]> git.ipfire.org Git - people/ms/u-boot.git/blob - test/dm/core.c
Merge remote-tracking branch 'u-boot/master' into 'u-boot-arm/master'
[people/ms/u-boot.git] / test / dm / core.c
1 /*
2 * Tests for the core driver model code
3 *
4 * Copyright (c) 2013 Google, Inc
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/ut.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 enum {
24 TEST_INTVAL1 = 0,
25 TEST_INTVAL2 = 3,
26 TEST_INTVAL3 = 6,
27 TEST_INTVAL_MANUAL = 101112,
28 TEST_INTVAL_PRE_RELOC = 7,
29 };
30
31 static const struct dm_test_pdata test_pdata[] = {
32 { .ping_add = TEST_INTVAL1, },
33 { .ping_add = TEST_INTVAL2, },
34 { .ping_add = TEST_INTVAL3, },
35 };
36
37 static const struct dm_test_pdata test_pdata_manual = {
38 .ping_add = TEST_INTVAL_MANUAL,
39 };
40
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 .ping_add = TEST_INTVAL_PRE_RELOC,
43 };
44
45 U_BOOT_DEVICE(dm_test_info1) = {
46 .name = "test_drv",
47 .platdata = &test_pdata[0],
48 };
49
50 U_BOOT_DEVICE(dm_test_info2) = {
51 .name = "test_drv",
52 .platdata = &test_pdata[1],
53 };
54
55 U_BOOT_DEVICE(dm_test_info3) = {
56 .name = "test_drv",
57 .platdata = &test_pdata[2],
58 };
59
60 static struct driver_info driver_info_manual = {
61 .name = "test_manual_drv",
62 .platdata = &test_pdata_manual,
63 };
64
65 static struct driver_info driver_info_pre_reloc = {
66 .name = "test_pre_reloc_drv",
67 .platdata = &test_pdata_manual,
68 };
69
70 void dm_leak_check_start(struct dm_test_state *dms)
71 {
72 dms->start = mallinfo();
73 if (!dms->start.uordblks)
74 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
75 }
76
77 int dm_leak_check_end(struct dm_test_state *dms)
78 {
79 struct mallinfo end;
80 int id;
81
82 /* Don't delete the root class, since we started with that */
83 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
84 struct uclass *uc;
85
86 uc = uclass_find(id);
87 if (!uc)
88 continue;
89 ut_assertok(uclass_destroy(uc));
90 }
91
92 end = mallinfo();
93 ut_asserteq(dms->start.uordblks, end.uordblks);
94
95 return 0;
96 }
97
98 /* Test that binding with platdata occurs correctly */
99 static int dm_test_autobind(struct dm_test_state *dms)
100 {
101 struct udevice *dev;
102
103 /*
104 * We should have a single class (UCLASS_ROOT) and a single root
105 * device with no children.
106 */
107 ut_assert(dms->root);
108 ut_asserteq(1, list_count_items(&gd->uclass_root));
109 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
110 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
111
112 ut_assertok(dm_scan_platdata(false));
113
114 /* We should have our test class now at least, plus more children */
115 ut_assert(1 < list_count_items(&gd->uclass_root));
116 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
117
118 /* Our 3 dm_test_infox children should be bound to the test uclass */
119 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
120
121 /* No devices should be probed */
122 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
123 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
124
125 /* Our test driver should have been bound 3 times */
126 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
127
128 return 0;
129 }
130 DM_TEST(dm_test_autobind, 0);
131
132 /* Test that autoprobe finds all the expected devices */
133 static int dm_test_autoprobe(struct dm_test_state *dms)
134 {
135 int expected_base_add;
136 struct udevice *dev;
137 struct uclass *uc;
138 int i;
139
140 ut_assertok(uclass_get(UCLASS_TEST, &uc));
141 ut_assert(uc);
142
143 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
144 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
145
146 /* The root device should not be activated until needed */
147 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
148
149 /*
150 * We should be able to find the three test devices, and they should
151 * all be activated as they are used (lazy activation, required by
152 * U-Boot)
153 */
154 for (i = 0; i < 3; i++) {
155 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
156 ut_assert(dev);
157 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
158 "Driver %d/%s already activated", i, dev->name);
159
160 /* This should activate it */
161 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
162 ut_assert(dev);
163 ut_assert(dev->flags & DM_FLAG_ACTIVATED);
164
165 /* Activating a device should activate the root device */
