]> git.ipfire.org Git - thirdparty/qemu.git/blob - target/arm/m_helper.c
f352346a964e33d5f2dfe6b2f82582698ab7ed7a
[thirdparty/qemu.git] / target / arm / m_helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #include "exec/cpu_ldst.h"
34 #include "semihosting/common-semi.h"
35 #endif
36
37 static void v7m_msr_xpsr(CPUARMState *env, uint32_t mask,
38 uint32_t reg, uint32_t val)
39 {
40 /* Only APSR is actually writable */
41 if (!(reg & 4)) {
42 uint32_t apsrmask = 0;
43
44 if (mask & 8) {
45 apsrmask |= XPSR_NZCV | XPSR_Q;
46 }
47 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
48 apsrmask |= XPSR_GE;
49 }
50 xpsr_write(env, val, apsrmask);
51 }
52 }
53
54 static uint32_t v7m_mrs_xpsr(CPUARMState *env, uint32_t reg, unsigned el)
55 {
56 uint32_t mask = 0;
57
58 if ((reg & 1) && el) {
59 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
60 }
61 if (!(reg & 4)) {
62 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
63 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
64 mask |= XPSR_GE;
65 }
66 }
67 /* EPSR reads as zero */
68 return xpsr_read(env) & mask;
69 }
70
71 static uint32_t v7m_mrs_control(CPUARMState *env, uint32_t secure)
72 {
73 uint32_t value = env->v7m.control[secure];
74
75 if (!secure) {
76 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
77 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
78 }
79 return value;
80 }
81
82 #ifdef CONFIG_USER_ONLY
83
84 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
85 {
86 uint32_t mask = extract32(maskreg, 8, 4);
87 uint32_t reg = extract32(maskreg, 0, 8);
88
89 switch (reg) {
90 case 0 ... 7: /* xPSR sub-fields */
91 v7m_msr_xpsr(env, mask, reg, val);
92 break;
93 case 20: /* CONTROL */
94 /* There are no sub-fields that are actually writable from EL0. */
95 break;
96 default:
97 /* Unprivileged writes to other registers are ignored */
98 break;
99 }
100 }
101
102 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
103 {
104 switch (reg) {
105 case 0 ... 7: /* xPSR sub-fields */
106 return v7m_mrs_xpsr(env, reg, 0);
107 case 20: /* CONTROL */
108 return v7m_mrs_control(env, 0);
109 default:
110 /* Unprivileged reads others as zero. */
111 return 0;
112 }
113 }
114
115 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
116 {
117 /* translate.c should never generate calls here in user-only mode */
118 g_assert_not_reached();
119 }
120
121 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
122 {
123 /* translate.c should never generate calls here in user-only mode */
124 g_assert_not_reached();
125 }
126
127 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
128 {
129 /* translate.c should never generate calls here in user-only mode */
130 g_assert_not_reached();
131 }
132
133 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
134 {
135 /* translate.c should never generate calls here in user-only mode */
136 g_assert_not_reached();
137 }
138
139 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
140 {
141 /* translate.c should never generate calls here in user-only mode */
142 g_assert_not_reached();
143 }
144
145 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
146 {
147 /*
148 * The TT instructions can be used by unprivileged code, but in
149 * user-only emulation we don't have the MPU.
150 * Luckily since we know we are NonSecure unprivileged (and that in
151 * turn means that the A flag wasn't specified), all the bits in the
152 * register must be zero:
153 * IREGION: 0 because IRVALID is 0
154 * IRVALID: 0 because NS
155 * S: 0 because NS
156 * NSRW: 0 because NS
157 * NSR: 0 because NS
158 * RW: 0 because unpriv and A flag not set
159 * R: 0 because unpriv and A flag not set
160 * SRVALID: 0 because NS
161 * MRVALID: 0 because unpriv and A flag not set
162 * SREGION: 0 becaus SRVALID is 0
163 * MREGION: 0 because MRVALID is 0
164 */
165 return 0;
166 }
167
168 #else
169
170 /*
171 * What kind of stack write are we doing? This affects how exceptions
172 * generated during the stacking are treated.
173 */
174 typedef enum StackingMode {
175 STACK_NORMAL,
176 STACK_IGNFAULTS,
177 STACK_LAZYFP,
178 } StackingMode;
179
180 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
181 ARMMMUIdx mmu_idx, StackingMode mode)
182 {
183 CPUState *cs = CPU(cpu);
184 CPUARMState *env = &cpu->env;
185 MemTxAttrs attrs = {};
186 MemTxResult txres;
187 target_ulong page_size;
188 hwaddr physaddr;
189 int prot;
190 ARMMMUFaultInfo fi = {};
191 ARMCacheAttrs cacheattrs = {};
192 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
193 int exc;
194 bool exc_secure;
195
196 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
197 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
198 /* MPU/SAU lookup failed */
199 if (fi.type == ARMFault_QEMU_SFault) {
200 if (mode == STACK_LAZYFP) {
201 qemu_log_mask(CPU_LOG_INT,
202 "...SecureFault with SFSR.LSPERR "
203 "during lazy stacking\n");
204 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
205 } else {
206 qemu_log_mask(CPU_LOG_INT,
207 "...SecureFault with SFSR.AUVIOL "
208 "during stacking\n");
209 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
210 }
211 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
212 env->v7m.sfar = addr;
213 exc = ARMV7M_EXCP_SECURE;
214 exc_secure = false;
215 } else {
216 if (mode == STACK_LAZYFP) {
217 qemu_log_mask(CPU_LOG_INT,
218 "...MemManageFault with CFSR.MLSPERR\n");
219 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
220 } else {
221 qemu_log_mask(CPU_LOG_INT,
222 "...MemManageFault with CFSR.MSTKERR\n");
223 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
224 }
225 exc = ARMV7M_EXCP_MEM;
226 exc_secure = secure;
227 }
228 goto pend_fault;
229 }
230 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
231 attrs, &txres);
232 if (txres != MEMTX_OK) {
233 /* BusFault trying to write the data */
234 if (mode == STACK_LAZYFP) {
235 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
236 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
237 } else {
238 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
239 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
240 }
241 exc = ARMV7M_EXCP_BUS;
242 exc_secure = false;
243 goto pend_fault;
244 }
245 return true;
246
247 pend_fault:
248 /*
249 * By pending the exception at this point we are making
250 * the IMPDEF choice "overridden exceptions pended" (see the
251 * MergeExcInfo() pseudocode). The other choice would be to not
252 * pend them now and then make a choice about which to throw away
253 * later if we have two derived exceptions.
254 * The only case when we must not pend the exception but instead
255 * throw it away is if we are doing the push of the callee registers
256 * and we've already generated a derived exception (this is indicated
257 * by the caller passing STACK_IGNFAULTS). Even in this case we will
258 * still update the fault status registers.
259 */
260 switch (mode) {
261 case STACK_NORMAL:
262 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
263 break;
264 case STACK_LAZYFP:
265 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
266 break;
267 case STACK_IGNFAULTS:
268 break;
269 }
270 return false;
271 }
272
273 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
274 ARMMMUIdx mmu_idx)
275 {
276 CPUState *cs = CPU(cpu);
277 CPUARMState *env = &cpu->env;
278 MemTxAttrs attrs = {};
279 MemTxResult txres;
280 target_ulong page_size;
281 hwaddr physaddr;
282 int prot;
283 ARMMMUFaultInfo fi = {};
284 ARMCacheAttrs cacheattrs = {};
285 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
286 int exc;
287 bool exc_secure;
288 uint32_t value;
289
290 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
291 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
292 /* MPU/SAU lookup failed */
293 if (fi.type == ARMFault_QEMU_SFault) {
294 qemu_log_mask(CPU_LOG_INT,
295 "...SecureFault with SFSR.AUVIOL during unstack\n");
296 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
297 env->v7m.sfar = addr;
298 exc = ARMV7M_EXCP_SECURE;
299 exc_secure = false;
300 } else {
301 qemu_log_mask(CPU_LOG_INT,
302 "...MemManageFault with CFSR.MUNSTKERR\n");
303 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
304 exc = ARMV7M_EXCP_MEM;
305 exc_secure = secure;
306 }
307 goto pend_fault;
308 }
309
310 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
311 attrs, &txres);
312 if (txres != MEMTX_OK) {
313 /* BusFault trying to read the data */
314 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
315 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
316 exc = ARMV7M_EXCP_BUS;
317 exc_secure = false;
318 goto pend_fault;
319 }
320
321 *dest = value;
322 return true;
323
324 pend_fault:
325 /*
326 * By pending the exception at this point we are making
327 * the IMPDEF choice "overridden exceptions pended" (see the
328 * MergeExcInfo() pseudocode). The other choice would be to not
329 * pend them now and then make a choice about which to throw away
330 * later if we have two derived exceptions.
331 */
332 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
333 return false;
334 }
335
336 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
337 {
338 /*
339 * Preserve FP state (because LSPACT was set and we are about
340 * to execute an FP instruction). This corresponds to the
341 * PreserveFPState() pseudocode.
342 * We may throw an exception if the stacking fails.
343 */
344 ARMCPU *cpu = env_archcpu(env);
345 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
346 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
347 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
348 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
349 uint32_t fpcar = env->v7m.fpcar[is_secure];
350 bool stacked_ok = true;
351 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
352 bool take_exception;
353
354 /* Take the iothread lock as we are going to touch the NVIC */
355 qemu_mutex_lock_iothread();
356
357 /* Check the background context had access to the FPU */
358 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
359 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
360 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
361 stacked_ok = false;
362 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
363 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
364 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
365 stacked_ok = false;
366 }
367
368 if (!splimviol && stacked_ok) {
369 /* We only stack if the stack limit wasn't violated */
370 int i;
371 ARMMMUIdx mmu_idx;
372
373 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
374 for (i = 0; i < (ts ? 32 : 16); i += 2) {
375 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
376 uint32_t faddr = fpcar + 4 * i;
377 uint32_t slo = extract64(dn, 0, 32);
378 uint32_t shi = extract64(dn, 32, 32);
379
380 if (i >= 16) {
381 faddr += 8; /* skip the slot for the FPSCR/VPR */
382 }
383 stacked_ok = stacked_ok &&
384 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
385 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
386 }
387
388 stacked_ok = stacked_ok &&
389 v7m_stack_write(cpu, fpcar + 0x40,
390 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
391 if (cpu_isar_feature(aa32_mve, cpu)) {
392 stacked_ok = stacked_ok &&
393 v7m_stack_write(cpu, fpcar + 0x44,
394 env->v7m.vpr, mmu_idx, STACK_LAZYFP);
395 }
396 }
397
398 /*
399 * We definitely pended an exception, but it's possible that it
400 * might not be able to be taken now. If its priority permits us
401 * to take it now, then we must not update the LSPACT or FP regs,
402 * but instead jump out to take the exception immediately.
