]> git.ipfire.org Git - thirdparty/qemu.git/blob - target/riscv/cpu_helper.c
target/riscv: Convert to CPUClass::tlb_fill
[thirdparty/qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25 #include "trace.h"
26
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
28 {
29 #ifdef CONFIG_USER_ONLY
30 return 0;
31 #else
32 return env->priv;
33 #endif
34 }
35
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
38 {
39 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41 target_ulong pending = atomic_read(&env->mip) & env->mie;
42 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44 target_ulong irqs = (pending & ~env->mideleg & -mie) |
45 (pending & env->mideleg & -sie);
46
47 if (irqs) {
48 return ctz64(irqs); /* since non-zero */
49 } else {
50 return EXCP_NONE; /* indicates no pending interrupt */
51 }
52 }
53 #endif
54
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
56 {
57 #if !defined(CONFIG_USER_ONLY)
58 if (interrupt_request & CPU_INTERRUPT_HARD) {
59 RISCVCPU *cpu = RISCV_CPU(cs);
60 CPURISCVState *env = &cpu->env;
61 int interruptno = riscv_cpu_local_irq_pending(env);
62 if (interruptno >= 0) {
63 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64 riscv_cpu_do_interrupt(cs);
65 return true;
66 }
67 }
68 #endif
69 return false;
70 }
71
72 #if !defined(CONFIG_USER_ONLY)
73
74 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
75 {
76 CPURISCVState *env = &cpu->env;
77 if (env->miclaim & interrupts) {
78 return -1;
79 } else {
80 env->miclaim |= interrupts;
81 return 0;
82 }
83 }
84
85 /* iothread_mutex must be held */
86 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
87 {
88 CPURISCVState *env = &cpu->env;
89 uint32_t old, new, cmp = atomic_read(&env->mip);
90
91 do {
92 old = cmp;
93 new = (old & ~mask) | (value & mask);
94 cmp = atomic_cmpxchg(&env->mip, old, new);
95 } while (old != cmp);
96
97 if (new) {
98 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
99 } else {
100 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
101 }
102
103 return old;
104 }
105
106 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
107 {
108 if (newpriv > PRV_M) {
109 g_assert_not_reached();
110 }
111 if (newpriv == PRV_H) {
112 newpriv = PRV_U;
113 }
114 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
115 env->priv = newpriv;
116 }
117
118 /* get_physical_address - get the physical address for this virtual address
119 *
120 * Do a page table walk to obtain the physical address corresponding to a
121 * virtual address. Returns 0 if the translation was successful
122 *
123 * Adapted from Spike's mmu_t::translate and mmu_t::walk
124 *
125 */
126 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
127 int *prot, target_ulong addr,
128 int access_type, int mmu_idx)
129 {
130 /* NOTE: the env->pc value visible here will not be
131 * correct, but the value visible to the exception handler
132 * (riscv_cpu_do_interrupt) is correct */
133
134 int mode = mmu_idx;
135
136 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
137 if (get_field(env->mstatus, MSTATUS_MPRV)) {
138 mode = get_field(env->mstatus, MSTATUS_MPP);
139 }
140 }
141
142 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
143 *physical = addr;
144 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
145 return TRANSLATE_SUCCESS;
146 }
147
148 *prot = 0;
149
150 target_ulong base;
151 int levels, ptidxbits, ptesize, vm, sum;
152 int mxr = get_field(env->mstatus, MSTATUS_MXR);
153
154 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
155 base = get_field(env->satp, SATP_PPN) << PGSHIFT;
156 sum = get_field(env->mstatus, MSTATUS_SUM);
157 vm = get_field(env->satp, SATP_MODE);
158 switch (vm) {
159 case VM_1_10_SV32:
160 levels = 2; ptidxbits = 10; ptesize = 4; break;
161 case VM_1_10_SV39:
162 levels = 3; ptidxbits = 9; ptesize = 8; break;
163 case VM_1_10_SV48:
164 levels = 4; ptidxbits = 9; ptesize = 8; break;
165 case VM_1_10_SV57:
166 levels = 5; ptidxbits = 9; ptesize = 8; break;
167 case VM_1_10_MBARE:
168 *physical = addr;
169 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
170 return TRANSLATE_SUCCESS;
171 default:
172 g_assert_not_reached();
173 }
174 } else {
175 base = env->sptbr << PGSHIFT;
176 sum = !get_field(env->mstatus, MSTATUS_PUM);
177 vm = get_field(env->mstatus, MSTATUS_VM);
178 switch (vm) {
179 case VM_1_09_SV32:
180 levels = 2; ptidxbits = 10; ptesize = 4; break;
181 case VM_1_09_SV39:
182 levels = 3; ptidxbits = 9; ptesize = 8; break;
183 case VM_1_09_SV48:
184 levels = 4; ptidxbits = 9; ptesize = 8; break;
185 case VM_1_09_MBARE:
186 *physical = addr;
187 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
188 return TRANSLATE_SUCCESS;
189 default:
190 g_assert_not_reached();
191 }
192 }
193
194 CPUState *cs = CPU(riscv_env_get_cpu(env));
195 int va_bits = PGSHIFT + levels * ptidxbits;
196 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
197 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
198 if (masked_msbs != 0 && masked_msbs != mask) {
199 return TRANSLATE_FAIL;
200 }
201
202 int ptshift = (levels - 1) * ptidxbits;
203 int i;
204
205 #if !TCG_OVERSIZED_GUEST
206 restart:
207 #endif
208 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
209 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
210 ((1 << ptidxbits) - 1);
211
212 /* check that physical address of PTE is legal */
213 target_ulong pte_addr = base + idx * ptesize;
214 #if defined(TARGET_RISCV32)
215 target_ulong pte = ldl_phys(cs->as, pte_addr);
216 #elif defined(TARGET_RISCV64)
217 target_ulong pte = ldq_phys(cs->as, pte_addr);
218 #endif
219 target_ulong ppn = pte >> PTE_PPN_SHIFT;
220
221 if (!(pte & PTE_V)) {
222 /* Invalid PTE */
223 return TRANSLATE_FAIL;
224 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
225 /* Inner PTE, continue walking */
226 base = ppn << PGSHIFT;
227 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
228 /* Reserved leaf PTE flags: PTE_W */
229 return TRANSLATE_FAIL;
230 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
231 /* Reserved leaf PTE flags: PTE_W + PTE_X */
232 return TRANSLATE_FAIL;
233 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
234 (!sum || access_type == MMU_INST_FETCH))) {
235 /* User PTE flags when not U mode and mstatus.SUM is not set,
236 or the access type is an instruction fetch */
237 return TRANSLATE_FAIL;
238 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
239 /* Supervisor PTE flags when not S mode */
240 return TRANSLATE_FAIL;
241 } else if (ppn & ((1ULL << ptshift) - 1)) {
242 /* Misaligned PPN */
243 return TRANSLATE_FAIL;
244 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
245 ((pte & PTE_X) && mxr))) {
246 /* Read access check failed */
247 return TRANSLATE_FAIL;
248 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
249 /* Write access check failed */
250 return TRANSLATE_FAIL;
251 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
252 /* Fetch access check failed */
253 return TRANSLATE_FAIL;
254 } else {
255 /* if necessary, set accessed and dirty bits. */
256 target_ulong updated_pte = pte | PTE_A |
257 (access_type == MMU_DATA_STORE ? PTE_D : 0);
258
259 /* Page table updates need to be atomic with MTTCG enabled */
260 if (updated_pte != pte) {
261 /*
262 * - if accessed or dirty bits need updating, and the PTE is
263 * in RAM, then we do so atomically with a compare and swap.
264 * - if the PTE is in IO space or ROM, then it can't be updated
265 * and we return TRANSLATE_FAIL.
266 * - if the PTE changed by the time we went to update it, then
267 * it is no longer valid and we must re-walk the page table.
