]> git.ipfire.org Git - thirdparty/qemu.git/blob - target/riscv/cpu_helper.c
RISC-V: Allow interrupt controllers to claim interrupts
[thirdparty/qemu.git] / target / riscv / cpu_helper.c
1 /*
2 * RISC-V CPU helpers for qemu.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "tcg-op.h"
25
26 #define RISCV_DEBUG_INTERRUPT 0
27
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29 {
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
35 }
36
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
39 {
40 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
41 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
42 target_ulong pending = atomic_read(&env->mip) & env->mie;
43 target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
44 target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
45 target_ulong irqs = (pending & ~env->mideleg & -mie) |
46 (pending & env->mideleg & -sie);
47
48 if (irqs) {
49 return ctz64(irqs); /* since non-zero */
50 } else {
51 return EXCP_NONE; /* indicates no pending interrupt */
52 }
53 }
54 #endif
55
56 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
57 {
58 #if !defined(CONFIG_USER_ONLY)
59 if (interrupt_request & CPU_INTERRUPT_HARD) {
60 RISCVCPU *cpu = RISCV_CPU(cs);
61 CPURISCVState *env = &cpu->env;
62 int interruptno = riscv_cpu_local_irq_pending(env);
63 if (interruptno >= 0) {
64 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
65 riscv_cpu_do_interrupt(cs);
66 return true;
67 }
68 }
69 #endif
70 return false;
71 }
72
73 #if !defined(CONFIG_USER_ONLY)
74
75 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
76 {
77 CPURISCVState *env = &cpu->env;
78 if (env->miclaim & interrupts) {
79 return -1;
80 } else {
81 env->miclaim |= interrupts;
82 return 0;
83 }
84 }
85
86 /* iothread_mutex must be held */
87 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
88 {
89 CPURISCVState *env = &cpu->env;
90 uint32_t old, new, cmp = atomic_read(&env->mip);
91
92 do {
93 old = cmp;
94 new = (old & ~mask) | (value & mask);
95 cmp = atomic_cmpxchg(&env->mip, old, new);
96 } while (old != cmp);
97
98 if (new && !old) {
99 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
100 } else if (!new && old) {
101 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
102 }
103
104 return old;
105 }
106
107 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
108 {
109 if (newpriv > PRV_M) {
110 g_assert_not_reached();
111 }
112 if (newpriv == PRV_H) {
113 newpriv = PRV_U;
114 }
115 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
116 env->priv = newpriv;
117 }
118
119 /* get_physical_address - get the physical address for this virtual address
120 *
121 * Do a page table walk to obtain the physical address corresponding to a
122 * virtual address. Returns 0 if the translation was successful
123 *
124 * Adapted from Spike's mmu_t::translate and mmu_t::walk
125 *
126 */
127 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
128 int *prot, target_ulong addr,
129 int access_type, int mmu_idx)
130 {
131 /* NOTE: the env->pc value visible here will not be
132 * correct, but the value visible to the exception handler
133 * (riscv_cpu_do_interrupt) is correct */
134
135 int mode = mmu_idx;
136
137 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
138 if (get_field(env->mstatus, MSTATUS_MPRV)) {
139 mode = get_field(env->mstatus, MSTATUS_MPP);
140 }
141 }
142
143 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
144 *physical = addr;
145 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
146 return TRANSLATE_SUCCESS;
147 }
148
149 *prot = 0;
150
151 target_ulong base;
152 int levels, ptidxbits, ptesize, vm, sum;
153 int mxr = get_field(env->mstatus, MSTATUS_MXR);
154
155 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
156 base = get_field(env->satp, SATP_PPN) << PGSHIFT;