403 * If it's just pending and won't be taken until the current
404 * handler exits, then we do update LSPACT and the FP regs.
405 */
406 take_exception = !stacked_ok &&
407 armv7m_nvic_can_take_pending_exception(env->nvic);
408
409 qemu_mutex_unlock_iothread();
410
411 if (take_exception) {
412 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
413 }
414
415 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
416
417 if (ts) {
418 /* Clear s0 to s31 and the FPSCR and VPR */
419 int i;
420
421 for (i = 0; i < 32; i += 2) {
422 *aa32_vfp_dreg(env, i / 2) = 0;
423 }
424 vfp_set_fpscr(env, 0);
425 if (cpu_isar_feature(aa32_mve, cpu)) {
426 env->v7m.vpr = 0;
427 }
428 }
429 /*
430 * Otherwise s0 to s15, FPSCR and VPR are UNKNOWN; we choose to leave them
431 * unchanged.
432 */
433 }
434
435 /*
436 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
437 * This may change the current stack pointer between Main and Process
438 * stack pointers if it is done for the CONTROL register for the current
439 * security state.
440 */
441 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
442 bool new_spsel,
443 bool secstate)
444 {
445 bool old_is_psp = v7m_using_psp(env);
446
447 env->v7m.control[secstate] =
448 deposit32(env->v7m.control[secstate],
449 R_V7M_CONTROL_SPSEL_SHIFT,
450 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
451
452 if (secstate == env->v7m.secure) {
453 bool new_is_psp = v7m_using_psp(env);
454 uint32_t tmp;
455
456 if (old_is_psp != new_is_psp) {
457 tmp = env->v7m.other_sp;
458 env->v7m.other_sp = env->regs[13];
459 env->regs[13] = tmp;
460 }
461 }
462 }
463
464 /*
465 * Write to v7M CONTROL.SPSEL bit. This may change the current
466 * stack pointer between Main and Process stack pointers.
467 */
468 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
469 {
470 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
471 }
472
473 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
474 {
475 /*
476 * Write a new value to v7m.exception, thus transitioning into or out
477 * of Handler mode; this may result in a change of active stack pointer.
478 */
479 bool new_is_psp, old_is_psp = v7m_using_psp(env);
480 uint32_t tmp;
481
482 env->v7m.exception = new_exc;
483
484 new_is_psp = v7m_using_psp(env);
485
486 if (old_is_psp != new_is_psp) {
487 tmp = env->v7m.other_sp;
488 env->v7m.other_sp = env->regs[13];
489 env->regs[13] = tmp;
490 }
491 }
492
493 /* Switch M profile security state between NS and S */
494 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
495 {
496 uint32_t new_ss_msp, new_ss_psp;
497
498 if (env->v7m.secure == new_secstate) {
499 return;
500 }
501
502 /*
503 * All the banked state is accessed by looking at env->v7m.secure
504 * except for the stack pointer; rearrange the SP appropriately.
505 */
506 new_ss_msp = env->v7m.other_ss_msp;
507 new_ss_psp = env->v7m.other_ss_psp;
508
509 if (v7m_using_psp(env)) {
510 env->v7m.other_ss_psp = env->regs[13];
511 env->v7m.other_ss_msp = env->v7m.other_sp;
512 } else {
513 env->v7m.other_ss_msp = env->regs[13];
514 env->v7m.other_ss_psp = env->v7m.other_sp;
515 }
516
517 env->v7m.secure = new_secstate;
518
519 if (v7m_using_psp(env)) {
520 env->regs[13] = new_ss_psp;
521 env->v7m.other_sp = new_ss_msp;
522 } else {
523 env->regs[13] = new_ss_msp;
524 env->v7m.other_sp = new_ss_psp;
525 }
526 }
527
528 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
529 {
530 /*
531 * Handle v7M BXNS:
532 * - if the return value is a magic value, do exception return (like BX)
533 * - otherwise bit 0 of the return value is the target security state
534 */
535 uint32_t min_magic;
536
537 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
538 /* Covers FNC_RETURN and EXC_RETURN magic */
539 min_magic = FNC_RETURN_MIN_MAGIC;
540 } else {
541 /* EXC_RETURN magic only */
542 min_magic = EXC_RETURN_MIN_MAGIC;
543 }
544
545 if (dest >= min_magic) {
546 /*
547 * This is an exception return magic value; put it where
548 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
549 * Note that if we ever add gen_ss_advance() singlestep support to
550 * M profile this should count as an "instruction execution complete"
551 * event (compare gen_bx_excret_final_code()).
552 */
553 env->regs[15] = dest & ~1;
554 env->thumb = dest & 1;
555 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
556 /* notreached */
557 }
558
559 /* translate.c should have made BXNS UNDEF unless we're secure */
560 assert(env->v7m.secure);
561
562 if (!(dest & 1)) {
563 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
564 }
565 switch_v7m_security_state(env, dest & 1);
566 env->thumb = 1;
567 env->regs[15] = dest & ~1;
568 arm_rebuild_hflags(env);
569 }
570
571 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
572 {
573 /*
574 * Handle v7M BLXNS:
575 * - bit 0 of the destination address is the target security state
576 */
577
578 /* At this point regs[15] is the address just after the BLXNS */
579 uint32_t nextinst = env->regs[15] | 1;
580 uint32_t sp = env->regs[13] - 8;
581 uint32_t saved_psr;
582
583 /* translate.c will have made BLXNS UNDEF unless we're secure */
584 assert(env->v7m.secure);
585
586 if (dest & 1) {
587 /*
588 * Target is Secure, so this is just a normal BLX,
589 * except that the low bit doesn't indicate Thumb/not.
590 */
591 env->regs[14] = nextinst;
592 env->thumb = 1;
593 env->regs[15] = dest & ~1;
594 return;
595 }
596
597 /* Target is non-secure: first push a stack frame */
598 if (!QEMU_IS_ALIGNED(sp, 8)) {
599 qemu_log_mask(LOG_GUEST_ERROR,
600 "BLXNS with misaligned SP is UNPREDICTABLE\n");
601 }
602
603 if (sp < v7m_sp_limit(env)) {
604 raise_exception(env, EXCP_STKOF, 0, 1);
605 }
606
607 saved_psr = env->v7m.exception;
608 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
609 saved_psr |= XPSR_SFPA;
610 }
611
612 /* Note that these stores can throw exceptions on MPU faults */
613 cpu_stl_data_ra(env, sp, nextinst, GETPC());
614 cpu_stl_data_ra(env, sp + 4, saved_psr, GETPC());
615
616 env->regs[13] = sp;
617 env->regs[14] = 0xfeffffff;
618 if (arm_v7m_is_handler_mode(env)) {
619 /*
620 * Write a dummy value to IPSR, to avoid leaking the current secure
621 * exception number to non-secure code. This is guaranteed not
622 * to cause write_v7m_exception() to actually change stacks.
623 */
624 write_v7m_exception(env, 1);
625 }
626 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
627 switch_v7m_security_state(env, 0);
628 env->thumb = 1;
629 env->regs[15] = dest;
630 arm_rebuild_hflags(env);
631 }
632
633 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
634 bool spsel)
635 {
636 /*
637 * Return a pointer to the location where we currently store the
638 * stack pointer for the requested security state and thread mode.
639 * This pointer will become invalid if the CPU state is updated
640 * such that the stack pointers are switched around (eg changing
641 * the SPSEL control bit).
642 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
643 * Unlike that pseudocode, we require the caller to pass us in the
644 * SPSEL control bit value; this is because we also use this
645 * function in handling of pushing of the callee-saves registers
646 * part of the v8M stack frame (pseudocode PushCalleeStack()),
647 * and in the tailchain codepath the SPSEL bit comes from the exception
648 * return magic LR value from the previous exception. The pseudocode
649 * opencodes the stack-selection in PushCalleeStack(), but we prefer
650 * to make this utility function generic enough to do the job.
651 */
652 bool want_psp = threadmode && spsel;
653
654 if (secure == env->v7m.secure) {
655 if (want_psp == v7m_using_psp(env)) {
656 return &env->regs[13];
657 } else {
658 return &env->v7m.other_sp;
659 }
660 } else {
661 if (want_psp) {
662 return &env->v7m.other_ss_psp;
663 } else {
664 return &env->v7m.other_ss_msp;
665 }
666 }
667 }
668
669 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
670 uint32_t *pvec)
671 {
672 CPUState *cs = CPU(cpu);
673 CPUARMState *env = &cpu->env;
674 MemTxResult result;
675 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
676 uint32_t vector_entry;
677 MemTxAttrs attrs = {};
678 ARMMMUIdx mmu_idx;
679 bool exc_secure;
680
681 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
682
683 /*
684 * We don't do a get_phys_addr() here because the rules for vector
685 * loads are special: they always use the default memory map, and
686 * the default memory map permits reads from all addresses.
687 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
688 * that we want this special case which would always say "yes",
689 * we just do the SAU lookup here followed by a direct physical load.
690 */
691 attrs.secure = targets_secure;
692 attrs.user = false;
693
694 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
695 V8M_SAttributes sattrs = {};
696
697 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
698 if (sattrs.ns) {
699 attrs.secure = false;
700 } else if (!targets_secure) {
701 /*
702 * NS access to S memory: the underlying exception which we escalate
703 * to HardFault is SecureFault, which always targets Secure.
704 */
705 exc_secure = true;
706 goto load_fail;
707 }
708 }
709
710 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
711 attrs, &result);
712 if (result != MEMTX_OK) {
713 /*
714 * Underlying exception is BusFault: its target security state
715 * depends on BFHFNMINS.
716 */
717 exc_secure = !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
718 goto load_fail;
719 }
720 *pvec = vector_entry;
721 return true;
722
723 load_fail:
724 /*
725 * All vector table fetch fails are reported as HardFault, with
726 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
727 * technically the underlying exception is a SecureFault or BusFault
728 * that is escalated to HardFault.) This is a terminal exception,
729 * so we will either take the HardFault immediately or else enter
730 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
731 * The HardFault is Secure if BFHFNMINS is 0 (meaning that all HFs are
732 * secure); otherwise it targets the same security state as the
733 * underlying exception.
734 * In v8.1M HardFaults from vector table fetch fails don't set FORCED.
735 */
736 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
737 exc_secure = true;
738 }
739 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK;
740 if (!arm_feature(env, ARM_FEATURE_V8_1M)) {
741 env->v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
742 }
743 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
744 return false;
745 }
746
747 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
748 {
749 /*
750 * Return the integrity signature value for the callee-saves
751 * stack frame section. @lr is the exception return payload/LR value
752 * whose FType bit forms bit 0 of the signature if FP is present.
753 */
754 uint32_t sig = 0xfefa125a;
755
756 if (!cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))
757 || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
758 sig |= 1;
759 }
760 return sig;
761 }
762
763 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
764 bool ignore_faults)
765 {
766 /*
767 * For v8M, push the callee-saves register part of the stack frame.
