]> git.ipfire.org Git - thirdparty/qemu.git/blob - target/arm/helper.c
semihosting: move semihosting configuration into its own directory
[thirdparty/qemu.git] / target / arm / helper.c
1 #include "qemu/osdep.h"
2 #include "qemu/units.h"
3 #include "target/arm/idau.h"
4 #include "trace.h"
5 #include "cpu.h"
6 #include "internals.h"
7 #include "exec/gdbstub.h"
8 #include "exec/helper-proto.h"
9 #include "qemu/host-utils.h"
10 #include "sysemu/arch_init.h"
11 #include "sysemu/sysemu.h"
12 #include "qemu/bitops.h"
13 #include "qemu/crc32c.h"
14 #include "qemu/qemu-print.h"
15 #include "exec/exec-all.h"
16 #include "exec/cpu_ldst.h"
17 #include "arm_ldst.h"
18 #include <zlib.h> /* For crc32 */
19 #include "hw/semihosting/semihost.h"
20 #include "sysemu/cpus.h"
21 #include "sysemu/kvm.h"
22 #include "fpu/softfloat.h"
23 #include "qemu/range.h"
24 #include "qapi/qapi-commands-target.h"
25 #include "qapi/error.h"
26 #include "qemu/guest-random.h"
27
28 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
29
30 #ifndef CONFIG_USER_ONLY
31 /* Cacheability and shareability attributes for a memory access */
32 typedef struct ARMCacheAttrs {
33 unsigned int attrs:8; /* as in the MAIR register encoding */
34 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
35 } ARMCacheAttrs;
36
37 static bool get_phys_addr(CPUARMState *env, target_ulong address,
38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
39 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
40 target_ulong *page_size,
41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
42
43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
44 MMUAccessType access_type, ARMMMUIdx mmu_idx,
45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
46 target_ulong *page_size_ptr,
47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
48
49 /* Security attributes for an address, as returned by v8m_security_lookup. */
50 typedef struct V8M_SAttributes {
51 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
52 bool ns;
53 bool nsc;
54 uint8_t sregion;
55 bool srvalid;
56 uint8_t iregion;
57 bool irvalid;
58 } V8M_SAttributes;
59
60 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
61 MMUAccessType access_type, ARMMMUIdx mmu_idx,
62 V8M_SAttributes *sattrs);
63 #endif
64
65 static void switch_mode(CPUARMState *env, int mode);
66
67 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69 int nregs;
70
71 /* VFP data registers are always little-endian. */
72 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
73 if (reg < nregs) {
74 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
75 return 8;
76 }
77 if (arm_feature(env, ARM_FEATURE_NEON)) {
78 /* Aliases for Q regs. */
79 nregs += 16;
80 if (reg < nregs) {
81 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
82 stq_le_p(buf, q[0]);
83 stq_le_p(buf + 8, q[1]);
84 return 16;
85 }
86 }
87 switch (reg - nregs) {
88 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
89 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
90 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
91 }
92 return 0;
93 }
94
95 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
96 {
97 int nregs;
98
99 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
100 if (reg < nregs) {
101 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
102 return 8;
103 }
104 if (arm_feature(env, ARM_FEATURE_NEON)) {
105 nregs += 16;
106 if (reg < nregs) {
107 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
108 q[0] = ldq_le_p(buf);
109 q[1] = ldq_le_p(buf + 8);
110 return 16;
111 }
112 }
113 switch (reg - nregs) {
114 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
115 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
116 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
117 }
118 return 0;
119 }
120
121 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
122 {
123 switch (reg) {
124 case 0 ... 31:
125 /* 128 bit FP register */
126 {
127 uint64_t *q = aa64_vfp_qreg(env, reg);
128 stq_le_p(buf, q[0]);
129 stq_le_p(buf + 8, q[1]);
130 return 16;
131 }
132 case 32:
133 /* FPSR */
134 stl_p(buf, vfp_get_fpsr(env));
135 return 4;
136 case 33:
137 /* FPCR */
138 stl_p(buf, vfp_get_fpcr(env));
139 return 4;
140 default:
141 return 0;
142 }
143 }
144
145 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
146 {
147 switch (reg) {
148 case 0 ... 31:
149 /* 128 bit FP register */
150 {
151 uint64_t *q = aa64_vfp_qreg(env, reg);
152 q[0] = ldq_le_p(buf);
153 q[1] = ldq_le_p(buf + 8);
154 return 16;
155 }
156 case 32:
157 /* FPSR */
158 vfp_set_fpsr(env, ldl_p(buf));
159 return 4;
160 case 33:
161 /* FPCR */
162 vfp_set_fpcr(env, ldl_p(buf));
163 return 4;
164 default:
165 return 0;
166 }
167 }
168
169 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
170 {
171 assert(ri->fieldoffset);
172 if (cpreg_field_is_64bit(ri)) {
173 return CPREG_FIELD64(env, ri);
174 } else {
175 return CPREG_FIELD32(env, ri);
176 }
177 }
178
179 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
180 uint64_t value)
181 {
182 assert(ri->fieldoffset);
183 if (cpreg_field_is_64bit(ri)) {
184 CPREG_FIELD64(env, ri) = value;
185 } else {
186 CPREG_FIELD32(env, ri) = value;
187 }
188 }
189
190 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
191 {
192 return (char *)env + ri->fieldoffset;
193 }
194
195 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
196 {
197 /* Raw read of a coprocessor register (as needed for migration, etc). */
198 if (ri->type & ARM_CP_CONST) {
199 return ri->resetvalue;
200 } else if (ri->raw_readfn) {
201 return ri->raw_readfn(env, ri);
202 } else if (ri->readfn) {
203 return ri->readfn(env, ri);
204 } else {
205 return raw_read(env, ri);
206 }
207 }
208
209 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
210 uint64_t v)
211 {
212 /* Raw write of a coprocessor register (as needed for migration, etc).
213 * Note that constant registers are treated as write-ignored; the
214 * caller should check for success by whether a readback gives the
215 * value written.
216 */
217 if (ri->type & ARM_CP_CONST) {
218 return;
219 } else if (ri->raw_writefn) {
220 ri->raw_writefn(env, ri, v);
221 } else if (ri->writefn) {
222 ri->writefn(env, ri, v);
223 } else {
224 raw_write(env, ri, v);
225 }
226 }
227
228 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
229 {
230 ARMCPU *cpu = arm_env_get_cpu(env);
231 const ARMCPRegInfo *ri;
232 uint32_t key;
233
234 key = cpu->dyn_xml.cpregs_keys[reg];
235 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
236 if (ri) {
237 if (cpreg_field_is_64bit(ri)) {
238 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
239 } else {
240 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
241 }
242 }
243 return 0;
244 }
245
246 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
247 {
248 return 0;
249 }
250
251 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
252 {
253 /* Return true if the regdef would cause an assertion if you called
254 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
255 * program bug for it not to have the NO_RAW flag).
256 * NB that returning false here doesn't necessarily mean that calling
257 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
258 * read/write access functions which are safe for raw use" from "has
259 * read/write access functions which have side effects but has forgotten
260 * to provide raw access functions".
261 * The tests here line up with the conditions in read/write_raw_cp_reg()
262 * and assertions in raw_read()/raw_write().
263 */
264 if ((ri->type & ARM_CP_CONST) ||
265 ri->fieldoffset ||
266 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
267 return false;
268 }
269 return true;
270 }
271
272 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
273 {
274 /* Write the coprocessor state from cpu->env to the (index,value) list. */
275 int i;
276 bool ok = true;
277
278 for (i = 0; i < cpu->cpreg_array_len; i++) {
279 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
280 const ARMCPRegInfo *ri;
281 uint64_t newval;
282
283 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
284 if (!ri) {
285 ok = false;
286 continue;
287 }
288 if (ri->type & ARM_CP_NO_RAW) {
289 continue;
290 }
291
292 newval = read_raw_cp_reg(&cpu->env, ri);
293 if (kvm_sync) {
294 /*
295 * Only sync if the previous list->cpustate sync succeeded.
296 * Rather than tracking the success/failure state for every
297 * item in the list, we just recheck "does the raw write we must
298 * have made in write_list_to_cpustate() read back OK" here.
299 */
300 uint64_t oldval = cpu->cpreg_values[i];
301
302 if (oldval == newval) {
303 continue;
304 }
305
306 write_raw_cp_reg(&cpu->env, ri, oldval);
307 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
308 continue;
309 }
310
311 write_raw_cp_reg(&cpu->env, ri, newval);
312 }
313 cpu->cpreg_values[i] = newval;
314 }
315 return ok;
316 }
317
318 bool write_list_to_cpustate(ARMCPU *cpu)
319 {
320 int i;
321 bool ok = true;
322
323 for (i = 0; i < cpu->cpreg_array_len; i++) {
324 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
325 uint64_t v = cpu->cpreg_values[i];
326 const ARMCPRegInfo *ri;
327
328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
329 if (!ri) {
330 ok = false;
331 continue;
332 }
333 if (ri->type & ARM_CP_NO_RAW) {
334 continue;
335 }
336 /* Write value and confirm it reads back as written
337 * (to catch read-only registers and partially read-only
338 * registers where the incoming migration value doesn't match)
339 */
340 write_raw_cp_reg(&cpu->env, ri, v);
341 if (read_raw_cp_reg(&cpu->env, ri) != v) {
342 ok = false;
343 }
344 }
345 return ok;
346 }
347
348 static void add_cpreg_to_list(gpointer key, gpointer opaque)
349 {
350 ARMCPU *cpu = opaque;
351 uint64_t regidx;
352 const ARMCPRegInfo *ri;
353
354 regidx = *(uint32_t *)key;
355 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
356
357 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
358 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
359 /* The value array need not be initialized at this point */
360 cpu->cpreg_array_len++;
361 }
362 }
363
364 static void count_cpreg(gpointer key, gpointer opaque)
365 {
366 ARMCPU *cpu = opaque;
367 uint64_t regidx;
368 const ARMCPRegInfo *ri;
369
370 regidx = *(uint32_t *)key;
371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372
373 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
374 cpu->cpreg_array_len++;
375 }
376 }
377
378 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
379 {
380 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
381 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
382
383 if (aidx > bidx) {
384 return 1;
385 }
386 if (aidx < bidx) {
387 return -1;
388 }
389 return 0;
390 }
391
392 void init_cpreg_list(ARMCPU *cpu)
393 {
394 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
395 * Note that we require cpreg_tuples[] to be sorted by key ID.
396 */
397 GList *keys;
398 int arraylen;
399
400 keys = g_hash_table_get_keys(cpu->cp_regs);
401 keys = g_list_sort(keys, cpreg_key_compare);
402
403 cpu->cpreg_array_len = 0;
404
405 g_list_foreach(keys, count_cpreg, cpu);
406
407 arraylen = cpu->cpreg_array_len;
408 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
409 cpu->cpreg_values = g_new(uint64_t, arraylen);
410 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
411 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
412 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
413 cpu->cpreg_array_len = 0;
414
415 g_list_foreach(keys, add_cpreg_to_list, cpu);
416
417 assert(cpu->cpreg_array_len == arraylen);
418
419 g_list_free(keys);
420 }
421
422 /*
423 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
424 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
425 *
426 * access_el3_aa32ns: Used to check AArch32 register views.
427 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
428 */
429 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
430 const ARMCPRegInfo *ri,
431 bool isread)
432 {
433 bool secure = arm_is_secure_below_el3(env);
434
435 assert(!arm_el_is_aa64(env, 3));
436 if (secure) {
437 return CP_ACCESS_TRAP_UNCATEGORIZED;
438 }
439 return CP_ACCESS_OK;
440 }
441
442 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
443 const ARMCPRegInfo *ri,
444 bool isread)
445 {
446 if (!arm_el_is_aa64(env, 3)) {
447 return access_el3_aa32ns(env, ri, isread);
448 }
449 return CP_ACCESS_OK;
450 }
451
452 /* Some secure-only AArch32 registers trap to EL3 if used from
453 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
454 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
455 * We assume that the .access field is set to PL1_RW.
456 */
457 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
458 const ARMCPRegInfo *ri,
459 bool isread)
460 {
461 if (arm_current_el(env) == 3) {
462 return CP_ACCESS_OK;
463 }
464 if (arm_is_secure_below_el3(env)) {
465 return CP_ACCESS_TRAP_EL3;
466 }
467 /* This will be EL1 NS and EL2 NS, which just UNDEF */
468 return CP_ACCESS_TRAP_UNCATEGORIZED;
469 }
470
471 /* Check for traps to "powerdown debug" registers, which are controlled
472 * by MDCR.TDOSA
473 */
474 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
475 bool isread)
476 {
477 int el = arm_current_el(env);
478 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
479 (env->cp15.mdcr_el2 & MDCR_TDE) ||
480 (arm_hcr_el2_eff(env) & HCR_TGE);
481
482 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
483 return CP_ACCESS_TRAP_EL2;
484 }
485 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
486 return CP_ACCESS_TRAP_EL3;
487 }
488 return CP_ACCESS_OK;
489 }
490
491 /* Check for traps to "debug ROM" registers, which are controlled
492 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
493 */
494 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
495 bool isread)
496 {
497 int el = arm_current_el(env);
498 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
499 (env->cp15.mdcr_el2 & MDCR_TDE) ||
500 (arm_hcr_el2_eff(env) & HCR_TGE);
501
502 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
503 return CP_ACCESS_TRAP_EL2;
504 }
505 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
506 return CP_ACCESS_TRAP_EL3;
507 }
508 return CP_ACCESS_OK;
509 }
510
511 /* Check for traps to general debug registers, which are controlled
512 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
513 */
514 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
515 bool isread)
516 {
517 int el = arm_current_el(env);
518 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
519 (env->cp15.mdcr_el2 & MDCR_TDE) ||
520 (arm_hcr_el2_eff(env) & HCR_TGE);
521
522 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
523 return CP_ACCESS_TRAP_EL2;
524 }
525 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
526 return CP_ACCESS_TRAP_EL3;
527 }
528 return CP_ACCESS_OK;
529 }
530
531 /* Check for traps to performance monitor registers, which are controlled
532 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
533 */
534 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
535 bool isread)
536 {
537 int el = arm_current_el(env);
538
539 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
540 && !arm_is_secure_below_el3(env)) {
541 return CP_ACCESS_TRAP_EL2;
542 }
543 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
544 return CP_ACCESS_TRAP_EL3;
545 }
546 return CP_ACCESS_OK;
547 }
548
549 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
550 {
551 ARMCPU *cpu = arm_env_get_cpu(env);
552
553 raw_write(env, ri, value);
554 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
555 }
556
557 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
558 {
559 ARMCPU *cpu = arm_env_get_cpu(env);
560
561 if (raw_read(env, ri) != value) {
562 /* Unlike real hardware the qemu TLB uses virtual addresses,
563 * not modified virtual addresses, so this causes a TLB flush.
564 */
565 tlb_flush(CPU(cpu));
566 raw_write(env, ri, value);
567 }
568 }
569
570 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
572 {
573 ARMCPU *cpu = arm_env_get_cpu(env);
574
575 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
576 && !extended_addresses_enabled(env)) {
577 /* For VMSA (when not using the LPAE long descriptor page table
578 * format) this register includes the ASID, so do a TLB flush.
579 * For PMSA it is purely a process ID and no action is needed.
580 */
581 tlb_flush(CPU(cpu));
582 }
583 raw_write(env, ri, value);
584 }
585
586 /* IS variants of TLB operations must affect all cores */
587 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
588 uint64_t value)
589 {
590 CPUState *cs = ENV_GET_CPU(env);
591
592 tlb_flush_all_cpus_synced(cs);
593 }
594
595 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
597 {
598 CPUState *cs = ENV_GET_CPU(env);
599
600 tlb_flush_all_cpus_synced(cs);
601 }
602
603 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
604 uint64_t value)
605 {
606 CPUState *cs = ENV_GET_CPU(env);
607
608 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
609 }
610
611 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613 {
614 CPUState *cs = ENV_GET_CPU(env);
615
616 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
617 }
618
619 /*
620 * Non-IS variants of TLB operations are upgraded to
621 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
622 * force broadcast of these operations.
623 */
624 static bool tlb_force_broadcast(CPUARMState *env)
625 {
626 return (env->cp15.hcr_el2 & HCR_FB) &&
627 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
628 }
629
630 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 uint64_t value)
632 {
633 /* Invalidate all (TLBIALL) */
634 ARMCPU *cpu = arm_env_get_cpu(env);
635
636 if (tlb_force_broadcast(env)) {
637 tlbiall_is_write(env, NULL, value);
638 return;
639 }
640
641 tlb_flush(CPU(cpu));
642 }
643
644 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
646 {
647 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
648 ARMCPU *cpu = arm_env_get_cpu(env);
649
650 if (tlb_force_broadcast(env)) {
651 tlbimva_is_write(env, NULL, value);
652 return;
653 }
654
655 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
656 }
657
658 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
659 uint64_t value)
660 {
661 /* Invalidate by ASID (TLBIASID) */
662 ARMCPU *cpu = arm_env_get_cpu(env);
663
664 if (tlb_force_broadcast(env)) {
665 tlbiasid_is_write(env, NULL, value);
666 return;
667 }
668
669 tlb_flush(CPU(cpu));
670 }
671
672 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 uint64_t value)
674 {
675 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
676 ARMCPU *cpu = arm_env_get_cpu(env);
677
678 if (tlb_force_broadcast(env)) {
679 tlbimvaa_is_write(env, NULL, value);
680 return;
681 }
682
683 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
684 }
685
686 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
687 uint64_t value)
688 {
689 CPUState *cs = ENV_GET_CPU(env);
690
691 tlb_flush_by_mmuidx(cs,
692 ARMMMUIdxBit_S12NSE1 |
693 ARMMMUIdxBit_S12NSE0 |
694 ARMMMUIdxBit_S2NS);
695 }
696
697 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
698 uint64_t value)
699 {
700 CPUState *cs = ENV_GET_CPU(env);
701
702 tlb_flush_by_mmuidx_all_cpus_synced(cs,
703 ARMMMUIdxBit_S12NSE1 |
704 ARMMMUIdxBit_S12NSE0 |
705 ARMMMUIdxBit_S2NS);
706 }
707
708 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
709 uint64_t value)
710 {
711 /* Invalidate by IPA. This has to invalidate any structures that
712 * contain only stage 2 translation information, but does not need
713 * to apply to structures that contain combined stage 1 and stage 2
714 * translation information.
715 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
716 */
717 CPUState *cs = ENV_GET_CPU(env);
718 uint64_t pageaddr;
719
720 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
721 return;
722 }
723
724 pageaddr = sextract64(value << 12, 0, 40);
725
726 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
727 }
728
729 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
730 uint64_t value)
731 {
732 CPUState *cs = ENV_GET_CPU(env);
733 uint64_t pageaddr;
734
735 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
736 return;
737 }
738
739 pageaddr = sextract64(value << 12, 0, 40);
740
741 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
742 ARMMMUIdxBit_S2NS);
743 }
744
745 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 uint64_t value)
747 {
748 CPUState *cs = ENV_GET_CPU(env);
749
750 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
751 }
752
753 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
755 {
756 CPUState *cs = ENV_GET_CPU(env);
757
758 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
759 }
760
761 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
762 uint64_t value)
763 {
764 CPUState *cs = ENV_GET_CPU(env);
765 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
766
767 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
768 }
769
770 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
771 uint64_t value)
772 {
773 CPUState *cs = ENV_GET_CPU(env);
774 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
775
776 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
777 ARMMMUIdxBit_S1E2);
778 }
779
780 static const ARMCPRegInfo cp_reginfo[] = {
781 /* Define the secure and non-secure FCSE identifier CP registers
782 * separately because there is no secure bank in V8 (no _EL3). This allows
783 * the secure register to be properly reset and migrated. There is also no
784 * v8 EL1 version of the register so the non-secure instance stands alone.
785 */
786 { .name = "FCSEIDR",
787 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
788 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
789 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
790 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
791 { .name = "FCSEIDR_S",
792 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
793 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
794 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
795 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
796 /* Define the secure and non-secure context identifier CP registers
797 * separately because there is no secure bank in V8 (no _EL3). This allows
798 * the secure register to be properly reset and migrated. In the
799 * non-secure case, the 32-bit register will have reset and migration
800 * disabled during registration as it is handled by the 64-bit instance.
801 */
802 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
803 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
804 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
805 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
806 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
807 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
808 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
809 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
810 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
811 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
812 REGINFO_SENTINEL
813 };
814
815 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
816 /* NB: Some of these registers exist in v8 but with more precise
817 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
818 */
819 /* MMU Domain access control / MPU write buffer control */
820 { .name = "DACR",
821 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
822 .access = PL1_RW, .resetvalue = 0,
823 .writefn = dacr_write, .raw_writefn = raw_write,
824 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
825 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
826 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
827 * For v6 and v5, these mappings are overly broad.
828 */
829 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
830 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
831 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
832 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
833 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
834 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
835 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
836 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
837 /* Cache maintenance ops; some of this space may be overridden later. */
838 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
839 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
840 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
841 REGINFO_SENTINEL
842 };
843
844 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
845 /* Not all pre-v6 cores implemented this WFI, so this is slightly
846 * over-broad.
847 */
848 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
849 .access = PL1_W, .type = ARM_CP_WFI },
850 REGINFO_SENTINEL
851 };
852
853 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
854 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
855 * is UNPREDICTABLE; we choose to NOP as most implementations do).
856 */
857 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
858 .access = PL1_W, .type = ARM_CP_WFI },
859 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
860 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
861 * OMAPCP will override this space.
862 */
863 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
864 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
865 .resetvalue = 0 },
866 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
867 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
868 .resetvalue = 0 },
869 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
870 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
871 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
872 .resetvalue = 0 },
873 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
874 * implementing it as RAZ means the "debug architecture version" bits
875 * will read as a reserved value, which should cause Linux to not try
876 * to use the debug hardware.
877 */
878 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
879 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
880 /* MMU TLB control. Note that the wildcarding means we cover not just
881 * the unified TLB ops but also the dside/iside/inner-shareable variants.
882 */
883 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
884 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
885 .type = ARM_CP_NO_RAW },
886 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
887 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
888 .type = ARM_CP_NO_RAW },
889 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
890 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
891 .type = ARM_CP_NO_RAW },
892 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
893 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
894 .type = ARM_CP_NO_RAW },
895 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
896 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
897 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
898 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
899 REGINFO_SENTINEL
900 };
901
902 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t value)
904 {
905 uint32_t mask = 0;
906
907 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
908 if (!arm_feature(env, ARM_FEATURE_V8)) {
909 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
910 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
911 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
912 */
913 if (arm_feature(env, ARM_FEATURE_VFP)) {
914 /* VFP coprocessor: cp10 & cp11 [23:20] */
915 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
916
917 if (!arm_feature(env, ARM_FEATURE_NEON)) {
918 /* ASEDIS [31] bit is RAO/WI */
919 value |= (1 << 31);
920 }
921
922 /* VFPv3 and upwards with NEON implement 32 double precision
923 * registers (D0-D31).
924 */
925 if (!arm_feature(env, ARM_FEATURE_NEON) ||
926 !arm_feature(env, ARM_FEATURE_VFP3)) {
927 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
928 value |= (1 << 30);
929 }
930 }
931 value &= mask;
932 }
933 env->cp15.cpacr_el1 = value;
934 }
935
936 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
937 {
938 /* Call cpacr_write() so that we reset with the correct RAO bits set
939 * for our CPU features.
940 */
941 cpacr_write(env, ri, 0);
942 }
943
944 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
945 bool isread)
946 {
947 if (arm_feature(env, ARM_FEATURE_V8)) {
948 /* Check if CPACR accesses are to be trapped to EL2 */
949 if (arm_current_el(env) == 1 &&
950 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
951 return CP_ACCESS_TRAP_EL2;
952 /* Check if CPACR accesses are to be trapped to EL3 */
953 } else if (arm_current_el(env) < 3 &&
954 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
955 return CP_ACCESS_TRAP_EL3;
956 }
957 }
958
959 return CP_ACCESS_OK;
960 }
961
962 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
963 bool isread)
964 {
965 /* Check if CPTR accesses are set to trap to EL3 */
966 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
967 return CP_ACCESS_TRAP_EL3;
968 }
969
970 return CP_ACCESS_OK;
971 }
972
973 static const ARMCPRegInfo v6_cp_reginfo[] = {
974 /* prefetch by MVA in v6, NOP in v7 */
975 { .name = "MVA_prefetch",
976 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
977 .access = PL1_W, .type = ARM_CP_NOP },
978 /* We need to break the TB after ISB to execute self-modifying code
979 * correctly and also to take any pending interrupts immediately.
980 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
981 */
982 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
983 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
984 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
985 .access = PL0_W, .type = ARM_CP_NOP },
986 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
987 .access = PL0_W, .type = ARM_CP_NOP },
988 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
989 .access = PL1_RW,
990 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
991 offsetof(CPUARMState, cp15.ifar_ns) },
992 .resetvalue = 0, },
993 /* Watchpoint Fault Address Register : should actually only be present
994 * for 1136, 1176, 11MPCore.
995 */
996 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
997 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
998 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
999 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1000 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1001 .resetfn = cpacr_reset, .writefn = cpacr_write },
1002 REGINFO_SENTINEL
1003 };
1004
1005 /* Definitions for the PMU registers */
1006 #define PMCRN_MASK 0xf800
1007 #define PMCRN_SHIFT 11
1008 #define PMCRLC 0x40
1009 #define PMCRDP 0x10
1010 #define PMCRD 0x8
1011 #define PMCRC 0x4
1012 #define PMCRP 0x2
1013 #define PMCRE 0x1
1014
1015 #define PMXEVTYPER_P 0x80000000
1016 #define PMXEVTYPER_U 0x40000000
1017 #define PMXEVTYPER_NSK 0x20000000
1018 #define PMXEVTYPER_NSU 0x10000000
1019 #define PMXEVTYPER_NSH 0x08000000
1020 #define PMXEVTYPER_M 0x04000000
1021 #define PMXEVTYPER_MT 0x02000000
1022 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1023 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1024 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1025 PMXEVTYPER_M | PMXEVTYPER_MT | \
1026 PMXEVTYPER_EVTCOUNT)
1027
1028 #define PMCCFILTR 0xf8000000
1029 #define PMCCFILTR_M PMXEVTYPER_M
1030 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1031
1032 static inline uint32_t pmu_num_counters(CPUARMState *env)
1033 {
1034 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1035 }
1036
1037 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1038 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1039 {
1040 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1041 }
1042
1043 typedef struct pm_event {
1044 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1045 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1046 bool (*supported)(CPUARMState *);
1047 /*
1048 * Retrieve the current count of the underlying event. The programmed
1049 * counters hold a difference from the return value from this function
1050 */
1051 uint64_t (*get_count)(CPUARMState *);
1052 /*
1053 * Return how many nanoseconds it will take (at a minimum) for count events
1054 * to occur. A negative value indicates the counter will never overflow, or
1055 * that the counter has otherwise arranged for the overflow bit to be set
1056 * and the PMU interrupt to be raised on overflow.
1057 */
1058 int64_t (*ns_per_count)(uint64_t);
1059 } pm_event;
1060
1061 static bool event_always_supported(CPUARMState *env)
1062 {
1063 return true;
1064 }
1065
1066 static uint64_t swinc_get_count(CPUARMState *env)
1067 {
1068 /*
1069 * SW_INCR events are written directly to the pmevcntr's by writes to
1070 * PMSWINC, so there is no underlying count maintained by the PMU itself
1071 */
1072 return 0;
1073 }
1074
1075 static int64_t swinc_ns_per(uint64_t ignored)
1076 {
1077 return -1;
1078 }
1079
1080 /*
1081 * Return the underlying cycle count for the PMU cycle counters. If we're in
1082 * usermode, simply return 0.
1083 */
1084 static uint64_t cycles_get_count(CPUARMState *env)
1085 {
1086 #ifndef CONFIG_USER_ONLY
1087 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1088 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1089 #else
1090 return cpu_get_host_ticks();
1091 #endif
1092 }
1093
1094 #ifndef CONFIG_USER_ONLY
1095 static int64_t cycles_ns_per(uint64_t cycles)
1096 {
1097 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1098 }
1099
1100 static bool instructions_supported(CPUARMState *env)
1101 {
1102 return use_icount == 1 /* Precise instruction counting */;
1103 }
1104
1105 static uint64_t instructions_get_count(CPUARMState *env)
1106 {
1107 return (uint64_t)cpu_get_icount_raw();
1108 }
1109
1110 static int64_t instructions_ns_per(uint64_t icount)
1111 {
1112 return cpu_icount_to_ns((int64_t)icount);
1113 }
1114 #endif
1115
1116 static const pm_event pm_events[] = {
1117 { .number = 0x000, /* SW_INCR */
1118 .supported = event_always_supported,
1119 .get_count = swinc_get_count,
1120 .ns_per_count = swinc_ns_per,
1121 },
1122 #ifndef CONFIG_USER_ONLY
1123 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1124 .supported = instructions_supported,
1125 .get_count = instructions_get_count,
1126 .ns_per_count = instructions_ns_per,
1127 },
1128 { .number = 0x011, /* CPU_CYCLES, Cycle */
1129 .supported = event_always_supported,
1130 .get_count = cycles_get_count,
1131 .ns_per_count = cycles_ns_per,
1132 }
1133 #endif
1134 };
1135
1136 /*
1137 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1138 * events (i.e. the statistical profiling extension), this implementation
1139 * should first be updated to something sparse instead of the current
1140 * supported_event_map[] array.
1141 */
1142 #define MAX_EVENT_ID 0x11
1143 #define UNSUPPORTED_EVENT UINT16_MAX
1144 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1145
1146 /*
1147 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1148 * of ARM event numbers to indices in our pm_events array.
1149 *
1150 * Note: Events in the 0x40XX range are not currently supported.
1151 */
1152 void pmu_init(ARMCPU *cpu)
1153 {
1154 unsigned int i;
1155
1156 /*
1157 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1158 * events to them
1159 */
1160 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1161 supported_event_map[i] = UNSUPPORTED_EVENT;
1162 }
1163 cpu->pmceid0 = 0;
1164 cpu->pmceid1 = 0;
1165
1166 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1167 const pm_event *cnt = &pm_events[i];
1168 assert(cnt->number <= MAX_EVENT_ID);
1169 /* We do not currently support events in the 0x40xx range */
1170 assert(cnt->number <= 0x3f);
1171
1172 if (cnt->supported(&cpu->env)) {
1173 supported_event_map[cnt->number] = i;
1174 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1175 if (cnt->number & 0x20) {
1176 cpu->pmceid1 |= event_mask;
1177 } else {
1178 cpu->pmceid0 |= event_mask;
1179 }
1180 }
1181 }
1182 }
1183
1184 /*
1185 * Check at runtime whether a PMU event is supported for the current machine
1186 */
1187 static bool event_supported(uint16_t number)
1188 {
1189 if (number > MAX_EVENT_ID) {
1190 return false;
1191 }
1192 return supported_event_map[number] != UNSUPPORTED_EVENT;
1193 }
1194
1195 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1196 bool isread)
1197 {
1198 /* Performance monitor registers user accessibility is controlled
1199 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1200 * trapping to EL2 or EL3 for other accesses.
1201 */
1202 int el = arm_current_el(env);
1203
1204 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1205 return CP_ACCESS_TRAP;
1206 }
1207 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1208 && !arm_is_secure_below_el3(env)) {
1209 return CP_ACCESS_TRAP_EL2;
1210 }
1211 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1212 return CP_ACCESS_TRAP_EL3;
1213 }
1214
1215 return CP_ACCESS_OK;
1216 }
1217
1218 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1219 const ARMCPRegInfo *ri,
1220 bool isread)
1221 {
1222 /* ER: event counter read trap control */
1223 if (arm_feature(env, ARM_FEATURE_V8)
1224 && arm_current_el(env) == 0
1225 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1226 && isread) {
1227 return CP_ACCESS_OK;
1228 }
1229
1230 return pmreg_access(env, ri, isread);
1231 }
1232
1233 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1234 const ARMCPRegInfo *ri,
1235 bool isread)
1236 {
1237 /* SW: software increment write trap control */
1238 if (arm_feature(env, ARM_FEATURE_V8)
1239 && arm_current_el(env) == 0
1240 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1241 && !isread) {
1242 return CP_ACCESS_OK;
1243 }
1244
1245 return pmreg_access(env, ri, isread);
1246 }
1247
1248 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1249 const ARMCPRegInfo *ri,
1250 bool isread)
1251 {
1252 /* ER: event counter read trap control */
1253 if (arm_feature(env, ARM_FEATURE_V8)
1254 && arm_current_el(env) == 0
1255 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1256 return CP_ACCESS_OK;
1257 }
1258
1259 return pmreg_access(env, ri, isread);
1260 }
1261
1262 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1263 const ARMCPRegInfo *ri,
1264 bool isread)
1265 {
1266 /* CR: cycle counter read trap control */
1267 if (arm_feature(env, ARM_FEATURE_V8)
1268 && arm_current_el(env) == 0
1269 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1270 && isread) {
1271 return CP_ACCESS_OK;
1272 }
1273
1274 return pmreg_access(env, ri, isread);
1275 }
1276
1277 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1278 * the current EL, security state, and register configuration.
1279 */
1280 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1281 {
1282 uint64_t filter;
1283 bool e, p, u, nsk, nsu, nsh, m;
1284 bool enabled, prohibited, filtered;
1285 bool secure = arm_is_secure(env);
1286 int el = arm_current_el(env);
1287 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1288
1289 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1290 return false;
1291 }
1292
1293 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1294 (counter < hpmn || counter == 31)) {
1295 e = env->cp15.c9_pmcr & PMCRE;
1296 } else {
1297 e = env->cp15.mdcr_el2 & MDCR_HPME;
1298 }
1299 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1300
1301 if (!secure) {
1302 if (el == 2 && (counter < hpmn || counter == 31)) {
1303 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1304 } else {
1305 prohibited = false;
1306 }
1307 } else {
1308 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1309 (env->cp15.mdcr_el3 & MDCR_SPME);
1310 }
1311
1312 if (prohibited && counter == 31) {
1313 prohibited = env->cp15.c9_pmcr & PMCRDP;
1314 }
1315
1316 if (counter == 31) {
1317 filter = env->cp15.pmccfiltr_el0;
1318 } else {
1319 filter = env->cp15.c14_pmevtyper[counter];
1320 }
1321
1322 p = filter & PMXEVTYPER_P;
1323 u = filter & PMXEVTYPER_U;
1324 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1325 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1326 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1327 m = arm_el_is_aa64(env, 1) &&
1328 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1329
1330 if (el == 0) {
1331 filtered = secure ? u : u != nsu;
1332 } else if (el == 1) {
1333 filtered = secure ? p : p != nsk;
1334 } else if (el == 2) {
1335 filtered = !nsh;
1336 } else { /* EL3 */
1337 filtered = m != p;
1338 }
1339
1340 if (counter != 31) {
1341 /*
1342 * If not checking PMCCNTR, ensure the counter is setup to an event we
1343 * support
1344 */
1345 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1346 if (!event_supported(event)) {
1347 return false;
1348 }
1349 }
1350
1351 return enabled && !prohibited && !filtered;
1352 }
1353
1354 static void pmu_update_irq(CPUARMState *env)
1355 {
1356 ARMCPU *cpu = arm_env_get_cpu(env);
1357 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1358 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1359 }
1360
1361 /*
1362 * Ensure c15_ccnt is the guest-visible count so that operations such as
1363 * enabling/disabling the counter or filtering, modifying the count itself,
1364 * etc. can be done logically. This is essentially a no-op if the counter is
1365 * not enabled at the time of the call.
1366 */
1367 static void pmccntr_op_start(CPUARMState *env)
1368 {
1369 uint64_t cycles = cycles_get_count(env);
1370
1371 if (pmu_counter_enabled(env, 31)) {
1372 uint64_t eff_cycles = cycles;
1373 if (env->cp15.c9_pmcr & PMCRD) {
1374 /* Increment once every 64 processor clock cycles */
1375 eff_cycles /= 64;
1376 }
1377
1378 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1379
1380 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1381 1ull << 63 : 1ull << 31;
1382 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1383 env->cp15.c9_pmovsr |= (1 << 31);
1384 pmu_update_irq(env);
1385 }
1386
1387 env->cp15.c15_ccnt = new_pmccntr;
1388 }
1389 env->cp15.c15_ccnt_delta = cycles;
1390 }
1391
1392 /*
1393 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1394 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1395 * pmccntr_op_start.
1396 */
1397 static void pmccntr_op_finish(CPUARMState *env)
1398 {
1399 if (pmu_counter_enabled(env, 31)) {
1400 #ifndef CONFIG_USER_ONLY
1401 /* Calculate when the counter will next overflow */
1402 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1403 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1404 remaining_cycles = (uint32_t)remaining_cycles;
1405 }
1406 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1407
1408 if (overflow_in > 0) {
1409 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1410 overflow_in;
1411 ARMCPU *cpu = arm_env_get_cpu(env);
1412 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1413 }
1414 #endif
1415
1416 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1417 if (env->cp15.c9_pmcr & PMCRD) {
1418 /* Increment once every 64 processor clock cycles */
1419 prev_cycles /= 64;
1420 }
1421 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1422 }
1423 }
1424
1425 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1426 {
1427
1428 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1429 uint64_t count = 0;
1430 if (event_supported(event)) {
1431 uint16_t event_idx = supported_event_map[event];
1432 count = pm_events[event_idx].get_count(env);
1433 }
1434
1435 if (pmu_counter_enabled(env, counter)) {
1436 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1437
1438 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1439 env->cp15.c9_pmovsr |= (1 << counter);
1440 pmu_update_irq(env);
1441 }
1442 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1443 }
1444 env->cp15.c14_pmevcntr_delta[counter] = count;
1445 }
1446
1447 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1448 {
1449 if (pmu_counter_enabled(env, counter)) {
1450 #ifndef CONFIG_USER_ONLY
1451 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1452 uint16_t event_idx = supported_event_map[event];
1453 uint64_t delta = UINT32_MAX -
1454 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1455 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1456
1457 if (overflow_in > 0) {
1458 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1459 overflow_in;
1460 ARMCPU *cpu = arm_env_get_cpu(env);
1461 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1462 }
1463 #endif
1464
1465 env->cp15.c14_pmevcntr_delta[counter] -=
1466 env->cp15.c14_pmevcntr[counter];
1467 }
1468 }
1469
1470 void pmu_op_start(CPUARMState *env)
1471 {
1472 unsigned int i;
1473 pmccntr_op_start(env);
1474 for (i = 0; i < pmu_num_counters(env); i++) {
1475 pmevcntr_op_start(env, i);
1476 }
1477 }
1478
1479 void pmu_op_finish(CPUARMState *env)
1480 {
1481 unsigned int i;
1482 pmccntr_op_finish(env);
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 pmevcntr_op_finish(env, i);
1485 }
1486 }
1487
1488 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1489 {
1490 pmu_op_start(&cpu->env);
1491 }
1492
1493 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1494 {
1495 pmu_op_finish(&cpu->env);
1496 }
1497
1498 void arm_pmu_timer_cb(void *opaque)
1499 {
1500 ARMCPU *cpu = opaque;
1501
1502 /*
1503 * Update all the counter values based on the current underlying counts,
1504 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1505 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1506 * counter may expire.
1507 */
1508 pmu_op_start(&cpu->env);
1509 pmu_op_finish(&cpu->env);
1510 }
1511
1512 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 uint64_t value)
1514 {
1515 pmu_op_start(env);
1516
1517 if (value & PMCRC) {
1518 /* The counter has been reset */
1519 env->cp15.c15_ccnt = 0;
1520 }
1521
1522 if (value & PMCRP) {
1523 unsigned int i;
1524 for (i = 0; i < pmu_num_counters(env); i++) {
1525 env->cp15.c14_pmevcntr[i] = 0;
1526 }
1527 }
1528
1529 /* only the DP, X, D and E bits are writable */
1530 env->cp15.c9_pmcr &= ~0x39;
1531 env->cp15.c9_pmcr |= (value & 0x39);
1532
1533 pmu_op_finish(env);
1534 }
1535
1536 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1537 uint64_t value)
1538 {
1539 unsigned int i;
1540 for (i = 0; i < pmu_num_counters(env); i++) {
1541 /* Increment a counter's count iff: */
1542 if ((value & (1 << i)) && /* counter's bit is set */
1543 /* counter is enabled and not filtered */
1544 pmu_counter_enabled(env, i) &&
1545 /* counter is SW_INCR */
1546 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1547 pmevcntr_op_start(env, i);
1548
1549 /*
1550 * Detect if this write causes an overflow since we can't predict
1551 * PMSWINC overflows like we can for other events
1552 */
1553 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1554
1555 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1556 env->cp15.c9_pmovsr |= (1 << i);
1557 pmu_update_irq(env);
1558 }
1559
1560 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1561
1562 pmevcntr_op_finish(env, i);
1563 }
1564 }
1565 }
1566
1567 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1568 {
1569 uint64_t ret;
1570 pmccntr_op_start(env);
1571 ret = env->cp15.c15_ccnt;
1572 pmccntr_op_finish(env);
1573 return ret;
1574 }
1575
1576 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1577 uint64_t value)
1578 {
1579 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1580 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1581 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1582 * accessed.
1583 */
1584 env->cp15.c9_pmselr = value & 0x1f;
1585 }
1586
1587 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1588 uint64_t value)
1589 {
1590 pmccntr_op_start(env);
1591 env->cp15.c15_ccnt = value;
1592 pmccntr_op_finish(env);
1593 }
1594
1595 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1597 {
1598 uint64_t cur_val = pmccntr_read(env, NULL);
1599
1600 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1601 }
1602
1603 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1605 {
1606 pmccntr_op_start(env);
1607 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1608 pmccntr_op_finish(env);
1609 }
1610
1611 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1612 uint64_t value)
1613 {
1614 pmccntr_op_start(env);
1615 /* M is not accessible from AArch32 */
1616 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1617 (value & PMCCFILTR);
1618 pmccntr_op_finish(env);
1619 }
1620
1621 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1622 {
1623 /* M is not visible in AArch32 */
1624 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1625 }
1626
1627 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628 uint64_t value)
1629 {
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmcnten |= value;
1632 }
1633
1634 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1635 uint64_t value)
1636 {
1637 value &= pmu_counter_mask(env);
1638 env->cp15.c9_pmcnten &= ~value;
1639 }
1640
1641 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642 uint64_t value)
1643 {
1644 value &= pmu_counter_mask(env);
1645 env->cp15.c9_pmovsr &= ~value;
1646 pmu_update_irq(env);
1647 }
1648
1649 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value)
1651 {
1652 value &= pmu_counter_mask(env);
1653 env->cp15.c9_pmovsr |= value;
1654 pmu_update_irq(env);
1655 }
1656
1657 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value, const uint8_t counter)
1659 {
1660 if (counter == 31) {
1661 pmccfiltr_write(env, ri, value);
1662 } else if (counter < pmu_num_counters(env)) {
1663 pmevcntr_op_start(env, counter);
1664
1665 /*
1666 * If this counter's event type is changing, store the current
1667 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1668 * pmevcntr_op_finish has the correct baseline when it converts back to
1669 * a delta.
1670 */
1671 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1672 PMXEVTYPER_EVTCOUNT;
1673 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1674 if (old_event != new_event) {
1675 uint64_t count = 0;
1676 if (event_supported(new_event)) {
1677 uint16_t event_idx = supported_event_map[new_event];
1678 count = pm_events[event_idx].get_count(env);
1679 }
1680 env->cp15.c14_pmevcntr_delta[counter] = count;
1681 }
1682
1683 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1684 pmevcntr_op_finish(env, counter);
1685 }
1686 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1687 * PMSELR value is equal to or greater than the number of implemented
1688 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1689 */
1690 }
1691
1692 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1693 const uint8_t counter)
1694 {
1695 if (counter == 31) {
1696 return env->cp15.pmccfiltr_el0;
1697 } else if (counter < pmu_num_counters(env)) {
1698 return env->cp15.c14_pmevtyper[counter];
1699 } else {
1700 /*
1701 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1702 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1703 */
1704 return 0;
1705 }
1706 }
1707
1708 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value)
1710 {
1711 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1712 pmevtyper_write(env, ri, value, counter);
1713 }
1714
1715 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1716 uint64_t value)
1717 {
1718 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1719 env->cp15.c14_pmevtyper[counter] = value;
1720
1721 /*
1722 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1723 * pmu_op_finish calls when loading saved state for a migration. Because
1724 * we're potentially updating the type of event here, the value written to
1725 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1726 * different counter type. Therefore, we need to set this value to the
1727 * current count for the counter type we're writing so that pmu_op_finish
1728 * has the correct count for its calculation.
1729 */
1730 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1731 if (event_supported(event)) {
1732 uint16_t event_idx = supported_event_map[event];
1733 env->cp15.c14_pmevcntr_delta[counter] =
1734 pm_events[event_idx].get_count(env);
1735 }
1736 }
1737
1738 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1739 {
1740 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1741 return pmevtyper_read(env, ri, counter);
1742 }
1743
1744 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1746 {
1747 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1748 }
1749
1750 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1751 {
1752 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1753 }
1754
1755 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value, uint8_t counter)
1757 {
1758 if (counter < pmu_num_counters(env)) {
1759 pmevcntr_op_start(env, counter);
1760 env->cp15.c14_pmevcntr[counter] = value;
1761 pmevcntr_op_finish(env, counter);
1762 }
1763 /*
1764 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1765 * are CONSTRAINED UNPREDICTABLE.
1766 */
1767 }
1768
1769 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1770 uint8_t counter)
1771 {
1772 if (counter < pmu_num_counters(env)) {
1773 uint64_t ret;
1774 pmevcntr_op_start(env, counter);
1775 ret = env->cp15.c14_pmevcntr[counter];
1776 pmevcntr_op_finish(env, counter);
1777 return ret;
1778 } else {
1779 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1780 * are CONSTRAINED UNPREDICTABLE. */
1781 return 0;
1782 }
1783 }
1784
1785 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1786 uint64_t value)
1787 {
1788 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1789 pmevcntr_write(env, ri, value, counter);
1790 }
1791
1792 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1793 {
1794 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1795 return pmevcntr_read(env, ri, counter);
1796 }
1797
1798 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1800 {
1801 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1802 assert(counter < pmu_num_counters(env));
1803 env->cp15.c14_pmevcntr[counter] = value;
1804 pmevcntr_write(env, ri, value, counter);
1805 }
1806
1807 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1808 {
1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810 assert(counter < pmu_num_counters(env));
1811 return env->cp15.c14_pmevcntr[counter];
1812 }
1813
1814 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816 {
1817 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1818 }
1819
1820 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1821 {
1822 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1823 }
1824
1825 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1826 uint64_t value)
1827 {
1828 if (arm_feature(env, ARM_FEATURE_V8)) {
1829 env->cp15.c9_pmuserenr = value & 0xf;
1830 } else {
1831 env->cp15.c9_pmuserenr = value & 1;
1832 }
1833 }
1834
1835 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1837 {
1838 /* We have no event counters so only the C bit can be changed */
1839 value &= pmu_counter_mask(env);
1840 env->cp15.c9_pminten |= value;
1841 pmu_update_irq(env);
1842 }
1843
1844 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1845 uint64_t value)
1846 {
1847 value &= pmu_counter_mask(env);
1848 env->cp15.c9_pminten &= ~value;
1849 pmu_update_irq(env);
1850 }
1851
1852 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1854 {
1855 /* Note that even though the AArch64 view of this register has bits
1856 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1857 * architectural requirements for bits which are RES0 only in some
1858 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1859 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1860 */
1861 raw_write(env, ri, value & ~0x1FULL);
1862 }
1863
1864 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1865 {
1866 /* Begin with base v8.0 state. */
1867 uint32_t valid_mask = 0x3fff;
1868 ARMCPU *cpu = arm_env_get_cpu(env);
1869
1870 if (arm_el_is_aa64(env, 3)) {
1871 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1872 valid_mask &= ~SCR_NET;
1873 } else {
1874 valid_mask &= ~(SCR_RW | SCR_ST);
1875 }
1876
1877 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1878 valid_mask &= ~SCR_HCE;
1879
1880 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1881 * supported if EL2 exists. The bit is UNK/SBZP when
1882 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1883 * when EL2 is unavailable.
1884 * On ARMv8, this bit is always available.
