]> git.ipfire.org Git - people/ms/u-boot.git/blob - test/dm/core.c
Merge git://git.denx.de/u-boot-arc
[people/ms/u-boot.git] / test / dm / core.c
1 /*
2 * Tests for the core driver model code
3 *
4 * Copyright (c) 2013 Google, Inc
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 */
8
9 #include <common.h>
10 #include <errno.h>
11 #include <dm.h>
12 #include <fdtdec.h>
13 #include <malloc.h>
14 #include <dm/device-internal.h>
15 #include <dm/root.h>
16 #include <dm/util.h>
17 #include <dm/test.h>
18 #include <dm/uclass-internal.h>
19 #include <test/ut.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 enum {
24 TEST_INTVAL1 = 0,
25 TEST_INTVAL2 = 3,
26 TEST_INTVAL3 = 6,
27 TEST_INTVAL_MANUAL = 101112,
28 TEST_INTVAL_PRE_RELOC = 7,
29 };
30
31 static const struct dm_test_pdata test_pdata[] = {
32 { .ping_add = TEST_INTVAL1, },
33 { .ping_add = TEST_INTVAL2, },
34 { .ping_add = TEST_INTVAL3, },
35 };
36
37 static const struct dm_test_pdata test_pdata_manual = {
38 .ping_add = TEST_INTVAL_MANUAL,
39 };
40
41 static const struct dm_test_pdata test_pdata_pre_reloc = {
42 .ping_add = TEST_INTVAL_PRE_RELOC,
43 };
44
45 U_BOOT_DEVICE(dm_test_info1) = {
46 .name = "test_drv",
47 .platdata = &test_pdata[0],
48 };
49
50 U_BOOT_DEVICE(dm_test_info2) = {
51 .name = "test_drv",
52 .platdata = &test_pdata[1],
53 };
54
55 U_BOOT_DEVICE(dm_test_info3) = {
56 .name = "test_drv",
57 .platdata = &test_pdata[2],
58 };
59
60 static struct driver_info driver_info_manual = {
61 .name = "test_manual_drv",
62 .platdata = &test_pdata_manual,
63 };
64
65 static struct driver_info driver_info_pre_reloc = {
66 .name = "test_pre_reloc_drv",
67 .platdata = &test_pdata_manual,
68 };
69
70 void dm_leak_check_start(struct unit_test_state *uts)
71 {
72 uts->start = mallinfo();
73 if (!uts->start.uordblks)
74 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
75 }
76
77 int dm_leak_check_end(struct unit_test_state *uts)
78 {
79 struct mallinfo end;
80 int id, diff;
81
82 /* Don't delete the root class, since we started with that */
83 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
84 struct uclass *uc;
85
86 uc = uclass_find(id);
87 if (!uc)
88 continue;
89 ut_assertok(uclass_destroy(uc));
90 }
91
92 end = mallinfo();
93 diff = end.uordblks - uts->start.uordblks;
94 if (diff > 0)
95 printf("Leak: lost %#xd bytes\n", diff);
96 else if (diff < 0)
97 printf("Leak: gained %#xd bytes\n", -diff);
98 ut_asserteq(uts->start.uordblks, end.uordblks);
99
100 return 0;
101 }
102
103 /* Test that binding with platdata occurs correctly */
104 static int dm_test_autobind(struct unit_test_state *uts)
105 {
106 struct dm_test_state *dms = uts->priv;
107 struct udevice *dev;
108
109 /*
110 * We should have a single class (UCLASS_ROOT) and a single root
111 * device with no children.