768 * Compare the v8M pseudocode PushCalleeStack().
769 * In the tailchaining case this may not be the current stack.
770 */
771 CPUARMState *env = &cpu->env;
772 uint32_t *frame_sp_p;
773 uint32_t frameptr;
774 ARMMMUIdx mmu_idx;
775 bool stacked_ok;
776 uint32_t limit;
777 bool want_psp;
778 uint32_t sig;
779 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
780
781 if (dotailchain) {
782 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
783 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
784 !mode;
785
786 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
787 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
788 lr & R_V7M_EXCRET_SPSEL_MASK);
789 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
790 if (want_psp) {
791 limit = env->v7m.psplim[M_REG_S];
792 } else {
793 limit = env->v7m.msplim[M_REG_S];
794 }
795 } else {
796 mmu_idx = arm_mmu_idx(env);
797 frame_sp_p = &env->regs[13];
798 limit = v7m_sp_limit(env);
799 }
800
801 frameptr = *frame_sp_p - 0x28;
802 if (frameptr < limit) {
803 /*
804 * Stack limit failure: set SP to the limit value, and generate
805 * STKOF UsageFault. Stack pushes below the limit must not be
806 * performed. It is IMPDEF whether pushes above the limit are
807 * performed; we choose not to.
808 */
809 qemu_log_mask(CPU_LOG_INT,
810 "...STKOF during callee-saves register stacking\n");
811 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
812 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
813 env->v7m.secure);
814 *frame_sp_p = limit;
815 return true;
816 }
817
818 /*
819 * Write as much of the stack frame as we can. A write failure may
820 * cause us to pend a derived exception.
821 */
822 sig = v7m_integrity_sig(env, lr);
823 stacked_ok =
824 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
825 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
826 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
827 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
828 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
829 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
830 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
831 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
832 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
833
834 /* Update SP regardless of whether any of the stack accesses failed. */
835 *frame_sp_p = frameptr;
836
837 return !stacked_ok;
838 }
839
840 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
841 bool ignore_stackfaults)
842 {
843 /*
844 * Do the "take the exception" parts of exception entry,
845 * but not the pushing of state to the stack. This is
846 * similar to the pseudocode ExceptionTaken() function.
847 */
848 CPUARMState *env = &cpu->env;
849 uint32_t addr;
850 bool targets_secure;
851 int exc;
852 bool push_failed = false;
853
854 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
855 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
856 targets_secure ? "secure" : "nonsecure", exc);
857
858 if (dotailchain) {
859 /* Sanitize LR FType and PREFIX bits */
860 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
861 lr |= R_V7M_EXCRET_FTYPE_MASK;
862 }
863 lr = deposit32(lr, 24, 8, 0xff);
864 }
865
866 if (arm_feature(env, ARM_FEATURE_V8)) {
867 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
868 (lr & R_V7M_EXCRET_S_MASK)) {
869 /*
870 * The background code (the owner of the registers in the
871 * exception frame) is Secure. This means it may either already
872 * have or now needs to push callee-saves registers.
873 */
874 if (targets_secure) {
875 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
876 /*
877 * We took an exception from Secure to NonSecure
878 * (which means the callee-saved registers got stacked)
879 * and are now tailchaining to a Secure exception.
880 * Clear DCRS so eventual return from this Secure
881 * exception unstacks the callee-saved registers.
882 */
883 lr &= ~R_V7M_EXCRET_DCRS_MASK;
884 }
885 } else {
886 /*
887 * We're going to a non-secure exception; push the
888 * callee-saves registers to the stack now, if they're
889 * not already saved.
890 */
891 if (lr & R_V7M_EXCRET_DCRS_MASK &&
892 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
893 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
894 ignore_stackfaults);
895 }
896 lr |= R_V7M_EXCRET_DCRS_MASK;
897 }
898 }
899
900 lr &= ~R_V7M_EXCRET_ES_MASK;
901 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
902 lr |= R_V7M_EXCRET_ES_MASK;
903 }
904 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
905 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
906 lr |= R_V7M_EXCRET_SPSEL_MASK;
907 }
908
909 /*
910 * Clear registers if necessary to prevent non-secure exception
911 * code being able to see register values from secure code.
912 * Where register values become architecturally UNKNOWN we leave
913 * them with their previous values. v8.1M is tighter than v8.0M
914 * here and always zeroes the caller-saved registers regardless
915 * of the security state the exception is targeting.
916 */
917 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
918 if (!targets_secure || arm_feature(env, ARM_FEATURE_V8_1M)) {
919 /*
920 * Always clear the caller-saved registers (they have been
921 * pushed to the stack earlier in v7m_push_stack()).
922 * Clear callee-saved registers if the background code is
923 * Secure (in which case these regs were saved in
924 * v7m_push_callee_stack()).
925 */
926 int i;
927 /*
928 * r4..r11 are callee-saves, zero only if background
929 * state was Secure (EXCRET.S == 1) and exception
930 * targets Non-secure state
931 */
932 bool zero_callee_saves = !targets_secure &&
933 (lr & R_V7M_EXCRET_S_MASK);
934
935 for (i = 0; i < 13; i++) {
936 if (i < 4 || i > 11 || zero_callee_saves) {
937 env->regs[i] = 0;
938 }
939 }
940 /* Clear EAPSR */
941 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
942 }
943 }
944 }
945
946 if (push_failed && !ignore_stackfaults) {
947 /*
948 * Derived exception on callee-saves register stacking:
949 * we might now want to take a different exception which
950 * targets a different security state, so try again from the top.
951 */
952 qemu_log_mask(CPU_LOG_INT,
953 "...derived exception on callee-saves register stacking");
954 v7m_exception_taken(cpu, lr, true, true);
955 return;
956 }
957
958 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
959 /* Vector load failed: derived exception */
960 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
961 v7m_exception_taken(cpu, lr, true, true);
962 return;
963 }
964
965 /*
966 * Now we've done everything that might cause a derived exception
967 * we can go ahead and activate whichever exception we're going to
968 * take (which might now be the derived exception).
969 */
970 armv7m_nvic_acknowledge_irq(env->nvic);
971
972 /* Switch to target security state -- must do this before writing SPSEL */
973 switch_v7m_security_state(env, targets_secure);
974 write_v7m_control_spsel(env, 0);
975 arm_clear_exclusive(env);
976 /* Clear SFPA and FPCA (has no effect if no FPU) */
977 env->v7m.control[M_REG_S] &=
978 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
979 /* Clear IT bits */
980 env->condexec_bits = 0;
981 env->regs[14] = lr;
982 env->regs[15] = addr & 0xfffffffe;
983 env->thumb = addr & 1;
984 arm_rebuild_hflags(env);
985 }
986
987 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
988 bool apply_splim)
989 {
990 /*
991 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
992 * that we will need later in order to do lazy FP reg stacking.
993 */
994 bool is_secure = env->v7m.secure;
995 void *nvic = env->nvic;
996 /*
997 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
998 * are banked and we want to update the bit in the bank for the
999 * current security state; and in one case we want to specifically
1000 * update the NS banked version of a bit even if we are secure.
1001 */
1002 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
1003 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
1004 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
1005 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
1006
1007 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
1008
1009 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
1010 bool splimviol;
1011 uint32_t splim = v7m_sp_limit(env);
1012 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
1013 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
1014
1015 splimviol = !ign && frameptr < splim;
1016 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
1017 }
1018
1019 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
1020
1021 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
1022
1023 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
1024
1025 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
1026 !arm_v7m_is_handler_mode(env));
1027
1028 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
1029 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1030
1031 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
1032 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1033
1034 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
1035 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
1036
1037 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
1038 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
1039
1040 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
1041 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1042
1043 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1044 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
1045 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
1046
1047 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
1048 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
1049 }
1050 }
1051
1052 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
1053 {
1054 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
1055 ARMCPU *cpu = env_archcpu(env);
1056 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1057 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
1058 uintptr_t ra = GETPC();
1059
1060 assert(env->v7m.secure);
1061
1062 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1063 return;
1064 }
1065
1066 /* Check access to the coprocessor is permitted */
1067 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1068 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1069 }
1070
1071 if (lspact) {
1072 /* LSPACT should not be active when there is active FP state */
1073 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
1074 }
1075
1076 if (fptr & 7) {
1077 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1078 }
1079
1080 /*
1081 * Note that we do not use v7m_stack_write() here, because the
1082 * accesses should not set the FSR bits for stacking errors if they
1083 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
1084 * or AccType_LAZYFP). Faults in cpu_stl_data_ra() will throw exceptions
1085 * and longjmp out.
1086 */
1087 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1088 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1089 int i;
1090
1091 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1092 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1093 uint32_t faddr = fptr + 4 * i;
1094 uint32_t slo = extract64(dn, 0, 32);
1095 uint32_t shi = extract64(dn, 32, 32);
1096
1097 if (i >= 16) {
1098 faddr += 8; /* skip the slot for the FPSCR */
1099 }
1100 cpu_stl_data_ra(env, faddr, slo, ra);
1101 cpu_stl_data_ra(env, faddr + 4, shi, ra);
1102 }
1103 cpu_stl_data_ra(env, fptr + 0x40, vfp_get_fpscr(env), ra);
1104 if (cpu_isar_feature(aa32_mve, cpu)) {
1105 cpu_stl_data_ra(env, fptr + 0x44, env->v7m.vpr, ra);
1106 }
1107
1108 /*
1109 * If TS is 0 then s0 to s15, FPSCR and VPR are UNKNOWN; we choose to
1110 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
1111 */
1112 if (ts) {
1113 for (i = 0; i < 32; i += 2) {
1114 *aa32_vfp_dreg(env, i / 2) = 0;
1115 }
1116 vfp_set_fpscr(env, 0);
1117 if (cpu_isar_feature(aa32_mve, cpu)) {
1118 env->v7m.vpr = 0;
1119 }
1120 }
1121 } else {
1122 v7m_update_fpccr(env, fptr, false);
1123 }
1124
1125 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
1126 }
1127
1128 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
1129 {
1130 ARMCPU *cpu = env_archcpu(env);
1131 uintptr_t ra = GETPC();
1132
1133 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
1134 assert(env->v7m.secure);
1135
1136 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1137 return;
1138 }
1139
1140 /* Check access to the coprocessor is permitted */
1141 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
1142 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
1143 }
1144
1145 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1146 /* State in FP is still valid */
1147 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
1148 } else {
1149 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
1150 int i;
1151 uint32_t fpscr;
1152
1153 if (fptr & 7) {
1154 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
1155 }
1156
1157 for (i = 0; i < (ts ? 32 : 16); i += 2) {
1158 uint32_t slo, shi;
1159 uint64_t dn;
1160 uint32_t faddr = fptr + 4 * i;
1161
1162 if (i >= 16) {
1163 faddr += 8; /* skip the slot for the FPSCR and VPR */
1164 }
1165
1166 slo = cpu_ldl_data_ra(env, faddr, ra);
1167 shi = cpu_ldl_data_ra(env, faddr + 4, ra);
1168
1169 dn = (uint64_t) shi << 32 | slo;
1170 *aa32_vfp_dreg(env, i / 2) = dn;
1171 }
1172 fpscr = cpu_ldl_data_ra(env, fptr + 0x40, ra);
1173 vfp_set_fpscr(env, fpscr);
1174 if (cpu_isar_feature(aa32_mve, cpu)) {
1175 env->v7m.vpr = cpu_ldl_data_ra(env, fptr + 0x44, ra);
1176 }
1177 }
1178
1179 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
1180 }
1181
1182 static bool v7m_push_stack(ARMCPU *cpu)
1183 {
1184 /*
1185 * Do the "set up stack frame" part of exception entry,
1186 * similar to pseudocode PushStack().