1885 */
1886 if (arm_feature(env, ARM_FEATURE_V7) &&
1887 !arm_feature(env, ARM_FEATURE_V8)) {
1888 valid_mask &= ~SCR_SMD;
1889 }
1890 }
1891 if (cpu_isar_feature(aa64_lor, cpu)) {
1892 valid_mask |= SCR_TLOR;
1893 }
1894 if (cpu_isar_feature(aa64_pauth, cpu)) {
1895 valid_mask |= SCR_API | SCR_APK;
1896 }
1897
1898 /* Clear all-context RES0 bits. */
1899 value &= valid_mask;
1900 raw_write(env, ri, value);
1901 }
1902
1903 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1904 {
1905 ARMCPU *cpu = arm_env_get_cpu(env);
1906
1907 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1908 * bank
1909 */
1910 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1911 ri->secure & ARM_CP_SECSTATE_S);
1912
1913 return cpu->ccsidr[index];
1914 }
1915
1916 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1917 uint64_t value)
1918 {
1919 raw_write(env, ri, value & 0xf);
1920 }
1921
1922 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1923 {
1924 CPUState *cs = ENV_GET_CPU(env);
1925 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1926 uint64_t ret = 0;
1927
1928 if (hcr_el2 & HCR_IMO) {
1929 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1930 ret |= CPSR_I;
1931 }
1932 } else {
1933 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1934 ret |= CPSR_I;
1935 }
1936 }
1937
1938 if (hcr_el2 & HCR_FMO) {
1939 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1940 ret |= CPSR_F;
1941 }
1942 } else {
1943 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1944 ret |= CPSR_F;
1945 }
1946 }
1947
1948 /* External aborts are not possible in QEMU so A bit is always clear */
1949 return ret;
1950 }
1951
1952 static const ARMCPRegInfo v7_cp_reginfo[] = {
1953 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1954 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1955 .access = PL1_W, .type = ARM_CP_NOP },
1956 /* Performance monitors are implementation defined in v7,
1957 * but with an ARM recommended set of registers, which we
1958 * follow.
1959 *
1960 * Performance registers fall into three categories:
1961 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1962 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1963 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1964 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1965 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1966 */
1967 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1968 .access = PL0_RW, .type = ARM_CP_ALIAS,
1969 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1970 .writefn = pmcntenset_write,
1971 .accessfn = pmreg_access,
1972 .raw_writefn = raw_write },
1973 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1974 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1975 .access = PL0_RW, .accessfn = pmreg_access,
1976 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1977 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1978 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1979 .access = PL0_RW,
1980 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1981 .accessfn = pmreg_access,
1982 .writefn = pmcntenclr_write,
1983 .type = ARM_CP_ALIAS },
1984 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1986 .access = PL0_RW, .accessfn = pmreg_access,
1987 .type = ARM_CP_ALIAS,
1988 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1989 .writefn = pmcntenclr_write },
1990 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1991 .access = PL0_RW, .type = ARM_CP_IO,
1992 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1993 .accessfn = pmreg_access,
1994 .writefn = pmovsr_write,
1995 .raw_writefn = raw_write },
1996 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1997 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1998 .access = PL0_RW, .accessfn = pmreg_access,
1999 .type = ARM_CP_ALIAS | ARM_CP_IO,
2000 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2001 .writefn = pmovsr_write,
2002 .raw_writefn = raw_write },
2003 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2004 .access = PL0_W, .accessfn = pmreg_access_swinc,
2005 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2006 .writefn = pmswinc_write },
2007 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2008 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2009 .access = PL0_W, .accessfn = pmreg_access_swinc,
2010 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2011 .writefn = pmswinc_write },
2012 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2013 .access = PL0_RW, .type = ARM_CP_ALIAS,
2014 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2015 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2016 .raw_writefn = raw_write},
2017 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2019 .access = PL0_RW, .accessfn = pmreg_access_selr,
2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2021 .writefn = pmselr_write, .raw_writefn = raw_write, },
2022 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2023 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2024 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2025 .accessfn = pmreg_access_ccntr },
2026 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2027 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2028 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2029 .type = ARM_CP_IO,
2030 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2031 .readfn = pmccntr_read, .writefn = pmccntr_write,
2032 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2033 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2034 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2035 .access = PL0_RW, .accessfn = pmreg_access,
2036 .type = ARM_CP_ALIAS | ARM_CP_IO,
2037 .resetvalue = 0, },
2038 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2039 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2040 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2041 .access = PL0_RW, .accessfn = pmreg_access,
2042 .type = ARM_CP_IO,
2043 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2044 .resetvalue = 0, },
2045 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2046 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2047 .accessfn = pmreg_access,
2048 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2049 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2050 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2051 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2052 .accessfn = pmreg_access,
2053 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2054 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2055 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2056 .accessfn = pmreg_access_xevcntr,
2057 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2058 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2059 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2060 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2061 .accessfn = pmreg_access_xevcntr,
2062 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2063 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2064 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2065 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2066 .resetvalue = 0,
2067 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2068 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2070 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2071 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2072 .resetvalue = 0,
2073 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2074 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2075 .access = PL1_RW, .accessfn = access_tpm,
2076 .type = ARM_CP_ALIAS | ARM_CP_IO,
2077 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2078 .resetvalue = 0,
2079 .writefn = pmintenset_write, .raw_writefn = raw_write },
2080 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2082 .access = PL1_RW, .accessfn = access_tpm,
2083 .type = ARM_CP_IO,
2084 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2085 .writefn = pmintenset_write, .raw_writefn = raw_write,
2086 .resetvalue = 0x0 },
2087 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2088 .access = PL1_RW, .accessfn = access_tpm,
2089 .type = ARM_CP_ALIAS | ARM_CP_IO,
2090 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2091 .writefn = pmintenclr_write, },
2092 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2094 .access = PL1_RW, .accessfn = access_tpm,
2095 .type = ARM_CP_ALIAS | ARM_CP_IO,
2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2097 .writefn = pmintenclr_write },
2098 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2099 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2100 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2101 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2103 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2104 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2105 offsetof(CPUARMState, cp15.csselr_ns) } },
2106 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2107 * just RAZ for all cores:
2108 */
2109 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2112 /* Auxiliary fault status registers: these also are IMPDEF, and we
2113 * choose to RAZ/WI for all cores.
2114 */
2115 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2116 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2117 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2118 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2119 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2120 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2121 /* MAIR can just read-as-written because we don't implement caches
2122 * and so don't need to care about memory attributes.
2123 */
2124 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2126 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2127 .resetvalue = 0 },
2128 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2129 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2130 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2131 .resetvalue = 0 },
2132 /* For non-long-descriptor page tables these are PRRR and NMRR;
2133 * regardless they still act as reads-as-written for QEMU.
2134 */
2135 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2136 * allows them to assign the correct fieldoffset based on the endianness
2137 * handled in the field definitions.
2138 */
2139 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2140 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2142 offsetof(CPUARMState, cp15.mair0_ns) },
2143 .resetfn = arm_cp_reset_ignore },
2144 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2145 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2146 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2147 offsetof(CPUARMState, cp15.mair1_ns) },
2148 .resetfn = arm_cp_reset_ignore },
2149 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2150 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2151 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2152 /* 32 bit ITLB invalidates */
2153 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2154 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2155 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2157 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2158 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2159 /* 32 bit DTLB invalidates */
2160 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2161 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2162 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2164 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2165 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2166 /* 32 bit TLB invalidates */
2167 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2169 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2170 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2171 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2173 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2174 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2175 REGINFO_SENTINEL
2176 };
2177
2178 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2179 /* 32 bit TLB invalidates, Inner Shareable */
2180 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2181 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2182 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2184 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2185 .type = ARM_CP_NO_RAW, .access = PL1_W,
2186 .writefn = tlbiasid_is_write },
2187 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2188 .type = ARM_CP_NO_RAW, .access = PL1_W,
2189 .writefn = tlbimvaa_is_write },
2190 REGINFO_SENTINEL
2191 };
2192
2193 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2194 /* PMOVSSET is not implemented in v7 before v7ve */
2195 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2196 .access = PL0_RW, .accessfn = pmreg_access,
2197 .type = ARM_CP_ALIAS | ARM_CP_IO,
2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2199 .writefn = pmovsset_write,
2200 .raw_writefn = raw_write },
2201 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2203 .access = PL0_RW, .accessfn = pmreg_access,
2204 .type = ARM_CP_ALIAS | ARM_CP_IO,
2205 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2206 .writefn = pmovsset_write,
2207 .raw_writefn = raw_write },
2208 REGINFO_SENTINEL
2209 };
2210
2211 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2212 uint64_t value)
2213 {
2214 value &= 1;
2215 env->teecr = value;
2216 }
2217
2218 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2219 bool isread)
2220 {
2221 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2222 return CP_ACCESS_TRAP;
2223 }
2224 return CP_ACCESS_OK;
2225 }
2226
2227 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2228 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2229 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2230 .resetvalue = 0,
2231 .writefn = teecr_write },
2232 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2233 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2234 .accessfn = teehbr_access, .resetvalue = 0 },
2235 REGINFO_SENTINEL
2236 };
2237
2238 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2239 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2240 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2241 .access = PL0_RW,
2242 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2243 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2244 .access = PL0_RW,
2245 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2246 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2247 .resetfn = arm_cp_reset_ignore },
2248 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2249 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2250 .access = PL0_R|PL1_W,
2251 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2252 .resetvalue = 0},
2253 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2254 .access = PL0_R|PL1_W,
2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2256 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2257 .resetfn = arm_cp_reset_ignore },
2258 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2259 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2260 .access = PL1_RW,
2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2262 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2263 .access = PL1_RW,
2264 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2265 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2266 .resetvalue = 0 },
2267 REGINFO_SENTINEL
2268 };
2269
2270 #ifndef CONFIG_USER_ONLY
2271
2272 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2273 bool isread)
2274 {
2275 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2276 * Writable only at the highest implemented exception level.
2277 */
2278 int el = arm_current_el(env);
2279
2280 switch (el) {
2281 case 0:
2282 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2283 return CP_ACCESS_TRAP;
2284 }
2285 break;
2286 case 1:
2287 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2288 arm_is_secure_below_el3(env)) {
2289 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2290 return CP_ACCESS_TRAP_UNCATEGORIZED;
2291 }
2292 break;
2293 case 2:
2294 case 3:
2295 break;
2296 }
2297
2298 if (!isread && el < arm_highest_el(env)) {
2299 return CP_ACCESS_TRAP_UNCATEGORIZED;
2300 }
2301
2302 return CP_ACCESS_OK;
2303 }
2304
2305 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2306 bool isread)
2307 {
2308 unsigned int cur_el = arm_current_el(env);
2309 bool secure = arm_is_secure(env);
2310
2311 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2312 if (cur_el == 0 &&
2313 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2314 return CP_ACCESS_TRAP;
2315 }
2316
2317 if (arm_feature(env, ARM_FEATURE_EL2) &&
2318 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2319 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2320 return CP_ACCESS_TRAP_EL2;
2321 }
2322 return CP_ACCESS_OK;
2323 }
2324
2325 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2326 bool isread)
2327 {
2328 unsigned int cur_el = arm_current_el(env);
2329 bool secure = arm_is_secure(env);
2330
2331 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2332 * EL0[PV]TEN is zero.
2333 */
2334 if (cur_el == 0 &&
2335 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2336 return CP_ACCESS_TRAP;
2337 }
2338
2339 if (arm_feature(env, ARM_FEATURE_EL2) &&
2340 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2341 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2342 return CP_ACCESS_TRAP_EL2;
2343 }
2344 return CP_ACCESS_OK;
2345 }
2346
2347 static CPAccessResult gt_pct_access(CPUARMState *env,
2348 const ARMCPRegInfo *ri,
2349 bool isread)
2350 {
2351 return gt_counter_access(env, GTIMER_PHYS, isread);
2352 }
2353
2354 static CPAccessResult gt_vct_access(CPUARMState *env,
2355 const ARMCPRegInfo *ri,
2356 bool isread)
2357 {
2358 return gt_counter_access(env, GTIMER_VIRT, isread);
2359 }
2360
2361 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362 bool isread)
2363 {
2364 return gt_timer_access(env, GTIMER_PHYS, isread);
2365 }
2366
2367 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2368 bool isread)
2369 {
2370 return gt_timer_access(env, GTIMER_VIRT, isread);
2371 }
2372
2373 static CPAccessResult gt_stimer_access(CPUARMState *env,
2374 const ARMCPRegInfo *ri,
2375 bool isread)
2376 {
2377 /* The AArch64 register view of the secure physical timer is
2378 * always accessible from EL3, and configurably accessible from
2379 * Secure EL1.
2380 */
2381 switch (arm_current_el(env)) {
2382 case 1:
2383 if (!arm_is_secure(env)) {
2384 return CP_ACCESS_TRAP;
2385 }
2386 if (!(env->cp15.scr_el3 & SCR_ST)) {
2387 return CP_ACCESS_TRAP_EL3;
2388 }
2389 return CP_ACCESS_OK;
2390 case 0:
2391 case 2:
2392 return CP_ACCESS_TRAP;
2393 case 3:
2394 return CP_ACCESS_OK;
2395 default:
2396 g_assert_not_reached();
2397 }
2398 }
2399
2400 static uint64_t gt_get_countervalue(CPUARMState *env)
2401 {
2402 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2403 }
2404
2405 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2406 {
2407 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2408
2409 if (gt->ctl & 1) {
2410 /* Timer enabled: calculate and set current ISTATUS, irq, and
2411 * reset timer to when ISTATUS next has to change
2412 */
2413 uint64_t offset = timeridx == GTIMER_VIRT ?
2414 cpu->env.cp15.cntvoff_el2 : 0;
2415 uint64_t count = gt_get_countervalue(&cpu->env);
2416 /* Note that this must be unsigned 64 bit arithmetic: */
2417 int istatus = count - offset >= gt->cval;
2418 uint64_t nexttick;
2419 int irqstate;
2420
2421 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2422
2423 irqstate = (istatus && !(gt->ctl & 2));
2424 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2425
2426 if (istatus) {
2427 /* Next transition is when count rolls back over to zero */
2428 nexttick = UINT64_MAX;
2429 } else {
2430 /* Next transition is when we hit cval */
2431 nexttick = gt->cval + offset;
2432 }
2433 /* Note that the desired next expiry time might be beyond the
2434 * signed-64-bit range of a QEMUTimer -- in this case we just
2435 * set the timer for as far in the future as possible. When the
2436 * timer expires we will reset the timer for any remaining period.
2437 */
2438 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2439 nexttick = INT64_MAX / GTIMER_SCALE;
2440 }
2441 timer_mod(cpu->gt_timer[timeridx], nexttick);
2442 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2443 } else {
2444 /* Timer disabled: ISTATUS and timer output always clear */
2445 gt->ctl &= ~4;
2446 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2447 timer_del(cpu->gt_timer[timeridx]);
2448 trace_arm_gt_recalc_disabled(timeridx);
2449 }
2450 }
2451
2452 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2453 int timeridx)
2454 {
2455 ARMCPU *cpu = arm_env_get_cpu(env);
2456
2457 timer_del(cpu->gt_timer[timeridx]);
2458 }
2459
2460 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2461 {
2462 return gt_get_countervalue(env);
2463 }
2464
2465 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2466 {
2467 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2468 }
2469
2470 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2471 int timeridx,
2472 uint64_t value)
2473 {
2474 trace_arm_gt_cval_write(timeridx, value);
2475 env->cp15.c14_timer[timeridx].cval = value;
2476 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2477 }
2478
2479 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2480 int timeridx)
2481 {
2482 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2483
2484 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2485 (gt_get_countervalue(env) - offset));
2486 }
2487
2488 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489 int timeridx,
2490 uint64_t value)
2491 {
2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2493
2494 trace_arm_gt_tval_write(timeridx, value);
2495 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2496 sextract64(value, 0, 32);
2497 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2498 }
2499
2500 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2501 int timeridx,
2502 uint64_t value)
2503 {
2504 ARMCPU *cpu = arm_env_get_cpu(env);
2505 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2506
2507 trace_arm_gt_ctl_write(timeridx, value);
2508 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2509 if ((oldval ^ value) & 1) {
2510 /* Enable toggled */
2511 gt_recalc_timer(cpu, timeridx);
2512 } else if ((oldval ^ value) & 2) {
2513 /* IMASK toggled: don't need to recalculate,
2514 * just set the interrupt line based on ISTATUS
2515 */
2516 int irqstate = (oldval & 4) && !(value & 2);
2517
2518 trace_arm_gt_imask_toggle(timeridx, irqstate);
2519 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2520 }
2521 }
2522
2523 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2524 {
2525 gt_timer_reset(env, ri, GTIMER_PHYS);
2526 }
2527
2528 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2529 uint64_t value)
2530 {
2531 gt_cval_write(env, ri, GTIMER_PHYS, value);
2532 }
2533
2534 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2535 {
2536 return gt_tval_read(env, ri, GTIMER_PHYS);
2537 }
2538
2539 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2540 uint64_t value)
2541 {
2542 gt_tval_write(env, ri, GTIMER_PHYS, value);
2543 }
2544
2545 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2546 uint64_t value)
2547 {
2548 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2549 }
2550
2551 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2552 {
2553 gt_timer_reset(env, ri, GTIMER_VIRT);
2554 }
2555
2556 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557 uint64_t value)
2558 {
2559 gt_cval_write(env, ri, GTIMER_VIRT, value);
2560 }
2561
2562 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2563 {
2564 return gt_tval_read(env, ri, GTIMER_VIRT);
2565 }
2566
2567 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2568 uint64_t value)
2569 {
2570 gt_tval_write(env, ri, GTIMER_VIRT, value);
2571 }
2572
2573 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574 uint64_t value)
2575 {
2576 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2577 }
2578
2579 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580 uint64_t value)
2581 {
2582 ARMCPU *cpu = arm_env_get_cpu(env);
2583
2584 trace_arm_gt_cntvoff_write(value);
2585 raw_write(env, ri, value);
2586 gt_recalc_timer(cpu, GTIMER_VIRT);
2587 }
2588
2589 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2590 {
2591 gt_timer_reset(env, ri, GTIMER_HYP);
2592 }
2593
2594 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2595 uint64_t value)
2596 {
2597 gt_cval_write(env, ri, GTIMER_HYP, value);
2598 }
2599
2600 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2601 {
2602 return gt_tval_read(env, ri, GTIMER_HYP);
2603 }
2604
2605 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2606 uint64_t value)
2607 {
2608 gt_tval_write(env, ri, GTIMER_HYP, value);
2609 }
2610
2611 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2612 uint64_t value)
2613 {
2614 gt_ctl_write(env, ri, GTIMER_HYP, value);
2615 }
2616
2617 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2618 {
2619 gt_timer_reset(env, ri, GTIMER_SEC);
2620 }
2621
2622 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623 uint64_t value)
2624 {
2625 gt_cval_write(env, ri, GTIMER_SEC, value);
2626 }
2627
2628 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2629 {
2630 return gt_tval_read(env, ri, GTIMER_SEC);
2631 }
2632
2633 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2634 uint64_t value)
2635 {
2636 gt_tval_write(env, ri, GTIMER_SEC, value);
2637 }
2638
2639 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2640 uint64_t value)
2641 {
2642 gt_ctl_write(env, ri, GTIMER_SEC, value);
2643 }
2644
2645 void arm_gt_ptimer_cb(void *opaque)
2646 {
2647 ARMCPU *cpu = opaque;
2648
2649 gt_recalc_timer(cpu, GTIMER_PHYS);
2650 }
2651
2652 void arm_gt_vtimer_cb(void *opaque)
2653 {
2654 ARMCPU *cpu = opaque;
2655
2656 gt_recalc_timer(cpu, GTIMER_VIRT);
2657 }
2658
2659 void arm_gt_htimer_cb(void *opaque)
2660 {
2661 ARMCPU *cpu = opaque;
2662
2663 gt_recalc_timer(cpu, GTIMER_HYP);
2664 }
2665
2666 void arm_gt_stimer_cb(void *opaque)
2667 {
2668 ARMCPU *cpu = opaque;
2669
2670 gt_recalc_timer(cpu, GTIMER_SEC);
2671 }
2672
2673 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2674 /* Note that CNTFRQ is purely reads-as-written for the benefit
2675 * of software; writing it doesn't actually change the timer frequency.
2676 * Our reset value matches the fixed frequency we implement the timer at.
2677 */
2678 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2679 .type = ARM_CP_ALIAS,
2680 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2681 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2682 },
2683 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2685 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2686 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2687 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2688 },
2689 /* overall control: mostly access permissions */
2690 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2691 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2692 .access = PL1_RW,
2693 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2694 .resetvalue = 0,
2695 },
2696 /* per-timer control */
2697 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2698 .secure = ARM_CP_SECSTATE_NS,
2699 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2700 .accessfn = gt_ptimer_access,
2701 .fieldoffset = offsetoflow32(CPUARMState,
2702 cp15.c14_timer[GTIMER_PHYS].ctl),
2703 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2704 },
2705 { .name = "CNTP_CTL_S",
2706 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2707 .secure = ARM_CP_SECSTATE_S,
2708 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2709 .accessfn = gt_ptimer_access,
2710 .fieldoffset = offsetoflow32(CPUARMState,
2711 cp15.c14_timer[GTIMER_SEC].ctl),
2712 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2713 },
2714 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2715 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2716 .type = ARM_CP_IO, .access = PL0_RW,
2717 .accessfn = gt_ptimer_access,
2718 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2719 .resetvalue = 0,
2720 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2721 },
2722 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2723 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2724 .accessfn = gt_vtimer_access,
2725 .fieldoffset = offsetoflow32(CPUARMState,
2726 cp15.c14_timer[GTIMER_VIRT].ctl),
2727 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2728 },
2729 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2730 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2731 .type = ARM_CP_IO, .access = PL0_RW,
2732 .accessfn = gt_vtimer_access,
2733 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2734 .resetvalue = 0,
2735 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2736 },
2737 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2738 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2739 .secure = ARM_CP_SECSTATE_NS,
2740 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2741 .accessfn = gt_ptimer_access,
2742 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2743 },
2744 { .name = "CNTP_TVAL_S",
2745 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2746 .secure = ARM_CP_SECSTATE_S,
2747 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2748 .accessfn = gt_ptimer_access,
2749 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2750 },
2751 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2752 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2753 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2754 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2755 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2756 },
2757 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2758 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2759 .accessfn = gt_vtimer_access,
2760 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2761 },
2762 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2763 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2764 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2765 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2766 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2767 },
2768 /* The counter itself */
2769 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2770 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2771 .accessfn = gt_pct_access,
2772 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2773 },
2774 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2775 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2776 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2777 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2778 },
2779 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2781 .accessfn = gt_vct_access,
2782 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2783 },
2784 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2787 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2788 },
2789 /* Comparison value, indicating when the timer goes off */
2790 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2791 .secure = ARM_CP_SECSTATE_NS,
2792 .access = PL0_RW,
2793 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2794 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2795 .accessfn = gt_ptimer_access,
2796 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2797 },
2798 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2799 .secure = ARM_CP_SECSTATE_S,
2800 .access = PL0_RW,
2801 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2803 .accessfn = gt_ptimer_access,
2804 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2805 },
2806 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2807 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2808 .access = PL0_RW,
2809 .type = ARM_CP_IO,
2810 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2811 .resetvalue = 0, .accessfn = gt_ptimer_access,
2812 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2813 },
2814 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2815 .access = PL0_RW,
2816 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2818 .accessfn = gt_vtimer_access,
2819 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2820 },
2821 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2822 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2823 .access = PL0_RW,
2824 .type = ARM_CP_IO,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2826 .resetvalue = 0, .accessfn = gt_vtimer_access,
2827 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2828 },
2829 /* Secure timer -- this is actually restricted to only EL3
2830 * and configurably Secure-EL1 via the accessfn.
2831 */
2832 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2833 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2834 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2835 .accessfn = gt_stimer_access,
2836 .readfn = gt_sec_tval_read,
2837 .writefn = gt_sec_tval_write,
2838 .resetfn = gt_sec_timer_reset,
2839 },
2840 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2841 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2842 .type = ARM_CP_IO, .access = PL1_RW,
2843 .accessfn = gt_stimer_access,
2844 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2845 .resetvalue = 0,
2846 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2847 },
2848 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2850 .type = ARM_CP_IO, .access = PL1_RW,
2851 .accessfn = gt_stimer_access,
2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2853 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2854 },
2855 REGINFO_SENTINEL
2856 };
2857
2858 #else
2859
2860 /* In user-mode most of the generic timer registers are inaccessible
2861 * however modern kernels (4.12+) allow access to cntvct_el0
2862 */
2863
2864 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2865 {
2866 /* Currently we have no support for QEMUTimer in linux-user so we
2867 * can't call gt_get_countervalue(env), instead we directly
2868 * call the lower level functions.
2869 */
2870 return cpu_get_clock() / GTIMER_SCALE;
2871 }
2872
2873 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2874 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2875 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2876 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2877 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2878 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2879 },
2880 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2881 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2882 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2883 .readfn = gt_virt_cnt_read,
2884 },
2885 REGINFO_SENTINEL
2886 };
2887
2888 #endif
2889
2890 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2891 {
2892 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2893 raw_write(env, ri, value);
2894 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2895 raw_write(env, ri, value & 0xfffff6ff);
2896 } else {
2897 raw_write(env, ri, value & 0xfffff1ff);
2898 }
2899 }
2900
2901 #ifndef CONFIG_USER_ONLY
2902 /* get_phys_addr() isn't present for user-mode-only targets */
2903
2904 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2905 bool isread)
2906 {
2907 if (ri->opc2 & 4) {
2908 /* The ATS12NSO* operations must trap to EL3 if executed in
2909 * Secure EL1 (which can only happen if EL3 is AArch64).
2910 * They are simply UNDEF if executed from NS EL1.
2911 * They function normally from EL2 or EL3.
2912 */
2913 if (arm_current_el(env) == 1) {
2914 if (arm_is_secure_below_el3(env)) {
2915 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2916 }
2917 return CP_ACCESS_TRAP_UNCATEGORIZED;
2918 }
2919 }
2920 return CP_ACCESS_OK;
2921 }
2922
2923 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2924 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2925 {
2926 hwaddr phys_addr;
2927 target_ulong page_size;
2928 int prot;
2929 bool ret;
2930 uint64_t par64;
2931 bool format64 = false;
2932 MemTxAttrs attrs = {};
2933 ARMMMUFaultInfo fi = {};
2934 ARMCacheAttrs cacheattrs = {};
2935
2936 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2937 &prot, &page_size, &fi, &cacheattrs);
2938
2939 if (is_a64(env)) {
2940 format64 = true;
2941 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2942 /*
2943 * ATS1Cxx:
2944 * * TTBCR.EAE determines whether the result is returned using the
2945 * 32-bit or the 64-bit PAR format
2946 * * Instructions executed in Hyp mode always use the 64bit format
2947 *
2948 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2949 * * The Non-secure TTBCR.EAE bit is set to 1
2950 * * The implementation includes EL2, and the value of HCR.VM is 1
2951 *
2952 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2953 *
2954 * ATS1Hx always uses the 64bit format.
2955 */
2956 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2957
2958 if (arm_feature(env, ARM_FEATURE_EL2)) {
2959 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2960 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2961 } else {
2962 format64 |= arm_current_el(env) == 2;
2963 }
2964 }
2965 }
2966
2967 if (format64) {
2968 /* Create a 64-bit PAR */
2969 par64 = (1 << 11); /* LPAE bit always set */
2970 if (!ret) {
2971 par64 |= phys_addr & ~0xfffULL;
2972 if (!attrs.secure) {
2973 par64 |= (1 << 9); /* NS */
2974 }
2975 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2976 par64 |= cacheattrs.shareability << 7; /* SH */
2977 } else {
2978 uint32_t fsr = arm_fi_to_lfsc(&fi);
2979
2980 par64 |= 1; /* F */
2981 par64 |= (fsr & 0x3f) << 1; /* FS */
2982 if (fi.stage2) {
2983 par64 |= (1 << 9); /* S */
2984 }
2985 if (fi.s1ptw) {
2986 par64 |= (1 << 8); /* PTW */
2987 }
2988 }
2989 } else {
2990 /* fsr is a DFSR/IFSR value for the short descriptor
2991 * translation table format (with WnR always clear).
2992 * Convert it to a 32-bit PAR.
2993 */
2994 if (!ret) {
2995 /* We do not set any attribute bits in the PAR */
2996 if (page_size == (1 << 24)
2997 && arm_feature(env, ARM_FEATURE_V7)) {
2998 par64 = (phys_addr & 0xff000000) | (1 << 1);
2999 } else {
3000 par64 = phys_addr & 0xfffff000;
3001 }
3002 if (!attrs.secure) {
3003 par64 |= (1 << 9); /* NS */
3004 }
3005 } else {
3006 uint32_t fsr = arm_fi_to_sfsc(&fi);
3007
3008 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3009 ((fsr & 0xf) << 1) | 1;
3010 }
3011 }
3012 return par64;
3013 }
3014
3015 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3016 {
3017 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3018 uint64_t par64;
3019 ARMMMUIdx mmu_idx;
3020 int el = arm_current_el(env);
3021 bool secure = arm_is_secure_below_el3(env);
3022
3023 switch (ri->opc2 & 6) {
3024 case 0:
3025 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3026 switch (el) {
3027 case 3:
3028 mmu_idx = ARMMMUIdx_S1E3;
3029 break;
3030 case 2:
3031 mmu_idx = ARMMMUIdx_S1NSE1;
3032 break;
3033 case 1:
3034 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3035 break;
3036 default:
3037 g_assert_not_reached();
3038 }
3039 break;
3040 case 2:
3041 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3042 switch (el) {
3043 case 3:
3044 mmu_idx = ARMMMUIdx_S1SE0;
3045 break;
3046 case 2:
3047 mmu_idx = ARMMMUIdx_S1NSE0;
3048 break;
3049 case 1:
3050 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3051 break;
3052 default:
3053 g_assert_not_reached();
3054 }
3055 break;
3056 case 4:
3057 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3058 mmu_idx = ARMMMUIdx_S12NSE1;
3059 break;
3060 case 6:
3061 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3062 mmu_idx = ARMMMUIdx_S12NSE0;
3063 break;
3064 default:
3065 g_assert_not_reached();
3066 }
3067
3068 par64 = do_ats_write(env, value, access_type, mmu_idx);
3069
3070 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3071 }
3072
3073 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074 uint64_t value)
3075 {
3076 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3077 uint64_t par64;
3078
3079 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3080
3081 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3082 }
3083
3084 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3085 bool isread)
3086 {
3087 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3088 return CP_ACCESS_TRAP;
3089 }
3090 return CP_ACCESS_OK;
3091 }
3092
3093 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3094 uint64_t value)
3095 {
3096 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3097 ARMMMUIdx mmu_idx;
3098 int secure = arm_is_secure_below_el3(env);
3099
3100 switch (ri->opc2 & 6) {
3101 case 0:
3102 switch (ri->opc1) {
3103 case 0: /* AT S1E1R, AT S1E1W */
3104 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3105 break;
3106 case 4: /* AT S1E2R, AT S1E2W */
3107 mmu_idx = ARMMMUIdx_S1E2;
3108 break;
3109 case 6: /* AT S1E3R, AT S1E3W */
3110 mmu_idx = ARMMMUIdx_S1E3;
3111 break;
3112 default:
3113 g_assert_not_reached();
3114 }
3115 break;
3116 case 2: /* AT S1E0R, AT S1E0W */
3117 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3118 break;
3119 case 4: /* AT S12E1R, AT S12E1W */
3120 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3121 break;
3122 case 6: /* AT S12E0R, AT S12E0W */
3123 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3124 break;
3125 default:
3126 g_assert_not_reached();
3127 }
3128
3129 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3130 }
3131 #endif
3132
3133 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3134 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3135 .access = PL1_RW, .resetvalue = 0,
3136 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3137 offsetoflow32(CPUARMState, cp15.par_ns) },
3138 .writefn = par_write },
3139 #ifndef CONFIG_USER_ONLY
3140 /* This underdecoding is safe because the reginfo is NO_RAW. */
3141 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3142 .access = PL1_W, .accessfn = ats_access,
3143 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3144 #endif
3145 REGINFO_SENTINEL
3146 };
3147
3148 /* Return basic MPU access permission bits. */
3149 static uint32_t simple_mpu_ap_bits(uint32_t val)
3150 {
3151 uint32_t ret;
3152 uint32_t mask;
3153 int i;
3154 ret = 0;
3155 mask = 3;
3156 for (i = 0; i < 16; i += 2) {
3157 ret |= (val >> i) & mask;
3158 mask <<= 2;
3159 }
3160 return ret;
3161 }
3162
3163 /* Pad basic MPU access permission bits to extended format. */
3164 static uint32_t extended_mpu_ap_bits(uint32_t val)
3165 {
3166 uint32_t ret;
3167 uint32_t mask;
3168 int i;
3169 ret = 0;
3170 mask = 3;
3171 for (i = 0; i < 16; i += 2) {
3172 ret |= (val & mask) << i;
3173 mask <<= 2;
3174 }
3175 return ret;
3176 }
3177
3178 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3179 uint64_t value)
3180 {
3181 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3182 }
3183
3184 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3185 {
3186 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3187 }
3188
3189 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190 uint64_t value)
3191 {
3192 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3193 }
3194
3195 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3196 {
3197 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3198 }
3199
3200 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3201 {
3202 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3203
3204 if (!u32p) {
3205 return 0;
3206 }
3207
3208 u32p += env->pmsav7.rnr[M_REG_NS];
3209 return *u32p;
3210 }
3211
3212 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3213 uint64_t value)
3214 {
3215 ARMCPU *cpu = arm_env_get_cpu(env);
3216 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3217
3218 if (!u32p) {
3219 return;
3220 }
3221
3222 u32p += env->pmsav7.rnr[M_REG_NS];
3223 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3224 *u32p = value;
3225 }
3226
3227 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3228 uint64_t value)
3229 {
3230 ARMCPU *cpu = arm_env_get_cpu(env);
3231 uint32_t nrgs = cpu->pmsav7_dregion;
3232
3233 if (value >= nrgs) {
3234 qemu_log_mask(LOG_GUEST_ERROR,
3235 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3236 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3237 return;
3238 }
3239
3240 raw_write(env, ri, value);
3241 }
3242
3243 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3244 /* Reset for all these registers is handled in arm_cpu_reset(),
3245 * because the PMSAv7 is also used by M-profile CPUs, which do
3246 * not register cpregs but still need the state to be reset.
3247 */
3248 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3249 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3250 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3251 .readfn = pmsav7_read, .writefn = pmsav7_write,
3252 .resetfn = arm_cp_reset_ignore },
3253 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3254 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3255 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3256 .readfn = pmsav7_read, .writefn = pmsav7_write,
3257 .resetfn = arm_cp_reset_ignore },
3258 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3259 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3260 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3261 .readfn = pmsav7_read, .writefn = pmsav7_write,
3262 .resetfn = arm_cp_reset_ignore },
3263 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3264 .access = PL1_RW,
3265 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3266 .writefn = pmsav7_rgnr_write,
3267 .resetfn = arm_cp_reset_ignore },
3268 REGINFO_SENTINEL
3269 };
3270
3271 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3272 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3273 .access = PL1_RW, .type = ARM_CP_ALIAS,
3274 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3275 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3276 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3277 .access = PL1_RW, .type = ARM_CP_ALIAS,
3278 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3279 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3280 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3281 .access = PL1_RW,
3282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3283 .resetvalue = 0, },
3284 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3285 .access = PL1_RW,
3286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3287 .resetvalue = 0, },
3288 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3289 .access = PL1_RW,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3291 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3292 .access = PL1_RW,
3293 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3294 /* Protection region base and size registers */
3295 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3298 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3301 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3304 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3307 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3310 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3313 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3316 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3319 REGINFO_SENTINEL
3320 };
3321
3322 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3323 uint64_t value)
3324 {
3325 TCR *tcr = raw_ptr(env, ri);
3326 int maskshift = extract32(value, 0, 3);
3327
3328 if (!arm_feature(env, ARM_FEATURE_V8)) {
3329 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3330 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3331 * using Long-desciptor translation table format */
3332 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3333 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3334 /* In an implementation that includes the Security Extensions
3335 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3336 * Short-descriptor translation table format.
3337 */
3338 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3339 } else {
3340 value &= TTBCR_N;
3341 }
3342 }
3343
3344 /* Update the masks corresponding to the TCR bank being written
3345 * Note that we always calculate mask and base_mask, but
3346 * they are only used for short-descriptor tables (ie if EAE is 0);
3347 * for long-descriptor tables the TCR fields are used differently
3348 * and the mask and base_mask values are meaningless.
3349 */
3350 tcr->raw_tcr = value;
3351 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3352 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3353 }
3354
3355 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3356 uint64_t value)
3357 {
3358 ARMCPU *cpu = arm_env_get_cpu(env);
3359 TCR *tcr = raw_ptr(env, ri);
3360
3361 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3362 /* With LPAE the TTBCR could result in a change of ASID
3363 * via the TTBCR.A1 bit, so do a TLB flush.
3364 */
3365 tlb_flush(CPU(cpu));
3366 }
3367 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3368 value = deposit64(tcr->raw_tcr, 0, 32, value);
3369 vmsa_ttbcr_raw_write(env, ri, value);
3370 }
3371
3372 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3373 {
3374 TCR *tcr = raw_ptr(env, ri);
3375
3376 /* Reset both the TCR as well as the masks corresponding to the bank of
3377 * the TCR being reset.
3378 */
3379 tcr->raw_tcr = 0;
3380 tcr->mask = 0;
3381 tcr->base_mask = 0xffffc000u;
3382 }
3383
3384 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3385 uint64_t value)
3386 {
3387 ARMCPU *cpu = arm_env_get_cpu(env);
3388 TCR *tcr = raw_ptr(env, ri);
3389
3390 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3391 tlb_flush(CPU(cpu));
3392 tcr->raw_tcr = value;
3393 }
3394
3395 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3396 uint64_t value)
3397 {
3398 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3399 if (cpreg_field_is_64bit(ri) &&
3400 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3401 ARMCPU *cpu = arm_env_get_cpu(env);
3402 tlb_flush(CPU(cpu));
3403 }
3404 raw_write(env, ri, value);
3405 }
3406
3407 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3408 uint64_t value)
3409 {
3410 ARMCPU *cpu = arm_env_get_cpu(env);
3411 CPUState *cs = CPU(cpu);
3412
3413 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3414 if (raw_read(env, ri) != value) {
3415 tlb_flush_by_mmuidx(cs,
3416 ARMMMUIdxBit_S12NSE1 |
3417 ARMMMUIdxBit_S12NSE0 |
3418 ARMMMUIdxBit_S2NS);
3419 raw_write(env, ri, value);
3420 }
3421 }
3422
3423 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3424 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3425 .access = PL1_RW, .type = ARM_CP_ALIAS,
3426 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3427 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3428 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3429 .access = PL1_RW, .resetvalue = 0,
3430 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3431 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3432 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3433 .access = PL1_RW, .resetvalue = 0,
3434 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3435 offsetof(CPUARMState, cp15.dfar_ns) } },
3436 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3437 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3438 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3439 .resetvalue = 0, },
3440 REGINFO_SENTINEL
3441 };
3442
3443 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3444 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3446 .access = PL1_RW,
3447 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3448 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3449 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3450 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3452 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3453 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3454 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3455 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3456 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3457 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3458 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3460 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3461 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3462 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3463 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3464 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3465 .raw_writefn = vmsa_ttbcr_raw_write,
3466 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3467 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3468 REGINFO_SENTINEL
3469 };
3470
3471 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3472 * qemu tlbs nor adjusting cached masks.
3473 */
3474 static const ARMCPRegInfo ttbcr2_reginfo = {
3475 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3476 .access = PL1_RW, .type = ARM_CP_ALIAS,
3477 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3478 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3479 };
3480
3481 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3482 uint64_t value)
3483 {
3484 env->cp15.c15_ticonfig = value & 0xe7;
3485 /* The OS_TYPE bit in this register changes the reported CPUID! */
3486 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3487 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3488 }
3489
3490 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3491 uint64_t value)
3492 {
3493 env->cp15.c15_threadid = value & 0xffff;
3494 }
3495
3496 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3497 uint64_t value)
3498 {
3499 /* Wait-for-interrupt (deprecated) */
3500 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3501 }
3502
3503 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3504 uint64_t value)
3505 {
3506 /* On OMAP there are registers indicating the max/min index of dcache lines
3507 * containing a dirty line; cache flush operations have to reset these.
3508 */
3509 env->cp15.c15_i_max = 0x000;
3510 env->cp15.c15_i_min = 0xff0;
3511 }
3512
3513 static const ARMCPRegInfo omap_cp_reginfo[] = {
3514 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3515 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3516 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3517 .resetvalue = 0, },
3518 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3519 .access = PL1_RW, .type = ARM_CP_NOP },
3520 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3521 .access = PL1_RW,
3522 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3523 .writefn = omap_ticonfig_write },
3524 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3525 .access = PL1_RW,
3526 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3527 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3528 .access = PL1_RW, .resetvalue = 0xff0,
3529 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3530 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3531 .access = PL1_RW,
3532 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3533 .writefn = omap_threadid_write },
3534 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3535 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3536 .type = ARM_CP_NO_RAW,
3537 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3538 /* TODO: Peripheral port remap register:
3539 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3540 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3541 * when MMU is off.
3542 */
3543 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3544 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3545 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3546 .writefn = omap_cachemaint_write },
3547 { .name = "C9", .cp = 15, .crn = 9,
3548 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3549 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3550 REGINFO_SENTINEL
3551 };
3552
3553 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3554 uint64_t value)
3555 {
3556 env->cp15.c15_cpar = value & 0x3fff;
3557 }
3558
3559 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3560 { .name = "XSCALE_CPAR",
3561 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3562 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3563 .writefn = xscale_cpar_write, },
3564 { .name = "XSCALE_AUXCR",
3565 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3566 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3567 .resetvalue = 0, },
3568 /* XScale specific cache-lockdown: since we have no cache we NOP these
3569 * and hope the guest does not really rely on cache behaviour.
3570 */
3571 { .name = "XSCALE_LOCK_ICACHE_LINE",
3572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3573 .access = PL1_W, .type = ARM_CP_NOP },
3574 { .name = "XSCALE_UNLOCK_ICACHE",
3575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3576 .access = PL1_W, .type = ARM_CP_NOP },
3577 { .name = "XSCALE_DCACHE_LOCK",
3578 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3579 .access = PL1_RW, .type = ARM_CP_NOP },
3580 { .name = "XSCALE_UNLOCK_DCACHE",
3581 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3582 .access = PL1_W, .type = ARM_CP_NOP },
3583 REGINFO_SENTINEL
3584 };
3585
3586 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3587 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3588 * implementation of this implementation-defined space.
3589 * Ideally this should eventually disappear in favour of actually
3590 * implementing the correct behaviour for all cores.
3591 */
3592 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3593 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3594 .access = PL1_RW,
3595 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3596 .resetvalue = 0 },
3597 REGINFO_SENTINEL
3598 };
3599
3600 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3601 /* Cache status: RAZ because we have no cache so it's always clean */
3602 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3603 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3604 .resetvalue = 0 },
3605 REGINFO_SENTINEL
3606 };
3607
3608 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3609 /* We never have a a block transfer operation in progress */
3610 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3611 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3612 .resetvalue = 0 },
3613 /* The cache ops themselves: these all NOP for QEMU */
3614 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3615 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3616 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3617 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3618 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3619 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3620 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3621 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3622 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3623 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3624 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3625 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3626 REGINFO_SENTINEL
3627 };
3628
3629 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3630 /* The cache test-and-clean instructions always return (1 << 30)
3631 * to indicate that there are no dirty cache lines.
3632 */
3633 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3634 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3635 .resetvalue = (1 << 30) },
3636 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3637 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3638 .resetvalue = (1 << 30) },
3639 REGINFO_SENTINEL
3640 };
3641
3642 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3643 /* Ignore ReadBuffer accesses */
3644 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3645 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3646 .access = PL1_RW, .resetvalue = 0,
3647 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3648 REGINFO_SENTINEL
3649 };
3650
3651 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3652 {
3653 ARMCPU *cpu = arm_env_get_cpu(env);
3654 unsigned int cur_el = arm_current_el(env);
3655 bool secure = arm_is_secure(env);
3656
3657 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3658 return env->cp15.vpidr_el2;
3659 }
3660 return raw_read(env, ri);
3661 }
3662
3663 static uint64_t mpidr_read_val(CPUARMState *env)
3664 {
3665 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3666 uint64_t mpidr = cpu->mp_affinity;
3667
3668 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3669 mpidr |= (1U << 31);
3670 /* Cores which are uniprocessor (non-coherent)
3671 * but still implement the MP extensions set
3672 * bit 30. (For instance, Cortex-R5).
3673 */
3674 if (cpu->mp_is_up) {
3675 mpidr |= (1u << 30);
3676 }
3677 }
3678 return mpidr;
3679 }
3680
3681 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3682 {
3683 unsigned int cur_el = arm_current_el(env);
3684 bool secure = arm_is_secure(env);
3685
3686 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3687 return env->cp15.vmpidr_el2;
3688 }
3689 return mpidr_read_val(env);
3690 }
3691
3692 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3693 /* NOP AMAIR0/1 */
3694 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3695 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3696 .access = PL1_RW, .type = ARM_CP_CONST,
3697 .resetvalue = 0 },
3698 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3699 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3700 .access = PL1_RW, .type = ARM_CP_CONST,
3701 .resetvalue = 0 },
3702 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3703 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3704 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3705 offsetof(CPUARMState, cp15.par_ns)} },
3706 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3707 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3708 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3709 offsetof(CPUARMState, cp15.ttbr0_ns) },
3710 .writefn = vmsa_ttbr_write, },
3711 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3712 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3714 offsetof(CPUARMState, cp15.ttbr1_ns) },
3715 .writefn = vmsa_ttbr_write, },
3716 REGINFO_SENTINEL
3717 };
3718
3719 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3720 {
3721 return vfp_get_fpcr(env);
3722 }
3723
3724 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3725 uint64_t value)
3726 {
3727 vfp_set_fpcr(env, value);
3728 }
3729
3730 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3731 {
3732 return vfp_get_fpsr(env);
3733 }
3734
3735 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3736 uint64_t value)
3737 {
3738 vfp_set_fpsr(env, value);
3739 }
3740
3741 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3742 bool isread)
3743 {
3744 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3745 return CP_ACCESS_TRAP;
3746 }
3747 return CP_ACCESS_OK;
3748 }
3749
3750 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3751 uint64_t value)
3752 {
3753 env->daif = value & PSTATE_DAIF;
3754 }
3755
3756 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3757 const ARMCPRegInfo *ri,
3758 bool isread)
3759 {
3760 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3761 * SCTLR_EL1.UCI is set.
3762 */
3763 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3764 return CP_ACCESS_TRAP;
3765 }
3766 return CP_ACCESS_OK;
3767 }
3768
3769 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3770 * Page D4-1736 (DDI0487A.b)
3771 */
3772
3773 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3774 uint64_t value)
3775 {
3776 CPUState *cs = ENV_GET_CPU(env);
3777 bool sec = arm_is_secure_below_el3(env);
3778
3779 if (sec) {
3780 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3781 ARMMMUIdxBit_S1SE1 |
3782 ARMMMUIdxBit_S1SE0);
3783 } else {
3784 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3785 ARMMMUIdxBit_S12NSE1 |
3786 ARMMMUIdxBit_S12NSE0);
3787 }
3788 }
3789
3790 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791 uint64_t value)
3792 {
3793 CPUState *cs = ENV_GET_CPU(env);
3794
3795 if (tlb_force_broadcast(env)) {
3796 tlbi_aa64_vmalle1is_write(env, NULL, value);
3797 return;
3798 }
3799
3800 if (arm_is_secure_below_el3(env)) {
3801 tlb_flush_by_mmuidx(cs,
3802 ARMMMUIdxBit_S1SE1 |
3803 ARMMMUIdxBit_S1SE0);
3804 } else {
3805 tlb_flush_by_mmuidx(cs,
3806 ARMMMUIdxBit_S12NSE1 |
3807 ARMMMUIdxBit_S12NSE0);
3808 }
3809 }
3810
3811 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3812 uint64_t value)
3813 {
3814 /* Note that the 'ALL' scope must invalidate both stage 1 and
3815 * stage 2 translations, whereas most other scopes only invalidate
3816 * stage 1 translations.
3817 */
3818 ARMCPU *cpu = arm_env_get_cpu(env);
3819 CPUState *cs = CPU(cpu);
3820
3821 if (arm_is_secure_below_el3(env)) {
3822 tlb_flush_by_mmuidx(cs,
3823 ARMMMUIdxBit_S1SE1 |
3824 ARMMMUIdxBit_S1SE0);
3825 } else {
3826 if (arm_feature(env, ARM_FEATURE_EL2)) {
3827 tlb_flush_by_mmuidx(cs,
3828 ARMMMUIdxBit_S12NSE1 |
3829 ARMMMUIdxBit_S12NSE0 |
3830 ARMMMUIdxBit_S2NS);
3831 } else {
3832 tlb_flush_by_mmuidx(cs,
3833 ARMMMUIdxBit_S12NSE1 |
3834 ARMMMUIdxBit_S12NSE0);
3835 }
3836 }
3837 }
3838
3839 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3840 uint64_t value)
3841 {
3842 ARMCPU *cpu = arm_env_get_cpu(env);
3843 CPUState *cs = CPU(cpu);
3844
3845 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3846 }
3847
3848 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3850 {
3851 ARMCPU *cpu = arm_env_get_cpu(env);
3852 CPUState *cs = CPU(cpu);
3853
3854 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3855 }
3856
3857 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3858 uint64_t value)
3859 {
3860 /* Note that the 'ALL' scope must invalidate both stage 1 and
3861 * stage 2 translations, whereas most other scopes only invalidate
3862 * stage 1 translations.
