432 if ((clu->amask & disabled_mask) != 0
3433 && tls12_sigalg_allowed(s, op, lu))
3434 disabled_mask &= ~clu->amask;
3435 }
3436 *pmask_a |= disabled_mask;
3437 }
3438
3439 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3440 const uint16_t *psig, size_t psiglen)
3441 {
3442 size_t i;
3443 int rv = 0;
3444
3445 for (i = 0; i < psiglen; i++, psig++) {
3446 const SIGALG_LOOKUP *lu =
3447 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3448
3449 if (lu == NULL || !tls_sigalg_compat(s, lu))
3450 continue;
3451 if (!WPACKET_put_bytes_u16(pkt, *psig))
3452 return 0;
3453 /*
3454 * If TLS 1.3 must have at least one valid TLS 1.3 message
3455 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3456 */
3457 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3458 || (lu->sig != EVP_PKEY_RSA
3459 && lu->hash != NID_sha1
3460 && lu->hash != NID_sha224)))
3461 rv = 1;
3462 }
3463 if (rv == 0)
3464 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3465 return rv;
3466 }
3467
3468 /* Given preference and allowed sigalgs set shared sigalgs */
3469 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3470 const SIGALG_LOOKUP **shsig,
3471 const uint16_t *pref, size_t preflen,
3472 const uint16_t *allow, size_t allowlen)
3473 {
3474 const uint16_t *ptmp, *atmp;
3475 size_t i, j, nmatch = 0;
3476 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3477 const SIGALG_LOOKUP *lu =
3478 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3479
3480 /* Skip disabled hashes or signature algorithms */
3481 if (lu == NULL
3482 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3483 continue;
3484 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3485 if (*ptmp == *atmp) {
3486 nmatch++;
3487 if (shsig)
3488 *shsig++ = lu;
3489 break;
3490 }
3491 }
3492 }
3493 return nmatch;
3494 }
3495
3496 /* Set shared signature algorithms for SSL structures */
3497 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3498 {
3499 const uint16_t *pref, *allow, *conf;
3500 size_t preflen, allowlen, conflen;
3501 size_t nmatch;
3502 const SIGALG_LOOKUP **salgs = NULL;
3503 CERT *c = s->cert;
3504 unsigned int is_suiteb = tls1_suiteb(s);
3505
3506 OPENSSL_free(s->shared_sigalgs);
3507 s->shared_sigalgs = NULL;
3508 s->shared_sigalgslen = 0;
3509 /* If client use client signature algorithms if not NULL */
3510 if (!s->server && c->client_sigalgs && !is_suiteb) {
3511 conf = c->client_sigalgs;
3512 conflen = c->client_sigalgslen;
3513 } else if (c->conf_sigalgs && !is_suiteb) {
3514 conf = c->conf_sigalgs;
3515 conflen = c->conf_sigalgslen;
3516 } else
3517 conflen = tls12_get_psigalgs(s, 0, &conf);
3518 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3519 pref = conf;
3520 preflen = conflen;
3521 allow = s->s3.tmp.peer_sigalgs;
3522 allowlen = s->s3.tmp.peer_sigalgslen;
3523 } else {
3524 allow = conf;
3525 allowlen = conflen;
3526 pref = s->s3.tmp.peer_sigalgs;
3527 preflen = s->s3.tmp.peer_sigalgslen;
3528 }
3529 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3530 if (nmatch) {
3531 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3532 return 0;
3533 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3534 } else {
3535 salgs = NULL;
3536 }
3537 s->shared_sigalgs = salgs;
3538 s->shared_sigalgslen = nmatch;
3539 return 1;
3540 }
3541
3542 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3543 {
3544 unsigned int stmp;
3545 size_t size, i;
3546 uint16_t *buf;
3547
3548 size = PACKET_remaining(pkt);
3549
3550 /* Invalid data length */
3551 if (size == 0 || (size & 1) != 0)
3552 return 0;
3553
3554 size >>= 1;
3555
3556 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3557 return 0;
3558 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3559 buf[i] = stmp;
3560
3561 if (i != size) {
3562 OPENSSL_free(buf);
3563 return 0;
3564 }
3565
3566 OPENSSL_free(*pdest);
3567 *pdest = buf;
3568 *pdestlen = size;
3569
3570 return 1;
3571 }
3572
3573 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3574 {
3575 /* Extension ignored for inappropriate versions */
3576 if (!SSL_USE_SIGALGS(s))
3577 return 1;
3578 /* Should never happen */
3579 if (s->cert == NULL)
3580 return 0;
3581
3582 if (cert)
3583 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3584 &s->s3.tmp.peer_cert_sigalgslen);
3585 else
3586 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3587 &s->s3.tmp.peer_sigalgslen);
3588
3589 }
3590
3591 /* Set preferred digest for each key type */
3592
3593 int tls1_process_sigalgs(SSL_CONNECTION *s)
3594 {
3595 size_t i;
3596 uint32_t *pvalid = s->s3.tmp.valid_flags;
3597
3598 if (!tls1_set_shared_sigalgs(s))