1187 * Return true if we generate a derived exception (and so
1188 * should ignore further stack faults trying to process
1189 * that derived exception.)
1190 */
1191 bool stacked_ok = true, limitviol = false;
1192 CPUARMState *env = &cpu->env;
1193 uint32_t xpsr = xpsr_read(env);
1194 uint32_t frameptr = env->regs[13];
1195 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
1196 uint32_t framesize;
1197 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
1198
1199 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
1200 (env->v7m.secure || nsacr_cp10)) {
1201 if (env->v7m.secure &&
1202 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
1203 framesize = 0xa8;
1204 } else {
1205 framesize = 0x68;
1206 }
1207 } else {
1208 framesize = 0x20;
1209 }
1210
1211 /* Align stack pointer if the guest wants that */
1212 if ((frameptr & 4) &&
1213 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
1214 frameptr -= 4;
1215 xpsr |= XPSR_SPREALIGN;
1216 }
1217
1218 xpsr &= ~XPSR_SFPA;
1219 if (env->v7m.secure &&
1220 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
1221 xpsr |= XPSR_SFPA;
1222 }
1223
1224 frameptr -= framesize;
1225
1226 if (arm_feature(env, ARM_FEATURE_V8)) {
1227 uint32_t limit = v7m_sp_limit(env);
1228
1229 if (frameptr < limit) {
1230 /*
1231 * Stack limit failure: set SP to the limit value, and generate
1232 * STKOF UsageFault. Stack pushes below the limit must not be
1233 * performed. It is IMPDEF whether pushes above the limit are
1234 * performed; we choose not to.
1235 */
1236 qemu_log_mask(CPU_LOG_INT,
1237 "...STKOF during stacking\n");
1238 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
1239 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1240 env->v7m.secure);
1241 env->regs[13] = limit;
1242 /*
1243 * We won't try to perform any further memory accesses but
1244 * we must continue through the following code to check for
1245 * permission faults during FPU state preservation, and we
1246 * must update FPCCR if lazy stacking is enabled.
1247 */
1248 limitviol = true;
1249 stacked_ok = false;
1250 }
1251 }
1252
1253 /*
1254 * Write as much of the stack frame as we can. If we fail a stack
1255 * write this will result in a derived exception being pended
1256 * (which may be taken in preference to the one we started with
1257 * if it has higher priority).
1258 */
1259 stacked_ok = stacked_ok &&
1260 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
1261 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
1262 mmu_idx, STACK_NORMAL) &&
1263 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
1264 mmu_idx, STACK_NORMAL) &&
1265 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
1266 mmu_idx, STACK_NORMAL) &&
1267 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
1268 mmu_idx, STACK_NORMAL) &&
1269 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
1270 mmu_idx, STACK_NORMAL) &&
1271 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
1272 mmu_idx, STACK_NORMAL) &&
1273 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
1274
1275 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
1276 /* FPU is active, try to save its registers */
1277 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
1278 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
1279
1280 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1281 qemu_log_mask(CPU_LOG_INT,
1282 "...SecureFault because LSPACT and FPCA both set\n");
1283 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1284 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1285 } else if (!env->v7m.secure && !nsacr_cp10) {
1286 qemu_log_mask(CPU_LOG_INT,
1287 "...Secure UsageFault with CFSR.NOCP because "
1288 "NSACR.CP10 prevents stacking FP regs\n");
1289 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
1290 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1291 } else {
1292 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
1293 /* Lazy stacking disabled, save registers now */
1294 int i;
1295 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
1296 arm_current_el(env) != 0);
1297
1298 if (stacked_ok && !cpacr_pass) {
1299 /*
1300 * Take UsageFault if CPACR forbids access. The pseudocode
1301 * here does a full CheckCPEnabled() but we know the NSACR
1302 * check can never fail as we have already handled that.
1303 */
1304 qemu_log_mask(CPU_LOG_INT,
1305 "...UsageFault with CFSR.NOCP because "
1306 "CPACR.CP10 prevents stacking FP regs\n");
1307 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1308 env->v7m.secure);
1309 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
1310 stacked_ok = false;
1311 }
1312
1313 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1314 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
1315 uint32_t faddr = frameptr + 0x20 + 4 * i;
1316 uint32_t slo = extract64(dn, 0, 32);
1317 uint32_t shi = extract64(dn, 32, 32);
1318
1319 if (i >= 16) {
1320 faddr += 8; /* skip the slot for the FPSCR and VPR */
1321 }
1322 stacked_ok = stacked_ok &&
1323 v7m_stack_write(cpu, faddr, slo,
1324 mmu_idx, STACK_NORMAL) &&
1325 v7m_stack_write(cpu, faddr + 4, shi,
1326 mmu_idx, STACK_NORMAL);
1327 }
1328 stacked_ok = stacked_ok &&
1329 v7m_stack_write(cpu, frameptr + 0x60,
1330 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
1331 if (cpu_isar_feature(aa32_mve, cpu)) {
1332 stacked_ok = stacked_ok &&
1333 v7m_stack_write(cpu, frameptr + 0x64,
1334 env->v7m.vpr, mmu_idx, STACK_NORMAL);
1335 }
1336 if (cpacr_pass) {
1337 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
1338 *aa32_vfp_dreg(env, i / 2) = 0;
1339 }
1340 vfp_set_fpscr(env, 0);
1341 if (cpu_isar_feature(aa32_mve, cpu)) {
1342 env->v7m.vpr = 0;
1343 }
1344 }
1345 } else {
1346 /* Lazy stacking enabled, save necessary info to stack later */
1347 v7m_update_fpccr(env, frameptr + 0x20, true);
1348 }
1349 }
1350 }
1351
1352 /*
1353 * If we broke a stack limit then SP was already updated earlier;
1354 * otherwise we update SP regardless of whether any of the stack
1355 * accesses failed or we took some other kind of fault.
1356 */
1357 if (!limitviol) {
1358 env->regs[13] = frameptr;
1359 }
1360
1361 return !stacked_ok;
1362 }
1363
1364 static void do_v7m_exception_exit(ARMCPU *cpu)
1365 {
1366 CPUARMState *env = &cpu->env;
1367 uint32_t excret;
1368 uint32_t xpsr, xpsr_mask;
1369 bool ufault = false;
1370 bool sfault = false;
1371 bool return_to_sp_process;
1372 bool return_to_handler;
1373 bool rettobase = false;
1374 bool exc_secure = false;
1375 bool return_to_secure;
1376 bool ftype;
1377 bool restore_s16_s31 = false;
1378
1379 /*
1380 * If we're not in Handler mode then jumps to magic exception-exit
1381 * addresses don't have magic behaviour. However for the v8M
1382 * security extensions the magic secure-function-return has to
1383 * work in thread mode too, so to avoid doing an extra check in
1384 * the generated code we allow exception-exit magic to also cause the
1385 * internal exception and bring us here in thread mode. Correct code
1386 * will never try to do this (the following insn fetch will always
1387 * fault) so we the overhead of having taken an unnecessary exception
1388 * doesn't matter.
1389 */
1390 if (!arm_v7m_is_handler_mode(env)) {
1391 return;
1392 }
1393
1394 /*
1395 * In the spec pseudocode ExceptionReturn() is called directly
1396 * from BXWritePC() and gets the full target PC value including
1397 * bit zero. In QEMU's implementation we treat it as a normal
1398 * jump-to-register (which is then caught later on), and so split
1399 * the target value up between env->regs[15] and env->thumb in
1400 * gen_bx(). Reconstitute it.
1401 */
1402 excret = env->regs[15];
1403 if (env->thumb) {
1404 excret |= 1;
1405 }
1406
1407 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
1408 " previous exception %d\n",
1409 excret, env->v7m.exception);
1410
1411 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
1412 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
1413 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
1414 excret);
1415 }
1416
1417 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
1418
1419 if (!ftype && !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1420 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
1421 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
1422 "if FPU not present\n",
1423 excret);
1424 ftype = true;
1425 }
1426
1427 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1428 /*
1429 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
1430 * we pick which FAULTMASK to clear.
1431 */
1432 if (!env->v7m.secure &&
1433 ((excret & R_V7M_EXCRET_ES_MASK) ||
1434 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
1435 sfault = 1;
1436 /* For all other purposes, treat ES as 0 (R_HXSR) */
1437 excret &= ~R_V7M_EXCRET_ES_MASK;
1438 }
1439 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
1440 }
1441
1442 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
1443 /*
1444 * Auto-clear FAULTMASK on return from other than NMI.
1445 * If the security extension is implemented then this only
1446 * happens if the raw execution priority is >= 0; the
1447 * value of the ES bit in the exception return value indicates
1448 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
1449 */
1450 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1451 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
1452 env->v7m.faultmask[exc_secure] = 0;
1453 }
1454 } else {
1455 env->v7m.faultmask[M_REG_NS] = 0;
1456 }
1457 }
1458
1459 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
1460 exc_secure)) {
1461 case -1:
1462 /* attempt to exit an exception that isn't active */
1463 ufault = true;
1464 break;
1465 case 0:
1466 /* still an irq active now */
1467 break;
1468 case 1:
1469 /*
1470 * We returned to base exception level, no nesting.
1471 * (In the pseudocode this is written using "NestedActivation != 1"
1472 * where we have 'rettobase == false'.)
1473 */
1474 rettobase = true;
1475 break;
1476 default:
1477 g_assert_not_reached();
1478 }
1479
1480 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
1481 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
1482 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
1483 (excret & R_V7M_EXCRET_S_MASK);
1484
1485 if (arm_feature(env, ARM_FEATURE_V8)) {
1486 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1487 /*
1488 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
1489 * we choose to take the UsageFault.