3863 */
3864 CPUState *cs = ENV_GET_CPU(env);
3865 bool sec = arm_is_secure_below_el3(env);
3866 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3867
3868 if (sec) {
3869 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3870 ARMMMUIdxBit_S1SE1 |
3871 ARMMMUIdxBit_S1SE0);
3872 } else if (has_el2) {
3873 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3874 ARMMMUIdxBit_S12NSE1 |
3875 ARMMMUIdxBit_S12NSE0 |
3876 ARMMMUIdxBit_S2NS);
3877 } else {
3878 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3879 ARMMMUIdxBit_S12NSE1 |
3880 ARMMMUIdxBit_S12NSE0);
3881 }
3882 }
3883
3884 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885 uint64_t value)
3886 {
3887 CPUState *cs = ENV_GET_CPU(env);
3888
3889 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3890 }
3891
3892 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3894 {
3895 CPUState *cs = ENV_GET_CPU(env);
3896
3897 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3898 }
3899
3900 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901 uint64_t value)
3902 {
3903 /* Invalidate by VA, EL2
3904 * Currently handles both VAE2 and VALE2, since we don't support
3905 * flush-last-level-only.
3906 */
3907 ARMCPU *cpu = arm_env_get_cpu(env);
3908 CPUState *cs = CPU(cpu);
3909 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3910
3911 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3912 }
3913
3914 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3915 uint64_t value)
3916 {
3917 /* Invalidate by VA, EL3
3918 * Currently handles both VAE3 and VALE3, since we don't support
3919 * flush-last-level-only.
3920 */
3921 ARMCPU *cpu = arm_env_get_cpu(env);
3922 CPUState *cs = CPU(cpu);
3923 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3924
3925 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3926 }
3927
3928 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929 uint64_t value)
3930 {
3931 ARMCPU *cpu = arm_env_get_cpu(env);
3932 CPUState *cs = CPU(cpu);
3933 bool sec = arm_is_secure_below_el3(env);
3934 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3935
3936 if (sec) {
3937 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3938 ARMMMUIdxBit_S1SE1 |
3939 ARMMMUIdxBit_S1SE0);
3940 } else {
3941 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3942 ARMMMUIdxBit_S12NSE1 |
3943 ARMMMUIdxBit_S12NSE0);
3944 }
3945 }
3946
3947 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3948 uint64_t value)
3949 {
3950 /* Invalidate by VA, EL1&0 (AArch64 version).
3951 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3952 * since we don't support flush-for-specific-ASID-only or
3953 * flush-last-level-only.
3954 */
3955 ARMCPU *cpu = arm_env_get_cpu(env);
3956 CPUState *cs = CPU(cpu);
3957 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3958
3959 if (tlb_force_broadcast(env)) {
3960 tlbi_aa64_vae1is_write(env, NULL, value);
3961 return;
3962 }
3963
3964 if (arm_is_secure_below_el3(env)) {
3965 tlb_flush_page_by_mmuidx(cs, pageaddr,
3966 ARMMMUIdxBit_S1SE1 |
3967 ARMMMUIdxBit_S1SE0);
3968 } else {
3969 tlb_flush_page_by_mmuidx(cs, pageaddr,
3970 ARMMMUIdxBit_S12NSE1 |
3971 ARMMMUIdxBit_S12NSE0);
3972 }
3973 }
3974
3975 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3976 uint64_t value)
3977 {
3978 CPUState *cs = ENV_GET_CPU(env);
3979 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3980
3981 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3982 ARMMMUIdxBit_S1E2);
3983 }
3984
3985 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3986 uint64_t value)
3987 {
3988 CPUState *cs = ENV_GET_CPU(env);
3989 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3990
3991 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3992 ARMMMUIdxBit_S1E3);
3993 }
3994
3995 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3996 uint64_t value)
3997 {
3998 /* Invalidate by IPA. This has to invalidate any structures that
3999 * contain only stage 2 translation information, but does not need
4000 * to apply to structures that contain combined stage 1 and stage 2
4001 * translation information.
4002 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4003 */
4004 ARMCPU *cpu = arm_env_get_cpu(env);
4005 CPUState *cs = CPU(cpu);
4006 uint64_t pageaddr;
4007
4008 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4009 return;
4010 }
4011
4012 pageaddr = sextract64(value << 12, 0, 48);
4013
4014 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4015 }
4016
4017 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4018 uint64_t value)
4019 {
4020 CPUState *cs = ENV_GET_CPU(env);
4021 uint64_t pageaddr;
4022
4023 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4024 return;
4025 }
4026
4027 pageaddr = sextract64(value << 12, 0, 48);
4028
4029 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4030 ARMMMUIdxBit_S2NS);
4031 }
4032
4033 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4034 bool isread)
4035 {
4036 /* We don't implement EL2, so the only control on DC ZVA is the
4037 * bit in the SCTLR which can prohibit access for EL0.
4038 */
4039 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4040 return CP_ACCESS_TRAP;
4041 }
4042 return CP_ACCESS_OK;
4043 }
4044
4045 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4046 {
4047 ARMCPU *cpu = arm_env_get_cpu(env);
4048 int dzp_bit = 1 << 4;
4049
4050 /* DZP indicates whether DC ZVA access is allowed */
4051 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4052 dzp_bit = 0;
4053 }
4054 return cpu->dcz_blocksize | dzp_bit;
4055 }
4056
4057 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4058 bool isread)
4059 {
4060 if (!(env->pstate & PSTATE_SP)) {
4061 /* Access to SP_EL0 is undefined if it's being used as
4062 * the stack pointer.
4063 */
4064 return CP_ACCESS_TRAP_UNCATEGORIZED;
4065 }
4066 return CP_ACCESS_OK;
4067 }
4068
4069 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4070 {
4071 return env->pstate & PSTATE_SP;
4072 }
4073
4074 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4075 {
4076 update_spsel(env, val);
4077 }
4078
4079 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4080 uint64_t value)
4081 {
4082 ARMCPU *cpu = arm_env_get_cpu(env);
4083
4084 if (raw_read(env, ri) == value) {
4085 /* Skip the TLB flush if nothing actually changed; Linux likes
4086 * to do a lot of pointless SCTLR writes.
4087 */
4088 return;
4089 }
4090
4091 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4092 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4093 value &= ~SCTLR_M;
4094 }
4095
4096 raw_write(env, ri, value);
4097 /* ??? Lots of these bits are not implemented. */
4098 /* This may enable/disable the MMU, so do a TLB flush. */
4099 tlb_flush(CPU(cpu));
4100 }
4101
4102 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4103 bool isread)
4104 {
4105 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4106 return CP_ACCESS_TRAP_FP_EL2;
4107 }
4108 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4109 return CP_ACCESS_TRAP_FP_EL3;
4110 }
4111 return CP_ACCESS_OK;
4112 }
4113
4114 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4116 {
4117 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4118 }
4119
4120 static const ARMCPRegInfo v8_cp_reginfo[] = {
4121 /* Minimal set of EL0-visible registers. This will need to be expanded
4122 * significantly for system emulation of AArch64 CPUs.
4123 */
4124 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4125 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4126 .access = PL0_RW, .type = ARM_CP_NZCV },
4127 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4128 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4129 .type = ARM_CP_NO_RAW,
4130 .access = PL0_RW, .accessfn = aa64_daif_access,
4131 .fieldoffset = offsetof(CPUARMState, daif),
4132 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4133 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4135 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4136 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4137 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4139 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4140 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4141 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4143 .access = PL0_R, .type = ARM_CP_NO_RAW,
4144 .readfn = aa64_dczid_read },
4145 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4147 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4148 #ifndef CONFIG_USER_ONLY
4149 /* Avoid overhead of an access check that always passes in user-mode */
4150 .accessfn = aa64_zva_access,
4151 #endif
4152 },
4153 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4154 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4155 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4156 /* Cache ops: all NOPs since we don't emulate caches */
4157 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4159 .access = PL1_W, .type = ARM_CP_NOP },
4160 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4161 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4162 .access = PL1_W, .type = ARM_CP_NOP },
4163 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4164 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4165 .access = PL0_W, .type = ARM_CP_NOP,
4166 .accessfn = aa64_cacheop_access },
4167 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4169 .access = PL1_W, .type = ARM_CP_NOP },
4170 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4171 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4172 .access = PL1_W, .type = ARM_CP_NOP },
4173 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4174 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4175 .access = PL0_W, .type = ARM_CP_NOP,
4176 .accessfn = aa64_cacheop_access },
4177 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4179 .access = PL1_W, .type = ARM_CP_NOP },
4180 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4182 .access = PL0_W, .type = ARM_CP_NOP,
4183 .accessfn = aa64_cacheop_access },
4184 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4185 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4186 .access = PL0_W, .type = ARM_CP_NOP,
4187 .accessfn = aa64_cacheop_access },
4188 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4189 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4190 .access = PL1_W, .type = ARM_CP_NOP },
4191 /* TLBI operations */
4192 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4193 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4194 .access = PL1_W, .type = ARM_CP_NO_RAW,
4195 .writefn = tlbi_aa64_vmalle1is_write },
4196 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4197 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4198 .access = PL1_W, .type = ARM_CP_NO_RAW,
4199 .writefn = tlbi_aa64_vae1is_write },
4200 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4202 .access = PL1_W, .type = ARM_CP_NO_RAW,
4203 .writefn = tlbi_aa64_vmalle1is_write },
4204 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4205 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4206 .access = PL1_W, .type = ARM_CP_NO_RAW,
4207 .writefn = tlbi_aa64_vae1is_write },
4208 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4210 .access = PL1_W, .type = ARM_CP_NO_RAW,
4211 .writefn = tlbi_aa64_vae1is_write },
4212 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
4215 .writefn = tlbi_aa64_vae1is_write },
4216 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4218 .access = PL1_W, .type = ARM_CP_NO_RAW,
4219 .writefn = tlbi_aa64_vmalle1_write },
4220 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4222 .access = PL1_W, .type = ARM_CP_NO_RAW,
4223 .writefn = tlbi_aa64_vae1_write },
4224 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4225 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4226 .access = PL1_W, .type = ARM_CP_NO_RAW,
4227 .writefn = tlbi_aa64_vmalle1_write },
4228 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4230 .access = PL1_W, .type = ARM_CP_NO_RAW,
4231 .writefn = tlbi_aa64_vae1_write },
4232 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4233 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4234 .access = PL1_W, .type = ARM_CP_NO_RAW,
4235 .writefn = tlbi_aa64_vae1_write },
4236 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4237 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4238 .access = PL1_W, .type = ARM_CP_NO_RAW,
4239 .writefn = tlbi_aa64_vae1_write },
4240 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4242 .access = PL2_W, .type = ARM_CP_NO_RAW,
4243 .writefn = tlbi_aa64_ipas2e1is_write },
4244 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4246 .access = PL2_W, .type = ARM_CP_NO_RAW,
4247 .writefn = tlbi_aa64_ipas2e1is_write },
4248 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4250 .access = PL2_W, .type = ARM_CP_NO_RAW,
4251 .writefn = tlbi_aa64_alle1is_write },
4252 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4254 .access = PL2_W, .type = ARM_CP_NO_RAW,
4255 .writefn = tlbi_aa64_alle1is_write },
4256 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4258 .access = PL2_W, .type = ARM_CP_NO_RAW,
4259 .writefn = tlbi_aa64_ipas2e1_write },
4260 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4262 .access = PL2_W, .type = ARM_CP_NO_RAW,
4263 .writefn = tlbi_aa64_ipas2e1_write },
4264 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4266 .access = PL2_W, .type = ARM_CP_NO_RAW,
4267 .writefn = tlbi_aa64_alle1_write },
4268 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4270 .access = PL2_W, .type = ARM_CP_NO_RAW,
4271 .writefn = tlbi_aa64_alle1is_write },
4272 #ifndef CONFIG_USER_ONLY
4273 /* 64 bit address translation operations */
4274 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4275 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4276 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4277 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4279 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4280 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4281 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4282 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4283 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4284 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4285 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4286 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4287 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4288 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4289 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4290 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4291 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4292 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4293 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4294 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4295 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4296 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4297 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4298 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4299 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4301 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4302 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4303 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4304 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4305 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4306 .type = ARM_CP_ALIAS,
4307 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4308 .access = PL1_RW, .resetvalue = 0,
4309 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4310 .writefn = par_write },
4311 #endif
4312 /* TLB invalidate last level of translation table walk */
4313 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4314 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4315 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4316 .type = ARM_CP_NO_RAW, .access = PL1_W,
4317 .writefn = tlbimvaa_is_write },
4318 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4319 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4320 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4321 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4322 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4323 .type = ARM_CP_NO_RAW, .access = PL2_W,
4324 .writefn = tlbimva_hyp_write },
4325 { .name = "TLBIMVALHIS",
4326 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4327 .type = ARM_CP_NO_RAW, .access = PL2_W,
4328 .writefn = tlbimva_hyp_is_write },
4329 { .name = "TLBIIPAS2",
4330 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4331 .type = ARM_CP_NO_RAW, .access = PL2_W,
4332 .writefn = tlbiipas2_write },
4333 { .name = "TLBIIPAS2IS",
4334 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4335 .type = ARM_CP_NO_RAW, .access = PL2_W,
4336 .writefn = tlbiipas2_is_write },
4337 { .name = "TLBIIPAS2L",
4338 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4339 .type = ARM_CP_NO_RAW, .access = PL2_W,
4340 .writefn = tlbiipas2_write },
4341 { .name = "TLBIIPAS2LIS",
4342 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4343 .type = ARM_CP_NO_RAW, .access = PL2_W,
4344 .writefn = tlbiipas2_is_write },
4345 /* 32 bit cache operations */
4346 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4347 .type = ARM_CP_NOP, .access = PL1_W },
4348 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4349 .type = ARM_CP_NOP, .access = PL1_W },
4350 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4351 .type = ARM_CP_NOP, .access = PL1_W },
4352 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4353 .type = ARM_CP_NOP, .access = PL1_W },
4354 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4355 .type = ARM_CP_NOP, .access = PL1_W },
4356 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4357 .type = ARM_CP_NOP, .access = PL1_W },
4358 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4359 .type = ARM_CP_NOP, .access = PL1_W },
4360 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4361 .type = ARM_CP_NOP, .access = PL1_W },
4362 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4363 .type = ARM_CP_NOP, .access = PL1_W },
4364 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4365 .type = ARM_CP_NOP, .access = PL1_W },
4366 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4367 .type = ARM_CP_NOP, .access = PL1_W },
4368 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4369 .type = ARM_CP_NOP, .access = PL1_W },
4370 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4371 .type = ARM_CP_NOP, .access = PL1_W },
4372 /* MMU Domain access control / MPU write buffer control */
4373 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4374 .access = PL1_RW, .resetvalue = 0,
4375 .writefn = dacr_write, .raw_writefn = raw_write,
4376 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4377 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4378 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4379 .type = ARM_CP_ALIAS,
4380 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4381 .access = PL1_RW,
4382 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4383 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4384 .type = ARM_CP_ALIAS,
4385 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4386 .access = PL1_RW,
4387 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4388 /* We rely on the access checks not allowing the guest to write to the
4389 * state field when SPSel indicates that it's being used as the stack
4390 * pointer.
4391 */
4392 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4393 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4394 .access = PL1_RW, .accessfn = sp_el0_access,
4395 .type = ARM_CP_ALIAS,
4396 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4397 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4398 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4399 .access = PL2_RW, .type = ARM_CP_ALIAS,
4400 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4401 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4402 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4403 .type = ARM_CP_NO_RAW,
4404 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4405 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4406 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4407 .type = ARM_CP_ALIAS,
4408 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4409 .access = PL2_RW, .accessfn = fpexc32_access },
4410 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4411 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4412 .access = PL2_RW, .resetvalue = 0,
4413 .writefn = dacr_write, .raw_writefn = raw_write,
4414 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4415 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4416 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4417 .access = PL2_RW, .resetvalue = 0,
4418 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4419 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4420 .type = ARM_CP_ALIAS,
4421 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4422 .access = PL2_RW,
4423 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4424 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4425 .type = ARM_CP_ALIAS,
4426 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4427 .access = PL2_RW,
4428 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4429 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4430 .type = ARM_CP_ALIAS,
4431 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4432 .access = PL2_RW,
4433 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4434 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4435 .type = ARM_CP_ALIAS,
4436 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4437 .access = PL2_RW,
4438 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4439 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4440 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4441 .resetvalue = 0,
4442 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4443 { .name = "SDCR", .type = ARM_CP_ALIAS,
4444 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4445 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4446 .writefn = sdcr_write,
4447 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4448 REGINFO_SENTINEL
4449 };
4450
4451 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4452 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4453 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4454 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4455 .access = PL2_RW,
4456 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4457 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4458 .type = ARM_CP_NO_RAW,
4459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4460 .access = PL2_RW,
4461 .type = ARM_CP_CONST, .resetvalue = 0 },
4462 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4463 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4464 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4465 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4466 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4467 .access = PL2_RW,
4468 .type = ARM_CP_CONST, .resetvalue = 0 },
4469 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4470 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4471 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4472 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4473 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4474 .access = PL2_RW, .type = ARM_CP_CONST,
4475 .resetvalue = 0 },
4476 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4477 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4478 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4479 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4480 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4481 .access = PL2_RW, .type = ARM_CP_CONST,
4482 .resetvalue = 0 },
4483 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4484 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4485 .access = PL2_RW, .type = ARM_CP_CONST,
4486 .resetvalue = 0 },
4487 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4489 .access = PL2_RW, .type = ARM_CP_CONST,
4490 .resetvalue = 0 },
4491 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4492 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4493 .access = PL2_RW, .type = ARM_CP_CONST,
4494 .resetvalue = 0 },
4495 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4498 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4500 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4501 .type = ARM_CP_CONST, .resetvalue = 0 },
4502 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4503 .cp = 15, .opc1 = 6, .crm = 2,
4504 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4505 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4506 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4508 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4509 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4510 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4511 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4512 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4513 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4514 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4515 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4517 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4518 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4519 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4520 .resetvalue = 0 },
4521 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4523 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4524 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4525 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4527 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4528 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4529 .resetvalue = 0 },
4530 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4531 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4532 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4533 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4534 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4535 .resetvalue = 0 },
4536 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4537 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4538 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4539 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4540 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4541 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4542 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4543 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4544 .access = PL2_RW, .accessfn = access_tda,
4545 .type = ARM_CP_CONST, .resetvalue = 0 },
4546 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4547 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4548 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4549 .type = ARM_CP_CONST, .resetvalue = 0 },
4550 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4552 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4553 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4554 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4555 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4556 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4557 .type = ARM_CP_CONST,
4558 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4559 .access = PL2_RW, .resetvalue = 0 },
4560 REGINFO_SENTINEL
4561 };
4562
4563 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4564 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4565 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4566 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4567 .access = PL2_RW,
4568 .type = ARM_CP_CONST, .resetvalue = 0 },
4569 REGINFO_SENTINEL
4570 };
4571
4572 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4573 {
4574 ARMCPU *cpu = arm_env_get_cpu(env);
4575 uint64_t valid_mask = HCR_MASK;
4576
4577 if (arm_feature(env, ARM_FEATURE_EL3)) {
4578 valid_mask &= ~HCR_HCD;
4579 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4580 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4581 * However, if we're using the SMC PSCI conduit then QEMU is
4582 * effectively acting like EL3 firmware and so the guest at
4583 * EL2 should retain the ability to prevent EL1 from being
4584 * able to make SMC calls into the ersatz firmware, so in
4585 * that case HCR.TSC should be read/write.
4586 */
4587 valid_mask &= ~HCR_TSC;
4588 }
4589 if (cpu_isar_feature(aa64_lor, cpu)) {
4590 valid_mask |= HCR_TLOR;
4591 }
4592 if (cpu_isar_feature(aa64_pauth, cpu)) {
4593 valid_mask |= HCR_API | HCR_APK;
4594 }
4595
4596 /* Clear RES0 bits. */
4597 value &= valid_mask;
4598
4599 /* These bits change the MMU setup:
4600 * HCR_VM enables stage 2 translation
4601 * HCR_PTW forbids certain page-table setups
4602 * HCR_DC Disables stage1 and enables stage2 translation
4603 */
4604 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4605 tlb_flush(CPU(cpu));
4606 }
4607 env->cp15.hcr_el2 = value;
4608
4609 /*
4610 * Updates to VI and VF require us to update the status of
4611 * virtual interrupts, which are the logical OR of these bits
4612 * and the state of the input lines from the GIC. (This requires
4613 * that we have the iothread lock, which is done by marking the
4614 * reginfo structs as ARM_CP_IO.)
4615 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4616 * possible for it to be taken immediately, because VIRQ and
4617 * VFIQ are masked unless running at EL0 or EL1, and HCR
4618 * can only be written at EL2.
4619 */
4620 g_assert(qemu_mutex_iothread_locked());
4621 arm_cpu_update_virq(cpu);
4622 arm_cpu_update_vfiq(cpu);
4623 }
4624
4625 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4626 uint64_t value)
4627 {
4628 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4629 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4630 hcr_write(env, NULL, value);
4631 }
4632
4633 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4634 uint64_t value)
4635 {
4636 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4637 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4638 hcr_write(env, NULL, value);
4639 }
4640
4641 /*
4642 * Return the effective value of HCR_EL2.
4643 * Bits that are not included here:
4644 * RW (read from SCR_EL3.RW as needed)
4645 */
4646 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4647 {
4648 uint64_t ret = env->cp15.hcr_el2;
4649
4650 if (arm_is_secure_below_el3(env)) {
4651 /*
4652 * "This register has no effect if EL2 is not enabled in the
4653 * current Security state". This is ARMv8.4-SecEL2 speak for
4654 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4655 *
4656 * Prior to that, the language was "In an implementation that
4657 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4658 * as if this field is 0 for all purposes other than a direct
4659 * read or write access of HCR_EL2". With lots of enumeration
4660 * on a per-field basis. In current QEMU, this is condition
4661 * is arm_is_secure_below_el3.
4662 *
4663 * Since the v8.4 language applies to the entire register, and
4664 * appears to be backward compatible, use that.
4665 */
4666 ret = 0;
4667 } else if (ret & HCR_TGE) {
4668 /* These bits are up-to-date as of ARMv8.4. */
4669 if (ret & HCR_E2H) {
4670 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4671 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4672 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4673 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4674 } else {
4675 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4676 }
4677 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4678 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4679 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4680 HCR_TLOR);
4681 }
4682
4683 return ret;
4684 }
4685
4686 static const ARMCPRegInfo el2_cp_reginfo[] = {
4687 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4688 .type = ARM_CP_IO,
4689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4690 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4691 .writefn = hcr_write },
4692 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4693 .type = ARM_CP_ALIAS | ARM_CP_IO,
4694 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4695 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4696 .writefn = hcr_writelow },
4697 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4698 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4699 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4700 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4701 .type = ARM_CP_ALIAS,
4702 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4703 .access = PL2_RW,
4704 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4705 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4707 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4708 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4709 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4711 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4712 .type = ARM_CP_ALIAS,
4713 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4714 .access = PL2_RW,
4715 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4716 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4717 .type = ARM_CP_ALIAS,
4718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4719 .access = PL2_RW,
4720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4721 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4722 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4723 .access = PL2_RW, .writefn = vbar_write,
4724 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4725 .resetvalue = 0 },
4726 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4727 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4728 .access = PL3_RW, .type = ARM_CP_ALIAS,
4729 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4730 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4731 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4732 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4733 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4734 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4735 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4736 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4737 .resetvalue = 0 },
4738 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4739 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4740 .access = PL2_RW, .type = ARM_CP_ALIAS,
4741 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4742 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4743 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4744 .access = PL2_RW, .type = ARM_CP_CONST,
4745 .resetvalue = 0 },
4746 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4747 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4748 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4749 .access = PL2_RW, .type = ARM_CP_CONST,
4750 .resetvalue = 0 },
4751 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4752 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4753 .access = PL2_RW, .type = ARM_CP_CONST,
4754 .resetvalue = 0 },
4755 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4756 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4757 .access = PL2_RW, .type = ARM_CP_CONST,
4758 .resetvalue = 0 },
4759 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4760 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4761 .access = PL2_RW,
4762 /* no .writefn needed as this can't cause an ASID change;
4763 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4764 */
4765 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4766 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4767 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4768 .type = ARM_CP_ALIAS,
4769 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4770 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4771 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4773 .access = PL2_RW,
4774 /* no .writefn needed as this can't cause an ASID change;
4775 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4776 */
4777 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4778 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4779 .cp = 15, .opc1 = 6, .crm = 2,
4780 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4781 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4782 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4783 .writefn = vttbr_write },
4784 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4785 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4786 .access = PL2_RW, .writefn = vttbr_write,
4787 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4788 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4789 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4790 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4791 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4792 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4793 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4794 .access = PL2_RW, .resetvalue = 0,
4795 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4796 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4798 .access = PL2_RW, .resetvalue = 0,
4799 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4800 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4801 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4802 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4803 { .name = "TLBIALLNSNH",
4804 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4805 .type = ARM_CP_NO_RAW, .access = PL2_W,
4806 .writefn = tlbiall_nsnh_write },
4807 { .name = "TLBIALLNSNHIS",
4808 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4809 .type = ARM_CP_NO_RAW, .access = PL2_W,
4810 .writefn = tlbiall_nsnh_is_write },
4811 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4812 .type = ARM_CP_NO_RAW, .access = PL2_W,
4813 .writefn = tlbiall_hyp_write },
4814 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4815 .type = ARM_CP_NO_RAW, .access = PL2_W,
4816 .writefn = tlbiall_hyp_is_write },
4817 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4818 .type = ARM_CP_NO_RAW, .access = PL2_W,
4819 .writefn = tlbimva_hyp_write },
4820 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4821 .type = ARM_CP_NO_RAW, .access = PL2_W,
4822 .writefn = tlbimva_hyp_is_write },
4823 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4825 .type = ARM_CP_NO_RAW, .access = PL2_W,
4826 .writefn = tlbi_aa64_alle2_write },
4827 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4829 .type = ARM_CP_NO_RAW, .access = PL2_W,
4830 .writefn = tlbi_aa64_vae2_write },
4831 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4833 .access = PL2_W, .type = ARM_CP_NO_RAW,
4834 .writefn = tlbi_aa64_vae2_write },
4835 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4837 .access = PL2_W, .type = ARM_CP_NO_RAW,
4838 .writefn = tlbi_aa64_alle2is_write },
4839 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4841 .type = ARM_CP_NO_RAW, .access = PL2_W,
4842 .writefn = tlbi_aa64_vae2is_write },
4843 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4845 .access = PL2_W, .type = ARM_CP_NO_RAW,
4846 .writefn = tlbi_aa64_vae2is_write },
4847 #ifndef CONFIG_USER_ONLY
4848 /* Unlike the other EL2-related AT operations, these must
4849 * UNDEF from EL3 if EL2 is not implemented, which is why we
4850 * define them here rather than with the rest of the AT ops.
4851 */
4852 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4853 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4854 .access = PL2_W, .accessfn = at_s1e2_access,
4855 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4856 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4857 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4858 .access = PL2_W, .accessfn = at_s1e2_access,
4859 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4860 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4861 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4862 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4863 * to behave as if SCR.NS was 1.
4864 */
4865 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4866 .access = PL2_W,
4867 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4868 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4869 .access = PL2_W,
4870 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4871 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4872 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4873 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4874 * reset values as IMPDEF. We choose to reset to 3 to comply with
4875 * both ARMv7 and ARMv8.
4876 */
4877 .access = PL2_RW, .resetvalue = 3,
4878 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4879 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4881 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4882 .writefn = gt_cntvoff_write,
4883 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4884 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4885 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4886 .writefn = gt_cntvoff_write,
4887 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4888 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4889 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4890 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4891 .type = ARM_CP_IO, .access = PL2_RW,
4892 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4893 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4895 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4896 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4897 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4898 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4899 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4900 .resetfn = gt_hyp_timer_reset,
4901 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4902 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4903 .type = ARM_CP_IO,
4904 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4905 .access = PL2_RW,
4906 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4907 .resetvalue = 0,
4908 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4909 #endif
4910 /* The only field of MDCR_EL2 that has a defined architectural reset value
4911 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4912 * don't implement any PMU event counters, so using zero as a reset
4913 * value for MDCR_EL2 is okay
4914 */
4915 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4916 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4917 .access = PL2_RW, .resetvalue = 0,
4918 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4919 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4920 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4921 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4922 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4923 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4925 .access = PL2_RW,
4926 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4927 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4928 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4929 .access = PL2_RW,
4930 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4931 REGINFO_SENTINEL
4932 };
4933
4934 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4935 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4936 .type = ARM_CP_ALIAS | ARM_CP_IO,
4937 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4938 .access = PL2_RW,
4939 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4940 .writefn = hcr_writehigh },
4941 REGINFO_SENTINEL
4942 };
4943
4944 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4945 bool isread)
4946 {
4947 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4948 * At Secure EL1 it traps to EL3.
4949 */
4950 if (arm_current_el(env) == 3) {
4951 return CP_ACCESS_OK;
4952 }
4953 if (arm_is_secure_below_el3(env)) {
4954 return CP_ACCESS_TRAP_EL3;
4955 }
4956 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4957 if (isread) {
4958 return CP_ACCESS_OK;
4959 }
4960 return CP_ACCESS_TRAP_UNCATEGORIZED;
4961 }
4962
4963 static const ARMCPRegInfo el3_cp_reginfo[] = {
4964 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4965 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4966 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4967 .resetvalue = 0, .writefn = scr_write },
4968 { .name = "SCR", .type = ARM_CP_ALIAS,
4969 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4970 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4971 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4972 .writefn = scr_write },
4973 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4975 .access = PL3_RW, .resetvalue = 0,
4976 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4977 { .name = "SDER",
4978 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4979 .access = PL3_RW, .resetvalue = 0,
4980 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4981 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4982 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4983 .writefn = vbar_write, .resetvalue = 0,
4984 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4985 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4987 .access = PL3_RW, .resetvalue = 0,
4988 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4989 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4991 .access = PL3_RW,
4992 /* no .writefn needed as this can't cause an ASID change;
4993 * we must provide a .raw_writefn and .resetfn because we handle
4994 * reset and migration for the AArch32 TTBCR(S), which might be
4995 * using mask and base_mask.
4996 */
4997 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4998 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4999 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5000 .type = ARM_CP_ALIAS,
5001 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5002 .access = PL3_RW,
5003 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5004 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5005 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5006 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5007 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5009 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5010 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5011 .type = ARM_CP_ALIAS,
5012 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5013 .access = PL3_RW,
5014 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5015 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5017 .access = PL3_RW, .writefn = vbar_write,
5018 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5019 .resetvalue = 0 },
5020 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5021 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5022 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5023 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5024 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5025 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5026 .access = PL3_RW, .resetvalue = 0,
5027 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5028 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5029 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5030 .access = PL3_RW, .type = ARM_CP_CONST,
5031 .resetvalue = 0 },
5032 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5033 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5034 .access = PL3_RW, .type = ARM_CP_CONST,
5035 .resetvalue = 0 },
5036 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5037 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5038 .access = PL3_RW, .type = ARM_CP_CONST,
5039 .resetvalue = 0 },
5040 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5041 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5042 .access = PL3_W, .type = ARM_CP_NO_RAW,
5043 .writefn = tlbi_aa64_alle3is_write },
5044 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5045 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5046 .access = PL3_W, .type = ARM_CP_NO_RAW,
5047 .writefn = tlbi_aa64_vae3is_write },
5048 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5049 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5050 .access = PL3_W, .type = ARM_CP_NO_RAW,
5051 .writefn = tlbi_aa64_vae3is_write },
5052 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5054 .access = PL3_W, .type = ARM_CP_NO_RAW,
5055 .writefn = tlbi_aa64_alle3_write },
5056 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5057 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5058 .access = PL3_W, .type = ARM_CP_NO_RAW,
5059 .writefn = tlbi_aa64_vae3_write },
5060 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5061 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5062 .access = PL3_W, .type = ARM_CP_NO_RAW,
5063 .writefn = tlbi_aa64_vae3_write },
5064 REGINFO_SENTINEL
5065 };
5066
5067 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5068 bool isread)
5069 {
5070 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5071 * but the AArch32 CTR has its own reginfo struct)
5072 */
5073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5074 return CP_ACCESS_TRAP;
5075 }
5076 return CP_ACCESS_OK;
5077 }
5078
5079 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5080 uint64_t value)
5081 {
5082 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5083 * read via a bit in OSLSR_EL1.
5084 */
5085 int oslock;
5086
5087 if (ri->state == ARM_CP_STATE_AA32) {
5088 oslock = (value == 0xC5ACCE55);
5089 } else {
5090 oslock = value & 1;
5091 }
5092
5093 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5094 }
5095
5096 static const ARMCPRegInfo debug_cp_reginfo[] = {
5097 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5098 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5099 * unlike DBGDRAR it is never accessible from EL0.
5100 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5101 * accessor.
5102 */
5103 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5104 .access = PL0_R, .accessfn = access_tdra,
5105 .type = ARM_CP_CONST, .resetvalue = 0 },
5106 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5107 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5108 .access = PL1_R, .accessfn = access_tdra,
5109 .type = ARM_CP_CONST, .resetvalue = 0 },
5110 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5111 .access = PL0_R, .accessfn = access_tdra,
5112 .type = ARM_CP_CONST, .resetvalue = 0 },
5113 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5114 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5115 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5116 .access = PL1_RW, .accessfn = access_tda,
5117 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5118 .resetvalue = 0 },
5119 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5120 * We don't implement the configurable EL0 access.
5121 */
5122 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5123 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5124 .type = ARM_CP_ALIAS,
5125 .access = PL1_R, .accessfn = access_tda,
5126 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5127 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5128 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5129 .access = PL1_W, .type = ARM_CP_NO_RAW,
5130 .accessfn = access_tdosa,
5131 .writefn = oslar_write },
5132 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5133 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5134 .access = PL1_R, .resetvalue = 10,
5135 .accessfn = access_tdosa,
5136 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5137 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5138 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5139 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5140 .access = PL1_RW, .accessfn = access_tdosa,
5141 .type = ARM_CP_NOP },
5142 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5143 * implement vector catch debug events yet.
5144 */
5145 { .name = "DBGVCR",
5146 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5147 .access = PL1_RW, .accessfn = access_tda,
5148 .type = ARM_CP_NOP },
5149 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5150 * to save and restore a 32-bit guest's DBGVCR)
5151 */
5152 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5153 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5154 .access = PL2_RW, .accessfn = access_tda,
5155 .type = ARM_CP_NOP },
5156 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5157 * Channel but Linux may try to access this register. The 32-bit
5158 * alias is DBGDCCINT.
5159 */
5160 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5161 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5162 .access = PL1_RW, .accessfn = access_tda,
5163 .type = ARM_CP_NOP },
5164 REGINFO_SENTINEL
5165 };
5166
5167 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5168 /* 64 bit access versions of the (dummy) debug registers */
5169 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5170 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5171 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5172 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5173 REGINFO_SENTINEL
5174 };
5175
5176 /* Return the exception level to which exceptions should be taken
5177 * via SVEAccessTrap. If an exception should be routed through
5178 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5179 * take care of raising that exception.
5180 * C.f. the ARM pseudocode function CheckSVEEnabled.
5181 */
5182 int sve_exception_el(CPUARMState *env, int el)
5183 {
5184 #ifndef CONFIG_USER_ONLY
5185 if (el <= 1) {
5186 bool disabled = false;
5187
5188 /* The CPACR.ZEN controls traps to EL1:
5189 * 0, 2 : trap EL0 and EL1 accesses
5190 * 1 : trap only EL0 accesses
5191 * 3 : trap no accesses
5192 */
5193 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5194 disabled = true;
5195 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5196 disabled = el == 0;
5197 }
5198 if (disabled) {
5199 /* route_to_el2 */
5200 return (arm_feature(env, ARM_FEATURE_EL2)
5201 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5202 }
5203
5204 /* Check CPACR.FPEN. */
5205 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5206 disabled = true;
5207 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5208 disabled = el == 0;
5209 }
5210 if (disabled) {
5211 return 0;
5212 }
5213 }
5214
5215 /* CPTR_EL2. Since TZ and TFP are positive,
5216 * they will be zero when EL2 is not present.
5217 */
5218 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5219 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5220 return 2;
5221 }
5222 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5223 return 0;
5224 }
5225 }
5226
5227 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5228 if (arm_feature(env, ARM_FEATURE_EL3)
5229 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5230 return 3;
5231 }
5232 #endif
5233 return 0;
5234 }
5235
5236 /*
5237 * Given that SVE is enabled, return the vector length for EL.
5238 */
5239 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5240 {
5241 ARMCPU *cpu = arm_env_get_cpu(env);
5242 uint32_t zcr_len = cpu->sve_max_vq - 1;
5243
5244 if (el <= 1) {
5245 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5246 }
5247 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5248 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5249 }
5250 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5251 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5252 }
5253 return zcr_len;
5254 }
5255
5256 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5257 uint64_t value)
5258 {
5259 int cur_el = arm_current_el(env);
5260 int old_len = sve_zcr_len_for_el(env, cur_el);
5261 int new_len;
5262
5263 /* Bits other than [3:0] are RAZ/WI. */
5264 raw_write(env, ri, value & 0xf);
5265
5266 /*
5267 * Because we arrived here, we know both FP and SVE are enabled;
5268 * otherwise we would have trapped access to the ZCR_ELn register.
5269 */
5270 new_len = sve_zcr_len_for_el(env, cur_el);
5271 if (new_len < old_len) {
5272 aarch64_sve_narrow_vq(env, new_len + 1);
5273 }
5274 }
5275
5276 static const ARMCPRegInfo zcr_el1_reginfo = {
5277 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5278 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5279 .access = PL1_RW, .type = ARM_CP_SVE,
5280 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5281 .writefn = zcr_write, .raw_writefn = raw_write
5282 };
5283
5284 static const ARMCPRegInfo zcr_el2_reginfo = {
5285 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5287 .access = PL2_RW, .type = ARM_CP_SVE,
5288 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5289 .writefn = zcr_write, .raw_writefn = raw_write
5290 };
5291
5292 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5293 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5294 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5295 .access = PL2_RW, .type = ARM_CP_SVE,
5296 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5297 };
5298
5299 static const ARMCPRegInfo zcr_el3_reginfo = {
5300 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5301 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5302 .access = PL3_RW, .type = ARM_CP_SVE,
5303 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5304 .writefn = zcr_write, .raw_writefn = raw_write
5305 };
5306
5307 void hw_watchpoint_update(ARMCPU *cpu, int n)
5308 {
5309 CPUARMState *env = &cpu->env;
5310 vaddr len = 0;
5311 vaddr wvr = env->cp15.dbgwvr[n];
5312 uint64_t wcr = env->cp15.dbgwcr[n];
5313 int mask;
5314 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5315
5316 if (env->cpu_watchpoint[n]) {
5317 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5318 env->cpu_watchpoint[n] = NULL;
5319 }
5320
5321 if (!extract64(wcr, 0, 1)) {
5322 /* E bit clear : watchpoint disabled */
5323 return;
5324 }
5325
5326 switch (extract64(wcr, 3, 2)) {
5327 case 0:
5328 /* LSC 00 is reserved and must behave as if the wp is disabled */
5329 return;
5330 case 1:
5331 flags |= BP_MEM_READ;
5332 break;
5333 case 2:
5334 flags |= BP_MEM_WRITE;
5335 break;
5336 case 3:
5337 flags |= BP_MEM_ACCESS;
5338 break;
5339 }
5340
5341 /* Attempts to use both MASK and BAS fields simultaneously are
5342 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5343 * thus generating a watchpoint for every byte in the masked region.
5344 */
5345 mask = extract64(wcr, 24, 4);
5346 if (mask == 1 || mask == 2) {
5347 /* Reserved values of MASK; we must act as if the mask value was
5348 * some non-reserved value, or as if the watchpoint were disabled.
5349 * We choose the latter.
5350 */
5351 return;
5352 } else if (mask) {
5353 /* Watchpoint covers an aligned area up to 2GB in size */
5354 len = 1ULL << mask;
5355 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5356 * whether the watchpoint fires when the unmasked bits match; we opt
5357 * to generate the exceptions.
5358 */
5359 wvr &= ~(len - 1);
5360 } else {
5361 /* Watchpoint covers bytes defined by the byte address select bits */
5362 int bas = extract64(wcr, 5, 8);
5363 int basstart;
5364
5365 if (bas == 0) {
5366 /* This must act as if the watchpoint is disabled */
5367 return;
5368 }
5369
5370 if (extract64(wvr, 2, 1)) {
5371 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5372 * ignored, and BAS[3:0] define which bytes to watch.
5373 */
5374 bas &= 0xf;
5375 }
5376 /* The BAS bits are supposed to be programmed to indicate a contiguous
5377 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5378 * we fire for each byte in the word/doubleword addressed by the WVR.
5379 * We choose to ignore any non-zero bits after the first range of 1s.
5380 */
5381 basstart = ctz32(bas);
5382 len = cto32(bas >> basstart);
5383 wvr += basstart;
5384 }
5385
5386 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5387 &env->cpu_watchpoint[n]);
5388 }
5389
5390 void hw_watchpoint_update_all(ARMCPU *cpu)
5391 {
5392 int i;
5393 CPUARMState *env = &cpu->env;
5394
5395 /* Completely clear out existing QEMU watchpoints and our array, to
5396 * avoid possible stale entries following migration load.
5397 */
5398 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5399 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5400
5401 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5402 hw_watchpoint_update(cpu, i);
5403 }
5404 }
5405
5406 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5407 uint64_t value)
5408 {
5409 ARMCPU *cpu = arm_env_get_cpu(env);
5410 int i = ri->crm;
5411
5412 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5413 * register reads and behaves as if values written are sign extended.
5414 * Bits [1:0] are RES0.
5415 */
5416 value = sextract64(value, 0, 49) & ~3ULL;
5417
5418 raw_write(env, ri, value);
5419 hw_watchpoint_update(cpu, i);
5420 }
5421
5422 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5423 uint64_t value)
5424 {
5425 ARMCPU *cpu = arm_env_get_cpu(env);
5426 int i = ri->crm;
5427
5428 raw_write(env, ri, value);
5429 hw_watchpoint_update(cpu, i);
5430 }
5431
5432 void hw_breakpoint_update(ARMCPU *cpu, int n)
5433 {
5434 CPUARMState *env = &cpu->env;
5435 uint64_t bvr = env->cp15.dbgbvr[n];
5436 uint64_t bcr = env->cp15.dbgbcr[n];
5437 vaddr addr;
5438 int bt;
5439 int flags = BP_CPU;
5440
5441 if (env->cpu_breakpoint[n]) {
5442 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5443 env->cpu_breakpoint[n] = NULL;
5444 }
5445
5446 if (!extract64(bcr, 0, 1)) {
5447 /* E bit clear : watchpoint disabled */
5448 return;
5449 }
5450
5451 bt = extract64(bcr, 20, 4);
5452
5453 switch (bt) {
5454 case 4: /* unlinked address mismatch (reserved if AArch64) */
5455 case 5: /* linked address mismatch (reserved if AArch64) */
5456 qemu_log_mask(LOG_UNIMP,
5457 "arm: address mismatch breakpoint types not implemented\n");
5458 return;
5459 case 0: /* unlinked address match */
5460 case 1: /* linked address match */
5461 {
5462 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5463 * we behave as if the register was sign extended. Bits [1:0] are
5464 * RES0. The BAS field is used to allow setting breakpoints on 16
5465 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5466 * a bp will fire if the addresses covered by the bp and the addresses
5467 * covered by the insn overlap but the insn doesn't start at the
5468 * start of the bp address range. We choose to require the insn and
5469 * the bp to have the same address. The constraints on writing to
5470 * BAS enforced in dbgbcr_write mean we have only four cases:
5471 * 0b0000 => no breakpoint
5472 * 0b0011 => breakpoint on addr
5473 * 0b1100 => breakpoint on addr + 2
5474 * 0b1111 => breakpoint on addr
5475 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5476 */
5477 int bas = extract64(bcr, 5, 4);
5478 addr = sextract64(bvr, 0, 49) & ~3ULL;
5479 if (bas == 0) {
5480 return;
5481 }
5482 if (bas == 0xc) {
5483 addr += 2;
5484 }
5485 break;
5486 }
5487 case 2: /* unlinked context ID match */
5488 case 8: /* unlinked VMID match (reserved if no EL2) */
5489 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5490 qemu_log_mask(LOG_UNIMP,
5491 "arm: unlinked context breakpoint types not implemented\n");
5492 return;
5493 case 9: /* linked VMID match (reserved if no EL2) */
5494 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5495 case 3: /* linked context ID match */
5496 default:
5497 /* We must generate no events for Linked context matches (unless
5498 * they are linked to by some other bp/wp, which is handled in
5499 * updates for the linking bp/wp). We choose to also generate no events
5500 * for reserved values.
5501 */
5502 return;
5503 }
5504
5505 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5506 }
5507
5508 void hw_breakpoint_update_all(ARMCPU *cpu)
5509 {
5510 int i;
5511 CPUARMState *env = &cpu->env;
5512
5513 /* Completely clear out existing QEMU breakpoints and our array, to
5514 * avoid possible stale entries following migration load.
5515 */
5516 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5517 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5518
5519 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5520 hw_breakpoint_update(cpu, i);
5521 }
5522 }
5523
5524 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5525 uint64_t value)
5526 {
5527 ARMCPU *cpu = arm_env_get_cpu(env);
5528 int i = ri->crm;
5529
5530 raw_write(env, ri, value);
5531 hw_breakpoint_update(cpu, i);
5532 }
5533
5534 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5535 uint64_t value)
5536 {
5537 ARMCPU *cpu = arm_env_get_cpu(env);
5538 int i = ri->crm;
5539
5540 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5541 * copy of BAS[0].
5542 */
5543 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5544 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5545
5546 raw_write(env, ri, value);
5547 hw_breakpoint_update(cpu, i);
5548 }
5549
5550 static void define_debug_regs(ARMCPU *cpu)
5551 {
5552 /* Define v7 and v8 architectural debug registers.
5553 * These are just dummy implementations for now.
5554 */
5555 int i;
5556 int wrps, brps, ctx_cmps;
5557 ARMCPRegInfo dbgdidr = {
5558 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5559 .access = PL0_R, .accessfn = access_tda,
5560 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5561 };
5562
5563 /* Note that all these register fields hold "number of Xs minus 1". */
5564 brps = extract32(cpu->dbgdidr, 24, 4);
5565 wrps = extract32(cpu->dbgdidr, 28, 4);
5566 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5567
5568 assert(ctx_cmps <= brps);
5569
5570 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5571 * of the debug registers such as number of breakpoints;
5572 * check that if they both exist then they agree.
5573 */
5574 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5575 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5576 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5577 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5578 }
5579
5580 define_one_arm_cp_reg(cpu, &dbgdidr);
5581 define_arm_cp_regs(cpu, debug_cp_reginfo);
5582
5583 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5584 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5585 }
5586
5587 for (i = 0; i < brps + 1; i++) {
5588 ARMCPRegInfo dbgregs[] = {
5589 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5590 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5591 .access = PL1_RW, .accessfn = access_tda,
5592 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5593 .writefn = dbgbvr_write, .raw_writefn = raw_write
5594 },
5595 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5596 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5597 .access = PL1_RW, .accessfn = access_tda,
5598 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5599 .writefn = dbgbcr_write, .raw_writefn = raw_write
5600 },
5601 REGINFO_SENTINEL
5602 };
5603 define_arm_cp_regs(cpu, dbgregs);
5604 }
5605
5606 for (i = 0; i < wrps + 1; i++) {
5607 ARMCPRegInfo dbgregs[] = {
5608 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5609 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5610 .access = PL1_RW, .accessfn = access_tda,
5611 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5612 .writefn = dbgwvr_write, .raw_writefn = raw_write
5613 },
5614 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5615 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5616 .access = PL1_RW, .accessfn = access_tda,
5617 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5618 .writefn = dbgwcr_write, .raw_writefn = raw_write
5619 },
5620 REGINFO_SENTINEL
5621 };
5622 define_arm_cp_regs(cpu, dbgregs);
5623 }
5624 }
5625
5626 /* We don't know until after realize whether there's a GICv3
5627 * attached, and that is what registers the gicv3 sysregs.
5628 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5629 * at runtime.
5630 */
5631 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5632 {
5633 ARMCPU *cpu = arm_env_get_cpu(env);
5634 uint64_t pfr1 = cpu->id_pfr1;
5635
5636 if (env->gicv3state) {
5637 pfr1 |= 1 << 28;
5638 }
5639 return pfr1;
5640 }
5641
5642 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5643 {
5644 ARMCPU *cpu = arm_env_get_cpu(env);
5645 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5646
5647 if (env->gicv3state) {
5648 pfr0 |= 1 << 24;
5649 }
5650 return pfr0;
5651 }
5652
5653 /* Shared logic between LORID and the rest of the LOR* registers.
5654 * Secure state has already been delt with.