112 */
113 ut_assert(dms->root);
114 ut_asserteq(1, list_count_items(&gd->uclass_root));
115 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
116 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
117
118 ut_assertok(dm_scan_platdata(false));
119
120 /* We should have our test class now at least, plus more children */
121 ut_assert(1 < list_count_items(&gd->uclass_root));
122 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
123
124 /* Our 3 dm_test_infox children should be bound to the test uclass */
125 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
126
127 /* No devices should be probed */
128 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
129 ut_assert(!(dev->flags & DM_FLAG_ACTIVATED));
130
131 /* Our test driver should have been bound 3 times */
132 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
133
134 return 0;
135 }
136 DM_TEST(dm_test_autobind, 0);
137
138 /* Test that binding with uclass platdata allocation occurs correctly */
139 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
140 {
141 struct dm_test_perdev_uc_pdata *uc_pdata;
142 struct udevice *dev;
143 struct uclass *uc;
144
145 ut_assertok(uclass_get(UCLASS_TEST, &uc));
146 ut_assert(uc);
147
148 /**
149 * Test if test uclass driver requires allocation for the uclass
150 * platform data and then check the dev->uclass_platdata pointer.
151 */
152 ut_assert(uc->uc_drv->per_device_platdata_auto_alloc_size);
153
154 for (uclass_find_first_device(UCLASS_TEST, &dev);
155 dev;
156 uclass_find_next_device(&dev)) {
157 ut_assert(dev);
158
159 uc_pdata = dev_get_uclass_platdata(dev);
160 ut_assert(uc_pdata);
161 }
162
163 return 0;
164 }
165 DM_TEST(dm_test_autobind_uclass_pdata_alloc, DM_TESTF_SCAN_PDATA);
166
167 /* Test that binding with uclass platdata setting occurs correctly */
168 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
169 {
170 struct dm_test_perdev_uc_pdata *uc_pdata;
171 struct udevice *dev;
172
173 /**
174 * In the test_postbind() method of test uclass driver, the uclass
175 * platform data should be set to three test int values - test it.
176 */
177 for (uclass_find_first_device(UCLASS_TEST, &dev);
178 dev;
179 uclass_find_next_device(&dev)) {
180 ut_assert(dev);
181
182 uc_pdata = dev_get_uclass_platdata(dev);
183 ut_assert(uc_pdata);
184 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
185 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
186 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
187 }
188
189 return 0;
190 }
191 DM_TEST(dm_test_autobind_uclass_pdata_valid, DM_TESTF_SCAN_PDATA);
192
193 /* Test that autoprobe finds all the expected devices */
194 static int dm_test_autoprobe(struct unit_test_state *uts)
195 {
196 struct dm_test_state *dms = uts->priv;
197 int expected_base_add;
198 struct udevice *dev;
199 struct uclass *uc;
200 int i;
201
202 ut_assertok(uclass_get(UCLASS_TEST, &uc));
203 ut_assert(uc);
204
205 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
206 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
207 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
208
209 /* The root device should not be activated until needed */
210 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
211
212 /*
213 * We should be able to find the three test devices, and they should
214 * all be activated as they are used (lazy activation, required by
215 * U-Boot)
216 */
217 for (i = 0; i < 3; i++) {
218 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
219 ut_assert(dev);
220 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
221 "Driver %d/%s already activated", i, dev->name);
222
223 /* This should activate it */
224 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
225 ut_assert(dev);
226 ut_assert(dev->flags & DM_FLAG_ACTIVATED);
227
228 /* Activating a device should activate the root device */
229 if (!i)
230 ut_assert(dms->root->flags & DM_FLAG_ACTIVATED);
231 }
232
233 /*
234 * Our 3 dm_test_info children should be passed to pre_probe and
235 * post_probe
236 */
237 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
238 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
239
240 /* Also we can check the per-device data */
241 expected_base_add = 0;
242 for (i = 0; i < 3; i++) {
243 struct dm_test_uclass_perdev_priv *priv;
244 struct dm_test_pdata *pdata;
245
246 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
247 ut_assert(dev);
248
249 priv = dev_get_uclass_priv(dev);
250 ut_assert(priv);
251 ut_asserteq(expected_base_add, priv->base_add);
252
253 pdata = dev->platdata;
254 expected_base_add += pdata->ping_add;
255 }
256
257 return 0;
258 }
259 DM_TEST(dm_test_autoprobe, DM_TESTF_SCAN_PDATA);
260
261 /* Check that we see the correct platdata in each device */
262 static int dm_test_platdata(struct unit_test_state *uts)
263 {
264 const struct dm_test_pdata *pdata;
265 struct udevice *dev;
266 int i;
267
268 for (i = 0; i < 3; i++) {
269 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
