]> git.ipfire.org Git - thirdparty/qemu.git/blob - tcg/i386/tcg-target.inc.c
Merge remote-tracking branch 'remotes/xtensa/tags/20170124-xtensa' into staging
[thirdparty/qemu.git] / tcg / i386 / tcg-target.inc.c
1 /*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "tcg-be-ldst.h"
26
27 #ifdef CONFIG_DEBUG_TCG
28 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
29 #if TCG_TARGET_REG_BITS == 64
30 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
31 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
32 #else
33 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
34 #endif
35 };
36 #endif
37
38 static const int tcg_target_reg_alloc_order[] = {
39 #if TCG_TARGET_REG_BITS == 64
40 TCG_REG_RBP,
41 TCG_REG_RBX,
42 TCG_REG_R12,
43 TCG_REG_R13,
44 TCG_REG_R14,
45 TCG_REG_R15,
46 TCG_REG_R10,
47 TCG_REG_R11,
48 TCG_REG_R9,
49 TCG_REG_R8,
50 TCG_REG_RCX,
51 TCG_REG_RDX,
52 TCG_REG_RSI,
53 TCG_REG_RDI,
54 TCG_REG_RAX,
55 #else
56 TCG_REG_EBX,
57 TCG_REG_ESI,
58 TCG_REG_EDI,
59 TCG_REG_EBP,
60 TCG_REG_ECX,
61 TCG_REG_EDX,
62 TCG_REG_EAX,
63 #endif
64 };
65
66 static const int tcg_target_call_iarg_regs[] = {
67 #if TCG_TARGET_REG_BITS == 64
68 #if defined(_WIN64)
69 TCG_REG_RCX,
70 TCG_REG_RDX,
71 #else
72 TCG_REG_RDI,
73 TCG_REG_RSI,
74 TCG_REG_RDX,
75 TCG_REG_RCX,
76 #endif
77 TCG_REG_R8,
78 TCG_REG_R9,
79 #else
80 /* 32 bit mode uses stack based calling convention (GCC default). */
81 #endif
82 };
83
84 static const int tcg_target_call_oarg_regs[] = {
85 TCG_REG_EAX,
86 #if TCG_TARGET_REG_BITS == 32
87 TCG_REG_EDX
88 #endif
89 };
90
91 /* Constants we accept. */
92 #define TCG_CT_CONST_S32 0x100
93 #define TCG_CT_CONST_U32 0x200
94 #define TCG_CT_CONST_I32 0x400
95 #define TCG_CT_CONST_WSZ 0x800
96
97 /* Registers used with L constraint, which are the first argument
98 registers on x86_64, and two random call clobbered registers on
99 i386. */
100 #if TCG_TARGET_REG_BITS == 64
101 # define TCG_REG_L0 tcg_target_call_iarg_regs[0]
102 # define TCG_REG_L1 tcg_target_call_iarg_regs[1]
103 #else
104 # define TCG_REG_L0 TCG_REG_EAX
105 # define TCG_REG_L1 TCG_REG_EDX
106 #endif
107
108 /* The host compiler should supply <cpuid.h> to enable runtime features
109 detection, as we're not going to go so far as our own inline assembly.
110 If not available, default values will be assumed. */
111 #if defined(CONFIG_CPUID_H)
112 #include <cpuid.h>
113 #endif
114
115 /* For 32-bit, we are going to attempt to determine at runtime whether cmov
116 is available. */
117 #if TCG_TARGET_REG_BITS == 64
118 # define have_cmov 1
119 #elif defined(CONFIG_CPUID_H) && defined(bit_CMOV)
120 static bool have_cmov;
121 #else
122 # define have_cmov 0
123 #endif
124
125 /* If bit_MOVBE is defined in cpuid.h (added in GCC version 4.6), we are
126 going to attempt to determine at runtime whether movbe is available. */
127 #if defined(CONFIG_CPUID_H) && defined(bit_MOVBE)
128 static bool have_movbe;
129 #else
130 # define have_movbe 0
131 #endif
132
133 /* We need these symbols in tcg-target.h, and we can't properly conditionalize
134 it there. Therefore we always define the variable. */
135 bool have_bmi1;
136 bool have_popcnt;
137
138 #if defined(CONFIG_CPUID_H) && defined(bit_BMI2)
139 static bool have_bmi2;
140 #else
141 # define have_bmi2 0
142 #endif
143 #if defined(CONFIG_CPUID_H) && defined(bit_LZCNT)
144 static bool have_lzcnt;
145 #else
146 # define have_lzcnt 0
147 #endif
148
149 static tcg_insn_unit *tb_ret_addr;
150
151 static void patch_reloc(tcg_insn_unit *code_ptr, int type,
152 intptr_t value, intptr_t addend)
153 {
154 value += addend;
155 switch(type) {
156 case R_386_PC32:
157 value -= (uintptr_t)code_ptr;
158 if (value != (int32_t)value) {
159 tcg_abort();
160 }
161 tcg_patch32(code_ptr, value);
162 break;
163 case R_386_PC8:
164 value -= (uintptr_t)code_ptr;
165 if (value != (int8_t)value) {
166 tcg_abort();
167 }
168 tcg_patch8(code_ptr, value);
169 break;
170 default:
171 tcg_abort();
172 }
173 }
174
175 /* parse target specific constraints */
176 static const char *target_parse_constraint(TCGArgConstraint *ct,
177 const char *ct_str, TCGType type)
178 {
179 switch(*ct_str++) {
180 case 'a':
181 ct->ct |= TCG_CT_REG;
182 tcg_regset_set_reg(ct->u.regs, TCG_REG_EAX);
183 break;
184 case 'b':
185 ct->ct |= TCG_CT_REG;
186 tcg_regset_set_reg(ct->u.regs, TCG_REG_EBX);
187 break;
188 case 'c':
189 ct->ct |= TCG_CT_REG;
190 tcg_regset_set_reg(ct->u.regs, TCG_REG_ECX);
191 break;
192 case 'd':
193 ct->ct |= TCG_CT_REG;
194 tcg_regset_set_reg(ct->u.regs, TCG_REG_EDX);
195 break;
196 case 'S':
197 ct->ct |= TCG_CT_REG;
198 tcg_regset_set_reg(ct->u.regs, TCG_REG_ESI);
199 break;
200 case 'D':
201 ct->ct |= TCG_CT_REG;
202 tcg_regset_set_reg(ct->u.regs, TCG_REG_EDI);
203 break;
204 case 'q':
205 ct->ct |= TCG_CT_REG;
206 if (TCG_TARGET_REG_BITS == 64) {
207 tcg_regset_set32(ct->u.regs, 0, 0xffff);
208 } else {
209 tcg_regset_set32(ct->u.regs, 0, 0xf);
210 }
211 break;
212 case 'Q':
213 ct->ct |= TCG_CT_REG;
214 tcg_regset_set32(ct->u.regs, 0, 0xf);
215 break;
216 case 'r':
217 ct->ct |= TCG_CT_REG;
218 if (TCG_TARGET_REG_BITS == 64) {
219 tcg_regset_set32(ct->u.regs, 0, 0xffff);
220 } else {
221 tcg_regset_set32(ct->u.regs, 0, 0xff);
222 }
223 break;
224 case 'W':
225 /* With TZCNT/LZCNT, we can have operand-size as an input. */
226 ct->ct |= TCG_CT_CONST_WSZ;
227 break;
228
229 /* qemu_ld/st address constraint */
230 case 'L':
231 ct->ct |= TCG_CT_REG;
232 if (TCG_TARGET_REG_BITS == 64) {
233 tcg_regset_set32(ct->u.regs, 0, 0xffff);
234 } else {
235 tcg_regset_set32(ct->u.regs, 0, 0xff);
236 }
237 tcg_regset_reset_reg(ct->u.regs, TCG_REG_L0);
238 tcg_regset_reset_reg(ct->u.regs, TCG_REG_L1);
239 break;
240
241 case 'e':
242 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_S32);
243 break;
244 case 'Z':
245 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_U32);
246 break;
247 case 'I':
248 ct->ct |= (type == TCG_TYPE_I32 ? TCG_CT_CONST : TCG_CT_CONST_I32);
249 break;
250
251 default:
252 return NULL;
253 }
254 return ct_str;
255 }
256
257 /* test if a constant matches the constraint */
258 static inline int tcg_target_const_match(tcg_target_long val, TCGType type,
259 const TCGArgConstraint *arg_ct)
260 {
261 int ct = arg_ct->ct;
262 if (ct & TCG_CT_CONST) {
263 return 1;
264 }
265 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
266 return 1;
267 }
268 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
269 return 1;
270 }
271 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
272 return 1;
273 }
274 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
275 return 1;
276 }
277 return 0;
278 }
279
280 #if TCG_TARGET_REG_BITS == 64
281 # define LOWREGMASK(x) ((x) & 7)
282 #else
283 # define LOWREGMASK(x) (x)
284 #endif
285
286 #define P_EXT 0x100 /* 0x0f opcode prefix */
287 #define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
288 #define P_DATA16 0x400 /* 0x66 opcode prefix */
289 #if TCG_TARGET_REG_BITS == 64
290 # define P_ADDR32 0x800 /* 0x67 opcode prefix */
291 # define P_REXW 0x1000 /* Set REX.W = 1 */
292 # define P_REXB_R 0x2000 /* REG field as byte register */
293 # define P_REXB_RM 0x4000 /* R/M field as byte register */
294 # define P_GS 0x8000 /* gs segment override */
295 #else
296 # define P_ADDR32 0
297 # define P_REXW 0
298 # define P_REXB_R 0
299 # define P_REXB_RM 0
300 # define P_GS 0
301 #endif
302 #define P_SIMDF3 0x10000 /* 0xf3 opcode prefix */
303 #define P_SIMDF2 0x20000 /* 0xf2 opcode prefix */
304
305 #define OPC_ARITH_EvIz (0x81)
306 #define OPC_ARITH_EvIb (0x83)
307 #define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
308 #define OPC_ANDN (0xf2 | P_EXT38)
309 #define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
310 #define OPC_BSF (0xbc | P_EXT)
311 #define OPC_BSR (0xbd | P_EXT)
312 #define OPC_BSWAP (0xc8 | P_EXT)
313 #define OPC_CALL_Jz (0xe8)
314 #define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
315 #define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
316 #define OPC_DEC_r32 (0x48)
317 #define OPC_IMUL_GvEv (0xaf | P_EXT)
318 #define OPC_IMUL_GvEvIb (0x6b)
319 #define OPC_IMUL_GvEvIz (0x69)
320 #define OPC_INC_r32 (0x40)
321 #define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
322 #define OPC_JCC_short (0x70) /* ... plus condition code */
323 #define OPC_JMP_long (0xe9)
324 #define OPC_JMP_short (0xeb)
325 #define OPC_LEA (0x8d)
326 #define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
327 #define OPC_MOVB_EvGv (0x88) /* stores, more or less */
328 #define OPC_MOVL_EvGv (0x89) /* stores, more or less */
329 #define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
330 #define OPC_MOVB_EvIz (0xc6)
331 #define OPC_MOVL_EvIz (0xc7)
332 #define OPC_MOVL_Iv (0xb8)
333 #define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
334 #define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
335 #define OPC_MOVSBL (0xbe | P_EXT)
336 #define OPC_MOVSWL (0xbf | P_EXT)
337 #define OPC_MOVSLQ (0x63 | P_REXW)
338 #define OPC_MOVZBL (0xb6 | P_EXT)
339 #define OPC_MOVZWL (0xb7 | P_EXT)
340 #define OPC_POP_r32 (0x58)
341 #define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
342 #define OPC_PUSH_r32 (0x50)
343 #define OPC_PUSH_Iv (0x68)
344 #define OPC_PUSH_Ib (0x6a)
345 #define OPC_RET (0xc3)
346 #define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
347 #define OPC_SHIFT_1 (0xd1)
348 #define OPC_SHIFT_Ib (0xc1)
349 #define OPC_SHIFT_cl (0xd3)
350 #define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
351 #define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
352 #define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
353 #define OPC_TESTL (0x85)
354 #define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
355 #define OPC_XCHG_ax_r32 (0x90)
356
357 #define OPC_GRP3_Ev (0xf7)
358 #define OPC_GRP5 (0xff)
359
360 /* Group 1 opcode extensions for 0x80-0x83.
