]> git.ipfire.org Git - people/ms/u-boot.git/blob - test/dm/core.c
dm: Avoid accessing uclasses before they are ready
[people/ms/u-boot.git] / test / dm / core.c
1 /*
2 * Tests for the core driver model code
3 *
4 * Copyright (c) 2013 Google, Inc
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/ut.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 enum {
24 TEST_INTVAL1 = 0,
25 TEST_INTVAL2 = 3,
26 TEST_INTVAL3 = 6,
27 TEST_INTVAL_MANUAL = 101112,
28 TEST_INTVAL_PRE_RELOC = 7,
29 };
30
31 static const struct dm_test_pdata test_pdata[] = {
32 { .ping_add = TEST_INTVAL1, },
33 { .ping_add = TEST_INTVAL2, },
34 { .ping_add = TEST_INTVAL3, },
35 };
36
37 static const struct dm_test_pdata test_pdata_manual = {
38 .ping_add = TEST_INTVAL_MANUAL,
39 };
40
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 .ping_add = TEST_INTVAL_PRE_RELOC,
43 };
44
45 U_BOOT_DEVICE(dm_test_info1) = {
46 .name = "test_drv",
47 .platdata = &test_pdata[0],
48 };
49
50 U_BOOT_DEVICE(dm_test_info2) = {
51 .name = "test_drv",
52 .platdata = &test_pdata[1],
53 };
54
55 U_BOOT_DEVICE(dm_test_info3) = {
56 .name = "test_drv",
57 .platdata = &test_pdata[2],
58 };
59
60 static struct driver_info driver_info_manual = {
61 .name = "test_manual_drv",
62 .platdata = &test_pdata_manual,
63 };
64
65 static struct driver_info driver_info_pre_reloc = {
66 .name = "test_pre_reloc_drv",
67 .platdata = &test_pdata_manual,
68 };
69
70 /* Test that binding with platdata occurs correctly */
71 static int dm_test_autobind(struct dm_test_state *dms)
72 {
73 struct udevice *dev;
74
75 /*
76 * We should have a single class (UCLASS_ROOT) and a single root
77 * device with no children.
78 */
79 ut_assert(dms->root);
80 ut_asserteq(1, list_count_items(&gd->uclass_root));
81 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
82 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
83
84 ut_assertok(dm_scan_platdata(false));
85
86 /* We should have our test class now at least, plus more children */
87 ut_assert(1 < list_count_items(&gd->uclass_root));
88 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
89
90 /* Our 3 dm_test_infox children should be bound to the test uclass */
91 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
92
93 /* No devices should be probed */
94 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
95 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
96
97 /* Our test driver should have been bound 3 times */
98 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
99
100 return 0;
101 }
102 DM_TEST(dm_test_autobind, 0);
103
104 /* Test that autoprobe finds all the expected devices */
105 static int dm_test_autoprobe(struct dm_test_state *dms)
106 {
107 int expected_base_add;
108 struct udevice *dev;
109 struct uclass *uc;
110 int i;
111
112 ut_assertok(uclass_get(UCLASS_TEST, &uc));
113 ut_assert(uc);
114
115 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
116 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
117
118 /* The root device should not be activated until needed */
119 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
120
121 /*
122 * We should be able to find the three test devices, and they should
123 * all be activated as they are used (lazy activation, required by
124 * U-Boot)
125 */
126 for (i = 0; i < 3; i++) {
127 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
128 ut_assert(dev);
129 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
130 "Driver %d/%s already activated", i, dev->name);
131
132 /* This should activate it */
133 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
134 ut_assert(dev);
135 ut_assert(dev->flags & DM_FLAG_ACTIVATED);
136
137 /* Activating a device should activate the root device */
138 if (!i)
139 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
140 }
141
142 /* Our 3 dm_test_infox children should be passed to post_probe */
143 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
144
145 /* Also we can check the per-device data */
146 expected_base_add = 0;
147 for (i = 0; i < 3; i++) {
148 struct dm_test_uclass_perdev_priv *priv;
149 struct dm_test_pdata *pdata;
150
151 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
152 ut_assert(dev);
153
154 priv = dev->uclass_priv;
155 ut_assert(priv);
156 ut_asserteq(expected_base_add, priv->base_add);
157
158 pdata = dev->platdata;
159 expected_base_add += pdata->ping_add;
160 }
161
162 return 0;
163 }
164 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
165
166 /* Check that we see the correct platdata in each device */
167 static int dm_test_platdata(struct dm_test_state *dms)
168 {
169 const struct dm_test_pdata *pdata;
170 struct udevice *dev;
171 int i;
172
173 for (i = 0; i < 3; i++) {
174 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
175 ut_assert(dev);
176 pdata = dev->platdata;