1490 */
1491 if ((excret & R_V7M_EXCRET_S_MASK) ||
1492 (excret & R_V7M_EXCRET_ES_MASK) ||
1493 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
1494 ufault = true;
1495 }
1496 }
1497 if (excret & R_V7M_EXCRET_RES0_MASK) {
1498 ufault = true;
1499 }
1500 } else {
1501 /* For v7M we only recognize certain combinations of the low bits */
1502 switch (excret & 0xf) {
1503 case 1: /* Return to Handler */
1504 break;
1505 case 13: /* Return to Thread using Process stack */
1506 case 9: /* Return to Thread using Main stack */
1507 /*
1508 * We only need to check NONBASETHRDENA for v7M, because in
1509 * v8M this bit does not exist (it is RES1).
1510 */
1511 if (!rettobase &&
1512 !(env->v7m.ccr[env->v7m.secure] &
1513 R_V7M_CCR_NONBASETHRDENA_MASK)) {
1514 ufault = true;
1515 }
1516 break;
1517 default:
1518 ufault = true;
1519 }
1520 }
1521
1522 /*
1523 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
1524 * Handler mode (and will be until we write the new XPSR.Interrupt
1525 * field) this does not switch around the current stack pointer.
1526 * We must do this before we do any kind of tailchaining, including
1527 * for the derived exceptions on integrity check failures, or we will
1528 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
1529 */
1530 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
1531
1532 /*
1533 * Clear scratch FP values left in caller saved registers; this
1534 * must happen before any kind of tail chaining.
1535 */
1536 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
1537 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
1538 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
1539 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1540 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1541 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1542 "stackframe: error during lazy state deactivation\n");
1543 v7m_exception_taken(cpu, excret, true, false);
1544 return;
1545 } else {
1546 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1547 /* v8.1M adds this NOCP check */
1548 bool nsacr_pass = exc_secure ||
1549 extract32(env->v7m.nsacr, 10, 1);
1550 bool cpacr_pass = v7m_cpacr_pass(env, exc_secure, true);
1551 if (!nsacr_pass) {
1552 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1553 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
1554 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1555 "stackframe: NSACR prevents clearing FPU registers\n");
1556 v7m_exception_taken(cpu, excret, true, false);
1557 return;
1558 } else if (!cpacr_pass) {
1559 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1560 exc_secure);
1561 env->v7m.cfsr[exc_secure] |= R_V7M_CFSR_NOCP_MASK;
1562 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1563 "stackframe: CPACR prevents clearing FPU registers\n");
1564 v7m_exception_taken(cpu, excret, true, false);
1565 return;
1566 }
1567 }
1568 /* Clear s0..s15, FPSCR and VPR */
1569 int i;
1570
1571 for (i = 0; i < 16; i += 2) {
1572 *aa32_vfp_dreg(env, i / 2) = 0;
1573 }
1574 vfp_set_fpscr(env, 0);
1575 if (cpu_isar_feature(aa32_mve, cpu)) {
1576 env->v7m.vpr = 0;
1577 }
1578 }
1579 }
1580
1581 if (sfault) {
1582 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
1583 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1584 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1585 "stackframe: failed EXC_RETURN.ES validity check\n");
1586 v7m_exception_taken(cpu, excret, true, false);
1587 return;
1588 }
1589
1590 if (ufault) {
1591 /*
1592 * Bad exception return: instead of popping the exception
1593 * stack, directly take a usage fault on the current stack.
1594 */
1595 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1596 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
1597 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1598 "stackframe: failed exception return integrity check\n");
1599 v7m_exception_taken(cpu, excret, true, false);
1600 return;
1601 }
1602
1603 /*
1604 * Tailchaining: if there is currently a pending exception that
1605 * is high enough priority to preempt execution at the level we're
1606 * about to return to, then just directly take that exception now,
1607 * avoiding an unstack-and-then-stack. Note that now we have
1608 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
1609 * our current execution priority is already the execution priority we are
1610 * returning to -- none of the state we would unstack or set based on
1611 * the EXCRET value affects it.
1612 */
1613 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
1614 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
1615 v7m_exception_taken(cpu, excret, true, false);
1616 return;
1617 }
1618
1619 switch_v7m_security_state(env, return_to_secure);
1620
1621 {
1622 /*
1623 * The stack pointer we should be reading the exception frame from
1624 * depends on bits in the magic exception return type value (and
1625 * for v8M isn't necessarily the stack pointer we will eventually
1626 * end up resuming execution with). Get a pointer to the location
1627 * in the CPU state struct where the SP we need is currently being
1628 * stored; we will use and modify it in place.
1629 * We use this limited C variable scope so we don't accidentally
1630 * use 'frame_sp_p' after we do something that makes it invalid.
1631 */
1632 bool spsel = env->v7m.control[return_to_secure] & R_V7M_CONTROL_SPSEL_MASK;
1633 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
1634 return_to_secure,
1635 !return_to_handler,
1636 spsel);
1637 uint32_t frameptr = *frame_sp_p;
1638 bool pop_ok = true;
1639 ARMMMUIdx mmu_idx;
1640 bool return_to_priv = return_to_handler ||
1641 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
1642
1643 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
1644 return_to_priv);
1645
1646 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
1647 arm_feature(env, ARM_FEATURE_V8)) {
1648 qemu_log_mask(LOG_GUEST_ERROR,
1649 "M profile exception return with non-8-aligned SP "
1650 "for destination state is UNPREDICTABLE\n");
1651 }
1652
1653 /* Do we need to pop callee-saved registers? */
1654 if (return_to_secure &&
1655 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
1656 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
1657 uint32_t actual_sig;
1658
1659 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
1660
1661 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
1662 /* Take a SecureFault on the current stack */
1663 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
1664 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1665 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
1666 "stackframe: failed exception return integrity "
1667 "signature check\n");
1668 v7m_exception_taken(cpu, excret, true, false);
1669 return;
1670 }
1671
1672 pop_ok = pop_ok &&
1673 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
1674 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
1675 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
1676 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
1677 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
1678 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
1679 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
1680 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
1681
1682 frameptr += 0x28;
1683 }
1684
1685 /* Pop registers */
1686 pop_ok = pop_ok &&
1687 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
1688 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
1689 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
1690 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
1691 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
1692 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
1693 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
1694 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
1695
1696 if (!pop_ok) {
1697 /*
1698 * v7m_stack_read() pended a fault, so take it (as a tail
1699 * chained exception on the same stack frame)
1700 */
1701 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
1702 v7m_exception_taken(cpu, excret, true, false);
1703 return;
1704 }
1705
1706 /*
1707 * Returning from an exception with a PC with bit 0 set is defined
1708 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
1709 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
1710 * the lsbit, and there are several RTOSes out there which incorrectly
1711 * assume the r15 in the stack frame should be a Thumb-style "lsbit
1712 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
1713 * complain about the badly behaved guest.
1714 */
1715 if (env->regs[15] & 1) {
1716 env->regs[15] &= ~1U;
1717 if (!arm_feature(env, ARM_FEATURE_V8)) {
1718 qemu_log_mask(LOG_GUEST_ERROR,
1719 "M profile return from interrupt with misaligned "
1720 "PC is UNPREDICTABLE on v7M\n");
1721 }
1722 }
1723
1724 if (arm_feature(env, ARM_FEATURE_V8)) {
1725 /*
1726 * For v8M we have to check whether the xPSR exception field
1727 * matches the EXCRET value for return to handler/thread
1728 * before we commit to changing the SP and xPSR.
1729 */
1730 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
1731 if (return_to_handler != will_be_handler) {
1732 /*
1733 * Take an INVPC UsageFault on the current stack.
1734 * By this point we will have switched to the security state
1735 * for the background state, so this UsageFault will target
1736 * that state.
1737 */
1738 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1739 env->v7m.secure);
1740 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1741 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
1742 "stackframe: failed exception return integrity "
1743 "check\n");
1744 v7m_exception_taken(cpu, excret, true, false);
1745 return;
1746 }
1747 }
1748
1749 if (!ftype) {
1750 /* FP present and we need to handle it */
1751 if (!return_to_secure &&
1752 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
1753 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
1754 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
1755 qemu_log_mask(CPU_LOG_INT,
1756 "...taking SecureFault on existing stackframe: "
1757 "Secure LSPACT set but exception return is "
1758 "not to secure state\n");
1759 v7m_exception_taken(cpu, excret, true, false);
1760 return;
1761 }
1762
1763 restore_s16_s31 = return_to_secure &&
1764 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
1765
1766 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
1767 /* State in FPU is still valid, just clear LSPACT */
1768 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
1769 } else {
1770 int i;
1771 uint32_t fpscr;
1772 bool cpacr_pass, nsacr_pass;
1773
1774 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
1775 return_to_priv);
1776 nsacr_pass = return_to_secure ||
1777 extract32(env->v7m.nsacr, 10, 1);
1778
1779 if (!cpacr_pass) {
1780 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1781 return_to_secure);
1782 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
1783 qemu_log_mask(CPU_LOG_INT,
1784 "...taking UsageFault on existing "
1785 "stackframe: CPACR.CP10 prevents unstacking "
1786 "FP regs\n");
1787 v7m_exception_taken(cpu, excret, true, false);
1788 return;
1789 } else if (!nsacr_pass) {
1790 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
1791 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
1792 qemu_log_mask(CPU_LOG_INT,
1793 "...taking Secure UsageFault on existing "
1794 "stackframe: NSACR.CP10 prevents unstacking "
1795 "FP regs\n");
1796 v7m_exception_taken(cpu, excret, true, false);
1797 return;
1798 }
1799
1800 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1801 uint32_t slo, shi;
1802 uint64_t dn;
1803 uint32_t faddr = frameptr + 0x20 + 4 * i;
1804
1805 if (i >= 16) {
1806 faddr += 8; /* Skip the slot for the FPSCR and VPR */
1807 }
1808
1809 pop_ok = pop_ok &&
1810 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
1811 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
1812
1813 if (!pop_ok) {
1814 break;
1815 }
1816
1817 dn = (uint64_t)shi << 32 | slo;
1818 *aa32_vfp_dreg(env, i / 2) = dn;
1819 }
1820 pop_ok = pop_ok &&
1821 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
1822 if (pop_ok) {
1823 vfp_set_fpscr(env, fpscr);
1824 }
1825 if (cpu_isar_feature(aa32_mve, cpu)) {
1826 pop_ok = pop_ok &&
1827 v7m_stack_read(cpu, &env->v7m.vpr,
1828 frameptr + 0x64, mmu_idx);
1829 }
1830 if (!pop_ok) {
1831 /*
1832 * These regs are 0 if security extension present;
1833 * otherwise merely UNKNOWN. We zero always.
