]> git.ipfire.org Git - thirdparty/openssl.git/blob - test/evp_test.c
a0dbffb2daf5d05489e880d01ca00ced5f48cb08
[thirdparty/openssl.git] / test / evp_test.c
1 /*
2 * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <string.h>
12 #include <stdlib.h>
13 #include <ctype.h>
14 #include <openssl/evp.h>
15 #include <openssl/pem.h>
16 #include <openssl/err.h>
17 #include <openssl/x509v3.h>
18 #include <openssl/pkcs12.h>
19 #include <openssl/kdf.h>
20 #include "internal/numbers.h"
21
22 /* Remove spaces from beginning and end of a string */
23
24 static void remove_space(char **pval)
25 {
26 unsigned char *p = (unsigned char *)*pval;
27
28 while (isspace(*p))
29 p++;
30
31 *pval = (char *)p;
32
33 p = p + strlen(*pval) - 1;
34
35 /* Remove trailing space */
36 while (isspace(*p))
37 *p-- = 0;
38 }
39
40 /*
41 * Given a line of the form:
42 * name = value # comment
43 * extract name and value. NB: modifies passed buffer.
44 */
45
46 static int parse_line(char **pkw, char **pval, char *linebuf)
47 {
48 char *p;
49
50 p = linebuf + strlen(linebuf) - 1;
51
52 if (*p != '\n') {
53 fprintf(stderr, "FATAL: missing EOL\n");
54 exit(1);
55 }
56
57 /* Look for # */
58
59 p = strchr(linebuf, '#');
60
61 if (p)
62 *p = '\0';
63
64 /* Look for = sign */
65 p = strchr(linebuf, '=');
66
67 /* If no '=' exit */
68 if (!p)
69 return 0;
70
71 *p++ = '\0';
72
73 *pkw = linebuf;
74 *pval = p;
75
76 /* Remove spaces from keyword and value */
77 remove_space(pkw);
78 remove_space(pval);
79
80 return 1;
81 }
82
83 /*
84 * Unescape some escape sequences in string literals.
85 * Return the result in a newly allocated buffer.
86 * Currently only supports '\n'.
87 * If the input length is 0, returns a valid 1-byte buffer, but sets
88 * the length to 0.
89 */
90 static unsigned char* unescape(const char *input, size_t input_len,
91 size_t *out_len)
92 {
93 unsigned char *ret, *p;
94 size_t i;
95 if (input_len == 0) {
96 *out_len = 0;
97 return OPENSSL_zalloc(1);
98 }
99
100 /* Escaping is non-expanding; over-allocate original size for simplicity. */
101 ret = p = OPENSSL_malloc(input_len);
102 if (ret == NULL)
103 return NULL;
104
105 for (i = 0; i < input_len; i++) {
106 if (input[i] == '\\') {
107 if (i == input_len - 1 || input[i+1] != 'n')
108 goto err;
109 *p++ = '\n';
110 i++;
111 } else {
112 *p++ = input[i];
113 }
114 }
115
116 *out_len = p - ret;
117 return ret;
118
119 err:
120 OPENSSL_free(ret);
121 return NULL;
122 }
123
124 /* For a hex string "value" convert to a binary allocated buffer */
125 static int test_bin(const char *value, unsigned char **buf, size_t *buflen)
126 {
127 long len;
128
129 *buflen = 0;
130 if (!*value) {
131 /*
132 * Don't return NULL for zero length buffer.
133 * This is needed for some tests with empty keys: HMAC_Init_ex() expects
134 * a non-NULL key buffer even if the key length is 0, in order to detect
135 * key reset.
136 */
137 *buf = OPENSSL_malloc(1);
138 if (!*buf)
139 return 0;
140 **buf = 0;
141 *buflen = 0;
142 return 1;
143 }
144 /* Check for string literal */
145 if (value[0] == '"') {
146 size_t vlen;
147 value++;
148 vlen = strlen(value);
149 if (value[vlen - 1] != '"')
150 return 0;
151 vlen--;
152 *buf = unescape(value, vlen, buflen);
153 if (*buf == NULL)
154 return 0;
155 return 1;
156 }
157
158 *buf = OPENSSL_hexstr2buf(value, &len);
159 if (!*buf) {
160 fprintf(stderr, "Value=%s\n", value);
161 ERR_print_errors_fp(stderr);
162 return -1;
163 }
164 /* Size of input buffer means we'll never overflow */
165 *buflen = len;
166 return 1;
167 }
168 #ifndef OPENSSL_NO_SCRYPT
169 /* Currently only used by scrypt tests */
170 /* Parse unsigned decimal 64 bit integer value */
171 static int test_uint64(const char *value, uint64_t *pr)
172 {
173 const char *p = value;
174 if (!*p) {
175 fprintf(stderr, "Invalid empty integer value\n");
176 return -1;
177 }
178 *pr = 0;
179 while (*p) {
180 if (*pr > UINT64_MAX/10) {
181 fprintf(stderr, "Integer string overflow value=%s\n", value);
182 return -1;
183 }
184 *pr *= 10;
185 if (*p < '0' || *p > '9') {
186 fprintf(stderr, "Invalid integer string value=%s\n", value);
187 return -1;
188 }
189 *pr += *p - '0';
190 p++;
191 }
192 return 1;
193 }
194 #endif
195
196 /* Structure holding test information */
197 struct evp_test {
198 /* file being read */
199 BIO *in;
200 /* List of public and private keys */
201 struct key_list *private;
202 struct key_list *public;
203 /* method for this test */
204 const struct evp_test_method *meth;
205 /* current line being processed */
206 unsigned int line;
207 /* start line of current test */
208 unsigned int start_line;
209 /* Error string for test */
210 const char *err, *aux_err;
211 /* Expected error value of test */
212 char *expected_err;
213 /* Number of tests */
214 int ntests;
215 /* Error count */
216 int errors;
217 /* Number of tests skipped */
218 int nskip;
219 /* If output mismatch expected and got value */
220 unsigned char *out_received;
221 size_t out_received_len;
222 unsigned char *out_expected;
223 size_t out_expected_len;
224 /* test specific data */
225 void *data;
226 /* Current test should be skipped */
227 int skip;
228 };
229
230 struct key_list {
231 char *name;
232 EVP_PKEY *key;
233 struct key_list *next;
234 };
235
236 /* Test method structure */
237 struct evp_test_method {
238 /* Name of test as it appears in file */
239 const char *name;
240 /* Initialise test for "alg" */
241 int (*init) (struct evp_test * t, const char *alg);
242 /* Clean up method */
243 void (*cleanup) (struct evp_test * t);
244 /* Test specific name value pair processing */
245 int (*parse) (struct evp_test * t, const char *name, const char *value);
246 /* Run the test itself */
247 int (*run_test) (struct evp_test * t);
248 };
249
250 static const struct evp_test_method digest_test_method, cipher_test_method;
251 static const struct evp_test_method mac_test_method;
252 static const struct evp_test_method psign_test_method, pverify_test_method;
253 static const struct evp_test_method pdecrypt_test_method;
254 static const struct evp_test_method pverify_recover_test_method;
255 static const struct evp_test_method pderive_test_method;