270 ut_assert(dev);
271 pdata = dev->platdata;
272 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
273 }
274
275 return 0;
276 }
277 DM_TEST(dm_test_platdata, DM_TESTF_SCAN_PDATA);
278
279 /* Test that we can bind, probe, remove, unbind a driver */
280 static int dm_test_lifecycle(struct unit_test_state *uts)
281 {
282 struct dm_test_state *dms = uts->priv;
283 int op_count[DM_TEST_OP_COUNT];
284 struct udevice *dev, *test_dev;
285 int pingret;
286 int ret;
287
288 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
289
290 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
291 &dev));
292 ut_assert(dev);
293 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
294 == op_count[DM_TEST_OP_BIND] + 1);
295 ut_assert(!dev->priv);
296
297 /* Probe the device - it should fail allocating private data */
298 dms->force_fail_alloc = 1;
299 ret = device_probe(dev);
300 ut_assert(ret == -ENOMEM);
301 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
302 == op_count[DM_TEST_OP_PROBE] + 1);
303 ut_assert(!dev->priv);
304
305 /* Try again without the alloc failure */
306 dms->force_fail_alloc = 0;
307 ut_assertok(device_probe(dev));
308 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
309 == op_count[DM_TEST_OP_PROBE] + 2);
310 ut_assert(dev->priv);
311
312 /* This should be device 3 in the uclass */
313 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
314 ut_assert(dev == test_dev);
315
316 /* Try ping */
317 ut_assertok(test_ping(dev, 100, &pingret));
318 ut_assert(pingret == 102);
319
320 /* Now remove device 3 */
321 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
322 ut_assertok(device_remove(dev));
323 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
324
325 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
326 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
327 ut_assertok(device_unbind(dev));
328 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
329 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
330
331 return 0;
332 }
333 DM_TEST(dm_test_lifecycle, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
334
335 /* Test that we can bind/unbind and the lists update correctly */
336 static int dm_test_ordering(struct unit_test_state *uts)
337 {
338 struct dm_test_state *dms = uts->priv;
339 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
340 int pingret;
341
342 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
343 &dev));
344 ut_assert(dev);
345
346 /* Bind two new devices (numbers 4 and 5) */
347 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
348 &dev_penultimate));
349 ut_assert(dev_penultimate);
350 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
351 &dev_last));
352 ut_assert(dev_last);
353
354 /* Now remove device 3 */
355 ut_assertok(device_remove(dev));
356 ut_assertok(device_unbind(dev));
357
358 /* The device numbering should have shifted down one */
359 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
360 ut_assert(dev_penultimate == test_dev);
361 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
362 ut_assert(dev_last == test_dev);
363
364 /* Add back the original device 3, now in position 5 */
365 ut_assertok(device_bind_by_name(dms->root, false, &driver_info_manual,
366 &dev));
367 ut_assert(dev);
368
369 /* Try ping */
370 ut_assertok(test_ping(dev, 100, &pingret));
371 ut_assert(pingret == 102);
372
373 /* Remove 3 and 4 */
374 ut_assertok(device_remove(dev_penultimate));
375 ut_assertok(device_unbind(dev_penultimate));
376 ut_assertok(device_remove(dev_last));
377 ut_assertok(device_unbind(dev_last));
378
379 /* Our device should now be in position 3 */
380 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
381 ut_assert(dev == test_dev);
382
383 /* Now remove device 3 */
384 ut_assertok(device_remove(dev));
385 ut_assertok(device_unbind(dev));
386
387 return 0;
388 }
389 DM_TEST(dm_test_ordering, DM_TESTF_SCAN_PDATA);
390
391 /* Check that we can perform operations on a device (do a ping) */
392 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
393 uint32_t base, struct dm_test_priv *priv)
394 {
395 int expected;
396 int pingret;
397
398 /* Getting the child device should allocate platdata / priv */
399 ut_assertok(testfdt_ping(dev, 10, &pingret));
400 ut_assert(dev->priv);
401 ut_assert(dev->platdata);
402
403 expected = 10 + base;
404 ut_asserteq(expected, pingret);
405
406 /* Do another ping */
407 ut_assertok(testfdt_ping(dev, 20, &pingret));
408 expected = 20 + base;
409 ut_asserteq(expected, pingret);
410
411 /* Now check the ping_total */
412 priv = dev->priv;
413 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
414 priv->ping_total);
415
416 return 0;
417 }
418
419 /* Check that we can perform operations on devices */
420 static int dm_test_operations(struct unit_test_state *uts)
421 {
422 struct udevice *dev;
423 int i;
424
425 /*
426 * Now check that the ping adds are what we expect. This is using the
427 * ping-add property in each node.