3599 return 0;
3600
3601 for (i = 0; i < s->ssl_pkey_num; i++)
3602 pvalid[i] = 0;
3603
3604 for (i = 0; i < s->shared_sigalgslen; i++) {
3605 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3606 int idx = sigptr->sig_idx;
3607
3608 /* Ignore PKCS1 based sig algs in TLSv1.3 */
3609 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3610 continue;
3611 /* If not disabled indicate we can explicitly sign */
3612 if (pvalid[idx] == 0
3613 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3614 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3615 }
3616 return 1;
3617 }
3618
3619 int SSL_get_sigalgs(SSL *s, int idx,
3620 int *psign, int *phash, int *psignhash,
3621 unsigned char *rsig, unsigned char *rhash)
3622 {
3623 uint16_t *psig;
3624 size_t numsigalgs;
3625 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3626
3627 if (sc == NULL)
3628 return 0;
3629
3630 psig = sc->s3.tmp.peer_sigalgs;
3631 numsigalgs = sc->s3.tmp.peer_sigalgslen;
3632
3633 if (psig == NULL || numsigalgs > INT_MAX)
3634 return 0;
3635 if (idx >= 0) {
3636 const SIGALG_LOOKUP *lu;
3637
3638 if (idx >= (int)numsigalgs)
3639 return 0;
3640 psig += idx;
3641 if (rhash != NULL)
3642 *rhash = (unsigned char)((*psig >> 8) & 0xff);
3643 if (rsig != NULL)
3644 *rsig = (unsigned char)(*psig & 0xff);
3645 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3646 if (psign != NULL)
3647 *psign = lu != NULL ? lu->sig : NID_undef;
3648 if (phash != NULL)
3649 *phash = lu != NULL ? lu->hash : NID_undef;
3650 if (psignhash != NULL)
3651 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3652 }
3653 return (int)numsigalgs;
3654 }
3655
3656 int SSL_get_shared_sigalgs(SSL *s, int idx,
3657 int *psign, int *phash, int *psignhash,
3658 unsigned char *rsig, unsigned char *rhash)
3659 {
3660 const SIGALG_LOOKUP *shsigalgs;
3661 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3662
3663 if (sc == NULL)
3664 return 0;
3665
3666 if (sc->shared_sigalgs == NULL
3667 || idx < 0
3668 || idx >= (int)sc->shared_sigalgslen
3669 || sc->shared_sigalgslen > INT_MAX)
3670 return 0;
3671 shsigalgs = sc->shared_sigalgs[idx];
3672 if (phash != NULL)
3673 *phash = shsigalgs->hash;
3674 if (psign != NULL)
3675 *psign = shsigalgs->sig;
3676 if (psignhash != NULL)
3677 *psignhash = shsigalgs->sigandhash;
3678 if (rsig != NULL)
3679 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3680 if (rhash != NULL)
3681 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3682 return (int)sc->shared_sigalgslen;
3683 }
3684
3685 /* Maximum possible number of unique entries in sigalgs array */
3686 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3687
3688 typedef struct {
3689 size_t sigalgcnt;
3690 /* TLSEXT_SIGALG_XXX values */
3691 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3692 SSL_CTX *ctx;
3693 } sig_cb_st;
3694
3695 static void get_sigorhash(int *psig, int *phash, const char *str)
3696 {
3697 if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3698 *psig = EVP_PKEY_RSA;
3699 } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3700 || OPENSSL_strcasecmp(str, "PSS") == 0) {
3701 *psig = EVP_PKEY_RSA_PSS;
3702 } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3703 *psig = EVP_PKEY_DSA;
3704 } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3705 *psig = EVP_PKEY_EC;
3706 } else {
3707 *phash = OBJ_sn2nid(str);
3708 if (*phash == NID_undef)
3709 *phash = OBJ_ln2nid(str);
3710 }
3711 }
3712 /* Maximum length of a signature algorithm string component */
3713 #define TLS_MAX_SIGSTRING_LEN 40
3714
3715 static int sig_cb(const char *elem, int len, void *arg)
3716 {
3717 sig_cb_st *sarg = arg;
3718 size_t i = 0;
3719 const SIGALG_LOOKUP *s;
3720 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3721 const char *iana, *alias;
3722 int sig_alg = NID_undef, hash_alg = NID_undef;
3723 int ignore_unknown = 0;
3724
3725 if (elem == NULL)
3726 return 0;
3727 if (elem[0] == '?') {
3728 ignore_unknown = 1;
3729 ++elem;
3730 --len;
3731 }
3732 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3733 return 0;
3734 if (len > (int)(sizeof(etmp) - 1))
3735 return 0;
3736 memcpy(etmp, elem, len);
3737 etmp[len] = 0;
3738 p = strchr(etmp, '+');
3739 /*
3740 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3741 * if there's no '+' in the provided name, look for the new-style combined
3742 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3743 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3744 * rsa_pss_rsae_* that differ only by public key OID; in such cases
3745 * we will pick the _rsae_ variant, by virtue of them appearing earlier
3746 * in the table.