1834 */
1835 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
1836 *aa32_vfp_dreg(env, i / 2) = 0;
1837 }
1838 vfp_set_fpscr(env, 0);
1839 if (cpu_isar_feature(aa32_mve, cpu)) {
1840 env->v7m.vpr = 0;
1841 }
1842 }
1843 }
1844 }
1845 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1846 V7M_CONTROL, FPCA, !ftype);
1847
1848 /* Commit to consuming the stack frame */
1849 frameptr += 0x20;
1850 if (!ftype) {
1851 frameptr += 0x48;
1852 if (restore_s16_s31) {
1853 frameptr += 0x40;
1854 }
1855 }
1856 /*
1857 * Undo stack alignment (the SPREALIGN bit indicates that the original
1858 * pre-exception SP was not 8-aligned and we added a padding word to
1859 * align it, so we undo this by ORing in the bit that increases it
1860 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
1861 * would work too but a logical OR is how the pseudocode specifies it.)
1862 */
1863 if (xpsr & XPSR_SPREALIGN) {
1864 frameptr |= 4;
1865 }
1866 *frame_sp_p = frameptr;
1867 }
1868
1869 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
1870 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
1871 xpsr_mask &= ~XPSR_GE;
1872 }
1873 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
1874 xpsr_write(env, xpsr, xpsr_mask);
1875
1876 if (env->v7m.secure) {
1877 bool sfpa = xpsr & XPSR_SFPA;
1878
1879 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
1880 V7M_CONTROL, SFPA, sfpa);
1881 }
1882
1883 /*
1884 * The restored xPSR exception field will be zero if we're
1885 * resuming in Thread mode. If that doesn't match what the
1886 * exception return excret specified then this is a UsageFault.
1887 * v7M requires we make this check here; v8M did it earlier.
1888 */
1889 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
1890 /*
1891 * Take an INVPC UsageFault by pushing the stack again;
1892 * we know we're v7M so this is never a Secure UsageFault.
1893 */
1894 bool ignore_stackfaults;
1895
1896 assert(!arm_feature(env, ARM_FEATURE_V8));
1897 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
1898 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1899 ignore_stackfaults = v7m_push_stack(cpu);
1900 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
1901 "failed exception return integrity check\n");
1902 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
1903 return;
1904 }
1905
1906 /* Otherwise, we have a successful exception exit. */
1907 arm_clear_exclusive(env);
1908 arm_rebuild_hflags(env);
1909 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
1910 }
1911
1912 static bool do_v7m_function_return(ARMCPU *cpu)
1913 {
1914 /*
1915 * v8M security extensions magic function return.
1916 * We may either:
1917 * (1) throw an exception (longjump)
1918 * (2) return true if we successfully handled the function return
1919 * (3) return false if we failed a consistency check and have
1920 * pended a UsageFault that needs to be taken now
1921 *
1922 * At this point the magic return value is split between env->regs[15]
1923 * and env->thumb. We don't bother to reconstitute it because we don't
1924 * need it (all values are handled the same way).
1925 */
1926 CPUARMState *env = &cpu->env;
1927 uint32_t newpc, newpsr, newpsr_exc;
1928
1929 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
1930
1931 {
1932 bool threadmode, spsel;
1933 TCGMemOpIdx oi;
1934 ARMMMUIdx mmu_idx;
1935 uint32_t *frame_sp_p;
1936 uint32_t frameptr;
1937
1938 /* Pull the return address and IPSR from the Secure stack */
1939 threadmode = !arm_v7m_is_handler_mode(env);
1940 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
1941
1942 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
1943 frameptr = *frame_sp_p;
1944
1945 /*
1946 * These loads may throw an exception (for MPU faults). We want to
1947 * do them as secure, so work out what MMU index that is.
1948 */
1949 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
1950 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
1951 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
1952 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
1953
1954 /* Consistency checks on new IPSR */
1955 newpsr_exc = newpsr & XPSR_EXCP;
1956 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
1957 (env->v7m.exception == 1 && newpsr_exc != 0))) {
1958 /* Pend the fault and tell our caller to take it */
1959 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
1960 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
1961 env->v7m.secure);
1962 qemu_log_mask(CPU_LOG_INT,
1963 "...taking INVPC UsageFault: "
1964 "IPSR consistency check failed\n");
1965 return false;
1966 }
1967
1968 *frame_sp_p = frameptr + 8;
1969 }
1970
1971 /* This invalidates frame_sp_p */
1972 switch_v7m_security_state(env, true);
1973 env->v7m.exception = newpsr_exc;
1974 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
1975 if (newpsr & XPSR_SFPA) {
1976 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
1977 }
1978 xpsr_write(env, 0, XPSR_IT);
1979 env->thumb = newpc & 1;
1980 env->regs[15] = newpc & ~1;
1981 arm_rebuild_hflags(env);
1982
1983 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
1984 return true;
1985 }
1986
1987 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1988 uint32_t addr, uint16_t *insn)
1989 {
1990 /*
1991 * Load a 16-bit portion of a v7M instruction, returning true on success,
1992 * or false on failure (in which case we will have pended the appropriate
1993 * exception).
1994 * We need to do the instruction fetch's MPU and SAU checks
1995 * like this because there is no MMU index that would allow
1996 * doing the load with a single function call. Instead we must
1997 * first check that the security attributes permit the load
1998 * and that they don't mismatch on the two halves of the instruction,
1999 * and then we do the load as a secure load (ie using the security
2000 * attributes of the address, not the CPU, as architecturally required).
2001 */
2002 CPUState *cs = CPU(cpu);
2003 CPUARMState *env = &cpu->env;
2004 V8M_SAttributes sattrs = {};
2005 MemTxAttrs attrs = {};
2006 ARMMMUFaultInfo fi = {};
2007 ARMCacheAttrs cacheattrs = {};
2008 MemTxResult txres;
2009 target_ulong page_size;
2010 hwaddr physaddr;
2011 int prot;
2012
2013 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
2014 if (!sattrs.nsc || sattrs.ns) {
2015 /*
2016 * This must be the second half of the insn, and it straddles a
2017 * region boundary with the second half not being S&NSC.
2018 */
2019 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2020 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2021 qemu_log_mask(CPU_LOG_INT,
2022 "...really SecureFault with SFSR.INVEP\n");
2023 return false;
2024 }
2025 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr,
2026 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
2027 /* the MPU lookup failed */
2028 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2029 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
2030 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
2031 return false;
2032 }
2033 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
2034 attrs, &txres);
2035 if (txres != MEMTX_OK) {
2036 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2037 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2038 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
2039 return false;
2040 }
2041 return true;
2042 }
2043
2044 static bool v7m_read_sg_stack_word(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2045 uint32_t addr, uint32_t *spdata)
2046 {
2047 /*
2048 * Read a word of data from the stack for the SG instruction,
2049 * writing the value into *spdata. If the load succeeds, return
2050 * true; otherwise pend an appropriate exception and return false.
2051 * (We can't use data load helpers here that throw an exception
2052 * because of the context we're called in, which is halfway through
2053 * arm_v7m_cpu_do_interrupt().)
2054 */
2055 CPUState *cs = CPU(cpu);
2056 CPUARMState *env = &cpu->env;
2057 MemTxAttrs attrs = {};
2058 MemTxResult txres;
2059 target_ulong page_size;
2060 hwaddr physaddr;
2061 int prot;
2062 ARMMMUFaultInfo fi = {};
2063 ARMCacheAttrs cacheattrs = {};
2064 uint32_t value;
2065
2066 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
2067 &attrs, &prot, &page_size, &fi, &cacheattrs)) {
2068 /* MPU/SAU lookup failed */
2069 if (fi.type == ARMFault_QEMU_SFault) {
2070 qemu_log_mask(CPU_LOG_INT,
2071 "...SecureFault during stack word read\n");
2072 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
2073 env->v7m.sfar = addr;
2074 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2075 } else {
2076 qemu_log_mask(CPU_LOG_INT,
2077 "...MemManageFault during stack word read\n");
2078 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_DACCVIOL_MASK |
2079 R_V7M_CFSR_MMARVALID_MASK;
2080 env->v7m.mmfar[M_REG_S] = addr;
2081 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, false);
2082 }
2083 return false;
2084 }
2085 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
2086 attrs, &txres);
2087 if (txres != MEMTX_OK) {
2088 /* BusFault trying to read the data */
2089 qemu_log_mask(CPU_LOG_INT,
2090 "...BusFault during stack word read\n");
2091 env->v7m.cfsr[M_REG_NS] |=
2092 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2093 env->v7m.bfar = addr;
2094 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2095 return false;
2096 }
2097
2098 *spdata = value;
2099 return true;
2100 }
2101
2102 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
2103 {
2104 /*
2105 * Check whether this attempt to execute code in a Secure & NS-Callable
2106 * memory region is for an SG instruction; if so, then emulate the
2107 * effect of the SG instruction and return true. Otherwise pend
2108 * the correct kind of exception and return false.
2109 */
2110 CPUARMState *env = &cpu->env;
2111 ARMMMUIdx mmu_idx;
2112 uint16_t insn;
2113
2114 /*
2115 * We should never get here unless get_phys_addr_pmsav8() caused
2116 * an exception for NS executing in S&NSC memory.
2117 */
2118 assert(!env->v7m.secure);
2119 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2120
2121 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
2122 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
2123
2124 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
2125 return false;
2126 }
2127
2128 if (!env->thumb) {
2129 goto gen_invep;
2130 }
2131
2132 if (insn != 0xe97f) {
2133 /*
2134 * Not an SG instruction first half (we choose the IMPDEF
2135 * early-SG-check option).
2136 */
2137 goto gen_invep;
2138 }
2139
2140 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
2141 return false;
2142 }
2143
2144 if (insn != 0xe97f) {
2145 /*
2146 * Not an SG instruction second half (yes, both halves of the SG
2147 * insn have the same hex value)
2148 */
2149 goto gen_invep;
2150 }
2151
2152 /*
2153 * OK, we have confirmed that we really have an SG instruction.
2154 * We know we're NS in S memory so don't need to repeat those checks.
2155 */
2156 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
2157 ", executing it\n", env->regs[15]);
2158
2159 if (cpu_isar_feature(aa32_m_sec_state, cpu) &&
2160 !arm_v7m_is_handler_mode(env)) {
2161 /*
2162 * v8.1M exception stack frame integrity check. Note that we
2163 * must perform the memory access even if CCR_S.TRD is zero
2164 * and we aren't going to check what the data loaded is.
2165 */
2166 uint32_t spdata, sp;
2167
2168 /*
2169 * We know we are currently NS, so the S stack pointers must be
2170 * in other_ss_{psp,msp}, not in regs[13]/other_sp.