361 These are also used as modifiers for OPC_ARITH. */
362 #define ARITH_ADD 0
363 #define ARITH_OR 1
364 #define ARITH_ADC 2
365 #define ARITH_SBB 3
366 #define ARITH_AND 4
367 #define ARITH_SUB 5
368 #define ARITH_XOR 6
369 #define ARITH_CMP 7
370
371 /* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
372 #define SHIFT_ROL 0
373 #define SHIFT_ROR 1
374 #define SHIFT_SHL 4
375 #define SHIFT_SHR 5
376 #define SHIFT_SAR 7
377
378 /* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
379 #define EXT3_NOT 2
380 #define EXT3_NEG 3
381 #define EXT3_MUL 4
382 #define EXT3_IMUL 5
383 #define EXT3_DIV 6
384 #define EXT3_IDIV 7
385
386 /* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
387 #define EXT5_INC_Ev 0
388 #define EXT5_DEC_Ev 1
389 #define EXT5_CALLN_Ev 2
390 #define EXT5_JMPN_Ev 4
391
392 /* Condition codes to be added to OPC_JCC_{long,short}. */
393 #define JCC_JMP (-1)
394 #define JCC_JO 0x0
395 #define JCC_JNO 0x1
396 #define JCC_JB 0x2
397 #define JCC_JAE 0x3
398 #define JCC_JE 0x4
399 #define JCC_JNE 0x5
400 #define JCC_JBE 0x6
401 #define JCC_JA 0x7
402 #define JCC_JS 0x8
403 #define JCC_JNS 0x9
404 #define JCC_JP 0xa
405 #define JCC_JNP 0xb
406 #define JCC_JL 0xc
407 #define JCC_JGE 0xd
408 #define JCC_JLE 0xe
409 #define JCC_JG 0xf
410
411 static const uint8_t tcg_cond_to_jcc[] = {
412 [TCG_COND_EQ] = JCC_JE,
413 [TCG_COND_NE] = JCC_JNE,
414 [TCG_COND_LT] = JCC_JL,
415 [TCG_COND_GE] = JCC_JGE,
416 [TCG_COND_LE] = JCC_JLE,
417 [TCG_COND_GT] = JCC_JG,
418 [TCG_COND_LTU] = JCC_JB,
419 [TCG_COND_GEU] = JCC_JAE,
420 [TCG_COND_LEU] = JCC_JBE,
421 [TCG_COND_GTU] = JCC_JA,
422 };
423
424 #if TCG_TARGET_REG_BITS == 64
425 static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
426 {
427 int rex;
428
429 if (opc & P_GS) {
430 tcg_out8(s, 0x65);
431 }
432 if (opc & P_DATA16) {
433 /* We should never be asking for both 16 and 64-bit operation. */
434 tcg_debug_assert((opc & P_REXW) == 0);
435 tcg_out8(s, 0x66);
436 }
437 if (opc & P_ADDR32) {
438 tcg_out8(s, 0x67);
439 }
440 if (opc & P_SIMDF3) {
441 tcg_out8(s, 0xf3);
442 } else if (opc & P_SIMDF2) {
443 tcg_out8(s, 0xf2);
444 }
445
446 rex = 0;
447 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
448 rex |= (r & 8) >> 1; /* REX.R */
449 rex |= (x & 8) >> 2; /* REX.X */
450 rex |= (rm & 8) >> 3; /* REX.B */
451
452 /* P_REXB_{R,RM} indicates that the given register is the low byte.
453 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
454 as otherwise the encoding indicates %[abcd]h. Note that the values
455 that are ORed in merely indicate that the REX byte must be present;
456 those bits get discarded in output. */
457 rex |= opc & (r >= 4 ? P_REXB_R : 0);
458 rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
459
460 if (rex) {
461 tcg_out8(s, (uint8_t)(rex | 0x40));
462 }
463
464 if (opc & (P_EXT | P_EXT38)) {
465 tcg_out8(s, 0x0f);
466 if (opc & P_EXT38) {
467 tcg_out8(s, 0x38);
468 }
469 }
470
471 tcg_out8(s, opc);
472 }
473 #else
474 static void tcg_out_opc(TCGContext *s, int opc)
475 {
476 if (opc & P_DATA16) {
477 tcg_out8(s, 0x66);
478 }
479 if (opc & P_SIMDF3) {
480 tcg_out8(s, 0xf3);
481 } else if (opc & P_SIMDF2) {
482 tcg_out8(s, 0xf2);
483 }
484 if (opc & (P_EXT | P_EXT38)) {
485 tcg_out8(s, 0x0f);
486 if (opc & P_EXT38) {
487 tcg_out8(s, 0x38);
488 }
489 }
490 tcg_out8(s, opc);
491 }
492 /* Discard the register arguments to tcg_out_opc early, so as not to penalize
493 the 32-bit compilation paths. This method works with all versions of gcc,
494 whereas relying on optimization may not be able to exclude them. */
495 #define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
496 #endif
497
498 static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
499 {
500 tcg_out_opc(s, opc, r, rm, 0);
501 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
502 }
503
504 static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
505 {
506 int tmp;
507
508 if ((opc & (P_REXW | P_EXT | P_EXT38)) || (rm & 8)) {
509 /* Three byte VEX prefix. */
510 tcg_out8(s, 0xc4);
511
512 /* VEX.m-mmmm */
513 if (opc & P_EXT38) {
514 tmp = 2;
515 } else if (opc & P_EXT) {
516 tmp = 1;
517 } else {
518 tcg_abort();
519 }
520 tmp |= 0x40; /* VEX.X */
521 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
522 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
523 tcg_out8(s, tmp);
524
525 tmp = (opc & P_REXW ? 0x80 : 0); /* VEX.W */
526 } else {
527 /* Two byte VEX prefix. */
528 tcg_out8(s, 0xc5);
529
530 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
531 }
532 /* VEX.pp */
533 if (opc & P_DATA16) {
534 tmp |= 1; /* 0x66 */
535 } else if (opc & P_SIMDF3) {
536 tmp |= 2; /* 0xf3 */
537 } else if (opc & P_SIMDF2) {
538 tmp |= 3; /* 0xf2 */
539 }
540 tmp |= (~v & 15) << 3; /* VEX.vvvv */
541 tcg_out8(s, tmp);
542 tcg_out8(s, opc);
543 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
544 }
545
546 /* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
547 We handle either RM and INDEX missing with a negative value. In 64-bit
548 mode for absolute addresses, ~RM is the size of the immediate operand
549 that will follow the instruction. */
550
551 static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
552 int index, int shift, intptr_t offset)
553 {
554 int mod, len;
555
556 if (index < 0 && rm < 0) {
557 if (TCG_TARGET_REG_BITS == 64) {
558 /* Try for a rip-relative addressing mode. This has replaced
559 the 32-bit-mode absolute addressing encoding. */
560 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
561 intptr_t disp = offset - pc;
562 if (disp == (int32_t)disp) {
563 tcg_out_opc(s, opc, r, 0, 0);
564 tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
565 tcg_out32(s, disp);
566 return;
567 }
568
569 /* Try for an absolute address encoding. This requires the
570 use of the MODRM+SIB encoding and is therefore larger than
571 rip-relative addressing. */
572 if (offset == (int32_t)offset) {
573 tcg_out_opc(s, opc, r, 0, 0);
574 tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
575 tcg_out8(s, (4 << 3) | 5);
576 tcg_out32(s, offset);
577 return;
578 }
579
580 /* ??? The memory isn't directly addressable. */
581 tcg_abort();
582 } else {
583 /* Absolute address. */
584 tcg_out_opc(s, opc, r, 0, 0);
585 tcg_out8(s, (r << 3) | 5);
586 tcg_out32(s, offset);
587 return;
588 }
589 }
590
591 /* Find the length of the immediate addend. Note that the encoding
592 that would be used for (%ebp) indicates absolute addressing. */
593 if (rm < 0) {
594 mod = 0, len = 4, rm = 5;
595 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
596 mod = 0, len = 0;
597 } else if (offset == (int8_t)offset) {
598 mod = 0x40, len = 1;
599 } else {
600 mod = 0x80, len = 4;
601 }
602
603 /* Use a single byte MODRM format if possible. Note that the encoding
604 that would be used for %esp is the escape to the two byte form. */
605 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
606 /* Single byte MODRM format. */
607 tcg_out_opc(s, opc, r, rm, 0);
608 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
609 } else {
610 /* Two byte MODRM+SIB format. */
611
612 /* Note that the encoding that would place %esp into the index
613 field indicates no index register. In 64-bit mode, the REX.X
614 bit counts, so %r12 can be used as the index. */
615 if (index < 0) {
616 index = 4;
617 } else {
618 tcg_debug_assert(index != TCG_REG_ESP);
619 }
620
621 tcg_out_opc(s, opc, r, rm, index);
622 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
623 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
624 }
625
626 if (len == 1) {
627 tcg_out8(s, offset);
628 } else if (len == 4) {
629 tcg_out32(s, offset);
630 }
631 }
632
633 /* A simplification of the above with no index or shift. */
634 static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
635 int rm, intptr_t offset)
636 {
637 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
638 }
639
640 /* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
641 static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
642 {
643 /* Propagate an opcode prefix, such as P_REXW. */
644 int ext = subop & ~0x7;
645 subop &= 0x7;
646
647 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
648 }
649
650 static inline void tcg_out_mov(TCGContext *s, TCGType type,
651 TCGReg ret, TCGReg arg)
652 {
653 if (arg != ret) {
654 int opc = OPC_MOVL_GvEv + (type == TCG_TYPE_I64 ? P_REXW : 0);
655 tcg_out_modrm(s, opc, ret, arg);
656 }
657 }
658
659 static void tcg_out_movi(TCGContext *s, TCGType type,
660 TCGReg ret, tcg_target_long arg)
661 {
662 tcg_target_long diff;
663
664 if (arg == 0) {
665 tgen_arithr(s, ARITH_XOR, ret, ret);
666 return;
667 }
668 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
669 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
670 tcg_out32(s, arg);
671 return;
672 }
673 if (arg == (int32_t)arg) {
674 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
675 tcg_out32(s, arg);
676 return;
677 }
678
679 /* Try a 7 byte pc-relative lea before the 10 byte movq. */
680 diff = arg - ((uintptr_t)s->code_ptr + 7);
681 if (diff == (int32_t)diff) {
682 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
683 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
684 tcg_out32(s, diff);
685 return;
686 }
687
688 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
689 tcg_out64(s, arg);
690 }
691
692 static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
693 {
694 if (val == (int8_t)val) {
695 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
696 tcg_out8(s, val);
697 } else if (val == (int32_t)val) {
698 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
699 tcg_out32(s, val);
700 } else {
701 tcg_abort();
702 }
703 }
704
705 static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
706 {
707 /* Given the strength of x86 memory ordering, we only need care for
708 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
709 faster than "mfence", so don't bother with the sse insn. */
710 if (a0 & TCG_MO_ST_LD) {
711 tcg_out8(s, 0xf0);
712 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
713 tcg_out8(s, 0);
714 }
715 }
716
717 static inline void tcg_out_push(TCGContext *s, int reg)
718 {
719 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
720 }
721
722 static inline void tcg_out_pop(TCGContext *s, int reg)
723 {
724 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
725 }
726
727 static inline void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
728 TCGReg arg1, intptr_t arg2)
729 {