256 static const struct evp_test_method pbe_test_method;
257 static const struct evp_test_method encode_test_method;
258 static const struct evp_test_method kdf_test_method;
259
260 static const struct evp_test_method *evp_test_list[] = {
261 &digest_test_method,
262 &cipher_test_method,
263 &mac_test_method,
264 &psign_test_method,
265 &pverify_test_method,
266 &pdecrypt_test_method,
267 &pverify_recover_test_method,
268 &pderive_test_method,
269 &pbe_test_method,
270 &encode_test_method,
271 &kdf_test_method,
272 NULL
273 };
274
275 static const struct evp_test_method *evp_find_test(const char *name)
276 {
277 const struct evp_test_method **tt;
278
279 for (tt = evp_test_list; *tt; tt++) {
280 if (strcmp(name, (*tt)->name) == 0)
281 return *tt;
282 }
283 return NULL;
284 }
285
286 static void hex_print(const char *name, const unsigned char *buf, size_t len)
287 {
288 size_t i;
289 fprintf(stderr, "%s ", name);
290 for (i = 0; i < len; i++)
291 fprintf(stderr, "%02X", buf[i]);
292 fputs("\n", stderr);
293 }
294
295 static void free_expected(struct evp_test *t)
296 {
297 OPENSSL_free(t->expected_err);
298 t->expected_err = NULL;
299 OPENSSL_free(t->out_expected);
300 OPENSSL_free(t->out_received);
301 t->out_expected = NULL;
302 t->out_received = NULL;
303 t->out_expected_len = 0;
304 t->out_received_len = 0;
305 /* Literals. */
306 t->err = NULL;
307 }
308
309 static void print_expected(struct evp_test *t)
310 {
311 if (t->out_expected == NULL && t->out_received == NULL)
312 return;
313 hex_print("Expected:", t->out_expected, t->out_expected_len);
314 hex_print("Got: ", t->out_received, t->out_received_len);
315 free_expected(t);
316 }
317
318 static int check_test_error(struct evp_test *t)
319 {
320 if (!t->err && !t->expected_err)
321 return 1;
322 if (t->err && !t->expected_err) {
323 if (t->aux_err != NULL) {
324 fprintf(stderr, "Test line %d(%s): unexpected error %s\n",
325 t->start_line, t->aux_err, t->err);
326 } else {
327 fprintf(stderr, "Test line %d: unexpected error %s\n",
328 t->start_line, t->err);
329 }
330 print_expected(t);
331 return 0;
332 }
333 if (!t->err && t->expected_err) {
334 fprintf(stderr, "Test line %d: succeeded expecting %s\n",
335 t->start_line, t->expected_err);
336 return 0;
337 }
338 if (strcmp(t->err, t->expected_err) == 0)
339 return 1;
340
341 fprintf(stderr, "Test line %d: expecting %s got %s\n",
342 t->start_line, t->expected_err, t->err);
343 return 0;
344 }
345
346 /* Setup a new test, run any existing test */
347
348 static int setup_test(struct evp_test *t, const struct evp_test_method *tmeth)
349 {
350 /* If we already have a test set up run it */
351 if (t->meth) {
352 t->ntests++;
353 if (t->skip) {
354 t->meth = tmeth;
355 t->nskip++;
356 return 1;
357 }
358 t->err = NULL;
359 if (t->meth->run_test(t) != 1) {
360 fprintf(stderr, "%s test error line %d\n",
361 t->meth->name, t->start_line);
362 return 0;
363 }
364 if (!check_test_error(t)) {
365 if (t->err)
366 ERR_print_errors_fp(stderr);
367 t->errors++;
368 }
369 ERR_clear_error();
370 t->meth->cleanup(t);
371 OPENSSL_free(t->data);
372 t->data = NULL;
373 OPENSSL_free(t->expected_err);
374 t->expected_err = NULL;
375 free_expected(t);
376 }
377 t->meth = tmeth;
378 return 1;
379 }
380
381 static int find_key(EVP_PKEY **ppk, const char *name, struct key_list *lst)
382 {
383 for (; lst; lst = lst->next) {
384 if (strcmp(lst->name, name) == 0) {
385 if (ppk)
386 *ppk = lst->key;
387 return 1;
388 }
389 }
390 return 0;
391 }
392
393 static void free_key_list(struct key_list *lst)
394 {
395 while (lst != NULL) {
396 struct key_list *ltmp;
397 EVP_PKEY_free(lst->key);
398 OPENSSL_free(lst->name);
399 ltmp = lst->next;
400 OPENSSL_free(lst);
401 lst = ltmp;
402 }
403 }
404
405 static int check_unsupported()
406 {
407 long err = ERR_peek_error();
408 if (ERR_GET_LIB(err) == ERR_LIB_EVP
409 && ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
410 ERR_clear_error();
411 return 1;
412 }
413 return 0;
414 }
415
416 static int process_test(struct evp_test *t, char *buf, int verbose)
417 {
418 char *keyword = NULL, *value = NULL;
419 int rv = 0, add_key = 0;
420 long save_pos = 0;
421 struct key_list **lst = NULL, *key = NULL;
422 EVP_PKEY *pk = NULL;
423 const struct evp_test_method *tmeth = NULL;
424 if (verbose)
425 fputs(buf, stdout);
426 if (!parse_line(&keyword, &value, buf))
427 return 1;
428 if (strcmp(keyword, "PrivateKey") == 0) {
429 save_pos = BIO_tell(t->in);
430 pk = PEM_read_bio_PrivateKey(t->in, NULL, 0, NULL);
431 if (pk == NULL && !check_unsupported()) {
432 fprintf(stderr, "Error reading private key %s\n", value);
433 ERR_print_errors_fp(stderr);
434 return 0;
435 }
436 lst = &t->private;
437 add_key = 1;
438 }
439 if (strcmp(keyword, "PublicKey") == 0) {
440 save_pos = BIO_tell(t->in);
441 pk = PEM_read_bio_PUBKEY(t->in, NULL, 0, NULL);
442 if (pk == NULL && !check_unsupported()) {
443 fprintf(stderr, "Error reading public key %s\n", value);
444 ERR_print_errors_fp(stderr);
445 return 0;
446 }
447 lst = &t->public;
448 add_key = 1;
449 }
450 /* If we have a key add to list */
451 if (add_key) {
452 char tmpbuf[80];
453 if (find_key(NULL, value, *lst)) {
454 fprintf(stderr, "Duplicate key %s\n", value);
455 return 0;
456 }
457 key = OPENSSL_malloc(sizeof(*key));
458 if (!key)
459 return 0;
460 key->name = OPENSSL_strdup(value);
461 key->key = pk;
462 key->next = *lst;
463 *lst = key;
464 /* Rewind input, read to end and update line numbers */
465 (void)BIO_seek(t->in, save_pos);
466 while (BIO_gets(t->in,tmpbuf, sizeof(tmpbuf))) {
467 t->line++;
468 if (strncmp(tmpbuf, "-----END", 8) == 0)
469 return 1;
470 }
471 fprintf(stderr, "Can't find key end\n");
472 return 0;
473 }
474
475 /* See if keyword corresponds to a test start */
476 tmeth = evp_find_test(keyword);
477 if (tmeth) {
478 if (!setup_test(t, tmeth))
479 return 0;
480 t->start_line = t->line;
481 t->skip = 0;
482 if (!tmeth->init(t, value)) {
483 fprintf(stderr, "Unknown %s: %s\n", keyword, value);
484 return 0;
485 }
486 return 1;
487 } else if (t->skip) {
488 return 1;
489 } else if (strcmp(keyword, "Result") == 0) {
490 if (t->expected_err) {