5655 */
5656 static CPAccessResult access_lor_ns(CPUARMState *env)
5657 {
5658 int el = arm_current_el(env);
5659
5660 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5661 return CP_ACCESS_TRAP_EL2;
5662 }
5663 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5664 return CP_ACCESS_TRAP_EL3;
5665 }
5666 return CP_ACCESS_OK;
5667 }
5668
5669 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5670 bool isread)
5671 {
5672 if (arm_is_secure_below_el3(env)) {
5673 /* Access ok in secure mode. */
5674 return CP_ACCESS_OK;
5675 }
5676 return access_lor_ns(env);
5677 }
5678
5679 static CPAccessResult access_lor_other(CPUARMState *env,
5680 const ARMCPRegInfo *ri, bool isread)
5681 {
5682 if (arm_is_secure_below_el3(env)) {
5683 /* Access denied in secure mode. */
5684 return CP_ACCESS_TRAP;
5685 }
5686 return access_lor_ns(env);
5687 }
5688
5689 #ifdef TARGET_AARCH64
5690 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5691 bool isread)
5692 {
5693 int el = arm_current_el(env);
5694
5695 if (el < 2 &&
5696 arm_feature(env, ARM_FEATURE_EL2) &&
5697 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5698 return CP_ACCESS_TRAP_EL2;
5699 }
5700 if (el < 3 &&
5701 arm_feature(env, ARM_FEATURE_EL3) &&
5702 !(env->cp15.scr_el3 & SCR_APK)) {
5703 return CP_ACCESS_TRAP_EL3;
5704 }
5705 return CP_ACCESS_OK;
5706 }
5707
5708 static const ARMCPRegInfo pauth_reginfo[] = {
5709 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5711 .access = PL1_RW, .accessfn = access_pauth,
5712 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5713 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5714 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5715 .access = PL1_RW, .accessfn = access_pauth,
5716 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5717 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5718 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5719 .access = PL1_RW, .accessfn = access_pauth,
5720 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5721 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5722 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5723 .access = PL1_RW, .accessfn = access_pauth,
5724 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5725 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5726 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5727 .access = PL1_RW, .accessfn = access_pauth,
5728 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5729 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5731 .access = PL1_RW, .accessfn = access_pauth,
5732 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5733 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5734 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5735 .access = PL1_RW, .accessfn = access_pauth,
5736 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5737 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5739 .access = PL1_RW, .accessfn = access_pauth,
5740 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5741 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5742 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5743 .access = PL1_RW, .accessfn = access_pauth,
5744 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5745 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5746 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5747 .access = PL1_RW, .accessfn = access_pauth,
5748 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5749 REGINFO_SENTINEL
5750 };
5751
5752 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5753 {
5754 Error *err = NULL;
5755 uint64_t ret;
5756
5757 /* Success sets NZCV = 0000. */
5758 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5759
5760 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5761 /*
5762 * ??? Failed, for unknown reasons in the crypto subsystem.
5763 * The best we can do is log the reason and return the
5764 * timed-out indication to the guest. There is no reason
5765 * we know to expect this failure to be transitory, so the
5766 * guest may well hang retrying the operation.
5767 */
5768 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5769 ri->name, error_get_pretty(err));
5770 error_free(err);
5771
5772 env->ZF = 0; /* NZCF = 0100 */
5773 return 0;
5774 }
5775 return ret;
5776 }
5777
5778 /* We do not support re-seeding, so the two registers operate the same. */
5779 static const ARMCPRegInfo rndr_reginfo[] = {
5780 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5781 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5782 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5783 .access = PL0_R, .readfn = rndr_readfn },
5784 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5785 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5786 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5787 .access = PL0_R, .readfn = rndr_readfn },
5788 REGINFO_SENTINEL
5789 };
5790 #endif
5791
5792 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5793 bool isread)
5794 {
5795 int el = arm_current_el(env);
5796
5797 if (el == 0) {
5798 uint64_t sctlr = arm_sctlr(env, el);
5799 if (!(sctlr & SCTLR_EnRCTX)) {
5800 return CP_ACCESS_TRAP;
5801 }
5802 } else if (el == 1) {
5803 uint64_t hcr = arm_hcr_el2_eff(env);
5804 if (hcr & HCR_NV) {
5805 return CP_ACCESS_TRAP_EL2;
5806 }
5807 }
5808 return CP_ACCESS_OK;
5809 }
5810
5811 static const ARMCPRegInfo predinv_reginfo[] = {
5812 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5813 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5814 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5815 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5817 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5818 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5820 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5821 /*
5822 * Note the AArch32 opcodes have a different OPC1.
5823 */
5824 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5825 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5826 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5827 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5828 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5829 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5830 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5831 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5832 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5833 REGINFO_SENTINEL
5834 };
5835
5836 void register_cp_regs_for_features(ARMCPU *cpu)
5837 {
5838 /* Register all the coprocessor registers based on feature bits */
5839 CPUARMState *env = &cpu->env;
5840 if (arm_feature(env, ARM_FEATURE_M)) {
5841 /* M profile has no coprocessor registers */
5842 return;
5843 }
5844
5845 define_arm_cp_regs(cpu, cp_reginfo);
5846 if (!arm_feature(env, ARM_FEATURE_V8)) {
5847 /* Must go early as it is full of wildcards that may be
5848 * overridden by later definitions.
5849 */
5850 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5851 }
5852
5853 if (arm_feature(env, ARM_FEATURE_V6)) {
5854 /* The ID registers all have impdef reset values */
5855 ARMCPRegInfo v6_idregs[] = {
5856 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5858 .access = PL1_R, .type = ARM_CP_CONST,
5859 .resetvalue = cpu->id_pfr0 },
5860 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5861 * the value of the GIC field until after we define these regs.
5862 */
5863 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5865 .access = PL1_R, .type = ARM_CP_NO_RAW,
5866 .readfn = id_pfr1_read,
5867 .writefn = arm_cp_write_ignore },
5868 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5870 .access = PL1_R, .type = ARM_CP_CONST,
5871 .resetvalue = cpu->id_dfr0 },
5872 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5874 .access = PL1_R, .type = ARM_CP_CONST,
5875 .resetvalue = cpu->id_afr0 },
5876 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5878 .access = PL1_R, .type = ARM_CP_CONST,
5879 .resetvalue = cpu->id_mmfr0 },
5880 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5882 .access = PL1_R, .type = ARM_CP_CONST,
5883 .resetvalue = cpu->id_mmfr1 },
5884 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5886 .access = PL1_R, .type = ARM_CP_CONST,
5887 .resetvalue = cpu->id_mmfr2 },
5888 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5890 .access = PL1_R, .type = ARM_CP_CONST,
5891 .resetvalue = cpu->id_mmfr3 },
5892 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5894 .access = PL1_R, .type = ARM_CP_CONST,
5895 .resetvalue = cpu->isar.id_isar0 },
5896 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5898 .access = PL1_R, .type = ARM_CP_CONST,
5899 .resetvalue = cpu->isar.id_isar1 },
5900 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5902 .access = PL1_R, .type = ARM_CP_CONST,
5903 .resetvalue = cpu->isar.id_isar2 },
5904 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5906 .access = PL1_R, .type = ARM_CP_CONST,
5907 .resetvalue = cpu->isar.id_isar3 },
5908 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5910 .access = PL1_R, .type = ARM_CP_CONST,
5911 .resetvalue = cpu->isar.id_isar4 },
5912 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5914 .access = PL1_R, .type = ARM_CP_CONST,
5915 .resetvalue = cpu->isar.id_isar5 },
5916 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5918 .access = PL1_R, .type = ARM_CP_CONST,
5919 .resetvalue = cpu->id_mmfr4 },
5920 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5922 .access = PL1_R, .type = ARM_CP_CONST,
5923 .resetvalue = cpu->isar.id_isar6 },
5924 REGINFO_SENTINEL
5925 };
5926 define_arm_cp_regs(cpu, v6_idregs);
5927 define_arm_cp_regs(cpu, v6_cp_reginfo);
5928 } else {
5929 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5930 }
5931 if (arm_feature(env, ARM_FEATURE_V6K)) {
5932 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5933 }
5934 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5935 !arm_feature(env, ARM_FEATURE_PMSA)) {
5936 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5937 }
5938 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5939 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5940 }
5941 if (arm_feature(env, ARM_FEATURE_V7)) {
5942 /* v7 performance monitor control register: same implementor
5943 * field as main ID register, and we implement four counters in
5944 * addition to the cycle count register.
5945 */
5946 unsigned int i, pmcrn = 4;
5947 ARMCPRegInfo pmcr = {
5948 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5949 .access = PL0_RW,
5950 .type = ARM_CP_IO | ARM_CP_ALIAS,
5951 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5952 .accessfn = pmreg_access, .writefn = pmcr_write,
5953 .raw_writefn = raw_write,
5954 };
5955 ARMCPRegInfo pmcr64 = {
5956 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5957 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5958 .access = PL0_RW, .accessfn = pmreg_access,
5959 .type = ARM_CP_IO,
5960 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5961 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5962 .writefn = pmcr_write, .raw_writefn = raw_write,
5963 };
5964 define_one_arm_cp_reg(cpu, &pmcr);
5965 define_one_arm_cp_reg(cpu, &pmcr64);
5966 for (i = 0; i < pmcrn; i++) {
5967 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5968 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5969 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5970 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5971 ARMCPRegInfo pmev_regs[] = {
5972 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5973 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5974 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5975 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5976 .accessfn = pmreg_access },
5977 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5978 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5979 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5980 .type = ARM_CP_IO,
5981 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5982 .raw_readfn = pmevcntr_rawread,
5983 .raw_writefn = pmevcntr_rawwrite },
5984 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5985 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5986 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5987 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5988 .accessfn = pmreg_access },
5989 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5990 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5991 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5992 .type = ARM_CP_IO,
5993 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5994 .raw_writefn = pmevtyper_rawwrite },
5995 REGINFO_SENTINEL
5996 };
5997 define_arm_cp_regs(cpu, pmev_regs);
5998 g_free(pmevcntr_name);
5999 g_free(pmevcntr_el0_name);
6000 g_free(pmevtyper_name);
6001 g_free(pmevtyper_el0_name);
6002 }
6003 ARMCPRegInfo clidr = {
6004 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6005 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6006 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6007 };
6008 define_one_arm_cp_reg(cpu, &clidr);
6009 define_arm_cp_regs(cpu, v7_cp_reginfo);
6010 define_debug_regs(cpu);
6011 } else {
6012 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6013 }
6014 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6015 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6016 ARMCPRegInfo v81_pmu_regs[] = {
6017 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6018 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6019 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6020 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6021 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6022 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6023 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6024 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6025 REGINFO_SENTINEL
6026 };
6027 define_arm_cp_regs(cpu, v81_pmu_regs);
6028 }
6029 if (arm_feature(env, ARM_FEATURE_V8)) {
6030 /* AArch64 ID registers, which all have impdef reset values.
6031 * Note that within the ID register ranges the unused slots
6032 * must all RAZ, not UNDEF; future architecture versions may
6033 * define new registers here.
6034 */
6035 ARMCPRegInfo v8_idregs[] = {
6036 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6037 * know the right value for the GIC field until after we
6038 * define these regs.
6039 */
6040 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6042 .access = PL1_R, .type = ARM_CP_NO_RAW,
6043 .readfn = id_aa64pfr0_read,
6044 .writefn = arm_cp_write_ignore },
6045 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6047 .access = PL1_R, .type = ARM_CP_CONST,
6048 .resetvalue = cpu->isar.id_aa64pfr1},
6049 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6051 .access = PL1_R, .type = ARM_CP_CONST,
6052 .resetvalue = 0 },
6053 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6055 .access = PL1_R, .type = ARM_CP_CONST,
6056 .resetvalue = 0 },
6057 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6059 .access = PL1_R, .type = ARM_CP_CONST,
6060 /* At present, only SVEver == 0 is defined anyway. */
6061 .resetvalue = 0 },
6062 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6064 .access = PL1_R, .type = ARM_CP_CONST,
6065 .resetvalue = 0 },
6066 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6068 .access = PL1_R, .type = ARM_CP_CONST,
6069 .resetvalue = 0 },
6070 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6072 .access = PL1_R, .type = ARM_CP_CONST,
6073 .resetvalue = 0 },
6074 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6076 .access = PL1_R, .type = ARM_CP_CONST,
6077 .resetvalue = cpu->id_aa64dfr0 },
6078 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6080 .access = PL1_R, .type = ARM_CP_CONST,
6081 .resetvalue = cpu->id_aa64dfr1 },
6082 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6084 .access = PL1_R, .type = ARM_CP_CONST,
6085 .resetvalue = 0 },
6086 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6088 .access = PL1_R, .type = ARM_CP_CONST,
6089 .resetvalue = 0 },
6090 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6092 .access = PL1_R, .type = ARM_CP_CONST,
6093 .resetvalue = cpu->id_aa64afr0 },
6094 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6096 .access = PL1_R, .type = ARM_CP_CONST,
6097 .resetvalue = cpu->id_aa64afr1 },
6098 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6099 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6100 .access = PL1_R, .type = ARM_CP_CONST,
6101 .resetvalue = 0 },
6102 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6103 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6104 .access = PL1_R, .type = ARM_CP_CONST,
6105 .resetvalue = 0 },
6106 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6108 .access = PL1_R, .type = ARM_CP_CONST,
6109 .resetvalue = cpu->isar.id_aa64isar0 },
6110 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6111 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6112 .access = PL1_R, .type = ARM_CP_CONST,
6113 .resetvalue = cpu->isar.id_aa64isar1 },
6114 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6116 .access = PL1_R, .type = ARM_CP_CONST,
6117 .resetvalue = 0 },
6118 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6120 .access = PL1_R, .type = ARM_CP_CONST,
6121 .resetvalue = 0 },
6122 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6124 .access = PL1_R, .type = ARM_CP_CONST,
6125 .resetvalue = 0 },
6126 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6128 .access = PL1_R, .type = ARM_CP_CONST,
6129 .resetvalue = 0 },
6130 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6131 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6132 .access = PL1_R, .type = ARM_CP_CONST,
6133 .resetvalue = 0 },
6134 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6136 .access = PL1_R, .type = ARM_CP_CONST,
6137 .resetvalue = 0 },
6138 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6139 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6140 .access = PL1_R, .type = ARM_CP_CONST,
6141 .resetvalue = cpu->isar.id_aa64mmfr0 },
6142 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6144 .access = PL1_R, .type = ARM_CP_CONST,
6145 .resetvalue = cpu->isar.id_aa64mmfr1 },
6146 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6148 .access = PL1_R, .type = ARM_CP_CONST,
6149 .resetvalue = 0 },
6150 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6151 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6152 .access = PL1_R, .type = ARM_CP_CONST,
6153 .resetvalue = 0 },
6154 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6156 .access = PL1_R, .type = ARM_CP_CONST,
6157 .resetvalue = 0 },
6158 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6159 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6160 .access = PL1_R, .type = ARM_CP_CONST,
6161 .resetvalue = 0 },
6162 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6164 .access = PL1_R, .type = ARM_CP_CONST,
6165 .resetvalue = 0 },
6166 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6168 .access = PL1_R, .type = ARM_CP_CONST,
6169 .resetvalue = 0 },
6170 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6171 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6172 .access = PL1_R, .type = ARM_CP_CONST,
6173 .resetvalue = cpu->isar.mvfr0 },
6174 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6176 .access = PL1_R, .type = ARM_CP_CONST,
6177 .resetvalue = cpu->isar.mvfr1 },
6178 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6179 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6180 .access = PL1_R, .type = ARM_CP_CONST,
6181 .resetvalue = cpu->isar.mvfr2 },
6182 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6184 .access = PL1_R, .type = ARM_CP_CONST,
6185 .resetvalue = 0 },
6186 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6188 .access = PL1_R, .type = ARM_CP_CONST,
6189 .resetvalue = 0 },
6190 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6191 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6192 .access = PL1_R, .type = ARM_CP_CONST,
6193 .resetvalue = 0 },
6194 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6196 .access = PL1_R, .type = ARM_CP_CONST,
6197 .resetvalue = 0 },
6198 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6200 .access = PL1_R, .type = ARM_CP_CONST,
6201 .resetvalue = 0 },
6202 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6203 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6204 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6205 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6206 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6208 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6209 .resetvalue = cpu->pmceid0 },
6210 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6211 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6212 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6213 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6214 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6215 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6216 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6217 .resetvalue = cpu->pmceid1 },
6218 REGINFO_SENTINEL
6219 };
6220 #ifdef CONFIG_USER_ONLY
6221 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6222 { .name = "ID_AA64PFR0_EL1",
6223 .exported_bits = 0x000f000f00ff0000,
6224 .fixed_bits = 0x0000000000000011 },
6225 { .name = "ID_AA64PFR1_EL1",
6226 .exported_bits = 0x00000000000000f0 },
6227 { .name = "ID_AA64PFR*_EL1_RESERVED",
6228 .is_glob = true },
6229 { .name = "ID_AA64ZFR0_EL1" },
6230 { .name = "ID_AA64MMFR0_EL1",
6231 .fixed_bits = 0x00000000ff000000 },
6232 { .name = "ID_AA64MMFR1_EL1" },
6233 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6234 .is_glob = true },
6235 { .name = "ID_AA64DFR0_EL1",
6236 .fixed_bits = 0x0000000000000006 },
6237 { .name = "ID_AA64DFR1_EL1" },
6238 { .name = "ID_AA64DFR*_EL1_RESERVED",
6239 .is_glob = true },
6240 { .name = "ID_AA64AFR*",
6241 .is_glob = true },
6242 { .name = "ID_AA64ISAR0_EL1",
6243 .exported_bits = 0x00fffffff0fffff0 },
6244 { .name = "ID_AA64ISAR1_EL1",
6245 .exported_bits = 0x000000f0ffffffff },
6246 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6247 .is_glob = true },
6248 REGUSERINFO_SENTINEL
6249 };
6250 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6251 #endif
6252 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6253 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6254 !arm_feature(env, ARM_FEATURE_EL2)) {
6255 ARMCPRegInfo rvbar = {
6256 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6258 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6259 };
6260 define_one_arm_cp_reg(cpu, &rvbar);
6261 }
6262 define_arm_cp_regs(cpu, v8_idregs);
6263 define_arm_cp_regs(cpu, v8_cp_reginfo);
6264 }
6265 if (arm_feature(env, ARM_FEATURE_EL2)) {
6266 uint64_t vmpidr_def = mpidr_read_val(env);
6267 ARMCPRegInfo vpidr_regs[] = {
6268 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6269 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6270 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6271 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6272 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6273 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6275 .access = PL2_RW, .resetvalue = cpu->midr,
6276 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6277 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6278 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6279 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6280 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6281 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6282 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6283 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6284 .access = PL2_RW,
6285 .resetvalue = vmpidr_def,
6286 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6287 REGINFO_SENTINEL
6288 };
6289 define_arm_cp_regs(cpu, vpidr_regs);
6290 define_arm_cp_regs(cpu, el2_cp_reginfo);
6291 if (arm_feature(env, ARM_FEATURE_V8)) {
6292 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6293 }
6294 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6295 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6296 ARMCPRegInfo rvbar = {
6297 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6298 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6299 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6300 };
6301 define_one_arm_cp_reg(cpu, &rvbar);
6302 }
6303 } else {
6304 /* If EL2 is missing but higher ELs are enabled, we need to
6305 * register the no_el2 reginfos.
6306 */
6307 if (arm_feature(env, ARM_FEATURE_EL3)) {
6308 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6309 * of MIDR_EL1 and MPIDR_EL1.
6310 */
6311 ARMCPRegInfo vpidr_regs[] = {
6312 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6313 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6314 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6315 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6316 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6317 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6318 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6319 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6320 .type = ARM_CP_NO_RAW,
6321 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6322 REGINFO_SENTINEL
6323 };
6324 define_arm_cp_regs(cpu, vpidr_regs);
6325 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6326 if (arm_feature(env, ARM_FEATURE_V8)) {
6327 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6328 }
6329 }
6330 }
6331 if (arm_feature(env, ARM_FEATURE_EL3)) {
6332 define_arm_cp_regs(cpu, el3_cp_reginfo);
6333 ARMCPRegInfo el3_regs[] = {
6334 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6335 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6336 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6337 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6338 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6339 .access = PL3_RW,
6340 .raw_writefn = raw_write, .writefn = sctlr_write,
6341 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6342 .resetvalue = cpu->reset_sctlr },
6343 REGINFO_SENTINEL
6344 };
6345
6346 define_arm_cp_regs(cpu, el3_regs);
6347 }
6348 /* The behaviour of NSACR is sufficiently various that we don't
6349 * try to describe it in a single reginfo:
6350 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6351 * reads as constant 0xc00 from NS EL1 and NS EL2
6352 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6353 * if v7 without EL3, register doesn't exist
6354 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6355 */
6356 if (arm_feature(env, ARM_FEATURE_EL3)) {
6357 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6358 ARMCPRegInfo nsacr = {
6359 .name = "NSACR", .type = ARM_CP_CONST,
6360 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6361 .access = PL1_RW, .accessfn = nsacr_access,
6362 .resetvalue = 0xc00
6363 };
6364 define_one_arm_cp_reg(cpu, &nsacr);
6365 } else {
6366 ARMCPRegInfo nsacr = {
6367 .name = "NSACR",
6368 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6369 .access = PL3_RW | PL1_R,
6370 .resetvalue = 0,
6371 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6372 };
6373 define_one_arm_cp_reg(cpu, &nsacr);
6374 }
6375 } else {
6376 if (arm_feature(env, ARM_FEATURE_V8)) {
6377 ARMCPRegInfo nsacr = {
6378 .name = "NSACR", .type = ARM_CP_CONST,
6379 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6380 .access = PL1_R,
6381 .resetvalue = 0xc00
6382 };
6383 define_one_arm_cp_reg(cpu, &nsacr);
6384 }
6385 }
6386
6387 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6388 if (arm_feature(env, ARM_FEATURE_V6)) {
6389 /* PMSAv6 not implemented */
6390 assert(arm_feature(env, ARM_FEATURE_V7));
6391 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6392 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6393 } else {
6394 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6395 }
6396 } else {
6397 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6398 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6399 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6400 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6401 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6402 }
6403 }
6404 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6405 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6406 }
6407 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6408 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6409 }
6410 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6411 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6412 }
6413 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6414 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6415 }
6416 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6417 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6418 }
6419 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6420 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6421 }
6422 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6423 define_arm_cp_regs(cpu, omap_cp_reginfo);
6424 }
6425 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6426 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6427 }
6428 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6429 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6430 }
6431 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6432 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6433 }
6434 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6435 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6436 }
6437 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6438 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6439 * be read-only (ie write causes UNDEF exception).
6440 */
6441 {
6442 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6443 /* Pre-v8 MIDR space.
6444 * Note that the MIDR isn't a simple constant register because
6445 * of the TI925 behaviour where writes to another register can
6446 * cause the MIDR value to change.
6447 *
6448 * Unimplemented registers in the c15 0 0 0 space default to
6449 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6450 * and friends override accordingly.
6451 */
6452 { .name = "MIDR",
6453 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6454 .access = PL1_R, .resetvalue = cpu->midr,
6455 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6456 .readfn = midr_read,
6457 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6458 .type = ARM_CP_OVERRIDE },
6459 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6460 { .name = "DUMMY",
6461 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6462 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6463 { .name = "DUMMY",
6464 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6465 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6466 { .name = "DUMMY",
6467 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6468 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6469 { .name = "DUMMY",
6470 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6471 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6472 { .name = "DUMMY",
6473 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6474 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6475 REGINFO_SENTINEL
6476 };
6477 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6478 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6480 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6481 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6482 .readfn = midr_read },
6483 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6484 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6485 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6486 .access = PL1_R, .resetvalue = cpu->midr },
6487 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6488 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6489 .access = PL1_R, .resetvalue = cpu->midr },
6490 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6492 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6493 REGINFO_SENTINEL
6494 };
6495 ARMCPRegInfo id_cp_reginfo[] = {
6496 /* These are common to v8 and pre-v8 */
6497 { .name = "CTR",
6498 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6499 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6500 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6501 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6502 .access = PL0_R, .accessfn = ctr_el0_access,
6503 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6504 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6505 { .name = "TCMTR",
6506 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6508 REGINFO_SENTINEL
6509 };
6510 /* TLBTR is specific to VMSA */
6511 ARMCPRegInfo id_tlbtr_reginfo = {
6512 .name = "TLBTR",
6513 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6514 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6515 };
6516 /* MPUIR is specific to PMSA V6+ */
6517 ARMCPRegInfo id_mpuir_reginfo = {
6518 .name = "MPUIR",
6519 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6520 .access = PL1_R, .type = ARM_CP_CONST,
6521 .resetvalue = cpu->pmsav7_dregion << 8
6522 };
6523 ARMCPRegInfo crn0_wi_reginfo = {
6524 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6525 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6526 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6527 };
6528 #ifdef CONFIG_USER_ONLY
6529 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6530 { .name = "MIDR_EL1",
6531 .exported_bits = 0x00000000ffffffff },
6532 { .name = "REVIDR_EL1" },
6533 REGUSERINFO_SENTINEL
6534 };
6535 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6536 #endif
6537 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6538 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6539 ARMCPRegInfo *r;
6540 /* Register the blanket "writes ignored" value first to cover the
6541 * whole space. Then update the specific ID registers to allow write
6542 * access, so that they ignore writes rather than causing them to
6543 * UNDEF.
6544 */
6545 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6546 for (r = id_pre_v8_midr_cp_reginfo;
6547 r->type != ARM_CP_SENTINEL; r++) {
6548 r->access = PL1_RW;
6549 }
6550 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6551 r->access = PL1_RW;
6552 }
6553 id_mpuir_reginfo.access = PL1_RW;
6554 id_tlbtr_reginfo.access = PL1_RW;
6555 }
6556 if (arm_feature(env, ARM_FEATURE_V8)) {
6557 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6558 } else {
6559 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6560 }
6561 define_arm_cp_regs(cpu, id_cp_reginfo);
6562 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6563 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6564 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6565 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6566 }
6567 }
6568
6569 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6570 ARMCPRegInfo mpidr_cp_reginfo[] = {
6571 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6572 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6573 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6574 REGINFO_SENTINEL
6575 };
6576 #ifdef CONFIG_USER_ONLY
6577 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6578 { .name = "MPIDR_EL1",
6579 .fixed_bits = 0x0000000080000000 },
6580 REGUSERINFO_SENTINEL
6581 };
6582 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6583 #endif
6584 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6585 }
6586
6587 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6588 ARMCPRegInfo auxcr_reginfo[] = {
6589 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6590 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6591 .access = PL1_RW, .type = ARM_CP_CONST,
6592 .resetvalue = cpu->reset_auxcr },
6593 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6594 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6595 .access = PL2_RW, .type = ARM_CP_CONST,
6596 .resetvalue = 0 },
6597 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6598 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6599 .access = PL3_RW, .type = ARM_CP_CONST,
6600 .resetvalue = 0 },
6601 REGINFO_SENTINEL
6602 };
6603 define_arm_cp_regs(cpu, auxcr_reginfo);
6604 if (arm_feature(env, ARM_FEATURE_V8)) {
6605 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6606 ARMCPRegInfo hactlr2_reginfo = {
6607 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6608 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6609 .access = PL2_RW, .type = ARM_CP_CONST,
6610 .resetvalue = 0
6611 };
6612 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6613 }
6614 }
6615
6616 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6617 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6618 /* 32 bit view is [31:18] 0...0 [43:32]. */
6619 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6620 | extract64(cpu->reset_cbar, 32, 12);
6621 ARMCPRegInfo cbar_reginfo[] = {
6622 { .name = "CBAR",
6623 .type = ARM_CP_CONST,
6624 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6625 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6626 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6627 .type = ARM_CP_CONST,
6628 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6629 .access = PL1_R, .resetvalue = cbar32 },
6630 REGINFO_SENTINEL
6631 };
6632 /* We don't implement a r/w 64 bit CBAR currently */
6633 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6634 define_arm_cp_regs(cpu, cbar_reginfo);
6635 } else {
6636 ARMCPRegInfo cbar = {
6637 .name = "CBAR",
6638 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6639 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6640 .fieldoffset = offsetof(CPUARMState,
6641 cp15.c15_config_base_address)
6642 };
6643 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6644 cbar.access = PL1_R;
6645 cbar.fieldoffset = 0;
6646 cbar.type = ARM_CP_CONST;
6647 }
6648 define_one_arm_cp_reg(cpu, &cbar);
6649 }
6650 }
6651
6652 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6653 ARMCPRegInfo vbar_cp_reginfo[] = {
6654 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6655 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6656 .access = PL1_RW, .writefn = vbar_write,
6657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6658 offsetof(CPUARMState, cp15.vbar_ns) },
6659 .resetvalue = 0 },
6660 REGINFO_SENTINEL
6661 };
6662 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6663 }
6664
6665 /* Generic registers whose values depend on the implementation */
6666 {
6667 ARMCPRegInfo sctlr = {
6668 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6669 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6670 .access = PL1_RW,
6671 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6672 offsetof(CPUARMState, cp15.sctlr_ns) },
6673 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6674 .raw_writefn = raw_write,
6675 };
6676 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6677 /* Normally we would always end the TB on an SCTLR write, but Linux
6678 * arch/arm/mach-pxa/sleep.S expects two instructions following
6679 * an MMU enable to execute from cache. Imitate this behaviour.
6680 */
6681 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6682 }
6683 define_one_arm_cp_reg(cpu, &sctlr);
6684 }
6685
6686 if (cpu_isar_feature(aa64_lor, cpu)) {
6687 /*
6688 * A trivial implementation of ARMv8.1-LOR leaves all of these
6689 * registers fixed at 0, which indicates that there are zero
6690 * supported Limited Ordering regions.
6691 */
6692 static const ARMCPRegInfo lor_reginfo[] = {
6693 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6694 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6695 .access = PL1_RW, .accessfn = access_lor_other,
6696 .type = ARM_CP_CONST, .resetvalue = 0 },
6697 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6698 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6699 .access = PL1_RW, .accessfn = access_lor_other,
6700 .type = ARM_CP_CONST, .resetvalue = 0 },
6701 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6702 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6703 .access = PL1_RW, .accessfn = access_lor_other,
6704 .type = ARM_CP_CONST, .resetvalue = 0 },
6705 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6706 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6707 .access = PL1_RW, .accessfn = access_lor_other,
6708 .type = ARM_CP_CONST, .resetvalue = 0 },
6709 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6710 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6711 .access = PL1_R, .accessfn = access_lorid,
6712 .type = ARM_CP_CONST, .resetvalue = 0 },
6713 REGINFO_SENTINEL
6714 };
6715 define_arm_cp_regs(cpu, lor_reginfo);
6716 }
6717
6718 if (cpu_isar_feature(aa64_sve, cpu)) {
6719 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6720 if (arm_feature(env, ARM_FEATURE_EL2)) {
6721 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6722 } else {
6723 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6724 }
6725 if (arm_feature(env, ARM_FEATURE_EL3)) {
6726 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6727 }
6728 }
6729
6730 #ifdef TARGET_AARCH64
6731 if (cpu_isar_feature(aa64_pauth, cpu)) {
6732 define_arm_cp_regs(cpu, pauth_reginfo);
6733 }
6734 if (cpu_isar_feature(aa64_rndr, cpu)) {
6735 define_arm_cp_regs(cpu, rndr_reginfo);
6736 }
6737 #endif
6738
6739 /*
6740 * While all v8.0 cpus support aarch64, QEMU does have configurations
6741 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6742 * which will set ID_ISAR6.
6743 */
6744 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6745 ? cpu_isar_feature(aa64_predinv, cpu)
6746 : cpu_isar_feature(aa32_predinv, cpu)) {
6747 define_arm_cp_regs(cpu, predinv_reginfo);
6748 }
6749 }
6750
6751 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6752 {
6753 CPUState *cs = CPU(cpu);
6754 CPUARMState *env = &cpu->env;
6755
6756 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6757 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6758 aarch64_fpu_gdb_set_reg,
6759 34, "aarch64-fpu.xml", 0);
6760 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6761 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6762 51, "arm-neon.xml", 0);
6763 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6764 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6765 35, "arm-vfp3.xml", 0);
6766 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6767 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6768 19, "arm-vfp.xml", 0);
6769 }
6770 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6771 arm_gen_dynamic_xml(cs),
6772 "system-registers.xml", 0);
6773 }
6774
6775 /* Sort alphabetically by type name, except for "any". */
6776 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6777 {
6778 ObjectClass *class_a = (ObjectClass *)a;
6779 ObjectClass *class_b = (ObjectClass *)b;
6780 const char *name_a, *name_b;
6781
6782 name_a = object_class_get_name(class_a);
6783 name_b = object_class_get_name(class_b);
6784 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6785 return 1;
6786 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6787 return -1;
6788 } else {
6789 return strcmp(name_a, name_b);
6790 }
6791 }
6792
6793 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6794 {
6795 ObjectClass *oc = data;
6796 const char *typename;
6797 char *name;
6798
6799 typename = object_class_get_name(oc);
6800 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6801 qemu_printf(" %s\n", name);
6802 g_free(name);
6803 }
6804
6805 void arm_cpu_list(void)
6806 {
6807 GSList *list;
6808
6809 list = object_class_get_list(TYPE_ARM_CPU, false);
6810 list = g_slist_sort(list, arm_cpu_list_compare);
6811 qemu_printf("Available CPUs:\n");
6812 g_slist_foreach(list, arm_cpu_list_entry, NULL);
6813 g_slist_free(list);
6814 }
6815
6816 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6817 {
6818 ObjectClass *oc = data;
6819 CpuDefinitionInfoList **cpu_list = user_data;
6820 CpuDefinitionInfoList *entry;
6821 CpuDefinitionInfo *info;
6822 const char *typename;
6823
6824 typename = object_class_get_name(oc);
6825 info = g_malloc0(sizeof(*info));
6826 info->name = g_strndup(typename,
6827 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6828 info->q_typename = g_strdup(typename);
6829
6830 entry = g_malloc0(sizeof(*entry));
6831 entry->value = info;
6832 entry->next = *cpu_list;
6833 *cpu_list = entry;
6834 }
6835
6836 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6837 {
6838 CpuDefinitionInfoList *cpu_list = NULL;
6839 GSList *list;
6840
6841 list = object_class_get_list(TYPE_ARM_CPU, false);
6842 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6843 g_slist_free(list);
6844
6845 return cpu_list;
6846 }
6847
6848 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6849 void *opaque, int state, int secstate,
6850 int crm, int opc1, int opc2,
6851 const char *name)
6852 {
6853 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6854 * add a single reginfo struct to the hash table.
6855 */
6856 uint32_t *key = g_new(uint32_t, 1);
6857 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6858 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6859 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6860
6861 r2->name = g_strdup(name);
6862 /* Reset the secure state to the specific incoming state. This is
6863 * necessary as the register may have been defined with both states.
6864 */
6865 r2->secure = secstate;
6866
6867 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6868 /* Register is banked (using both entries in array).
6869 * Overwriting fieldoffset as the array is only used to define
6870 * banked registers but later only fieldoffset is used.
6871 */
6872 r2->fieldoffset = r->bank_fieldoffsets[ns];
6873 }
6874
6875 if (state == ARM_CP_STATE_AA32) {
6876 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6877 /* If the register is banked then we don't need to migrate or
6878 * reset the 32-bit instance in certain cases:
6879 *
6880 * 1) If the register has both 32-bit and 64-bit instances then we
6881 * can count on the 64-bit instance taking care of the
6882 * non-secure bank.
6883 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6884 * taking care of the secure bank. This requires that separate
6885 * 32 and 64-bit definitions are provided.
6886 */
6887 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6888 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6889 r2->type |= ARM_CP_ALIAS;
6890 }
6891 } else if ((secstate != r->secure) && !ns) {
6892 /* The register is not banked so we only want to allow migration of
6893 * the non-secure instance.
6894 */
6895 r2->type |= ARM_CP_ALIAS;
6896 }
6897
6898 if (r->state == ARM_CP_STATE_BOTH) {
6899 /* We assume it is a cp15 register if the .cp field is left unset.
6900 */
6901 if (r2->cp == 0) {
6902 r2->cp = 15;
6903 }
6904
6905 #ifdef HOST_WORDS_BIGENDIAN
6906 if (r2->fieldoffset) {
6907 r2->fieldoffset += sizeof(uint32_t);
6908 }
6909 #endif
6910 }
6911 }
6912 if (state == ARM_CP_STATE_AA64) {
6913 /* To allow abbreviation of ARMCPRegInfo
6914 * definitions, we treat cp == 0 as equivalent to
6915 * the value for "standard guest-visible sysreg".
6916 * STATE_BOTH definitions are also always "standard
6917 * sysreg" in their AArch64 view (the .cp value may
6918 * be non-zero for the benefit of the AArch32 view).
6919 */
6920 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6921 r2->cp = CP_REG_ARM64_SYSREG_CP;
6922 }
6923 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6924 r2->opc0, opc1, opc2);
6925 } else {
6926 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6927 }
6928 if (opaque) {
6929 r2->opaque = opaque;
6930 }
6931 /* reginfo passed to helpers is correct for the actual access,
6932 * and is never ARM_CP_STATE_BOTH:
6933 */
6934 r2->state = state;
6935 /* Make sure reginfo passed to helpers for wildcarded regs
6936 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6937 */
6938 r2->crm = crm;
6939 r2->opc1 = opc1;
6940 r2->opc2 = opc2;
6941 /* By convention, for wildcarded registers only the first
6942 * entry is used for migration; the others are marked as
6943 * ALIAS so we don't try to transfer the register
6944 * multiple times. Special registers (ie NOP/WFI) are
6945 * never migratable and not even raw-accessible.
6946 */
6947 if ((r->type & ARM_CP_SPECIAL)) {
6948 r2->type |= ARM_CP_NO_RAW;
6949 }
6950 if (((r->crm == CP_ANY) && crm != 0) ||
6951 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6952 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6953 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6954 }
6955
6956 /* Check that raw accesses are either forbidden or handled. Note that
6957 * we can't assert this earlier because the setup of fieldoffset for
6958 * banked registers has to be done first.
6959 */
6960 if (!(r2->type & ARM_CP_NO_RAW)) {
6961 assert(!raw_accessors_invalid(r2));
6962 }
6963
6964 /* Overriding of an existing definition must be explicitly
6965 * requested.
6966 */
6967 if (!(r->type & ARM_CP_OVERRIDE)) {
6968 ARMCPRegInfo *oldreg;
6969 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6970 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6971 fprintf(stderr, "Register redefined: cp=%d %d bit "
6972 "crn=%d crm=%d opc1=%d opc2=%d, "
6973 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6974 r2->crn, r2->crm, r2->opc1, r2->opc2,
6975 oldreg->name, r2->name);
6976 g_assert_not_reached();
6977 }
6978 }
6979 g_hash_table_insert(cpu->cp_regs, key, r2);
6980 }
6981
6982
6983 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6984 const ARMCPRegInfo *r, void *opaque)
6985 {
6986 /* Define implementations of coprocessor registers.
6987 * We store these in a hashtable because typically
6988 * there are less than 150 registers in a space which
6989 * is 16*16*16*8*8 = 262144 in size.
6990 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6991 * If a register is defined twice then the second definition is
6992 * used, so this can be used to define some generic registers and
6993 * then override them with implementation specific variations.
6994 * At least one of the original and the second definition should
6995 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6996 * against accidental use.
6997 *
6998 * The state field defines whether the register is to be
6999 * visible in the AArch32 or AArch64 execution state. If the
7000 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7001 * reginfo structure for the AArch32 view, which sees the lower
7002 * 32 bits of the 64 bit register.
7003 *
7004 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7005 * be wildcarded. AArch64 registers are always considered to be 64
7006 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7007 * the register, if any.
7008 */
7009 int crm, opc1, opc2, state;
7010 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7011 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7012 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7013 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7014 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7015 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7016 /* 64 bit registers have only CRm and Opc1 fields */
7017 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7018 /* op0 only exists in the AArch64 encodings */
7019 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7020 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7021 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7022 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7023 * encodes a minimum access level for the register. We roll this
7024 * runtime check into our general permission check code, so check
7025 * here that the reginfo's specified permissions are strict enough
7026 * to encompass the generic architectural permission check.
7027 */
7028 if (r->state != ARM_CP_STATE_AA32) {
7029 int mask = 0;
7030 switch (r->opc1) {
7031 case 0:
7032 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7033 mask = PL0U_R | PL1_RW;
7034 break;
7035 case 1: case 2:
7036 /* min_EL EL1 */
7037 mask = PL1_RW;
7038 break;
7039 case 3:
7040 /* min_EL EL0 */
7041 mask = PL0_RW;
7042 break;
7043 case 4:
7044 /* min_EL EL2 */
7045 mask = PL2_RW;
7046 break;
7047 case 5:
7048 /* unallocated encoding, so not possible */
7049 assert(false);
7050 break;
7051 case 6:
7052 /* min_EL EL3 */
7053 mask = PL3_RW;
7054 break;
7055 case 7:
7056 /* min_EL EL1, secure mode only (we don't check the latter) */
7057 mask = PL1_RW;
7058 break;
7059 default:
7060 /* broken reginfo with out-of-range opc1 */
7061 assert(false);
7062 break;
7063 }
7064 /* assert our permissions are not too lax (stricter is fine) */
7065 assert((r->access & ~mask) == 0);
7066 }
7067
7068 /* Check that the register definition has enough info to handle
7069 * reads and writes if they are permitted.
7070 */
7071 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7072 if (r->access & PL3_R) {
7073 assert((r->fieldoffset ||
7074 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7075 r->readfn);
7076 }
7077 if (r->access & PL3_W) {
7078 assert((r->fieldoffset ||
7079 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7080 r->writefn);
7081 }
7082 }
7083 /* Bad type field probably means missing sentinel at end of reg list */
7084 assert(cptype_valid(r->type));
7085 for (crm = crmmin; crm <= crmmax; crm++) {
7086 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7087 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7088 for (state = ARM_CP_STATE_AA32;
7089 state <= ARM_CP_STATE_AA64; state++) {
7090 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7091 continue;
7092 }
7093 if (state == ARM_CP_STATE_AA32) {
7094 /* Under AArch32 CP registers can be common
7095 * (same for secure and non-secure world) or banked.
7096 */
7097 char *name;
7098
7099 switch (r->secure) {
7100 case ARM_CP_SECSTATE_S:
7101 case ARM_CP_SECSTATE_NS:
7102 add_cpreg_to_hashtable(cpu, r, opaque, state,
7103 r->secure, crm, opc1, opc2,
7104 r->name);
7105 break;
7106 default:
7107 name = g_strdup_printf("%s_S", r->name);
7108 add_cpreg_to_hashtable(cpu, r, opaque, state,
7109 ARM_CP_SECSTATE_S,
7110 crm, opc1, opc2, name);
7111 g_free(name);
7112 add_cpreg_to_hashtable(cpu, r, opaque, state,
7113 ARM_CP_SECSTATE_NS,
7114 crm, opc1, opc2, r->name);
7115 break;
7116 }
7117 } else {
7118 /* AArch64 registers get mapped to non-secure instance
7119 * of AArch32 */
7120 add_cpreg_to_hashtable(cpu, r, opaque, state,
7121 ARM_CP_SECSTATE_NS,
7122 crm, opc1, opc2, r->name);
7123 }
7124 }
7125 }
7126 }
7127 }
7128 }
7129
7130 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7131 const ARMCPRegInfo *regs, void *opaque)
7132 {
7133 /* Define a whole list of registers */
7134 const ARMCPRegInfo *r;
7135 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7136 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7137 }
7138 }
7139
7140 /*
7141 * Modify ARMCPRegInfo for access from userspace.
7142 *
7143 * This is a data driven modification directed by
7144 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7145 * user-space cannot alter any values and dynamic values pertaining to
7146 * execution state are hidden from user space view anyway.
7147 */
7148 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7149 {
7150 const ARMCPRegUserSpaceInfo *m;
7151 ARMCPRegInfo *r;
7152
7153 for (m = mods; m->name; m++) {
7154 GPatternSpec *pat = NULL;
7155 if (m->is_glob) {
7156 pat = g_pattern_spec_new(m->name);
7157 }
7158 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7159 if (pat && g_pattern_match_string(pat, r->name)) {
7160 r->type = ARM_CP_CONST;
7161 r->access = PL0U_R;
7162 r->resetvalue = 0;
7163 /* continue */
7164 } else if (strcmp(r->name, m->name) == 0) {
7165 r->type = ARM_CP_CONST;
7166 r->access = PL0U_R;
7167 r->resetvalue &= m->exported_bits;
7168 r->resetvalue |= m->fixed_bits;
7169 break;
7170 }
7171 }
7172 if (pat) {
7173 g_pattern_spec_free(pat);
7174 }
7175 }
7176 }
7177
7178 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7179 {
7180 return g_hash_table_lookup(cpregs, &encoded_cp);
7181 }
7182
7183 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7184 uint64_t value)
7185 {
7186 /* Helper coprocessor write function for write-ignore registers */
7187 }
7188
7189 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7190 {
7191 /* Helper coprocessor write function for read-as-zero registers */
7192 return 0;
7193 }
7194
7195 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7196 {
7197 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7198 }
7199
7200 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7201 {
7202 /* Return true if it is not valid for us to switch to
7203 * this CPU mode (ie all the UNPREDICTABLE cases in
7204 * the ARM ARM CPSRWriteByInstr pseudocode).
7205 */
7206
7207 /* Changes to or from Hyp via MSR and CPS are illegal. */
7208 if (write_type == CPSRWriteByInstr &&
7209 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7210 mode == ARM_CPU_MODE_HYP)) {
7211 return 1;
7212 }
7213
7214 switch (mode) {
7215 case ARM_CPU_MODE_USR:
7216 return 0;
7217 case ARM_CPU_MODE_SYS:
7218 case ARM_CPU_MODE_SVC:
7219 case ARM_CPU_MODE_ABT:
7220 case ARM_CPU_MODE_UND:
7221 case ARM_CPU_MODE_IRQ:
7222 case ARM_CPU_MODE_FIQ:
7223 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7224 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7225 */
7226 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7227 * and CPS are treated as illegal mode changes.
7228 */
7229 if (write_type == CPSRWriteByInstr &&
7230 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7231 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7232 return 1;
7233 }
7234 return 0;
7235 case ARM_CPU_MODE_HYP:
7236 return !arm_feature(env, ARM_FEATURE_EL2)
7237 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7238 case ARM_CPU_MODE_MON:
7239 return arm_current_el(env) < 3;
7240 default:
7241 return 1;
7242 }
7243 }
7244
7245 uint32_t cpsr_read(CPUARMState *env)
7246 {
7247 int ZF;
7248 ZF = (env->ZF == 0);
7249 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7250 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7251 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7252 | ((env->condexec_bits & 0xfc) << 8)
7253 | (env->GE << 16) | (env->daif & CPSR_AIF);
7254 }
7255
7256 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7257 CPSRWriteType write_type)
7258 {
7259 uint32_t changed_daif;
7260
7261 if (mask & CPSR_NZCV) {
7262 env->ZF = (~val) & CPSR_Z;
7263 env->NF = val;
7264 env->CF = (val >> 29) & 1;
7265 env->VF = (val << 3) & 0x80000000;
7266 }
7267 if (mask & CPSR_Q)
7268 env->QF = ((val & CPSR_Q) != 0);
7269 if (mask & CPSR_T)
7270 env->thumb = ((val & CPSR_T) != 0);
7271 if (mask & CPSR_IT_0_1) {
7272 env->condexec_bits &= ~3;
7273 env->condexec_bits |= (val >> 25) & 3;
7274 }
7275 if (mask & CPSR_IT_2_7) {
7276 env->condexec_bits &= 3;
7277 env->condexec_bits |= (val >> 8) & 0xfc;
7278 }
7279 if (mask & CPSR_GE) {
7280 env->GE = (val >> 16) & 0xf;
7281 }
7282
7283 /* In a V7 implementation that includes the security extensions but does
7284 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7285 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7286 * bits respectively.
7287 *
7288 * In a V8 implementation, it is permitted for privileged software to
7289 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7290 */
7291 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7292 arm_feature(env, ARM_FEATURE_EL3) &&
7293 !arm_feature(env, ARM_FEATURE_EL2) &&
7294 !arm_is_secure(env)) {
7295
7296 changed_daif = (env->daif ^ val) & mask;
7297
7298 if (changed_daif & CPSR_A) {
7299 /* Check to see if we are allowed to change the masking of async
7300 * abort exceptions from a non-secure state.
7301 */
7302 if (!(env->cp15.scr_el3 & SCR_AW)) {
7303 qemu_log_mask(LOG_GUEST_ERROR,
7304 "Ignoring attempt to switch CPSR_A flag from "
7305 "non-secure world with SCR.AW bit clear\n");
7306 mask &= ~CPSR_A;
7307 }
7308 }
7309
7310 if (changed_daif & CPSR_F) {
7311 /* Check to see if we are allowed to change the masking of FIQ
7312 * exceptions from a non-secure state.