2171 */
2172 sp = v7m_using_psp(env) ? env->v7m.other_ss_psp : env->v7m.other_ss_msp;
2173 if (!v7m_read_sg_stack_word(cpu, mmu_idx, sp, &spdata)) {
2174 /* Stack access failed and an exception has been pended */
2175 return false;
2176 }
2177
2178 if (env->v7m.ccr[M_REG_S] & R_V7M_CCR_TRD_MASK) {
2179 if (((spdata & ~1) == 0xfefa125a) ||
2180 !(env->v7m.control[M_REG_S] & 1)) {
2181 goto gen_invep;
2182 }
2183 }
2184 }
2185
2186 env->regs[14] &= ~1;
2187 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2188 switch_v7m_security_state(env, true);
2189 xpsr_write(env, 0, XPSR_IT);
2190 env->regs[15] += 4;
2191 arm_rebuild_hflags(env);
2192 return true;
2193
2194 gen_invep:
2195 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2196 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2197 qemu_log_mask(CPU_LOG_INT,
2198 "...really SecureFault with SFSR.INVEP\n");
2199 return false;
2200 }
2201
2202 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2203 {
2204 ARMCPU *cpu = ARM_CPU(cs);
2205 CPUARMState *env = &cpu->env;
2206 uint32_t lr;
2207 bool ignore_stackfaults;
2208
2209 arm_log_exception(cs->exception_index);
2210
2211 /*
2212 * For exceptions we just mark as pending on the NVIC, and let that
2213 * handle it.
2214 */
2215 switch (cs->exception_index) {
2216 case EXCP_UDEF:
2217 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2218 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
2219 break;
2220 case EXCP_NOCP:
2221 {
2222 /*
2223 * NOCP might be directed to something other than the current
2224 * security state if this fault is because of NSACR; we indicate
2225 * the target security state using exception.target_el.
2226 */
2227 int target_secstate;
2228
2229 if (env->exception.target_el == 3) {
2230 target_secstate = M_REG_S;
2231 } else {
2232 target_secstate = env->v7m.secure;
2233 }
2234 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
2235 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
2236 break;
2237 }
2238 case EXCP_INVSTATE:
2239 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2240 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
2241 break;
2242 case EXCP_STKOF:
2243 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2244 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
2245 break;
2246 case EXCP_LSERR:
2247 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2248 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
2249 break;
2250 case EXCP_UNALIGNED:
2251 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
2252 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
2253 break;
2254 case EXCP_SWI:
2255 /* The PC already points to the next instruction. */
2256 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
2257 break;
2258 case EXCP_PREFETCH_ABORT:
2259 case EXCP_DATA_ABORT:
2260 /*
2261 * Note that for M profile we don't have a guest facing FSR, but
2262 * the env->exception.fsr will be populated by the code that
2263 * raises the fault, in the A profile short-descriptor format.
2264 */
2265 switch (env->exception.fsr & 0xf) {
2266 case M_FAKE_FSR_NSC_EXEC:
2267 /*
2268 * Exception generated when we try to execute code at an address
2269 * which is marked as Secure & Non-Secure Callable and the CPU
2270 * is in the Non-Secure state. The only instruction which can
2271 * be executed like this is SG (and that only if both halves of
2272 * the SG instruction have the same security attributes.)
2273 * Everything else must generate an INVEP SecureFault, so we
2274 * emulate the SG instruction here.
2275 */
2276 if (v7m_handle_execute_nsc(cpu)) {
2277 return;
2278 }
2279 break;
2280 case M_FAKE_FSR_SFAULT:
2281 /*
2282 * Various flavours of SecureFault for attempts to execute or
2283 * access data in the wrong security state.
2284 */
2285 switch (cs->exception_index) {
2286 case EXCP_PREFETCH_ABORT:
2287 if (env->v7m.secure) {
2288 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
2289 qemu_log_mask(CPU_LOG_INT,
2290 "...really SecureFault with SFSR.INVTRAN\n");
2291 } else {
2292 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
2293 qemu_log_mask(CPU_LOG_INT,
2294 "...really SecureFault with SFSR.INVEP\n");
2295 }
2296 break;
2297 case EXCP_DATA_ABORT:
2298 /* This must be an NS access to S memory */
2299 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
2300 qemu_log_mask(CPU_LOG_INT,
2301 "...really SecureFault with SFSR.AUVIOL\n");
2302 break;
2303 }
2304 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
2305 break;
2306 case 0x8: /* External Abort */
2307 switch (cs->exception_index) {
2308 case EXCP_PREFETCH_ABORT:
2309 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
2310 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
2311 break;
2312 case EXCP_DATA_ABORT:
2313 env->v7m.cfsr[M_REG_NS] |=
2314 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
2315 env->v7m.bfar = env->exception.vaddress;
2316 qemu_log_mask(CPU_LOG_INT,
2317 "...with CFSR.PRECISERR and BFAR 0x%x\n",
2318 env->v7m.bfar);
2319 break;
2320 }
2321 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
2322 break;
2323 default:
2324 /*
2325 * All other FSR values are either MPU faults or "can't happen
2326 * for M profile" cases.
2327 */
2328 switch (cs->exception_index) {
2329 case EXCP_PREFETCH_ABORT:
2330 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
2331 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
2332 break;
2333 case EXCP_DATA_ABORT:
2334 env->v7m.cfsr[env->v7m.secure] |=
2335 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
2336 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
2337 qemu_log_mask(CPU_LOG_INT,
2338 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
2339 env->v7m.mmfar[env->v7m.secure]);
2340 break;
2341 }
2342 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
2343 env->v7m.secure);
2344 break;
2345 }
2346 break;
2347 case EXCP_SEMIHOST:
2348 qemu_log_mask(CPU_LOG_INT,
2349 "...handling as semihosting call 0x%x\n",
2350 env->regs[0]);
2351 #ifdef CONFIG_TCG
2352 env->regs[0] = do_common_semihosting(cs);
2353 #else
2354 g_assert_not_reached();
2355 #endif
2356 env->regs[15] += env->thumb ? 2 : 4;
2357 return;
2358 case EXCP_BKPT:
2359 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
2360 break;
2361 case EXCP_IRQ:
2362 break;
2363 case EXCP_EXCEPTION_EXIT:
2364 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
2365 /* Must be v8M security extension function return */
2366 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
2367 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
2368 if (do_v7m_function_return(cpu)) {
2369 return;
2370 }
2371 } else {
2372 do_v7m_exception_exit(cpu);
2373 return;
2374 }
2375 break;
2376 case EXCP_LAZYFP:
2377 /*
2378 * We already pended the specific exception in the NVIC in the
2379 * v7m_preserve_fp_state() helper function.
2380 */
2381 break;
2382 default:
2383 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2384 return; /* Never happens. Keep compiler happy. */
2385 }
2386
2387 if (arm_feature(env, ARM_FEATURE_V8)) {
2388 lr = R_V7M_EXCRET_RES1_MASK |
2389 R_V7M_EXCRET_DCRS_MASK;
2390 /*
2391 * The S bit indicates whether we should return to Secure
2392 * or NonSecure (ie our current state).
2393 * The ES bit indicates whether we're taking this exception
2394 * to Secure or NonSecure (ie our target state). We set it
2395 * later, in v7m_exception_taken().
2396 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
2397 * This corresponds to the ARM ARM pseudocode for v8M setting
2398 * some LR bits in PushStack() and some in ExceptionTaken();
2399 * the distinction matters for the tailchain cases where we
2400 * can take an exception without pushing the stack.
2401 */
2402 if (env->v7m.secure) {
2403 lr |= R_V7M_EXCRET_S_MASK;
2404 }
2405 } else {
2406 lr = R_V7M_EXCRET_RES1_MASK |
2407 R_V7M_EXCRET_S_MASK |
2408 R_V7M_EXCRET_DCRS_MASK |
2409 R_V7M_EXCRET_ES_MASK;
2410 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
2411 lr |= R_V7M_EXCRET_SPSEL_MASK;
2412 }
2413 }
2414 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
2415 lr |= R_V7M_EXCRET_FTYPE_MASK;
2416 }
2417 if (!arm_v7m_is_handler_mode(env)) {
2418 lr |= R_V7M_EXCRET_MODE_MASK;
2419 }
2420
2421 ignore_stackfaults = v7m_push_stack(cpu);
2422 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
2423 }
2424
2425 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2426 {
2427 unsigned el = arm_current_el(env);
2428
2429 /* First handle registers which unprivileged can read */
2430 switch (reg) {
2431 case 0 ... 7: /* xPSR sub-fields */
2432 return v7m_mrs_xpsr(env, reg, el);
2433 case 20: /* CONTROL */
2434 return v7m_mrs_control(env, env->v7m.secure);
2435 case 0x94: /* CONTROL_NS */
2436 /*
2437 * We have to handle this here because unprivileged Secure code
2438 * can read the NS CONTROL register.
2439 */
2440 if (!env->v7m.secure) {
2441 return 0;
2442 }
2443 return env->v7m.control[M_REG_NS] |
2444 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
2445 }
2446
2447 if (el == 0) {
2448 return 0; /* unprivileged reads others as zero */
2449 }
2450
2451 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2452 switch (reg) {
2453 case 0x88: /* MSP_NS */
2454 if (!env->v7m.secure) {
2455 return 0;
2456 }
2457 return env->v7m.other_ss_msp;
2458 case 0x89: /* PSP_NS */
2459 if (!env->v7m.secure) {
2460 return 0;
2461 }
2462 return env->v7m.other_ss_psp;
2463 case 0x8a: /* MSPLIM_NS */
2464 if (!env->v7m.secure) {
2465 return 0;
2466 }
2467 return env->v7m.msplim[M_REG_NS];
2468 case 0x8b: /* PSPLIM_NS */
2469 if (!env->v7m.secure) {
2470 return 0;
2471 }
2472 return env->v7m.psplim[M_REG_NS];
2473 case 0x90: /* PRIMASK_NS */
2474 if (!env->v7m.secure) {
2475 return 0;
2476 }
2477 return env->v7m.primask[M_REG_NS];
2478 case 0x91: /* BASEPRI_NS */
2479 if (!env->v7m.secure) {
2480 return 0;
2481 }
2482 return env->v7m.basepri[M_REG_NS];
2483 case 0x93: /* FAULTMASK_NS */
2484 if (!env->v7m.secure) {
2485 return 0;
2486 }
2487 return env->v7m.faultmask[M_REG_NS];
2488 case 0x98: /* SP_NS */
2489 {
2490 /*
2491 * This gives the non-secure SP selected based on whether we're
2492 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2493 */
2494 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2495
2496 if (!env->v7m.secure) {
2497 return 0;
2498 }
2499 if (!arm_v7m_is_handler_mode(env) && spsel) {
2500 return env->v7m.other_ss_psp;
2501 } else {
2502 return env->v7m.other_ss_msp;
2503 }
2504 }
2505 default:
2506 break;
2507 }
2508 }
2509
2510 switch (reg) {
2511 case 8: /* MSP */
2512 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
2513 case 9: /* PSP */
2514 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
2515 case 10: /* MSPLIM */
2516 if (!arm_feature(env, ARM_FEATURE_V8)) {
2517 goto bad_reg;
2518 }
2519 return env->v7m.msplim[env->v7m.secure];
2520 case 11: /* PSPLIM */
2521 if (!arm_feature(env, ARM_FEATURE_V8)) {
2522 goto bad_reg;
2523 }
2524 return env->v7m.psplim[env->v7m.secure];
2525 case 16: /* PRIMASK */
2526 return env->v7m.primask[env->v7m.secure];
2527 case 17: /* BASEPRI */
2528 case 18: /* BASEPRI_MAX */
2529 return env->v7m.basepri[env->v7m.secure];
2530 case 19: /* FAULTMASK */
2531 return env->v7m.faultmask[env->v7m.secure];
2532 default:
2533 bad_reg:
2534 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
2535 " register %d\n", reg);
2536 return 0;
2537 }
2538 }
2539
2540 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
2541 {
2542 /*
2543 * We're passed bits [11..0] of the instruction; extract
2544 * SYSm and the mask bits.