157 sum = get_field(env->mstatus, MSTATUS_SUM);
158 vm = get_field(env->satp, SATP_MODE);
159 switch (vm) {
160 case VM_1_10_SV32:
161 levels = 2; ptidxbits = 10; ptesize = 4; break;
162 case VM_1_10_SV39:
163 levels = 3; ptidxbits = 9; ptesize = 8; break;
164 case VM_1_10_SV48:
165 levels = 4; ptidxbits = 9; ptesize = 8; break;
166 case VM_1_10_SV57:
167 levels = 5; ptidxbits = 9; ptesize = 8; break;
168 case VM_1_10_MBARE:
169 *physical = addr;
170 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
171 return TRANSLATE_SUCCESS;
172 default:
173 g_assert_not_reached();
174 }
175 } else {
176 base = env->sptbr << PGSHIFT;
177 sum = !get_field(env->mstatus, MSTATUS_PUM);
178 vm = get_field(env->mstatus, MSTATUS_VM);
179 switch (vm) {
180 case VM_1_09_SV32:
181 levels = 2; ptidxbits = 10; ptesize = 4; break;
182 case VM_1_09_SV39:
183 levels = 3; ptidxbits = 9; ptesize = 8; break;
184 case VM_1_09_SV48:
185 levels = 4; ptidxbits = 9; ptesize = 8; break;
186 case VM_1_09_MBARE:
187 *physical = addr;
188 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
189 return TRANSLATE_SUCCESS;
190 default:
191 g_assert_not_reached();
192 }
193 }
194
195 CPUState *cs = CPU(riscv_env_get_cpu(env));
196 int va_bits = PGSHIFT + levels * ptidxbits;
197 target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
198 target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
199 if (masked_msbs != 0 && masked_msbs != mask) {
200 return TRANSLATE_FAIL;
201 }
202
203 int ptshift = (levels - 1) * ptidxbits;
204 int i;
205
206 #if !TCG_OVERSIZED_GUEST
207 restart:
208 #endif
209 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
210 target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
211 ((1 << ptidxbits) - 1);
212
213 /* check that physical address of PTE is legal */
214 target_ulong pte_addr = base + idx * ptesize;
215 #if defined(TARGET_RISCV32)
216 target_ulong pte = ldl_phys(cs->as, pte_addr);
217 #elif defined(TARGET_RISCV64)
218 target_ulong pte = ldq_phys(cs->as, pte_addr);
219 #endif
220 target_ulong ppn = pte >> PTE_PPN_SHIFT;
221
222 if (!(pte & PTE_V)) {
223 /* Invalid PTE */
224 return TRANSLATE_FAIL;
225 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
226 /* Inner PTE, continue walking */
227 base = ppn << PGSHIFT;
228 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
229 /* Reserved leaf PTE flags: PTE_W */
230 return TRANSLATE_FAIL;
231 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
232 /* Reserved leaf PTE flags: PTE_W + PTE_X */
233 return TRANSLATE_FAIL;
234 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
235 (!sum || access_type == MMU_INST_FETCH))) {
236 /* User PTE flags when not U mode and mstatus.SUM is not set,
237 or the access type is an instruction fetch */
238 return TRANSLATE_FAIL;
239 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
240 /* Supervisor PTE flags when not S mode */
241 return TRANSLATE_FAIL;
242 } else if (ppn & ((1ULL << ptshift) - 1)) {
243 /* Misaligned PPN */
244 return TRANSLATE_FAIL;
245 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
246 ((pte & PTE_X) && mxr))) {
247 /* Read access check failed */
248 return TRANSLATE_FAIL;
249 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
250 /* Write access check failed */
251 return TRANSLATE_FAIL;
252 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
253 /* Fetch access check failed */
254 return TRANSLATE_FAIL;
255 } else {
256 /* if necessary, set accessed and dirty bits. */
257 target_ulong updated_pte = pte | PTE_A |
258 (access_type == MMU_DATA_STORE ? PTE_D : 0);
259
260 /* Page table updates need to be atomic with MTTCG enabled */
261 if (updated_pte != pte) {
262 /*
263 * - if accessed or dirty bits need updating, and the PTE is
264 * in RAM, then we do so atomically with a compare and swap.