7313 */
7314 if (!(env->cp15.scr_el3 & SCR_FW)) {
7315 qemu_log_mask(LOG_GUEST_ERROR,
7316 "Ignoring attempt to switch CPSR_F flag from "
7317 "non-secure world with SCR.FW bit clear\n");
7318 mask &= ~CPSR_F;
7319 }
7320
7321 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7322 * If this bit is set software is not allowed to mask
7323 * FIQs, but is allowed to set CPSR_F to 0.
7324 */
7325 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7326 (val & CPSR_F)) {
7327 qemu_log_mask(LOG_GUEST_ERROR,
7328 "Ignoring attempt to enable CPSR_F flag "
7329 "(non-maskable FIQ [NMFI] support enabled)\n");
7330 mask &= ~CPSR_F;
7331 }
7332 }
7333 }
7334
7335 env->daif &= ~(CPSR_AIF & mask);
7336 env->daif |= val & CPSR_AIF & mask;
7337
7338 if (write_type != CPSRWriteRaw &&
7339 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7340 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7341 /* Note that we can only get here in USR mode if this is a
7342 * gdb stub write; for this case we follow the architectural
7343 * behaviour for guest writes in USR mode of ignoring an attempt
7344 * to switch mode. (Those are caught by translate.c for writes
7345 * triggered by guest instructions.)
7346 */
7347 mask &= ~CPSR_M;
7348 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7349 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7350 * v7, and has defined behaviour in v8:
7351 * + leave CPSR.M untouched
7352 * + allow changes to the other CPSR fields
7353 * + set PSTATE.IL
7354 * For user changes via the GDB stub, we don't set PSTATE.IL,
7355 * as this would be unnecessarily harsh for a user error.
7356 */
7357 mask &= ~CPSR_M;
7358 if (write_type != CPSRWriteByGDBStub &&
7359 arm_feature(env, ARM_FEATURE_V8)) {
7360 mask |= CPSR_IL;
7361 val |= CPSR_IL;
7362 }
7363 qemu_log_mask(LOG_GUEST_ERROR,
7364 "Illegal AArch32 mode switch attempt from %s to %s\n",
7365 aarch32_mode_name(env->uncached_cpsr),
7366 aarch32_mode_name(val));
7367 } else {
7368 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7369 write_type == CPSRWriteExceptionReturn ?
7370 "Exception return from AArch32" :
7371 "AArch32 mode switch from",
7372 aarch32_mode_name(env->uncached_cpsr),
7373 aarch32_mode_name(val), env->regs[15]);
7374 switch_mode(env, val & CPSR_M);
7375 }
7376 }
7377 mask &= ~CACHED_CPSR_BITS;
7378 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7379 }
7380
7381 /* Sign/zero extend */
7382 uint32_t HELPER(sxtb16)(uint32_t x)
7383 {
7384 uint32_t res;
7385 res = (uint16_t)(int8_t)x;
7386 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7387 return res;
7388 }
7389
7390 uint32_t HELPER(uxtb16)(uint32_t x)
7391 {
7392 uint32_t res;
7393 res = (uint16_t)(uint8_t)x;
7394 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7395 return res;
7396 }
7397
7398 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7399 {
7400 if (den == 0)
7401 return 0;
7402 if (num == INT_MIN && den == -1)
7403 return INT_MIN;
7404 return num / den;
7405 }
7406
7407 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7408 {
7409 if (den == 0)
7410 return 0;
7411 return num / den;
7412 }
7413
7414 uint32_t HELPER(rbit)(uint32_t x)
7415 {
7416 return revbit32(x);
7417 }
7418
7419 #ifdef CONFIG_USER_ONLY
7420
7421 /* These should probably raise undefined insn exceptions. */
7422 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7423 {
7424 ARMCPU *cpu = arm_env_get_cpu(env);
7425
7426 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7427 }
7428
7429 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7430 {
7431 ARMCPU *cpu = arm_env_get_cpu(env);
7432
7433 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7434 return 0;
7435 }
7436
7437 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7438 {
7439 /* translate.c should never generate calls here in user-only mode */
7440 g_assert_not_reached();
7441 }
7442
7443 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7444 {
7445 /* translate.c should never generate calls here in user-only mode */
7446 g_assert_not_reached();
7447 }
7448
7449 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7450 {
7451 /* translate.c should never generate calls here in user-only mode */
7452 g_assert_not_reached();
7453 }
7454
7455 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
7456 {
7457 /* translate.c should never generate calls here in user-only mode */
7458 g_assert_not_reached();
7459 }
7460
7461 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
7462 {
7463 /* translate.c should never generate calls here in user-only mode */
7464 g_assert_not_reached();
7465 }
7466
7467 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7468 {
7469 /* The TT instructions can be used by unprivileged code, but in
7470 * user-only emulation we don't have the MPU.
7471 * Luckily since we know we are NonSecure unprivileged (and that in
7472 * turn means that the A flag wasn't specified), all the bits in the
7473 * register must be zero:
7474 * IREGION: 0 because IRVALID is 0
7475 * IRVALID: 0 because NS
7476 * S: 0 because NS
7477 * NSRW: 0 because NS
7478 * NSR: 0 because NS
7479 * RW: 0 because unpriv and A flag not set
7480 * R: 0 because unpriv and A flag not set
7481 * SRVALID: 0 because NS
7482 * MRVALID: 0 because unpriv and A flag not set
7483 * SREGION: 0 becaus SRVALID is 0
7484 * MREGION: 0 because MRVALID is 0
7485 */
7486 return 0;
7487 }
7488
7489 static void switch_mode(CPUARMState *env, int mode)
7490 {
7491 ARMCPU *cpu = arm_env_get_cpu(env);
7492
7493 if (mode != ARM_CPU_MODE_USR) {
7494 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7495 }
7496 }
7497
7498 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7499 uint32_t cur_el, bool secure)
7500 {
7501 return 1;
7502 }
7503
7504 void aarch64_sync_64_to_32(CPUARMState *env)
7505 {
7506 g_assert_not_reached();
7507 }
7508
7509 #else
7510
7511 static void switch_mode(CPUARMState *env, int mode)
7512 {
7513 int old_mode;
7514 int i;
7515
7516 old_mode = env->uncached_cpsr & CPSR_M;
7517 if (mode == old_mode)
7518 return;
7519
7520 if (old_mode == ARM_CPU_MODE_FIQ) {
7521 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7522 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7523 } else if (mode == ARM_CPU_MODE_FIQ) {
7524 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7525 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7526 }
7527
7528 i = bank_number(old_mode);
7529 env->banked_r13[i] = env->regs[13];
7530 env->banked_spsr[i] = env->spsr;
7531
7532 i = bank_number(mode);
7533 env->regs[13] = env->banked_r13[i];
7534 env->spsr = env->banked_spsr[i];
7535
7536 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7537 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7538 }
7539
7540 /* Physical Interrupt Target EL Lookup Table
7541 *
7542 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7543 *
7544 * The below multi-dimensional table is used for looking up the target
7545 * exception level given numerous condition criteria. Specifically, the
7546 * target EL is based on SCR and HCR routing controls as well as the
7547 * currently executing EL and secure state.
7548 *
7549 * Dimensions:
7550 * target_el_table[2][2][2][2][2][4]
7551 * | | | | | +--- Current EL
7552 * | | | | +------ Non-secure(0)/Secure(1)
7553 * | | | +--------- HCR mask override
7554 * | | +------------ SCR exec state control
7555 * | +--------------- SCR mask override
7556 * +------------------ 32-bit(0)/64-bit(1) EL3
7557 *
7558 * The table values are as such:
7559 * 0-3 = EL0-EL3
7560 * -1 = Cannot occur
7561 *
7562 * The ARM ARM target EL table includes entries indicating that an "exception
7563 * is not taken". The two cases where this is applicable are:
7564 * 1) An exception is taken from EL3 but the SCR does not have the exception
7565 * routed to EL3.
7566 * 2) An exception is taken from EL2 but the HCR does not have the exception
7567 * routed to EL2.
7568 * In these two cases, the below table contain a target of EL1. This value is
7569 * returned as it is expected that the consumer of the table data will check
7570 * for "target EL >= current EL" to ensure the exception is not taken.
7571 *
7572 * SCR HCR
7573 * 64 EA AMO From
7574 * BIT IRQ IMO Non-secure Secure
7575 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7576 */
7577 static const int8_t target_el_table[2][2][2][2][2][4] = {
7578 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7579 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7580 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7581 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7582 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7583 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7584 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7585 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7586 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7587 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7588 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7589 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7590 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7591 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7592 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7593 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7594 };
7595
7596 /*
7597 * Determine the target EL for physical exceptions
7598 */
7599 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7600 uint32_t cur_el, bool secure)
7601 {
7602 CPUARMState *env = cs->env_ptr;
7603 bool rw;
7604 bool scr;
7605 bool hcr;
7606 int target_el;
7607 /* Is the highest EL AArch64? */
7608 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7609 uint64_t hcr_el2;
7610
7611 if (arm_feature(env, ARM_FEATURE_EL3)) {
7612 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7613 } else {
7614 /* Either EL2 is the highest EL (and so the EL2 register width
7615 * is given by is64); or there is no EL2 or EL3, in which case
7616 * the value of 'rw' does not affect the table lookup anyway.
7617 */
7618 rw = is64;
7619 }
7620
7621 hcr_el2 = arm_hcr_el2_eff(env);
7622 switch (excp_idx) {
7623 case EXCP_IRQ:
7624 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7625 hcr = hcr_el2 & HCR_IMO;
7626 break;
7627 case EXCP_FIQ:
7628 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7629 hcr = hcr_el2 & HCR_FMO;
7630 break;
7631 default:
7632 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7633 hcr = hcr_el2 & HCR_AMO;
7634 break;
7635 };
7636
7637 /* Perform a table-lookup for the target EL given the current state */
7638 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7639
7640 assert(target_el > 0);
7641
7642 return target_el;
7643 }
7644
7645 /*
7646 * Return true if the v7M CPACR permits access to the FPU for the specified
7647 * security state and privilege level.
7648 */
7649 static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv)
7650 {
7651 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
7652 case 0:
7653 case 2: /* UNPREDICTABLE: we treat like 0 */
7654 return false;
7655 case 1:
7656 return is_priv;
7657 case 3:
7658 return true;
7659 default:
7660 g_assert_not_reached();
7661 }
7662 }
7663
7664 /*
7665 * What kind of stack write are we doing? This affects how exceptions
7666 * generated during the stacking are treated.
7667 */
7668 typedef enum StackingMode {
7669 STACK_NORMAL,
7670 STACK_IGNFAULTS,
7671 STACK_LAZYFP,
7672 } StackingMode;
7673
7674 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7675 ARMMMUIdx mmu_idx, StackingMode mode)
7676 {
7677 CPUState *cs = CPU(cpu);
7678 CPUARMState *env = &cpu->env;
7679 MemTxAttrs attrs = {};
7680 MemTxResult txres;
7681 target_ulong page_size;
7682 hwaddr physaddr;
7683 int prot;
7684 ARMMMUFaultInfo fi = {};
7685 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7686 int exc;
7687 bool exc_secure;
7688
7689 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7690 &attrs, &prot, &page_size, &fi, NULL)) {
7691 /* MPU/SAU lookup failed */
7692 if (fi.type == ARMFault_QEMU_SFault) {
7693 if (mode == STACK_LAZYFP) {
7694 qemu_log_mask(CPU_LOG_INT,
7695 "...SecureFault with SFSR.LSPERR "
7696 "during lazy stacking\n");
7697 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
7698 } else {
7699 qemu_log_mask(CPU_LOG_INT,
7700 "...SecureFault with SFSR.AUVIOL "
7701 "during stacking\n");
7702 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7703 }
7704 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
7705 env->v7m.sfar = addr;
7706 exc = ARMV7M_EXCP_SECURE;
7707 exc_secure = false;
7708 } else {
7709 if (mode == STACK_LAZYFP) {
7710 qemu_log_mask(CPU_LOG_INT,
7711 "...MemManageFault with CFSR.MLSPERR\n");
7712 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
7713 } else {
7714 qemu_log_mask(CPU_LOG_INT,
7715 "...MemManageFault with CFSR.MSTKERR\n");
7716 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7717 }
7718 exc = ARMV7M_EXCP_MEM;
7719 exc_secure = secure;
7720 }
7721 goto pend_fault;
7722 }
7723 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7724 attrs, &txres);
7725 if (txres != MEMTX_OK) {
7726 /* BusFault trying to write the data */
7727 if (mode == STACK_LAZYFP) {
7728 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
7729 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
7730 } else {
7731 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7732 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7733 }
7734 exc = ARMV7M_EXCP_BUS;
7735 exc_secure = false;
7736 goto pend_fault;
7737 }
7738 return true;
7739
7740 pend_fault:
7741 /* By pending the exception at this point we are making
7742 * the IMPDEF choice "overridden exceptions pended" (see the
7743 * MergeExcInfo() pseudocode). The other choice would be to not
7744 * pend them now and then make a choice about which to throw away
7745 * later if we have two derived exceptions.
7746 * The only case when we must not pend the exception but instead
7747 * throw it away is if we are doing the push of the callee registers
7748 * and we've already generated a derived exception (this is indicated
7749 * by the caller passing STACK_IGNFAULTS). Even in this case we will
7750 * still update the fault status registers.
7751 */
7752 switch (mode) {
7753 case STACK_NORMAL:
7754 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7755 break;
7756 case STACK_LAZYFP:
7757 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
7758 break;
7759 case STACK_IGNFAULTS:
7760 break;
7761 }
7762 return false;
7763 }
7764
7765 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7766 ARMMMUIdx mmu_idx)
7767 {
7768 CPUState *cs = CPU(cpu);
7769 CPUARMState *env = &cpu->env;
7770 MemTxAttrs attrs = {};
7771 MemTxResult txres;
7772 target_ulong page_size;
7773 hwaddr physaddr;
7774 int prot;
7775 ARMMMUFaultInfo fi = {};
7776 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7777 int exc;
7778 bool exc_secure;
7779 uint32_t value;
7780
7781 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7782 &attrs, &prot, &page_size, &fi, NULL)) {
7783 /* MPU/SAU lookup failed */
7784 if (fi.type == ARMFault_QEMU_SFault) {
7785 qemu_log_mask(CPU_LOG_INT,
7786 "...SecureFault with SFSR.AUVIOL during unstack\n");
7787 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7788 env->v7m.sfar = addr;
7789 exc = ARMV7M_EXCP_SECURE;
7790 exc_secure = false;
7791 } else {
7792 qemu_log_mask(CPU_LOG_INT,
7793 "...MemManageFault with CFSR.MUNSTKERR\n");
7794 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7795 exc = ARMV7M_EXCP_MEM;
7796 exc_secure = secure;
7797 }
7798 goto pend_fault;
7799 }
7800
7801 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7802 attrs, &txres);
7803 if (txres != MEMTX_OK) {
7804 /* BusFault trying to read the data */
7805 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7806 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7807 exc = ARMV7M_EXCP_BUS;
7808 exc_secure = false;
7809 goto pend_fault;
7810 }
7811
7812 *dest = value;
7813 return true;
7814
7815 pend_fault:
7816 /* By pending the exception at this point we are making
7817 * the IMPDEF choice "overridden exceptions pended" (see the
7818 * MergeExcInfo() pseudocode). The other choice would be to not
7819 * pend them now and then make a choice about which to throw away
7820 * later if we have two derived exceptions.
7821 */
7822 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7823 return false;
7824 }
7825
7826 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7827 {
7828 /*
7829 * Preserve FP state (because LSPACT was set and we are about
7830 * to execute an FP instruction). This corresponds to the
7831 * PreserveFPState() pseudocode.
7832 * We may throw an exception if the stacking fails.
7833 */
7834 ARMCPU *cpu = arm_env_get_cpu(env);
7835 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
7836 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
7837 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
7838 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
7839 uint32_t fpcar = env->v7m.fpcar[is_secure];
7840 bool stacked_ok = true;
7841 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
7842 bool take_exception;
7843
7844 /* Take the iothread lock as we are going to touch the NVIC */
7845 qemu_mutex_lock_iothread();
7846
7847 /* Check the background context had access to the FPU */
7848 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
7849 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
7850 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
7851 stacked_ok = false;
7852 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
7853 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
7854 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
7855 stacked_ok = false;
7856 }
7857
7858 if (!splimviol && stacked_ok) {
7859 /* We only stack if the stack limit wasn't violated */
7860 int i;
7861 ARMMMUIdx mmu_idx;
7862
7863 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
7864 for (i = 0; i < (ts ? 32 : 16); i += 2) {
7865 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
7866 uint32_t faddr = fpcar + 4 * i;
7867 uint32_t slo = extract64(dn, 0, 32);
7868 uint32_t shi = extract64(dn, 32, 32);
7869
7870 if (i >= 16) {
7871 faddr += 8; /* skip the slot for the FPSCR */
7872 }
7873 stacked_ok = stacked_ok &&
7874 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
7875 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
7876 }
7877
7878 stacked_ok = stacked_ok &&
7879 v7m_stack_write(cpu, fpcar + 0x40,
7880 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
7881 }
7882
7883 /*
7884 * We definitely pended an exception, but it's possible that it
7885 * might not be able to be taken now. If its priority permits us
7886 * to take it now, then we must not update the LSPACT or FP regs,
7887 * but instead jump out to take the exception immediately.
7888 * If it's just pending and won't be taken until the current
7889 * handler exits, then we do update LSPACT and the FP regs.
7890 */
7891 take_exception = !stacked_ok &&
7892 armv7m_nvic_can_take_pending_exception(env->nvic);
7893
7894 qemu_mutex_unlock_iothread();
7895
7896 if (take_exception) {
7897 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
7898 }
7899
7900 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
7901
7902 if (ts) {
7903 /* Clear s0 to s31 and the FPSCR */
7904 int i;
7905
7906 for (i = 0; i < 32; i += 2) {
7907 *aa32_vfp_dreg(env, i / 2) = 0;
7908 }
7909 vfp_set_fpscr(env, 0);
7910 }
7911 /*
7912 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
7913 * unchanged.
7914 */
7915 }
7916
7917 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7918 * This may change the current stack pointer between Main and Process
7919 * stack pointers if it is done for the CONTROL register for the current
7920 * security state.
7921 */
7922 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7923 bool new_spsel,
7924 bool secstate)
7925 {
7926 bool old_is_psp = v7m_using_psp(env);
7927
7928 env->v7m.control[secstate] =
7929 deposit32(env->v7m.control[secstate],
7930 R_V7M_CONTROL_SPSEL_SHIFT,
7931 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7932
7933 if (secstate == env->v7m.secure) {
7934 bool new_is_psp = v7m_using_psp(env);
7935 uint32_t tmp;
7936
7937 if (old_is_psp != new_is_psp) {
7938 tmp = env->v7m.other_sp;
7939 env->v7m.other_sp = env->regs[13];
7940 env->regs[13] = tmp;
7941 }
7942 }
7943 }
7944
7945 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7946 * stack pointer between Main and Process stack pointers.
7947 */
7948 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7949 {
7950 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7951 }
7952
7953 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7954 {
7955 /* Write a new value to v7m.exception, thus transitioning into or out
7956 * of Handler mode; this may result in a change of active stack pointer.
7957 */
7958 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7959 uint32_t tmp;
7960
7961 env->v7m.exception = new_exc;
7962
7963 new_is_psp = v7m_using_psp(env);
7964
7965 if (old_is_psp != new_is_psp) {
7966 tmp = env->v7m.other_sp;
7967 env->v7m.other_sp = env->regs[13];
7968 env->regs[13] = tmp;
7969 }
7970 }
7971
7972 /* Switch M profile security state between NS and S */
7973 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7974 {
7975 uint32_t new_ss_msp, new_ss_psp;
7976
7977 if (env->v7m.secure == new_secstate) {
7978 return;
7979 }
7980
7981 /* All the banked state is accessed by looking at env->v7m.secure
7982 * except for the stack pointer; rearrange the SP appropriately.
7983 */
7984 new_ss_msp = env->v7m.other_ss_msp;
7985 new_ss_psp = env->v7m.other_ss_psp;
7986
7987 if (v7m_using_psp(env)) {
7988 env->v7m.other_ss_psp = env->regs[13];
7989 env->v7m.other_ss_msp = env->v7m.other_sp;
7990 } else {
7991 env->v7m.other_ss_msp = env->regs[13];
7992 env->v7m.other_ss_psp = env->v7m.other_sp;
7993 }
7994
7995 env->v7m.secure = new_secstate;
7996
7997 if (v7m_using_psp(env)) {
7998 env->regs[13] = new_ss_psp;
7999 env->v7m.other_sp = new_ss_msp;
8000 } else {
8001 env->regs[13] = new_ss_msp;
8002 env->v7m.other_sp = new_ss_psp;
8003 }
8004 }
8005
8006 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
8007 {
8008 /* Handle v7M BXNS:
8009 * - if the return value is a magic value, do exception return (like BX)
8010 * - otherwise bit 0 of the return value is the target security state
8011 */
8012 uint32_t min_magic;
8013
8014 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8015 /* Covers FNC_RETURN and EXC_RETURN magic */
8016 min_magic = FNC_RETURN_MIN_MAGIC;
8017 } else {
8018 /* EXC_RETURN magic only */
8019 min_magic = EXC_RETURN_MIN_MAGIC;
8020 }
8021
8022 if (dest >= min_magic) {
8023 /* This is an exception return magic value; put it where
8024 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
8025 * Note that if we ever add gen_ss_advance() singlestep support to
8026 * M profile this should count as an "instruction execution complete"
8027 * event (compare gen_bx_excret_final_code()).
8028 */
8029 env->regs[15] = dest & ~1;
8030 env->thumb = dest & 1;
8031 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
8032 /* notreached */
8033 }
8034
8035 /* translate.c should have made BXNS UNDEF unless we're secure */
8036 assert(env->v7m.secure);
8037
8038 if (!(dest & 1)) {
8039 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8040 }
8041 switch_v7m_security_state(env, dest & 1);
8042 env->thumb = 1;
8043 env->regs[15] = dest & ~1;
8044 }
8045
8046 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
8047 {
8048 /* Handle v7M BLXNS:
8049 * - bit 0 of the destination address is the target security state
8050 */
8051
8052 /* At this point regs[15] is the address just after the BLXNS */
8053 uint32_t nextinst = env->regs[15] | 1;
8054 uint32_t sp = env->regs[13] - 8;
8055 uint32_t saved_psr;
8056
8057 /* translate.c will have made BLXNS UNDEF unless we're secure */
8058 assert(env->v7m.secure);
8059
8060 if (dest & 1) {
8061 /* target is Secure, so this is just a normal BLX,
8062 * except that the low bit doesn't indicate Thumb/not.
8063 */
8064 env->regs[14] = nextinst;
8065 env->thumb = 1;
8066 env->regs[15] = dest & ~1;
8067 return;
8068 }
8069
8070 /* Target is non-secure: first push a stack frame */
8071 if (!QEMU_IS_ALIGNED(sp, 8)) {
8072 qemu_log_mask(LOG_GUEST_ERROR,
8073 "BLXNS with misaligned SP is UNPREDICTABLE\n");
8074 }
8075
8076 if (sp < v7m_sp_limit(env)) {
8077 raise_exception(env, EXCP_STKOF, 0, 1);
8078 }
8079
8080 saved_psr = env->v7m.exception;
8081 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
8082 saved_psr |= XPSR_SFPA;
8083 }
8084
8085 /* Note that these stores can throw exceptions on MPU faults */
8086 cpu_stl_data(env, sp, nextinst);
8087 cpu_stl_data(env, sp + 4, saved_psr);
8088
8089 env->regs[13] = sp;
8090 env->regs[14] = 0xfeffffff;
8091 if (arm_v7m_is_handler_mode(env)) {
8092 /* Write a dummy value to IPSR, to avoid leaking the current secure
8093 * exception number to non-secure code. This is guaranteed not
8094 * to cause write_v7m_exception() to actually change stacks.
8095 */
8096 write_v7m_exception(env, 1);
8097 }
8098 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8099 switch_v7m_security_state(env, 0);
8100 env->thumb = 1;
8101 env->regs[15] = dest;
8102 }
8103
8104 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
8105 bool spsel)
8106 {
8107 /* Return a pointer to the location where we currently store the
8108 * stack pointer for the requested security state and thread mode.
8109 * This pointer will become invalid if the CPU state is updated
8110 * such that the stack pointers are switched around (eg changing
8111 * the SPSEL control bit).
8112 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
8113 * Unlike that pseudocode, we require the caller to pass us in the
8114 * SPSEL control bit value; this is because we also use this
8115 * function in handling of pushing of the callee-saves registers
8116 * part of the v8M stack frame (pseudocode PushCalleeStack()),
8117 * and in the tailchain codepath the SPSEL bit comes from the exception
8118 * return magic LR value from the previous exception. The pseudocode
8119 * opencodes the stack-selection in PushCalleeStack(), but we prefer
8120 * to make this utility function generic enough to do the job.
8121 */
8122 bool want_psp = threadmode && spsel;
8123
8124 if (secure == env->v7m.secure) {
8125 if (want_psp == v7m_using_psp(env)) {
8126 return &env->regs[13];
8127 } else {
8128 return &env->v7m.other_sp;
8129 }
8130 } else {
8131 if (want_psp) {
8132 return &env->v7m.other_ss_psp;
8133 } else {
8134 return &env->v7m.other_ss_msp;
8135 }
8136 }
8137 }
8138
8139 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
8140 uint32_t *pvec)
8141 {
8142 CPUState *cs = CPU(cpu);
8143 CPUARMState *env = &cpu->env;
8144 MemTxResult result;
8145 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
8146 uint32_t vector_entry;
8147 MemTxAttrs attrs = {};
8148 ARMMMUIdx mmu_idx;
8149 bool exc_secure;
8150
8151 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
8152
8153 /* We don't do a get_phys_addr() here because the rules for vector
8154 * loads are special: they always use the default memory map, and
8155 * the default memory map permits reads from all addresses.
8156 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
8157 * that we want this special case which would always say "yes",
8158 * we just do the SAU lookup here followed by a direct physical load.
8159 */
8160 attrs.secure = targets_secure;
8161 attrs.user = false;
8162
8163 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8164 V8M_SAttributes sattrs = {};
8165
8166 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
8167 if (sattrs.ns) {
8168 attrs.secure = false;
8169 } else if (!targets_secure) {
8170 /* NS access to S memory */
8171 goto load_fail;
8172 }
8173 }
8174
8175 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
8176 attrs, &result);
8177 if (result != MEMTX_OK) {
8178 goto load_fail;
8179 }
8180 *pvec = vector_entry;
8181 return true;
8182
8183 load_fail:
8184 /* All vector table fetch fails are reported as HardFault, with
8185 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
8186 * technically the underlying exception is a MemManage or BusFault
8187 * that is escalated to HardFault.) This is a terminal exception,
8188 * so we will either take the HardFault immediately or else enter
8189 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
8190 */
8191 exc_secure = targets_secure ||
8192 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
8193 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
8194 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
8195 return false;
8196 }
8197
8198 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
8199 {
8200 /*
8201 * Return the integrity signature value for the callee-saves
8202 * stack frame section. @lr is the exception return payload/LR value
8203 * whose FType bit forms bit 0 of the signature if FP is present.
8204 */
8205 uint32_t sig = 0xfefa125a;
8206
8207 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
8208 sig |= 1;
8209 }
8210 return sig;
8211 }
8212
8213 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8214 bool ignore_faults)
8215 {
8216 /* For v8M, push the callee-saves register part of the stack frame.
8217 * Compare the v8M pseudocode PushCalleeStack().
8218 * In the tailchaining case this may not be the current stack.
8219 */
8220 CPUARMState *env = &cpu->env;
8221 uint32_t *frame_sp_p;
8222 uint32_t frameptr;
8223 ARMMMUIdx mmu_idx;
8224 bool stacked_ok;
8225 uint32_t limit;
8226 bool want_psp;
8227 uint32_t sig;
8228 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
8229
8230 if (dotailchain) {
8231 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
8232 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
8233 !mode;
8234
8235 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
8236 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
8237 lr & R_V7M_EXCRET_SPSEL_MASK);
8238 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
8239 if (want_psp) {
8240 limit = env->v7m.psplim[M_REG_S];
8241 } else {
8242 limit = env->v7m.msplim[M_REG_S];
8243 }
8244 } else {
8245 mmu_idx = arm_mmu_idx(env);
8246 frame_sp_p = &env->regs[13];
8247 limit = v7m_sp_limit(env);
8248 }
8249
8250 frameptr = *frame_sp_p - 0x28;
8251 if (frameptr < limit) {
8252 /*
8253 * Stack limit failure: set SP to the limit value, and generate
8254 * STKOF UsageFault. Stack pushes below the limit must not be
8255 * performed. It is IMPDEF whether pushes above the limit are
8256 * performed; we choose not to.
8257 */
8258 qemu_log_mask(CPU_LOG_INT,
8259 "...STKOF during callee-saves register stacking\n");
8260 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8261 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8262 env->v7m.secure);
8263 *frame_sp_p = limit;
8264 return true;
8265 }
8266
8267 /* Write as much of the stack frame as we can. A write failure may
8268 * cause us to pend a derived exception.
8269 */
8270 sig = v7m_integrity_sig(env, lr);
8271 stacked_ok =
8272 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
8273 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
8274 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
8275 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
8276 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
8277 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
8278 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
8279 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
8280 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
8281
8282 /* Update SP regardless of whether any of the stack accesses failed. */
8283 *frame_sp_p = frameptr;
8284
8285 return !stacked_ok;
8286 }
8287
8288 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8289 bool ignore_stackfaults)
8290 {
8291 /* Do the "take the exception" parts of exception entry,
8292 * but not the pushing of state to the stack. This is
8293 * similar to the pseudocode ExceptionTaken() function.
8294 */
8295 CPUARMState *env = &cpu->env;
8296 uint32_t addr;
8297 bool targets_secure;
8298 int exc;
8299 bool push_failed = false;
8300
8301 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8302 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8303 targets_secure ? "secure" : "nonsecure", exc);
8304
8305 if (dotailchain) {
8306 /* Sanitize LR FType and PREFIX bits */
8307 if (!arm_feature(env, ARM_FEATURE_VFP)) {
8308 lr |= R_V7M_EXCRET_FTYPE_MASK;
8309 }
8310 lr = deposit32(lr, 24, 8, 0xff);
8311 }
8312
8313 if (arm_feature(env, ARM_FEATURE_V8)) {
8314 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8315 (lr & R_V7M_EXCRET_S_MASK)) {
8316 /* The background code (the owner of the registers in the
8317 * exception frame) is Secure. This means it may either already
8318 * have or now needs to push callee-saves registers.
8319 */
8320 if (targets_secure) {
8321 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8322 /* We took an exception from Secure to NonSecure
8323 * (which means the callee-saved registers got stacked)
8324 * and are now tailchaining to a Secure exception.
8325 * Clear DCRS so eventual return from this Secure
8326 * exception unstacks the callee-saved registers.
8327 */
8328 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8329 }
8330 } else {
8331 /* We're going to a non-secure exception; push the
8332 * callee-saves registers to the stack now, if they're
8333 * not already saved.
8334 */
8335 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8336 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8337 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8338 ignore_stackfaults);
8339 }
8340 lr |= R_V7M_EXCRET_DCRS_MASK;
8341 }
8342 }
8343
8344 lr &= ~R_V7M_EXCRET_ES_MASK;
8345 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8346 lr |= R_V7M_EXCRET_ES_MASK;
8347 }
8348 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8349 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8350 lr |= R_V7M_EXCRET_SPSEL_MASK;
8351 }
8352
8353 /* Clear registers if necessary to prevent non-secure exception
8354 * code being able to see register values from secure code.
8355 * Where register values become architecturally UNKNOWN we leave
8356 * them with their previous values.
8357 */
8358 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8359 if (!targets_secure) {
8360 /* Always clear the caller-saved registers (they have been
8361 * pushed to the stack earlier in v7m_push_stack()).
8362 * Clear callee-saved registers if the background code is
8363 * Secure (in which case these regs were saved in
8364 * v7m_push_callee_stack()).
8365 */
8366 int i;
8367
8368 for (i = 0; i < 13; i++) {
8369 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8370 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8371 env->regs[i] = 0;
8372 }
8373 }
8374 /* Clear EAPSR */
8375 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8376 }
8377 }
8378 }
8379
8380 if (push_failed && !ignore_stackfaults) {
8381 /* Derived exception on callee-saves register stacking:
8382 * we might now want to take a different exception which
8383 * targets a different security state, so try again from the top.
8384 */
8385 qemu_log_mask(CPU_LOG_INT,
8386 "...derived exception on callee-saves register stacking");
8387 v7m_exception_taken(cpu, lr, true, true);
8388 return;
8389 }
8390
8391 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8392 /* Vector load failed: derived exception */
8393 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8394 v7m_exception_taken(cpu, lr, true, true);
8395 return;
8396 }
8397
8398 /* Now we've done everything that might cause a derived exception
8399 * we can go ahead and activate whichever exception we're going to
8400 * take (which might now be the derived exception).
8401 */
8402 armv7m_nvic_acknowledge_irq(env->nvic);
8403
8404 /* Switch to target security state -- must do this before writing SPSEL */
8405 switch_v7m_security_state(env, targets_secure);
8406 write_v7m_control_spsel(env, 0);
8407 arm_clear_exclusive(env);
8408 /* Clear SFPA and FPCA (has no effect if no FPU) */
8409 env->v7m.control[M_REG_S] &=
8410 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
8411 /* Clear IT bits */
8412 env->condexec_bits = 0;
8413 env->regs[14] = lr;
8414 env->regs[15] = addr & 0xfffffffe;
8415 env->thumb = addr & 1;
8416 }
8417
8418 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
8419 bool apply_splim)
8420 {
8421 /*
8422 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
8423 * that we will need later in order to do lazy FP reg stacking.
8424 */
8425 bool is_secure = env->v7m.secure;
8426 void *nvic = env->nvic;
8427 /*
8428 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
8429 * are banked and we want to update the bit in the bank for the
8430 * current security state; and in one case we want to specifically
8431 * update the NS banked version of a bit even if we are secure.
8432 */
8433 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
8434 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
8435 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
8436 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
8437
8438 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
8439
8440 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
8441 bool splimviol;
8442 uint32_t splim = v7m_sp_limit(env);
8443 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
8444 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
8445
8446 splimviol = !ign && frameptr < splim;
8447 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
8448 }
8449
8450 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
8451
8452 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
8453
8454 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
8455
8456 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
8457 !arm_v7m_is_handler_mode(env));
8458
8459 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
8460 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
8461
8462 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
8463 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
8464
8465 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
8466 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
8467
8468 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
8469 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
8470
8471 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
8472 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
8473
8474 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8475 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
8476 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
8477
8478 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
8479 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
8480 }
8481 }
8482
8483 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
8484 {
8485 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
8486 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8487 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
8488
8489 assert(env->v7m.secure);
8490
8491 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8492 return;
8493 }
8494
8495 /* Check access to the coprocessor is permitted */
8496 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8497 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8498 }
8499
8500 if (lspact) {
8501 /* LSPACT should not be active when there is active FP state */
8502 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
8503 }
8504
8505 if (fptr & 7) {
8506 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8507 }
8508
8509 /*
8510 * Note that we do not use v7m_stack_write() here, because the
8511 * accesses should not set the FSR bits for stacking errors if they
8512 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
8513 * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions
8514 * and longjmp out.
8515 */
8516 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8517 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8518 int i;
8519
8520 for (i = 0; i < (ts ? 32 : 16); i += 2) {
8521 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8522 uint32_t faddr = fptr + 4 * i;
8523 uint32_t slo = extract64(dn, 0, 32);
8524 uint32_t shi = extract64(dn, 32, 32);
8525
8526 if (i >= 16) {
8527 faddr += 8; /* skip the slot for the FPSCR */
8528 }
8529 cpu_stl_data(env, faddr, slo);
8530 cpu_stl_data(env, faddr + 4, shi);
8531 }
8532 cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env));
8533
8534 /*
8535 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
8536 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
8537 */
8538 if (ts) {
8539 for (i = 0; i < 32; i += 2) {
8540 *aa32_vfp_dreg(env, i / 2) = 0;
8541 }
8542 vfp_set_fpscr(env, 0);
8543 }
8544 } else {
8545 v7m_update_fpccr(env, fptr, false);
8546 }
8547
8548 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
8549 }
8550
8551 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
8552 {
8553 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
8554 assert(env->v7m.secure);
8555
8556 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8557 return;
8558 }
8559
8560 /* Check access to the coprocessor is permitted */
8561 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8562 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8563 }
8564
8565 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8566 /* State in FP is still valid */
8567 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
8568 } else {
8569 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8570 int i;
8571 uint32_t fpscr;
8572
8573 if (fptr & 7) {
8574 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8575 }
8576
8577 for (i = 0; i < (ts ? 32 : 16); i += 2) {
8578 uint32_t slo, shi;
8579 uint64_t dn;
8580 uint32_t faddr = fptr + 4 * i;
8581
8582 if (i >= 16) {
8583 faddr += 8; /* skip the slot for the FPSCR */
8584 }
8585
8586 slo = cpu_ldl_data(env, faddr);
8587 shi = cpu_ldl_data(env, faddr + 4);
8588
8589 dn = (uint64_t) shi << 32 | slo;
8590 *aa32_vfp_dreg(env, i / 2) = dn;
8591 }
8592 fpscr = cpu_ldl_data(env, fptr + 0x40);
8593 vfp_set_fpscr(env, fpscr);
8594 }
8595
8596 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
8597 }
8598
8599 static bool v7m_push_stack(ARMCPU *cpu)
8600 {
8601 /* Do the "set up stack frame" part of exception entry,
8602 * similar to pseudocode PushStack().
8603 * Return true if we generate a derived exception (and so
8604 * should ignore further stack faults trying to process
8605 * that derived exception.)
8606 */
8607 bool stacked_ok = true, limitviol = false;
8608 CPUARMState *env = &cpu->env;
8609 uint32_t xpsr = xpsr_read(env);
8610 uint32_t frameptr = env->regs[13];
8611 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8612 uint32_t framesize;
8613 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
8614
8615 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
8616 (env->v7m.secure || nsacr_cp10)) {
8617 if (env->v7m.secure &&
8618 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
8619 framesize = 0xa8;
8620 } else {
8621 framesize = 0x68;
8622 }
8623 } else {
8624 framesize = 0x20;
8625 }
8626
8627 /* Align stack pointer if the guest wants that */
8628 if ((frameptr & 4) &&
8629 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8630 frameptr -= 4;
8631 xpsr |= XPSR_SPREALIGN;
8632 }
8633
8634 xpsr &= ~XPSR_SFPA;
8635 if (env->v7m.secure &&
8636 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8637 xpsr |= XPSR_SFPA;
8638 }
8639
8640 frameptr -= framesize;
8641
8642 if (arm_feature(env, ARM_FEATURE_V8)) {
8643 uint32_t limit = v7m_sp_limit(env);
8644
8645 if (frameptr < limit) {
8646 /*
8647 * Stack limit failure: set SP to the limit value, and generate
8648 * STKOF UsageFault. Stack pushes below the limit must not be
8649 * performed. It is IMPDEF whether pushes above the limit are
8650 * performed; we choose not to.
8651 */
8652 qemu_log_mask(CPU_LOG_INT,
8653 "...STKOF during stacking\n");
8654 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8655 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8656 env->v7m.secure);
8657 env->regs[13] = limit;
8658 /*
8659 * We won't try to perform any further memory accesses but
8660 * we must continue through the following code to check for
8661 * permission faults during FPU state preservation, and we
8662 * must update FPCCR if lazy stacking is enabled.
8663 */
8664 limitviol = true;
8665 stacked_ok = false;
8666 }
8667 }
8668
8669 /* Write as much of the stack frame as we can. If we fail a stack
8670 * write this will result in a derived exception being pended
8671 * (which may be taken in preference to the one we started with
8672 * if it has higher priority).
8673 */
8674 stacked_ok = stacked_ok &&
8675 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
8676 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
8677 mmu_idx, STACK_NORMAL) &&
8678 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
8679 mmu_idx, STACK_NORMAL) &&
8680 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
8681 mmu_idx, STACK_NORMAL) &&
8682 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
8683 mmu_idx, STACK_NORMAL) &&
8684 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
8685 mmu_idx, STACK_NORMAL) &&
8686 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
8687 mmu_idx, STACK_NORMAL) &&
8688 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
8689
8690 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
8691 /* FPU is active, try to save its registers */
8692 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8693 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
8694
8695 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8696 qemu_log_mask(CPU_LOG_INT,
8697 "...SecureFault because LSPACT and FPCA both set\n");
8698 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8699 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8700 } else if (!env->v7m.secure && !nsacr_cp10) {
8701 qemu_log_mask(CPU_LOG_INT,
8702 "...Secure UsageFault with CFSR.NOCP because "
8703 "NSACR.CP10 prevents stacking FP regs\n");
8704 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
8705 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
8706 } else {
8707 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8708 /* Lazy stacking disabled, save registers now */
8709 int i;
8710 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
8711 arm_current_el(env) != 0);
8712
8713 if (stacked_ok && !cpacr_pass) {
8714 /*
8715 * Take UsageFault if CPACR forbids access. The pseudocode
8716 * here does a full CheckCPEnabled() but we know the NSACR
8717 * check can never fail as we have already handled that.
8718 */
8719 qemu_log_mask(CPU_LOG_INT,
8720 "...UsageFault with CFSR.NOCP because "
8721 "CPACR.CP10 prevents stacking FP regs\n");
8722 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8723 env->v7m.secure);
8724 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8725 stacked_ok = false;
8726 }
8727
8728 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8729 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8730 uint32_t faddr = frameptr + 0x20 + 4 * i;
8731 uint32_t slo = extract64(dn, 0, 32);
8732 uint32_t shi = extract64(dn, 32, 32);
8733
8734 if (i >= 16) {
8735 faddr += 8; /* skip the slot for the FPSCR */
8736 }
8737 stacked_ok = stacked_ok &&
8738 v7m_stack_write(cpu, faddr, slo,
8739 mmu_idx, STACK_NORMAL) &&
8740 v7m_stack_write(cpu, faddr + 4, shi,
8741 mmu_idx, STACK_NORMAL);
8742 }
8743 stacked_ok = stacked_ok &&
8744 v7m_stack_write(cpu, frameptr + 0x60,
8745 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
8746 if (cpacr_pass) {
8747 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8748 *aa32_vfp_dreg(env, i / 2) = 0;
8749 }
8750 vfp_set_fpscr(env, 0);
8751 }
8752 } else {
8753 /* Lazy stacking enabled, save necessary info to stack later */
8754 v7m_update_fpccr(env, frameptr + 0x20, true);
8755 }
8756 }
8757 }
8758
8759 /*
8760 * If we broke a stack limit then SP was already updated earlier;
8761 * otherwise we update SP regardless of whether any of the stack
8762 * accesses failed or we took some other kind of fault.
8763 */
8764 if (!limitviol) {
8765 env->regs[13] = frameptr;
8766 }
8767
8768 return !stacked_ok;
8769 }
8770
8771 static void do_v7m_exception_exit(ARMCPU *cpu)
8772 {
8773 CPUARMState *env = &cpu->env;
8774 uint32_t excret;
8775 uint32_t xpsr, xpsr_mask;
8776 bool ufault = false;
8777 bool sfault = false;
8778 bool return_to_sp_process;
8779 bool return_to_handler;
8780 bool rettobase = false;
8781 bool exc_secure = false;
8782 bool return_to_secure;
8783 bool ftype;
8784 bool restore_s16_s31;
8785
8786 /* If we're not in Handler mode then jumps to magic exception-exit
8787 * addresses don't have magic behaviour. However for the v8M
8788 * security extensions the magic secure-function-return has to
8789 * work in thread mode too, so to avoid doing an extra check in
8790 * the generated code we allow exception-exit magic to also cause the
8791 * internal exception and bring us here in thread mode. Correct code
8792 * will never try to do this (the following insn fetch will always
8793 * fault) so we the overhead of having taken an unnecessary exception
8794 * doesn't matter.
8795 */
8796 if (!arm_v7m_is_handler_mode(env)) {
8797 return;
8798 }
8799
8800 /* In the spec pseudocode ExceptionReturn() is called directly
8801 * from BXWritePC() and gets the full target PC value including
8802 * bit zero. In QEMU's implementation we treat it as a normal
8803 * jump-to-register (which is then caught later on), and so split
8804 * the target value up between env->regs[15] and env->thumb in
8805 * gen_bx(). Reconstitute it.
8806 */
8807 excret = env->regs[15];
8808 if (env->thumb) {
8809 excret |= 1;
8810 }
8811
8812 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8813 " previous exception %d\n",
8814 excret, env->v7m.exception);
8815
8816 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8817 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8818 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8819 excret);
8820 }
8821
8822 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
8823
8824 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
8825 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
8826 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
8827 "if FPU not present\n",
8828 excret);
8829 ftype = true;
8830 }
8831
8832 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8833 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8834 * we pick which FAULTMASK to clear.
8835 */
8836 if (!env->v7m.secure &&
8837 ((excret & R_V7M_EXCRET_ES_MASK) ||
8838 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8839 sfault = 1;
8840 /* For all other purposes, treat ES as 0 (R_HXSR) */
8841 excret &= ~R_V7M_EXCRET_ES_MASK;
8842 }
8843 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8844 }
8845
8846 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8847 /* Auto-clear FAULTMASK on return from other than NMI.
8848 * If the security extension is implemented then this only
8849 * happens if the raw execution priority is >= 0; the
8850 * value of the ES bit in the exception return value indicates
8851 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8852 */
8853 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8854 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8855 env->v7m.faultmask[exc_secure] = 0;
8856 }
8857 } else {
8858 env->v7m.faultmask[M_REG_NS] = 0;
8859 }
8860 }
8861
8862 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8863 exc_secure)) {
8864 case -1:
8865 /* attempt to exit an exception that isn't active */
8866 ufault = true;
8867 break;
8868 case 0:
8869 /* still an irq active now */
8870 break;
8871 case 1:
8872 /* we returned to base exception level, no nesting.
8873 * (In the pseudocode this is written using "NestedActivation != 1"
8874 * where we have 'rettobase == false'.)
8875 */
8876 rettobase = true;
8877 break;
8878 default:
8879 g_assert_not_reached();
8880 }
8881
8882 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8883 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8884 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8885 (excret & R_V7M_EXCRET_S_MASK);
8886
8887 if (arm_feature(env, ARM_FEATURE_V8)) {
8888 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8889 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8890 * we choose to take the UsageFault.
8891 */
8892 if ((excret & R_V7M_EXCRET_S_MASK) ||
8893 (excret & R_V7M_EXCRET_ES_MASK) ||
8894 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8895 ufault = true;
8896 }
8897 }
8898 if (excret & R_V7M_EXCRET_RES0_MASK) {
8899 ufault = true;
8900 }
8901 } else {
8902 /* For v7M we only recognize certain combinations of the low bits */
8903 switch (excret & 0xf) {
8904 case 1: /* Return to Handler */
8905 break;
8906 case 13: /* Return to Thread using Process stack */
8907 case 9: /* Return to Thread using Main stack */
8908 /* We only need to check NONBASETHRDENA for v7M, because in
8909 * v8M this bit does not exist (it is RES1).
8910 */
8911 if (!rettobase &&
8912 !(env->v7m.ccr[env->v7m.secure] &
8913 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8914 ufault = true;
8915 }
8916 break;
8917 default:
8918 ufault = true;
8919 }
8920 }
8921
8922 /*
8923 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8924 * Handler mode (and will be until we write the new XPSR.Interrupt
8925 * field) this does not switch around the current stack pointer.
8926 * We must do this before we do any kind of tailchaining, including
8927 * for the derived exceptions on integrity check failures, or we will
8928 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8929 */
8930 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8931
8932 /*
8933 * Clear scratch FP values left in caller saved registers; this
8934 * must happen before any kind of tail chaining.
8935 */
8936 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
8937 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
8938 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8939 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8940 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8941 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8942 "stackframe: error during lazy state deactivation\n");
8943 v7m_exception_taken(cpu, excret, true, false);
8944 return;
8945 } else {
8946 /* Clear s0..s15 and FPSCR */
8947 int i;
8948
8949 for (i = 0; i < 16; i += 2) {
8950 *aa32_vfp_dreg(env, i / 2) = 0;
8951 }
8952 vfp_set_fpscr(env, 0);
8953 }
8954 }
8955
8956 if (sfault) {
8957 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8958 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8959 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8960 "stackframe: failed EXC_RETURN.ES validity check\n");
8961 v7m_exception_taken(cpu, excret, true, false);
8962 return;
8963 }
8964
8965 if (ufault) {
8966 /* Bad exception return: instead of popping the exception
8967 * stack, directly take a usage fault on the current stack.
8968 */
8969 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8970 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8971 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8972 "stackframe: failed exception return integrity check\n");
8973 v7m_exception_taken(cpu, excret, true, false);
8974 return;
8975 }
8976
8977 /*
8978 * Tailchaining: if there is currently a pending exception that
8979 * is high enough priority to preempt execution at the level we're
8980 * about to return to, then just directly take that exception now,
8981 * avoiding an unstack-and-then-stack. Note that now we have
8982 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8983 * our current execution priority is already the execution priority we are
8984 * returning to -- none of the state we would unstack or set based on
8985 * the EXCRET value affects it.