166 if (!i)
167 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
168 }
169
170 /* Our 3 dm_test_infox children should be passed to post_probe */
171 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
172
173 /* Also we can check the per-device data */
174 expected_base_add = 0;
175 for (i = 0; i < 3; i++) {
176 struct dm_test_uclass_perdev_priv *priv;
177 struct dm_test_pdata *pdata;
178
179 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
180 ut_assert(dev);
181
182 priv = dev->uclass_priv;
183 ut_assert(priv);
184 ut_asserteq(expected_base_add, priv->base_add);
185
186 pdata = dev->platdata;
187 expected_base_add += pdata->ping_add;
188 }
189
190 return 0;
191 }
192 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
193
194 /* Check that we see the correct platdata in each device */
195 static int dm_test_platdata(struct dm_test_state *dms)
196 {
197 const struct dm_test_pdata *pdata;
198 struct udevice *dev;
199 int i;
200
201 for (i = 0; i < 3; i++) {
202 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
203 ut_assert(dev);
204 pdata = dev->platdata;
205 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
206 }
207
208 return 0;
209 }
210 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
211
212 /* Test that we can bind, probe, remove, unbind a driver */
213 static int dm_test_lifecycle(struct dm_test_state *dms)
214 {
215 int op_count[DM_TEST_OP_COUNT];
216 struct udevice *dev, *test_dev;
217 int pingret;
218 int ret;
219
220 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
221
222 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
223 &dev));
224 ut_assert(dev);
225 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
226 == op_count[DM_TEST_OP_BIND] + 1);
227 ut_assert(!dev->priv);
228
229 /* Probe the device - it should fail allocating private data */
230 dms->force_fail_alloc = 1;
231 ret = device_probe(dev);
232 ut_assert(ret == -ENOMEM);
233 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
234 == op_count[DM_TEST_OP_PROBE] + 1);
235 ut_assert(!dev->priv);
236
237 /* Try again without the alloc failure */
238 dms->force_fail_alloc = 0;
239 ut_assertok(device_probe(dev));
240 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
241 == op_count[DM_TEST_OP_PROBE] + 2);
242 ut_assert(dev->priv);
243
244 /* This should be device 3 in the uclass */
245 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
246 ut_assert(dev == test_dev);
247
248 /* Try ping */
249 ut_assertok(test_ping(dev, 100, &pingret));
250 ut_assert(pingret == 102);
251
252 /* Now remove device 3 */
253 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
254 ut_assertok(device_remove(dev));
255 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
256
257 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
258 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
259 ut_assertok(device_unbind(dev));
260 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
261 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
262
263 return 0;
264 }
265 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
266
267 /* Test that we can bind/unbind and the lists update correctly */
268 static int dm_test_ordering(struct dm_test_state *dms)
269 {
270 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
271 int pingret;
272
273 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
274 &dev));
275 ut_assert(dev);
276
277 /* Bind two new devices (numbers 4 and 5) */
278 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
279 &dev_penultimate));
280 ut_assert(dev_penultimate);
281 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
282 &dev_last));
283 ut_assert(dev_last);
284
285 /* Now remove device 3 */
286 ut_assertok(device_remove(dev));
287 ut_assertok(device_unbind(dev));
288
289 /* The device numbering should have shifted down one */
290 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
291 ut_assert(dev_penultimate == test_dev);
292 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
293 ut_assert(dev_last == test_dev);
294
295 /* Add back the original device 3, now in position 5 */
296 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
297 &dev));
298 ut_assert(dev);
299
300 /* Try ping */
301 ut_assertok(test_ping(dev, 100, &pingret));
302 ut_assert(pingret == 102);
303
304 /* Remove 3 and 4 */
305 ut_assertok(device_remove(dev_penultimate));
306 ut_assertok(device_unbind(dev_penultimate));