3747 */
3748 if (p == NULL) {
3749 if (sarg->ctx != NULL) {
3750 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3751 iana = sarg->ctx->sigalg_lookup_cache[i].name;
3752 alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3753 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3754 || OPENSSL_strcasecmp(etmp, iana) == 0) {
3755 /* Ignore known, but unavailable sigalgs. */
3756 if (!sarg->ctx->sigalg_lookup_cache[i].available)
3757 return 1;
3758 sarg->sigalgs[sarg->sigalgcnt++] =
3759 sarg->ctx->sigalg_lookup_cache[i].sigalg;
3760 goto found;
3761 }
3762 }
3763 } else {
3764 /* Syntax checks use the built-in sigalgs */
3765 for (i = 0, s = sigalg_lookup_tbl;
3766 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3767 iana = s->name;
3768 alias = s->name12;
3769 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3770 || OPENSSL_strcasecmp(etmp, iana) == 0) {
3771 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3772 goto found;
3773 }
3774 }
3775 }
3776 } else {
3777 *p = 0;
3778 p++;
3779 if (*p == 0)
3780 return 0;
3781 get_sigorhash(&sig_alg, &hash_alg, etmp);
3782 get_sigorhash(&sig_alg, &hash_alg, p);
3783 if (sig_alg != NID_undef && hash_alg != NID_undef) {
3784 if (sarg->ctx != NULL) {
3785 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3786 s = &sarg->ctx->sigalg_lookup_cache[i];
3787 if (s->hash == hash_alg && s->sig == sig_alg) {
3788 /* Ignore known, but unavailable sigalgs. */
3789 if (!sarg->ctx->sigalg_lookup_cache[i].available)
3790 return 1;
3791 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3792 goto found;
3793 }
3794 }
3795 } else {
3796 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3797 s = &sigalg_lookup_tbl[i];
3798 if (s->hash == hash_alg && s->sig == sig_alg) {
3799 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3800 goto found;
3801 }
3802 }
3803 }
3804 }
3805 }
3806 /* Ignore unknown algorithms if ignore_unknown */
3807 return ignore_unknown;
3808
3809 found:
3810 /* Ignore duplicates */
3811 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3812 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3813 sarg->sigalgcnt--;
3814 return 1;
3815 }
3816 }
3817 return 1;
3818 }
3819
3820 /*
3821 * Set supported signature algorithms based on a colon separated list of the
3822 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3823 */
3824 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3825 {
3826 sig_cb_st sig;
3827 sig.sigalgcnt = 0;
3828
3829 if (ctx != NULL)
3830 sig.ctx = ctx;
3831 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3832 return 0;
3833 if (sig.sigalgcnt == 0) {
3834 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3835 "No valid signature algorithms in '%s'", str);
3836 return 0;
3837 }
3838 if (c == NULL)
3839 return 1;
3840 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3841 }
3842
3843 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3844 int client)
3845 {
3846 uint16_t *sigalgs;
3847
3848 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3849 return 0;
3850 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3851
3852 if (client) {
3853 OPENSSL_free(c->client_sigalgs);
3854 c->client_sigalgs = sigalgs;
3855 c->client_sigalgslen = salglen;
3856 } else {
3857 OPENSSL_free(c->conf_sigalgs);
3858 c->conf_sigalgs = sigalgs;
3859 c->conf_sigalgslen = salglen;
3860 }
3861
3862 return 1;
3863 }
3864
3865 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3866 {
3867 uint16_t *sigalgs, *sptr;
3868 size_t i;
3869
3870 if (salglen & 1)
3871 return 0;
3872 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3873 return 0;
3874 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3875 size_t j;
3876 const SIGALG_LOOKUP *curr;
3877 int md_id = *psig_nids++;
3878 int sig_id = *psig_nids++;
3879
3880 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3881 j++, curr++) {
3882 if (curr->hash == md_id && curr->sig == sig_id) {
3883 *sptr++ = curr->sigalg;
3884 break;
3885 }
3886 }
3887
3888 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3889 goto err;
3890 }
3891
3892 if (client) {
3893 OPENSSL_free(c->client_sigalgs);
3894 c->client_sigalgs = sigalgs;
3895 c->client_sigalgslen = salglen / 2;
3896 } else {
3897 OPENSSL_free(c->conf_sigalgs);
3898 c->conf_sigalgs = sigalgs;
3899 c->conf_sigalgslen = salglen / 2;
3900 }
3901
3902 return 1;
3903
3904 err:
3905 OPENSSL_free(sigalgs);
3906 return 0;
3907 }
3908
3909 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3910 {
3911 int sig_nid, use_pc_sigalgs = 0;
3912 size_t i;
3913 const SIGALG_LOOKUP *sigalg;
3914 size_t sigalgslen;
3915
3916 /*-
3917 * RFC 8446, section 4.2.3:
3918 *
3919 * The signatures on certificates that are self-signed or certificates
3920 * that are trust anchors are not validated, since they begin a
3921 * certification path (see [RFC5280], Section 3.2). A certificate that
3922 * begins a certification path MAY use a signature algorithm that is not
3923 * advertised as being supported in the "signature_algorithms"
3924 * extension.
3925 */
3926 if (default_nid == -1 || X509_self_signed(x, 0))
3927 return 1;
3928 sig_nid = X509_get_signature_nid(x);
3929 if (default_nid)
3930 return sig_nid == default_nid ? 1 : 0;
3931
3932 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3933 /*
3934 * If we're in TLSv1.3 then we only get here if we're checking the
3935 * chain. If the peer has specified peer_cert_sigalgs then we use them
3936 * otherwise we default to normal sigalgs.
3937 */
3938 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3939 use_pc_sigalgs = 1;
3940 } else {
3941 sigalgslen = s->shared_sigalgslen;
3942 }
3943 for (i = 0; i < sigalgslen; i++) {
3944 int mdnid, pknid;
3945
3946 sigalg = use_pc_sigalgs
3947 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3948 s->s3.tmp.peer_cert_sigalgs[i])
3949 : s->shared_sigalgs[i];
3950 if (sigalg == NULL)
3951 continue;
3952 if (sig_nid == sigalg->sigandhash)
3953 return 1;
3954 if (sigalg->sig != EVP_PKEY_RSA_PSS)
3955 continue;
3956 /*
3957 * Accept RSA PKCS#1 signatures in certificates when the signature
3958 * algorithms include RSA-PSS with a matching digest algorithm.
3959 *
3960 * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3961 * points, and we're doing strict checking of the certificate chain (in
3962 * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3963 * certificates in the chain, but the TLS requirement on PSS should not
3964 * extend to certificates. Though the peer can in fact list the legacy
3965 * sigalgs for just this purpose, it is not likely that a better chain
3966 * signed with RSA-PSS is available.
3967 */
3968 if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3969 continue;
3970 if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3971 return 1;
3972 }
3973 return 0;
3974 }
3975
3976 /* Check to see if a certificate issuer name matches list of CA names */
3977 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3978 {
3979 const X509_NAME *nm;
3980 int i;
3981 nm = X509_get_issuer_name(x);
3982 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3983 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3984 return 1;
3985 }
3986 return 0;
3987 }
3988
3989 /*
3990 * Check certificate chain is consistent with TLS extensions and is usable by
3991 * server. This servers two purposes: it allows users to check chains before
3992 * passing them to the server and it allows the server to check chains before
3993 * attempting to use them.