8986 */
8987 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8988 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8989 v7m_exception_taken(cpu, excret, true, false);
8990 return;
8991 }
8992
8993 switch_v7m_security_state(env, return_to_secure);
8994
8995 {
8996 /* The stack pointer we should be reading the exception frame from
8997 * depends on bits in the magic exception return type value (and
8998 * for v8M isn't necessarily the stack pointer we will eventually
8999 * end up resuming execution with). Get a pointer to the location
9000 * in the CPU state struct where the SP we need is currently being
9001 * stored; we will use and modify it in place.
9002 * We use this limited C variable scope so we don't accidentally
9003 * use 'frame_sp_p' after we do something that makes it invalid.
9004 */
9005 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
9006 return_to_secure,
9007 !return_to_handler,
9008 return_to_sp_process);
9009 uint32_t frameptr = *frame_sp_p;
9010 bool pop_ok = true;
9011 ARMMMUIdx mmu_idx;
9012 bool return_to_priv = return_to_handler ||
9013 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
9014
9015 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
9016 return_to_priv);
9017
9018 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
9019 arm_feature(env, ARM_FEATURE_V8)) {
9020 qemu_log_mask(LOG_GUEST_ERROR,
9021 "M profile exception return with non-8-aligned SP "
9022 "for destination state is UNPREDICTABLE\n");
9023 }
9024
9025 /* Do we need to pop callee-saved registers? */
9026 if (return_to_secure &&
9027 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
9028 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
9029 uint32_t actual_sig;
9030
9031 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
9032
9033 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
9034 /* Take a SecureFault on the current stack */
9035 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
9036 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9037 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9038 "stackframe: failed exception return integrity "
9039 "signature check\n");
9040 v7m_exception_taken(cpu, excret, true, false);
9041 return;
9042 }
9043
9044 pop_ok = pop_ok &&
9045 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
9046 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
9047 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
9048 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
9049 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
9050 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
9051 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
9052 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
9053
9054 frameptr += 0x28;
9055 }
9056
9057 /* Pop registers */
9058 pop_ok = pop_ok &&
9059 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
9060 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
9061 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
9062 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
9063 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
9064 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
9065 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
9066 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
9067
9068 if (!pop_ok) {
9069 /* v7m_stack_read() pended a fault, so take it (as a tail
9070 * chained exception on the same stack frame)
9071 */
9072 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
9073 v7m_exception_taken(cpu, excret, true, false);
9074 return;
9075 }
9076
9077 /* Returning from an exception with a PC with bit 0 set is defined
9078 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
9079 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
9080 * the lsbit, and there are several RTOSes out there which incorrectly
9081 * assume the r15 in the stack frame should be a Thumb-style "lsbit
9082 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
9083 * complain about the badly behaved guest.
9084 */
9085 if (env->regs[15] & 1) {
9086 env->regs[15] &= ~1U;
9087 if (!arm_feature(env, ARM_FEATURE_V8)) {
9088 qemu_log_mask(LOG_GUEST_ERROR,
9089 "M profile return from interrupt with misaligned "
9090 "PC is UNPREDICTABLE on v7M\n");
9091 }
9092 }
9093
9094 if (arm_feature(env, ARM_FEATURE_V8)) {
9095 /* For v8M we have to check whether the xPSR exception field
9096 * matches the EXCRET value for return to handler/thread
9097 * before we commit to changing the SP and xPSR.
9098 */
9099 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
9100 if (return_to_handler != will_be_handler) {
9101 /* Take an INVPC UsageFault on the current stack.
9102 * By this point we will have switched to the security state
9103 * for the background state, so this UsageFault will target
9104 * that state.
9105 */
9106 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9107 env->v7m.secure);
9108 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9109 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9110 "stackframe: failed exception return integrity "
9111 "check\n");
9112 v7m_exception_taken(cpu, excret, true, false);
9113 return;
9114 }
9115 }
9116
9117 if (!ftype) {
9118 /* FP present and we need to handle it */
9119 if (!return_to_secure &&
9120 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
9121 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9122 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9123 qemu_log_mask(CPU_LOG_INT,
9124 "...taking SecureFault on existing stackframe: "
9125 "Secure LSPACT set but exception return is "
9126 "not to secure state\n");
9127 v7m_exception_taken(cpu, excret, true, false);
9128 return;
9129 }
9130
9131 restore_s16_s31 = return_to_secure &&
9132 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
9133
9134 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
9135 /* State in FPU is still valid, just clear LSPACT */
9136 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
9137 } else {
9138 int i;
9139 uint32_t fpscr;
9140 bool cpacr_pass, nsacr_pass;
9141
9142 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
9143 return_to_priv);
9144 nsacr_pass = return_to_secure ||
9145 extract32(env->v7m.nsacr, 10, 1);
9146
9147 if (!cpacr_pass) {
9148 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9149 return_to_secure);
9150 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
9151 qemu_log_mask(CPU_LOG_INT,
9152 "...taking UsageFault on existing "
9153 "stackframe: CPACR.CP10 prevents unstacking "
9154 "FP regs\n");
9155 v7m_exception_taken(cpu, excret, true, false);
9156 return;
9157 } else if (!nsacr_pass) {
9158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
9159 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
9160 qemu_log_mask(CPU_LOG_INT,
9161 "...taking Secure UsageFault on existing "
9162 "stackframe: NSACR.CP10 prevents unstacking "
9163 "FP regs\n");
9164 v7m_exception_taken(cpu, excret, true, false);
9165 return;
9166 }
9167
9168 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9169 uint32_t slo, shi;
9170 uint64_t dn;
9171 uint32_t faddr = frameptr + 0x20 + 4 * i;
9172
9173 if (i >= 16) {
9174 faddr += 8; /* Skip the slot for the FPSCR */
9175 }
9176
9177 pop_ok = pop_ok &&
9178 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
9179 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
9180
9181 if (!pop_ok) {
9182 break;
9183 }
9184
9185 dn = (uint64_t)shi << 32 | slo;
9186 *aa32_vfp_dreg(env, i / 2) = dn;
9187 }
9188 pop_ok = pop_ok &&
9189 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
9190 if (pop_ok) {
9191 vfp_set_fpscr(env, fpscr);
9192 }
9193 if (!pop_ok) {
9194 /*
9195 * These regs are 0 if security extension present;
9196 * otherwise merely UNKNOWN. We zero always.
9197 */
9198 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9199 *aa32_vfp_dreg(env, i / 2) = 0;
9200 }
9201 vfp_set_fpscr(env, 0);
9202 }
9203 }
9204 }
9205 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9206 V7M_CONTROL, FPCA, !ftype);
9207
9208 /* Commit to consuming the stack frame */
9209 frameptr += 0x20;
9210 if (!ftype) {
9211 frameptr += 0x48;
9212 if (restore_s16_s31) {
9213 frameptr += 0x40;
9214 }
9215 }
9216 /* Undo stack alignment (the SPREALIGN bit indicates that the original
9217 * pre-exception SP was not 8-aligned and we added a padding word to
9218 * align it, so we undo this by ORing in the bit that increases it
9219 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
9220 * would work too but a logical OR is how the pseudocode specifies it.)
9221 */
9222 if (xpsr & XPSR_SPREALIGN) {
9223 frameptr |= 4;
9224 }
9225 *frame_sp_p = frameptr;
9226 }
9227
9228 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
9229 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9230 xpsr_mask &= ~XPSR_GE;
9231 }
9232 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
9233 xpsr_write(env, xpsr, xpsr_mask);
9234
9235 if (env->v7m.secure) {
9236 bool sfpa = xpsr & XPSR_SFPA;
9237
9238 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9239 V7M_CONTROL, SFPA, sfpa);
9240 }
9241
9242 /* The restored xPSR exception field will be zero if we're
9243 * resuming in Thread mode. If that doesn't match what the
9244 * exception return excret specified then this is a UsageFault.
9245 * v7M requires we make this check here; v8M did it earlier.
9246 */
9247 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
9248 /* Take an INVPC UsageFault by pushing the stack again;
9249 * we know we're v7M so this is never a Secure UsageFault.
9250 */
9251 bool ignore_stackfaults;
9252
9253 assert(!arm_feature(env, ARM_FEATURE_V8));
9254 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
9255 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9256 ignore_stackfaults = v7m_push_stack(cpu);
9257 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
9258 "failed exception return integrity check\n");
9259 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
9260 return;
9261 }
9262
9263 /* Otherwise, we have a successful exception exit. */
9264 arm_clear_exclusive(env);
9265 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9266 }
9267
9268 static bool do_v7m_function_return(ARMCPU *cpu)
9269 {
9270 /* v8M security extensions magic function return.
9271 * We may either:
9272 * (1) throw an exception (longjump)
9273 * (2) return true if we successfully handled the function return
9274 * (3) return false if we failed a consistency check and have
9275 * pended a UsageFault that needs to be taken now
9276 *
9277 * At this point the magic return value is split between env->regs[15]
9278 * and env->thumb. We don't bother to reconstitute it because we don't
9279 * need it (all values are handled the same way).
9280 */
9281 CPUARMState *env = &cpu->env;
9282 uint32_t newpc, newpsr, newpsr_exc;
9283
9284 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
9285
9286 {
9287 bool threadmode, spsel;
9288 TCGMemOpIdx oi;
9289 ARMMMUIdx mmu_idx;
9290 uint32_t *frame_sp_p;
9291 uint32_t frameptr;
9292
9293 /* Pull the return address and IPSR from the Secure stack */
9294 threadmode = !arm_v7m_is_handler_mode(env);
9295 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
9296
9297 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
9298 frameptr = *frame_sp_p;
9299
9300 /* These loads may throw an exception (for MPU faults). We want to
9301 * do them as secure, so work out what MMU index that is.
9302 */
9303 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9304 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
9305 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
9306 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
9307
9308 /* Consistency checks on new IPSR */
9309 newpsr_exc = newpsr & XPSR_EXCP;
9310 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
9311 (env->v7m.exception == 1 && newpsr_exc != 0))) {
9312 /* Pend the fault and tell our caller to take it */
9313 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9314 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9315 env->v7m.secure);
9316 qemu_log_mask(CPU_LOG_INT,
9317 "...taking INVPC UsageFault: "
9318 "IPSR consistency check failed\n");
9319 return false;
9320 }
9321
9322 *frame_sp_p = frameptr + 8;
9323 }
9324
9325 /* This invalidates frame_sp_p */
9326 switch_v7m_security_state(env, true);
9327 env->v7m.exception = newpsr_exc;
9328 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9329 if (newpsr & XPSR_SFPA) {
9330 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
9331 }
9332 xpsr_write(env, 0, XPSR_IT);
9333 env->thumb = newpc & 1;
9334 env->regs[15] = newpc & ~1;
9335
9336 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
9337 return true;
9338 }
9339
9340 static void arm_log_exception(int idx)
9341 {
9342 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9343 const char *exc = NULL;
9344 static const char * const excnames[] = {
9345 [EXCP_UDEF] = "Undefined Instruction",
9346 [EXCP_SWI] = "SVC",
9347 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9348 [EXCP_DATA_ABORT] = "Data Abort",
9349 [EXCP_IRQ] = "IRQ",
9350 [EXCP_FIQ] = "FIQ",
9351 [EXCP_BKPT] = "Breakpoint",
9352 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9353 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9354 [EXCP_HVC] = "Hypervisor Call",
9355 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9356 [EXCP_SMC] = "Secure Monitor Call",
9357 [EXCP_VIRQ] = "Virtual IRQ",
9358 [EXCP_VFIQ] = "Virtual FIQ",
9359 [EXCP_SEMIHOST] = "Semihosting call",
9360 [EXCP_NOCP] = "v7M NOCP UsageFault",
9361 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9362 [EXCP_STKOF] = "v8M STKOF UsageFault",
9363 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9364 [EXCP_LSERR] = "v8M LSERR UsageFault",
9365 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9366 };
9367
9368 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9369 exc = excnames[idx];
9370 }
9371 if (!exc) {
9372 exc = "unknown";
9373 }
9374 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9375 }
9376 }
9377
9378 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
9379 uint32_t addr, uint16_t *insn)
9380 {
9381 /* Load a 16-bit portion of a v7M instruction, returning true on success,
9382 * or false on failure (in which case we will have pended the appropriate
9383 * exception).
9384 * We need to do the instruction fetch's MPU and SAU checks
9385 * like this because there is no MMU index that would allow
9386 * doing the load with a single function call. Instead we must
9387 * first check that the security attributes permit the load
9388 * and that they don't mismatch on the two halves of the instruction,
9389 * and then we do the load as a secure load (ie using the security
9390 * attributes of the address, not the CPU, as architecturally required).
9391 */
9392 CPUState *cs = CPU(cpu);
9393 CPUARMState *env = &cpu->env;
9394 V8M_SAttributes sattrs = {};
9395 MemTxAttrs attrs = {};
9396 ARMMMUFaultInfo fi = {};
9397 MemTxResult txres;
9398 target_ulong page_size;
9399 hwaddr physaddr;
9400 int prot;
9401
9402 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
9403 if (!sattrs.nsc || sattrs.ns) {
9404 /* This must be the second half of the insn, and it straddles a
9405 * region boundary with the second half not being S&NSC.
9406 */
9407 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9408 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9409 qemu_log_mask(CPU_LOG_INT,
9410 "...really SecureFault with SFSR.INVEP\n");
9411 return false;
9412 }
9413 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
9414 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
9415 /* the MPU lookup failed */
9416 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9417 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
9418 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
9419 return false;
9420 }
9421 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
9422 attrs, &txres);
9423 if (txres != MEMTX_OK) {
9424 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9425 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9426 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
9427 return false;
9428 }
9429 return true;
9430 }
9431
9432 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
9433 {
9434 /* Check whether this attempt to execute code in a Secure & NS-Callable
9435 * memory region is for an SG instruction; if so, then emulate the
9436 * effect of the SG instruction and return true. Otherwise pend
9437 * the correct kind of exception and return false.
9438 */
9439 CPUARMState *env = &cpu->env;
9440 ARMMMUIdx mmu_idx;
9441 uint16_t insn;
9442
9443 /* We should never get here unless get_phys_addr_pmsav8() caused
9444 * an exception for NS executing in S&NSC memory.
9445 */
9446 assert(!env->v7m.secure);
9447 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9448
9449 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
9450 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9451
9452 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
9453 return false;
9454 }
9455
9456 if (!env->thumb) {
9457 goto gen_invep;
9458 }
9459
9460 if (insn != 0xe97f) {
9461 /* Not an SG instruction first half (we choose the IMPDEF
9462 * early-SG-check option).
9463 */
9464 goto gen_invep;
9465 }
9466
9467 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
9468 return false;
9469 }
9470
9471 if (insn != 0xe97f) {
9472 /* Not an SG instruction second half (yes, both halves of the SG
9473 * insn have the same hex value)
9474 */
9475 goto gen_invep;
9476 }
9477
9478 /* OK, we have confirmed that we really have an SG instruction.
9479 * We know we're NS in S memory so don't need to repeat those checks.
9480 */
9481 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
9482 ", executing it\n", env->regs[15]);
9483 env->regs[14] &= ~1;
9484 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9485 switch_v7m_security_state(env, true);
9486 xpsr_write(env, 0, XPSR_IT);
9487 env->regs[15] += 4;
9488 return true;
9489
9490 gen_invep:
9491 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9492 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9493 qemu_log_mask(CPU_LOG_INT,
9494 "...really SecureFault with SFSR.INVEP\n");
9495 return false;
9496 }
9497
9498 void arm_v7m_cpu_do_interrupt(CPUState *cs)
9499 {
9500 ARMCPU *cpu = ARM_CPU(cs);
9501 CPUARMState *env = &cpu->env;
9502 uint32_t lr;
9503 bool ignore_stackfaults;
9504
9505 arm_log_exception(cs->exception_index);
9506
9507 /* For exceptions we just mark as pending on the NVIC, and let that
9508 handle it. */
9509 switch (cs->exception_index) {
9510 case EXCP_UDEF:
9511 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9512 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
9513 break;
9514 case EXCP_NOCP:
9515 {
9516 /*
9517 * NOCP might be directed to something other than the current
9518 * security state if this fault is because of NSACR; we indicate
9519 * the target security state using exception.target_el.
9520 */
9521 int target_secstate;
9522
9523 if (env->exception.target_el == 3) {
9524 target_secstate = M_REG_S;
9525 } else {
9526 target_secstate = env->v7m.secure;
9527 }
9528 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
9529 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
9530 break;
9531 }
9532 case EXCP_INVSTATE:
9533 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9534 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
9535 break;
9536 case EXCP_STKOF:
9537 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9538 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
9539 break;
9540 case EXCP_LSERR:
9541 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9542 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9543 break;
9544 case EXCP_UNALIGNED:
9545 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9546 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
9547 break;
9548 case EXCP_SWI:
9549 /* The PC already points to the next instruction. */
9550 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
9551 break;
9552 case EXCP_PREFETCH_ABORT:
9553 case EXCP_DATA_ABORT:
9554 /* Note that for M profile we don't have a guest facing FSR, but
9555 * the env->exception.fsr will be populated by the code that
9556 * raises the fault, in the A profile short-descriptor format.
9557 */
9558 switch (env->exception.fsr & 0xf) {
9559 case M_FAKE_FSR_NSC_EXEC:
9560 /* Exception generated when we try to execute code at an address
9561 * which is marked as Secure & Non-Secure Callable and the CPU
9562 * is in the Non-Secure state. The only instruction which can
9563 * be executed like this is SG (and that only if both halves of
9564 * the SG instruction have the same security attributes.)
9565 * Everything else must generate an INVEP SecureFault, so we
9566 * emulate the SG instruction here.
9567 */
9568 if (v7m_handle_execute_nsc(cpu)) {
9569 return;
9570 }
9571 break;
9572 case M_FAKE_FSR_SFAULT:
9573 /* Various flavours of SecureFault for attempts to execute or
9574 * access data in the wrong security state.
9575 */
9576 switch (cs->exception_index) {
9577 case EXCP_PREFETCH_ABORT:
9578 if (env->v7m.secure) {
9579 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
9580 qemu_log_mask(CPU_LOG_INT,
9581 "...really SecureFault with SFSR.INVTRAN\n");
9582 } else {
9583 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9584 qemu_log_mask(CPU_LOG_INT,
9585 "...really SecureFault with SFSR.INVEP\n");
9586 }
9587 break;
9588 case EXCP_DATA_ABORT:
9589 /* This must be an NS access to S memory */
9590 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
9591 qemu_log_mask(CPU_LOG_INT,
9592 "...really SecureFault with SFSR.AUVIOL\n");
9593 break;
9594 }
9595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9596 break;
9597 case 0x8: /* External Abort */
9598 switch (cs->exception_index) {
9599 case EXCP_PREFETCH_ABORT:
9600 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9601 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
9602 break;
9603 case EXCP_DATA_ABORT:
9604 env->v7m.cfsr[M_REG_NS] |=
9605 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
9606 env->v7m.bfar = env->exception.vaddress;
9607 qemu_log_mask(CPU_LOG_INT,
9608 "...with CFSR.PRECISERR and BFAR 0x%x\n",
9609 env->v7m.bfar);
9610 break;
9611 }
9612 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9613 break;
9614 default:
9615 /* All other FSR values are either MPU faults or "can't happen
9616 * for M profile" cases.
9617 */
9618 switch (cs->exception_index) {
9619 case EXCP_PREFETCH_ABORT:
9620 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9621 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
9622 break;
9623 case EXCP_DATA_ABORT:
9624 env->v7m.cfsr[env->v7m.secure] |=
9625 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
9626 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
9627 qemu_log_mask(CPU_LOG_INT,
9628 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
9629 env->v7m.mmfar[env->v7m.secure]);
9630 break;
9631 }
9632 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
9633 env->v7m.secure);
9634 break;
9635 }
9636 break;
9637 case EXCP_BKPT:
9638 if (semihosting_enabled()) {
9639 int nr;
9640 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
9641 if (nr == 0xab) {
9642 env->regs[15] += 2;
9643 qemu_log_mask(CPU_LOG_INT,
9644 "...handling as semihosting call 0x%x\n",
9645 env->regs[0]);
9646 env->regs[0] = do_arm_semihosting(env);
9647 return;
9648 }
9649 }
9650 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
9651 break;
9652 case EXCP_IRQ:
9653 break;
9654 case EXCP_EXCEPTION_EXIT:
9655 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
9656 /* Must be v8M security extension function return */
9657 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
9658 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9659 if (do_v7m_function_return(cpu)) {
9660 return;
9661 }
9662 } else {
9663 do_v7m_exception_exit(cpu);
9664 return;
9665 }
9666 break;
9667 case EXCP_LAZYFP:
9668 /*
9669 * We already pended the specific exception in the NVIC in the
9670 * v7m_preserve_fp_state() helper function.
9671 */
9672 break;
9673 default:
9674 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9675 return; /* Never happens. Keep compiler happy. */
9676 }
9677
9678 if (arm_feature(env, ARM_FEATURE_V8)) {
9679 lr = R_V7M_EXCRET_RES1_MASK |
9680 R_V7M_EXCRET_DCRS_MASK;
9681 /* The S bit indicates whether we should return to Secure
9682 * or NonSecure (ie our current state).
9683 * The ES bit indicates whether we're taking this exception
9684 * to Secure or NonSecure (ie our target state). We set it
9685 * later, in v7m_exception_taken().
9686 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
9687 * This corresponds to the ARM ARM pseudocode for v8M setting
9688 * some LR bits in PushStack() and some in ExceptionTaken();
9689 * the distinction matters for the tailchain cases where we
9690 * can take an exception without pushing the stack.
9691 */
9692 if (env->v7m.secure) {
9693 lr |= R_V7M_EXCRET_S_MASK;
9694 }
9695 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9696 lr |= R_V7M_EXCRET_FTYPE_MASK;
9697 }
9698 } else {
9699 lr = R_V7M_EXCRET_RES1_MASK |
9700 R_V7M_EXCRET_S_MASK |
9701 R_V7M_EXCRET_DCRS_MASK |
9702 R_V7M_EXCRET_FTYPE_MASK |
9703 R_V7M_EXCRET_ES_MASK;
9704 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
9705 lr |= R_V7M_EXCRET_SPSEL_MASK;
9706 }
9707 }
9708 if (!arm_v7m_is_handler_mode(env)) {
9709 lr |= R_V7M_EXCRET_MODE_MASK;
9710 }
9711
9712 ignore_stackfaults = v7m_push_stack(cpu);
9713 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9714 }
9715
9716 /* Function used to synchronize QEMU's AArch64 register set with AArch32
9717 * register set. This is necessary when switching between AArch32 and AArch64
9718 * execution state.
9719 */
9720 void aarch64_sync_32_to_64(CPUARMState *env)
9721 {
9722 int i;
9723 uint32_t mode = env->uncached_cpsr & CPSR_M;
9724
9725 /* We can blanket copy R[0:7] to X[0:7] */
9726 for (i = 0; i < 8; i++) {
9727 env->xregs[i] = env->regs[i];
9728 }
9729
9730 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9731 * Otherwise, they come from the banked user regs.
9732 */
9733 if (mode == ARM_CPU_MODE_FIQ) {
9734 for (i = 8; i < 13; i++) {
9735 env->xregs[i] = env->usr_regs[i - 8];
9736 }
9737 } else {
9738 for (i = 8; i < 13; i++) {
9739 env->xregs[i] = env->regs[i];
9740 }
9741 }
9742
9743 /* Registers x13-x23 are the various mode SP and FP registers. Registers
9744 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9745 * from the mode banked register.
9746 */
9747 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9748 env->xregs[13] = env->regs[13];
9749 env->xregs[14] = env->regs[14];
9750 } else {
9751 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9752 /* HYP is an exception in that it is copied from r14 */
9753 if (mode == ARM_CPU_MODE_HYP) {
9754 env->xregs[14] = env->regs[14];
9755 } else {
9756 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9757 }
9758 }
9759
9760 if (mode == ARM_CPU_MODE_HYP) {
9761 env->xregs[15] = env->regs[13];
9762 } else {
9763 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9764 }
9765
9766 if (mode == ARM_CPU_MODE_IRQ) {
9767 env->xregs[16] = env->regs[14];
9768 env->xregs[17] = env->regs[13];
9769 } else {
9770 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9771 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9772 }
9773
9774 if (mode == ARM_CPU_MODE_SVC) {
9775 env->xregs[18] = env->regs[14];
9776 env->xregs[19] = env->regs[13];
9777 } else {
9778 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9779 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9780 }
9781
9782 if (mode == ARM_CPU_MODE_ABT) {
9783 env->xregs[20] = env->regs[14];
9784 env->xregs[21] = env->regs[13];
9785 } else {
9786 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9787 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9788 }
9789
9790 if (mode == ARM_CPU_MODE_UND) {
9791 env->xregs[22] = env->regs[14];
9792 env->xregs[23] = env->regs[13];
9793 } else {
9794 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9795 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9796 }
9797
9798 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9799 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9800 * FIQ bank for r8-r14.
9801 */
9802 if (mode == ARM_CPU_MODE_FIQ) {
9803 for (i = 24; i < 31; i++) {
9804 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9805 }
9806 } else {
9807 for (i = 24; i < 29; i++) {
9808 env->xregs[i] = env->fiq_regs[i - 24];
9809 }
9810 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9811 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9812 }
9813
9814 env->pc = env->regs[15];
9815 }
9816
9817 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9818 * register set. This is necessary when switching between AArch32 and AArch64
9819 * execution state.
9820 */
9821 void aarch64_sync_64_to_32(CPUARMState *env)
9822 {
9823 int i;
9824 uint32_t mode = env->uncached_cpsr & CPSR_M;
9825
9826 /* We can blanket copy X[0:7] to R[0:7] */
9827 for (i = 0; i < 8; i++) {
9828 env->regs[i] = env->xregs[i];
9829 }
9830
9831 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9832 * Otherwise, we copy x8-x12 into the banked user regs.
9833 */
9834 if (mode == ARM_CPU_MODE_FIQ) {
9835 for (i = 8; i < 13; i++) {
9836 env->usr_regs[i - 8] = env->xregs[i];
9837 }
9838 } else {
9839 for (i = 8; i < 13; i++) {
9840 env->regs[i] = env->xregs[i];
9841 }
9842 }
9843
9844 /* Registers r13 & r14 depend on the current mode.
9845 * If we are in a given mode, we copy the corresponding x registers to r13
9846 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9847 * for the mode.
9848 */
9849 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9850 env->regs[13] = env->xregs[13];
9851 env->regs[14] = env->xregs[14];
9852 } else {
9853 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9854
9855 /* HYP is an exception in that it does not have its own banked r14 but
9856 * shares the USR r14
9857 */
9858 if (mode == ARM_CPU_MODE_HYP) {
9859 env->regs[14] = env->xregs[14];
9860 } else {
9861 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9862 }
9863 }
9864
9865 if (mode == ARM_CPU_MODE_HYP) {
9866 env->regs[13] = env->xregs[15];
9867 } else {
9868 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9869 }
9870
9871 if (mode == ARM_CPU_MODE_IRQ) {
9872 env->regs[14] = env->xregs[16];
9873 env->regs[13] = env->xregs[17];
9874 } else {
9875 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9876 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9877 }
9878
9879 if (mode == ARM_CPU_MODE_SVC) {
9880 env->regs[14] = env->xregs[18];
9881 env->regs[13] = env->xregs[19];
9882 } else {
9883 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9884 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9885 }
9886
9887 if (mode == ARM_CPU_MODE_ABT) {
9888 env->regs[14] = env->xregs[20];
9889 env->regs[13] = env->xregs[21];
9890 } else {
9891 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9892 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9893 }
9894
9895 if (mode == ARM_CPU_MODE_UND) {
9896 env->regs[14] = env->xregs[22];
9897 env->regs[13] = env->xregs[23];
9898 } else {
9899 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9900 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9901 }
9902
9903 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9904 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9905 * FIQ bank for r8-r14.
9906 */
9907 if (mode == ARM_CPU_MODE_FIQ) {
9908 for (i = 24; i < 31; i++) {
9909 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9910 }
9911 } else {
9912 for (i = 24; i < 29; i++) {
9913 env->fiq_regs[i - 24] = env->xregs[i];
9914 }
9915 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9916 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9917 }
9918
9919 env->regs[15] = env->pc;
9920 }
9921
9922 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9923 uint32_t mask, uint32_t offset,
9924 uint32_t newpc)
9925 {
9926 /* Change the CPU state so as to actually take the exception. */
9927 switch_mode(env, new_mode);
9928 /*
9929 * For exceptions taken to AArch32 we must clear the SS bit in both
9930 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9931 */
9932 env->uncached_cpsr &= ~PSTATE_SS;
9933 env->spsr = cpsr_read(env);
9934 /* Clear IT bits. */
9935 env->condexec_bits = 0;
9936 /* Switch to the new mode, and to the correct instruction set. */
9937 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9938 /* Set new mode endianness */
9939 env->uncached_cpsr &= ~CPSR_E;
9940 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9941 env->uncached_cpsr |= CPSR_E;
9942 }
9943 /* J and IL must always be cleared for exception entry */
9944 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9945 env->daif |= mask;
9946
9947 if (new_mode == ARM_CPU_MODE_HYP) {
9948 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9949 env->elr_el[2] = env->regs[15];
9950 } else {
9951 /*
9952 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9953 * and we should just guard the thumb mode on V4
9954 */
9955 if (arm_feature(env, ARM_FEATURE_V4T)) {
9956 env->thumb =
9957 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9958 }
9959 env->regs[14] = env->regs[15] + offset;
9960 }
9961 env->regs[15] = newpc;
9962 }
9963
9964 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9965 {
9966 /*
9967 * Handle exception entry to Hyp mode; this is sufficiently
9968 * different to entry to other AArch32 modes that we handle it
9969 * separately here.
9970 *
9971 * The vector table entry used is always the 0x14 Hyp mode entry point,
9972 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9973 * The offset applied to the preferred return address is always zero
9974 * (see DDI0487C.a section G1.12.3).
9975 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9976 */
9977 uint32_t addr, mask;
9978 ARMCPU *cpu = ARM_CPU(cs);
9979 CPUARMState *env = &cpu->env;
9980
9981 switch (cs->exception_index) {
9982 case EXCP_UDEF:
9983 addr = 0x04;
9984 break;
9985 case EXCP_SWI:
9986 addr = 0x14;
9987 break;
9988 case EXCP_BKPT:
9989 /* Fall through to prefetch abort. */
9990 case EXCP_PREFETCH_ABORT:
9991 env->cp15.ifar_s = env->exception.vaddress;
9992 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9993 (uint32_t)env->exception.vaddress);
9994 addr = 0x0c;
9995 break;
9996 case EXCP_DATA_ABORT:
9997 env->cp15.dfar_s = env->exception.vaddress;
9998 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9999 (uint32_t)env->exception.vaddress);
10000 addr = 0x10;
10001 break;
10002 case EXCP_IRQ:
10003 addr = 0x18;
10004 break;
10005 case EXCP_FIQ:
10006 addr = 0x1c;
10007 break;
10008 case EXCP_HVC:
10009 addr = 0x08;
10010 break;
10011 case EXCP_HYP_TRAP:
10012 addr = 0x14;
10013 default:
10014 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10015 }
10016
10017 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10018 if (!arm_feature(env, ARM_FEATURE_V8)) {
10019 /*
10020 * QEMU syndrome values are v8-style. v7 has the IL bit
10021 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10022 * If this is a v7 CPU, squash the IL bit in those cases.
10023 */
10024 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10025 (cs->exception_index == EXCP_DATA_ABORT &&
10026 !(env->exception.syndrome & ARM_EL_ISV)) ||
10027 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10028 env->exception.syndrome &= ~ARM_EL_IL;
10029 }
10030 }
10031 env->cp15.esr_el[2] = env->exception.syndrome;
10032 }
10033
10034 if (arm_current_el(env) != 2 && addr < 0x14) {
10035 addr = 0x14;
10036 }
10037
10038 mask = 0;
10039 if (!(env->cp15.scr_el3 & SCR_EA)) {
10040 mask |= CPSR_A;
10041 }
10042 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10043 mask |= CPSR_I;
10044 }
10045 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10046 mask |= CPSR_F;
10047 }
10048
10049 addr += env->cp15.hvbar;
10050
10051 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10052 }
10053
10054 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10055 {
10056 ARMCPU *cpu = ARM_CPU(cs);
10057 CPUARMState *env = &cpu->env;
10058 uint32_t addr;
10059 uint32_t mask;
10060 int new_mode;
10061 uint32_t offset;
10062 uint32_t moe;
10063
10064 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10065 switch (syn_get_ec(env->exception.syndrome)) {
10066 case EC_BREAKPOINT:
10067 case EC_BREAKPOINT_SAME_EL:
10068 moe = 1;
10069 break;
10070 case EC_WATCHPOINT:
10071 case EC_WATCHPOINT_SAME_EL:
10072 moe = 10;
10073 break;
10074 case EC_AA32_BKPT:
10075 moe = 3;
10076 break;
10077 case EC_VECTORCATCH:
10078 moe = 5;
10079 break;
10080 default:
10081 moe = 0;
10082 break;
10083 }
10084
10085 if (moe) {
10086 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10087 }
10088
10089 if (env->exception.target_el == 2) {
10090 arm_cpu_do_interrupt_aarch32_hyp(cs);
10091 return;
10092 }
10093
10094 switch (cs->exception_index) {
10095 case EXCP_UDEF:
10096 new_mode = ARM_CPU_MODE_UND;
10097 addr = 0x04;
10098 mask = CPSR_I;
10099 if (env->thumb)
10100 offset = 2;
10101 else
10102 offset = 4;
10103 break;
10104 case EXCP_SWI:
10105 new_mode = ARM_CPU_MODE_SVC;
10106 addr = 0x08;
10107 mask = CPSR_I;
10108 /* The PC already points to the next instruction. */
10109 offset = 0;
10110 break;
10111 case EXCP_BKPT:
10112 /* Fall through to prefetch abort. */
10113 case EXCP_PREFETCH_ABORT:
10114 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10115 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10116 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10117 env->exception.fsr, (uint32_t)env->exception.vaddress);
10118 new_mode = ARM_CPU_MODE_ABT;
10119 addr = 0x0c;
10120 mask = CPSR_A | CPSR_I;
10121 offset = 4;
10122 break;
10123 case EXCP_DATA_ABORT:
10124 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10125 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10126 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10127 env->exception.fsr,
10128 (uint32_t)env->exception.vaddress);
10129 new_mode = ARM_CPU_MODE_ABT;
10130 addr = 0x10;
10131 mask = CPSR_A | CPSR_I;
10132 offset = 8;
10133 break;
10134 case EXCP_IRQ:
10135 new_mode = ARM_CPU_MODE_IRQ;
10136 addr = 0x18;
10137 /* Disable IRQ and imprecise data aborts. */
10138 mask = CPSR_A | CPSR_I;
10139 offset = 4;
10140 if (env->cp15.scr_el3 & SCR_IRQ) {
10141 /* IRQ routed to monitor mode */
10142 new_mode = ARM_CPU_MODE_MON;
10143 mask |= CPSR_F;
10144 }
10145 break;
10146 case EXCP_FIQ:
10147 new_mode = ARM_CPU_MODE_FIQ;
10148 addr = 0x1c;
10149 /* Disable FIQ, IRQ and imprecise data aborts. */
10150 mask = CPSR_A | CPSR_I | CPSR_F;
10151 if (env->cp15.scr_el3 & SCR_FIQ) {
10152 /* FIQ routed to monitor mode */
10153 new_mode = ARM_CPU_MODE_MON;
10154 }
10155 offset = 4;
10156 break;
10157 case EXCP_VIRQ:
10158 new_mode = ARM_CPU_MODE_IRQ;
10159 addr = 0x18;
10160 /* Disable IRQ and imprecise data aborts. */
10161 mask = CPSR_A | CPSR_I;
10162 offset = 4;
10163 break;
10164 case EXCP_VFIQ:
10165 new_mode = ARM_CPU_MODE_FIQ;
10166 addr = 0x1c;
10167 /* Disable FIQ, IRQ and imprecise data aborts. */
10168 mask = CPSR_A | CPSR_I | CPSR_F;
10169 offset = 4;
10170 break;
10171 case EXCP_SMC:
10172 new_mode = ARM_CPU_MODE_MON;
10173 addr = 0x08;
10174 mask = CPSR_A | CPSR_I | CPSR_F;
10175 offset = 0;
10176 break;
10177 default:
10178 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10179 return; /* Never happens. Keep compiler happy. */
10180 }
10181
10182 if (new_mode == ARM_CPU_MODE_MON) {
10183 addr += env->cp15.mvbar;
10184 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10185 /* High vectors. When enabled, base address cannot be remapped. */
10186 addr += 0xffff0000;
10187 } else {
10188 /* ARM v7 architectures provide a vector base address register to remap
10189 * the interrupt vector table.
10190 * This register is only followed in non-monitor mode, and is banked.
10191 * Note: only bits 31:5 are valid.
10192 */
10193 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10194 }
10195
10196 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10197 env->cp15.scr_el3 &= ~SCR_NS;
10198 }
10199
10200 take_aarch32_exception(env, new_mode, mask, offset, addr);
10201 }
10202
10203 /* Handle exception entry to a target EL which is using AArch64 */
10204 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10205 {
10206 ARMCPU *cpu = ARM_CPU(cs);
10207 CPUARMState *env = &cpu->env;
10208 unsigned int new_el = env->exception.target_el;
10209 target_ulong addr = env->cp15.vbar_el[new_el];
10210 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10211 unsigned int cur_el = arm_current_el(env);
10212
10213 /*
10214 * Note that new_el can never be 0. If cur_el is 0, then
10215 * el0_a64 is is_a64(), else el0_a64 is ignored.
10216 */
10217 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10218
10219 if (cur_el < new_el) {
10220 /* Entry vector offset depends on whether the implemented EL
10221 * immediately lower than the target level is using AArch32 or AArch64
10222 */
10223 bool is_aa64;
10224
10225 switch (new_el) {
10226 case 3:
10227 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10228 break;
10229 case 2:
10230 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
10231 break;
10232 case 1:
10233 is_aa64 = is_a64(env);
10234 break;
10235 default:
10236 g_assert_not_reached();
10237 }
10238
10239 if (is_aa64) {
10240 addr += 0x400;
10241 } else {
10242 addr += 0x600;
10243 }
10244 } else if (pstate_read(env) & PSTATE_SP) {
10245 addr += 0x200;
10246 }
10247
10248 switch (cs->exception_index) {
10249 case EXCP_PREFETCH_ABORT:
10250 case EXCP_DATA_ABORT:
10251 env->cp15.far_el[new_el] = env->exception.vaddress;
10252 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10253 env->cp15.far_el[new_el]);
10254 /* fall through */
10255 case EXCP_BKPT:
10256 case EXCP_UDEF:
10257 case EXCP_SWI:
10258 case EXCP_HVC:
10259 case EXCP_HYP_TRAP:
10260 case EXCP_SMC:
10261 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
10262 /*
10263 * QEMU internal FP/SIMD syndromes from AArch32 include the
10264 * TA and coproc fields which are only exposed if the exception
10265 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10266 * AArch64 format syndrome.
10267 */
10268 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10269 }
10270 env->cp15.esr_el[new_el] = env->exception.syndrome;
10271 break;
10272 case EXCP_IRQ:
10273 case EXCP_VIRQ:
10274 addr += 0x80;
10275 break;
10276 case EXCP_FIQ:
10277 case EXCP_VFIQ:
10278 addr += 0x100;
10279 break;
10280 case EXCP_SEMIHOST:
10281 qemu_log_mask(CPU_LOG_INT,
10282 "...handling as semihosting call 0x%" PRIx64 "\n",
10283 env->xregs[0]);
10284 env->xregs[0] = do_arm_semihosting(env);
10285 return;
10286 default:
10287 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10288 }
10289
10290 if (is_a64(env)) {
10291 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
10292 aarch64_save_sp(env, arm_current_el(env));
10293 env->elr_el[new_el] = env->pc;
10294 } else {
10295 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
10296 env->elr_el[new_el] = env->regs[15];
10297
10298 aarch64_sync_32_to_64(env);
10299
10300 env->condexec_bits = 0;
10301 }
10302 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10303 env->elr_el[new_el]);
10304
10305 pstate_write(env, PSTATE_DAIF | new_mode);
10306 env->aarch64 = 1;
10307 aarch64_restore_sp(env, new_el);
10308
10309 env->pc = addr;
10310
10311 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10312 new_el, env->pc, pstate_read(env));
10313 }
10314
10315 static inline bool check_for_semihosting(CPUState *cs)
10316 {
10317 /* Check whether this exception is a semihosting call; if so
10318 * then handle it and return true; otherwise return false.
10319 */
10320 ARMCPU *cpu = ARM_CPU(cs);
10321 CPUARMState *env = &cpu->env;
10322
10323 if (is_a64(env)) {
10324 if (cs->exception_index == EXCP_SEMIHOST) {
10325 /* This is always the 64-bit semihosting exception.
10326 * The "is this usermode" and "is semihosting enabled"
10327 * checks have been done at translate time.
10328 */
10329 qemu_log_mask(CPU_LOG_INT,
10330 "...handling as semihosting call 0x%" PRIx64 "\n",
10331 env->xregs[0]);
10332 env->xregs[0] = do_arm_semihosting(env);
10333 return true;
10334 }
10335 return false;
10336 } else {
10337 uint32_t imm;
10338
10339 /* Only intercept calls from privileged modes, to provide some
10340 * semblance of security.
10341 */
10342 if (cs->exception_index != EXCP_SEMIHOST &&
10343 (!semihosting_enabled() ||
10344 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
10345 return false;
10346 }
10347
10348 switch (cs->exception_index) {
10349 case EXCP_SEMIHOST:
10350 /* This is always a semihosting call; the "is this usermode"
10351 * and "is semihosting enabled" checks have been done at
10352 * translate time.
10353 */
10354 break;
10355 case EXCP_SWI:
10356 /* Check for semihosting interrupt. */
10357 if (env->thumb) {
10358 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
10359 & 0xff;
10360 if (imm == 0xab) {
10361 break;
10362 }
10363 } else {
10364 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
10365 & 0xffffff;
10366 if (imm == 0x123456) {
10367 break;
10368 }
10369 }
10370 return false;
10371 case EXCP_BKPT:
10372 /* See if this is a semihosting syscall. */
10373 if (env->thumb) {
10374 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
10375 & 0xff;
10376 if (imm == 0xab) {
10377 env->regs[15] += 2;
10378 break;
10379 }
10380 }
10381 return false;
10382 default:
10383 return false;
10384 }
10385
10386 qemu_log_mask(CPU_LOG_INT,
10387 "...handling as semihosting call 0x%x\n",
10388 env->regs[0]);
10389 env->regs[0] = do_arm_semihosting(env);
10390 return true;
10391 }
10392 }
10393
10394 /* Handle a CPU exception for A and R profile CPUs.
10395 * Do any appropriate logging, handle PSCI calls, and then hand off
10396 * to the AArch64-entry or AArch32-entry function depending on the
10397 * target exception level's register width.
10398 */
10399 void arm_cpu_do_interrupt(CPUState *cs)
10400 {
10401 ARMCPU *cpu = ARM_CPU(cs);
10402 CPUARMState *env = &cpu->env;
10403 unsigned int new_el = env->exception.target_el;
10404
10405 assert(!arm_feature(env, ARM_FEATURE_M));
10406
10407 arm_log_exception(cs->exception_index);
10408 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10409 new_el);
10410 if (qemu_loglevel_mask(CPU_LOG_INT)
10411 && !excp_is_internal(cs->exception_index)) {
10412 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10413 syn_get_ec(env->exception.syndrome),
10414 env->exception.syndrome);
10415 }
10416
10417 if (arm_is_psci_call(cpu, cs->exception_index)) {
10418 arm_handle_psci_call(cpu);
10419 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10420 return;
10421 }
10422
10423 /* Semihosting semantics depend on the register width of the
10424 * code that caused the exception, not the target exception level,
10425 * so must be handled here.
10426 */
10427 if (check_for_semihosting(cs)) {
10428 return;
10429 }
10430
10431 /* Hooks may change global state so BQL should be held, also the
10432 * BQL needs to be held for any modification of
10433 * cs->interrupt_request.
10434 */
10435 g_assert(qemu_mutex_iothread_locked());
10436
10437 arm_call_pre_el_change_hook(cpu);
10438
10439 assert(!excp_is_internal(cs->exception_index));
10440 if (arm_el_is_aa64(env, new_el)) {
10441 arm_cpu_do_interrupt_aarch64(cs);
10442 } else {
10443 arm_cpu_do_interrupt_aarch32(cs);
10444 }
10445
10446 arm_call_el_change_hook(cpu);
10447
10448 if (!kvm_enabled()) {
10449 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10450 }
10451 }
10452 #endif /* !CONFIG_USER_ONLY */
10453
10454 /* Return the exception level which controls this address translation regime */
10455 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
10456 {
10457 switch (mmu_idx) {
10458 case ARMMMUIdx_S2NS:
10459 case ARMMMUIdx_S1E2:
10460 return 2;
10461 case ARMMMUIdx_S1E3:
10462 return 3;
10463 case ARMMMUIdx_S1SE0:
10464 return arm_el_is_aa64(env, 3) ? 1 : 3;
10465 case ARMMMUIdx_S1SE1:
10466 case ARMMMUIdx_S1NSE0:
10467 case ARMMMUIdx_S1NSE1:
10468 case ARMMMUIdx_MPrivNegPri:
10469 case ARMMMUIdx_MUserNegPri:
10470 case ARMMMUIdx_MPriv:
10471 case ARMMMUIdx_MUser:
10472 case ARMMMUIdx_MSPrivNegPri:
10473 case ARMMMUIdx_MSUserNegPri:
10474 case ARMMMUIdx_MSPriv:
10475 case ARMMMUIdx_MSUser:
10476 return 1;
10477 default:
10478 g_assert_not_reached();
10479 }
10480 }
10481
10482 #ifndef CONFIG_USER_ONLY
10483
10484 /* Return the SCTLR value which controls this address translation regime */
10485 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10486 {
10487 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10488 }
10489
10490 /* Return true if the specified stage of address translation is disabled */
10491 static inline bool regime_translation_disabled(CPUARMState *env,
10492 ARMMMUIdx mmu_idx)
10493 {
10494 if (arm_feature(env, ARM_FEATURE_M)) {
10495 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10496 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10497 case R_V7M_MPU_CTRL_ENABLE_MASK:
10498 /* Enabled, but not for HardFault and NMI */
10499 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10500 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10501 /* Enabled for all cases */
10502 return false;
10503 case 0:
10504 default:
10505 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10506 * we warned about that in armv7m_nvic.c when the guest set it.