428 */
429 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
430 uint32_t base;
431
432 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
433
434 /*
435 * Get the 'reg' property, which tells us what the ping add
436 * should be. We don't use the platdata because we want
437 * to test the code that sets that up (testfdt_drv_probe()).
438 */
439 base = test_pdata[i].ping_add;
440 debug("dev=%d, base=%d\n", i, base);
441
442 ut_assert(!dm_check_operations(uts, dev, base, dev->priv));
443 }
444
445 return 0;
446 }
447 DM_TEST(dm_test_operations, DM_TESTF_SCAN_PDATA);
448
449 /* Remove all drivers and check that things work */
450 static int dm_test_remove(struct unit_test_state *uts)
451 {
452 struct udevice *dev;
453 int i;
454
455 for (i = 0; i < 3; i++) {
456 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
457 ut_assert(dev);
458 ut_assertf(dev->flags & DM_FLAG_ACTIVATED,
459 "Driver %d/%s not activated", i, dev->name);
460 ut_assertok(device_remove(dev));
461 ut_assertf(!(dev->flags & DM_FLAG_ACTIVATED),
462 "Driver %d/%s should have deactivated", i,
463 dev->name);
464 ut_assert(!dev->priv);
465 }
466
467 return 0;
468 }
469 DM_TEST(dm_test_remove, DM_TESTF_SCAN_PDATA | DM_TESTF_PROBE_TEST);
470
471 /* Remove and recreate everything, check for memory leaks */
472 static int dm_test_leak(struct unit_test_state *uts)
473 {
474 int i;
475
476 for (i = 0; i < 2; i++) {
477 struct udevice *dev;
478 int ret;
479 int id;
480
481 dm_leak_check_start(uts);
482
483 ut_assertok(dm_scan_platdata(false));
484 ut_assertok(dm_scan_fdt(gd->fdt_blob, false));
485
486 /* Scanning the uclass is enough to probe all the devices */
487 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
488 for (ret = uclass_first_device(UCLASS_TEST, &dev);
489 dev;
490 ret = uclass_next_device(&dev))
491 ;
492 ut_assertok(ret);
493 }
494
495 ut_assertok(dm_leak_check_end(uts));
496 }
497
498 return 0;
499 }
500 DM_TEST(dm_test_leak, 0);
501
502 /* Test uclass init/destroy methods */
503 static int dm_test_uclass(struct unit_test_state *uts)
504 {
505 struct uclass *uc;
506
507 ut_assertok(uclass_get(UCLASS_TEST, &uc));
508 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
509 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
510 ut_assert(uc->priv);
511
512 ut_assertok(uclass_destroy(uc));
513 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
514 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
515
516 return 0;
517 }
518 DM_TEST(dm_test_uclass, 0);
519
520 /**
521 * create_children() - Create children of a parent node
522 *
523 * @dms: Test system state
524 * @parent: Parent device
525 * @count: Number of children to create
526 * @key: Key value to put in first child. Subsequence children
527 * receive an incrementing value
528 * @child: If not NULL, then the child device pointers are written into
529 * this array.