3994 */
3995
3996 /* Flags which need to be set for a certificate when strict mode not set */
3997
3998 #define CERT_PKEY_VALID_FLAGS \
3999 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
4000 /* Strict mode flags */
4001 #define CERT_PKEY_STRICT_FLAGS \
4002 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
4003 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
4004
4005 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
4006 STACK_OF(X509) *chain, int idx)
4007 {
4008 int i;
4009 int rv = 0;
4010 int check_flags = 0, strict_mode;
4011 CERT_PKEY *cpk = NULL;
4012 CERT *c = s->cert;
4013 uint32_t *pvalid;
4014 unsigned int suiteb_flags = tls1_suiteb(s);
4015
4016 /*
4017 * Meaning of idx:
4018 * idx == -1 means SSL_check_chain() invocation
4019 * idx == -2 means checking client certificate chains
4020 * idx >= 0 means checking SSL_PKEY index
4021 *
4022 * For RPK, where there may be no cert, we ignore -1
4023 */
4024 if (idx != -1) {
4025 if (idx == -2) {
4026 cpk = c->key;
4027 idx = (int)(cpk - c->pkeys);
4028 } else
4029 cpk = c->pkeys + idx;
4030 pvalid = s->s3.tmp.valid_flags + idx;
4031 x = cpk->x509;
4032 pk = cpk->privatekey;
4033 chain = cpk->chain;
4034 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4035 if (tls12_rpk_and_privkey(s, idx)) {
4036 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4037 return 0;
4038 *pvalid = rv = CERT_PKEY_RPK;
4039 return rv;
4040 }
4041 /* If no cert or key, forget it */
4042 if (x == NULL || pk == NULL)
4043 goto end;
4044 } else {
4045 size_t certidx;
4046
4047 if (x == NULL || pk == NULL)
4048 return 0;
4049
4050 if (ssl_cert_lookup_by_pkey(pk, &certidx,
4051 SSL_CONNECTION_GET_CTX(s)) == NULL)
4052 return 0;
4053 idx = (int)certidx;
4054 pvalid = s->s3.tmp.valid_flags + idx;
4055
4056 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4057 check_flags = CERT_PKEY_STRICT_FLAGS;
4058 else
4059 check_flags = CERT_PKEY_VALID_FLAGS;
4060 strict_mode = 1;
4061 }
4062
4063 if (suiteb_flags) {
4064 int ok;
4065 if (check_flags)
4066 check_flags |= CERT_PKEY_SUITEB;
4067 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4068 if (ok == X509_V_OK)
4069 rv |= CERT_PKEY_SUITEB;
4070 else if (!check_flags)
4071 goto end;
4072 }
4073
4074 /*
4075 * Check all signature algorithms are consistent with signature
4076 * algorithms extension if TLS 1.2 or later and strict mode.
4077 */
4078 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4079 && strict_mode) {
4080 int default_nid;
4081 int rsign = 0;
4082
4083 if (s->s3.tmp.peer_cert_sigalgs != NULL
4084 || s->s3.tmp.peer_sigalgs != NULL) {
4085 default_nid = 0;
4086 /* If no sigalgs extension use defaults from RFC5246 */
4087 } else {
4088 switch (idx) {
4089 case SSL_PKEY_RSA:
4090 rsign = EVP_PKEY_RSA;
4091 default_nid = NID_sha1WithRSAEncryption;
4092 break;
4093
4094 case SSL_PKEY_DSA_SIGN:
4095 rsign = EVP_PKEY_DSA;
4096 default_nid = NID_dsaWithSHA1;
4097 break;
4098
4099 case SSL_PKEY_ECC:
4100 rsign = EVP_PKEY_EC;
4101 default_nid = NID_ecdsa_with_SHA1;
4102 break;
4103
4104 case SSL_PKEY_GOST01:
4105 rsign = NID_id_GostR3410_2001;
4106 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4107 break;
4108
4109 case SSL_PKEY_GOST12_256:
4110 rsign = NID_id_GostR3410_2012_256;
4111 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4112 break;
4113
4114 case SSL_PKEY_GOST12_512:
4115 rsign = NID_id_GostR3410_2012_512;
4116 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4117 break;
4118
4119 default:
4120 default_nid = -1;
4121 break;
4122 }
4123 }
4124 /*
4125 * If peer sent no signature algorithms extension and we have set
4126 * preferred signature algorithms check we support sha1.
4127 */
4128 if (default_nid > 0 && c->conf_sigalgs) {
4129 size_t j;
4130 const uint16_t *p = c->conf_sigalgs;
4131 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4132 const SIGALG_LOOKUP *lu =
4133 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4134
4135 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4136 break;
4137 }
4138 if (j == c->conf_sigalgslen) {
4139 if (check_flags)
4140 goto skip_sigs;
4141 else
4142 goto end;
4143 }
4144 }
4145 /* Check signature algorithm of each cert in chain */
4146 if (SSL_CONNECTION_IS_TLS13(s)) {
4147 /*
4148 * We only get here if the application has called SSL_check_chain(),
4149 * so check_flags is always set.