491 fprintf(stderr, "Line %d: multiple result lines\n", t->line);
492 return 0;
493 }
494 t->expected_err = OPENSSL_strdup(value);
495 if (!t->expected_err)
496 return 0;
497 } else {
498 /* Must be test specific line: try to parse it */
499 if (t->meth)
500 rv = t->meth->parse(t, keyword, value);
501
502 if (rv == 0)
503 fprintf(stderr, "line %d: unexpected keyword %s\n",
504 t->line, keyword);
505
506 if (rv < 0)
507 fprintf(stderr, "line %d: error processing keyword %s\n",
508 t->line, keyword);
509 if (rv <= 0)
510 return 0;
511 }
512 return 1;
513 }
514
515 static int check_var_length_output(struct evp_test *t,
516 const unsigned char *expected,
517 size_t expected_len,
518 const unsigned char *received,
519 size_t received_len)
520 {
521 if (expected_len == received_len &&
522 memcmp(expected, received, expected_len) == 0) {
523 return 0;
524 }
525
526 /* The result printing code expects a non-NULL buffer. */
527 t->out_expected = OPENSSL_memdup(expected, expected_len ? expected_len : 1);
528 t->out_expected_len = expected_len;
529 t->out_received = OPENSSL_memdup(received, received_len ? received_len : 1);
530 t->out_received_len = received_len;
531 if (t->out_expected == NULL || t->out_received == NULL) {
532 fprintf(stderr, "Memory allocation error!\n");
533 exit(1);
534 }
535 return 1;
536 }
537
538 static int check_output(struct evp_test *t,
539 const unsigned char *expected,
540 const unsigned char *received,
541 size_t len)
542 {
543 return check_var_length_output(t, expected, len, received, len);
544 }
545
546 int main(int argc, char **argv)
547 {
548 BIO *in = NULL;
549 char buf[10240];
550 struct evp_test t;
551
552 if (argc != 2) {
553 fprintf(stderr, "usage: evp_test testfile.txt\n");
554 return 1;
555 }
556
557 CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
558
559 memset(&t, 0, sizeof(t));
560 t.start_line = -1;
561 in = BIO_new_file(argv[1], "r");
562 if (in == NULL) {
563 fprintf(stderr, "Can't open %s for reading\n", argv[1]);
564 return 1;
565 }
566 t.in = in;
567 while (BIO_gets(in, buf, sizeof(buf))) {
568 t.line++;
569 if (!process_test(&t, buf, 0))
570 exit(1);
571 }
572 /* Run any final test we have */
573 if (!setup_test(&t, NULL))
574 exit(1);
575 fprintf(stderr, "%d tests completed with %d errors, %d skipped\n",
576 t.ntests, t.errors, t.nskip);
577 free_key_list(t.public);
578 free_key_list(t.private);
579 BIO_free(in);
580
581 #ifndef OPENSSL_NO_CRYPTO_MDEBUG
582 if (CRYPTO_mem_leaks_fp(stderr) <= 0)
583 return 1;
584 #endif
585 if (t.errors)
586 return 1;
587 return 0;
588 }
589
590 static void test_free(void *d)
591 {
592 OPENSSL_free(d);
593 }
594
595 /* Message digest tests */
596
597 struct digest_data {
598 /* Digest this test is for */
599 const EVP_MD *digest;
600 /* Input to digest */
601 unsigned char *input;
602 size_t input_len;
603 /* Repeat count for input */
604 size_t nrpt;
605 /* Expected output */
606 unsigned char *output;
607 size_t output_len;
608 };
609
610 static int digest_test_init(struct evp_test *t, const char *alg)
611 {
612 const EVP_MD *digest;
613 struct digest_data *mdat;
614 digest = EVP_get_digestbyname(alg);
615 if (!digest) {
616 /* If alg has an OID assume disabled algorithm */
617 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
618 t->skip = 1;
619 return 1;
620 }
621 return 0;
622 }
623 mdat = OPENSSL_malloc(sizeof(*mdat));
624 mdat->digest = digest;
625 mdat->input = NULL;
626 mdat->output = NULL;
627 mdat->nrpt = 1;
628 t->data = mdat;
629 return 1;
630 }
631
632 static void digest_test_cleanup(struct evp_test *t)
633 {
634 struct digest_data *mdat = t->data;
635 test_free(mdat->input);
636 test_free(mdat->output);
637 }
638
639 static int digest_test_parse(struct evp_test *t,
640 const char *keyword, const char *value)
641 {
642 struct digest_data *mdata = t->data;
643 if (strcmp(keyword, "Input") == 0)
644 return test_bin(value, &mdata->input, &mdata->input_len);
645 if (strcmp(keyword, "Output") == 0)
646 return test_bin(value, &mdata->output, &mdata->output_len);
647 if (strcmp(keyword, "Count") == 0) {
648 long nrpt = atoi(value);
649 if (nrpt <= 0)
650 return 0;
651 mdata->nrpt = (size_t)nrpt;
652 return 1;
653 }
654 return 0;
655 }
656
657 static int digest_test_run(struct evp_test *t)
658 {
659 struct digest_data *mdata = t->data;
660 size_t i;
661 const char *err = "INTERNAL_ERROR";
662 EVP_MD_CTX *mctx;
663 unsigned char md[EVP_MAX_MD_SIZE];
664 unsigned int md_len;
665 mctx = EVP_MD_CTX_new();
666 if (!mctx)
667 goto err;
668 err = "DIGESTINIT_ERROR";
669 if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL))
670 goto err;
671 err = "DIGESTUPDATE_ERROR";
672 for (i = 0; i < mdata->nrpt; i++) {
673 if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len))
674 goto err;
675 }
676 err = "DIGESTFINAL_ERROR";
677 if (!EVP_DigestFinal(mctx, md, &md_len))
678 goto err;
679 err = "DIGEST_LENGTH_MISMATCH";
680 if (md_len != mdata->output_len)
681 goto err;
682 err = "DIGEST_MISMATCH";
683 if (check_output(t, mdata->output, md, md_len))
684 goto err;
685 err = NULL;
686 err:
687 EVP_MD_CTX_free(mctx);
688 t->err = err;
689 return 1;
690 }
691
692 static const struct evp_test_method digest_test_method = {
693 "Digest",
694 digest_test_init,
695 digest_test_cleanup,
696 digest_test_parse,
697 digest_test_run
698 };
699
700 /* Cipher tests */
701 struct cipher_data {
702 const EVP_CIPHER *cipher;
703 int enc;
704 /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
705 int aead;
706 unsigned char *key;
707 size_t key_len;
708 unsigned char *iv;
709 size_t iv_len;
710 unsigned char *plaintext;
711 size_t plaintext_len;
712 unsigned char *ciphertext;
713 size_t ciphertext_len;
714 /* GCM, CCM only */
715 unsigned char *aad;
716 size_t aad_len;
717 unsigned char *tag;
718 size_t tag_len;
719 };
720
721 static int cipher_test_init(struct evp_test *t, const char *alg)
722 {
723 const EVP_CIPHER *cipher;
724 struct cipher_data *cdat = t->data;
725 cipher = EVP_get_cipherbyname(alg);
726 if (!cipher) {
727 /* If alg has an OID assume disabled algorithm */
728 if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