265 * - if the PTE is in IO space or ROM, then it can't be updated
266 * and we return TRANSLATE_FAIL.
267 * - if the PTE changed by the time we went to update it, then
268 * it is no longer valid and we must re-walk the page table.
269 */
270 MemoryRegion *mr;
271 hwaddr l = sizeof(target_ulong), addr1;
272 mr = address_space_translate(cs->as, pte_addr,
273 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
274 if (memory_region_is_ram(mr)) {
275 target_ulong *pte_pa =
276 qemu_map_ram_ptr(mr->ram_block, addr1);
277 #if TCG_OVERSIZED_GUEST
278 /* MTTCG is not enabled on oversized TCG guests so
279 * page table updates do not need to be atomic */
280 *pte_pa = pte = updated_pte;
281 #else
282 target_ulong old_pte =
283 atomic_cmpxchg(pte_pa, pte, updated_pte);
284 if (old_pte != pte) {
285 goto restart;
286 } else {
287 pte = updated_pte;
288 }
289 #endif
290 } else {
291 /* misconfigured PTE in ROM (AD bits are not preset) or
292 * PTE is in IO space and can't be updated atomically */
293 return TRANSLATE_FAIL;
294 }
295 }
296
297 /* for superpage mappings, make a fake leaf PTE for the TLB's
298 benefit. */
299 target_ulong vpn = addr >> PGSHIFT;
300 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
301
302 /* set permissions on the TLB entry */
303 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
304 *prot |= PAGE_READ;
305 }
306 if ((pte & PTE_X)) {
307 *prot |= PAGE_EXEC;
308 }
309 /* add write permission on stores or if the page is already dirty,
310 so that we TLB miss on later writes to update the dirty bit */
311 if ((pte & PTE_W) &&
312 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
313 *prot |= PAGE_WRITE;
314 }
315 return TRANSLATE_SUCCESS;
316 }
317 }
318 return TRANSLATE_FAIL;
319 }
320
321 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
322 MMUAccessType access_type)
323 {
324 CPUState *cs = CPU(riscv_env_get_cpu(env));
325 int page_fault_exceptions =
326 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
327 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE;
328 switch (access_type) {
329 case MMU_INST_FETCH:
330 cs->exception_index = page_fault_exceptions ?
331 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
332 break;
333 case MMU_DATA_LOAD:
334 cs->exception_index = page_fault_exceptions ?
335 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
336 break;
337 case MMU_DATA_STORE:
338 cs->exception_index = page_fault_exceptions ?
339 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
340 break;
341 default:
342 g_assert_not_reached();
343 }
344 env->badaddr = address;
345 }
346
347 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
348 {
349 RISCVCPU *cpu = RISCV_CPU(cs);
350 hwaddr phys_addr;
351 int prot;
352 int mmu_idx = cpu_mmu_index(&cpu->env, false);
353
354 if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
355 return -1;
356 }
357 return phys_addr;
358 }
359
360 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
361 MMUAccessType access_type, int mmu_idx,
362 uintptr_t retaddr)
363 {
364 RISCVCPU *cpu = RISCV_CPU(cs);
365 CPURISCVState *env = &cpu->env;
366 switch (access_type) {
367 case MMU_INST_FETCH:
368 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
369 break;