307 ut_assertok(device_remove(dev_last));
308 ut_assertok(device_unbind(dev_last));
309
310 /* Our device should now be in position 3 */
311 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
312 ut_assert(dev == test_dev);
313
314 /* Now remove device 3 */
315 ut_assertok(device_remove(dev));
316 ut_assertok(device_unbind(dev));
317
318 return 0;
319 }
320 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
321
322 /* Check that we can perform operations on a device (do a ping) */
323 int dm_check_operations(struct dm_test_state *dms, struct udevice *dev,
324 uint32_t base, struct dm_test_priv *priv)
325 {
326 int expected;
327 int pingret;
328
329 /* Getting the child device should allocate platdata / priv */
330 ut_assertok(testfdt_ping(dev, 10, &pingret));
331 ut_assert(dev->priv);
332 ut_assert(dev->platdata);
333
334 expected = 10 + base;
335 ut_asserteq(expected, pingret);
336
337 /* Do another ping */
338 ut_assertok(testfdt_ping(dev, 20, &pingret));
339 expected = 20 + base;
340 ut_asserteq(expected, pingret);
341
342 /* Now check the ping_total */
343 priv = dev->priv;
344 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
345 priv->ping_total);
346
347 return 0;
348 }
349
350 /* Check that we can perform operations on devices */
351 static int dm_test_operations(struct dm_test_state *dms)
352 {
353 struct udevice *dev;
354 int i;
355
356 /*
357 * Now check that the ping adds are what we expect. This is using the
358 * ping-add property in each node.
359 */
360 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
361 uint32_t base;
362
363 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
364
365 /*
366 * Get the 'reg' property, which tells us what the ping add
367 * should be. We don't use the platdata because we want
368 * to test the code that sets that up (testfdt_drv_probe()).
369 */
370 base = test_pdata[i].ping_add;
371 debug("dev=%d, base=%d\n", i, base);
372
373 ut_assert(!dm_check_operations(dms, dev, base, dev->priv));
374 }
375
376 return 0;
377 }
378 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
379
380 /* Remove all drivers and check that things work */
381 static int dm_test_remove(struct dm_test_state *dms)
382 {
383 struct udevice *dev;
384 int i;
385
386 for (i = 0; i < 3; i++) {
387 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
388 ut_assert(dev);
389 ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
390 "Driver %d/%s not activated", i, dev->name);
391 ut_assertok(device_remove(dev));
392 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
393 "Driver %d/%s should have deactivated", i,
394 dev->name);
395 ut_assert(!dev->priv);
396 }
397
398 return 0;
399 }
400 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
401
402 /* Remove and recreate everything, check for memory leaks */
403 static int dm_test_leak(struct dm_test_state *dms)
404 {
405 int i;
406
407 for (i = 0; i < 2; i++) {
408 struct udevice *dev;
409 int ret;
410 int id;
411
412 dm_leak_check_start(dms);
413
414 ut_assertok(dm_scan_platdata(false));
415 ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
416
417 /* Scanning the uclass is enough to probe all the devices */
418 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
419 for (ret = uclass_first_device(UCLASS_TEST, &dev);
420 dev;
421 ret = uclass_next_device(&dev))
422 ;
423 ut_assertok(ret);
424 }
425
426 ut_assertok(dm_leak_check_end(dms));
427 }
428
429 return 0;
430 }
431 DM_TEST(dm_test_leak, 0);
432
433 /* Test uclass init/destroy methods */
434 static int dm_test_uclass(struct dm_test_state *dms)
435 {
436 struct uclass *uc;
437
438 ut_assertok(uclass_get(UCLASS_TEST, &uc));
439 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
440 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
441 ut_assert(uc->priv);
442
443 ut_assertok(uclass_destroy(uc));
444 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
445 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
446
447 return 0;
448 }
449 DM_TEST(dm_test_uclass, 0);
450
451 /**
452 * create_children() - Create children of a parent node
453 *
454 * @dms: Test system state
455 * @parent: Parent device
456 * @count: Number of children to create
457 * @key: Key value to put in first child. Subsequence children
458 * receive an incrementing value
459 * @child: If not NULL, then the child device pointers are written into
460 * this array.