729 t->skip = 1;
730 return 1;
731 }
732 return 0;
733 }
734 cdat = OPENSSL_malloc(sizeof(*cdat));
735 cdat->cipher = cipher;
736 cdat->enc = -1;
737 cdat->key = NULL;
738 cdat->iv = NULL;
739 cdat->ciphertext = NULL;
740 cdat->plaintext = NULL;
741 cdat->aad = NULL;
742 cdat->tag = NULL;
743 t->data = cdat;
744 if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE
745 || EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE
746 || EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE)
747 cdat->aead = EVP_CIPHER_mode(cipher);
748 else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
749 cdat->aead = -1;
750 else
751 cdat->aead = 0;
752
753 return 1;
754 }
755
756 static void cipher_test_cleanup(struct evp_test *t)
757 {
758 struct cipher_data *cdat = t->data;
759 test_free(cdat->key);
760 test_free(cdat->iv);
761 test_free(cdat->ciphertext);
762 test_free(cdat->plaintext);
763 test_free(cdat->aad);
764 test_free(cdat->tag);
765 }
766
767 static int cipher_test_parse(struct evp_test *t, const char *keyword,
768 const char *value)
769 {
770 struct cipher_data *cdat = t->data;
771 if (strcmp(keyword, "Key") == 0)
772 return test_bin(value, &cdat->key, &cdat->key_len);
773 if (strcmp(keyword, "IV") == 0)
774 return test_bin(value, &cdat->iv, &cdat->iv_len);
775 if (strcmp(keyword, "Plaintext") == 0)
776 return test_bin(value, &cdat->plaintext, &cdat->plaintext_len);
777 if (strcmp(keyword, "Ciphertext") == 0)
778 return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
779 if (cdat->aead) {
780 if (strcmp(keyword, "AAD") == 0)
781 return test_bin(value, &cdat->aad, &cdat->aad_len);
782 if (strcmp(keyword, "Tag") == 0)
783 return test_bin(value, &cdat->tag, &cdat->tag_len);
784 }
785
786 if (strcmp(keyword, "Operation") == 0) {
787 if (strcmp(value, "ENCRYPT") == 0)
788 cdat->enc = 1;
789 else if (strcmp(value, "DECRYPT") == 0)
790 cdat->enc = 0;
791 else
792 return 0;
793 return 1;
794 }
795 return 0;
796 }
797
798 static int cipher_test_enc(struct evp_test *t, int enc,
799 size_t out_misalign, size_t inp_misalign)
800 {
801 struct cipher_data *cdat = t->data;
802 unsigned char *in, *out, *tmp = NULL;
803 size_t in_len, out_len;
804 int tmplen, tmpflen;
805 EVP_CIPHER_CTX *ctx = NULL;
806 const char *err;
807 err = "INTERNAL_ERROR";
808 ctx = EVP_CIPHER_CTX_new();
809 if (!ctx)
810 goto err;
811 EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
812 if (enc) {
813 in = cdat->plaintext;
814 in_len = cdat->plaintext_len;
815 out = cdat->ciphertext;
816 out_len = cdat->ciphertext_len;
817 } else {
818 in = cdat->ciphertext;
819 in_len = cdat->ciphertext_len;
820 out = cdat->plaintext;
821 out_len = cdat->plaintext_len;
822 }
823 if (inp_misalign == (size_t)-1) {
824 /*
825 * Exercise in-place encryption
826 */
827 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
828 if (!tmp)
829 goto err;
830 in = memcpy(tmp + out_misalign, in, in_len);
831 } else {
832 inp_misalign += 16 - ((out_misalign + in_len) & 15);
833 /*
834 * 'tmp' will store both output and copy of input. We make the copy
835 * of input to specifically aligned part of 'tmp'. So we just
836 * figured out how much padding would ensure the required alignment,
837 * now we allocate extended buffer and finally copy the input just
838 * past inp_misalign in expression below. Output will be written
839 * past out_misalign...
840 */
841 tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
842 inp_misalign + in_len);
843 if (!tmp)
844 goto err;
845 in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
846 inp_misalign, in, in_len);
847 }
848 err = "CIPHERINIT_ERROR";
849 if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc))
850 goto err;
851 err = "INVALID_IV_LENGTH";
852 if (cdat->iv) {
853 if (cdat->aead) {
854 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
855 cdat->iv_len, 0))
856 goto err;
857 } else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx))
858 goto err;
859 }
860 if (cdat->aead) {
861 unsigned char *tag;
862 /*
863 * If encrypting or OCB just set tag length initially, otherwise
864 * set tag length and value.
865 */
866 if (enc || cdat->aead == EVP_CIPH_OCB_MODE) {
867 err = "TAG_LENGTH_SET_ERROR";
868 tag = NULL;
869 } else {
870 err = "TAG_SET_ERROR";
871 tag = cdat->tag;
872 }
873 if (tag || cdat->aead != EVP_CIPH_GCM_MODE) {
874 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
875 cdat->tag_len, tag))
876 goto err;
877 }
878 }
879
880 err = "INVALID_KEY_LENGTH";
881 if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len))
882 goto err;
883 err = "KEY_SET_ERROR";
884 if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1))
885 goto err;
886
887 if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) {
888 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
889 cdat->tag_len, cdat->tag)) {
890 err = "TAG_SET_ERROR";
891 goto err;
892 }
893 }
894
895 if (cdat->aead == EVP_CIPH_CCM_MODE) {
896 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
897 err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
898 goto err;
899 }
900 }
901 if (cdat->aad) {
902 if (!EVP_CipherUpdate(ctx, NULL, &tmplen, cdat->aad, cdat->aad_len)) {
903 err = "AAD_SET_ERROR";
904 goto err;
905 }
906 }
907 EVP_CIPHER_CTX_set_padding(ctx, 0);
908 err = "CIPHERUPDATE_ERROR";
909 if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
910 goto err;
911 if (cdat->aead == EVP_CIPH_CCM_MODE)
912 tmpflen = 0;
913 else {
914 err = "CIPHERFINAL_ERROR";
915 if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen))
916 goto err;
917 }
918 err = "LENGTH_MISMATCH";
919 if (out_len != (size_t)(tmplen + tmpflen))
920 goto err;
921 err = "VALUE_MISMATCH";
922 if (check_output(t, out, tmp + out_misalign, out_len))
923 goto err;
924 if (enc && cdat->aead) {
925 unsigned char rtag[16];
926 if (cdat->tag_len > sizeof(rtag)) {
927 err = "TAG_LENGTH_INTERNAL_ERROR";
928 goto err;
929 }
930 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
931 cdat->tag_len, rtag)) {
932 err = "TAG_RETRIEVE_ERROR";
933 goto err;
934 }
935 if (check_output(t, cdat->tag, rtag, cdat->tag_len)) {
936 err = "TAG_VALUE_MISMATCH";
937 goto err;
938 }
939 }
940 err = NULL;