370 case MMU_DATA_LOAD:
371 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
372 break;
373 case MMU_DATA_STORE:
374 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
375 break;
376 default:
377 g_assert_not_reached();
378 }
379 env->badaddr = addr;
380 riscv_raise_exception(env, cs->exception_index, retaddr);
381 }
382
383 /* called by qemu's softmmu to fill the qemu tlb */
384 void tlb_fill(CPUState *cs, target_ulong addr, int size,
385 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
386 {
387 int ret;
388 ret = riscv_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
389 if (ret == TRANSLATE_FAIL) {
390 RISCVCPU *cpu = RISCV_CPU(cs);
391 CPURISCVState *env = &cpu->env;
392 riscv_raise_exception(env, cs->exception_index, retaddr);
393 }
394 }
395
396 #endif
397
398 int riscv_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
399 int rw, int mmu_idx)
400 {
401 RISCVCPU *cpu = RISCV_CPU(cs);
402 CPURISCVState *env = &cpu->env;
403 #if !defined(CONFIG_USER_ONLY)
404 hwaddr pa = 0;
405 int prot;
406 #endif
407 int ret = TRANSLATE_FAIL;
408
409 qemu_log_mask(CPU_LOG_MMU,
410 "%s pc " TARGET_FMT_lx " ad %" VADDR_PRIx " rw %d mmu_idx \
411 %d\n", __func__, env->pc, address, rw, mmu_idx);
412
413 #if !defined(CONFIG_USER_ONLY)
414 ret = get_physical_address(env, &pa, &prot, address, rw, mmu_idx);
415 qemu_log_mask(CPU_LOG_MMU,
416 "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
417 " prot %d\n", __func__, address, ret, pa, prot);
418 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
419 !pmp_hart_has_privs(env, pa, TARGET_PAGE_SIZE, 1 << rw)) {
420 ret = TRANSLATE_FAIL;
421 }
422 if (ret == TRANSLATE_SUCCESS) {
423 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
424 prot, mmu_idx, TARGET_PAGE_SIZE);
425 } else if (ret == TRANSLATE_FAIL) {
426 raise_mmu_exception(env, address, rw);
427 }
428 #else
429 switch (rw) {
430 case MMU_INST_FETCH:
431 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
432 break;
433 case MMU_DATA_LOAD:
434 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
435 break;
436 case MMU_DATA_STORE:
437 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
438 break;
439 }
440 #endif
441 return ret;
442 }
443
444 /*
445 * Handle Traps
446 *
447 * Adapted from Spike's processor_t::take_trap.
448 *
449 */
450 void riscv_cpu_do_interrupt(CPUState *cs)
451 {
452 #if !defined(CONFIG_USER_ONLY)
453
454 RISCVCPU *cpu = RISCV_CPU(cs);
455 CPURISCVState *env = &cpu->env;
456
457 if (RISCV_DEBUG_INTERRUPT) {
458 int log_cause = cs->exception_index & RISCV_EXCP_INT_MASK;
459 if (cs->exception_index & RISCV_EXCP_INT_FLAG) {
460 qemu_log_mask(LOG_TRACE, "core "
461 TARGET_FMT_ld ": trap %s, epc 0x" TARGET_FMT_lx "\n",
462 env->mhartid, riscv_intr_names[log_cause], env->pc);
463 } else {
464 qemu_log_mask(LOG_TRACE, "core "
465 TARGET_FMT_ld ": intr %s, epc 0x" TARGET_FMT_lx "\n",
466 env->mhartid, riscv_excp_names[log_cause], env->pc);
467 }
468 }
469
470 target_ulong fixed_cause = 0;
471 if (cs->exception_index & (RISCV_EXCP_INT_FLAG)) {
472 /* hacky for now. the MSB (bit 63) indicates interrupt but cs->exception
473 index is only 32 bits wide */
474 fixed_cause = cs->exception_index & RISCV_EXCP_INT_MASK;