4150 */
4151 if (find_sig_alg(s, x, pk) != NULL)
4152 rv |= CERT_PKEY_EE_SIGNATURE;
4153 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4154 if (!check_flags)
4155 goto end;
4156 } else
4157 rv |= CERT_PKEY_EE_SIGNATURE;
4158 rv |= CERT_PKEY_CA_SIGNATURE;
4159 for (i = 0; i < sk_X509_num(chain); i++) {
4160 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4161 if (check_flags) {
4162 rv &= ~CERT_PKEY_CA_SIGNATURE;
4163 break;
4164 } else
4165 goto end;
4166 }
4167 }
4168 }
4169 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4170 else if (check_flags)
4171 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4172 skip_sigs:
4173 /* Check cert parameters are consistent */
4174 if (tls1_check_cert_param(s, x, 1))
4175 rv |= CERT_PKEY_EE_PARAM;
4176 else if (!check_flags)
4177 goto end;
4178 if (!s->server)
4179 rv |= CERT_PKEY_CA_PARAM;
4180 /* In strict mode check rest of chain too */
4181 else if (strict_mode) {
4182 rv |= CERT_PKEY_CA_PARAM;
4183 for (i = 0; i < sk_X509_num(chain); i++) {
4184 X509 *ca = sk_X509_value(chain, i);
4185 if (!tls1_check_cert_param(s, ca, 0)) {
4186 if (check_flags) {
4187 rv &= ~CERT_PKEY_CA_PARAM;
4188 break;
4189 } else
4190 goto end;
4191 }
4192 }
4193 }
4194 if (!s->server && strict_mode) {
4195 STACK_OF(X509_NAME) *ca_dn;
4196 int check_type = 0;
4197
4198 if (EVP_PKEY_is_a(pk, "RSA"))
4199 check_type = TLS_CT_RSA_SIGN;
4200 else if (EVP_PKEY_is_a(pk, "DSA"))
4201 check_type = TLS_CT_DSS_SIGN;
4202 else if (EVP_PKEY_is_a(pk, "EC"))
4203 check_type = TLS_CT_ECDSA_SIGN;
4204
4205 if (check_type) {
4206 const uint8_t *ctypes = s->s3.tmp.ctype;
4207 size_t j;
4208
4209 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4210 if (*ctypes == check_type) {
4211 rv |= CERT_PKEY_CERT_TYPE;
4212 break;
4213 }
4214 }
4215 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4216 goto end;
4217 } else {
4218 rv |= CERT_PKEY_CERT_TYPE;
4219 }
4220
4221 ca_dn = s->s3.tmp.peer_ca_names;
4222
4223 if (ca_dn == NULL
4224 || sk_X509_NAME_num(ca_dn) == 0
4225 || ssl_check_ca_name(ca_dn, x))
4226 rv |= CERT_PKEY_ISSUER_NAME;
4227 else
4228 for (i = 0; i < sk_X509_num(chain); i++) {
4229 X509 *xtmp = sk_X509_value(chain, i);
4230
4231 if (ssl_check_ca_name(ca_dn, xtmp)) {
4232 rv |= CERT_PKEY_ISSUER_NAME;
4233 break;
4234 }
4235 }
4236
4237 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4238 goto end;
4239 } else
4240 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4241
4242 if (!check_flags || (rv & check_flags) == check_flags)
4243 rv |= CERT_PKEY_VALID;
4244
4245 end:
4246
4247 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4248 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4249 else
4250 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4251
4252 /*
4253 * When checking a CERT_PKEY structure all flags are irrelevant if the
4254 * chain is invalid.
4255 */
4256 if (!check_flags) {
4257 if (rv & CERT_PKEY_VALID) {
4258 *pvalid = rv;
4259 } else {
4260 /* Preserve sign and explicit sign flag, clear rest */
4261 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4262 return 0;
4263 }
4264 }
4265 return rv;
4266 }
4267
4268 /* Set validity of certificates in an SSL structure */
4269 void tls1_set_cert_validity(SSL_CONNECTION *s)
4270 {
4271 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4272 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4273 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4274 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4275 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4276 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4277 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4278 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4279 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4280 }
4281
4282 /* User level utility function to check a chain is suitable */
4283 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4284 {
4285 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4286
4287 if (sc == NULL)
4288 return 0;
4289
4290 return tls1_check_chain(sc, x, pk, chain, -1);
4291 }
4292
4293 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4294 {
4295 EVP_PKEY *dhp = NULL;
4296 BIGNUM *p;
4297 int dh_secbits = 80, sec_level_bits;
4298 EVP_PKEY_CTX *pctx = NULL;
4299 OSSL_PARAM_BLD *tmpl = NULL;
4300 OSSL_PARAM *params = NULL;
4301 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4302
4303 if (s->cert->dh_tmp_auto != 2) {
4304 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4305 if (s->s3.tmp.new_cipher->strength_bits == 256)
4306 dh_secbits = 128;
4307 else
4308 dh_secbits = 80;
4309 } else {
4310 if (s->s3.tmp.cert == NULL)
4311 return NULL;
4312 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4313 }
4314 }
4315
4316 /* Do not pick a prime that is too weak for the current security level */
4317 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4318 NULL, NULL);
4319 if (dh_secbits < sec_level_bits)
4320 dh_secbits = sec_level_bits;
4321
4322 if (dh_secbits >= 192)
4323 p = BN_get_rfc3526_prime_8192(NULL);
4324 else if (dh_secbits >= 152)
4325 p = BN_get_rfc3526_prime_4096(NULL);
4326 else if (dh_secbits >= 128)
4327 p = BN_get_rfc3526_prime_3072(NULL);
4328 else if (dh_secbits >= 112)
4329 p = BN_get_rfc3526_prime_2048(NULL);
4330 else
4331 p = BN_get_rfc2409_prime_1024(NULL);
4332 if (p == NULL)
4333 goto err;
4334
4335 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4336 if (pctx == NULL
4337 || EVP_PKEY_fromdata_init(pctx) != 1)
4338 goto err;
4339
4340 tmpl = OSSL_PARAM_BLD_new();
4341 if (tmpl == NULL
4342 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4343 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4344 goto err;
4345
4346 params = OSSL_PARAM_BLD_to_param(tmpl);
4347 if (params == NULL
4348 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4349 goto err;
4350
4351 err:
4352 OSSL_PARAM_free(params);
4353 OSSL_PARAM_BLD_free(tmpl);
4354 EVP_PKEY_CTX_free(pctx);
4355 BN_free(p);
4356 return dhp;
4357 }
4358
4359 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4360 int op)
4361 {
4362 int secbits = -1;
4363 EVP_PKEY *pkey = X509_get0_pubkey(x);
4364
4365 if (pkey) {
4366 /*
4367 * If no parameters this will return -1 and fail using the default
4368 * security callback for any non-zero security level. This will
4369 * reject keys which omit parameters but this only affects DSA and
4370 * omission of parameters is never (?) done in practice.