941 err:
942 OPENSSL_free(tmp);
943 EVP_CIPHER_CTX_free(ctx);
944 t->err = err;
945 return err ? 0 : 1;
946 }
947
948 static int cipher_test_run(struct evp_test *t)
949 {
950 struct cipher_data *cdat = t->data;
951 int rv;
952 size_t out_misalign, inp_misalign;
953
954 if (!cdat->key) {
955 t->err = "NO_KEY";
956 return 0;
957 }
958 if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
959 /* IV is optional and usually omitted in wrap mode */
960 if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
961 t->err = "NO_IV";
962 return 0;
963 }
964 }
965 if (cdat->aead && !cdat->tag) {
966 t->err = "NO_TAG";
967 return 0;
968 }
969 for (out_misalign = 0; out_misalign <= 1; out_misalign++) {
970 static char aux_err[64];
971 t->aux_err = aux_err;
972 for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
973 if (inp_misalign == (size_t)-1) {
974 /* kludge: inp_misalign == -1 means "exercise in-place" */
975 BIO_snprintf(aux_err, sizeof(aux_err), "%s in-place",
976 out_misalign ? "misaligned" : "aligned");
977 } else {
978 BIO_snprintf(aux_err, sizeof(aux_err), "%s output and %s input",
979 out_misalign ? "misaligned" : "aligned",
980 inp_misalign ? "misaligned" : "aligned");
981 }
982 if (cdat->enc) {
983 rv = cipher_test_enc(t, 1, out_misalign, inp_misalign);
984 /* Not fatal errors: return */
985 if (rv != 1) {
986 if (rv < 0)
987 return 0;
988 return 1;
989 }
990 }
991 if (cdat->enc != 1) {
992 rv = cipher_test_enc(t, 0, out_misalign, inp_misalign);
993 /* Not fatal errors: return */
994 if (rv != 1) {
995 if (rv < 0)
996 return 0;
997 return 1;
998 }
999 }
1000 }
1001 }
1002 t->aux_err = NULL;
1003
1004 return 1;
1005 }
1006
1007 static const struct evp_test_method cipher_test_method = {
1008 "Cipher",
1009 cipher_test_init,
1010 cipher_test_cleanup,
1011 cipher_test_parse,
1012 cipher_test_run
1013 };
1014
1015 struct mac_data {
1016 /* MAC type */
1017 int type;
1018 /* Algorithm string for this MAC */
1019 char *alg;
1020 /* MAC key */
1021 unsigned char *key;
1022 size_t key_len;
1023 /* Input to MAC */
1024 unsigned char *input;
1025 size_t input_len;
1026 /* Expected output */
1027 unsigned char *output;
1028 size_t output_len;
1029 };
1030
1031 static int mac_test_init(struct evp_test *t, const char *alg)
1032 {
1033 int type;
1034 struct mac_data *mdat;
1035 if (strcmp(alg, "HMAC") == 0) {
1036 type = EVP_PKEY_HMAC;
1037 } else if (strcmp(alg, "CMAC") == 0) {
1038 #ifndef OPENSSL_NO_CMAC
1039 type = EVP_PKEY_CMAC;
1040 #else
1041 t->skip = 1;
1042 return 1;
1043 #endif
1044 } else
1045 return 0;
1046
1047 mdat = OPENSSL_malloc(sizeof(*mdat));
1048 mdat->type = type;
1049 mdat->alg = NULL;
1050 mdat->key = NULL;
1051 mdat->input = NULL;
1052 mdat->output = NULL;
1053 t->data = mdat;
1054 return 1;
1055 }
1056
1057 static void mac_test_cleanup(struct evp_test *t)
1058 {
1059 struct mac_data *mdat = t->data;
1060 test_free(mdat->alg);
1061 test_free(mdat->key);
1062 test_free(mdat->input);
1063 test_free(mdat->output);
1064 }
1065
1066 static int mac_test_parse(struct evp_test *t,
1067 const char *keyword, const char *value)
1068 {
1069 struct mac_data *mdata = t->data;
1070 if (strcmp(keyword, "Key") == 0)
1071 return test_bin(value, &mdata->key, &mdata->key_len);
1072 if (strcmp(keyword, "Algorithm") == 0) {
1073 mdata->alg = OPENSSL_strdup(value);
1074 if (!mdata->alg)
1075 return 0;
1076 return 1;
1077 }
1078 if (strcmp(keyword, "Input") == 0)
1079 return test_bin(value, &mdata->input, &mdata->input_len);
1080 if (strcmp(keyword, "Output") == 0)
1081 return test_bin(value, &mdata->output, &mdata->output_len);
1082 return 0;
1083 }
1084
1085 static int mac_test_run(struct evp_test *t)
1086 {
1087 struct mac_data *mdata = t->data;
1088 const char *err = "INTERNAL_ERROR";
1089 EVP_MD_CTX *mctx = NULL;
1090 EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
1091 EVP_PKEY *key = NULL;
1092 const EVP_MD *md = NULL;
1093 unsigned char *mac = NULL;
1094 size_t mac_len;
1095
1096 #ifdef OPENSSL_NO_DES
1097 if (strstr(mdata->alg, "DES") != NULL) {
1098 /* Skip DES */
1099 err = NULL;
1100 goto err;
1101 }
1102 #endif
1103
1104 err = "MAC_PKEY_CTX_ERROR";
1105 genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL);
1106 if (!genctx)
1107 goto err;
1108
1109 err = "MAC_KEYGEN_INIT_ERROR";
1110 if (EVP_PKEY_keygen_init(genctx) <= 0)
1111 goto err;
1112 if (mdata->type == EVP_PKEY_CMAC) {
1113 err = "MAC_ALGORITHM_SET_ERROR";
1114 if (EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0)
1115 goto err;
1116 }
1117
1118 err = "MAC_KEY_SET_ERROR";
1119 if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0)
1120 goto err;
1121
1122 err = "MAC_KEY_GENERATE_ERROR";
1123 if (EVP_PKEY_keygen(genctx, &key) <= 0)
1124 goto err;
1125 if (mdata->type == EVP_PKEY_HMAC) {
1126 err = "MAC_ALGORITHM_SET_ERROR";
1127 md = EVP_get_digestbyname(mdata->alg);
1128 if (!md)
1129 goto err;
1130 }
1131 mctx = EVP_MD_CTX_new();
1132 if (!mctx)
1133 goto err;
1134 err = "DIGESTSIGNINIT_ERROR";
1135 if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key))
1136 goto err;
1137
1138 err = "DIGESTSIGNUPDATE_ERROR";
1139 if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len))
1140 goto err;
1141 err = "DIGESTSIGNFINAL_LENGTH_ERROR";
1142 if (!EVP_DigestSignFinal(mctx, NULL, &mac_len))
1143 goto err;
1144 mac = OPENSSL_malloc(mac_len);
1145 if (!mac) {
1146 fprintf(stderr, "Error allocating mac buffer!\n");
1147 exit(1);
1148 }
1149 if (!EVP_DigestSignFinal(mctx, mac, &mac_len))
1150 goto err;
1151 err = "MAC_LENGTH_MISMATCH";
1152 if (mac_len != mdata->output_len)
1153 goto err;
1154 err = "MAC_MISMATCH";
1155 if (check_output(t, mdata->output, mac, mac_len))
1156 goto err;
1157 err = NULL;
1158 err:
1159 EVP_MD_CTX_free(mctx);
1160 OPENSSL_free(mac);
1161 EVP_PKEY_CTX_free(genctx);
1162 EVP_PKEY_free(key);
1163 t->err = err;
1164 return 1;
1165 }
1166
1167 static const struct evp_test_method mac_test_method = {
1168 "MAC",
1169 mac_test_init,
1170 mac_test_cleanup,
1171 mac_test_parse,
1172 mac_test_run
1173 };
1174
1175 /*
1176 * Public key operations. These are all very similar and can share
1177 * a lot of common code.