475 fixed_cause |= ((target_ulong)1) << (TARGET_LONG_BITS - 1);
476 } else {
477 /* fixup User ECALL -> correct priv ECALL */
478 if (cs->exception_index == RISCV_EXCP_U_ECALL) {
479 switch (env->priv) {
480 case PRV_U:
481 fixed_cause = RISCV_EXCP_U_ECALL;
482 break;
483 case PRV_S:
484 fixed_cause = RISCV_EXCP_S_ECALL;
485 break;
486 case PRV_H:
487 fixed_cause = RISCV_EXCP_H_ECALL;
488 break;
489 case PRV_M:
490 fixed_cause = RISCV_EXCP_M_ECALL;
491 break;
492 }
493 } else {
494 fixed_cause = cs->exception_index;
495 }
496 }
497
498 target_ulong backup_epc = env->pc;
499
500 target_ulong bit = fixed_cause;
501 target_ulong deleg = env->medeleg;
502
503 int hasbadaddr =
504 (fixed_cause == RISCV_EXCP_INST_ADDR_MIS) ||
505 (fixed_cause == RISCV_EXCP_INST_ACCESS_FAULT) ||
506 (fixed_cause == RISCV_EXCP_LOAD_ADDR_MIS) ||
507 (fixed_cause == RISCV_EXCP_STORE_AMO_ADDR_MIS) ||
508 (fixed_cause == RISCV_EXCP_LOAD_ACCESS_FAULT) ||
509 (fixed_cause == RISCV_EXCP_STORE_AMO_ACCESS_FAULT) ||
510 (fixed_cause == RISCV_EXCP_INST_PAGE_FAULT) ||
511 (fixed_cause == RISCV_EXCP_LOAD_PAGE_FAULT) ||
512 (fixed_cause == RISCV_EXCP_STORE_PAGE_FAULT);
513
514 if (bit & ((target_ulong)1 << (TARGET_LONG_BITS - 1))) {
515 deleg = env->mideleg;
516 bit &= ~((target_ulong)1 << (TARGET_LONG_BITS - 1));
517 }
518
519 if (env->priv <= PRV_S && bit < 64 && ((deleg >> bit) & 1)) {
520 /* handle the trap in S-mode */
521 /* No need to check STVEC for misaligned - lower 2 bits cannot be set */
522 env->pc = env->stvec;
523 env->scause = fixed_cause;
524 env->sepc = backup_epc;
525
526 if (hasbadaddr) {
527 if (RISCV_DEBUG_INTERRUPT) {
528 qemu_log_mask(LOG_TRACE, "core " TARGET_FMT_ld ": badaddr 0x"
529 TARGET_FMT_lx "\n", env->mhartid, env->badaddr);
530 }
531 env->sbadaddr = env->badaddr;
532 } else {
533 /* otherwise we must clear sbadaddr/stval
534 * todo: support populating stval on illegal instructions */
535 env->sbadaddr = 0;
536 }
537
538 target_ulong s = env->mstatus;
539 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
540 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
541 s = set_field(s, MSTATUS_SPP, env->priv);
542 s = set_field(s, MSTATUS_SIE, 0);
543 env->mstatus = s;
544 riscv_cpu_set_mode(env, PRV_S);
545 } else {
546 /* No need to check MTVEC for misaligned - lower 2 bits cannot be set */
547 env->pc = env->mtvec;
548 env->mepc = backup_epc;
549 env->mcause = fixed_cause;
550
551 if (hasbadaddr) {
552 if (RISCV_DEBUG_INTERRUPT) {
553 qemu_log_mask(LOG_TRACE, "core " TARGET_FMT_ld ": badaddr 0x"
554 TARGET_FMT_lx "\n", env->mhartid, env->badaddr);
555 }
556 env->mbadaddr = env->badaddr;
557 } else {
558 /* otherwise we must clear mbadaddr/mtval
559 * todo: support populating mtval on illegal instructions */
560 env->mbadaddr = 0;
561 }
562
563 target_ulong s = env->mstatus;
564 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
565 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
566 s = set_field(s, MSTATUS_MPP, env->priv);
567 s = set_field(s, MSTATUS_MIE, 0);
568 env->mstatus = s;
569 riscv_cpu_set_mode(env, PRV_M);
570 }
571 /* TODO yield load reservation */
572 #endif
573 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
574 }