]> git.ipfire.org Git - thirdparty/qemu.git/blob - target/riscv/cpu_helper.c
Merge remote-tracking branch 'remotes/kraxel/tags/vga-20190529-pull-request' into...
[thirdparty/qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25 #include "trace.h"
26
27 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
28 {
29 #ifdef CONFIG_USER_ONLY
30 return 0;
31 #else
32 return env->priv;
33 #endif
34 }
35
36 #ifndef CONFIG_USER_ONLY
37 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
38 {
39 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
40 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
41 target_ulong pending = atomic_read(&env->mip) & env->mie;
42 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
43 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
44 target_ulong irqs = (pending & ~env->mideleg & -mie) |
45 (pending & env->mideleg & -sie);
46
47 if (irqs) {
48 return ctz64(irqs); /* since non-zero */
49 } else {
50 return EXCP_NONE; /* indicates no pending interrupt */
51 }
52 }
53 #endif
54
55 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
56 {
57 #if !defined(CONFIG_USER_ONLY)
58 if (interrupt_request & CPU_INTERRUPT_HARD) {
59 RISCVCPU *cpu = RISCV_CPU(cs);
60 CPURISCVState *env = &cpu->env;
61 int interruptno = riscv_cpu_local_irq_pending(env);
62 if (interruptno >= 0) {
63 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
64 riscv_cpu_do_interrupt(cs);
65 return true;
66 }
67 }
68 #endif
69 return false;
70 }
71
72 #if !defined(CONFIG_USER_ONLY)
73
74 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
75 {
76 CPURISCVState *env = &cpu->env;
77 if (env->miclaim & interrupts) {
78 return -1;
79 } else {
80 env->miclaim |= interrupts;
81 return 0;
82 }
83 }
84
85 struct CpuAsyncInfo {
86 uint32_t new_mip;
87 };
88
89 static void riscv_cpu_update_mip_irqs_async(CPUState *target_cpu_state,
90 run_on_cpu_data data)
91 {
92 CPURISCVState *env = &RISCV_CPU(target_cpu_state)->env;
93 RISCVCPU *cpu = riscv_env_get_cpu(env);
94 struct CpuAsyncInfo *info = (struct CpuAsyncInfo *) data.host_ptr;
95
96 if (info->new_mip) {
97 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
98 } else {
99 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
100 }
101
102 g_free(info);
103 }
104
105 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
106 {
107 CPURISCVState *env = &cpu->env;
108 CPUState *cs = CPU(cpu);
109 struct CpuAsyncInfo *info;
110 uint32_t old, new, cmp = atomic_read(&env->mip);
111
112 do {
113 old = cmp;
114 new = (old & ~mask) | (value & mask);
115 cmp = atomic_cmpxchg(&env->mip, old, new);
116 } while (old != cmp);
117
118 info = g_new(struct CpuAsyncInfo, 1);
119 info->new_mip = new;
120
121 async_run_on_cpu(cs, riscv_cpu_update_mip_irqs_async,
122 RUN_ON_CPU_HOST_PTR(info));
123
124 return old;
125 }
126
127 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
128 {
129 if (newpriv > PRV_M) {
130 g_assert_not_reached();
131 }
132 if (newpriv == PRV_H) {
133 newpriv = PRV_U;
134 }
135 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
136 env->priv = newpriv;
137 }
138
139 /* get_physical_address - get the physical address for this virtual address
140 *
141 * Do a page table walk to obtain the physical address corresponding to a
142 * virtual address. Returns 0 if the translation was successful
143 *
144 * Adapted from Spike's mmu_t::translate and mmu_t::walk
145 *
146 */
147 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
148 int *prot, target_ulong addr,
149 int access_type, int mmu_idx)
150 {
151 /* NOTE: the env->pc value visible here will not be
152 * correct, but the value visible to the exception handler
153 * (riscv_cpu_do_interrupt) is correct */
154
155 int mode = mmu_idx;
156
157 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
158 if (get_field(env->mstatus, MSTATUS_MPRV)) {
159 mode = get_field(env->mstatus, MSTATUS_MPP);
160 }
161 }
162
163 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
164 *physical = addr;
165 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
166 return TRANSLATE_SUCCESS;