4371 */
4372 secbits = EVP_PKEY_get_security_bits(pkey);
4373 }
4374 if (s != NULL)
4375 return ssl_security(s, op, secbits, 0, x);
4376 else
4377 return ssl_ctx_security(ctx, op, secbits, 0, x);
4378 }
4379
4380 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4381 int op)
4382 {
4383 /* Lookup signature algorithm digest */
4384 int secbits, nid, pknid;
4385
4386 /* Don't check signature if self signed */
4387 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4388 return 1;
4389 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4390 secbits = -1;
4391 /* If digest NID not defined use signature NID */
4392 if (nid == NID_undef)
4393 nid = pknid;
4394 if (s != NULL)
4395 return ssl_security(s, op, secbits, nid, x);
4396 else
4397 return ssl_ctx_security(ctx, op, secbits, nid, x);
4398 }
4399
4400 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4401 int is_ee)
4402 {
4403 if (vfy)
4404 vfy = SSL_SECOP_PEER;
4405 if (is_ee) {
4406 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4407 return SSL_R_EE_KEY_TOO_SMALL;
4408 } else {
4409 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4410 return SSL_R_CA_KEY_TOO_SMALL;
4411 }
4412 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4413 return SSL_R_CA_MD_TOO_WEAK;
4414 return 1;
4415 }
4416
4417 /*
4418 * Check security of a chain, if |sk| includes the end entity certificate then
4419 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4420 * one to the peer. Return values: 1 if ok otherwise error code to use
4421 */
4422
4423 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4424 X509 *x, int vfy)
4425 {
4426 int rv, start_idx, i;
4427
4428 if (x == NULL) {
4429 x = sk_X509_value(sk, 0);
4430 if (x == NULL)
4431 return ERR_R_INTERNAL_ERROR;
4432 start_idx = 1;
4433 } else
4434 start_idx = 0;
4435
4436 rv = ssl_security_cert(s, NULL, x, vfy, 1);
4437 if (rv != 1)
4438 return rv;
4439
4440 for (i = start_idx; i < sk_X509_num(sk); i++) {
4441 x = sk_X509_value(sk, i);
4442 rv = ssl_security_cert(s, NULL, x, vfy, 0);
4443 if (rv != 1)
4444 return rv;
4445 }
4446 return 1;
4447 }
4448
4449 /*
4450 * For TLS 1.2 servers check if we have a certificate which can be used
4451 * with the signature algorithm "lu" and return index of certificate.
4452 */
4453
4454 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4455 const SIGALG_LOOKUP *lu)
4456 {
4457 int sig_idx = lu->sig_idx;
4458 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4459 SSL_CONNECTION_GET_CTX(s));
4460
4461 /* If not recognised or not supported by cipher mask it is not suitable */
4462 if (clu == NULL
4463 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4464 || (clu->nid == EVP_PKEY_RSA_PSS
4465 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4466 return -1;
4467
4468 /* If doing RPK, the CERT_PKEY won't be "valid" */
4469 if (tls12_rpk_and_privkey(s, sig_idx))
4470 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4471
4472 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4473 }
4474
4475 /*
4476 * Checks the given cert against signature_algorithm_cert restrictions sent by
4477 * the peer (if any) as well as whether the hash from the sigalg is usable with
4478 * the key.
4479 * Returns true if the cert is usable and false otherwise.
4480 */
4481 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4482 X509 *x, EVP_PKEY *pkey)
4483 {
4484 const SIGALG_LOOKUP *lu;
4485 int mdnid, pknid, supported;
4486 size_t i;
4487 const char *mdname = NULL;
4488 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4489
4490 /*
4491 * If the given EVP_PKEY cannot support signing with this digest,
4492 * the answer is simply 'no'.
4493 */
4494 if (sig->hash != NID_undef)
4495 mdname = OBJ_nid2sn(sig->hash);
4496 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4497 mdname,
4498 sctx->propq);
4499 if (supported <= 0)
4500 return 0;
4501
4502 /*
4503 * The TLS 1.3 signature_algorithms_cert extension places restrictions
4504 * on the sigalg with which the certificate was signed (by its issuer).
4505 */
4506 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4507 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4508 return 0;
4509 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4510 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4511 s->s3.tmp.peer_cert_sigalgs[i]);
4512 if (lu == NULL)
4513 continue;
4514
4515 /*
4516 * This does not differentiate between the
4517 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4518 * have a chain here that lets us look at the key OID in the
4519 * signing certificate.
4520 */
4521 if (mdnid == lu->hash && pknid == lu->sig)
4522 return 1;
4523 }
4524 return 0;
4525 }
4526
4527 /*
4528 * Without signat_algorithms_cert, any certificate for which we have
4529 * a viable public key is permitted.
4530 */
4531 return 1;
4532 }
4533
4534 /*
4535 * Returns true if |s| has a usable certificate configured for use
4536 * with signature scheme |sig|.