1178 */
1179
1180 struct pkey_data {
1181 /* Context for this operation */
1182 EVP_PKEY_CTX *ctx;
1183 /* Key operation to perform */
1184 int (*keyop) (EVP_PKEY_CTX *ctx,
1185 unsigned char *sig, size_t *siglen,
1186 const unsigned char *tbs, size_t tbslen);
1187 /* Input to MAC */
1188 unsigned char *input;
1189 size_t input_len;
1190 /* Expected output */
1191 unsigned char *output;
1192 size_t output_len;
1193 };
1194
1195 /*
1196 * Perform public key operation setup: lookup key, allocated ctx and call
1197 * the appropriate initialisation function
1198 */
1199 static int pkey_test_init(struct evp_test *t, const char *name,
1200 int use_public,
1201 int (*keyopinit) (EVP_PKEY_CTX *ctx),
1202 int (*keyop) (EVP_PKEY_CTX *ctx,
1203 unsigned char *sig, size_t *siglen,
1204 const unsigned char *tbs,
1205 size_t tbslen)
1206 )
1207 {
1208 struct pkey_data *kdata;
1209 EVP_PKEY *pkey = NULL;
1210 int rv = 0;
1211 if (use_public)
1212 rv = find_key(&pkey, name, t->public);
1213 if (!rv)
1214 rv = find_key(&pkey, name, t->private);
1215 if (!rv)
1216 return 0;
1217 if (!pkey) {
1218 t->skip = 1;
1219 return 1;
1220 }
1221
1222 kdata = OPENSSL_malloc(sizeof(*kdata));
1223 if (!kdata) {
1224 EVP_PKEY_free(pkey);
1225 return 0;
1226 }
1227 kdata->ctx = NULL;
1228 kdata->input = NULL;
1229 kdata->output = NULL;
1230 kdata->keyop = keyop;
1231 t->data = kdata;
1232 kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL);
1233 if (!kdata->ctx)
1234 return 0;
1235 if (keyopinit(kdata->ctx) <= 0)
1236 return 0;
1237 return 1;
1238 }
1239
1240 static void pkey_test_cleanup(struct evp_test *t)
1241 {
1242 struct pkey_data *kdata = t->data;
1243
1244 OPENSSL_free(kdata->input);
1245 OPENSSL_free(kdata->output);
1246 EVP_PKEY_CTX_free(kdata->ctx);
1247 }
1248
1249 static int pkey_test_ctrl(EVP_PKEY_CTX *pctx, const char *value)
1250 {
1251 int rv;
1252 char *p, *tmpval;
1253
1254 tmpval = OPENSSL_strdup(value);
1255 if (tmpval == NULL)
1256 return 0;
1257 p = strchr(tmpval, ':');
1258 if (p != NULL)
1259 *p++ = 0;
1260 rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
1261 OPENSSL_free(tmpval);
1262 return rv > 0;
1263 }
1264
1265 static int pkey_test_parse(struct evp_test *t,
1266 const char *keyword, const char *value)
1267 {
1268 struct pkey_data *kdata = t->data;
1269 if (strcmp(keyword, "Input") == 0)
1270 return test_bin(value, &kdata->input, &kdata->input_len);
1271 if (strcmp(keyword, "Output") == 0)
1272 return test_bin(value, &kdata->output, &kdata->output_len);
1273 if (strcmp(keyword, "Ctrl") == 0)
1274 return pkey_test_ctrl(kdata->ctx, value);
1275 return 0;
1276 }
1277
1278 static int pkey_test_run(struct evp_test *t)
1279 {
1280 struct pkey_data *kdata = t->data;
1281 unsigned char *out = NULL;
1282 size_t out_len;
1283 const char *err = "KEYOP_LENGTH_ERROR";
1284 if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input,
1285 kdata->input_len) <= 0)
1286 goto err;
1287 out = OPENSSL_malloc(out_len);
1288 if (!out) {
1289 fprintf(stderr, "Error allocating output buffer!\n");
1290 exit(1);
1291 }
1292 err = "KEYOP_ERROR";
1293 if (kdata->keyop
1294 (kdata->ctx, out, &out_len, kdata->input, kdata->input_len) <= 0)
1295 goto err;
1296 err = "KEYOP_LENGTH_MISMATCH";
1297 if (out_len != kdata->output_len)
1298 goto err;
1299 err = "KEYOP_MISMATCH";
1300 if (check_output(t, kdata->output, out, out_len))
1301 goto err;
1302 err = NULL;
1303 err:
1304 OPENSSL_free(out);
1305 t->err = err;
1306 return 1;
1307 }
1308
1309 static int sign_test_init(struct evp_test *t, const char *name)
1310 {
1311 return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
1312 }
1313
1314 static const struct evp_test_method psign_test_method = {
1315 "Sign",
1316 sign_test_init,
1317 pkey_test_cleanup,
1318 pkey_test_parse,
1319 pkey_test_run
1320 };
1321
1322 static int verify_recover_test_init(struct evp_test *t, const char *name)
1323 {
1324 return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
1325 EVP_PKEY_verify_recover);
1326 }
1327
1328 static const struct evp_test_method pverify_recover_test_method = {
1329 "VerifyRecover",
1330 verify_recover_test_init,
1331 pkey_test_cleanup,
1332 pkey_test_parse,
1333 pkey_test_run
1334 };
1335
1336 static int decrypt_test_init(struct evp_test *t, const char *name)
1337 {
1338 return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
1339 EVP_PKEY_decrypt);
1340 }
1341
1342 static const struct evp_test_method pdecrypt_test_method = {
1343 "Decrypt",
1344 decrypt_test_init,
1345 pkey_test_cleanup,
1346 pkey_test_parse,
1347 pkey_test_run
1348 };
1349
1350 static int verify_test_init(struct evp_test *t, const char *name)
1351 {
1352 return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
1353 }
1354
1355 static int verify_test_run(struct evp_test *t)
1356 {
1357 struct pkey_data *kdata = t->data;
1358 if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
1359 kdata->input, kdata->input_len) <= 0)
1360 t->err = "VERIFY_ERROR";
1361 return 1;
1362 }
1363
1364 static const struct evp_test_method pverify_test_method = {
1365 "Verify",
1366 verify_test_init,
1367 pkey_test_cleanup,
1368 pkey_test_parse,
1369 verify_test_run
1370 };
1371
1372
1373 static int pderive_test_init(struct evp_test *t, const char *name)
1374 {
1375 return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
1376 }
1377
1378 static int pderive_test_parse(struct evp_test *t,
1379 const char *keyword, const char *value)
1380 {
1381 struct pkey_data *kdata = t->data;
1382
1383 if (strcmp(keyword, "PeerKey") == 0) {
1384 EVP_PKEY *peer;
1385 if (find_key(&peer, value, t->public) == 0)
1386 return 0;
1387 if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
1388 return 0;
1389 return 1;
1390 }
1391 if (strcmp(keyword, "SharedSecret") == 0)
1392 return test_bin(value, &kdata->output, &kdata->output_len);
1393 if (strcmp(keyword, "Ctrl") == 0)
1394 return pkey_test_ctrl(kdata->ctx, value);
1395 return 0;
1396 }
1397
1398 static int pderive_test_run(struct evp_test *t)
1399 {
1400 struct pkey_data *kdata = t->data;
1401 unsigned char *out = NULL;
1402 size_t out_len;
