]> git.ipfire.org Git - people/ms/u-boot.git/blob - test/dm/core.c
dm: test: Add tests for device's uclass platform data
[people/ms/u-boot.git] / test / dm / core.c
1 /*
2 * Tests for the core driver model code
3 *
4 * Copyright (c) 2013 Google, Inc
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/ut.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 enum {
24 TEST_INTVAL1 = 0,
25 TEST_INTVAL2 = 3,
26 TEST_INTVAL3 = 6,
27 TEST_INTVAL_MANUAL = 101112,
28 TEST_INTVAL_PRE_RELOC = 7,
29 };
30
31 static const struct dm_test_pdata test_pdata[] = {
32 { .ping_add = TEST_INTVAL1, },
33 { .ping_add = TEST_INTVAL2, },
34 { .ping_add = TEST_INTVAL3, },
35 };
36
37 static const struct dm_test_pdata test_pdata_manual = {
38 .ping_add = TEST_INTVAL_MANUAL,
39 };
40
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 .ping_add = TEST_INTVAL_PRE_RELOC,
43 };
44
45 U_BOOT_DEVICE(dm_test_info1) = {
46 .name = "test_drv",
47 .platdata = &test_pdata[0],
48 };
49
50 U_BOOT_DEVICE(dm_test_info2) = {
51 .name = "test_drv",
52 .platdata = &test_pdata[1],
53 };
54
55 U_BOOT_DEVICE(dm_test_info3) = {
56 .name = "test_drv",
57 .platdata = &test_pdata[2],
58 };
59
60 static struct driver_info driver_info_manual = {
61 .name = "test_manual_drv",
62 .platdata = &test_pdata_manual,
63 };
64
65 static struct driver_info driver_info_pre_reloc = {
66 .name = "test_pre_reloc_drv",
67 .platdata = &test_pdata_manual,
68 };
69
70 void dm_leak_check_start(struct dm_test_state *dms)
71 {
72 dms->start = mallinfo();
73 if (!dms->start.uordblks)
74 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
75 }
76
77 int dm_leak_check_end(struct dm_test_state *dms)
78 {
79 struct mallinfo end;
80 int id;
81
82 /* Don't delete the root class, since we started with that */
83 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
84 struct uclass *uc;
85
86 uc = uclass_find(id);
87 if (!uc)
88 continue;
89 ut_assertok(uclass_destroy(uc));
90 }
91
92 end = mallinfo();
93 ut_asserteq(dms->start.uordblks, end.uordblks);
94
95 return 0;
96 }
97
98 /* Test that binding with platdata occurs correctly */
99 static int dm_test_autobind(struct dm_test_state *dms)
100 {
101 struct udevice *dev;
102
103 /*
104 * We should have a single class (UCLASS_ROOT) and a single root
105 * device with no children.
106 */
107 ut_assert(dms->root);
108 ut_asserteq(1, list_count_items(&gd->uclass_root));
109 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
110 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
111
112 ut_assertok(dm_scan_platdata(false));
113
114 /* We should have our test class now at least, plus more children */
115 ut_assert(1 < list_count_items(&gd->uclass_root));
116 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
117
118 /* Our 3 dm_test_infox children should be bound to the test uclass */
119 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
120
121 /* No devices should be probed */
122 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
123 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
124
125 /* Our test driver should have been bound 3 times */
126 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
127
128 return 0;
129 }
130 DM_TEST(dm_test_autobind, 0);
131
132 /* Test that binding with uclass platdata allocation occurs correctly */
133 static int dm_test_autobind_uclass_pdata_alloc(struct dm_test_state *dms)
134 {
135 struct dm_test_perdev_uc_pdata *uc_pdata;
136 struct udevice *dev;
137 struct uclass *uc;
138
139 ut_assertok(uclass_get(UCLASS_TEST, &uc));
140 ut_assert(uc);
141
142 /**
143 * Test if test uclass driver requires allocation for the uclass
144 * platform data and then check the dev->uclass_platdata pointer.
145 */
146 ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
147
148 for (uclass_find_first_device(UCLASS_TEST, &dev);
149 dev;
150 uclass_find_next_device(&dev)) {
151 ut_assert(dev);
152
153 uc_pdata = dev_get_uclass_platdata(dev);
154 ut_assert(uc_pdata);
155 }
156
157 return 0;
158 }
159 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
160
161 /* Test that binding with uclass platdata setting occurs correctly */
162 static int dm_test_autobind_uclass_pdata_valid(struct dm_test_state *dms)
163 {
164 struct dm_test_perdev_uc_pdata *uc_pdata;
165 struct udevice *dev;
166
167 /**
168 * In the test_postbind() method of test uclass driver, the uclass
169 * platform data should be set to three test int values - test it.