167 }
168
169 *prot = 0;
170
171 target_ulong base;
172 int levels, ptidxbits, ptesize, vm, sum;
173 int mxr = get_field(env->mstatus, MSTATUS_MXR);
174
175 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
176 base = get_field(env->satp, SATP_PPN) << PGSHIFT;
177 sum = get_field(env->mstatus, MSTATUS_SUM);
178 vm = get_field(env->satp, SATP_MODE);
179 switch (vm) {
180 case VM_1_10_SV32:
181 levels = 2; ptidxbits = 10; ptesize = 4; break;
182 case VM_1_10_SV39:
183 levels = 3; ptidxbits = 9; ptesize = 8; break;
184 case VM_1_10_SV48:
185 levels = 4; ptidxbits = 9; ptesize = 8; break;
186 case VM_1_10_SV57:
187 levels = 5; ptidxbits = 9; ptesize = 8; break;
188 case VM_1_10_MBARE:
189 *physical = addr;
190 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
191 return TRANSLATE_SUCCESS;
192 default:
193 g_assert_not_reached();
194 }
195 } else {
196 base = env->sptbr << PGSHIFT;
197 sum = !get_field(env->mstatus, MSTATUS_PUM);
198 vm = get_field(env->mstatus, MSTATUS_VM);
199 switch (vm) {
200 case VM_1_09_SV32:
201 levels = 2; ptidxbits = 10; ptesize = 4; break;
202 case VM_1_09_SV39:
203 levels = 3; ptidxbits = 9; ptesize = 8; break;
204 case VM_1_09_SV48:
205 levels = 4; ptidxbits = 9; ptesize = 8; break;
206 case VM_1_09_MBARE:
207 *physical = addr;
208 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
209 return TRANSLATE_SUCCESS;
210 default:
211 g_assert_not_reached();
212 }
213 }
214
215 CPUState *cs = CPU(riscv_env_get_cpu(env));
216 int va_bits = PGSHIFT + levels * ptidxbits;
217 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
218 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
219 if (masked_msbs != 0 && masked_msbs != mask) {
220 return TRANSLATE_FAIL;
221 }
222
223 int ptshift = (levels - 1) * ptidxbits;
224 int i;
225
226 #if !TCG_OVERSIZED_GUEST
227 restart:
228 #endif
229 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
230 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
231 ((1 << ptidxbits) - 1);
232
233 /* check that physical address of PTE is legal */
234 target_ulong pte_addr = base + idx * ptesize;
235 #if defined(TARGET_RISCV32)
236 target_ulong pte = ldl_phys(cs->as, pte_addr);
237 #elif defined(TARGET_RISCV64)
238 target_ulong pte = ldq_phys(cs->as, pte_addr);
239 #endif
240 target_ulong ppn = pte >> PTE_PPN_SHIFT;
241
242 if (!(pte & PTE_V)) {
243 /* Invalid PTE */
244 return TRANSLATE_FAIL;
245 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
246 /* Inner PTE, continue walking */
247 base = ppn << PGSHIFT;
248 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
249 /* Reserved leaf PTE flags: PTE_W */
250 return TRANSLATE_FAIL;
251 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
252 /* Reserved leaf PTE flags: PTE_W + PTE_X */
253 return TRANSLATE_FAIL;
254 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
255 (!sum || access_type == MMU_INST_FETCH))) {
256 /* User PTE flags when not U mode and mstatus.SUM is not set,
257 or the access type is an instruction fetch */
258 return TRANSLATE_FAIL;
259 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
260 /* Supervisor PTE flags when not S mode */
261 return TRANSLATE_FAIL;
262 } else if (ppn & ((1ULL << ptshift) - 1)) {
263 /* Misaligned PPN */
264 return TRANSLATE_FAIL;
265 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
266 ((pte & PTE_X) && mxr))) {
267 /* Read access check failed */
268 return TRANSLATE_FAIL;
269 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
270 /* Write access check failed */
271 return TRANSLATE_FAIL;
272 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
273 /* Fetch access check failed */
274 return TRANSLATE_FAIL;
275 } else {
276 /* if necessary, set accessed and dirty bits. */
277 target_ulong updated_pte = pte | PTE_A |
278 (access_type == MMU_DATA_STORE ? PTE_D : 0);
279
280 /* Page table updates need to be atomic with MTTCG enabled */
281 if (updated_pte != pte) {
282 /*
283 * - if accessed or dirty bits need updating, and the PTE is
284 * in RAM, then we do so atomically with a compare and swap.