177 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
178 }
179
180 return 0;
181 }
182 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
183
184 /* Test that we can bind, probe, remove, unbind a driver */
185 static int dm_test_lifecycle(struct dm_test_state *dms)
186 {
187 int op_count[DM_TEST_OP_COUNT];
188 struct udevice *dev, *test_dev;
189 int pingret;
190 int ret;
191
192 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
193
194 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
195 &dev));
196 ut_assert(dev);
197 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
198 == op_count[DM_TEST_OP_BIND] + 1);
199 ut_assert(!dev->priv);
200
201 /* Probe the device - it should fail allocating private data */
202 dms->force_fail_alloc = 1;
203 ret = device_probe(dev);
204 ut_assert(ret == -ENOMEM);
205 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
206 == op_count[DM_TEST_OP_PROBE] + 1);
207 ut_assert(!dev->priv);
208
209 /* Try again without the alloc failure */
210 dms->force_fail_alloc = 0;
211 ut_assertok(device_probe(dev));
212 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
213 == op_count[DM_TEST_OP_PROBE] + 2);
214 ut_assert(dev->priv);
215
216 /* This should be device 3 in the uclass */
217 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
218 ut_assert(dev == test_dev);
219
220 /* Try ping */
221 ut_assertok(test_ping(dev, 100, &pingret));
222 ut_assert(pingret == 102);
223
224 /* Now remove device 3 */
225 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
226 ut_assertok(device_remove(dev));
227 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
228
229 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
230 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
231 ut_assertok(device_unbind(dev));
232 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
233 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
234
235 return 0;
236 }
237 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
238
239 /* Test that we can bind/unbind and the lists update correctly */
240 static int dm_test_ordering(struct dm_test_state *dms)
241 {
242 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
243 int pingret;
244
245 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
246 &dev));
247 ut_assert(dev);
248
249 /* Bind two new devices (numbers 4 and 5) */
250 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
251 &dev_penultimate));
252 ut_assert(dev_penultimate);
253 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
254 &dev_last));
255 ut_assert(dev_last);
256
257 /* Now remove device 3 */
258 ut_assertok(device_remove(dev));
259 ut_assertok(device_unbind(dev));
260
261 /* The device numbering should have shifted down one */
262 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
263 ut_assert(dev_penultimate == test_dev);
264 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
265 ut_assert(dev_last == test_dev);
266
267 /* Add back the original device 3, now in position 5 */
268 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
269 &dev));
270 ut_assert(dev);
271
272 /* Try ping */
273 ut_assertok(test_ping(dev, 100, &pingret));
274 ut_assert(pingret == 102);
275
276 /* Remove 3 and 4 */
277 ut_assertok(device_remove(dev_penultimate));
278 ut_assertok(device_unbind(dev_penultimate));
279 ut_assertok(device_remove(dev_last));
280 ut_assertok(device_unbind(dev_last));
281
282 /* Our device should now be in position 3 */
283 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
284 ut_assert(dev == test_dev);
285
286 /* Now remove device 3 */
287 ut_assertok(device_remove(dev));
288 ut_assertok(device_unbind(dev));
289
290 return 0;
291 }
292 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
293
294 /* Check that we can perform operations on a device (do a ping) */
295 int dm_check_operations(struct dm_test_state *dms, struct udevice *dev,
296 uint32_t base, struct dm_test_priv *priv)
297 {
298 int expected;
299 int pingret;
300
301 /* Getting the child device should allocate platdata / priv */
302 ut_assertok(testfdt_ping(dev, 10, &pingret));
303 ut_assert(dev->priv);
304 ut_assert(dev->platdata);
305
306 expected = 10 + base;
307 ut_asserteq(expected, pingret);
308
309 /* Do another ping */
310 ut_assertok(testfdt_ping(dev, 20, &pingret));
311 expected = 20 + base;
312 ut_asserteq(expected, pingret);
313
314 /* Now check the ping_total */
315 priv = dev->priv;
316 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
317 priv->ping_total);
318
319 return 0;
320 }
321
322 /* Check that we can perform operations on devices */
323 static int dm_test_operations(struct dm_test_state *dms)
324 {
325 struct udevice *dev;
326 int i;
327
328 /*
329 * Now check that the ping adds are what we expect. This is using the
330 * ping-add property in each node.