170 */
171 for (uclass_find_first_device(UCLASS_TEST, &dev);
172 dev;
173 uclass_find_next_device(&dev)) {
174 ut_assert(dev);
175
176 uc_pdata = dev_get_uclass_platdata(dev);
177 ut_assert(uc_pdata);
178 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
179 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
180 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
181 }
182
183 return 0;
184 }
185 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
186
187 /* Test that autoprobe finds all the expected devices */
188 static int dm_test_autoprobe(struct dm_test_state *dms)
189 {
190 int expected_base_add;
191 struct udevice *dev;
192 struct uclass *uc;
193 int i;
194
195 ut_assertok(uclass_get(UCLASS_TEST, &uc));
196 ut_assert(uc);
197
198 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
199 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
200 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
201
202 /* The root device should not be activated until needed */
203 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
204
205 /*
206 * We should be able to find the three test devices, and they should
207 * all be activated as they are used (lazy activation, required by
208 * U-Boot)
209 */
210 for (i = 0; i < 3; i++) {
211 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
212 ut_assert(dev);
213 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
214 "Driver %d/%s already activated", i, dev->name);
215
216 /* This should activate it */
217 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
218 ut_assert(dev);
219 ut_assert(dev->flags & DM_FLAG_ACTIVATED);
220
221 /* Activating a device should activate the root device */
222 if (!i)
223 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
224 }
225
226 /*
227 * Our 3 dm_test_info children should be passed to pre_probe and
228 * post_probe
229 */
230 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
231 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
232
233 /* Also we can check the per-device data */
234 expected_base_add = 0;
235 for (i = 0; i < 3; i++) {
236 struct dm_test_uclass_perdev_priv *priv;
237 struct dm_test_pdata *pdata;
238
239 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
240 ut_assert(dev);
241
242 priv = dev_get_uclass_priv(dev);
243 ut_assert(priv);
244 ut_asserteq(expected_base_add, priv->base_add);
245
246 pdata = dev->platdata;
247 expected_base_add += pdata->ping_add;
248 }
249
250 return 0;
251 }
252 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
253
254 /* Check that we see the correct platdata in each device */
255 static int dm_test_platdata(struct dm_test_state *dms)
256 {
257 const struct dm_test_pdata *pdata;
258 struct udevice *dev;
259 int i;
260
261 for (i = 0; i < 3; i++) {
262 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
263 ut_assert(dev);
264 pdata = dev->platdata;
265 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
266 }
267
268 return 0;
269 }
270 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
271
272 /* Test that we can bind, probe, remove, unbind a driver */
273 static int dm_test_lifecycle(struct dm_test_state *dms)
274 {
275 int op_count[DM_TEST_OP_COUNT];
276 struct udevice *dev, *test_dev;
277 int pingret;
278 int ret;
279
280 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
281
282 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
283 &dev));
284 ut_assert(dev);
285 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
286 == op_count[DM_TEST_OP_BIND] + 1);
287 ut_assert(!dev->priv);
288
289 /* Probe the device - it should fail allocating private data */
290 dms->force_fail_alloc = 1;
291 ret = device_probe(dev);
292 ut_assert(ret == -ENOMEM);
293 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
294 == op_count[DM_TEST_OP_PROBE] + 1);
295 ut_assert(!dev->priv);
296
297 /* Try again without the alloc failure */
298 dms->force_fail_alloc = 0;
299 ut_assertok(device_probe(dev));
300 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
301 == op_count[DM_TEST_OP_PROBE] + 2);
302 ut_assert(dev->priv);
303
304 /* This should be device 3 in the uclass */
305 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
306 ut_assert(dev == test_dev);
307
308 /* Try ping */
309 ut_assertok(test_ping(dev, 100, &pingret));
310 ut_assert(pingret == 102);
311
312 /* Now remove device 3 */
313 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
314 ut_assertok(device_remove(dev));
315 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
316
317 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
318 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
319 ut_assertok(device_unbind(dev));
320 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
321 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
322
323 return 0;
324 }
325 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
326
327 /* Test that we can bind/unbind and the lists update correctly */
328 static int dm_test_ordering(struct dm_test_state *dms)
329 {
330 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
331 int pingret;
332
333 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
334 &dev));
335 ut_assert(dev);
336
337 /* Bind two new devices (numbers 4 and 5) */
338 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