1403 const char *err = "INTERNAL_ERROR";
1404
1405 out_len = kdata->output_len;
1406 out = OPENSSL_malloc(out_len);
1407 if (!out) {
1408 fprintf(stderr, "Error allocating output buffer!\n");
1409 exit(1);
1410 }
1411 err = "DERIVE_ERROR";
1412 if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
1413 goto err;
1414 err = "SHARED_SECRET_LENGTH_MISMATCH";
1415 if (out_len != kdata->output_len)
1416 goto err;
1417 err = "SHARED_SECRET_MISMATCH";
1418 if (check_output(t, kdata->output, out, out_len))
1419 goto err;
1420 err = NULL;
1421 err:
1422 OPENSSL_free(out);
1423 t->err = err;
1424 return 1;
1425 }
1426
1427 static const struct evp_test_method pderive_test_method = {
1428 "Derive",
1429 pderive_test_init,
1430 pkey_test_cleanup,
1431 pderive_test_parse,
1432 pderive_test_run
1433 };
1434
1435 /* PBE tests */
1436
1437 #define PBE_TYPE_SCRYPT 1
1438 #define PBE_TYPE_PBKDF2 2
1439 #define PBE_TYPE_PKCS12 3
1440
1441 struct pbe_data {
1442
1443 int pbe_type;
1444
1445 /* scrypt parameters */
1446 uint64_t N, r, p, maxmem;
1447
1448 /* PKCS#12 parameters */
1449 int id, iter;
1450 const EVP_MD *md;
1451
1452 /* password */
1453 unsigned char *pass;
1454 size_t pass_len;
1455
1456 /* salt */
1457 unsigned char *salt;
1458 size_t salt_len;
1459
1460 /* Expected output */
1461 unsigned char *key;
1462 size_t key_len;
1463 };
1464
1465 #ifndef OPENSSL_NO_SCRYPT
1466 static int scrypt_test_parse(struct evp_test *t,
1467 const char *keyword, const char *value)
1468 {
1469 struct pbe_data *pdata = t->data;
1470
1471 if (strcmp(keyword, "N") == 0)
1472 return test_uint64(value, &pdata->N);
1473 if (strcmp(keyword, "p") == 0)
1474 return test_uint64(value, &pdata->p);
1475 if (strcmp(keyword, "r") == 0)
1476 return test_uint64(value, &pdata->r);
1477 if (strcmp(keyword, "maxmem") == 0)
1478 return test_uint64(value, &pdata->maxmem);
1479 return 0;
1480 }
1481 #endif
1482
1483 static int pbkdf2_test_parse(struct evp_test *t,
1484 const char *keyword, const char *value)
1485 {
1486 struct pbe_data *pdata = t->data;
1487
1488 if (strcmp(keyword, "iter") == 0) {
1489 pdata->iter = atoi(value);
1490 if (pdata->iter <= 0)
1491 return 0;
1492 return 1;
1493 }
1494 if (strcmp(keyword, "MD") == 0) {
1495 pdata->md = EVP_get_digestbyname(value);
1496 if (pdata->md == NULL)
1497 return 0;
1498 return 1;
1499 }
1500 return 0;
1501 }
1502
1503 static int pkcs12_test_parse(struct evp_test *t,
1504 const char *keyword, const char *value)
1505 {
1506 struct pbe_data *pdata = t->data;
1507
1508 if (strcmp(keyword, "id") == 0) {
1509 pdata->id = atoi(value);
1510 if (pdata->id <= 0)
1511 return 0;
1512 return 1;
1513 }
1514 return pbkdf2_test_parse(t, keyword, value);
1515 }
1516
1517 static int pbe_test_init(struct evp_test *t, const char *alg)
1518 {
1519 struct pbe_data *pdat;
1520 int pbe_type = 0;
1521
1522 if (strcmp(alg, "scrypt") == 0) {
1523 #ifndef OPENSSL_NO_SCRYPT
1524 pbe_type = PBE_TYPE_SCRYPT;
1525 #else
1526 t->skip = 1;
1527 return 1;
1528 #endif
1529 } else if (strcmp(alg, "pbkdf2") == 0) {
1530 pbe_type = PBE_TYPE_PBKDF2;
1531 } else if (strcmp(alg, "pkcs12") == 0) {
1532 pbe_type = PBE_TYPE_PKCS12;
1533 } else {
1534 fprintf(stderr, "Unknown pbe algorithm %s\n", alg);
1535 }
1536 pdat = OPENSSL_malloc(sizeof(*pdat));
1537 pdat->pbe_type = pbe_type;
1538 pdat->pass = NULL;
1539 pdat->salt = NULL;
1540 pdat->N = 0;
1541 pdat->r = 0;
1542 pdat->p = 0;
1543 pdat->maxmem = 0;
1544 pdat->id = 0;
1545 pdat->iter = 0;
1546 pdat->md = NULL;
1547 t->data = pdat;
1548 return 1;
1549 }
1550
1551 static void pbe_test_cleanup(struct evp_test *t)
1552 {
1553 struct pbe_data *pdat = t->data;
1554 test_free(pdat->pass);
1555 test_free(pdat->salt);
1556 test_free(pdat->key);
1557 }
1558
1559 static int pbe_test_parse(struct evp_test *t,
1560 const char *keyword, const char *value)
1561 {
1562 struct pbe_data *pdata = t->data;
1563
1564 if (strcmp(keyword, "Password") == 0)
1565 return test_bin(value, &pdata->pass, &pdata->pass_len);
1566 if (strcmp(keyword, "Salt") == 0)
1567 return test_bin(value, &pdata->salt, &pdata->salt_len);
1568 if (strcmp(keyword, "Key") == 0)
1569 return test_bin(value, &pdata->key, &pdata->key_len);
1570 if (pdata->pbe_type == PBE_TYPE_PBKDF2)
1571 return pbkdf2_test_parse(t, keyword, value);
1572 else if (pdata->pbe_type == PBE_TYPE_PKCS12)
1573 return pkcs12_test_parse(t, keyword, value);
1574 #ifndef OPENSSL_NO_SCRYPT
1575 else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
1576 return scrypt_test_parse(t, keyword, value);
1577 #endif
1578 return 0;
1579 }
1580
1581 static int pbe_test_run(struct evp_test *t)
1582 {
1583 struct pbe_data *pdata = t->data;
1584 const char *err = "INTERNAL_ERROR";
1585 unsigned char *key;
1586
1587 key = OPENSSL_malloc(pdata->key_len);
1588 if (!key)
1589 goto err;
1590 if (pdata->pbe_type == PBE_TYPE_PBKDF2) {
1591 err = "PBKDF2_ERROR";
1592 if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len,
1593 pdata->salt, pdata->salt_len,
1594 pdata->iter, pdata->md,
1595 pdata->key_len, key) == 0)
1596 goto err;
1597 #ifndef OPENSSL_NO_SCRYPT
1598 } else if (pdata->pbe_type == PBE_TYPE_SCRYPT) {
1599 err = "SCRYPT_ERROR";
1600 if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len,
1601 pdata->salt, pdata->salt_len,
1602 pdata->N, pdata->r, pdata->p, pdata->maxmem,
1603 key, pdata->key_len) == 0)
1604 goto err;
1605 #endif
1606 } else if (pdata->pbe_type == PBE_TYPE_PKCS12) {
1607 err = "PKCS12_ERROR";
1608 if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len,
1609 pdata->salt, pdata->salt_len,
1610 pdata->id, pdata->iter, pdata->key_len,
1611 key, pdata->md) == 0)
1612 goto err;
1613 }
1614 err = "KEY_MISMATCH";
1615 if (check_output(t, pdata->key, key, pdata->key_len))
1616 goto err;
1617 err = NULL;
1618 err:
1619 OPENSSL_free(key);
1620 t->err = err;
1621 return 1;
1622 }
1623
1624 static const struct evp_test_method pbe_test_method = {
1625 "PBE",
1626 pbe_test_init,
1627 pbe_test_cleanup,
1628 pbe_test_parse,
1629 pbe_test_run
1630 };
1631
1632 /* Base64 tests */
1633
1634 typedef enum {