331 */
332 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
333 uint32_t base;
334
335 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
336
337 /*
338 * Get the 'reg' property, which tells us what the ping add
339 * should be. We don't use the platdata because we want
340 * to test the code that sets that up (testfdt_drv_probe()).
341 */
342 base = test_pdata[i].ping_add;
343 debug("dev=%d, base=%d\n", i, base);
344
345 ut_assert(!dm_check_operations(dms, dev, base, dev->priv));
346 }
347
348 return 0;
349 }
350 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
351
352 /* Remove all drivers and check that things work */
353 static int dm_test_remove(struct dm_test_state *dms)
354 {
355 struct udevice *dev;
356 int i;
357
358 for (i = 0; i < 3; i++) {
359 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
360 ut_assert(dev);
361 ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
362 "Driver %d/%s not activated", i, dev->name);
363 ut_assertok(device_remove(dev));
364 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
365 "Driver %d/%s should have deactivated", i,
366 dev->name);
367 ut_assert(!dev->priv);
368 }
369
370 return 0;
371 }
372 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
373
374 /* Remove and recreate everything, check for memory leaks */
375 static int dm_test_leak(struct dm_test_state *dms)
376 {
377 int i;
378
379 for (i = 0; i < 2; i++) {
380 struct mallinfo start, end;
381 struct udevice *dev;
382 int ret;
383 int id;
384
385 start = mallinfo();
386 if (!start.uordblks)
387 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
388
389 ut_assertok(dm_scan_platdata(false));
390 ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
391
392 /* Scanning the uclass is enough to probe all the devices */
393 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
394 for (ret = uclass_first_device(UCLASS_TEST, &dev);
395 dev;
396 ret = uclass_next_device(&dev))
397 ;
398 ut_assertok(ret);
399 }
400
401 /* Don't delete the root class, since we started with that */
402 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
403 struct uclass *uc;
404
405 uc = uclass_find(id);
406 if (!uc)
407 continue;
408 ut_assertok(uclass_destroy(uc));
409 }
410
411 end = mallinfo();
412 ut_asserteq(start.uordblks, end.uordblks);
413 }
414
415 return 0;
416 }
417 DM_TEST(dm_test_leak, 0);
418
419 /* Test uclass init/destroy methods */
420 static int dm_test_uclass(struct dm_test_state *dms)
421 {
422 struct uclass *uc;
423
424 ut_assertok(uclass_get(UCLASS_TEST, &uc));
425 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
426 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
427 ut_assert(uc->priv);
428
429 ut_assertok(uclass_destroy(uc));
430 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
431 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
432
433 return 0;
434 }
435 DM_TEST(dm_test_uclass, 0);
436
437 /**
438 * create_children() - Create children of a parent node
439 *
440 * @dms: Test system state
441 * @parent: Parent device
442 * @count: Number of children to create
443 * @key: Key value to put in first child. Subsequence children
444 * receive an incrementing value
445 * @child: If not NULL, then the child device pointers are written into
446 * this array.