10507 */
10508 return true;
10509 }
10510 }
10511
10512 if (mmu_idx == ARMMMUIdx_S2NS) {
10513 /* HCR.DC means HCR.VM behaves as 1 */
10514 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10515 }
10516
10517 if (env->cp15.hcr_el2 & HCR_TGE) {
10518 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10519 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10520 return true;
10521 }
10522 }
10523
10524 if ((env->cp15.hcr_el2 & HCR_DC) &&
10525 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
10526 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10527 return true;
10528 }
10529
10530 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10531 }
10532
10533 static inline bool regime_translation_big_endian(CPUARMState *env,
10534 ARMMMUIdx mmu_idx)
10535 {
10536 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10537 }
10538
10539 /* Return the TTBR associated with this translation regime */
10540 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10541 int ttbrn)
10542 {
10543 if (mmu_idx == ARMMMUIdx_S2NS) {
10544 return env->cp15.vttbr_el2;
10545 }
10546 if (ttbrn == 0) {
10547 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10548 } else {
10549 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10550 }
10551 }
10552
10553 #endif /* !CONFIG_USER_ONLY */
10554
10555 /* Return the TCR controlling this translation regime */
10556 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
10557 {
10558 if (mmu_idx == ARMMMUIdx_S2NS) {
10559 return &env->cp15.vtcr_el2;
10560 }
10561 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
10562 }
10563
10564 /* Convert a possible stage1+2 MMU index into the appropriate
10565 * stage 1 MMU index
10566 */
10567 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10568 {
10569 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10570 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
10571 }
10572 return mmu_idx;
10573 }
10574
10575 /* Return true if the translation regime is using LPAE format page tables */
10576 static inline bool regime_using_lpae_format(CPUARMState *env,
10577 ARMMMUIdx mmu_idx)
10578 {
10579 int el = regime_el(env, mmu_idx);
10580 if (el == 2 || arm_el_is_aa64(env, el)) {
10581 return true;
10582 }
10583 if (arm_feature(env, ARM_FEATURE_LPAE)
10584 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10585 return true;
10586 }
10587 return false;
10588 }
10589
10590 /* Returns true if the stage 1 translation regime is using LPAE format page
10591 * tables. Used when raising alignment exceptions, whose FSR changes depending
10592 * on whether the long or short descriptor format is in use. */
10593 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10594 {
10595 mmu_idx = stage_1_mmu_idx(mmu_idx);
10596
10597 return regime_using_lpae_format(env, mmu_idx);
10598 }
10599
10600 #ifndef CONFIG_USER_ONLY
10601 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10602 {
10603 switch (mmu_idx) {
10604 case ARMMMUIdx_S1SE0:
10605 case ARMMMUIdx_S1NSE0:
10606 case ARMMMUIdx_MUser:
10607 case ARMMMUIdx_MSUser:
10608 case ARMMMUIdx_MUserNegPri:
10609 case ARMMMUIdx_MSUserNegPri:
10610 return true;
10611 default:
10612 return false;
10613 case ARMMMUIdx_S12NSE0:
10614 case ARMMMUIdx_S12NSE1:
10615 g_assert_not_reached();
10616 }
10617 }
10618
10619 /* Translate section/page access permissions to page
10620 * R/W protection flags
10621 *
10622 * @env: CPUARMState
10623 * @mmu_idx: MMU index indicating required translation regime
10624 * @ap: The 3-bit access permissions (AP[2:0])
10625 * @domain_prot: The 2-bit domain access permissions
10626 */
10627 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10628 int ap, int domain_prot)
10629 {
10630 bool is_user = regime_is_user(env, mmu_idx);
10631
10632 if (domain_prot == 3) {
10633 return PAGE_READ | PAGE_WRITE;
10634 }
10635
10636 switch (ap) {
10637 case 0:
10638 if (arm_feature(env, ARM_FEATURE_V7)) {
10639 return 0;
10640 }
10641 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10642 case SCTLR_S:
10643 return is_user ? 0 : PAGE_READ;
10644 case SCTLR_R:
10645 return PAGE_READ;
10646 default:
10647 return 0;
10648 }
10649 case 1:
10650 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10651 case 2:
10652 if (is_user) {
10653 return PAGE_READ;
10654 } else {
10655 return PAGE_READ | PAGE_WRITE;
10656 }
10657 case 3:
10658 return PAGE_READ | PAGE_WRITE;
10659 case 4: /* Reserved. */
10660 return 0;
10661 case 5:
10662 return is_user ? 0 : PAGE_READ;
10663 case 6:
10664 return PAGE_READ;
10665 case 7:
10666 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10667 return 0;
10668 }
10669 return PAGE_READ;
10670 default:
10671 g_assert_not_reached();
10672 }
10673 }
10674
10675 /* Translate section/page access permissions to page
10676 * R/W protection flags.
10677 *
10678 * @ap: The 2-bit simple AP (AP[2:1])
10679 * @is_user: TRUE if accessing from PL0
10680 */
10681 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10682 {
10683 switch (ap) {
10684 case 0:
10685 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10686 case 1:
10687 return PAGE_READ | PAGE_WRITE;
10688 case 2:
10689 return is_user ? 0 : PAGE_READ;
10690 case 3:
10691 return PAGE_READ;
10692 default:
10693 g_assert_not_reached();
10694 }
10695 }
10696
10697 static inline int
10698 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10699 {
10700 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10701 }
10702
10703 /* Translate S2 section/page access permissions to protection flags
10704 *
10705 * @env: CPUARMState
10706 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10707 * @xn: XN (execute-never) bit
10708 */
10709 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
10710 {
10711 int prot = 0;
10712
10713 if (s2ap & 1) {
10714 prot |= PAGE_READ;
10715 }
10716 if (s2ap & 2) {
10717 prot |= PAGE_WRITE;
10718 }
10719 if (!xn) {
10720 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10721 prot |= PAGE_EXEC;
10722 }
10723 }
10724 return prot;
10725 }
10726
10727 /* Translate section/page access permissions to protection flags
10728 *
10729 * @env: CPUARMState
10730 * @mmu_idx: MMU index indicating required translation regime
10731 * @is_aa64: TRUE if AArch64
10732 * @ap: The 2-bit simple AP (AP[2:1])
10733 * @ns: NS (non-secure) bit
10734 * @xn: XN (execute-never) bit
10735 * @pxn: PXN (privileged execute-never) bit
10736 */
10737 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10738 int ap, int ns, int xn, int pxn)
10739 {
10740 bool is_user = regime_is_user(env, mmu_idx);
10741 int prot_rw, user_rw;
10742 bool have_wxn;
10743 int wxn = 0;
10744
10745 assert(mmu_idx != ARMMMUIdx_S2NS);
10746
10747 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10748 if (is_user) {
10749 prot_rw = user_rw;
10750 } else {
10751 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10752 }
10753
10754 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10755 return prot_rw;
10756 }
10757
10758 /* TODO have_wxn should be replaced with
10759 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10760 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10761 * compatible processors have EL2, which is required for [U]WXN.
10762 */
10763 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10764
10765 if (have_wxn) {
10766 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10767 }
10768
10769 if (is_aa64) {
10770 switch (regime_el(env, mmu_idx)) {
10771 case 1:
10772 if (!is_user) {
10773 xn = pxn || (user_rw & PAGE_WRITE);
10774 }
10775 break;
10776 case 2:
10777 case 3:
10778 break;
10779 }
10780 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10781 switch (regime_el(env, mmu_idx)) {
10782 case 1:
10783 case 3:
10784 if (is_user) {
10785 xn = xn || !(user_rw & PAGE_READ);
10786 } else {
10787 int uwxn = 0;
10788 if (have_wxn) {
10789 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10790 }
10791 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10792 (uwxn && (user_rw & PAGE_WRITE));
10793 }
10794 break;
10795 case 2:
10796 break;
10797 }
10798 } else {
10799 xn = wxn = 0;
10800 }
10801
10802 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10803 return prot_rw;
10804 }
10805 return prot_rw | PAGE_EXEC;
10806 }
10807
10808 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10809 uint32_t *table, uint32_t address)
10810 {
10811 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10812 TCR *tcr = regime_tcr(env, mmu_idx);
10813
10814 if (address & tcr->mask) {
10815 if (tcr->raw_tcr & TTBCR_PD1) {
10816 /* Translation table walk disabled for TTBR1 */
10817 return false;
10818 }
10819 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10820 } else {
10821 if (tcr->raw_tcr & TTBCR_PD0) {
10822 /* Translation table walk disabled for TTBR0 */
10823 return false;
10824 }
10825 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10826 }
10827 *table |= (address >> 18) & 0x3ffc;
10828 return true;
10829 }
10830
10831 /* Translate a S1 pagetable walk through S2 if needed. */
10832 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10833 hwaddr addr, MemTxAttrs txattrs,
10834 ARMMMUFaultInfo *fi)
10835 {
10836 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10837 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10838 target_ulong s2size;
10839 hwaddr s2pa;
10840 int s2prot;
10841 int ret;
10842 ARMCacheAttrs cacheattrs = {};
10843 ARMCacheAttrs *pcacheattrs = NULL;
10844
10845 if (env->cp15.hcr_el2 & HCR_PTW) {
10846 /*
10847 * PTW means we must fault if this S1 walk touches S2 Device
10848 * memory; otherwise we don't care about the attributes and can
10849 * save the S2 translation the effort of computing them.
10850 */
10851 pcacheattrs = &cacheattrs;
10852 }
10853
10854 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10855 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10856 if (ret) {
10857 assert(fi->type != ARMFault_None);
10858 fi->s2addr = addr;
10859 fi->stage2 = true;
10860 fi->s1ptw = true;
10861 return ~0;
10862 }
10863 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10864 /* Access was to Device memory: generate Permission fault */
10865 fi->type = ARMFault_Permission;
10866 fi->s2addr = addr;
10867 fi->stage2 = true;
10868 fi->s1ptw = true;
10869 return ~0;
10870 }
10871 addr = s2pa;
10872 }
10873 return addr;
10874 }
10875
10876 /* All loads done in the course of a page table walk go through here. */
10877 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10878 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10879 {
10880 ARMCPU *cpu = ARM_CPU(cs);
10881 CPUARMState *env = &cpu->env;
10882 MemTxAttrs attrs = {};
10883 MemTxResult result = MEMTX_OK;
10884 AddressSpace *as;
10885 uint32_t data;
10886
10887 attrs.secure = is_secure;
10888 as = arm_addressspace(cs, attrs);
10889 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10890 if (fi->s1ptw) {
10891 return 0;
10892 }
10893 if (regime_translation_big_endian(env, mmu_idx)) {
10894 data = address_space_ldl_be(as, addr, attrs, &result);
10895 } else {
10896 data = address_space_ldl_le(as, addr, attrs, &result);
10897 }
10898 if (result == MEMTX_OK) {
10899 return data;
10900 }
10901 fi->type = ARMFault_SyncExternalOnWalk;
10902 fi->ea = arm_extabort_type(result);
10903 return 0;
10904 }
10905
10906 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10907 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10908 {
10909 ARMCPU *cpu = ARM_CPU(cs);
10910 CPUARMState *env = &cpu->env;
10911 MemTxAttrs attrs = {};
10912 MemTxResult result = MEMTX_OK;
10913 AddressSpace *as;
10914 uint64_t data;
10915
10916 attrs.secure = is_secure;
10917 as = arm_addressspace(cs, attrs);
10918 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10919 if (fi->s1ptw) {
10920 return 0;
10921 }
10922 if (regime_translation_big_endian(env, mmu_idx)) {
10923 data = address_space_ldq_be(as, addr, attrs, &result);
10924 } else {
10925 data = address_space_ldq_le(as, addr, attrs, &result);
10926 }
10927 if (result == MEMTX_OK) {
10928 return data;
10929 }
10930 fi->type = ARMFault_SyncExternalOnWalk;
10931 fi->ea = arm_extabort_type(result);
10932 return 0;
10933 }
10934
10935 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10936 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10937 hwaddr *phys_ptr, int *prot,
10938 target_ulong *page_size,
10939 ARMMMUFaultInfo *fi)
10940 {
10941 CPUState *cs = CPU(arm_env_get_cpu(env));
10942 int level = 1;
10943 uint32_t table;
10944 uint32_t desc;
10945 int type;
10946 int ap;
10947 int domain = 0;
10948 int domain_prot;
10949 hwaddr phys_addr;
10950 uint32_t dacr;
10951
10952 /* Pagetable walk. */
10953 /* Lookup l1 descriptor. */
10954 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10955 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10956 fi->type = ARMFault_Translation;
10957 goto do_fault;
10958 }
10959 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10960 mmu_idx, fi);
10961 if (fi->type != ARMFault_None) {
10962 goto do_fault;
10963 }
10964 type = (desc & 3);
10965 domain = (desc >> 5) & 0x0f;
10966 if (regime_el(env, mmu_idx) == 1) {
10967 dacr = env->cp15.dacr_ns;
10968 } else {
10969 dacr = env->cp15.dacr_s;
10970 }
10971 domain_prot = (dacr >> (domain * 2)) & 3;
10972 if (type == 0) {
10973 /* Section translation fault. */
10974 fi->type = ARMFault_Translation;
10975 goto do_fault;
10976 }
10977 if (type != 2) {
10978 level = 2;
10979 }
10980 if (domain_prot == 0 || domain_prot == 2) {
10981 fi->type = ARMFault_Domain;
10982 goto do_fault;
10983 }
10984 if (type == 2) {
10985 /* 1Mb section. */
10986 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10987 ap = (desc >> 10) & 3;
10988 *page_size = 1024 * 1024;
10989 } else {
10990 /* Lookup l2 entry. */
10991 if (type == 1) {
10992 /* Coarse pagetable. */
10993 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10994 } else {
10995 /* Fine pagetable. */
10996 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10997 }
10998 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10999 mmu_idx, fi);
11000 if (fi->type != ARMFault_None) {
11001 goto do_fault;
11002 }
11003 switch (desc & 3) {
11004 case 0: /* Page translation fault. */
11005 fi->type = ARMFault_Translation;
11006 goto do_fault;
11007 case 1: /* 64k page. */
11008 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11009 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11010 *page_size = 0x10000;
11011 break;
11012 case 2: /* 4k page. */
11013 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11014 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11015 *page_size = 0x1000;
11016 break;
11017 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11018 if (type == 1) {
11019 /* ARMv6/XScale extended small page format */
11020 if (arm_feature(env, ARM_FEATURE_XSCALE)
11021 || arm_feature(env, ARM_FEATURE_V6)) {
11022 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11023 *page_size = 0x1000;
11024 } else {
11025 /* UNPREDICTABLE in ARMv5; we choose to take a
11026 * page translation fault.
11027 */
11028 fi->type = ARMFault_Translation;
11029 goto do_fault;
11030 }
11031 } else {
11032 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11033 *page_size = 0x400;
11034 }
11035 ap = (desc >> 4) & 3;
11036 break;
11037 default:
11038 /* Never happens, but compiler isn't smart enough to tell. */
11039 abort();
11040 }
11041 }
11042 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11043 *prot |= *prot ? PAGE_EXEC : 0;
11044 if (!(*prot & (1 << access_type))) {
11045 /* Access permission fault. */
11046 fi->type = ARMFault_Permission;
11047 goto do_fault;
11048 }
11049 *phys_ptr = phys_addr;
11050 return false;
11051 do_fault:
11052 fi->domain = domain;
11053 fi->level = level;
11054 return true;
11055 }
11056
11057 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11058 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11059 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11060 target_ulong *page_size, ARMMMUFaultInfo *fi)
11061 {
11062 CPUState *cs = CPU(arm_env_get_cpu(env));
11063 int level = 1;
11064 uint32_t table;
11065 uint32_t desc;
11066 uint32_t xn;
11067 uint32_t pxn = 0;
11068 int type;
11069 int ap;
11070 int domain = 0;
11071 int domain_prot;
11072 hwaddr phys_addr;
11073 uint32_t dacr;
11074 bool ns;
11075
11076 /* Pagetable walk. */
11077 /* Lookup l1 descriptor. */
11078 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11079 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11080 fi->type = ARMFault_Translation;
11081 goto do_fault;
11082 }
11083 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11084 mmu_idx, fi);
11085 if (fi->type != ARMFault_None) {
11086 goto do_fault;
11087 }
11088 type = (desc & 3);
11089 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
11090 /* Section translation fault, or attempt to use the encoding
11091 * which is Reserved on implementations without PXN.
11092 */
11093 fi->type = ARMFault_Translation;
11094 goto do_fault;
11095 }
11096 if ((type == 1) || !(desc & (1 << 18))) {
11097 /* Page or Section. */
11098 domain = (desc >> 5) & 0x0f;
11099 }
11100 if (regime_el(env, mmu_idx) == 1) {
11101 dacr = env->cp15.dacr_ns;
11102 } else {
11103 dacr = env->cp15.dacr_s;
11104 }
11105 if (type == 1) {
11106 level = 2;
11107 }
11108 domain_prot = (dacr >> (domain * 2)) & 3;
11109 if (domain_prot == 0 || domain_prot == 2) {
11110 /* Section or Page domain fault */
11111 fi->type = ARMFault_Domain;
11112 goto do_fault;
11113 }
11114 if (type != 1) {
11115 if (desc & (1 << 18)) {
11116 /* Supersection. */
11117 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11118 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11119 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11120 *page_size = 0x1000000;
11121 } else {
11122 /* Section. */
11123 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11124 *page_size = 0x100000;
11125 }
11126 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11127 xn = desc & (1 << 4);
11128 pxn = desc & 1;
11129 ns = extract32(desc, 19, 1);
11130 } else {
11131 if (arm_feature(env, ARM_FEATURE_PXN)) {
11132 pxn = (desc >> 2) & 1;
11133 }
11134 ns = extract32(desc, 3, 1);
11135 /* Lookup l2 entry. */
11136 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11137 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11138 mmu_idx, fi);
11139 if (fi->type != ARMFault_None) {
11140 goto do_fault;
11141 }
11142 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11143 switch (desc & 3) {
11144 case 0: /* Page translation fault. */
11145 fi->type = ARMFault_Translation;
11146 goto do_fault;
11147 case 1: /* 64k page. */
11148 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11149 xn = desc & (1 << 15);
11150 *page_size = 0x10000;
11151 break;
11152 case 2: case 3: /* 4k page. */
11153 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11154 xn = desc & 1;
11155 *page_size = 0x1000;
11156 break;
11157 default:
11158 /* Never happens, but compiler isn't smart enough to tell. */
11159 abort();
11160 }
11161 }
11162 if (domain_prot == 3) {
11163 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11164 } else {
11165 if (pxn && !regime_is_user(env, mmu_idx)) {
11166 xn = 1;
11167 }
11168 if (xn && access_type == MMU_INST_FETCH) {
11169 fi->type = ARMFault_Permission;
11170 goto do_fault;
11171 }
11172
11173 if (arm_feature(env, ARM_FEATURE_V6K) &&
11174 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11175 /* The simplified model uses AP[0] as an access control bit. */
11176 if ((ap & 1) == 0) {
11177 /* Access flag fault. */
11178 fi->type = ARMFault_AccessFlag;
11179 goto do_fault;
11180 }
11181 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11182 } else {
11183 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11184 }
11185 if (*prot && !xn) {
11186 *prot |= PAGE_EXEC;
11187 }
11188 if (!(*prot & (1 << access_type))) {
11189 /* Access permission fault. */
11190 fi->type = ARMFault_Permission;
11191 goto do_fault;
11192 }
11193 }
11194 if (ns) {
11195 /* The NS bit will (as required by the architecture) have no effect if
11196 * the CPU doesn't support TZ or this is a non-secure translation
11197 * regime, because the attribute will already be non-secure.
11198 */
11199 attrs->secure = false;
11200 }
11201 *phys_ptr = phys_addr;
11202 return false;
11203 do_fault:
11204 fi->domain = domain;
11205 fi->level = level;
11206 return true;
11207 }
11208
11209 /*
11210 * check_s2_mmu_setup
11211 * @cpu: ARMCPU
11212 * @is_aa64: True if the translation regime is in AArch64 state
11213 * @startlevel: Suggested starting level
11214 * @inputsize: Bitsize of IPAs
11215 * @stride: Page-table stride (See the ARM ARM)
11216 *
11217 * Returns true if the suggested S2 translation parameters are OK and
11218 * false otherwise.
11219 */
11220 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11221 int inputsize, int stride)
11222 {
11223 const int grainsize = stride + 3;
11224 int startsizecheck;
11225
11226 /* Negative levels are never allowed. */
11227 if (level < 0) {
11228 return false;
11229 }
11230
11231 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11232 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11233 return false;
11234 }
11235
11236 if (is_aa64) {
11237 CPUARMState *env = &cpu->env;
11238 unsigned int pamax = arm_pamax(cpu);
11239
11240 switch (stride) {
11241 case 13: /* 64KB Pages. */
11242 if (level == 0 || (level == 1 && pamax <= 42)) {
11243 return false;
11244 }
11245 break;
11246 case 11: /* 16KB Pages. */
11247 if (level == 0 || (level == 1 && pamax <= 40)) {
11248 return false;
11249 }
11250 break;
11251 case 9: /* 4KB Pages. */
11252 if (level == 0 && pamax <= 42) {
11253 return false;
11254 }
11255 break;
11256 default:
11257 g_assert_not_reached();
11258 }
11259
11260 /* Inputsize checks. */
11261 if (inputsize > pamax &&
11262 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11263 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11264 return false;
11265 }
11266 } else {
11267 /* AArch32 only supports 4KB pages. Assert on that. */
11268 assert(stride == 9);
11269
11270 if (level == 0) {
11271 return false;
11272 }
11273 }
11274 return true;
11275 }
11276
11277 /* Translate from the 4-bit stage 2 representation of
11278 * memory attributes (without cache-allocation hints) to
11279 * the 8-bit representation of the stage 1 MAIR registers
11280 * (which includes allocation hints).
11281 *
11282 * ref: shared/translation/attrs/S2AttrDecode()
11283 * .../S2ConvertAttrsHints()
11284 */
11285 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11286 {
11287 uint8_t hiattr = extract32(s2attrs, 2, 2);
11288 uint8_t loattr = extract32(s2attrs, 0, 2);
11289 uint8_t hihint = 0, lohint = 0;
11290
11291 if (hiattr != 0) { /* normal memory */
11292 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
11293 hiattr = loattr = 1; /* non-cacheable */
11294 } else {
11295 if (hiattr != 1) { /* Write-through or write-back */
11296 hihint = 3; /* RW allocate */
11297 }
11298 if (loattr != 1) { /* Write-through or write-back */
11299 lohint = 3; /* RW allocate */
11300 }
11301 }
11302 }
11303
11304 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11305 }
11306 #endif /* !CONFIG_USER_ONLY */
11307
11308 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
11309 ARMMMUIdx mmu_idx)
11310 {
11311 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11312 uint32_t el = regime_el(env, mmu_idx);
11313 bool tbi, tbid, epd, hpd, using16k, using64k;
11314 int select, tsz;
11315
11316 /*
11317 * Bit 55 is always between the two regions, and is canonical for
11318 * determining if address tagging is enabled.
11319 */
11320 select = extract64(va, 55, 1);
11321
11322 if (el > 1) {
11323 tsz = extract32(tcr, 0, 6);
11324 using64k = extract32(tcr, 14, 1);
11325 using16k = extract32(tcr, 15, 1);
11326 if (mmu_idx == ARMMMUIdx_S2NS) {
11327 /* VTCR_EL2 */
11328 tbi = tbid = hpd = false;
11329 } else {
11330 tbi = extract32(tcr, 20, 1);
11331 hpd = extract32(tcr, 24, 1);
11332 tbid = extract32(tcr, 29, 1);
11333 }
11334 epd = false;
11335 } else if (!select) {
11336 tsz = extract32(tcr, 0, 6);
11337 epd = extract32(tcr, 7, 1);
11338 using64k = extract32(tcr, 14, 1);
11339 using16k = extract32(tcr, 15, 1);
11340 tbi = extract64(tcr, 37, 1);
11341 hpd = extract64(tcr, 41, 1);
11342 tbid = extract64(tcr, 51, 1);
11343 } else {
11344 int tg = extract32(tcr, 30, 2);
11345 using16k = tg == 1;
11346 using64k = tg == 3;
11347 tsz = extract32(tcr, 16, 6);
11348 epd = extract32(tcr, 23, 1);
11349 tbi = extract64(tcr, 38, 1);
11350 hpd = extract64(tcr, 42, 1);
11351 tbid = extract64(tcr, 52, 1);
11352 }
11353 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
11354 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11355
11356 return (ARMVAParameters) {
11357 .tsz = tsz,
11358 .select = select,
11359 .tbi = tbi,
11360 .tbid = tbid,
11361 .epd = epd,
11362 .hpd = hpd,
11363 .using16k = using16k,
11364 .using64k = using64k,
11365 };
11366 }
11367
11368 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11369 ARMMMUIdx mmu_idx, bool data)
11370 {
11371 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
11372
11373 /* Present TBI as a composite with TBID. */
11374 ret.tbi &= (data || !ret.tbid);
11375 return ret;
11376 }
11377
11378 #ifndef CONFIG_USER_ONLY
11379 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11380 ARMMMUIdx mmu_idx)
11381 {
11382 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11383 uint32_t el = regime_el(env, mmu_idx);
11384 int select, tsz;
11385 bool epd, hpd;
11386
11387 if (mmu_idx == ARMMMUIdx_S2NS) {
11388 /* VTCR */
11389 bool sext = extract32(tcr, 4, 1);
11390 bool sign = extract32(tcr, 3, 1);
11391
11392 /*
11393 * If the sign-extend bit is not the same as t0sz[3], the result
11394 * is unpredictable. Flag this as a guest error.
11395 */
11396 if (sign != sext) {
11397 qemu_log_mask(LOG_GUEST_ERROR,
11398 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11399 }
11400 tsz = sextract32(tcr, 0, 4) + 8;
11401 select = 0;
11402 hpd = false;
11403 epd = false;
11404 } else if (el == 2) {
11405 /* HTCR */
11406 tsz = extract32(tcr, 0, 3);
11407 select = 0;
11408 hpd = extract64(tcr, 24, 1);
11409 epd = false;
11410 } else {
11411 int t0sz = extract32(tcr, 0, 3);
11412 int t1sz = extract32(tcr, 16, 3);
11413
11414 if (t1sz == 0) {
11415 select = va > (0xffffffffu >> t0sz);
11416 } else {
11417 /* Note that we will detect errors later. */
11418 select = va >= ~(0xffffffffu >> t1sz);
11419 }
11420 if (!select) {
11421 tsz = t0sz;
11422 epd = extract32(tcr, 7, 1);
11423 hpd = extract64(tcr, 41, 1);
11424 } else {
11425 tsz = t1sz;
11426 epd = extract32(tcr, 23, 1);
11427 hpd = extract64(tcr, 42, 1);
11428 }
11429 /* For aarch32, hpd0 is not enabled without t2e as well. */
11430 hpd &= extract32(tcr, 6, 1);
11431 }
11432
11433 return (ARMVAParameters) {
11434 .tsz = tsz,
11435 .select = select,
11436 .epd = epd,
11437 .hpd = hpd,
11438 };
11439 }
11440
11441 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
11442 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11443 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11444 target_ulong *page_size_ptr,
11445 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11446 {
11447 ARMCPU *cpu = arm_env_get_cpu(env);
11448 CPUState *cs = CPU(cpu);
11449 /* Read an LPAE long-descriptor translation table. */
11450 ARMFaultType fault_type = ARMFault_Translation;
11451 uint32_t level;
11452 ARMVAParameters param;
11453 uint64_t ttbr;
11454 hwaddr descaddr, indexmask, indexmask_grainsize;
11455 uint32_t tableattrs;
11456 target_ulong page_size;
11457 uint32_t attrs;
11458 int32_t stride;
11459 int addrsize, inputsize;
11460 TCR *tcr = regime_tcr(env, mmu_idx);
11461 int ap, ns, xn, pxn;
11462 uint32_t el = regime_el(env, mmu_idx);
11463 bool ttbr1_valid;
11464 uint64_t descaddrmask;
11465 bool aarch64 = arm_el_is_aa64(env, el);
11466 bool guarded = false;
11467
11468 /* TODO:
11469 * This code does not handle the different format TCR for VTCR_EL2.
11470 * This code also does not support shareability levels.
11471 * Attribute and permission bit handling should also be checked when adding
11472 * support for those page table walks.
11473 */
11474 if (aarch64) {
11475 param = aa64_va_parameters(env, address, mmu_idx,
11476 access_type != MMU_INST_FETCH);
11477 level = 0;
11478 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
11479 * invalid.
11480 */
11481 ttbr1_valid = (el < 2);
11482 addrsize = 64 - 8 * param.tbi;
11483 inputsize = 64 - param.tsz;
11484 } else {
11485 param = aa32_va_parameters(env, address, mmu_idx);
11486 level = 1;
11487 /* There is no TTBR1 for EL2 */
11488 ttbr1_valid = (el != 2);
11489 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
11490 inputsize = addrsize - param.tsz;
11491 }
11492
11493 /*
11494 * We determined the region when collecting the parameters, but we
11495 * have not yet validated that the address is valid for the region.
11496 * Extract the top bits and verify that they all match select.
11497 *
11498 * For aa32, if inputsize == addrsize, then we have selected the
11499 * region by exclusion in aa32_va_parameters and there is no more
11500 * validation to do here.
11501 */
11502 if (inputsize < addrsize) {
11503 target_ulong top_bits = sextract64(address, inputsize,
11504 addrsize - inputsize);
11505 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
11506 /* The gap between the two regions is a Translation fault */
11507 fault_type = ARMFault_Translation;
11508 goto do_fault;
11509 }
11510 }
11511
11512 if (param.using64k) {
11513 stride = 13;
11514 } else if (param.using16k) {
11515 stride = 11;
11516 } else {
11517 stride = 9;
11518 }
11519
11520 /* Note that QEMU ignores shareability and cacheability attributes,
11521 * so we don't need to do anything with the SH, ORGN, IRGN fields
11522 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11523 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11524 * implement any ASID-like capability so we can ignore it (instead
11525 * we will always flush the TLB any time the ASID is changed).
11526 */
11527 ttbr = regime_ttbr(env, mmu_idx, param.select);
11528
11529 /* Here we should have set up all the parameters for the translation:
11530 * inputsize, ttbr, epd, stride, tbi
11531 */
11532
11533 if (param.epd) {
11534 /* Translation table walk disabled => Translation fault on TLB miss
11535 * Note: This is always 0 on 64-bit EL2 and EL3.
11536 */
11537 goto do_fault;
11538 }
11539
11540 if (mmu_idx != ARMMMUIdx_S2NS) {
11541 /* The starting level depends on the virtual address size (which can
11542 * be up to 48 bits) and the translation granule size. It indicates
11543 * the number of strides (stride bits at a time) needed to
11544 * consume the bits of the input address. In the pseudocode this is:
11545 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11546 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11547 * our 'stride + 3' and 'stride' is our 'stride'.
11548 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11549 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11550 * = 4 - (inputsize - 4) / stride;
11551 */
11552 level = 4 - (inputsize - 4) / stride;
11553 } else {
11554 /* For stage 2 translations the starting level is specified by the
11555 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11556 */
11557 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11558 uint32_t startlevel;
11559 bool ok;
11560
11561 if (!aarch64 || stride == 9) {
11562 /* AArch32 or 4KB pages */
11563 startlevel = 2 - sl0;
11564 } else {
11565 /* 16KB or 64KB pages */
11566 startlevel = 3 - sl0;
11567 }
11568
11569 /* Check that the starting level is valid. */
11570 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11571 inputsize, stride);
11572 if (!ok) {
11573 fault_type = ARMFault_Translation;
11574 goto do_fault;
11575 }
11576 level = startlevel;
11577 }
11578
11579 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11580 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11581
11582 /* Now we can extract the actual base address from the TTBR */
11583 descaddr = extract64(ttbr, 0, 48);
11584 descaddr &= ~indexmask;
11585
11586 /* The address field in the descriptor goes up to bit 39 for ARMv7
11587 * but up to bit 47 for ARMv8, but we use the descaddrmask
11588 * up to bit 39 for AArch32, because we don't need other bits in that case
11589 * to construct next descriptor address (anyway they should be all zeroes).
11590 */
11591 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11592 ~indexmask_grainsize;
11593
11594 /* Secure accesses start with the page table in secure memory and
11595 * can be downgraded to non-secure at any step. Non-secure accesses
11596 * remain non-secure. We implement this by just ORing in the NSTable/NS
11597 * bits at each step.
11598 */
11599 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11600 for (;;) {
11601 uint64_t descriptor;
11602 bool nstable;
11603
11604 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11605 descaddr &= ~7ULL;
11606 nstable = extract32(tableattrs, 4, 1);
11607 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11608 if (fi->type != ARMFault_None) {
11609 goto do_fault;
11610 }
11611
11612 if (!(descriptor & 1) ||
11613 (!(descriptor & 2) && (level == 3))) {
11614 /* Invalid, or the Reserved level 3 encoding */
11615 goto do_fault;
11616 }
11617 descaddr = descriptor & descaddrmask;
11618
11619 if ((descriptor & 2) && (level < 3)) {
11620 /* Table entry. The top five bits are attributes which may
11621 * propagate down through lower levels of the table (and
11622 * which are all arranged so that 0 means "no effect", so
11623 * we can gather them up by ORing in the bits at each level).
11624 */
11625 tableattrs |= extract64(descriptor, 59, 5);
11626 level++;
11627 indexmask = indexmask_grainsize;
11628 continue;
11629 }
11630 /* Block entry at level 1 or 2, or page entry at level 3.
11631 * These are basically the same thing, although the number
11632 * of bits we pull in from the vaddr varies.
11633 */
11634 page_size = (1ULL << ((stride * (4 - level)) + 3));
11635 descaddr |= (address & (page_size - 1));
11636 /* Extract attributes from the descriptor */
11637 attrs = extract64(descriptor, 2, 10)
11638 | (extract64(descriptor, 52, 12) << 10);
11639
11640 if (mmu_idx == ARMMMUIdx_S2NS) {
11641 /* Stage 2 table descriptors do not include any attribute fields */
11642 break;
11643 }
11644 /* Merge in attributes from table descriptors */
11645 attrs |= nstable << 3; /* NS */
11646 guarded = extract64(descriptor, 50, 1); /* GP */
11647 if (param.hpd) {
11648 /* HPD disables all the table attributes except NSTable. */
11649 break;
11650 }
11651 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11652 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11653 * means "force PL1 access only", which means forcing AP[1] to 0.
11654 */
11655 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11656 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11657 break;
11658 }
11659 /* Here descaddr is the final physical address, and attributes
11660 * are all in attrs.
11661 */
11662 fault_type = ARMFault_AccessFlag;
11663 if ((attrs & (1 << 8)) == 0) {
11664 /* Access flag */
11665 goto do_fault;
11666 }
11667
11668 ap = extract32(attrs, 4, 2);
11669 xn = extract32(attrs, 12, 1);
11670
11671 if (mmu_idx == ARMMMUIdx_S2NS) {
11672 ns = true;
11673 *prot = get_S2prot(env, ap, xn);
11674 } else {
11675 ns = extract32(attrs, 3, 1);
11676 pxn = extract32(attrs, 11, 1);
11677 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11678 }
11679
11680 fault_type = ARMFault_Permission;
11681 if (!(*prot & (1 << access_type))) {
11682 goto do_fault;
11683 }
11684
11685 if (ns) {
11686 /* The NS bit will (as required by the architecture) have no effect if
11687 * the CPU doesn't support TZ or this is a non-secure translation
11688 * regime, because the attribute will already be non-secure.
11689 */
11690 txattrs->secure = false;
11691 }
11692 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11693 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11694 txattrs->target_tlb_bit0 = true;
11695 }
11696
11697 if (cacheattrs != NULL) {
11698 if (mmu_idx == ARMMMUIdx_S2NS) {
11699 cacheattrs->attrs = convert_stage2_attrs(env,
11700 extract32(attrs, 0, 4));
11701 } else {
11702 /* Index into MAIR registers for cache attributes */
11703 uint8_t attrindx = extract32(attrs, 0, 3);
11704 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11705 assert(attrindx <= 7);
11706 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11707 }
11708 cacheattrs->shareability = extract32(attrs, 6, 2);
11709 }
11710
11711 *phys_ptr = descaddr;
11712 *page_size_ptr = page_size;
11713 return false;
11714
11715 do_fault:
11716 fi->type = fault_type;
11717 fi->level = level;
11718 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11719 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
11720 return true;
11721 }
11722
11723 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11724 ARMMMUIdx mmu_idx,
11725 int32_t address, int *prot)
11726 {
11727 if (!arm_feature(env, ARM_FEATURE_M)) {
11728 *prot = PAGE_READ | PAGE_WRITE;
11729 switch (address) {
11730 case 0xF0000000 ... 0xFFFFFFFF:
11731 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11732 /* hivecs execing is ok */
11733 *prot |= PAGE_EXEC;
11734 }
11735 break;
11736 case 0x00000000 ... 0x7FFFFFFF:
11737 *prot |= PAGE_EXEC;
11738 break;
11739 }
11740 } else {
11741 /* Default system address map for M profile cores.
11742 * The architecture specifies which regions are execute-never;
11743 * at the MPU level no other checks are defined.
11744 */
11745 switch (address) {
11746 case 0x00000000 ... 0x1fffffff: /* ROM */
11747 case 0x20000000 ... 0x3fffffff: /* SRAM */
11748 case 0x60000000 ... 0x7fffffff: /* RAM */
11749 case 0x80000000 ... 0x9fffffff: /* RAM */
11750 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11751 break;
11752 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11753 case 0xa0000000 ... 0xbfffffff: /* Device */
11754 case 0xc0000000 ... 0xdfffffff: /* Device */
11755 case 0xe0000000 ... 0xffffffff: /* System */
11756 *prot = PAGE_READ | PAGE_WRITE;
11757 break;
11758 default:
11759 g_assert_not_reached();
11760 }
11761 }
11762 }
11763
11764 static bool pmsav7_use_background_region(ARMCPU *cpu,
11765 ARMMMUIdx mmu_idx, bool is_user)
11766 {
11767 /* Return true if we should use the default memory map as a
11768 * "background" region if there are no hits against any MPU regions.
11769 */
11770 CPUARMState *env = &cpu->env;
11771
11772 if (is_user) {
11773 return false;
11774 }
11775
11776 if (arm_feature(env, ARM_FEATURE_M)) {
11777 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11778 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11779 } else {
11780 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11781 }
11782 }
11783
11784 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11785 {
11786 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11787 return arm_feature(env, ARM_FEATURE_M) &&
11788 extract32(address, 20, 12) == 0xe00;
11789 }
11790
11791 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11792 {
11793 /* True if address is in the M profile system region
11794 * 0xe0000000 - 0xffffffff
11795 */
11796 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11797 }
11798
11799 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11800 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11801 hwaddr *phys_ptr, int *prot,
11802 target_ulong *page_size,
11803 ARMMMUFaultInfo *fi)
11804 {
11805 ARMCPU *cpu = arm_env_get_cpu(env);
11806 int n;
11807 bool is_user = regime_is_user(env, mmu_idx);
11808
11809 *phys_ptr = address;
11810 *page_size = TARGET_PAGE_SIZE;
11811 *prot = 0;
11812
11813 if (regime_translation_disabled(env, mmu_idx) ||
11814 m_is_ppb_region(env, address)) {
11815 /* MPU disabled or M profile PPB access: use default memory map.
11816 * The other case which uses the default memory map in the
11817 * v7M ARM ARM pseudocode is exception vector reads from the vector
11818 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11819 * which always does a direct read using address_space_ldl(), rather
11820 * than going via this function, so we don't need to check that here.
11821 */
11822 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11823 } else { /* MPU enabled */
11824 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11825 /* region search */
11826 uint32_t base = env->pmsav7.drbar[n];
11827 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11828 uint32_t rmask;
11829 bool srdis = false;
11830
11831 if (!(env->pmsav7.drsr[n] & 0x1)) {
11832 continue;
11833 }
11834
11835 if (!rsize) {
11836 qemu_log_mask(LOG_GUEST_ERROR,
11837 "DRSR[%d]: Rsize field cannot be 0\n", n);
11838 continue;
11839 }
11840 rsize++;
11841 rmask = (1ull << rsize) - 1;
11842
11843 if (base & rmask) {
11844 qemu_log_mask(LOG_GUEST_ERROR,
11845 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11846 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11847 n, base, rmask);
11848 continue;
11849 }
11850
11851 if (address < base || address > base + rmask) {
11852 /*
11853 * Address not in this region. We must check whether the
11854 * region covers addresses in the same page as our address.
11855 * In that case we must not report a size that covers the
11856 * whole page for a subsequent hit against a different MPU
11857 * region or the background region, because it would result in
11858 * incorrect TLB hits for subsequent accesses to addresses that
11859 * are in this MPU region.
11860 */
11861 if (ranges_overlap(base, rmask,
11862 address & TARGET_PAGE_MASK,
11863 TARGET_PAGE_SIZE)) {
11864 *page_size = 1;
11865 }
11866 continue;
11867 }
11868
11869 /* Region matched */
11870
11871 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11872 int i, snd;
11873 uint32_t srdis_mask;
11874
11875 rsize -= 3; /* sub region size (power of 2) */
11876 snd = ((address - base) >> rsize) & 0x7;
11877 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11878
11879 srdis_mask = srdis ? 0x3 : 0x0;
11880 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11881 /* This will check in groups of 2, 4 and then 8, whether
11882 * the subregion bits are consistent. rsize is incremented
11883 * back up to give the region size, considering consistent
11884 * adjacent subregions as one region. Stop testing if rsize
11885 * is already big enough for an entire QEMU page.
11886 */
11887 int snd_rounded = snd & ~(i - 1);
11888 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11889 snd_rounded + 8, i);
11890 if (srdis_mask ^ srdis_multi) {
11891 break;
11892 }
11893 srdis_mask = (srdis_mask << i) | srdis_mask;
11894 rsize++;
11895 }
11896 }
11897 if (srdis) {
11898 continue;
11899 }
11900 if (rsize < TARGET_PAGE_BITS) {
11901 *page_size = 1 << rsize;
11902 }
11903 break;
11904 }
11905
11906 if (n == -1) { /* no hits */
11907 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11908 /* background fault */
11909 fi->type = ARMFault_Background;
11910 return true;
11911 }
11912 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11913 } else { /* a MPU hit! */
11914 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11915 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11916
11917 if (m_is_system_region(env, address)) {
11918 /* System space is always execute never */
11919 xn = 1;
11920 }
11921
11922 if (is_user) { /* User mode AP bit decoding */
11923 switch (ap) {
11924 case 0:
11925 case 1:
11926 case 5:
11927 break; /* no access */
11928 case 3:
11929 *prot |= PAGE_WRITE;
11930 /* fall through */
11931 case 2:
11932 case 6:
11933 *prot |= PAGE_READ | PAGE_EXEC;
11934 break;
11935 case 7:
11936 /* for v7M, same as 6; for R profile a reserved value */
11937 if (arm_feature(env, ARM_FEATURE_M)) {
11938 *prot |= PAGE_READ | PAGE_EXEC;
11939 break;
11940 }
11941 /* fall through */
11942 default:
11943 qemu_log_mask(LOG_GUEST_ERROR,
11944 "DRACR[%d]: Bad value for AP bits: 0x%"
11945 PRIx32 "\n", n, ap);
11946 }
11947 } else { /* Priv. mode AP bits decoding */
11948 switch (ap) {
11949 case 0:
11950 break; /* no access */
11951 case 1:
11952 case 2:
11953 case 3:
11954 *prot |= PAGE_WRITE;
11955 /* fall through */
11956 case 5:
11957 case 6:
11958 *prot |= PAGE_READ | PAGE_EXEC;
11959 break;
11960 case 7:
11961 /* for v7M, same as 6; for R profile a reserved value */
11962 if (arm_feature(env, ARM_FEATURE_M)) {
11963 *prot |= PAGE_READ | PAGE_EXEC;
11964 break;
11965 }
11966 /* fall through */
11967 default:
11968 qemu_log_mask(LOG_GUEST_ERROR,
11969 "DRACR[%d]: Bad value for AP bits: 0x%"
11970 PRIx32 "\n", n, ap);
11971 }
11972 }
11973
11974 /* execute never */
11975 if (xn) {
11976 *prot &= ~PAGE_EXEC;
11977 }
11978 }
11979 }
11980
11981 fi->type = ARMFault_Permission;
11982 fi->level = 1;
11983 return !(*prot & (1 << access_type));
11984 }
11985
11986 static bool v8m_is_sau_exempt(CPUARMState *env,
11987 uint32_t address, MMUAccessType access_type)
11988 {
11989 /* The architecture specifies that certain address ranges are
11990 * exempt from v8M SAU/IDAU checks.
11991 */
11992 return
11993 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11994 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11995 (address >= 0xe000e000 && address <= 0xe000efff) ||
11996 (address >= 0xe002e000 && address <= 0xe002efff) ||
11997 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11998 (address >= 0xe00ff000 && address <= 0xe00fffff);
11999 }
12000
12001 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
12002 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12003 V8M_SAttributes *sattrs)
12004 {
12005 /* Look up the security attributes for this address. Compare the
12006 * pseudocode SecurityCheck() function.
12007 * We assume the caller has zero-initialized *sattrs.
12008 */
12009 ARMCPU *cpu = arm_env_get_cpu(env);
12010 int r;
12011 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12012 int idau_region = IREGION_NOTVALID;
12013 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12014 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12015
12016 if (cpu->idau) {
12017 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12018 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12019
12020 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12021 &idau_nsc);
12022 }
12023
12024 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12025 /* 0xf0000000..0xffffffff is always S for insn fetches */
12026 return;
12027 }
12028
12029 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12030 sattrs->ns = !regime_is_secure(env, mmu_idx);
12031 return;
12032 }
12033
12034 if (idau_region != IREGION_NOTVALID) {
12035 sattrs->irvalid = true;
12036 sattrs->iregion = idau_region;
12037 }
12038
12039 switch (env->sau.ctrl & 3) {
12040 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12041 break;
12042 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12043 sattrs->ns = true;
12044 break;
12045 default: /* SAU.ENABLE == 1 */
12046 for (r = 0; r < cpu->sau_sregion; r++) {
12047 if (env->sau.rlar[r] & 1) {
12048 uint32_t base = env->sau.rbar[r] & ~0x1f;
12049 uint32_t limit = env->sau.rlar[r] | 0x1f;
12050
12051 if (base <= address && limit >= address) {
12052 if (base > addr_page_base || limit < addr_page_limit) {
12053 sattrs->subpage = true;
12054 }
12055 if (sattrs->srvalid) {
12056 /* If we hit in more than one region then we must report
12057 * as Secure, not NS-Callable, with no valid region
12058 * number info.
12059 */
12060 sattrs->ns = false;
12061 sattrs->nsc = false;
12062 sattrs->sregion = 0;
12063 sattrs->srvalid = false;
12064 break;
12065 } else {
12066 if (env->sau.rlar[r] & 2) {
12067 sattrs->nsc = true;
12068 } else {
12069 sattrs->ns = true;
12070 }
12071 sattrs->srvalid = true;
12072 sattrs->sregion = r;
12073 }
12074 } else {
12075 /*
12076 * Address not in this region. We must check whether the
12077 * region covers addresses in the same page as our address.
12078 * In that case we must not report a size that covers the
12079 * whole page for a subsequent hit against a different MPU
12080 * region or the background region, because it would result
12081 * in incorrect TLB hits for subsequent accesses to
12082 * addresses that are in this MPU region.
12083 */
12084 if (limit >= base &&
12085 ranges_overlap(base, limit - base + 1,
12086 addr_page_base,
12087 TARGET_PAGE_SIZE)) {
12088 sattrs->subpage = true;
12089 }
12090 }
12091 }
12092 }
12093 break;
12094 }
12095
12096 /*
12097 * The IDAU will override the SAU lookup results if it specifies
12098 * higher security than the SAU does.
12099 */
12100 if (!idau_ns) {
12101 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12102 sattrs->ns = false;
12103 sattrs->nsc = idau_nsc;
12104 }
12105 }
12106 }
12107
12108 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12109 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12110 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12111 int *prot, bool *is_subpage,
12112 ARMMMUFaultInfo *fi, uint32_t *mregion)
12113 {
12114 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12115 * that a full phys-to-virt translation does).
12116 * mregion is (if not NULL) set to the region number which matched,
12117 * or -1 if no region number is returned (MPU off, address did not
12118 * hit a region, address hit in multiple regions).
12119 * We set is_subpage to true if the region hit doesn't cover the
12120 * entire TARGET_PAGE the address is within.
12121 */
12122 ARMCPU *cpu = arm_env_get_cpu(env);
12123 bool is_user = regime_is_user(env, mmu_idx);
12124 uint32_t secure = regime_is_secure(env, mmu_idx);
12125 int n;
12126 int matchregion = -1;
12127 bool hit = false;
12128 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12129 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12130
12131 *is_subpage = false;
12132 *phys_ptr = address;
12133 *prot = 0;
12134 if (mregion) {
12135 *mregion = -1;
12136 }
12137
12138 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12139 * was an exception vector read from the vector table (which is always
12140 * done using the default system address map), because those accesses
12141 * are done in arm_v7m_load_vector(), which always does a direct
12142 * read using address_space_ldl(), rather than going via this function.
12143 */
12144 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12145 hit = true;
12146 } else if (m_is_ppb_region(env, address)) {
12147 hit = true;
12148 } else {
12149 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12150 hit = true;
12151 }
12152
12153 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12154 /* region search */
12155 /* Note that the base address is bits [31:5] from the register
12156 * with bits [4:0] all zeroes, but the limit address is bits
12157 * [31:5] from the register with bits [4:0] all ones.
12158 */
12159 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12160 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12161
12162 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12163 /* Region disabled */
12164 continue;
12165 }
12166
12167 if (address < base || address > limit) {
12168 /*
12169 * Address not in this region. We must check whether the
12170 * region covers addresses in the same page as our address.
12171 * In that case we must not report a size that covers the
12172 * whole page for a subsequent hit against a different MPU
12173 * region or the background region, because it would result in
12174 * incorrect TLB hits for subsequent accesses to addresses that
12175 * are in this MPU region.
12176 */
12177 if (limit >= base &&
12178 ranges_overlap(base, limit - base + 1,
12179 addr_page_base,
12180 TARGET_PAGE_SIZE)) {
12181 *is_subpage = true;
12182 }
12183 continue;
12184 }
12185
12186 if (base > addr_page_base || limit < addr_page_limit) {
12187 *is_subpage = true;
12188 }
12189
12190 if (matchregion != -1) {
12191 /* Multiple regions match -- always a failure (unlike
12192 * PMSAv7 where highest-numbered-region wins)
12193 */
12194 fi->type = ARMFault_Permission;
12195 fi->level = 1;
12196 return true;
12197 }
12198
12199 matchregion = n;
12200 hit = true;
12201 }
12202 }
12203
12204 if (!hit) {
12205 /* background fault */
12206 fi->type = ARMFault_Background;
12207 return true;
12208 }
12209
12210 if (matchregion == -1) {
12211 /* hit using the background region */
12212 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12213 } else {
12214 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12215 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12216
12217 if (m_is_system_region(env, address)) {
12218 /* System space is always execute never */
12219 xn = 1;
12220 }
12221
12222 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12223 if (*prot && !xn) {
12224 *prot |= PAGE_EXEC;
12225 }
12226 /* We don't need to look the attribute up in the MAIR0/MAIR1
12227 * registers because that only tells us about cacheability.