530 * @return 0 if OK, -ve on error
531 */
532 static int create_children(struct unit_test_state *uts, struct udevice *parent,
533 int count, int key, struct udevice *child[])
534 {
535 struct udevice *dev;
536 int i;
537
538 for (i = 0; i < count; i++) {
539 struct dm_test_pdata *pdata;
540
541 ut_assertok(device_bind_by_name(parent, false,
542 &driver_info_manual, &dev));
543 pdata = calloc(1, sizeof(*pdata));
544 pdata->ping_add = key + i;
545 dev->platdata = pdata;
546 if (child)
547 child[i] = dev;
548 }
549
550 return 0;
551 }
552
553 #define NODE_COUNT 10
554
555 static int dm_test_children(struct unit_test_state *uts)
556 {
557 struct dm_test_state *dms = uts->priv;
558 struct udevice *top[NODE_COUNT];
559 struct udevice *child[NODE_COUNT];
560 struct udevice *grandchild[NODE_COUNT];
561 struct udevice *dev;
562 int total;
563 int ret;
564 int i;
565
566 /* We don't care about the numbering for this test */
567 dms->skip_post_probe = 1;
568
569 ut_assert(NODE_COUNT > 5);
570
571 /* First create 10 top-level children */
572 ut_assertok(create_children(uts, dms->root, NODE_COUNT, 0, top));
573
574 /* Now a few have their own children */
575 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
576 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
577
578 /* And grandchildren */
579 for (i = 0; i < NODE_COUNT; i++)
580 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
581 i == 2 ? grandchild : NULL));
582
583 /* Check total number of devices */
584 total = NODE_COUNT * (3 + NODE_COUNT);
585 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
586
587 /* Try probing one of the grandchildren */
588 ut_assertok(uclass_get_device(UCLASS_TEST,
589 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
590 ut_asserteq_ptr(grandchild[0], dev);
591
592 /*
593 * This should have probed the child and top node also, for a total
594 * of 3 nodes.
595 */
596 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
597
598 /* Probe the other grandchildren */
599 for (i = 1; i < NODE_COUNT; i++)
600 ut_assertok(device_probe(grandchild[i]));
601
602 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
603
604 /* Probe everything */
605 for (ret = uclass_first_device(UCLASS_TEST, &dev);
606 dev;
607 ret = uclass_next_device(&dev))
608 ;
609 ut_assertok(ret);
610
611 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
612
613 /* Remove a top-level child and check that the children are removed */
614 ut_assertok(device_remove(top[2]));
615 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
616 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
617
618 /* Try one with grandchildren */
619 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
620 ut_asserteq_ptr(dev, top[5]);
621 ut_assertok(device_remove(dev));
622 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
623 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
624
625 /* Try the same with unbind */
626 ut_assertok(device_unbind(top[2]));
627 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
628 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
629
630 /* Try one with grandchildren */
631 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
632 ut_asserteq_ptr(dev, top[6]);
633 ut_assertok(device_unbind(top[5]));
634 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
635 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
636
637 return 0;
638 }
639 DM_TEST(dm_test_children, 0);
640
641 /* Test that pre-relocation devices work as expected */
642 static int dm_test_pre_reloc(struct unit_test_state *uts)
643 {
644 struct dm_test_state *dms = uts->priv;
645 struct udevice *dev;
646
647 /* The normal driver should refuse to bind before relocation */
648 ut_asserteq(-EPERM, device_bind_by_name(dms->root, true,
649 &driver_info_manual, &dev));
650
651 /* But this one is marked pre-reloc */
652 ut_assertok(device_bind_by_name(dms->root, true,
653 &driver_info_pre_reloc, &dev));
654
655 return 0;
656 }
657 DM_TEST(dm_test_pre_reloc, 0);
658
659 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
660 {
661 struct uclass *uc;
662
663 ut_assertok(uclass_get(UCLASS_TEST, &uc));
664
665 gd->dm_root = NULL;
666 gd->dm_root_f = NULL;
667 memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
668
669 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
670
671 return 0;
672 }
673 DM_TEST(dm_test_uclass_before_ready, 0);
674
675 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
676 {
677 struct udevice *dev;
678 int ret;
679
680 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
681 dev;
682 ret = uclass_find_next_device(&dev)) {
683 ut_assert(!ret);
684 ut_assert(dev);
685 }
686
687 return 0;
688 }
689 DM_TEST(dm_test_uclass_devices_find, DM_TESTF_SCAN_PDATA);
690
691 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
692 {
693 struct udevice *finddev;
694 struct udevice *testdev;
695 int findret, ret;
696
697 /*
698 * For each test device found in fdt like: "a-test", "b-test", etc.,
699 * use its name and try to find it by uclass_find_device_by_name().