1635 BASE64_CANONICAL_ENCODING = 0,
1636 BASE64_VALID_ENCODING = 1,
1637 BASE64_INVALID_ENCODING = 2
1638 } base64_encoding_type;
1639
1640 struct encode_data {
1641 /* Input to encoding */
1642 unsigned char *input;
1643 size_t input_len;
1644 /* Expected output */
1645 unsigned char *output;
1646 size_t output_len;
1647 base64_encoding_type encoding;
1648 };
1649
1650 static int encode_test_init(struct evp_test *t, const char *encoding)
1651 {
1652 struct encode_data *edata = OPENSSL_zalloc(sizeof(*edata));
1653
1654 if (strcmp(encoding, "canonical") == 0) {
1655 edata->encoding = BASE64_CANONICAL_ENCODING;
1656 } else if (strcmp(encoding, "valid") == 0) {
1657 edata->encoding = BASE64_VALID_ENCODING;
1658 } else if (strcmp(encoding, "invalid") == 0) {
1659 edata->encoding = BASE64_INVALID_ENCODING;
1660 t->expected_err = OPENSSL_strdup("DECODE_ERROR");
1661 if (t->expected_err == NULL)
1662 return 0;
1663 } else {
1664 fprintf(stderr, "Bad encoding: %s. Should be one of "
1665 "{canonical, valid, invalid}\n", encoding);
1666 return 0;
1667 }
1668 t->data = edata;
1669 return 1;
1670 }
1671
1672 static void encode_test_cleanup(struct evp_test *t)
1673 {
1674 struct encode_data *edata = t->data;
1675 test_free(edata->input);
1676 test_free(edata->output);
1677 memset(edata, 0, sizeof(*edata));
1678 }
1679
1680 static int encode_test_parse(struct evp_test *t,
1681 const char *keyword, const char *value)
1682 {
1683 struct encode_data *edata = t->data;
1684 if (strcmp(keyword, "Input") == 0)
1685 return test_bin(value, &edata->input, &edata->input_len);
1686 if (strcmp(keyword, "Output") == 0)
1687 return test_bin(value, &edata->output, &edata->output_len);
1688 return 0;
1689 }
1690
1691 static int encode_test_run(struct evp_test *t)
1692 {
1693 struct encode_data *edata = t->data;
1694 unsigned char *encode_out = NULL, *decode_out = NULL;
1695 int output_len, chunk_len;
1696 const char *err = "INTERNAL_ERROR";
1697 EVP_ENCODE_CTX *decode_ctx = EVP_ENCODE_CTX_new();
1698
1699 if (decode_ctx == NULL)
1700 goto err;
1701
1702 if (edata->encoding == BASE64_CANONICAL_ENCODING) {
1703 EVP_ENCODE_CTX *encode_ctx = EVP_ENCODE_CTX_new();
1704 if (encode_ctx == NULL)
1705 goto err;
1706 encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len));
1707 if (encode_out == NULL)
1708 goto err;
1709
1710 EVP_EncodeInit(encode_ctx);
1711 EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
1712 edata->input, edata->input_len);
1713 output_len = chunk_len;
1714
1715 EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
1716 output_len += chunk_len;
1717
1718 EVP_ENCODE_CTX_free(encode_ctx);
1719
1720 if (check_var_length_output(t, edata->output, edata->output_len,
1721 encode_out, output_len)) {
1722 err = "BAD_ENCODING";
1723 goto err;
1724 }
1725 }
1726
1727 decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len));
1728 if (decode_out == NULL)
1729 goto err;
1730
1731 EVP_DecodeInit(decode_ctx);
1732 if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output,
1733 edata->output_len) < 0) {
1734 err = "DECODE_ERROR";
1735 goto err;
1736 }
1737 output_len = chunk_len;
1738
1739 if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
1740 err = "DECODE_ERROR";
1741 goto err;
1742 }
1743 output_len += chunk_len;
1744
1745 if (edata->encoding != BASE64_INVALID_ENCODING &&
1746 check_var_length_output(t, edata->input, edata->input_len,
1747 decode_out, output_len)) {
1748 err = "BAD_DECODING";
1749 goto err;
1750 }
1751
1752 err = NULL;
1753 err:
1754 t->err = err;
1755 OPENSSL_free(encode_out);
1756 OPENSSL_free(decode_out);
1757 EVP_ENCODE_CTX_free(decode_ctx);
1758 return 1;
1759 }
1760
1761 static const struct evp_test_method encode_test_method = {
1762 "Encoding",
1763 encode_test_init,
1764 encode_test_cleanup,
1765 encode_test_parse,
1766 encode_test_run,
1767 };
1768
1769 /* KDF operations */
1770
1771 struct kdf_data {
1772 /* Context for this operation */
1773 EVP_PKEY_CTX *ctx;
1774 /* Expected output */
1775 unsigned char *output;
1776 size_t output_len;
1777 };
1778
1779 /*
1780 * Perform public key operation setup: lookup key, allocated ctx and call
1781 * the appropriate initialisation function
1782 */
1783 static int kdf_test_init(struct evp_test *t, const char *name)
1784 {
1785 struct kdf_data *kdata;
1786
1787 kdata = OPENSSL_malloc(sizeof(*kdata));
1788 if (kdata == NULL)
1789 return 0;
1790 kdata->ctx = NULL;
1791 kdata->output = NULL;
1792 t->data = kdata;
1793 kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL);
1794 if (kdata->ctx == NULL)
1795 return 0;
1796 if (EVP_PKEY_derive_init(kdata->ctx) <= 0)
1797 return 0;
1798 return 1;
1799 }
1800
1801 static void kdf_test_cleanup(struct evp_test *t)
1802 {
1803 struct kdf_data *kdata = t->data;
1804 OPENSSL_free(kdata->output);
1805 EVP_PKEY_CTX_free(kdata->ctx);
1806 }
1807
1808 static int kdf_test_parse(struct evp_test *t,
1809 const char *keyword, const char *value)
1810 {
1811 struct kdf_data *kdata = t->data;
1812 if (strcmp(keyword, "Output") == 0)
1813 return test_bin(value, &kdata->output, &kdata->output_len);
1814 if (strncmp(keyword, "Ctrl", 4) == 0)
1815 return pkey_test_ctrl(kdata->ctx, value);
1816 return 0;
1817 }
1818
1819 static int kdf_test_run(struct evp_test *t)
1820 {
1821 struct kdf_data *kdata = t->data;
1822 unsigned char *out = NULL;
1823 size_t out_len = kdata->output_len;
1824 const char *err = "INTERNAL_ERROR";
1825 out = OPENSSL_malloc(out_len);
1826 if (!out) {
1827 fprintf(stderr, "Error allocating output buffer!\n");
1828 exit(1);
1829 }
1830 err = "KDF_DERIVE_ERROR";
1831 if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
1832 goto err;
1833 err = "KDF_LENGTH_MISMATCH";
1834 if (out_len != kdata->output_len)
1835 goto err;
1836 err = "KDF_MISMATCH";
1837 if (check_output(t, kdata->output, out, out_len))
1838 goto err;
1839 err = NULL;
1840 err:
1841 OPENSSL_free(out);
1842 t->err = err;
1843 return 1;
1844 }
1845
1846 static const struct evp_test_method kdf_test_method = {
1847 "KDF",
1848 kdf_test_init,
1849 kdf_test_cleanup,
1850 kdf_test_parse,
1851 kdf_test_run
1852 };