12228 */
12229 if (mregion) {
12230 *mregion = matchregion;
12231 }
12232 }
12233
12234 fi->type = ARMFault_Permission;
12235 fi->level = 1;
12236 return !(*prot & (1 << access_type));
12237 }
12238
12239
12240 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12241 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12242 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12243 int *prot, target_ulong *page_size,
12244 ARMMMUFaultInfo *fi)
12245 {
12246 uint32_t secure = regime_is_secure(env, mmu_idx);
12247 V8M_SAttributes sattrs = {};
12248 bool ret;
12249 bool mpu_is_subpage;
12250
12251 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12252 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12253 if (access_type == MMU_INST_FETCH) {
12254 /* Instruction fetches always use the MMU bank and the
12255 * transaction attribute determined by the fetch address,
12256 * regardless of CPU state. This is painful for QEMU
12257 * to handle, because it would mean we need to encode
12258 * into the mmu_idx not just the (user, negpri) information
12259 * for the current security state but also that for the
12260 * other security state, which would balloon the number
12261 * of mmu_idx values needed alarmingly.
12262 * Fortunately we can avoid this because it's not actually
12263 * possible to arbitrarily execute code from memory with
12264 * the wrong security attribute: it will always generate
12265 * an exception of some kind or another, apart from the
12266 * special case of an NS CPU executing an SG instruction
12267 * in S&NSC memory. So we always just fail the translation
12268 * here and sort things out in the exception handler
12269 * (including possibly emulating an SG instruction).
12270 */
12271 if (sattrs.ns != !secure) {
12272 if (sattrs.nsc) {
12273 fi->type = ARMFault_QEMU_NSCExec;
12274 } else {
12275 fi->type = ARMFault_QEMU_SFault;
12276 }
12277 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12278 *phys_ptr = address;
12279 *prot = 0;
12280 return true;
12281 }
12282 } else {
12283 /* For data accesses we always use the MMU bank indicated
12284 * by the current CPU state, but the security attributes
12285 * might downgrade a secure access to nonsecure.
12286 */
12287 if (sattrs.ns) {
12288 txattrs->secure = false;
12289 } else if (!secure) {
12290 /* NS access to S memory must fault.
12291 * Architecturally we should first check whether the
12292 * MPU information for this address indicates that we
12293 * are doing an unaligned access to Device memory, which
12294 * should generate a UsageFault instead. QEMU does not
12295 * currently check for that kind of unaligned access though.
12296 * If we added it we would need to do so as a special case
12297 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12298 */
12299 fi->type = ARMFault_QEMU_SFault;
12300 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12301 *phys_ptr = address;
12302 *prot = 0;
12303 return true;
12304 }
12305 }
12306 }
12307
12308 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12309 txattrs, prot, &mpu_is_subpage, fi, NULL);
12310 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12311 return ret;
12312 }
12313
12314 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12315 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12316 hwaddr *phys_ptr, int *prot,
12317 ARMMMUFaultInfo *fi)
12318 {
12319 int n;
12320 uint32_t mask;
12321 uint32_t base;
12322 bool is_user = regime_is_user(env, mmu_idx);
12323
12324 if (regime_translation_disabled(env, mmu_idx)) {
12325 /* MPU disabled. */
12326 *phys_ptr = address;
12327 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12328 return false;
12329 }
12330
12331 *phys_ptr = address;
12332 for (n = 7; n >= 0; n--) {
12333 base = env->cp15.c6_region[n];
12334 if ((base & 1) == 0) {
12335 continue;
12336 }
12337 mask = 1 << ((base >> 1) & 0x1f);
12338 /* Keep this shift separate from the above to avoid an
12339 (undefined) << 32. */
12340 mask = (mask << 1) - 1;
12341 if (((base ^ address) & ~mask) == 0) {
12342 break;
12343 }
12344 }
12345 if (n < 0) {
12346 fi->type = ARMFault_Background;
12347 return true;
12348 }
12349
12350 if (access_type == MMU_INST_FETCH) {
12351 mask = env->cp15.pmsav5_insn_ap;
12352 } else {
12353 mask = env->cp15.pmsav5_data_ap;
12354 }
12355 mask = (mask >> (n * 4)) & 0xf;
12356 switch (mask) {
12357 case 0:
12358 fi->type = ARMFault_Permission;
12359 fi->level = 1;
12360 return true;
12361 case 1:
12362 if (is_user) {
12363 fi->type = ARMFault_Permission;
12364 fi->level = 1;
12365 return true;
12366 }
12367 *prot = PAGE_READ | PAGE_WRITE;
12368 break;
12369 case 2:
12370 *prot = PAGE_READ;
12371 if (!is_user) {
12372 *prot |= PAGE_WRITE;
12373 }
12374 break;
12375 case 3:
12376 *prot = PAGE_READ | PAGE_WRITE;
12377 break;
12378 case 5:
12379 if (is_user) {
12380 fi->type = ARMFault_Permission;
12381 fi->level = 1;
12382 return true;
12383 }
12384 *prot = PAGE_READ;
12385 break;
12386 case 6:
12387 *prot = PAGE_READ;
12388 break;
12389 default:
12390 /* Bad permission. */
12391 fi->type = ARMFault_Permission;
12392 fi->level = 1;
12393 return true;
12394 }
12395 *prot |= PAGE_EXEC;
12396 return false;
12397 }
12398
12399 /* Combine either inner or outer cacheability attributes for normal
12400 * memory, according to table D4-42 and pseudocode procedure
12401 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12402 *
12403 * NB: only stage 1 includes allocation hints (RW bits), leading to
12404 * some asymmetry.
12405 */
12406 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12407 {
12408 if (s1 == 4 || s2 == 4) {
12409 /* non-cacheable has precedence */
12410 return 4;
12411 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12412 /* stage 1 write-through takes precedence */
12413 return s1;
12414 } else if (extract32(s2, 2, 2) == 2) {
12415 /* stage 2 write-through takes precedence, but the allocation hint
12416 * is still taken from stage 1
12417 */
12418 return (2 << 2) | extract32(s1, 0, 2);
12419 } else { /* write-back */
12420 return s1;
12421 }
12422 }
12423
12424 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12425 * and CombineS1S2Desc()
12426 *
12427 * @s1: Attributes from stage 1 walk
12428 * @s2: Attributes from stage 2 walk
12429 */
12430 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12431 {
12432 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
12433 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
12434 ARMCacheAttrs ret;
12435
12436 /* Combine shareability attributes (table D4-43) */
12437 if (s1.shareability == 2 || s2.shareability == 2) {
12438 /* if either are outer-shareable, the result is outer-shareable */
12439 ret.shareability = 2;
12440 } else if (s1.shareability == 3 || s2.shareability == 3) {
12441 /* if either are inner-shareable, the result is inner-shareable */
12442 ret.shareability = 3;
12443 } else {
12444 /* both non-shareable */
12445 ret.shareability = 0;
12446 }
12447
12448 /* Combine memory type and cacheability attributes */
12449 if (s1hi == 0 || s2hi == 0) {
12450 /* Device has precedence over normal */
12451 if (s1lo == 0 || s2lo == 0) {
12452 /* nGnRnE has precedence over anything */
12453 ret.attrs = 0;
12454 } else if (s1lo == 4 || s2lo == 4) {
12455 /* non-Reordering has precedence over Reordering */
12456 ret.attrs = 4; /* nGnRE */
12457 } else if (s1lo == 8 || s2lo == 8) {
12458 /* non-Gathering has precedence over Gathering */
12459 ret.attrs = 8; /* nGRE */
12460 } else {
12461 ret.attrs = 0xc; /* GRE */
12462 }
12463
12464 /* Any location for which the resultant memory type is any
12465 * type of Device memory is always treated as Outer Shareable.
12466 */
12467 ret.shareability = 2;
12468 } else { /* Normal memory */
12469 /* Outer/inner cacheability combine independently */
12470 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12471 | combine_cacheattr_nibble(s1lo, s2lo);
12472
12473 if (ret.attrs == 0x44) {
12474 /* Any location for which the resultant memory type is Normal
12475 * Inner Non-cacheable, Outer Non-cacheable is always treated
12476 * as Outer Shareable.
12477 */
12478 ret.shareability = 2;
12479 }
12480 }
12481
12482 return ret;
12483 }
12484
12485
12486 /* get_phys_addr - get the physical address for this virtual address
12487 *
12488 * Find the physical address corresponding to the given virtual address,
12489 * by doing a translation table walk on MMU based systems or using the
12490 * MPU state on MPU based systems.
12491 *
12492 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12493 * prot and page_size may not be filled in, and the populated fsr value provides
12494 * information on why the translation aborted, in the format of a
12495 * DFSR/IFSR fault register, with the following caveats:
12496 * * we honour the short vs long DFSR format differences.
12497 * * the WnR bit is never set (the caller must do this).
12498 * * for PSMAv5 based systems we don't bother to return a full FSR format
12499 * value.
12500 *
12501 * @env: CPUARMState
12502 * @address: virtual address to get physical address for
12503 * @access_type: 0 for read, 1 for write, 2 for execute
12504 * @mmu_idx: MMU index indicating required translation regime
12505 * @phys_ptr: set to the physical address corresponding to the virtual address
12506 * @attrs: set to the memory transaction attributes to use
12507 * @prot: set to the permissions for the page containing phys_ptr
12508 * @page_size: set to the size of the page containing phys_ptr
12509 * @fi: set to fault info if the translation fails
12510 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12511 */
12512 static bool get_phys_addr(CPUARMState *env, target_ulong address,
12513 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12514 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12515 target_ulong *page_size,
12516 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12517 {
12518 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
12519 /* Call ourselves recursively to do the stage 1 and then stage 2
12520 * translations.
12521 */
12522 if (arm_feature(env, ARM_FEATURE_EL2)) {
12523 hwaddr ipa;
12524 int s2_prot;
12525 int ret;
12526 ARMCacheAttrs cacheattrs2 = {};
12527
12528 ret = get_phys_addr(env, address, access_type,
12529 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12530 prot, page_size, fi, cacheattrs);
12531
12532 /* If S1 fails or S2 is disabled, return early. */
12533 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
12534 *phys_ptr = ipa;
12535 return ret;
12536 }
12537
12538 /* S1 is done. Now do S2 translation. */
12539 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
12540 phys_ptr, attrs, &s2_prot,
12541 page_size, fi,
12542 cacheattrs != NULL ? &cacheattrs2 : NULL);
12543 fi->s2addr = ipa;
12544 /* Combine the S1 and S2 perms. */
12545 *prot &= s2_prot;
12546
12547 /* Combine the S1 and S2 cache attributes, if needed */
12548 if (!ret && cacheattrs != NULL) {
12549 if (env->cp15.hcr_el2 & HCR_DC) {
12550 /*
12551 * HCR.DC forces the first stage attributes to
12552 * Normal Non-Shareable,
12553 * Inner Write-Back Read-Allocate Write-Allocate,
12554 * Outer Write-Back Read-Allocate Write-Allocate.
12555 */
12556 cacheattrs->attrs = 0xff;
12557 cacheattrs->shareability = 0;
12558 }
12559 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12560 }
12561
12562 return ret;
12563 } else {
12564 /*
12565 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12566 */
12567 mmu_idx = stage_1_mmu_idx(mmu_idx);
12568 }
12569 }
12570
12571 /* The page table entries may downgrade secure to non-secure, but
12572 * cannot upgrade an non-secure translation regime's attributes
12573 * to secure.
12574 */
12575 attrs->secure = regime_is_secure(env, mmu_idx);
12576 attrs->user = regime_is_user(env, mmu_idx);
12577
12578 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12579 * In v7 and earlier it affects all stage 1 translations.
12580 */
12581 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
12582 && !arm_feature(env, ARM_FEATURE_V8)) {
12583 if (regime_el(env, mmu_idx) == 3) {
12584 address += env->cp15.fcseidr_s;
12585 } else {
12586 address += env->cp15.fcseidr_ns;
12587 }
12588 }
12589
12590 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12591 bool ret;
12592 *page_size = TARGET_PAGE_SIZE;
12593
12594 if (arm_feature(env, ARM_FEATURE_V8)) {
12595 /* PMSAv8 */
12596 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12597 phys_ptr, attrs, prot, page_size, fi);
12598 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12599 /* PMSAv7 */
12600 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12601 phys_ptr, prot, page_size, fi);
12602 } else {
12603 /* Pre-v7 MPU */
12604 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12605 phys_ptr, prot, fi);
12606 }
12607 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12608 " mmu_idx %u -> %s (prot %c%c%c)\n",
12609 access_type == MMU_DATA_LOAD ? "reading" :
12610 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12611 (uint32_t)address, mmu_idx,
12612 ret ? "Miss" : "Hit",
12613 *prot & PAGE_READ ? 'r' : '-',
12614 *prot & PAGE_WRITE ? 'w' : '-',
12615 *prot & PAGE_EXEC ? 'x' : '-');
12616
12617 return ret;
12618 }
12619
12620 /* Definitely a real MMU, not an MPU */
12621
12622 if (regime_translation_disabled(env, mmu_idx)) {
12623 /* MMU disabled. */
12624 *phys_ptr = address;
12625 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12626 *page_size = TARGET_PAGE_SIZE;
12627 return 0;
12628 }
12629
12630 if (regime_using_lpae_format(env, mmu_idx)) {
12631 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
12632 phys_ptr, attrs, prot, page_size,
12633 fi, cacheattrs);
12634 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12635 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12636 phys_ptr, attrs, prot, page_size, fi);
12637 } else {
12638 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12639 phys_ptr, prot, page_size, fi);
12640 }
12641 }
12642
12643 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12644 MemTxAttrs *attrs)
12645 {
12646 ARMCPU *cpu = ARM_CPU(cs);
12647 CPUARMState *env = &cpu->env;
12648 hwaddr phys_addr;
12649 target_ulong page_size;
12650 int prot;
12651 bool ret;
12652 ARMMMUFaultInfo fi = {};
12653 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12654
12655 *attrs = (MemTxAttrs) {};
12656
12657 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12658 attrs, &prot, &page_size, &fi, NULL);
12659
12660 if (ret) {
12661 return -1;
12662 }
12663 return phys_addr;
12664 }
12665
12666 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
12667 {
12668 uint32_t mask;
12669 unsigned el = arm_current_el(env);
12670
12671 /* First handle registers which unprivileged can read */
12672
12673 switch (reg) {
12674 case 0 ... 7: /* xPSR sub-fields */
12675 mask = 0;
12676 if ((reg & 1) && el) {
12677 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
12678 }
12679 if (!(reg & 4)) {
12680 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
12681 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12682 mask |= XPSR_GE;
12683 }
12684 }
12685 /* EPSR reads as zero */
12686 return xpsr_read(env) & mask;
12687 break;
12688 case 20: /* CONTROL */
12689 {
12690 uint32_t value = env->v7m.control[env->v7m.secure];
12691 if (!env->v7m.secure) {
12692 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
12693 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
12694 }
12695 return value;
12696 }
12697 case 0x94: /* CONTROL_NS */
12698 /* We have to handle this here because unprivileged Secure code
12699 * can read the NS CONTROL register.
12700 */
12701 if (!env->v7m.secure) {
12702 return 0;
12703 }
12704 return env->v7m.control[M_REG_NS] |
12705 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
12706 }
12707
12708 if (el == 0) {
12709 return 0; /* unprivileged reads others as zero */
12710 }
12711
12712 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12713 switch (reg) {
12714 case 0x88: /* MSP_NS */
12715 if (!env->v7m.secure) {
12716 return 0;
12717 }
12718 return env->v7m.other_ss_msp;
12719 case 0x89: /* PSP_NS */
12720 if (!env->v7m.secure) {
12721 return 0;
12722 }
12723 return env->v7m.other_ss_psp;
12724 case 0x8a: /* MSPLIM_NS */
12725 if (!env->v7m.secure) {
12726 return 0;
12727 }
12728 return env->v7m.msplim[M_REG_NS];
12729 case 0x8b: /* PSPLIM_NS */
12730 if (!env->v7m.secure) {
12731 return 0;
12732 }
12733 return env->v7m.psplim[M_REG_NS];
12734 case 0x90: /* PRIMASK_NS */
12735 if (!env->v7m.secure) {
12736 return 0;
12737 }
12738 return env->v7m.primask[M_REG_NS];
12739 case 0x91: /* BASEPRI_NS */
12740 if (!env->v7m.secure) {
12741 return 0;
12742 }
12743 return env->v7m.basepri[M_REG_NS];
12744 case 0x93: /* FAULTMASK_NS */
12745 if (!env->v7m.secure) {
12746 return 0;
12747 }
12748 return env->v7m.faultmask[M_REG_NS];
12749 case 0x98: /* SP_NS */
12750 {
12751 /* This gives the non-secure SP selected based on whether we're
12752 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12753 */
12754 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12755
12756 if (!env->v7m.secure) {
12757 return 0;
12758 }
12759 if (!arm_v7m_is_handler_mode(env) && spsel) {
12760 return env->v7m.other_ss_psp;
12761 } else {
12762 return env->v7m.other_ss_msp;
12763 }
12764 }
12765 default:
12766 break;
12767 }
12768 }
12769
12770 switch (reg) {
12771 case 8: /* MSP */
12772 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12773 case 9: /* PSP */
12774 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12775 case 10: /* MSPLIM */
12776 if (!arm_feature(env, ARM_FEATURE_V8)) {
12777 goto bad_reg;
12778 }
12779 return env->v7m.msplim[env->v7m.secure];
12780 case 11: /* PSPLIM */
12781 if (!arm_feature(env, ARM_FEATURE_V8)) {
12782 goto bad_reg;
12783 }
12784 return env->v7m.psplim[env->v7m.secure];
12785 case 16: /* PRIMASK */
12786 return env->v7m.primask[env->v7m.secure];
12787 case 17: /* BASEPRI */
12788 case 18: /* BASEPRI_MAX */
12789 return env->v7m.basepri[env->v7m.secure];
12790 case 19: /* FAULTMASK */
12791 return env->v7m.faultmask[env->v7m.secure];
12792 default:
12793 bad_reg:
12794 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12795 " register %d\n", reg);
12796 return 0;
12797 }
12798 }
12799
12800 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12801 {
12802 /* We're passed bits [11..0] of the instruction; extract
12803 * SYSm and the mask bits.
12804 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12805 * we choose to treat them as if the mask bits were valid.
12806 * NB that the pseudocode 'mask' variable is bits [11..10],
12807 * whereas ours is [11..8].
12808 */
12809 uint32_t mask = extract32(maskreg, 8, 4);
12810 uint32_t reg = extract32(maskreg, 0, 8);
12811 int cur_el = arm_current_el(env);
12812
12813 if (cur_el == 0 && reg > 7 && reg != 20) {
12814 /*
12815 * only xPSR sub-fields and CONTROL.SFPA may be written by
12816 * unprivileged code
12817 */
12818 return;
12819 }
12820
12821 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12822 switch (reg) {
12823 case 0x88: /* MSP_NS */
12824 if (!env->v7m.secure) {
12825 return;
12826 }
12827 env->v7m.other_ss_msp = val;
12828 return;
12829 case 0x89: /* PSP_NS */
12830 if (!env->v7m.secure) {
12831 return;
12832 }
12833 env->v7m.other_ss_psp = val;
12834 return;
12835 case 0x8a: /* MSPLIM_NS */
12836 if (!env->v7m.secure) {
12837 return;
12838 }
12839 env->v7m.msplim[M_REG_NS] = val & ~7;
12840 return;
12841 case 0x8b: /* PSPLIM_NS */
12842 if (!env->v7m.secure) {
12843 return;
12844 }
12845 env->v7m.psplim[M_REG_NS] = val & ~7;
12846 return;
12847 case 0x90: /* PRIMASK_NS */
12848 if (!env->v7m.secure) {
12849 return;
12850 }
12851 env->v7m.primask[M_REG_NS] = val & 1;
12852 return;
12853 case 0x91: /* BASEPRI_NS */
12854 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12855 return;
12856 }
12857 env->v7m.basepri[M_REG_NS] = val & 0xff;
12858 return;
12859 case 0x93: /* FAULTMASK_NS */
12860 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12861 return;
12862 }
12863 env->v7m.faultmask[M_REG_NS] = val & 1;
12864 return;
12865 case 0x94: /* CONTROL_NS */
12866 if (!env->v7m.secure) {
12867 return;
12868 }
12869 write_v7m_control_spsel_for_secstate(env,
12870 val & R_V7M_CONTROL_SPSEL_MASK,
12871 M_REG_NS);
12872 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12873 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12874 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12875 }
12876 /*
12877 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
12878 * RES0 if the FPU is not present, and is stored in the S bank
12879 */
12880 if (arm_feature(env, ARM_FEATURE_VFP) &&
12881 extract32(env->v7m.nsacr, 10, 1)) {
12882 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12883 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12884 }
12885 return;
12886 case 0x98: /* SP_NS */
12887 {
12888 /* This gives the non-secure SP selected based on whether we're
12889 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12890 */
12891 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12892 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12893 uint32_t limit;
12894
12895 if (!env->v7m.secure) {
12896 return;
12897 }
12898
12899 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12900
12901 if (val < limit) {
12902 CPUState *cs = CPU(arm_env_get_cpu(env));
12903
12904 cpu_restore_state(cs, GETPC(), true);
12905 raise_exception(env, EXCP_STKOF, 0, 1);
12906 }
12907
12908 if (is_psp) {
12909 env->v7m.other_ss_psp = val;
12910 } else {
12911 env->v7m.other_ss_msp = val;
12912 }
12913 return;
12914 }
12915 default:
12916 break;
12917 }
12918 }
12919
12920 switch (reg) {
12921 case 0 ... 7: /* xPSR sub-fields */
12922 /* only APSR is actually writable */
12923 if (!(reg & 4)) {
12924 uint32_t apsrmask = 0;
12925
12926 if (mask & 8) {
12927 apsrmask |= XPSR_NZCV | XPSR_Q;
12928 }
12929 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12930 apsrmask |= XPSR_GE;
12931 }
12932 xpsr_write(env, val, apsrmask);
12933 }
12934 break;
12935 case 8: /* MSP */
12936 if (v7m_using_psp(env)) {
12937 env->v7m.other_sp = val;
12938 } else {
12939 env->regs[13] = val;
12940 }
12941 break;
12942 case 9: /* PSP */
12943 if (v7m_using_psp(env)) {
12944 env->regs[13] = val;
12945 } else {
12946 env->v7m.other_sp = val;
12947 }
12948 break;
12949 case 10: /* MSPLIM */
12950 if (!arm_feature(env, ARM_FEATURE_V8)) {
12951 goto bad_reg;
12952 }
12953 env->v7m.msplim[env->v7m.secure] = val & ~7;
12954 break;
12955 case 11: /* PSPLIM */
12956 if (!arm_feature(env, ARM_FEATURE_V8)) {
12957 goto bad_reg;
12958 }
12959 env->v7m.psplim[env->v7m.secure] = val & ~7;
12960 break;
12961 case 16: /* PRIMASK */
12962 env->v7m.primask[env->v7m.secure] = val & 1;
12963 break;
12964 case 17: /* BASEPRI */
12965 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12966 goto bad_reg;
12967 }
12968 env->v7m.basepri[env->v7m.secure] = val & 0xff;
12969 break;
12970 case 18: /* BASEPRI_MAX */
12971 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12972 goto bad_reg;
12973 }
12974 val &= 0xff;
12975 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12976 || env->v7m.basepri[env->v7m.secure] == 0)) {
12977 env->v7m.basepri[env->v7m.secure] = val;
12978 }
12979 break;
12980 case 19: /* FAULTMASK */
12981 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12982 goto bad_reg;
12983 }
12984 env->v7m.faultmask[env->v7m.secure] = val & 1;
12985 break;
12986 case 20: /* CONTROL */
12987 /*
12988 * Writing to the SPSEL bit only has an effect if we are in
12989 * thread mode; other bits can be updated by any privileged code.
12990 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12991 * env->v7m.control, so we only need update the others.
12992 * For v7M, we must just ignore explicit writes to SPSEL in handler
12993 * mode; for v8M the write is permitted but will have no effect.
12994 * All these bits are writes-ignored from non-privileged code,
12995 * except for SFPA.
12996 */
12997 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
12998 !arm_v7m_is_handler_mode(env))) {
12999 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
13000 }
13001 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
13002 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
13003 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
13004 }
13005 if (arm_feature(env, ARM_FEATURE_VFP)) {
13006 /*
13007 * SFPA is RAZ/WI from NS or if no FPU.
13008 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
13009 * Both are stored in the S bank.
13010 */
13011 if (env->v7m.secure) {
13012 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
13013 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
13014 }
13015 if (cur_el > 0 &&
13016 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
13017 extract32(env->v7m.nsacr, 10, 1))) {
13018 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
13019 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
13020 }
13021 }
13022 break;
13023 default:
13024 bad_reg:
13025 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
13026 " register %d\n", reg);
13027 return;
13028 }
13029 }
13030
13031 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
13032 {
13033 /* Implement the TT instruction. op is bits [7:6] of the insn. */
13034 bool forceunpriv = op & 1;
13035 bool alt = op & 2;
13036 V8M_SAttributes sattrs = {};
13037 uint32_t tt_resp;
13038 bool r, rw, nsr, nsrw, mrvalid;
13039 int prot;
13040 ARMMMUFaultInfo fi = {};
13041 MemTxAttrs attrs = {};
13042 hwaddr phys_addr;
13043 ARMMMUIdx mmu_idx;
13044 uint32_t mregion;
13045 bool targetpriv;
13046 bool targetsec = env->v7m.secure;
13047 bool is_subpage;
13048
13049 /* Work out what the security state and privilege level we're
13050 * interested in is...
13051 */
13052 if (alt) {
13053 targetsec = !targetsec;
13054 }
13055
13056 if (forceunpriv) {
13057 targetpriv = false;
13058 } else {
13059 targetpriv = arm_v7m_is_handler_mode(env) ||
13060 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
13061 }
13062
13063 /* ...and then figure out which MMU index this is */
13064 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
13065
13066 /* We know that the MPU and SAU don't care about the access type
13067 * for our purposes beyond that we don't want to claim to be
13068 * an insn fetch, so we arbitrarily call this a read.
13069 */
13070
13071 /* MPU region info only available for privileged or if
13072 * inspecting the other MPU state.
13073 */
13074 if (arm_current_el(env) != 0 || alt) {
13075 /* We can ignore the return value as prot is always set */
13076 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
13077 &phys_addr, &attrs, &prot, &is_subpage,
13078 &fi, &mregion);
13079 if (mregion == -1) {
13080 mrvalid = false;
13081 mregion = 0;
13082 } else {
13083 mrvalid = true;
13084 }
13085 r = prot & PAGE_READ;
13086 rw = prot & PAGE_WRITE;
13087 } else {
13088 r = false;
13089 rw = false;
13090 mrvalid = false;
13091 mregion = 0;
13092 }
13093
13094 if (env->v7m.secure) {
13095 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
13096 nsr = sattrs.ns && r;
13097 nsrw = sattrs.ns && rw;
13098 } else {
13099 sattrs.ns = true;
13100 nsr = false;
13101 nsrw = false;
13102 }
13103
13104 tt_resp = (sattrs.iregion << 24) |
13105 (sattrs.irvalid << 23) |
13106 ((!sattrs.ns) << 22) |
13107 (nsrw << 21) |
13108 (nsr << 20) |
13109 (rw << 19) |
13110 (r << 18) |
13111 (sattrs.srvalid << 17) |
13112 (mrvalid << 16) |
13113 (sattrs.sregion << 8) |
13114 mregion;
13115
13116 return tt_resp;
13117 }
13118
13119 #endif
13120
13121 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
13122 MMUAccessType access_type, int mmu_idx,
13123 bool probe, uintptr_t retaddr)
13124 {
13125 ARMCPU *cpu = ARM_CPU(cs);
13126
13127 #ifdef CONFIG_USER_ONLY
13128 cpu->env.exception.vaddress = address;
13129 if (access_type == MMU_INST_FETCH) {
13130 cs->exception_index = EXCP_PREFETCH_ABORT;
13131 } else {
13132 cs->exception_index = EXCP_DATA_ABORT;
13133 }
13134 cpu_loop_exit_restore(cs, retaddr);
13135 #else
13136 hwaddr phys_addr;
13137 target_ulong page_size;
13138 int prot, ret;
13139 MemTxAttrs attrs = {};
13140 ARMMMUFaultInfo fi = {};
13141
13142 /*
13143 * Walk the page table and (if the mapping exists) add the page
13144 * to the TLB. On success, return true. Otherwise, if probing,
13145 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault
13146 * register format, and signal the fault.
13147 */
13148 ret = get_phys_addr(&cpu->env, address, access_type,
13149 core_to_arm_mmu_idx(&cpu->env, mmu_idx),
13150 &phys_addr, &attrs, &prot, &page_size, &fi, NULL);
13151 if (likely(!ret)) {
13152 /*
13153 * Map a single [sub]page. Regions smaller than our declared
13154 * target page size are handled specially, so for those we
13155 * pass in the exact addresses.
13156 */
13157 if (page_size >= TARGET_PAGE_SIZE) {
13158 phys_addr &= TARGET_PAGE_MASK;
13159 address &= TARGET_PAGE_MASK;
13160 }
13161 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
13162 prot, mmu_idx, page_size);
13163 return true;
13164 } else if (probe) {
13165 return false;
13166 } else {
13167 /* now we have a real cpu fault */
13168 cpu_restore_state(cs, retaddr, true);
13169 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
13170 }
13171 #endif
13172 }
13173
13174 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
13175 {
13176 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
13177 * Note that we do not implement the (architecturally mandated)
13178 * alignment fault for attempts to use this on Device memory
13179 * (which matches the usual QEMU behaviour of not implementing either
13180 * alignment faults or any memory attribute handling).
13181 */
13182
13183 ARMCPU *cpu = arm_env_get_cpu(env);
13184 uint64_t blocklen = 4 << cpu->dcz_blocksize;
13185 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
13186
13187 #ifndef CONFIG_USER_ONLY
13188 {
13189 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
13190 * the block size so we might have to do more than one TLB lookup.
13191 * We know that in fact for any v8 CPU the page size is at least 4K
13192 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
13193 * 1K as an artefact of legacy v5 subpage support being present in the
13194 * same QEMU executable. So in practice the hostaddr[] array has
13195 * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
13196 */
13197 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
13198 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
13199 int try, i;
13200 unsigned mmu_idx = cpu_mmu_index(env, false);
13201 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
13202
13203 assert(maxidx <= ARRAY_SIZE(hostaddr));
13204
13205 for (try = 0; try < 2; try++) {
13206
13207 for (i = 0; i < maxidx; i++) {
13208 hostaddr[i] = tlb_vaddr_to_host(env,
13209 vaddr + TARGET_PAGE_SIZE * i,
13210 1, mmu_idx);
13211 if (!hostaddr[i]) {
13212 break;
13213 }
13214 }
13215 if (i == maxidx) {
13216 /* If it's all in the TLB it's fair game for just writing to;
13217 * we know we don't need to update dirty status, etc.
13218 */
13219 for (i = 0; i < maxidx - 1; i++) {
13220 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
13221 }
13222 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
13223 return;
13224 }
13225 /* OK, try a store and see if we can populate the tlb. This
13226 * might cause an exception if the memory isn't writable,
13227 * in which case we will longjmp out of here. We must for
13228 * this purpose use the actual register value passed to us
13229 * so that we get the fault address right.
13230 */
13231 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
13232 /* Now we can populate the other TLB entries, if any */
13233 for (i = 0; i < maxidx; i++) {
13234 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
13235 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
13236 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
13237 }
13238 }
13239 }
13240
13241 /* Slow path (probably attempt to do this to an I/O device or
13242 * similar, or clearing of a block of code we have translations
13243 * cached for). Just do a series of byte writes as the architecture
13244 * demands. It's not worth trying to use a cpu_physical_memory_map(),
13245 * memset(), unmap() sequence here because:
13246 * + we'd need to account for the blocksize being larger than a page
13247 * + the direct-RAM access case is almost always going to be dealt
13248 * with in the fastpath code above, so there's no speed benefit
13249 * + we would have to deal with the map returning NULL because the
13250 * bounce buffer was in use
13251 */
13252 for (i = 0; i < blocklen; i++) {
13253 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
13254 }
13255 }
13256 #else
13257 memset(g2h(vaddr), 0, blocklen);
13258 #endif
13259 }
13260
13261 /* Note that signed overflow is undefined in C. The following routines are
13262 careful to use unsigned types where modulo arithmetic is required.
13263 Failure to do so _will_ break on newer gcc. */
13264
13265 /* Signed saturating arithmetic. */
13266
13267 /* Perform 16-bit signed saturating addition. */
13268 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
13269 {
13270 uint16_t res;
13271
13272 res = a + b;
13273 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
13274 if (a & 0x8000)
13275 res = 0x8000;
13276 else
13277 res = 0x7fff;
13278 }
13279 return res;
13280 }
13281
13282 /* Perform 8-bit signed saturating addition. */
13283 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
13284 {
13285 uint8_t res;
13286
13287 res = a + b;
13288 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
13289 if (a & 0x80)
13290 res = 0x80;
13291 else
13292 res = 0x7f;
13293 }
13294 return res;
13295 }
13296
13297 /* Perform 16-bit signed saturating subtraction. */
13298 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
13299 {
13300 uint16_t res;
13301
13302 res = a - b;
13303 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
13304 if (a & 0x8000)
13305 res = 0x8000;
13306 else
13307 res = 0x7fff;
13308 }
13309 return res;
13310 }
13311
13312 /* Perform 8-bit signed saturating subtraction. */
13313 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
13314 {
13315 uint8_t res;
13316
13317 res = a - b;
13318 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
13319 if (a & 0x80)
13320 res = 0x80;
13321 else
13322 res = 0x7f;
13323 }
13324 return res;
13325 }
13326
13327 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
13328 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
13329 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
13330 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
13331 #define PFX q
13332
13333 #include "op_addsub.h"
13334
13335 /* Unsigned saturating arithmetic. */
13336 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
13337 {
13338 uint16_t res;
13339 res = a + b;
13340 if (res < a)
13341 res = 0xffff;
13342 return res;
13343 }
13344
13345 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
13346 {
13347 if (a > b)
13348 return a - b;
13349 else
13350 return 0;
13351 }
13352
13353 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13354 {
13355 uint8_t res;
13356 res = a + b;
13357 if (res < a)
13358 res = 0xff;
13359 return res;
13360 }
13361
13362 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13363 {
13364 if (a > b)
13365 return a - b;
13366 else
13367 return 0;
13368 }
13369
13370 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13371 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13372 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
13373 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
13374 #define PFX uq
13375
13376 #include "op_addsub.h"
13377
13378 /* Signed modulo arithmetic. */
13379 #define SARITH16(a, b, n, op) do { \
13380 int32_t sum; \
13381 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13382 RESULT(sum, n, 16); \
13383 if (sum >= 0) \
13384 ge |= 3 << (n * 2); \
13385 } while(0)
13386
13387 #define SARITH8(a, b, n, op) do { \
13388 int32_t sum; \
13389 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13390 RESULT(sum, n, 8); \
13391 if (sum >= 0) \
13392 ge |= 1 << n; \
13393 } while(0)
13394
13395
13396 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13397 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13398 #define ADD8(a, b, n) SARITH8(a, b, n, +)
13399 #define SUB8(a, b, n) SARITH8(a, b, n, -)
13400 #define PFX s
13401 #define ARITH_GE
13402
13403 #include "op_addsub.h"
13404
13405 /* Unsigned modulo arithmetic. */
13406 #define ADD16(a, b, n) do { \
13407 uint32_t sum; \
13408 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13409 RESULT(sum, n, 16); \
13410 if ((sum >> 16) == 1) \
13411 ge |= 3 << (n * 2); \
13412 } while(0)
13413
13414 #define ADD8(a, b, n) do { \
13415 uint32_t sum; \
13416 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13417 RESULT(sum, n, 8); \
13418 if ((sum >> 8) == 1) \
13419 ge |= 1 << n; \
13420 } while(0)
13421
13422 #define SUB16(a, b, n) do { \
13423 uint32_t sum; \
13424 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13425 RESULT(sum, n, 16); \
13426 if ((sum >> 16) == 0) \
13427 ge |= 3 << (n * 2); \
13428 } while(0)
13429
13430 #define SUB8(a, b, n) do { \
13431 uint32_t sum; \
13432 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13433 RESULT(sum, n, 8); \
13434 if ((sum >> 8) == 0) \
13435 ge |= 1 << n; \
13436 } while(0)
13437
13438 #define PFX u
13439 #define ARITH_GE
13440
13441 #include "op_addsub.h"
13442
13443 /* Halved signed arithmetic. */
13444 #define ADD16(a, b, n) \
13445 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13446 #define SUB16(a, b, n) \
13447 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13448 #define ADD8(a, b, n) \
13449 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13450 #define SUB8(a, b, n) \
13451 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13452 #define PFX sh
13453
13454 #include "op_addsub.h"
13455
13456 /* Halved unsigned arithmetic. */
13457 #define ADD16(a, b, n) \
13458 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13459 #define SUB16(a, b, n) \
13460 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13461 #define ADD8(a, b, n) \
13462 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13463 #define SUB8(a, b, n) \
13464 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13465 #define PFX uh
13466
13467 #include "op_addsub.h"
13468
13469 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13470 {
13471 if (a > b)
13472 return a - b;
13473 else
13474 return b - a;
13475 }
13476
13477 /* Unsigned sum of absolute byte differences. */
13478 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13479 {
13480 uint32_t sum;
13481 sum = do_usad(a, b);
13482 sum += do_usad(a >> 8, b >> 8);
13483 sum += do_usad(a >> 16, b >>16);
13484 sum += do_usad(a >> 24, b >> 24);
13485 return sum;
13486 }
13487
13488 /* For ARMv6 SEL instruction. */
13489 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13490 {
13491 uint32_t mask;
13492
13493 mask = 0;
13494 if (flags & 1)
13495 mask |= 0xff;
13496 if (flags & 2)
13497 mask |= 0xff00;
13498 if (flags & 4)
13499 mask |= 0xff0000;
13500 if (flags & 8)
13501 mask |= 0xff000000;
13502 return (a & mask) | (b & ~mask);
13503 }
13504
13505 /* CRC helpers.
13506 * The upper bytes of val (above the number specified by 'bytes') must have
13507 * been zeroed out by the caller.
13508 */
13509 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13510 {
13511 uint8_t buf[4];
13512
13513 stl_le_p(buf, val);
13514
13515 /* zlib crc32 converts the accumulator and output to one's complement. */
13516 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13517 }
13518
13519 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13520 {
13521 uint8_t buf[4];
13522
13523 stl_le_p(buf, val);
13524
13525 /* Linux crc32c converts the output to one's complement. */
13526 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13527 }
13528
13529 /* Return the exception level to which FP-disabled exceptions should
13530 * be taken, or 0 if FP is enabled.
13531 */
13532 int fp_exception_el(CPUARMState *env, int cur_el)
13533 {
13534 #ifndef CONFIG_USER_ONLY
13535 int fpen;
13536
13537 /* CPACR and the CPTR registers don't exist before v6, so FP is
13538 * always accessible
13539 */
13540 if (!arm_feature(env, ARM_FEATURE_V6)) {
13541 return 0;
13542 }
13543
13544 if (arm_feature(env, ARM_FEATURE_M)) {
13545 /* CPACR can cause a NOCP UsageFault taken to current security state */
13546 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13547 return 1;
13548 }
13549
13550 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13551 if (!extract32(env->v7m.nsacr, 10, 1)) {
13552 /* FP insns cause a NOCP UsageFault taken to Secure */
13553 return 3;
13554 }
13555 }
13556
13557 return 0;
13558 }
13559
13560 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13561 * 0, 2 : trap EL0 and EL1/PL1 accesses
13562 * 1 : trap only EL0 accesses
13563 * 3 : trap no accesses
13564 */
13565 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13566 switch (fpen) {
13567 case 0:
13568 case 2:
13569 if (cur_el == 0 || cur_el == 1) {
13570 /* Trap to PL1, which might be EL1 or EL3 */
13571 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13572 return 3;
13573 }
13574 return 1;
13575 }
13576 if (cur_el == 3 && !is_a64(env)) {
13577 /* Secure PL1 running at EL3 */
13578 return 3;
13579 }
13580 break;
13581 case 1:
13582 if (cur_el == 0) {
13583 return 1;
13584 }
13585 break;
13586 case 3:
13587 break;
13588 }
13589
13590 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13591 * check because zero bits in the registers mean "don't trap".
13592 */
13593
13594 /* CPTR_EL2 : present in v7VE or v8 */
13595 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13596 && !arm_is_secure_below_el3(env)) {
13597 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13598 return 2;
13599 }
13600
13601 /* CPTR_EL3 : present in v8 */
13602 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13603 /* Trap all FP ops to EL3 */
13604 return 3;
13605 }
13606 #endif
13607 return 0;
13608 }
13609
13610 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
13611 bool secstate, bool priv, bool negpri)
13612 {
13613 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13614
13615 if (priv) {
13616 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13617 }
13618
13619 if (negpri) {
13620 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13621 }
13622
13623 if (secstate) {
13624 mmu_idx |= ARM_MMU_IDX_M_S;
13625 }
13626
13627 return mmu_idx;
13628 }
13629
13630 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13631 bool secstate, bool priv)
13632 {
13633 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
13634
13635 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
13636 }
13637
13638 /* Return the MMU index for a v7M CPU in the specified security state */
13639 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13640 {
13641 bool priv = arm_current_el(env) != 0;
13642
13643 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13644 }
13645
13646 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13647 {
13648 int el;
13649
13650 if (arm_feature(env, ARM_FEATURE_M)) {
13651 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13652 }
13653
13654 el = arm_current_el(env);
13655 if (el < 2 && arm_is_secure_below_el3(env)) {
13656 return ARMMMUIdx_S1SE0 + el;
13657 } else {
13658 return ARMMMUIdx_S12NSE0 + el;
13659 }
13660 }
13661
13662 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13663 {
13664 return arm_to_core_mmu_idx(arm_mmu_idx(env));
13665 }
13666
13667 #ifndef CONFIG_USER_ONLY
13668 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13669 {
13670 return stage_1_mmu_idx(arm_mmu_idx(env));
13671 }
13672 #endif
13673
13674 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13675 target_ulong *cs_base, uint32_t *pflags)
13676 {
13677 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13678 int current_el = arm_current_el(env);
13679 int fp_el = fp_exception_el(env, current_el);
13680 uint32_t flags = 0;
13681
13682 if (is_a64(env)) {
13683 ARMCPU *cpu = arm_env_get_cpu(env);
13684 uint64_t sctlr;
13685
13686 *pc = env->pc;
13687 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13688
13689 /* Get control bits for tagged addresses. */
13690 {
13691 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13692 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13693 int tbii, tbid;
13694
13695 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13696 if (regime_el(env, stage1) < 2) {
13697 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13698 tbid = (p1.tbi << 1) | p0.tbi;
13699 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13700 } else {
13701 tbid = p0.tbi;
13702 tbii = tbid & !p0.tbid;
13703 }
13704
13705 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13706 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13707 }
13708
13709 if (cpu_isar_feature(aa64_sve, cpu)) {
13710 int sve_el = sve_exception_el(env, current_el);
13711 uint32_t zcr_len;
13712
13713 /* If SVE is disabled, but FP is enabled,
13714 * then the effective len is 0.
13715 */
13716 if (sve_el != 0 && fp_el == 0) {
13717 zcr_len = 0;
13718 } else {
13719 zcr_len = sve_zcr_len_for_el(env, current_el);
13720 }
13721 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13722 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13723 }
13724
13725 sctlr = arm_sctlr(env, current_el);
13726
13727 if (cpu_isar_feature(aa64_pauth, cpu)) {
13728 /*
13729 * In order to save space in flags, we record only whether
13730 * pauth is "inactive", meaning all insns are implemented as
13731 * a nop, or "active" when some action must be performed.
13732 * The decision of which action to take is left to a helper.
13733 */
13734 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13735 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13736 }
13737 }
13738
13739 if (cpu_isar_feature(aa64_bti, cpu)) {
13740 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13741 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13742 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13743 }
13744 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13745 }
13746 } else {
13747 *pc = env->regs[15];
13748 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13749 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13750 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13751 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13752 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13753 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13754 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13755 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
13756 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13757 }
13758 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
13759 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13760 flags = FIELD_DP32(flags, TBFLAG_A32,
13761 XSCALE_CPAR, env->cp15.c15_cpar);
13762 }
13763 }
13764
13765 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13766
13767 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13768 * states defined in the ARM ARM for software singlestep:
13769 * SS_ACTIVE PSTATE.SS State
13770 * 0 x Inactive (the TB flag for SS is always 0)
13771 * 1 0 Active-pending
13772 * 1 1 Active-not-pending
13773 */
13774 if (arm_singlestep_active(env)) {
13775 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13776 if (is_a64(env)) {
13777 if (env->pstate & PSTATE_SS) {
13778 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13779 }
13780 } else {
13781 if (env->uncached_cpsr & PSTATE_SS) {
13782 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13783 }
13784 }
13785 }
13786 if (arm_cpu_data_is_big_endian(env)) {
13787 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13788 }
13789 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13790
13791 if (arm_v7m_is_handler_mode(env)) {
13792 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13793 }
13794
13795 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13796 * suppressing them because the requested execution priority is less than 0.
13797 */
13798 if (arm_feature(env, ARM_FEATURE_V8) &&
13799 arm_feature(env, ARM_FEATURE_M) &&
13800 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13801 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13802 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13803 }
13804
13805 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13806 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
13807 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
13808 }
13809
13810 if (arm_feature(env, ARM_FEATURE_M) &&
13811 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13812 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13813 (env->v7m.secure &&
13814 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13815 /*
13816 * ASPEN is set, but FPCA/SFPA indicate that there is no active
13817 * FP context; we must create a new FP context before executing
13818 * any FP insn.
13819 */
13820 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
13821 }
13822
13823 if (arm_feature(env, ARM_FEATURE_M)) {
13824 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13825
13826 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13827 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
13828 }
13829 }
13830
13831 *pflags = flags;
13832 *cs_base = 0;
13833 }
13834
13835 #ifdef TARGET_AARCH64
13836 /*
13837 * The manual says that when SVE is enabled and VQ is widened the
13838 * implementation is allowed to zero the previously inaccessible
13839 * portion of the registers. The corollary to that is that when
13840 * SVE is enabled and VQ is narrowed we are also allowed to zero
13841 * the now inaccessible portion of the registers.
13842 *
13843 * The intent of this is that no predicate bit beyond VQ is ever set.
13844 * Which means that some operations on predicate registers themselves
13845 * may operate on full uint64_t or even unrolled across the maximum
13846 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13847 * may well be cheaper than conditionals to restrict the operation
13848 * to the relevant portion of a uint16_t[16].
13849 */
13850 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13851 {
13852 int i, j;
13853 uint64_t pmask;
13854
13855 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13856 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13857
13858 /* Zap the high bits of the zregs. */
13859 for (i = 0; i < 32; i++) {
13860 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13861 }
13862
13863 /* Zap the high bits of the pregs and ffr. */
13864 pmask = 0;
13865 if (vq & 3) {
13866 pmask = ~(-1ULL << (16 * (vq & 3)));
13867 }
13868 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13869 for (i = 0; i < 17; ++i) {
13870 env->vfp.pregs[i].p[j] &= pmask;
13871 }
13872 pmask = 0;
13873 }
13874 }
13875
13876 /*
13877 * Notice a change in SVE vector size when changing EL.
13878 */
13879 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13880 int new_el, bool el0_a64)
13881 {
13882 ARMCPU *cpu = arm_env_get_cpu(env);
13883 int old_len, new_len;
13884 bool old_a64, new_a64;
13885
13886 /* Nothing to do if no SVE. */
13887 if (!cpu_isar_feature(aa64_sve, cpu)) {
13888 return;
13889 }
13890
13891 /* Nothing to do if FP is disabled in either EL. */
13892 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13893 return;
13894 }
13895
13896 /*
13897 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13898 * at ELx, or not available because the EL is in AArch32 state, then
13899 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13900 * has an effective value of 0".
13901 *
13902 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13903 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13904 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13905 * we already have the correct register contents when encountering the
13906 * vq0->vq0 transition between EL0->EL1.
13907 */
13908 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13909 old_len = (old_a64 && !sve_exception_el(env, old_el)
13910 ? sve_zcr_len_for_el(env, old_el) : 0);
13911 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13912 new_len = (new_a64 && !sve_exception_el(env, new_el)
13913 ? sve_zcr_len_for_el(env, new_el) : 0);
13914
13915 /* When changing vector length, clear inaccessible state. */
13916 if (new_len < old_len) {
13917 aarch64_sve_narrow_vq(env, new_len + 1);
13918 }
13919 }
13920 #endif