730 int opc = OPC_MOVL_GvEv + (type == TCG_TYPE_I64 ? P_REXW : 0);
731 tcg_out_modrm_offset(s, opc, ret, arg1, arg2);
732 }
733
734 static inline void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
735 TCGReg arg1, intptr_t arg2)
736 {
737 int opc = OPC_MOVL_EvGv + (type == TCG_TYPE_I64 ? P_REXW : 0);
738 tcg_out_modrm_offset(s, opc, arg, arg1, arg2);
739 }
740
741 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
742 TCGReg base, intptr_t ofs)
743 {
744 int rexw = 0;
745 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
746 if (val != (int32_t)val) {
747 return false;
748 }
749 rexw = P_REXW;
750 }
751 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
752 tcg_out32(s, val);
753 return true;
754 }
755
756 static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
757 {
758 /* Propagate an opcode prefix, such as P_DATA16. */
759 int ext = subopc & ~0x7;
760 subopc &= 0x7;
761
762 if (count == 1) {
763 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
764 } else {
765 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
766 tcg_out8(s, count);
767 }
768 }
769
770 static inline void tcg_out_bswap32(TCGContext *s, int reg)
771 {
772 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
773 }
774
775 static inline void tcg_out_rolw_8(TCGContext *s, int reg)
776 {
777 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
778 }
779
780 static inline void tcg_out_ext8u(TCGContext *s, int dest, int src)
781 {
782 /* movzbl */
783 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
784 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
785 }
786
787 static void tcg_out_ext8s(TCGContext *s, int dest, int src, int rexw)
788 {
789 /* movsbl */
790 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
791 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
792 }
793
794 static inline void tcg_out_ext16u(TCGContext *s, int dest, int src)
795 {
796 /* movzwl */
797 tcg_out_modrm(s, OPC_MOVZWL, dest, src);
798 }
799
800 static inline void tcg_out_ext16s(TCGContext *s, int dest, int src, int rexw)
801 {
802 /* movsw[lq] */
803 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
804 }
805
806 static inline void tcg_out_ext32u(TCGContext *s, int dest, int src)
807 {
808 /* 32-bit mov zero extends. */
809 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
810 }
811
812 static inline void tcg_out_ext32s(TCGContext *s, int dest, int src)
813 {
814 tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
815 }
816
817 static inline void tcg_out_bswap64(TCGContext *s, int reg)
818 {
819 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
820 }
821
822 static void tgen_arithi(TCGContext *s, int c, int r0,
823 tcg_target_long val, int cf)
824 {
825 int rexw = 0;
826
827 if (TCG_TARGET_REG_BITS == 64) {
828 rexw = c & -8;
829 c &= 7;
830 }
831
832 /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
833 partial flags update stalls on Pentium4 and are not recommended
834 by current Intel optimization manuals. */
835 if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
836 int is_inc = (c == ARITH_ADD) ^ (val < 0);
837 if (TCG_TARGET_REG_BITS == 64) {
838 /* The single-byte increment encodings are re-tasked as the
839 REX prefixes. Use the MODRM encoding. */
840 tcg_out_modrm(s, OPC_GRP5 + rexw,
841 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
842 } else {
843 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
844 }
845 return;
846 }
847
848 if (c == ARITH_AND) {
849 if (TCG_TARGET_REG_BITS == 64) {
850 if (val == 0xffffffffu) {
851 tcg_out_ext32u(s, r0, r0);
852 return;
853 }
854 if (val == (uint32_t)val) {
855 /* AND with no high bits set can use a 32-bit operation. */
856 rexw = 0;
857 }
858 }
859 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
860 tcg_out_ext8u(s, r0, r0);
861 return;
862 }
863 if (val == 0xffffu) {
864 tcg_out_ext16u(s, r0, r0);
865 return;
866 }
867 }
868
869 if (val == (int8_t)val) {
870 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
871 tcg_out8(s, val);
872 return;
873 }
874 if (rexw == 0 || val == (int32_t)val) {
875 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
876 tcg_out32(s, val);
877 return;
878 }
879
880 tcg_abort();
881 }
882
883 static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
884 {
885 if (val != 0) {
886 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
887 }
888 }
889
890 /* Use SMALL != 0 to force a short forward branch. */
891 static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, int small)
892 {
893 int32_t val, val1;
894
895 if (l->has_value) {
896 val = tcg_pcrel_diff(s, l->u.value_ptr);
897 val1 = val - 2;
898 if ((int8_t)val1 == val1) {
899 if (opc == -1) {
900 tcg_out8(s, OPC_JMP_short);
901 } else {
902 tcg_out8(s, OPC_JCC_short + opc);
903 }
904 tcg_out8(s, val1);
905 } else {
906 if (small) {
907 tcg_abort();
908 }
909 if (opc == -1) {
910 tcg_out8(s, OPC_JMP_long);
911 tcg_out32(s, val - 5);
912 } else {
913 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
914 tcg_out32(s, val - 6);
915 }
916 }
917 } else if (small) {
918 if (opc == -1) {
919 tcg_out8(s, OPC_JMP_short);
920 } else {
921 tcg_out8(s, OPC_JCC_short + opc);
922 }
923 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
924 s->code_ptr += 1;
925 } else {
926 if (opc == -1) {
927 tcg_out8(s, OPC_JMP_long);
928 } else {
929 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
930 }
931 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
932 s->code_ptr += 4;
933 }
934 }
935
936 static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
937 int const_arg2, int rexw)
938 {
939 if (const_arg2) {
940 if (arg2 == 0) {
941 /* test r, r */
942 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
943 } else {
944 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
945 }
946 } else {
947 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
948 }
949 }
950
951 static void tcg_out_brcond32(TCGContext *s, TCGCond cond,
952 TCGArg arg1, TCGArg arg2, int const_arg2,
953 TCGLabel *label, int small)
954 {
955 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
956 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
957 }
958
959 #if TCG_TARGET_REG_BITS == 64
960 static void tcg_out_brcond64(TCGContext *s, TCGCond cond,
961 TCGArg arg1, TCGArg arg2, int const_arg2,
962 TCGLabel *label, int small)
963 {
964 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
965 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
966 }
967 #else
968 /* XXX: we implement it at the target level to avoid having to
969 handle cross basic blocks temporaries */
970 static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
971 const int *const_args, int small)
972 {
973 TCGLabel *label_next = gen_new_label();
974 TCGLabel *label_this = arg_label(args[5]);
975
976 switch(args[4]) {
977 case TCG_COND_EQ:
978 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
979 label_next, 1);
980 tcg_out_brcond32(s, TCG_COND_EQ, args[1], args[3], const_args[3],
981 label_this, small);
982 break;
983 case TCG_COND_NE:
984 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
985 label_this, small);
986 tcg_out_brcond32(s, TCG_COND_NE, args[1], args[3], const_args[3],
987 label_this, small);
988 break;
989 case TCG_COND_LT:
990 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
991 label_this, small);
992 tcg_out_jxx(s, JCC_JNE, label_next, 1);
993 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
994 label_this, small);
995 break;
996 case TCG_COND_LE:
997 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
998 label_this, small);
999 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1000 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1001 label_this, small);
1002 break;
1003 case TCG_COND_GT:
1004 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1005 label_this, small);
1006 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1007 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1008 label_this, small);
1009 break;
1010 case TCG_COND_GE:
1011 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1012 label_this, small);
1013 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1014 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1015 label_this, small);
1016 break;
1017 case TCG_COND_LTU:
1018 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1019 label_this, small);
1020 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1021 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1022 label_this, small);
1023 break;
1024 case TCG_COND_LEU:
1025 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1026 label_this, small);
1027 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1028 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1029 label_this, small);
1030 break;
1031 case TCG_COND_GTU:
1032 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1033 label_this, small);
1034 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1035 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1036 label_this, small);
1037 break;
1038 case TCG_COND_GEU:
1039 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1040 label_this, small);
1041 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1042 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1043 label_this, small);
1044 break;
1045 default:
1046 tcg_abort();
1047 }
1048 tcg_out_label(s, label_next, s->code_ptr);
1049 }
1050 #endif
1051
1052 static void tcg_out_setcond32(TCGContext *s, TCGCond cond, TCGArg dest,
1053 TCGArg arg1, TCGArg arg2, int const_arg2)
1054 {
1055 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1056 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1057 tcg_out_ext8u(s, dest, dest);
1058 }
1059
1060 #if TCG_TARGET_REG_BITS == 64
1061 static void tcg_out_setcond64(TCGContext *s, TCGCond cond, TCGArg dest,
1062 TCGArg arg1, TCGArg arg2, int const_arg2)
1063 {
1064 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1065 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1066 tcg_out_ext8u(s, dest, dest);
1067 }
1068 #else
1069 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1070 const int *const_args)
1071 {
1072 TCGArg new_args[6];
1073 TCGLabel *label_true, *label_over;
1074
1075 memcpy(new_args, args+1, 5*sizeof(TCGArg));
1076
1077 if (args[0] == args[1] || args[0] == args[2]
1078 || (!const_args[3] && args[0] == args[3])
1079 || (!const_args[4] && args[0] == args[4])) {
1080 /* When the destination overlaps with one of the argument
1081 registers, don't do anything tricky. */
1082 label_true = gen_new_label();