268 */
269 MemoryRegion *mr;
270 hwaddr l = sizeof(target_ulong), addr1;
271 mr = address_space_translate(cs->as, pte_addr,
272 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
273 if (memory_region_is_ram(mr)) {
274 target_ulong *pte_pa =
275 qemu_map_ram_ptr(mr->ram_block, addr1);
276 #if TCG_OVERSIZED_GUEST
277 /* MTTCG is not enabled on oversized TCG guests so
278 * page table updates do not need to be atomic */
279 *pte_pa = pte = updated_pte;
280 #else
281 target_ulong old_pte =
282 atomic_cmpxchg(pte_pa, pte, updated_pte);
283 if (old_pte != pte) {
284 goto restart;
285 } else {
286 pte = updated_pte;
287 }
288 #endif
289 } else {
290 /* misconfigured PTE in ROM (AD bits are not preset) or
291 * PTE is in IO space and can't be updated atomically */
292 return TRANSLATE_FAIL;
293 }
294 }
295
296 /* for superpage mappings, make a fake leaf PTE for the TLB's
297 benefit. */
298 target_ulong vpn = addr >> PGSHIFT;
299 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
300
301 /* set permissions on the TLB entry */
302 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
303 *prot |= PAGE_READ;
304 }
305 if ((pte & PTE_X)) {
306 *prot |= PAGE_EXEC;
307 }
308 /* add write permission on stores or if the page is already dirty,
309 so that we TLB miss on later writes to update the dirty bit */
310 if ((pte & PTE_W) &&
311 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
312 *prot |= PAGE_WRITE;
313 }
314 return TRANSLATE_SUCCESS;
315 }
316 }
317 return TRANSLATE_FAIL;
318 }
319
320 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
321 MMUAccessType access_type)
322 {
323 CPUState *cs = CPU(riscv_env_get_cpu(env));
324 int page_fault_exceptions =
325 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
326 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE;
327 switch (access_type) {
328 case MMU_INST_FETCH:
329 cs->exception_index = page_fault_exceptions ?
330 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
331 break;
332 case MMU_DATA_LOAD:
333 cs->exception_index = page_fault_exceptions ?
334 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
335 break;
336 case MMU_DATA_STORE:
337 cs->exception_index = page_fault_exceptions ?
338 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
339 break;
340 default:
341 g_assert_not_reached();
342 }
343 env->badaddr = address;
344 }
345
346 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
347 {
348 RISCVCPU *cpu = RISCV_CPU(cs);
349 hwaddr phys_addr;
350 int prot;
351 int mmu_idx = cpu_mmu_index(&cpu->env, false);
352
353 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
354 return -1;
355 }
356 return phys_addr;
357 }
358
359 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
360 MMUAccessType access_type, int mmu_idx,
361 uintptr_t retaddr)
362 {
363 RISCVCPU *cpu = RISCV_CPU(cs);
364 CPURISCVState *env = &cpu->env;
365 switch (access_type) {
366 case MMU_INST_FETCH:
367 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
368 break;
369 case MMU_DATA_LOAD:
370 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
371 break;
372 case MMU_DATA_STORE:
373 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
374 break;
375 default:
376 g_assert_not_reached();
377 }
378 env->badaddr = addr;
379 riscv_raise_exception(env, cs->exception_index, retaddr);
380 }
381
382 void tlb_fill(CPUState *cs, target_ulong addr, int size,
383 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
384 {
385 riscv_cpu_tlb_fill(cs, addr, size, access_type, mmu_idx, false, retaddr);
386 }
387 #endif
388
389 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
390 MMUAccessType access_type, int mmu_idx,
391 bool probe, uintptr_t retaddr)
392 {
393 #ifndef CONFIG_USER_ONLY
394 RISCVCPU *cpu = RISCV_CPU(cs);
395 CPURISCVState *env = &cpu->env;
396 hwaddr pa = 0;
397 int prot;
398 int ret = TRANSLATE_FAIL;
399
400 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
401 __func__, address, access_type, mmu_idx);
402
403 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
404
405 qemu_log_mask(CPU_LOG_MMU,
406 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
407 " prot %d\n", __func__, address, ret, pa, prot);
408
409 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
410 !pmp_hart_has_privs(env, pa, TARGET_PAGE_SIZE, 1 << access_type)) {
411 ret = TRANSLATE_FAIL;
412 }
413 if (ret == TRANSLATE_SUCCESS) {
414 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
415 prot, mmu_idx, TARGET_PAGE_SIZE);
416 return true;
417 } else if (probe) {
418 return false;
419 } else {
420 raise_mmu_exception(env, address, access_type);
421 riscv_raise_exception(env, cs->exception_index, retaddr);
422 }
423 #else
424 switch (access_type) {
425 case MMU_INST_FETCH:
426 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
427 break;
428 case MMU_DATA_LOAD:
429 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
430 break;
431 case MMU_DATA_STORE:
432 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
433 break;
434 }
435 cpu_loop_exit_restore(cs, retaddr);
436 #endif
437 }
438
439 /*
440 * Handle Traps
441 *
442 * Adapted from Spike's processor_t::take_trap.