461 * @return 0 if OK, -ve on error
462 */
463 static int create_children(struct dm_test_state *dms, struct udevice *parent,
464 int count, int key, struct udevice *child[])
465 {
466 struct udevice *dev;
467 int i;
468
469 for (i = 0; i < count; i++) {
470 struct dm_test_pdata *pdata;
471
472 ut_assertok(device_bind_by_name(parent, false,
473 &driver_info_manual, &dev));
474 pdata = calloc(1, sizeof(*pdata));
475 pdata->ping_add = key + i;
476 dev->platdata = pdata;
477 if (child)
478 child[i] = dev;
479 }
480
481 return 0;
482 }
483
484 #define NODE_COUNT 10
485
486 static int dm_test_children(struct dm_test_state *dms)
487 {
488 struct udevice *top[NODE_COUNT];
489 struct udevice *child[NODE_COUNT];
490 struct udevice *grandchild[NODE_COUNT];
491 struct udevice *dev;
492 int total;
493 int ret;
494 int i;
495
496 /* We don't care about the numbering for this test */
497 dms->skip_post_probe = 1;
498
499 ut_assert(NODE_COUNT > 5);
500
501 /* First create 10 top-level children */
502 ut_assertok(create_children(dms, dms->root, NODE_COUNT, 0, top));
503
504 /* Now a few have their own children */
505 ut_assertok(create_children(dms, top[2], NODE_COUNT, 2, NULL));
506 ut_assertok(create_children(dms, top[5], NODE_COUNT, 5, child));
507
508 /* And grandchildren */
509 for (i = 0; i < NODE_COUNT; i++)
510 ut_assertok(create_children(dms, child[i], NODE_COUNT, 50 * i,
511 i == 2 ? grandchild : NULL));
512
513 /* Check total number of devices */
514 total = NODE_COUNT * (3 + NODE_COUNT);
515 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
516
517 /* Try probing one of the grandchildren */
518 ut_assertok(uclass_get_device(UCLASS_TEST,
519 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
520 ut_asserteq_ptr(grandchild[0], dev);
521
522 /*
523 * This should have probed the child and top node also, for a total
524 * of 3 nodes.
525 */
526 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
527
528 /* Probe the other grandchildren */
529 for (i = 1; i < NODE_COUNT; i++)
530 ut_assertok(device_probe(grandchild[i]));
531
532 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
533
534 /* Probe everything */
535 for (ret = uclass_first_device(UCLASS_TEST, &dev);
536 dev;
537 ret = uclass_next_device(&dev))
538 ;
539 ut_assertok(ret);
540
541 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
542
543 /* Remove a top-level child and check that the children are removed */
544 ut_assertok(device_remove(top[2]));
545 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
546 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
547
548 /* Try one with grandchildren */
549 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
550 ut_asserteq_ptr(dev, top[5]);
551 ut_assertok(device_remove(dev));
552 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
553 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
554
555 /* Try the same with unbind */
556 ut_assertok(device_unbind(top[2]));
557 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
558 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
559
560 /* Try one with grandchildren */
561 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
562 ut_asserteq_ptr(dev, top[6]);
563 ut_assertok(device_unbind(top[5]));
564 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
565 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
566
567 return 0;
568 }
569 DM_TEST(dm_test_children, 0);
570
571 /* Test that pre-relocation devices work as expected */
572 static int dm_test_pre_reloc(struct dm_test_state *dms)
573 {
574 struct udevice *dev;
575
576 /* The normal driver should refuse to bind before relocation */
577 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
578 &driver_info_manual, &dev));
579
580 /* But this one is marked pre-reloc */
581 ut_assertok(device_bind_by_name(dms->root, true,
582 &driver_info_pre_reloc, &dev));
583
584 return 0;
585 }
586 DM_TEST(dm_test_pre_reloc, 0);
587
588 static int dm_test_uclass_before_ready(struct dm_test_state *dms)
589 {
590 struct uclass *uc;
591
592 ut_assertok(uclass_get(UCLASS_TEST, &uc));
593
594 memset(gd, '\0', sizeof(*gd));
595 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
596
597 return 0;
598 }
599
600 DM_TEST(dm_test_uclass_before_ready, 0);
601
602 static int dm_test_device_get_uclass_id(struct dm_test_state *dms)
603 {
604 struct udevice *dev;
605
606 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
607 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
608
609 return 0;
610 }
611 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);