1083 label_over = gen_new_label();
1084
1085 new_args[5] = label_arg(label_true);
1086 tcg_out_brcond2(s, new_args, const_args+1, 1);
1087
1088 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1089 tcg_out_jxx(s, JCC_JMP, label_over, 1);
1090 tcg_out_label(s, label_true, s->code_ptr);
1091
1092 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1093 tcg_out_label(s, label_over, s->code_ptr);
1094 } else {
1095 /* When the destination does not overlap one of the arguments,
1096 clear the destination first, jump if cond false, and emit an
1097 increment in the true case. This results in smaller code. */
1098
1099 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1100
1101 label_over = gen_new_label();
1102 new_args[4] = tcg_invert_cond(new_args[4]);
1103 new_args[5] = label_arg(label_over);
1104 tcg_out_brcond2(s, new_args, const_args+1, 1);
1105
1106 tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1107 tcg_out_label(s, label_over, s->code_ptr);
1108 }
1109 }
1110 #endif
1111
1112 static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
1113 TCGReg dest, TCGReg v1)
1114 {
1115 if (have_cmov) {
1116 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
1117 } else {
1118 TCGLabel *over = gen_new_label();
1119 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
1120 tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
1121 tcg_out_label(s, over, s->code_ptr);
1122 }
1123 }
1124
1125 static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGReg dest,
1126 TCGReg c1, TCGArg c2, int const_c2,
1127 TCGReg v1)
1128 {
1129 tcg_out_cmp(s, c1, c2, const_c2, 0);
1130 tcg_out_cmov(s, cond, 0, dest, v1);
1131 }
1132
1133 #if TCG_TARGET_REG_BITS == 64
1134 static void tcg_out_movcond64(TCGContext *s, TCGCond cond, TCGReg dest,
1135 TCGReg c1, TCGArg c2, int const_c2,
1136 TCGReg v1)
1137 {
1138 tcg_out_cmp(s, c1, c2, const_c2, P_REXW);
1139 tcg_out_cmov(s, cond, P_REXW, dest, v1);
1140 }
1141 #endif
1142
1143 static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1144 TCGArg arg2, bool const_a2)
1145 {
1146 if (have_bmi1) {
1147 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1148 if (const_a2) {
1149 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1150 } else {
1151 tcg_debug_assert(dest != arg2);
1152 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1153 }
1154 } else {
1155 tcg_debug_assert(dest != arg2);
1156 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1157 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1158 }
1159 }
1160
1161 static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1162 TCGArg arg2, bool const_a2)
1163 {
1164 if (have_lzcnt) {
1165 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1166 if (const_a2) {
1167 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1168 } else {
1169 tcg_debug_assert(dest != arg2);
1170 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1171 }
1172 } else {
1173 tcg_debug_assert(!const_a2);
1174 tcg_debug_assert(dest != arg1);
1175 tcg_debug_assert(dest != arg2);
1176
1177 /* Recall that the output of BSR is the index not the count. */
1178 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1179 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1180
1181 /* Since we have destroyed the flags from BSR, we have to re-test. */
1182 tcg_out_cmp(s, arg1, 0, 1, rexw);
1183 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1184 }
1185 }
1186
1187 static void tcg_out_branch(TCGContext *s, int call, tcg_insn_unit *dest)
1188 {
1189 intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1190
1191 if (disp == (int32_t)disp) {
1192 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1193 tcg_out32(s, disp);
1194 } else {
1195 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R10, (uintptr_t)dest);
1196 tcg_out_modrm(s, OPC_GRP5,
1197 call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev, TCG_REG_R10);
1198 }
1199 }
1200
1201 static inline void tcg_out_call(TCGContext *s, tcg_insn_unit *dest)
1202 {
1203 tcg_out_branch(s, 1, dest);
1204 }
1205
1206 static void tcg_out_jmp(TCGContext *s, tcg_insn_unit *dest)
1207 {
1208 tcg_out_branch(s, 0, dest);
1209 }
1210
1211 static void tcg_out_nopn(TCGContext *s, int n)
1212 {
1213 int i;
1214 /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1215 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1216 * duplicate prefix, and all of the interesting recent cores can
1217 * decode and discard the duplicates in a single cycle.
1218 */
1219 tcg_debug_assert(n >= 1);
1220 for (i = 1; i < n; ++i) {
1221 tcg_out8(s, 0x66);
1222 }
1223 tcg_out8(s, 0x90);
1224 }
1225
1226 #if defined(CONFIG_SOFTMMU)
1227 /* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr,
1228 * int mmu_idx, uintptr_t ra)
1229 */
1230 static void * const qemu_ld_helpers[16] = {
1231 [MO_UB] = helper_ret_ldub_mmu,
1232 [MO_LEUW] = helper_le_lduw_mmu,
1233 [MO_LEUL] = helper_le_ldul_mmu,
1234 [MO_LEQ] = helper_le_ldq_mmu,
1235 [MO_BEUW] = helper_be_lduw_mmu,
1236 [MO_BEUL] = helper_be_ldul_mmu,
1237 [MO_BEQ] = helper_be_ldq_mmu,
1238 };
1239
1240 /* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr,
1241 * uintxx_t val, int mmu_idx, uintptr_t ra)
1242 */
1243 static void * const qemu_st_helpers[16] = {
1244 [MO_UB] = helper_ret_stb_mmu,
1245 [MO_LEUW] = helper_le_stw_mmu,
1246 [MO_LEUL] = helper_le_stl_mmu,
1247 [MO_LEQ] = helper_le_stq_mmu,
1248 [MO_BEUW] = helper_be_stw_mmu,
1249 [MO_BEUL] = helper_be_stl_mmu,
1250 [MO_BEQ] = helper_be_stq_mmu,
1251 };
1252
1253 /* Perform the TLB load and compare.
1254
1255 Inputs:
1256 ADDRLO and ADDRHI contain the low and high part of the address.
1257
1258 MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1259
1260 WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1261 This should be offsetof addr_read or addr_write.
1262
1263 Outputs:
1264 LABEL_PTRS is filled with 1 (32-bit addresses) or 2 (64-bit addresses)
1265 positions of the displacements of forward jumps to the TLB miss case.
1266
1267 Second argument register is loaded with the low part of the address.
1268 In the TLB hit case, it has been adjusted as indicated by the TLB
1269 and so is a host address. In the TLB miss case, it continues to
1270 hold a guest address.
1271
1272 First argument register is clobbered. */
1273
1274 static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi,
1275 int mem_index, TCGMemOp opc,
1276 tcg_insn_unit **label_ptr, int which)
1277 {
1278 const TCGReg r0 = TCG_REG_L0;
1279 const TCGReg r1 = TCG_REG_L1;
1280 TCGType ttype = TCG_TYPE_I32;
1281 TCGType tlbtype = TCG_TYPE_I32;
1282 int trexw = 0, hrexw = 0, tlbrexw = 0;
1283 unsigned a_bits = get_alignment_bits(opc);
1284 unsigned s_bits = opc & MO_SIZE;
1285 unsigned a_mask = (1 << a_bits) - 1;
1286 unsigned s_mask = (1 << s_bits) - 1;
1287 target_ulong tlb_mask;
1288
1289 if (TCG_TARGET_REG_BITS == 64) {
1290 if (TARGET_LONG_BITS == 64) {
1291 ttype = TCG_TYPE_I64;
1292 trexw = P_REXW;
1293 }
1294 if (TCG_TYPE_PTR == TCG_TYPE_I64) {
1295 hrexw = P_REXW;
1296 if (TARGET_PAGE_BITS + CPU_TLB_BITS > 32) {
1297 tlbtype = TCG_TYPE_I64;
1298 tlbrexw = P_REXW;
1299 }
1300 }
1301 }
1302
1303 tcg_out_mov(s, tlbtype, r0, addrlo);
1304 /* If the required alignment is at least as large as the access, simply
1305 copy the address and mask. For lesser alignments, check that we don't
1306 cross pages for the complete access. */
1307 if (a_bits >= s_bits) {
1308 tcg_out_mov(s, ttype, r1, addrlo);
1309 } else {
1310 tcg_out_modrm_offset(s, OPC_LEA + trexw, r1, addrlo, s_mask - a_mask);
1311 }
1312 tlb_mask = (target_ulong)TARGET_PAGE_MASK | a_mask;
1313
1314 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, r0,
1315 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1316
1317 tgen_arithi(s, ARITH_AND + trexw, r1, tlb_mask, 0);
1318 tgen_arithi(s, ARITH_AND + tlbrexw, r0,
1319 (CPU_TLB_SIZE - 1) << CPU_TLB_ENTRY_BITS, 0);
1320
1321 tcg_out_modrm_sib_offset(s, OPC_LEA + hrexw, r0, TCG_AREG0, r0, 0,
1322 offsetof(CPUArchState, tlb_table[mem_index][0])
1323 + which);
1324
1325 /* cmp 0(r0), r1 */
1326 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, 0);
1327
1328 /* Prepare for both the fast path add of the tlb addend, and the slow
1329 path function argument setup. There are two cases worth note:
1330 For 32-bit guest and x86_64 host, MOVL zero-extends the guest address
1331 before the fastpath ADDQ below. For 64-bit guest and x32 host, MOVQ
1332 copies the entire guest address for the slow path, while truncation
1333 for the 32-bit host happens with the fastpath ADDL below. */
1334 tcg_out_mov(s, ttype, r1, addrlo);
1335
1336 /* jne slow_path */
1337 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1338 label_ptr[0] = s->code_ptr;
1339 s->code_ptr += 4;
1340
1341 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1342 /* cmp 4(r0), addrhi */
1343 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, 4);
1344
1345 /* jne slow_path */
1346 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1347 label_ptr[1] = s->code_ptr;
1348 s->code_ptr += 4;
1349 }
1350
1351 /* TLB Hit. */
1352
1353 /* add addend(r0), r1 */
1354 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0,
1355 offsetof(CPUTLBEntry, addend) - which);
1356 }
1357
1358 /*
1359 * Record the context of a call to the out of line helper code for the slow path
1360 * for a load or store, so that we can later generate the correct helper code
1361 */
1362 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, TCGMemOpIdx oi,
1363 TCGReg datalo, TCGReg datahi,
1364 TCGReg addrlo, TCGReg addrhi,
1365 tcg_insn_unit *raddr,
1366 tcg_insn_unit **label_ptr)
1367 {
1368 TCGLabelQemuLdst *label = new_ldst_label(s);
1369
1370 label->is_ld = is_ld;
1371 label->oi = oi;
1372 label->datalo_reg = datalo;
1373 label->datahi_reg = datahi;
1374 label->addrlo_reg = addrlo;
1375 label->addrhi_reg = addrhi;
1376 label->raddr = raddr;
1377 label->label_ptr[0] = label_ptr[0];
1378 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1379 label->label_ptr[1] = label_ptr[1];
1380 }
1381 }
1382
1383 /*
1384 * Generate code for the slow path for a load at the end of block
1385 */
1386 static void tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1387 {
1388 TCGMemOpIdx oi = l->oi;
1389 TCGMemOp opc = get_memop(oi);
1390 TCGReg data_reg;
1391 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1392
1393 /* resolve label address */
1394 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1395 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1396 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1397 }