285 * - if the PTE is in IO space or ROM, then it can't be updated
286 * and we return TRANSLATE_FAIL.
287 * - if the PTE changed by the time we went to update it, then
288 * it is no longer valid and we must re-walk the page table.
289 */
290 MemoryRegion *mr;
291 hwaddr l = sizeof(target_ulong), addr1;
292 mr = address_space_translate(cs->as, pte_addr,
293 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
294 if (memory_region_is_ram(mr)) {
295 target_ulong *pte_pa =
296 qemu_map_ram_ptr(mr->ram_block, addr1);
297 #if TCG_OVERSIZED_GUEST
298 /* MTTCG is not enabled on oversized TCG guests so
299 * page table updates do not need to be atomic */
300 *pte_pa = pte = updated_pte;
301 #else
302 target_ulong old_pte =
303 atomic_cmpxchg(pte_pa, pte, updated_pte);
304 if (old_pte != pte) {
305 goto restart;
306 } else {
307 pte = updated_pte;
308 }
309 #endif
310 } else {
311 /* misconfigured PTE in ROM (AD bits are not preset) or
312 * PTE is in IO space and can't be updated atomically */
313 return TRANSLATE_FAIL;
314 }
315 }
316
317 /* for superpage mappings, make a fake leaf PTE for the TLB's
318 benefit. */
319 target_ulong vpn = addr >> PGSHIFT;
320 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
321
322 /* set permissions on the TLB entry */
323 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
324 *prot |= PAGE_READ;
325 }
326 if ((pte & PTE_X)) {
327 *prot |= PAGE_EXEC;
328 }
329 /* add write permission on stores or if the page is already dirty,
330 so that we TLB miss on later writes to update the dirty bit */
331 if ((pte & PTE_W) &&
332 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
333 *prot |= PAGE_WRITE;
334 }
335 return TRANSLATE_SUCCESS;
336 }
337 }
338 return TRANSLATE_FAIL;
339 }
340
341 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
342 MMUAccessType access_type)
343 {
344 CPUState *cs = CPU(riscv_env_get_cpu(env));
345 int page_fault_exceptions =
346 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
347 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE;
348 switch (access_type) {
349 case MMU_INST_FETCH:
350 cs->exception_index = page_fault_exceptions ?
351 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
352 break;
353 case MMU_DATA_LOAD:
354 cs->exception_index = page_fault_exceptions ?
355 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
356 break;
357 case MMU_DATA_STORE:
358 cs->exception_index = page_fault_exceptions ?
359 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
360 break;
361 default:
362 g_assert_not_reached();
363 }
364 env->badaddr = address;
365 }
366
367 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
368 {
369 RISCVCPU *cpu = RISCV_CPU(cs);
370 hwaddr phys_addr;
371 int prot;
372 int mmu_idx = cpu_mmu_index(&cpu->env, false);
373
374 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
375 return -1;
376 }
377 return phys_addr;
378 }
379
380 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
381 MMUAccessType access_type, int mmu_idx,
382 uintptr_t retaddr)
383 {
384 RISCVCPU *cpu = RISCV_CPU(cs);
385 CPURISCVState *env = &cpu->env;
386 switch (access_type) {
387 case MMU_INST_FETCH:
388 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
389 break;
390 case MMU_DATA_LOAD:
391 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
392 break;
393 case MMU_DATA_STORE:
394 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
395 break;
396 default:
397 g_assert_not_reached();
398 }
399 env->badaddr = addr;
400 riscv_raise_exception(env, cs->exception_index, retaddr);
401 }
402 #endif
403
404 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
405 MMUAccessType access_type, int mmu_idx,
406 bool probe, uintptr_t retaddr)
407 {
408 #ifndef CONFIG_USER_ONLY
409 RISCVCPU *cpu = RISCV_CPU(cs);
410 CPURISCVState *env = &cpu->env;
411 hwaddr pa = 0;
412 int prot;
413 int ret = TRANSLATE_FAIL;
414
415 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
416 __func__, address, access_type, mmu_idx);
417
418 ret = get_physical_address(env, &pa, &prot, address, access_type, mmu_idx);
419
420 qemu_log_mask(CPU_LOG_MMU,
421 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
422 " prot %d\n", __func__, address, ret, pa, prot);
423
424 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
425 !pmp_hart_has_privs(env, pa, TARGET_PAGE_SIZE, 1 << access_type)) {
426 ret = TRANSLATE_FAIL;
427 }
428 if (ret == TRANSLATE_SUCCESS) {
429 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
430 prot, mmu_idx, TARGET_PAGE_SIZE);
431 return true;
432 } else if (probe) {
433 return false;
434 } else {
435 raise_mmu_exception(env, address, access_type);
436 riscv_raise_exception(env, cs->exception_index, retaddr);
437 }
438 #else
439 switch (access_type) {
440 case MMU_INST_FETCH:
441 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
442 break;
443 case MMU_DATA_LOAD:
444 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
445 break;
446 case MMU_DATA_STORE:
447 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
448 break;
449 }
450 cpu_loop_exit_restore(cs, retaddr);
451 #endif
452 }
453
454 /*
455 * Handle Traps
456 *
457 * Adapted from Spike's processor_t::take_trap.