339 &dev_penultimate));
340 ut_assert(dev_penultimate);
341 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
342 &dev_last));
343 ut_assert(dev_last);
344
345 /* Now remove device 3 */
346 ut_assertok(device_remove(dev));
347 ut_assertok(device_unbind(dev));
348
349 /* The device numbering should have shifted down one */
350 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
351 ut_assert(dev_penultimate == test_dev);
352 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
353 ut_assert(dev_last == test_dev);
354
355 /* Add back the original device 3, now in position 5 */
356 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
357 &dev));
358 ut_assert(dev);
359
360 /* Try ping */
361 ut_assertok(test_ping(dev, 100, &pingret));
362 ut_assert(pingret == 102);
363
364 /* Remove 3 and 4 */
365 ut_assertok(device_remove(dev_penultimate));
366 ut_assertok(device_unbind(dev_penultimate));
367 ut_assertok(device_remove(dev_last));
368 ut_assertok(device_unbind(dev_last));
369
370 /* Our device should now be in position 3 */
371 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
372 ut_assert(dev == test_dev);
373
374 /* Now remove device 3 */
375 ut_assertok(device_remove(dev));
376 ut_assertok(device_unbind(dev));
377
378 return 0;
379 }
380 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
381
382 /* Check that we can perform operations on a device (do a ping) */
383 int dm_check_operations(struct dm_test_state *dms, struct udevice *dev,
384 uint32_t base, struct dm_test_priv *priv)
385 {
386 int expected;
387 int pingret;
388
389 /* Getting the child device should allocate platdata / priv */
390 ut_assertok(testfdt_ping(dev, 10, &pingret));
391 ut_assert(dev->priv);
392 ut_assert(dev->platdata);
393
394 expected = 10 + base;
395 ut_asserteq(expected, pingret);
396
397 /* Do another ping */
398 ut_assertok(testfdt_ping(dev, 20, &pingret));
399 expected = 20 + base;
400 ut_asserteq(expected, pingret);
401
402 /* Now check the ping_total */
403 priv = dev->priv;
404 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
405 priv->ping_total);
406
407 return 0;
408 }
409
410 /* Check that we can perform operations on devices */
411 static int dm_test_operations(struct dm_test_state *dms)
412 {
413 struct udevice *dev;
414 int i;
415
416 /*
417 * Now check that the ping adds are what we expect. This is using the
418 * ping-add property in each node.
419 */
420 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
421 uint32_t base;
422
423 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
424
425 /*
426 * Get the 'reg' property, which tells us what the ping add
427 * should be. We don't use the platdata because we want
428 * to test the code that sets that up (testfdt_drv_probe()).
429 */
430 base = test_pdata[i].ping_add;
431 debug("dev=%d, base=%d\n", i, base);
432
433 ut_assert(!dm_check_operations(dms, dev, base, dev->priv));
434 }
435
436 return 0;
437 }
438 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
439
440 /* Remove all drivers and check that things work */
441 static int dm_test_remove(struct dm_test_state *dms)
442 {
443 struct udevice *dev;
444 int i;
445
446 for (i = 0; i < 3; i++) {
447 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
448 ut_assert(dev);
449 ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
450 "Driver %d/%s not activated", i, dev->name);
451 ut_assertok(device_remove(dev));
452 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
453 "Driver %d/%s should have deactivated", i,
454 dev->name);
455 ut_assert(!dev->priv);
456 }
457
458 return 0;
459 }
460 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
461
462 /* Remove and recreate everything, check for memory leaks */
463 static int dm_test_leak(struct dm_test_state *dms)
464 {
465 int i;
466
467 for (i = 0; i < 2; i++) {
468 struct udevice *dev;
469 int ret;
470 int id;
471
472 dm_leak_check_start(dms);
473
474 ut_assertok(dm_scan_platdata(false));
475 ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
476
477 /* Scanning the uclass is enough to probe all the devices */
478 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
479 for (ret = uclass_first_device(UCLASS_TEST, &dev);
480 dev;
481 ret = uclass_next_device(&dev))
482 ;
483 ut_assertok(ret);
484 }
485
486 ut_assertok(dm_leak_check_end(dms));
487 }
488
489 return 0;
490 }
491 DM_TEST(dm_test_leak, 0);
492
493 /* Test uclass init/destroy methods */
494 static int dm_test_uclass(struct dm_test_state *dms)
495 {
496 struct uclass *uc;
497
498 ut_assertok(uclass_get(UCLASS_TEST, &uc));
499 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
500 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
501 ut_assert(uc->priv);
502
503 ut_assertok(uclass_destroy(uc));
504 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
505 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
506
507 return 0;
508 }
509 DM_TEST(dm_test_uclass, 0);
510
511 /**
512 * create_children() - Create children of a parent node
513 *
514 * @dms: Test system state
515 * @parent: Parent device
516 * @count: Number of children to create
517 * @key: Key value to put in first child. Subsequence children
518 * receive an incrementing value
519 * @child: If not NULL, then the child device pointers are written into
520 * this array.