1398
1399 if (TCG_TARGET_REG_BITS == 32) {
1400 int ofs = 0;
1401
1402 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1403 ofs += 4;
1404
1405 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1406 ofs += 4;
1407
1408 if (TARGET_LONG_BITS == 64) {
1409 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1410 ofs += 4;
1411 }
1412
1413 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1414 ofs += 4;
1415
1416 tcg_out_sti(s, TCG_TYPE_PTR, (uintptr_t)l->raddr, TCG_REG_ESP, ofs);
1417 } else {
1418 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1419 /* The second argument is already loaded with addrlo. */
1420 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[2], oi);
1421 tcg_out_movi(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[3],
1422 (uintptr_t)l->raddr);
1423 }
1424
1425 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1426
1427 data_reg = l->datalo_reg;
1428 switch (opc & MO_SSIZE) {
1429 case MO_SB:
1430 tcg_out_ext8s(s, data_reg, TCG_REG_EAX, P_REXW);
1431 break;
1432 case MO_SW:
1433 tcg_out_ext16s(s, data_reg, TCG_REG_EAX, P_REXW);
1434 break;
1435 #if TCG_TARGET_REG_BITS == 64
1436 case MO_SL:
1437 tcg_out_ext32s(s, data_reg, TCG_REG_EAX);
1438 break;
1439 #endif
1440 case MO_UB:
1441 case MO_UW:
1442 /* Note that the helpers have zero-extended to tcg_target_long. */
1443 case MO_UL:
1444 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1445 break;
1446 case MO_Q:
1447 if (TCG_TARGET_REG_BITS == 64) {
1448 tcg_out_mov(s, TCG_TYPE_I64, data_reg, TCG_REG_RAX);
1449 } else if (data_reg == TCG_REG_EDX) {
1450 /* xchg %edx, %eax */
1451 tcg_out_opc(s, OPC_XCHG_ax_r32 + TCG_REG_EDX, 0, 0, 0);
1452 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EAX);
1453 } else {
1454 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1455 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EDX);
1456 }
1457 break;
1458 default:
1459 tcg_abort();
1460 }
1461
1462 /* Jump to the code corresponding to next IR of qemu_st */
1463 tcg_out_jmp(s, l->raddr);
1464 }
1465
1466 /*
1467 * Generate code for the slow path for a store at the end of block
1468 */
1469 static void tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1470 {
1471 TCGMemOpIdx oi = l->oi;
1472 TCGMemOp opc = get_memop(oi);
1473 TCGMemOp s_bits = opc & MO_SIZE;
1474 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1475 TCGReg retaddr;
1476
1477 /* resolve label address */
1478 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1479 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1480 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1481 }
1482
1483 if (TCG_TARGET_REG_BITS == 32) {
1484 int ofs = 0;
1485
1486 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1487 ofs += 4;
1488
1489 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1490 ofs += 4;
1491
1492 if (TARGET_LONG_BITS == 64) {
1493 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1494 ofs += 4;
1495 }
1496
1497 tcg_out_st(s, TCG_TYPE_I32, l->datalo_reg, TCG_REG_ESP, ofs);
1498 ofs += 4;
1499
1500 if (s_bits == MO_64) {
1501 tcg_out_st(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_ESP, ofs);
1502 ofs += 4;
1503 }
1504
1505 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1506 ofs += 4;
1507
1508 retaddr = TCG_REG_EAX;
1509 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1510 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP, ofs);
1511 } else {
1512 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1513 /* The second argument is already loaded with addrlo. */
1514 tcg_out_mov(s, (s_bits == MO_64 ? TCG_TYPE_I64 : TCG_TYPE_I32),
1515 tcg_target_call_iarg_regs[2], l->datalo_reg);
1516 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[3], oi);
1517
1518 if (ARRAY_SIZE(tcg_target_call_iarg_regs) > 4) {
1519 retaddr = tcg_target_call_iarg_regs[4];
1520 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1521 } else {
1522 retaddr = TCG_REG_RAX;
1523 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1524 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP,
1525 TCG_TARGET_CALL_STACK_OFFSET);
1526 }
1527 }
1528
1529 /* "Tail call" to the helper, with the return address back inline. */
1530 tcg_out_push(s, retaddr);
1531 tcg_out_jmp(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1532 }
1533 #elif defined(__x86_64__) && defined(__linux__)
1534 # include <asm/prctl.h>
1535 # include <sys/prctl.h>
1536
1537 int arch_prctl(int code, unsigned long addr);
1538
1539 static int guest_base_flags;
1540 static inline void setup_guest_base_seg(void)
1541 {
1542 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
1543 guest_base_flags = P_GS;
1544 }
1545 }
1546 #else
1547 # define guest_base_flags 0
1548 static inline void setup_guest_base_seg(void) { }
1549 #endif /* SOFTMMU */
1550
1551 static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
1552 TCGReg base, int index, intptr_t ofs,
1553 int seg, TCGMemOp memop)
1554 {
1555 const TCGMemOp real_bswap = memop & MO_BSWAP;
1556 TCGMemOp bswap = real_bswap;
1557 int movop = OPC_MOVL_GvEv;
1558
1559 if (have_movbe && real_bswap) {
1560 bswap = 0;
1561 movop = OPC_MOVBE_GyMy;
1562 }
1563
1564 switch (memop & MO_SSIZE) {
1565 case MO_UB:
1566 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + seg, datalo,
1567 base, index, 0, ofs);
1568 break;
1569 case MO_SB:
1570 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + P_REXW + seg, datalo,
1571 base, index, 0, ofs);
1572 break;
1573 case MO_UW:
1574 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
1575 base, index, 0, ofs);
1576 if (real_bswap) {
1577 tcg_out_rolw_8(s, datalo);
1578 }
1579 break;
1580 case MO_SW:
1581 if (real_bswap) {
1582 if (have_movbe) {
1583 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
1584 datalo, base, index, 0, ofs);
1585 } else {
1586 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
1587 base, index, 0, ofs);
1588 tcg_out_rolw_8(s, datalo);
1589 }
1590 tcg_out_modrm(s, OPC_MOVSWL + P_REXW, datalo, datalo);
1591 } else {
1592 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + P_REXW + seg,
1593 datalo, base, index, 0, ofs);
1594 }
1595 break;
1596 case MO_UL:
1597 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
1598 if (bswap) {
1599 tcg_out_bswap32(s, datalo);
1600 }
1601 break;
1602 #if TCG_TARGET_REG_BITS == 64
1603 case MO_SL:
1604 if (real_bswap) {
1605 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
1606 base, index, 0, ofs);
1607 if (bswap) {
1608 tcg_out_bswap32(s, datalo);
1609 }
1610 tcg_out_ext32s(s, datalo, datalo);
1611 } else {
1612 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + seg, datalo,
1613 base, index, 0, ofs);
1614 }
1615 break;
1616 #endif
1617 case MO_Q:
1618 if (TCG_TARGET_REG_BITS == 64) {
1619 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
1620 base, index, 0, ofs);
1621 if (bswap) {
1622 tcg_out_bswap64(s, datalo);
1623 }
1624 } else {
1625 if (real_bswap) {
1626 int t = datalo;
1627 datalo = datahi;
1628 datahi = t;
1629 }
1630 if (base != datalo) {
1631 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
1632 base, index, 0, ofs);
1633 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
1634 base, index, 0, ofs + 4);
1635 } else {
1636 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
1637 base, index, 0, ofs + 4);
1638 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
1639 base, index, 0, ofs);
1640 }
1641 if (bswap) {
1642 tcg_out_bswap32(s, datalo);
1643 tcg_out_bswap32(s, datahi);
1644 }
1645 }
1646 break;
1647 default:
1648 tcg_abort();
1649 }
1650 }
1651
1652 /* XXX: qemu_ld and qemu_st could be modified to clobber only EDX and
1653 EAX. It will be useful once fixed registers globals are less
1654 common. */
1655 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
1656 {
1657 TCGReg datalo, datahi, addrlo;
1658 TCGReg addrhi __attribute__((unused));
1659 TCGMemOpIdx oi;
1660 TCGMemOp opc;
1661 #if defined(CONFIG_SOFTMMU)
1662 int mem_index;
1663 tcg_insn_unit *label_ptr[2];
1664 #endif
1665
1666 datalo = *args++;
1667 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
1668 addrlo = *args++;
1669 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
1670 oi = *args++;
1671 opc = get_memop(oi);
1672
1673 #if defined(CONFIG_SOFTMMU)
1674 mem_index = get_mmuidx(oi);
1675
1676 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
1677 label_ptr, offsetof(CPUTLBEntry, addr_read));
1678
1679 /* TLB Hit. */
1680 tcg_out_qemu_ld_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, opc);
1681
1682 /* Record the current context of a load into ldst label */
1683 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi,
1684 s->code_ptr, label_ptr);
1685 #else
1686 {
1687 int32_t offset = guest_base;
1688 TCGReg base = addrlo;
1689 int index = -1;
1690 int seg = 0;
1691
1692 /* For a 32-bit guest, the high 32 bits may contain garbage.
1693 We can do this with the ADDR32 prefix if we're not using
1694 a guest base, or when using segmentation. Otherwise we
1695 need to zero-extend manually. */
1696 if (guest_base == 0 || guest_base_flags) {
1697 seg = guest_base_flags;
1698 offset = 0;
1699 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
1700 seg |= P_ADDR32;
1701 }
1702 } else if (TCG_TARGET_REG_BITS == 64) {
1703 if (TARGET_LONG_BITS == 32) {
1704 tcg_out_ext32u(s, TCG_REG_L0, base);
1705 base = TCG_REG_L0;
1706 }
1707 if (offset != guest_base) {
1708 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_L1, guest_base);
1709 index = TCG_REG_L1;
1710 offset = 0;
1711 }
1712 }
1713
1714 tcg_out_qemu_ld_direct(s, datalo, datahi,
1715 base, index, offset, seg, opc);
1716 }
1717 #endif
1718 }
1719
1720 static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
1721 TCGReg base, intptr_t ofs, int seg,
1722 TCGMemOp memop)
1723 {
1724 /* ??? Ideally we wouldn't need a scratch register. For user-only,
1725 we could perform the bswap twice to restore the original value
1726 instead of moving to the scratch. But as it is, the L constraint
1727 means that TCG_REG_L0 is definitely free here. */
1728 const TCGReg scratch = TCG_REG_L0;
1729 const TCGMemOp real_bswap = memop & MO_BSWAP;
1730 TCGMemOp bswap = real_bswap;
1731 int movop = OPC_MOVL_EvGv;
1732
1733 if (have_movbe && real_bswap) {
1734 bswap = 0;
1735 movop = OPC_MOVBE_MyGy;
1736 }
1737
1738 switch (memop & MO_SIZE) {
1739 case MO_8:
1740 /* In 32-bit mode, 8-bit stores can only happen from [abcd]x.