447 * @return 0 if OK, -ve on error
448 */
449 static int create_children(struct dm_test_state *dms, struct udevice *parent,
450 int count, int key, struct udevice *child[])
451 {
452 struct udevice *dev;
453 int i;
454
455 for (i = 0; i < count; i++) {
456 struct dm_test_pdata *pdata;
457
458 ut_assertok(device_bind_by_name(parent, false,
459 &driver_info_manual, &dev));
460 pdata = calloc(1, sizeof(*pdata));
461 pdata->ping_add = key + i;
462 dev->platdata = pdata;
463 if (child)
464 child[i] = dev;
465 }
466
467 return 0;
468 }
469
470 #define NODE_COUNT 10
471
472 static int dm_test_children(struct dm_test_state *dms)
473 {
474 struct udevice *top[NODE_COUNT];
475 struct udevice *child[NODE_COUNT];
476 struct udevice *grandchild[NODE_COUNT];
477 struct udevice *dev;
478 int total;
479 int ret;
480 int i;
481
482 /* We don't care about the numbering for this test */
483 dms->skip_post_probe = 1;
484
485 ut_assert(NODE_COUNT > 5);
486
487 /* First create 10 top-level children */
488 ut_assertok(create_children(dms, dms->root, NODE_COUNT, 0, top));
489
490 /* Now a few have their own children */
491 ut_assertok(create_children(dms, top[2], NODE_COUNT, 2, NULL));
492 ut_assertok(create_children(dms, top[5], NODE_COUNT, 5, child));
493
494 /* And grandchildren */
495 for (i = 0; i < NODE_COUNT; i++)
496 ut_assertok(create_children(dms, child[i], NODE_COUNT, 50 * i,
497 i == 2 ? grandchild : NULL));
498
499 /* Check total number of devices */
500 total = NODE_COUNT * (3 + NODE_COUNT);
501 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
502
503 /* Try probing one of the grandchildren */
504 ut_assertok(uclass_get_device(UCLASS_TEST,
505 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
506 ut_asserteq_ptr(grandchild[0], dev);
507
508 /*
509 * This should have probed the child and top node also, for a total
510 * of 3 nodes.
511 */
512 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
513
514 /* Probe the other grandchildren */
515 for (i = 1; i < NODE_COUNT; i++)
516 ut_assertok(device_probe(grandchild[i]));
517
518 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
519
520 /* Probe everything */
521 for (ret = uclass_first_device(UCLASS_TEST, &dev);
522 dev;
523 ret = uclass_next_device(&dev))
524 ;
525 ut_assertok(ret);
526
527 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
528
529 /* Remove a top-level child and check that the children are removed */
530 ut_assertok(device_remove(top[2]));
531 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
532 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
533
534 /* Try one with grandchildren */
535 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
536 ut_asserteq_ptr(dev, top[5]);
537 ut_assertok(device_remove(dev));
538 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
539 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
540
541 /* Try the same with unbind */
542 ut_assertok(device_unbind(top[2]));
543 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
544 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
545
546 /* Try one with grandchildren */
547 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
548 ut_asserteq_ptr(dev, top[6]);
549 ut_assertok(device_unbind(top[5]));
550 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
551 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
552
553 return 0;
554 }
555 DM_TEST(dm_test_children, 0);
556
557 /* Test that pre-relocation devices work as expected */
558 static int dm_test_pre_reloc(struct dm_test_state *dms)
559 {
560 struct udevice *dev;
561
562 /* The normal driver should refuse to bind before relocation */
563 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
564 &driver_info_manual, &dev));
565
566 /* But this one is marked pre-reloc */
567 ut_assertok(device_bind_by_name(dms->root, true,
568 &driver_info_pre_reloc, &dev));
569
570 return 0;
571 }
572 DM_TEST(dm_test_pre_reloc, 0);
573
574 static int dm_test_uclass_before_ready(struct dm_test_state *dms)
575 {
576 struct uclass *uc;
577
578 ut_assertok(uclass_get(UCLASS_TEST, &uc));
579
580 memset(gd, '\0', sizeof(*gd));
581 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
582
583 return 0;
584 }
585
586 DM_TEST(dm_test_uclass_before_ready, 0);