521 * @return 0 if OK, -ve on error
522 */
523 static int create_children(struct dm_test_state *dms, struct udevice *parent,
524 int count, int key, struct udevice *child[])
525 {
526 struct udevice *dev;
527 int i;
528
529 for (i = 0; i < count; i++) {
530 struct dm_test_pdata *pdata;
531
532 ut_assertok(device_bind_by_name(parent, false,
533 &driver_info_manual, &dev));
534 pdata = calloc(1, sizeof(*pdata));
535 pdata->ping_add = key + i;
536 dev->platdata = pdata;
537 if (child)
538 child[i] = dev;
539 }
540
541 return 0;
542 }
543
544 #define NODE_COUNT 10
545
546 static int dm_test_children(struct dm_test_state *dms)
547 {
548 struct udevice *top[NODE_COUNT];
549 struct udevice *child[NODE_COUNT];
550 struct udevice *grandchild[NODE_COUNT];
551 struct udevice *dev;
552 int total;
553 int ret;
554 int i;
555
556 /* We don't care about the numbering for this test */
557 dms->skip_post_probe = 1;
558
559 ut_assert(NODE_COUNT > 5);
560
561 /* First create 10 top-level children */
562 ut_assertok(create_children(dms, dms->root, NODE_COUNT, 0, top));
563
564 /* Now a few have their own children */
565 ut_assertok(create_children(dms, top[2], NODE_COUNT, 2, NULL));
566 ut_assertok(create_children(dms, top[5], NODE_COUNT, 5, child));
567
568 /* And grandchildren */
569 for (i = 0; i < NODE_COUNT; i++)
570 ut_assertok(create_children(dms, child[i], NODE_COUNT, 50 * i,
571 i == 2 ? grandchild : NULL));
572
573 /* Check total number of devices */
574 total = NODE_COUNT * (3 + NODE_COUNT);
575 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
576
577 /* Try probing one of the grandchildren */
578 ut_assertok(uclass_get_device(UCLASS_TEST,
579 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
580 ut_asserteq_ptr(grandchild[0], dev);
581
582 /*
583 * This should have probed the child and top node also, for a total
584 * of 3 nodes.
585 */
586 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
587
588 /* Probe the other grandchildren */
589 for (i = 1; i < NODE_COUNT; i++)
590 ut_assertok(device_probe(grandchild[i]));
591
592 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
593
594 /* Probe everything */
595 for (ret = uclass_first_device(UCLASS_TEST, &dev);
596 dev;
597 ret = uclass_next_device(&dev))
598 ;
599 ut_assertok(ret);
600
601 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
602
603 /* Remove a top-level child and check that the children are removed */
604 ut_assertok(device_remove(top[2]));
605 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
606 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
607
608 /* Try one with grandchildren */
609 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
610 ut_asserteq_ptr(dev, top[5]);
611 ut_assertok(device_remove(dev));
612 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
613 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
614
615 /* Try the same with unbind */
616 ut_assertok(device_unbind(top[2]));
617 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
618 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
619
620 /* Try one with grandchildren */
621 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
622 ut_asserteq_ptr(dev, top[6]);
623 ut_assertok(device_unbind(top[5]));
624 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
625 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
626
627 return 0;
628 }
629 DM_TEST(dm_test_children, 0);
630
631 /* Test that pre-relocation devices work as expected */
632 static int dm_test_pre_reloc(struct dm_test_state *dms)
633 {
634 struct udevice *dev;
635
636 /* The normal driver should refuse to bind before relocation */
637 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
638 &driver_info_manual, &dev));
639
640 /* But this one is marked pre-reloc */
641 ut_assertok(device_bind_by_name(dms->root, true,
642 &driver_info_pre_reloc, &dev));
643
644 return 0;
645 }
646 DM_TEST(dm_test_pre_reloc, 0);
647
648 static int dm_test_uclass_before_ready(struct dm_test_state *dms)
649 {
650 struct uclass *uc;
651
652 ut_assertok(uclass_get(UCLASS_TEST, &uc));
653
654 memset(gd, '\0', sizeof(*gd));
655 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
656
657 return 0;
658 }
659
660 DM_TEST(dm_test_uclass_before_ready, 0);
661
662 static int dm_test_device_get_uclass_id(struct dm_test_state *dms)
663 {
664 struct udevice *dev;
665
666 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
667 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
668
669 return 0;
670 }
671 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);