700 * Then, on success check if:
701 * - current 'testdev' name is equal to the returned 'finddev' name
702 * - current 'testdev' pointer is equal to the returned 'finddev'
703 *
704 * We assume that, each uclass's device name is unique, so if not, then
705 * this will fail on checking condition: testdev == finddev, since the
706 * uclass_find_device_by_name(), returns the first device by given name.
707 */
708 for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
709 testdev;
710 ret = uclass_find_next_device(&testdev)) {
711 ut_assertok(ret);
712 ut_assert(testdev);
713
714 findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
715 testdev->name,
716 &finddev);
717
718 ut_assertok(findret);
719 ut_assert(testdev);
720 ut_asserteq_str(testdev->name, finddev->name);
721 ut_asserteq_ptr(testdev, finddev);
722 }
723
724 return 0;
725 }
726 DM_TEST(dm_test_uclass_devices_find_by_name, DM_TESTF_SCAN_FDT);
727
728 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
729 {
730 struct udevice *dev;
731 int ret;
732
733 for (ret = uclass_first_device(UCLASS_TEST, &dev);
734 dev;
735 ret = uclass_next_device(&dev)) {
736 ut_assert(!ret);
737 ut_assert(dev);
738 ut_assert(device_active(dev));
739 }
740
741 return 0;
742 }
743 DM_TEST(dm_test_uclass_devices_get, DM_TESTF_SCAN_PDATA);
744
745 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
746 {
747 struct udevice *finddev;
748 struct udevice *testdev;
749 int ret, findret;
750
751 /*
752 * For each test device found in fdt like: "a-test", "b-test", etc.,
753 * use its name and try to get it by uclass_get_device_by_name().
754 * On success check if:
755 * - returned finddev' is active
756 * - current 'testdev' name is equal to the returned 'finddev' name
757 * - current 'testdev' pointer is equal to the returned 'finddev'
758 *
759 * We asserts that the 'testdev' is active on each loop entry, so we
760 * could be sure that the 'finddev' is activated too, but for sure
761 * we check it again.
762 *
763 * We assume that, each uclass's device name is unique, so if not, then
764 * this will fail on checking condition: testdev == finddev, since the
765 * uclass_get_device_by_name(), returns the first device by given name.
766 */
767 for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
768 testdev;
769 ret = uclass_next_device(&testdev)) {
770 ut_assertok(ret);
771 ut_assert(testdev);
772 ut_assert(device_active(testdev));
773
774 findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
775 testdev->name,
776 &finddev);
777
778 ut_assertok(findret);
779 ut_assert(finddev);
780 ut_assert(device_active(finddev));
781 ut_asserteq_str(testdev->name, finddev->name);
782 ut_asserteq_ptr(testdev, finddev);
783 }
784
785 return 0;
786 }
787 DM_TEST(dm_test_uclass_devices_get_by_name, DM_TESTF_SCAN_FDT);
788
789 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
790 {
791 struct udevice *dev;
792
793 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
794 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
795
796 return 0;
797 }
798 DM_TEST(dm_test_device_get_uclass_id, DM_TESTF_SCAN_PDATA);