458 *
459 */
460 void riscv_cpu_do_interrupt(CPUState *cs)
461 {
462 #if !defined(CONFIG_USER_ONLY)
463
464 RISCVCPU *cpu = RISCV_CPU(cs);
465 CPURISCVState *env = &cpu->env;
466
467 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
468 * so we mask off the MSB and separate into trap type and cause.
469 */
470 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
471 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
472 target_ulong deleg = async ? env->mideleg : env->medeleg;
473 target_ulong tval = 0;
474
475 static const int ecall_cause_map[] = {
476 [PRV_U] = RISCV_EXCP_U_ECALL,
477 [PRV_S] = RISCV_EXCP_S_ECALL,
478 [PRV_H] = RISCV_EXCP_H_ECALL,
479 [PRV_M] = RISCV_EXCP_M_ECALL
480 };
481
482 if (!async) {
483 /* set tval to badaddr for traps with address information */
484 switch (cause) {
485 case RISCV_EXCP_INST_ADDR_MIS:
486 case RISCV_EXCP_INST_ACCESS_FAULT:
487 case RISCV_EXCP_LOAD_ADDR_MIS:
488 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
489 case RISCV_EXCP_LOAD_ACCESS_FAULT:
490 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
491 case RISCV_EXCP_INST_PAGE_FAULT:
492 case RISCV_EXCP_LOAD_PAGE_FAULT:
493 case RISCV_EXCP_STORE_PAGE_FAULT:
494 tval = env->badaddr;
495 break;
496 default:
497 break;
498 }
499 /* ecall is dispatched as one cause so translate based on mode */
500 if (cause == RISCV_EXCP_U_ECALL) {
501 assert(env->priv <= 3);
502 cause = ecall_cause_map[env->priv];
503 }
504 }
505
506 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
507 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
508
509 if (env->priv <= PRV_S &&
510 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
511 /* handle the trap in S-mode */
512 target_ulong s = env->mstatus;
513 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
514 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
515 s = set_field(s, MSTATUS_SPP, env->priv);
516 s = set_field(s, MSTATUS_SIE, 0);
517 env->mstatus = s;
518 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
519 env->sepc = env->pc;
520 env->sbadaddr = tval;
521 env->pc = (env->stvec >> 2 << 2) +
522 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
523 riscv_cpu_set_mode(env, PRV_S);
524 } else {
525 /* handle the trap in M-mode */
526 target_ulong s = env->mstatus;
527 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
528 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
529 s = set_field(s, MSTATUS_MPP, env->priv);
530 s = set_field(s, MSTATUS_MIE, 0);
531 env->mstatus = s;
532 env->mcause = cause | ~(((target_ulong)-1) >> async);
533 env->mepc = env->pc;
534 env->mbadaddr = tval;
535 env->pc = (env->mtvec >> 2 << 2) +
536 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
537 riscv_cpu_set_mode(env, PRV_M);
538 }
539
540 /* NOTE: it is not necessary to yield load reservations here. It is only
541 * necessary for an SC from "another hart" to cause a load reservation
542 * to be yielded. Refer to the memory consistency model section of the
543 * RISC-V ISA Specification.
544 */
545
546 #endif
547 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
548 }