4537 * "Usable" includes a check for presence as well as applying
4538 * the signature_algorithm_cert restrictions sent by the peer (if any).
4539 * Returns false if no usable certificate is found.
4540 */
4541 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4542 {
4543 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4544 if (idx == -1)
4545 idx = sig->sig_idx;
4546 if (!ssl_has_cert(s, idx))
4547 return 0;
4548
4549 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4550 s->cert->pkeys[idx].privatekey);
4551 }
4552
4553 /*
4554 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4555 * specified signature scheme |sig|, or false otherwise.
4556 */
4557 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4558 EVP_PKEY *pkey)
4559 {
4560 size_t idx;
4561
4562 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4563 return 0;
4564
4565 /* Check the key is consistent with the sig alg */
4566 if ((int)idx != sig->sig_idx)
4567 return 0;
4568
4569 return check_cert_usable(s, sig, x, pkey);
4570 }
4571
4572 /*
4573 * Find a signature scheme that works with the supplied certificate |x| and key
4574 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4575 * available certs/keys to find one that works.
4576 */
4577 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4578 EVP_PKEY *pkey)
4579 {
4580 const SIGALG_LOOKUP *lu = NULL;
4581 size_t i;
4582 int curve = -1;
4583 EVP_PKEY *tmppkey;
4584 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4585
4586 /* Look for a shared sigalgs matching possible certificates */
4587 for (i = 0; i < s->shared_sigalgslen; i++) {
4588 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4589 lu = s->shared_sigalgs[i];
4590 if (lu->hash == NID_sha1
4591 || lu->hash == NID_sha224
4592 || lu->sig == EVP_PKEY_DSA
4593 || lu->sig == EVP_PKEY_RSA
4594 || !tls_sigalg_compat(s, lu))
4595 continue;
4596
4597 /* Check that we have a cert, and signature_algorithms_cert */
4598 if (!tls1_lookup_md(sctx, lu, NULL))
4599 continue;
4600 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4601 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4602 continue;
4603
4604 tmppkey = (pkey != NULL) ? pkey
4605 : s->cert->pkeys[lu->sig_idx].privatekey;
4606
4607 if (lu->sig == EVP_PKEY_EC) {
4608 if (curve == -1)
4609 curve = ssl_get_EC_curve_nid(tmppkey);
4610 if (lu->curve != NID_undef && curve != lu->curve)
4611 continue;
4612 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4613 /* validate that key is large enough for the signature algorithm */
4614 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4615 continue;
4616 }
4617 break;
4618 }
4619
4620 if (i == s->shared_sigalgslen)
4621 return NULL;
4622
4623 return lu;
4624 }
4625
4626 /*
4627 * Choose an appropriate signature algorithm based on available certificates
4628 * Sets chosen certificate and signature algorithm.
4629 *
4630 * For servers if we fail to find a required certificate it is a fatal error,
4631 * an appropriate error code is set and a TLS alert is sent.
4632 *
4633 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4634 * a fatal error: we will either try another certificate or not present one
4635 * to the server. In this case no error is set.
4636 */
4637 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4638 {
4639 const SIGALG_LOOKUP *lu = NULL;
4640 int sig_idx = -1;
4641
4642 s->s3.tmp.cert = NULL;
4643 s->s3.tmp.sigalg = NULL;
4644
4645 if (SSL_CONNECTION_IS_TLS13(s)) {
4646 lu = find_sig_alg(s, NULL, NULL);
4647 if (lu == NULL) {
4648 if (!fatalerrs)
4649 return 1;
4650 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4651 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4652 return 0;
4653 }
4654 } else {
4655 /* If ciphersuite doesn't require a cert nothing to do */
4656 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4657 return 1;
4658 if (!s->server && !ssl_has_cert(s, (int)(s->cert->key - s->cert->pkeys)))
4659 return 1;
4660
4661 if (SSL_USE_SIGALGS(s)) {
4662 size_t i;
4663 if (s->s3.tmp.peer_sigalgs != NULL) {
4664 int curve = -1;
4665 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4666
4667 /* For Suite B need to match signature algorithm to curve */
4668 if (tls1_suiteb(s))
4669 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4670 .privatekey);
4671
4672 /*
4673 * Find highest preference signature algorithm matching
4674 * cert type
4675 */
4676 for (i = 0; i < s->shared_sigalgslen; i++) {
4677 /* Check the sigalg version bounds */
4678 lu = s->shared_sigalgs[i];
4679 if (!tls_sigalg_compat(s, lu))
4680 continue;
4681 if (s->server) {
4682 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4683 continue;
4684 } else {
4685 int cc_idx = (int)(s->cert->key - s->cert->pkeys);
4686
4687 sig_idx = lu->sig_idx;
4688 if (cc_idx != sig_idx)
4689 continue;
4690 }
4691 /* Check that we have a cert, and sig_algs_cert */
4692 if (!has_usable_cert(s, lu, sig_idx))
4693 continue;
4694 if (lu->sig == EVP_PKEY_RSA_PSS) {
4695 /* validate that key is large enough for the signature algorithm */
4696 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4697
4698 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4699 continue;
4700 }
4701 if (curve == -1 || lu->curve == curve)
4702 break;
4703 }
4704 #ifndef OPENSSL_NO_GOST
4705 /*
4706 * Some Windows-based implementations do not send GOST algorithms indication
4707 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4708 * we have to assume GOST support.