2545 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
2546 * we choose to treat them as if the mask bits were valid.
2547 * NB that the pseudocode 'mask' variable is bits [11..10],
2548 * whereas ours is [11..8].
2549 */
2550 uint32_t mask = extract32(maskreg, 8, 4);
2551 uint32_t reg = extract32(maskreg, 0, 8);
2552 int cur_el = arm_current_el(env);
2553
2554 if (cur_el == 0 && reg > 7 && reg != 20) {
2555 /*
2556 * only xPSR sub-fields and CONTROL.SFPA may be written by
2557 * unprivileged code
2558 */
2559 return;
2560 }
2561
2562 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2563 switch (reg) {
2564 case 0x88: /* MSP_NS */
2565 if (!env->v7m.secure) {
2566 return;
2567 }
2568 env->v7m.other_ss_msp = val & ~3;
2569 return;
2570 case 0x89: /* PSP_NS */
2571 if (!env->v7m.secure) {
2572 return;
2573 }
2574 env->v7m.other_ss_psp = val & ~3;
2575 return;
2576 case 0x8a: /* MSPLIM_NS */
2577 if (!env->v7m.secure) {
2578 return;
2579 }
2580 env->v7m.msplim[M_REG_NS] = val & ~7;
2581 return;
2582 case 0x8b: /* PSPLIM_NS */
2583 if (!env->v7m.secure) {
2584 return;
2585 }
2586 env->v7m.psplim[M_REG_NS] = val & ~7;
2587 return;
2588 case 0x90: /* PRIMASK_NS */
2589 if (!env->v7m.secure) {
2590 return;
2591 }
2592 env->v7m.primask[M_REG_NS] = val & 1;
2593 return;
2594 case 0x91: /* BASEPRI_NS */
2595 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2596 return;
2597 }
2598 env->v7m.basepri[M_REG_NS] = val & 0xff;
2599 return;
2600 case 0x93: /* FAULTMASK_NS */
2601 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
2602 return;
2603 }
2604 env->v7m.faultmask[M_REG_NS] = val & 1;
2605 return;
2606 case 0x94: /* CONTROL_NS */
2607 if (!env->v7m.secure) {
2608 return;
2609 }
2610 write_v7m_control_spsel_for_secstate(env,
2611 val & R_V7M_CONTROL_SPSEL_MASK,
2612 M_REG_NS);
2613 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
2614 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
2615 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
2616 }
2617 /*
2618 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
2619 * RES0 if the FPU is not present, and is stored in the S bank
2620 */
2621 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env)) &&
2622 extract32(env->v7m.nsacr, 10, 1)) {
2623 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2624 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2625 }
2626 return;
2627 case 0x98: /* SP_NS */
2628 {
2629 /*
2630 * This gives the non-secure SP selected based on whether we're
2631 * currently in handler mode or not, using the NS CONTROL.SPSEL.
2632 */
2633 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
2634 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
2635 uint32_t limit;
2636
2637 if (!env->v7m.secure) {
2638 return;
2639 }
2640
2641 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
2642
2643 val &= ~0x3;
2644
2645 if (val < limit) {
2646 raise_exception_ra(env, EXCP_STKOF, 0, 1, GETPC());
2647 }
2648
2649 if (is_psp) {
2650 env->v7m.other_ss_psp = val;
2651 } else {
2652 env->v7m.other_ss_msp = val;
2653 }
2654 return;
2655 }
2656 default:
2657 break;
2658 }
2659 }
2660
2661 switch (reg) {
2662 case 0 ... 7: /* xPSR sub-fields */
2663 v7m_msr_xpsr(env, mask, reg, val);
2664 break;
2665 case 8: /* MSP */
2666 if (v7m_using_psp(env)) {
2667 env->v7m.other_sp = val & ~3;
2668 } else {
2669 env->regs[13] = val & ~3;
2670 }
2671 break;
2672 case 9: /* PSP */
2673 if (v7m_using_psp(env)) {
2674 env->regs[13] = val & ~3;
2675 } else {
2676 env->v7m.other_sp = val & ~3;
2677 }
2678 break;
2679 case 10: /* MSPLIM */
2680 if (!arm_feature(env, ARM_FEATURE_V8)) {
2681 goto bad_reg;
2682 }
2683 env->v7m.msplim[env->v7m.secure] = val & ~7;
2684 break;
2685 case 11: /* PSPLIM */
2686 if (!arm_feature(env, ARM_FEATURE_V8)) {
2687 goto bad_reg;
2688 }
2689 env->v7m.psplim[env->v7m.secure] = val & ~7;
2690 break;
2691 case 16: /* PRIMASK */
2692 env->v7m.primask[env->v7m.secure] = val & 1;
2693 break;
2694 case 17: /* BASEPRI */
2695 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2696 goto bad_reg;
2697 }
2698 env->v7m.basepri[env->v7m.secure] = val & 0xff;
2699 break;
2700 case 18: /* BASEPRI_MAX */
2701 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2702 goto bad_reg;
2703 }
2704 val &= 0xff;
2705 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
2706 || env->v7m.basepri[env->v7m.secure] == 0)) {
2707 env->v7m.basepri[env->v7m.secure] = val;
2708 }
2709 break;
2710 case 19: /* FAULTMASK */
2711 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
2712 goto bad_reg;
2713 }
2714 env->v7m.faultmask[env->v7m.secure] = val & 1;
2715 break;
2716 case 20: /* CONTROL */
2717 /*
2718 * Writing to the SPSEL bit only has an effect if we are in
2719 * thread mode; other bits can be updated by any privileged code.
2720 * write_v7m_control_spsel() deals with updating the SPSEL bit in
2721 * env->v7m.control, so we only need update the others.
2722 * For v7M, we must just ignore explicit writes to SPSEL in handler
2723 * mode; for v8M the write is permitted but will have no effect.
2724 * All these bits are writes-ignored from non-privileged code,
2725 * except for SFPA.
2726 */
2727 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
2728 !arm_v7m_is_handler_mode(env))) {
2729 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
2730 }
2731 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
2732 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
2733 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
2734 }
2735 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
2736 /*
2737 * SFPA is RAZ/WI from NS or if no FPU.
2738 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
2739 * Both are stored in the S bank.
2740 */
2741 if (env->v7m.secure) {
2742 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
2743 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
2744 }
2745 if (cur_el > 0 &&
2746 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
2747 extract32(env->v7m.nsacr, 10, 1))) {
2748 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
2749 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
2750 }
2751 }
2752 break;
2753 default:
2754 bad_reg:
2755 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
2756 " register %d\n", reg);
2757 return;
2758 }
2759 }
2760
2761 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
2762 {
2763 /* Implement the TT instruction. op is bits [7:6] of the insn. */
2764 bool forceunpriv = op & 1;
2765 bool alt = op & 2;
2766 V8M_SAttributes sattrs = {};
2767 uint32_t tt_resp;
2768 bool r, rw, nsr, nsrw, mrvalid;
2769 int prot;
2770 ARMMMUFaultInfo fi = {};
2771 MemTxAttrs attrs = {};
2772 hwaddr phys_addr;
2773 ARMMMUIdx mmu_idx;
2774 uint32_t mregion;
2775 bool targetpriv;
2776 bool targetsec = env->v7m.secure;
2777 bool is_subpage;
2778
2779 /*
2780 * Work out what the security state and privilege level we're
2781 * interested in is...
2782 */
2783 if (alt) {
2784 targetsec = !targetsec;
2785 }
2786
2787 if (forceunpriv) {
2788 targetpriv = false;
2789 } else {
2790 targetpriv = arm_v7m_is_handler_mode(env) ||
2791 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
2792 }
2793
2794 /* ...and then figure out which MMU index this is */
2795 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
2796
2797 /*
2798 * We know that the MPU and SAU don't care about the access type
2799 * for our purposes beyond that we don't want to claim to be
2800 * an insn fetch, so we arbitrarily call this a read.
2801 */
2802
2803 /*
2804 * MPU region info only available for privileged or if
2805 * inspecting the other MPU state.
2806 */
2807 if (arm_current_el(env) != 0 || alt) {
2808 /* We can ignore the return value as prot is always set */
2809 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
2810 &phys_addr, &attrs, &prot, &is_subpage,
2811 &fi, &mregion);
2812 if (mregion == -1) {
2813 mrvalid = false;
2814 mregion = 0;
2815 } else {
2816 mrvalid = true;
2817 }
2818 r = prot & PAGE_READ;
2819 rw = prot & PAGE_WRITE;
2820 } else {
2821 r = false;
2822 rw = false;
2823 mrvalid = false;
2824 mregion = 0;
2825 }
2826
2827 if (env->v7m.secure) {
2828 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
2829 nsr = sattrs.ns && r;
2830 nsrw = sattrs.ns && rw;
2831 } else {
2832 sattrs.ns = true;
2833 nsr = false;
2834 nsrw = false;
2835 }
2836
2837 tt_resp = (sattrs.iregion << 24) |
2838 (sattrs.irvalid << 23) |
2839 ((!sattrs.ns) << 22) |
2840 (nsrw << 21) |
2841 (nsr << 20) |
2842 (rw << 19) |
2843 (r << 18) |
2844 (sattrs.srvalid << 17) |
2845 (mrvalid << 16) |
2846 (sattrs.sregion << 8) |
2847 mregion;
2848
2849 return tt_resp;
2850 }
2851
2852 #endif /* !CONFIG_USER_ONLY */
2853
2854 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2855 bool secstate, bool priv, bool negpri)
2856 {
2857 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2858
2859 if (priv) {
2860 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2861 }
2862
2863 if (negpri) {
2864 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2865 }
2866
2867 if (secstate) {
2868 mmu_idx |= ARM_MMU_IDX_M_S;
2869 }
2870
2871 return mmu_idx;
2872 }
2873
2874 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2875 bool secstate, bool priv)
2876 {
2877 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
2878
2879 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
2880 }
2881
2882 /* Return the MMU index for a v7M CPU in the specified security state */
2883 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
2884 {
2885 bool priv = arm_v7m_is_handler_mode(env) ||
2886 !(env->v7m.control[secstate] & 1);
2887
2888 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2889 }