443 *
444 */
445 void riscv_cpu_do_interrupt(CPUState *cs)
446 {
447 #if !defined(CONFIG_USER_ONLY)
448
449 RISCVCPU *cpu = RISCV_CPU(cs);
450 CPURISCVState *env = &cpu->env;
451
452 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
453 * so we mask off the MSB and separate into trap type and cause.
454 */
455 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
456 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
457 target_ulong deleg = async ? env->mideleg : env->medeleg;
458 target_ulong tval = 0;
459
460 static const int ecall_cause_map[] = {
461 [PRV_U] = RISCV_EXCP_U_ECALL,
462 [PRV_S] = RISCV_EXCP_S_ECALL,
463 [PRV_H] = RISCV_EXCP_H_ECALL,
464 [PRV_M] = RISCV_EXCP_M_ECALL
465 };
466
467 if (!async) {
468 /* set tval to badaddr for traps with address information */
469 switch (cause) {
470 case RISCV_EXCP_INST_ADDR_MIS:
471 case RISCV_EXCP_INST_ACCESS_FAULT:
472 case RISCV_EXCP_LOAD_ADDR_MIS:
473 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
474 case RISCV_EXCP_LOAD_ACCESS_FAULT:
475 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
476 case RISCV_EXCP_INST_PAGE_FAULT:
477 case RISCV_EXCP_LOAD_PAGE_FAULT:
478 case RISCV_EXCP_STORE_PAGE_FAULT:
479 tval = env->badaddr;
480 break;
481 default:
482 break;
483 }
484 /* ecall is dispatched as one cause so translate based on mode */
485 if (cause == RISCV_EXCP_U_ECALL) {
486 assert(env->priv <= 3);
487 cause = ecall_cause_map[env->priv];
488 }
489 }
490
491 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
492 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
493
494 if (env->priv <= PRV_S &&
495 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
496 /* handle the trap in S-mode */
497 target_ulong s = env->mstatus;
498 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
499 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
500 s = set_field(s, MSTATUS_SPP, env->priv);
501 s = set_field(s, MSTATUS_SIE, 0);
502 env->mstatus = s;
503 env->scause = cause | ~(((target_ulong)-1) >> async);
504 env->sepc = env->pc;
505 env->sbadaddr = tval;
506 env->pc = (env->stvec >> 2 << 2) +
507 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
508 riscv_cpu_set_mode(env, PRV_S);
509 } else {
510 /* handle the trap in M-mode */
511 target_ulong s = env->mstatus;
512 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
513 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
514 s = set_field(s, MSTATUS_MPP, env->priv);
515 s = set_field(s, MSTATUS_MIE, 0);
516 env->mstatus = s;
517 env->mcause = cause | ~(((target_ulong)-1) >> async);
518 env->mepc = env->pc;
519 env->mbadaddr = tval;
520 env->pc = (env->mtvec >> 2 << 2) +
521 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
522 riscv_cpu_set_mode(env, PRV_M);
523 }
524
525 /* NOTE: it is not necessary to yield load reservations here. It is only
526 * necessary for an SC from "another hart" to cause a load reservation
527 * to be yielded. Refer to the memory consistency model section of the
528 * RISC-V ISA Specification.
529 */
530
531 #endif
532 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
533 }