1741 Use the scratch register if necessary. */
1742 if (TCG_TARGET_REG_BITS == 32 && datalo >= 4) {
1743 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
1744 datalo = scratch;
1745 }
1746 tcg_out_modrm_offset(s, OPC_MOVB_EvGv + P_REXB_R + seg,
1747 datalo, base, ofs);
1748 break;
1749 case MO_16:
1750 if (bswap) {
1751 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
1752 tcg_out_rolw_8(s, scratch);
1753 datalo = scratch;
1754 }
1755 tcg_out_modrm_offset(s, movop + P_DATA16 + seg, datalo, base, ofs);
1756 break;
1757 case MO_32:
1758 if (bswap) {
1759 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
1760 tcg_out_bswap32(s, scratch);
1761 datalo = scratch;
1762 }
1763 tcg_out_modrm_offset(s, movop + seg, datalo, base, ofs);
1764 break;
1765 case MO_64:
1766 if (TCG_TARGET_REG_BITS == 64) {
1767 if (bswap) {
1768 tcg_out_mov(s, TCG_TYPE_I64, scratch, datalo);
1769 tcg_out_bswap64(s, scratch);
1770 datalo = scratch;
1771 }
1772 tcg_out_modrm_offset(s, movop + P_REXW + seg, datalo, base, ofs);
1773 } else if (bswap) {
1774 tcg_out_mov(s, TCG_TYPE_I32, scratch, datahi);
1775 tcg_out_bswap32(s, scratch);
1776 tcg_out_modrm_offset(s, OPC_MOVL_EvGv + seg, scratch, base, ofs);
1777 tcg_out_mov(s, TCG_TYPE_I32, scratch, datalo);
1778 tcg_out_bswap32(s, scratch);
1779 tcg_out_modrm_offset(s, OPC_MOVL_EvGv + seg, scratch, base, ofs+4);
1780 } else {
1781 if (real_bswap) {
1782 int t = datalo;
1783 datalo = datahi;
1784 datahi = t;
1785 }
1786 tcg_out_modrm_offset(s, movop + seg, datalo, base, ofs);
1787 tcg_out_modrm_offset(s, movop + seg, datahi, base, ofs+4);
1788 }
1789 break;
1790 default:
1791 tcg_abort();
1792 }
1793 }
1794
1795 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is64)
1796 {
1797 TCGReg datalo, datahi, addrlo;
1798 TCGReg addrhi __attribute__((unused));
1799 TCGMemOpIdx oi;
1800 TCGMemOp opc;
1801 #if defined(CONFIG_SOFTMMU)
1802 int mem_index;
1803 tcg_insn_unit *label_ptr[2];
1804 #endif
1805
1806 datalo = *args++;
1807 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
1808 addrlo = *args++;
1809 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
1810 oi = *args++;
1811 opc = get_memop(oi);
1812
1813 #if defined(CONFIG_SOFTMMU)
1814 mem_index = get_mmuidx(oi);
1815
1816 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
1817 label_ptr, offsetof(CPUTLBEntry, addr_write));
1818
1819 /* TLB Hit. */
1820 tcg_out_qemu_st_direct(s, datalo, datahi, TCG_REG_L1, 0, 0, opc);
1821
1822 /* Record the current context of a store into ldst label */
1823 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi,
1824 s->code_ptr, label_ptr);
1825 #else
1826 {
1827 int32_t offset = guest_base;
1828 TCGReg base = addrlo;
1829 int seg = 0;
1830
1831 /* See comment in tcg_out_qemu_ld re zero-extension of addrlo. */
1832 if (guest_base == 0 || guest_base_flags) {
1833 seg = guest_base_flags;
1834 offset = 0;
1835 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) {
1836 seg |= P_ADDR32;
1837 }
1838 } else if (TCG_TARGET_REG_BITS == 64) {
1839 /* ??? Note that we can't use the same SIB addressing scheme
1840 as for loads, since we require L0 free for bswap. */
1841 if (offset != guest_base) {
1842 if (TARGET_LONG_BITS == 32) {
1843 tcg_out_ext32u(s, TCG_REG_L0, base);
1844 base = TCG_REG_L0;
1845 }
1846 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_L1, guest_base);
1847 tgen_arithr(s, ARITH_ADD + P_REXW, TCG_REG_L1, base);
1848 base = TCG_REG_L1;
1849 offset = 0;
1850 } else if (TARGET_LONG_BITS == 32) {
1851 tcg_out_ext32u(s, TCG_REG_L1, base);
1852 base = TCG_REG_L1;
1853 }
1854 }
1855
1856 tcg_out_qemu_st_direct(s, datalo, datahi, base, offset, seg, opc);
1857 }
1858 #endif
1859 }
1860
1861 static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
1862 const TCGArg *args, const int *const_args)
1863 {
1864 TCGArg a0, a1, a2;
1865 int c, const_a2, vexop, rexw = 0;
1866
1867 #if TCG_TARGET_REG_BITS == 64
1868 # define OP_32_64(x) \
1869 case glue(glue(INDEX_op_, x), _i64): \
1870 rexw = P_REXW; /* FALLTHRU */ \
1871 case glue(glue(INDEX_op_, x), _i32)
1872 #else
1873 # define OP_32_64(x) \
1874 case glue(glue(INDEX_op_, x), _i32)
1875 #endif
1876
1877 /* Hoist the loads of the most common arguments. */
1878 a0 = args[0];
1879 a1 = args[1];
1880 a2 = args[2];
1881 const_a2 = const_args[2];
1882
1883 switch (opc) {
1884 case INDEX_op_exit_tb:
1885 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
1886 tcg_out_jmp(s, tb_ret_addr);
1887 break;
1888 case INDEX_op_goto_tb:
1889 if (s->tb_jmp_insn_offset) {
1890 /* direct jump method */
1891 int gap;
1892 /* jump displacement must be aligned for atomic patching;
1893 * see if we need to add extra nops before jump
1894 */
1895 gap = tcg_pcrel_diff(s, QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4));
1896 if (gap != 1) {
1897 tcg_out_nopn(s, gap - 1);
1898 }
1899 tcg_out8(s, OPC_JMP_long); /* jmp im */
1900 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
1901 tcg_out32(s, 0);
1902 } else {
1903 /* indirect jump method */
1904 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, -1,
1905 (intptr_t)(s->tb_jmp_target_addr + a0));
1906 }
1907 s->tb_jmp_reset_offset[a0] = tcg_current_code_size(s);
1908 break;
1909 case INDEX_op_br:
1910 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
1911 break;
1912 OP_32_64(ld8u):
1913 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
1914 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
1915 break;
1916 OP_32_64(ld8s):
1917 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
1918 break;
1919 OP_32_64(ld16u):
1920 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
1921 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
1922 break;
1923 OP_32_64(ld16s):
1924 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
1925 break;
1926 #if TCG_TARGET_REG_BITS == 64
1927 case INDEX_op_ld32u_i64:
1928 #endif
1929 case INDEX_op_ld_i32:
1930 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
1931 break;
1932
1933 OP_32_64(st8):
1934 if (const_args[0]) {
1935 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
1936 tcg_out8(s, a0);
1937 } else {
1938 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
1939 }
1940 break;
1941 OP_32_64(st16):
1942 if (const_args[0]) {
1943 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
1944 tcg_out16(s, a0);
1945 } else {
1946 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
1947 }
1948 break;
1949 #if TCG_TARGET_REG_BITS == 64
1950 case INDEX_op_st32_i64:
1951 #endif
1952 case INDEX_op_st_i32:
1953 if (const_args[0]) {
1954 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
1955 tcg_out32(s, a0);
1956 } else {
1957 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
1958 }
1959 break;
1960
1961 OP_32_64(add):
1962 /* For 3-operand addition, use LEA. */
1963 if (a0 != a1) {
1964 TCGArg c3 = 0;
1965 if (const_a2) {
1966 c3 = a2, a2 = -1;
1967 } else if (a0 == a2) {
1968 /* Watch out for dest = src + dest, since we've removed
1969 the matching constraint on the add. */
1970 tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
1971 break;
1972 }
1973
1974 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
1975 break;
1976 }
1977 c = ARITH_ADD;
1978 goto gen_arith;
1979 OP_32_64(sub):
1980 c = ARITH_SUB;
1981 goto gen_arith;
1982 OP_32_64(and):
1983 c = ARITH_AND;
1984 goto gen_arith;
1985 OP_32_64(or):
1986 c = ARITH_OR;
1987 goto gen_arith;
1988 OP_32_64(xor):
1989 c = ARITH_XOR;
1990 goto gen_arith;
1991 gen_arith:
1992 if (const_a2) {
1993 tgen_arithi(s, c + rexw, a0, a2, 0);
1994 } else {
1995 tgen_arithr(s, c + rexw, a0, a2);
1996 }
1997 break;
1998
1999 OP_32_64(andc):
2000 if (const_a2) {
2001 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2002 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2003 } else {
2004 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2005 }
2006 break;
2007
2008 OP_32_64(mul):
2009 if (const_a2) {
2010 int32_t val;
2011 val = a2;
2012 if (val == (int8_t)val) {
2013 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2014 tcg_out8(s, val);
2015 } else {
2016 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2017 tcg_out32(s, val);
2018 }
2019 } else {
2020 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2021 }
2022 break;
2023
2024 OP_32_64(div2):
2025 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2026 break;
2027 OP_32_64(divu2):
2028 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2029 break;
2030
2031 OP_32_64(shl):
2032 /* For small constant 3-operand shift, use LEA. */
2033 if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2034 if (a2 - 1 == 0) {
2035 /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2036 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2037 } else {
2038 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2039 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2040 }
2041 break;
2042 }
2043 c = SHIFT_SHL;
2044 vexop = OPC_SHLX;
2045 goto gen_shift_maybe_vex;
2046 OP_32_64(shr):
2047 c = SHIFT_SHR;
2048 vexop = OPC_SHRX;
2049 goto gen_shift_maybe_vex;
2050 OP_32_64(sar):
2051 c = SHIFT_SAR;
2052 vexop = OPC_SARX;
2053 goto gen_shift_maybe_vex;
2054 OP_32_64(rotl):
2055 c = SHIFT_ROL;
2056 goto gen_shift;
2057 OP_32_64(rotr):
2058 c = SHIFT_ROR;
2059 goto gen_shift;
2060 gen_shift_maybe_vex:
2061 if (have_bmi2) {
2062 if (!const_a2) {
2063 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2064 break;
2065 }
2066 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2067 }
2068 /* FALLTHRU */
2069 gen_shift:
2070 if (const_a2) {
2071 tcg_out_shifti(s, c + rexw, a0, a2);
2072 } else {
2073 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2074 }
2075 break;
2076
2077 OP_32_64(ctz):
2078 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2079 break;
2080 OP_32_64(clz):
2081 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2082 break;
2083 OP_32_64(ctpop):
2084 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2085 break;
2086
2087 case INDEX_op_brcond_i32:
2088 tcg_out_brcond32(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2089 break;
2090 case INDEX_op_setcond_i32:
2091 tcg_out_setcond32(s, args[3], a0, a1, a2, const_a2);
2092 break;
2093 case INDEX_op_movcond_i32:
2094 tcg_out_movcond32(s, args[5], a0, a1, a2, const_a2, args[3]);
2095 break;
2096
2097 OP_32_64(bswap16):
2098 tcg_out_rolw_8(s, a0);
2099 break;
2100 OP_32_64(bswap32):
2101 tcg_out_bswap32(s, a0);
2102 break;
2103
2104 OP_32_64(neg):
2105 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2106 break;
2107 OP_32_64(not):
2108 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2109 break;
2110
2111 OP_32_64(ext8s):
2112 tcg_out_ext8s(s, a0, a1, rexw);
2113 break;
2114 OP_32_64(ext16s):
2115 tcg_out_ext16s(s, a0, a1, rexw);
2116 break;
2117 OP_32_64(ext8u):
2118 tcg_out_ext8u(s, a0, a1);
2119 break;
2120 OP_32_64(ext16u):
2121 tcg_out_ext16u(s, a0, a1);
2122 break;
2123
2124 case INDEX_op_qemu_ld_i32:
2125 tcg_out_qemu_ld(s, args, 0);
2126 break;
2127 case INDEX_op_qemu_ld_i64:
2128 tcg_out_qemu_ld(s, args, 1);
2129 break;
2130 case INDEX_op_qemu_st_i32:
2131 tcg_out_qemu_st(s, args, 0);
2132 break;
2133 case INDEX_op_qemu_st_i64:
2134 tcg_out_qemu_st(s, args, 1);
2135 break;
2136
2137 OP_32_64(mulu2):
2138 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2139 break;
2140 OP_32_64(muls2):
2141 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2142 break;
2143 OP_32_64(add2):
2144 if (const_args[4]) {
2145 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2146 } else {
2147 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2148 }
2149 if (const_args[5]) {
2150 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2151 } else {
2152 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2153 }
2154 break;
2155 OP_32_64(sub2):
2156 if (const_args[4]) {
2157 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2158 } else {
2159 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2160 }
2161 if (const_args[5]) {
2162 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2163 } else {
2164 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2165 }
2166 break;
2167
2168 #if TCG_TARGET_REG_BITS == 32
2169 case INDEX_op_brcond2_i32:
2170 tcg_out_brcond2(s, args, const_args, 0);
2171 break;
2172 case INDEX_op_setcond2_i32:
2173 tcg_out_setcond2(s, args, const_args);
2174 break;
2175 #else /* TCG_TARGET_REG_BITS == 64 */
2176 case INDEX_op_ld32s_i64:
2177 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2178 break;
2179 case INDEX_op_ld_i64:
2180 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2181 break;
2182 case INDEX_op_st_i64:
2183 if (const_args[0]) {
2184 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2185 tcg_out32(s, a0);
2186 } else {
2187 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2188 }
2189 break;
2190
2191 case INDEX_op_brcond_i64:
2192 tcg_out_brcond64(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2193 break;
2194 case INDEX_op_setcond_i64:
2195 tcg_out_setcond64(s, args[3], a0, a1, a2, const_a2);
2196 break;
2197 case INDEX_op_movcond_i64:
2198 tcg_out_movcond64(s, args[5], a0, a1, a2, const_a2, args[3]);
2199 break;
2200
2201 case INDEX_op_bswap64_i64:
2202 tcg_out_bswap64(s, a0);
2203 break;
2204 case INDEX_op_extu_i32_i64:
2205 case INDEX_op_ext32u_i64:
2206 tcg_out_ext32u(s, a0, a1);
2207 break;
2208 case INDEX_op_ext_i32_i64:
2209 case INDEX_op_ext32s_i64:
2210 tcg_out_ext32s(s, a0, a1);
2211 break;
2212 #endif
2213
2214 OP_32_64(deposit):
2215 if (args[3] == 0 && args[4] == 8) {
2216 /* load bits 0..7 */
2217 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2218 } else if (args[3] == 8 && args[4] == 8) {
2219 /* load bits 8..15 */
2220 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2221 } else if (args[3] == 0 && args[4] == 16) {
2222 /* load bits 0..15 */
2223 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2224 } else {
2225 tcg_abort();
2226 }
2227 break;
2228
2229 case INDEX_op_extract_i64:
2230 if (a2 + args[3] == 32) {
2231 /* This is a 32-bit zero-extending right shift. */
2232 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2233 tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2234 break;
2235 }
2236 /* FALLTHRU */
2237 case INDEX_op_extract_i32:
2238 /* On the off-chance that we can use the high-byte registers.