4709 */
4710 if (i == s->shared_sigalgslen
4711 && (s->s3.tmp.new_cipher->algorithm_auth
4712 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4713 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4714 if (!fatalerrs)
4715 return 1;
4716 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4717 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4718 return 0;
4719 } else {
4720 i = 0;
4721 sig_idx = lu->sig_idx;
4722 }
4723 }
4724 #endif
4725 if (i == s->shared_sigalgslen) {
4726 if (!fatalerrs)
4727 return 1;
4728 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4729 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4730 return 0;
4731 }
4732 } else {
4733 /*
4734 * If we have no sigalg use defaults
4735 */
4736 const uint16_t *sent_sigs;
4737 size_t sent_sigslen;
4738
4739 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4740 if (!fatalerrs)
4741 return 1;
4742 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4743 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4744 return 0;
4745 }
4746
4747 /* Check signature matches a type we sent */
4748 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4749 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4750 if (lu->sigalg == *sent_sigs
4751 && has_usable_cert(s, lu, lu->sig_idx))
4752 break;
4753 }
4754 if (i == sent_sigslen) {
4755 if (!fatalerrs)
4756 return 1;
4757 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4758 SSL_R_WRONG_SIGNATURE_TYPE);
4759 return 0;
4760 }
4761 }
4762 } else {
4763 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4764 if (!fatalerrs)
4765 return 1;
4766 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4767 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4768 return 0;
4769 }
4770 }
4771 }
4772 if (sig_idx == -1)
4773 sig_idx = lu->sig_idx;
4774 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4775 s->cert->key = s->s3.tmp.cert;
4776 s->s3.tmp.sigalg = lu;
4777 return 1;
4778 }
4779
4780 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4781 {
4782 if (mode != TLSEXT_max_fragment_length_DISABLED
4783 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4784 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4785 return 0;
4786 }
4787
4788 ctx->ext.max_fragment_len_mode = mode;
4789 return 1;
4790 }
4791
4792 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4793 {
4794 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4795
4796 if (sc == NULL
4797 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4798 return 0;
4799
4800 if (mode != TLSEXT_max_fragment_length_DISABLED
4801 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4802 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4803 return 0;
4804 }
4805
4806 sc->ext.max_fragment_len_mode = mode;
4807 return 1;
4808 }
4809
4810 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4811 {
4812 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4813 return TLSEXT_max_fragment_length_DISABLED;
4814 return session->ext.max_fragment_len_mode;
4815 }
4816
4817 /*
4818 * Helper functions for HMAC access with legacy support included.
4819 */
4820 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4821 {
4822 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4823 EVP_MAC *mac = NULL;
4824
4825 if (ret == NULL)
4826 return NULL;
4827 #ifndef OPENSSL_NO_DEPRECATED_3_0
4828 if (ctx->ext.ticket_key_evp_cb == NULL
4829 && ctx->ext.ticket_key_cb != NULL) {
4830 if (!ssl_hmac_old_new(ret))
4831 goto err;
4832 return ret;
4833 }
4834 #endif
4835 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4836 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4837 goto err;
4838 EVP_MAC_free(mac);
4839 return ret;
4840 err:
4841 EVP_MAC_CTX_free(ret->ctx);
4842 EVP_MAC_free(mac);
4843 OPENSSL_free(ret);
4844 return NULL;
4845 }
4846
4847 void ssl_hmac_free(SSL_HMAC *ctx)
4848 {
4849 if (ctx != NULL) {
4850 EVP_MAC_CTX_free(ctx->ctx);
4851 #ifndef OPENSSL_NO_DEPRECATED_3_0
4852 ssl_hmac_old_free(ctx);
4853 #endif
4854 OPENSSL_free(ctx);
4855 }
4856 }
4857
4858 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4859 {
4860 return ctx->ctx;
4861 }
4862
4863 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4864 {
4865 OSSL_PARAM params[2], *p = params;
4866
4867 if (ctx->ctx != NULL) {
4868 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4869 *p = OSSL_PARAM_construct_end();
4870 if (EVP_MAC_init(ctx->ctx, key, len, params))
4871 return 1;
4872 }
4873 #ifndef OPENSSL_NO_DEPRECATED_3_0
4874 if (ctx->old_ctx != NULL)
4875 return ssl_hmac_old_init(ctx, key, len, md);
4876 #endif
4877 return 0;
4878 }
4879
4880 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4881 {
4882 if (ctx->ctx != NULL)
4883 return EVP_MAC_update(ctx->ctx, data, len);
4884 #ifndef OPENSSL_NO_DEPRECATED_3_0
4885 if (ctx->old_ctx != NULL)
4886 return ssl_hmac_old_update(ctx, data, len);
4887 #endif
4888 return 0;
4889 }
4890
4891 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4892 size_t max_size)
4893 {
4894 if (ctx->ctx != NULL)
4895 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4896 #ifndef OPENSSL_NO_DEPRECATED_3_0
4897 if (ctx->old_ctx != NULL)
4898 return ssl_hmac_old_final(ctx, md, len);
4899 #endif
4900 return 0;
4901 }
4902
4903 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4904 {
4905 if (ctx->ctx != NULL)
4906 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4907 #ifndef OPENSSL_NO_DEPRECATED_3_0
4908 if (ctx->old_ctx != NULL)
4909 return ssl_hmac_old_size(ctx);
4910 #endif
4911 return 0;
4912 }
4913
4914 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4915 {
4916 char gname[OSSL_MAX_NAME_SIZE];
4917
4918 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4919 return OBJ_txt2nid(gname);
4920
4921 return NID_undef;
4922 }
4923
4924 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4925 const unsigned char *enckey,
4926 size_t enckeylen)
4927 {
4928 if (EVP_PKEY_is_a(pkey, "DH")) {
4929 int bits = EVP_PKEY_get_bits(pkey);
4930
4931 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4932 /* the encoded key must be padded to the length of the p */
4933 return 0;
4934 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4935 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4936 || enckey[0] != 0x04)
4937 return 0;
4938 }
4939
4940 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4941 }