2239 Otherwise we emit the same ext16 + shift pattern that we
2240 would have gotten from the normal tcg-op.c expansion. */
2241 tcg_debug_assert(a2 == 8 && args[3] == 8);
2242 if (a1 < 4 && a0 < 8) {
2243 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2244 } else {
2245 tcg_out_ext16u(s, a0, a1);
2246 tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2247 }
2248 break;
2249
2250 case INDEX_op_sextract_i32:
2251 /* We don't implement sextract_i64, as we cannot sign-extend to
2252 64-bits without using the REX prefix that explicitly excludes
2253 access to the high-byte registers. */
2254 tcg_debug_assert(a2 == 8 && args[3] == 8);
2255 if (a1 < 4 && a0 < 8) {
2256 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2257 } else {
2258 tcg_out_ext16s(s, a0, a1, 0);
2259 tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2260 }
2261 break;
2262
2263 case INDEX_op_mb:
2264 tcg_out_mb(s, a0);
2265 break;
2266 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2267 case INDEX_op_mov_i64:
2268 case INDEX_op_movi_i32: /* Always emitted via tcg_out_movi. */
2269 case INDEX_op_movi_i64:
2270 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2271 default:
2272 tcg_abort();
2273 }
2274
2275 #undef OP_32_64
2276 }
2277
2278 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op)
2279 {
2280 static const TCGTargetOpDef ri_r = { .args_ct_str = { "ri", "r" } };
2281 static const TCGTargetOpDef re_r = { .args_ct_str = { "re", "r" } };
2282 static const TCGTargetOpDef qi_r = { .args_ct_str = { "qi", "r" } };
2283 static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } };
2284 static const TCGTargetOpDef r_q = { .args_ct_str = { "r", "q" } };
2285 static const TCGTargetOpDef r_re = { .args_ct_str = { "r", "re" } };
2286 static const TCGTargetOpDef r_0 = { .args_ct_str = { "r", "0" } };
2287 static const TCGTargetOpDef r_r_ri = { .args_ct_str = { "r", "r", "ri" } };
2288 static const TCGTargetOpDef r_r_re = { .args_ct_str = { "r", "r", "re" } };
2289 static const TCGTargetOpDef r_0_re = { .args_ct_str = { "r", "0", "re" } };
2290 static const TCGTargetOpDef r_0_ci = { .args_ct_str = { "r", "0", "ci" } };
2291 static const TCGTargetOpDef r_L = { .args_ct_str = { "r", "L" } };
2292 static const TCGTargetOpDef L_L = { .args_ct_str = { "L", "L" } };
2293 static const TCGTargetOpDef r_L_L = { .args_ct_str = { "r", "L", "L" } };
2294 static const TCGTargetOpDef r_r_L = { .args_ct_str = { "r", "r", "L" } };
2295 static const TCGTargetOpDef L_L_L = { .args_ct_str = { "L", "L", "L" } };
2296 static const TCGTargetOpDef r_r_L_L
2297 = { .args_ct_str = { "r", "r", "L", "L" } };
2298 static const TCGTargetOpDef L_L_L_L
2299 = { .args_ct_str = { "L", "L", "L", "L" } };
2300
2301 switch (op) {
2302 case INDEX_op_ld8u_i32:
2303 case INDEX_op_ld8u_i64:
2304 case INDEX_op_ld8s_i32:
2305 case INDEX_op_ld8s_i64:
2306 case INDEX_op_ld16u_i32:
2307 case INDEX_op_ld16u_i64:
2308 case INDEX_op_ld16s_i32:
2309 case INDEX_op_ld16s_i64:
2310 case INDEX_op_ld_i32:
2311 case INDEX_op_ld32u_i64:
2312 case INDEX_op_ld32s_i64:
2313 case INDEX_op_ld_i64:
2314 return &r_r;
2315
2316 case INDEX_op_st8_i32:
2317 case INDEX_op_st8_i64:
2318 return &qi_r;
2319 case INDEX_op_st16_i32:
2320 case INDEX_op_st16_i64:
2321 case INDEX_op_st_i32:
2322 case INDEX_op_st32_i64:
2323 return &ri_r;
2324 case INDEX_op_st_i64:
2325 return &re_r;
2326
2327 case INDEX_op_add_i32:
2328 case INDEX_op_add_i64:
2329 return &r_r_re;
2330 case INDEX_op_sub_i32:
2331 case INDEX_op_sub_i64:
2332 case INDEX_op_mul_i32:
2333 case INDEX_op_mul_i64:
2334 case INDEX_op_or_i32:
2335 case INDEX_op_or_i64:
2336 case INDEX_op_xor_i32:
2337 case INDEX_op_xor_i64:
2338 return &r_0_re;
2339
2340 case INDEX_op_and_i32:
2341 case INDEX_op_and_i64:
2342 {
2343 static const TCGTargetOpDef and
2344 = { .args_ct_str = { "r", "0", "reZ" } };
2345 return &and;
2346 }
2347 break;
2348 case INDEX_op_andc_i32:
2349 case INDEX_op_andc_i64:
2350 {
2351 static const TCGTargetOpDef andc
2352 = { .args_ct_str = { "r", "r", "rI" } };
2353 return &andc;
2354 }
2355 break;
2356
2357 case INDEX_op_shl_i32:
2358 case INDEX_op_shl_i64:
2359 case INDEX_op_shr_i32:
2360 case INDEX_op_shr_i64:
2361 case INDEX_op_sar_i32:
2362 case INDEX_op_sar_i64:
2363 return have_bmi2 ? &r_r_ri : &r_0_ci;
2364 case INDEX_op_rotl_i32:
2365 case INDEX_op_rotl_i64:
2366 case INDEX_op_rotr_i32:
2367 case INDEX_op_rotr_i64:
2368 return &r_0_ci;
2369
2370 case INDEX_op_brcond_i32:
2371 case INDEX_op_brcond_i64:
2372 return &r_re;
2373
2374 case INDEX_op_bswap16_i32:
2375 case INDEX_op_bswap16_i64:
2376 case INDEX_op_bswap32_i32:
2377 case INDEX_op_bswap32_i64:
2378 case INDEX_op_bswap64_i64:
2379 case INDEX_op_neg_i32:
2380 case INDEX_op_neg_i64:
2381 case INDEX_op_not_i32:
2382 case INDEX_op_not_i64:
2383 return &r_0;
2384
2385 case INDEX_op_ext8s_i32:
2386 case INDEX_op_ext8s_i64:
2387 case INDEX_op_ext8u_i32:
2388 case INDEX_op_ext8u_i64:
2389 return &r_q;
2390 case INDEX_op_ext16s_i32:
2391 case INDEX_op_ext16s_i64:
2392 case INDEX_op_ext16u_i32:
2393 case INDEX_op_ext16u_i64:
2394 case INDEX_op_ext32s_i64:
2395 case INDEX_op_ext32u_i64:
2396 case INDEX_op_ext_i32_i64:
2397 case INDEX_op_extu_i32_i64:
2398 case INDEX_op_extract_i32:
2399 case INDEX_op_extract_i64:
2400 case INDEX_op_sextract_i32:
2401 case INDEX_op_ctpop_i32:
2402 case INDEX_op_ctpop_i64:
2403 return &r_r;
2404
2405 case INDEX_op_deposit_i32:
2406 case INDEX_op_deposit_i64:
2407 {
2408 static const TCGTargetOpDef dep
2409 = { .args_ct_str = { "Q", "0", "Q" } };
2410 return &dep;
2411 }
2412 case INDEX_op_setcond_i32:
2413 case INDEX_op_setcond_i64:
2414 {
2415 static const TCGTargetOpDef setc
2416 = { .args_ct_str = { "q", "r", "re" } };
2417 return &setc;
2418 }
2419 case INDEX_op_movcond_i32:
2420 case INDEX_op_movcond_i64:
2421 {
2422 static const TCGTargetOpDef movc
2423 = { .args_ct_str = { "r", "r", "re", "r", "0" } };
2424 return &movc;
2425 }
2426 case INDEX_op_div2_i32:
2427 case INDEX_op_div2_i64:
2428 case INDEX_op_divu2_i32:
2429 case INDEX_op_divu2_i64:
2430 {
2431 static const TCGTargetOpDef div2
2432 = { .args_ct_str = { "a", "d", "0", "1", "r" } };
2433 return &div2;
2434 }
2435 case INDEX_op_mulu2_i32:
2436 case INDEX_op_mulu2_i64:
2437 case INDEX_op_muls2_i32:
2438 case INDEX_op_muls2_i64:
2439 {
2440 static const TCGTargetOpDef mul2
2441 = { .args_ct_str = { "a", "d", "a", "r" } };
2442 return &mul2;
2443 }
2444 case INDEX_op_add2_i32:
2445 case INDEX_op_add2_i64:
2446 case INDEX_op_sub2_i32:
2447 case INDEX_op_sub2_i64:
2448 {
2449 static const TCGTargetOpDef arith2
2450 = { .args_ct_str = { "r", "r", "0", "1", "re", "re" } };
2451 return &arith2;
2452 }
2453 case INDEX_op_ctz_i32:
2454 case INDEX_op_ctz_i64:
2455 {
2456 static const TCGTargetOpDef ctz[2] = {
2457 { .args_ct_str = { "&r", "r", "r" } },
2458 { .args_ct_str = { "&r", "r", "rW" } },
2459 };
2460 return &ctz[have_bmi1];
2461 }
2462 case INDEX_op_clz_i32:
2463 case INDEX_op_clz_i64:
2464 {
2465 static const TCGTargetOpDef clz[2] = {
2466 { .args_ct_str = { "&r", "r", "r" } },
2467 { .args_ct_str = { "&r", "r", "rW" } },
2468 };
2469 return &clz[have_lzcnt];
2470 }
2471
2472 case INDEX_op_qemu_ld_i32:
2473 return TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &r_L : &r_L_L;
2474 case INDEX_op_qemu_st_i32:
2475 return TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &L_L : &L_L_L;
2476 case INDEX_op_qemu_ld_i64:
2477 return (TCG_TARGET_REG_BITS == 64 ? &r_L
2478 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &r_r_L
2479 : &r_r_L_L);
2480 case INDEX_op_qemu_st_i64:
2481 return (TCG_TARGET_REG_BITS == 64 ? &L_L
2482 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? &L_L_L
2483 : &L_L_L_L);
2484
2485 case INDEX_op_brcond2_i32:
2486 {
2487 static const TCGTargetOpDef b2
2488 = { .args_ct_str = { "r", "r", "ri", "ri" } };
2489 return &b2;
2490 }
2491 case INDEX_op_setcond2_i32:
2492 {
2493 static const TCGTargetOpDef s2
2494 = { .args_ct_str = { "r", "r", "r", "ri", "ri" } };
2495 return &s2;
2496 }
2497
2498 default:
2499 break;
2500 }
2501 return NULL;
2502 }
2503
2504 static int tcg_target_callee_save_regs[] = {
2505 #if TCG_TARGET_REG_BITS == 64
2506 TCG_REG_RBP,
2507 TCG_REG_RBX,
2508 #if defined(_WIN64)
2509 TCG_REG_RDI,
2510 TCG_REG_RSI,
2511 #endif
2512 TCG_REG_R12,
2513 TCG_REG_R13,
2514 TCG_REG_R14, /* Currently used for the global env. */
2515 TCG_REG_R15,
2516 #else
2517 TCG_REG_EBP, /* Currently used for the global env. */
2518 TCG_REG_EBX,
2519 TCG_REG_ESI,
2520 TCG_REG_EDI,
2521 #endif
2522 };
2523
2524 /* Compute frame size via macros, to share between tcg_target_qemu_prologue
2525 and tcg_register_jit. */
2526
2527 #define PUSH_SIZE \
2528 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
2529 * (TCG_TARGET_REG_BITS / 8))
2530
2531 #define FRAME_SIZE \
2532 ((PUSH_SIZE \
2533 + TCG_STATIC_CALL_ARGS_SIZE \
2534 + CPU_TEMP_BUF_NLONGS * sizeof(long) \
2535 + TCG_TARGET_STACK_ALIGN - 1) \
2536 & ~(TCG_TARGET_STACK_ALIGN - 1))
2537
2538 /* Generate global QEMU prologue and epilogue code */
2539 static void tcg_target_qemu_prologue(TCGContext *s)
2540 {
2541 int i, stack_addend;
2542
2543 /* TB prologue */
2544
2545 /* Reserve some stack space, also for TCG temps. */
2546 stack_addend = FRAME_SIZE - PUSH_SIZE;
2547 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
2548 CPU_TEMP_BUF_NLONGS * sizeof(long));
2549
2550 /* Save all callee saved registers. */
2551 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
2552 tcg_out_push(s, tcg_target_callee_save_regs[i]);
2553 }
2554
2555 #if TCG_TARGET_REG_BITS == 32
2556 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
2557 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
2558 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
2559 /* jmp *tb. */
2560 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
2561 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
2562 + stack_addend);
2563 #else
2564 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
2565 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
2566 /* jmp *tb. */
2567 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
2568 #endif
2569
2570 /* TB epilogue */
2571 tb_ret_addr = s->code_ptr;
2572
2573 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
2574
2575 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
2576 tcg_out_pop(s, tcg_target_callee_save_regs[i]);
2577 }
2578 tcg_out_opc(s, OPC_RET, 0, 0, 0);
2579
2580 #if !defined(CONFIG_SOFTMMU)
2581 /* Try to set up a segment register to point to guest_base. */
2582 if (guest_base) {
2583 setup_guest_base_seg();
2584 }
2585 #endif
2586 }
2587
2588 static void tcg_target_init(TCGContext *s)
2589 {
2590 #ifdef CONFIG_CPUID_H
2591 unsigned a, b, c, d;
2592 int max = __get_cpuid_max(0, 0);
2593
2594 if (max >= 1) {
2595 __cpuid(1, a, b, c, d);
2596 #ifndef have_cmov
2597 /* For 32-bit, 99% certainty that we're running on hardware that
2598 supports cmov, but we still need to check. In case cmov is not
2599 available, we'll use a small forward branch. */
2600 have_cmov = (d & bit_CMOV) != 0;
2601 #endif
2602 #ifndef have_movbe
2603 /* MOVBE is only available on Intel Atom and Haswell CPUs, so we
2604 need to probe for it. */
2605 have_movbe = (c & bit_MOVBE) != 0;
2606 #endif
2607 #ifdef bit_POPCNT
2608 have_popcnt = (c & bit_POPCNT) != 0;
2609 #endif
2610 }
2611
2612 if (max >= 7) {
2613 /* BMI1 is available on AMD Piledriver and Intel Haswell CPUs. */
2614 __cpuid_count(7, 0, a, b, c, d);
2615 #ifdef bit_BMI
2616 have_bmi1 = (b & bit_BMI) != 0;
2617 #endif
2618 #ifndef have_bmi2
2619 have_bmi2 = (b & bit_BMI2) != 0;
2620 #endif
2621 }
2622 #endif
2623
2624 #ifndef have_lzcnt
2625 max = __get_cpuid_max(0x8000000, 0);
2626 if (max >= 1) {
2627 __cpuid(0x80000001, a, b, c, d);
2628 /* LZCNT was introduced with AMD Barcelona and Intel Haswell CPUs. */
2629 have_lzcnt = (c & bit_LZCNT) != 0;
2630 }
2631 #endif
2632
2633 if (TCG_TARGET_REG_BITS == 64) {
2634 tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xffff);
2635 tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I64], 0, 0xffff);
2636 } else {
2637 tcg_regset_set32(tcg_target_available_regs[TCG_TYPE_I32], 0, 0xff);
2638 }
2639
2640 tcg_regset_clear(tcg_target_call_clobber_regs);
2641 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
2642 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
2643 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
2644 if (TCG_TARGET_REG_BITS == 64) {
2645 #if !defined(_WIN64)
2646 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
2647 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
2648 #endif
2649 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
2650 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
2651 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
2652 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
2653 }
2654
2655 tcg_regset_clear(s->reserved_regs);
2656 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
2657 }
2658
2659 typedef struct {
2660 DebugFrameHeader h;
2661 uint8_t fde_def_cfa[4];
2662 uint8_t fde_reg_ofs[14];
2663 } DebugFrame;
2664
2665 /* We're expecting a 2 byte uleb128 encoded value. */
2666 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
2667
2668 #if !defined(__ELF__)
2669 /* Host machine without ELF. */
2670 #elif TCG_TARGET_REG_BITS == 64
2671 #define ELF_HOST_MACHINE EM_X86_64
2672 static const DebugFrame debug_frame = {
2673 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
2674 .h.cie.id = -1,
2675 .h.cie.version = 1,
2676 .h.cie.code_align = 1,
2677 .h.cie.data_align = 0x78, /* sleb128 -8 */
2678 .h.cie.return_column = 16,
2679
2680 /* Total FDE size does not include the "len" member. */
2681 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
2682
2683 .fde_def_cfa = {
2684 12, 7, /* DW_CFA_def_cfa %rsp, ... */
2685 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
2686 (FRAME_SIZE >> 7)
2687 },
2688 .fde_reg_ofs = {
2689 0x90, 1, /* DW_CFA_offset, %rip, -8 */
2690 /* The following ordering must match tcg_target_callee_save_regs. */
2691 0x86, 2, /* DW_CFA_offset, %rbp, -16 */
2692 0x83, 3, /* DW_CFA_offset, %rbx, -24 */
2693 0x8c, 4, /* DW_CFA_offset, %r12, -32 */
2694 0x8d, 5, /* DW_CFA_offset, %r13, -40 */
2695 0x8e, 6, /* DW_CFA_offset, %r14, -48 */
2696 0x8f, 7, /* DW_CFA_offset, %r15, -56 */
2697 }
2698 };
2699 #else
2700 #define ELF_HOST_MACHINE EM_386
2701 static const DebugFrame debug_frame = {
2702 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
2703 .h.cie.id = -1,
2704 .h.cie.version = 1,
2705 .h.cie.code_align = 1,
2706 .h.cie.data_align = 0x7c, /* sleb128 -4 */
2707 .h.cie.return_column = 8,
2708
2709 /* Total FDE size does not include the "len" member. */
2710 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
2711
2712 .fde_def_cfa = {
2713 12, 4, /* DW_CFA_def_cfa %esp, ... */
2714 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
2715 (FRAME_SIZE >> 7)
2716 },
2717 .fde_reg_ofs = {
2718 0x88, 1, /* DW_CFA_offset, %eip, -4 */
2719 /* The following ordering must match tcg_target_callee_save_regs. */
2720 0x85, 2, /* DW_CFA_offset, %ebp, -8 */
2721 0x83, 3, /* DW_CFA_offset, %ebx, -12 */
2722 0x86, 4, /* DW_CFA_offset, %esi, -16 */
2723 0x87, 5, /* DW_CFA_offset, %edi, -20 */
2724 }
2725 };
2726 #endif
2727
2728 #if defined(ELF_HOST_MACHINE)
2729 void tcg_register_jit(void *buf, size_t buf_size)
2730 {
2731 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
2732 }
2733 #endif