]> git.ipfire.org Git - thirdparty/linux.git/blob - tools/perf/util/auxtrace.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41
42 #include <linux/hash.h>
43
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56
57 #include <linux/ctype.h>
58 #include <linux/kernel.h>
59 #include "symbol/kallsyms.h"
60 #include <internal/lib.h>
61
62 /*
63 * Make a group from 'leader' to 'last', requiring that the events were not
64 * already grouped to a different leader.
65 */
66 static int perf_evlist__regroup(struct evlist *evlist,
67 struct evsel *leader,
68 struct evsel *last)
69 {
70 struct evsel *evsel;
71 bool grp;
72
73 if (!evsel__is_group_leader(leader))
74 return -EINVAL;
75
76 grp = false;
77 evlist__for_each_entry(evlist, evsel) {
78 if (grp) {
79 if (!(evsel->leader == leader ||
80 (evsel->leader == evsel &&
81 evsel->core.nr_members <= 1)))
82 return -EINVAL;
83 } else if (evsel == leader) {
84 grp = true;
85 }
86 if (evsel == last)
87 break;
88 }
89
90 grp = false;
91 evlist__for_each_entry(evlist, evsel) {
92 if (grp) {
93 if (evsel->leader != leader) {
94 evsel->leader = leader;
95 if (leader->core.nr_members < 1)
96 leader->core.nr_members = 1;
97 leader->core.nr_members += 1;
98 }
99 } else if (evsel == leader) {
100 grp = true;
101 }
102 if (evsel == last)
103 break;
104 }
105
106 return 0;
107 }
108
109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 return !session->itrace_synth_opts ||
112 session->itrace_synth_opts->dont_decode;
113 }
114
115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 struct auxtrace_mmap_params *mp,
117 void *userpg, int fd)
118 {
119 struct perf_event_mmap_page *pc = userpg;
120
121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122
123 mm->userpg = userpg;
124 mm->mask = mp->mask;
125 mm->len = mp->len;
126 mm->prev = 0;
127 mm->idx = mp->idx;
128 mm->tid = mp->tid;
129 mm->cpu = mp->cpu;
130
131 if (!mp->len) {
132 mm->base = NULL;
133 return 0;
134 }
135
136 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
137 pr_err("Cannot use AUX area tracing mmaps\n");
138 return -1;
139 #endif
140
141 pc->aux_offset = mp->offset;
142 pc->aux_size = mp->len;
143
144 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
145 if (mm->base == MAP_FAILED) {
146 pr_debug2("failed to mmap AUX area\n");
147 mm->base = NULL;
148 return -1;
149 }
150
151 return 0;
152 }
153
154 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
155 {
156 if (mm->base) {
157 munmap(mm->base, mm->len);
158 mm->base = NULL;
159 }
160 }
161
162 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
163 off_t auxtrace_offset,
164 unsigned int auxtrace_pages,
165 bool auxtrace_overwrite)
166 {
167 if (auxtrace_pages) {
168 mp->offset = auxtrace_offset;
169 mp->len = auxtrace_pages * (size_t)page_size;
170 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
171 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
172 pr_debug2("AUX area mmap length %zu\n", mp->len);
173 } else {
174 mp->len = 0;
175 }
176 }
177
178 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
179 struct evlist *evlist, int idx,
180 bool per_cpu)
181 {
182 mp->idx = idx;
183
184 if (per_cpu) {
185 mp->cpu = evlist->core.cpus->map[idx];
186 if (evlist->core.threads)
187 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
188 else
189 mp->tid = -1;
190 } else {
191 mp->cpu = -1;
192 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
193 }
194 }
195
196 #define AUXTRACE_INIT_NR_QUEUES 32
197
198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
199 {
200 struct auxtrace_queue *queue_array;
201 unsigned int max_nr_queues, i;
202
203 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
204 if (nr_queues > max_nr_queues)
205 return NULL;
206
207 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
208 if (!queue_array)
209 return NULL;
210
211 for (i = 0; i < nr_queues; i++) {
212 INIT_LIST_HEAD(&queue_array[i].head);
213 queue_array[i].priv = NULL;
214 }
215
216 return queue_array;
217 }
218
219 int auxtrace_queues__init(struct auxtrace_queues *queues)
220 {
221 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
222 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
223 if (!queues->queue_array)
224 return -ENOMEM;
225 return 0;
226 }
227
228 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
229 unsigned int new_nr_queues)
230 {
231 unsigned int nr_queues = queues->nr_queues;
232 struct auxtrace_queue *queue_array;
233 unsigned int i;
234
235 if (!nr_queues)
236 nr_queues = AUXTRACE_INIT_NR_QUEUES;
237
238 while (nr_queues && nr_queues < new_nr_queues)
239 nr_queues <<= 1;
240
241 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
242 return -EINVAL;
243
244 queue_array = auxtrace_alloc_queue_array(nr_queues);
245 if (!queue_array)
246 return -ENOMEM;
247
248 for (i = 0; i < queues->nr_queues; i++) {
249 list_splice_tail(&queues->queue_array[i].head,
250 &queue_array[i].head);
251 queue_array[i].tid = queues->queue_array[i].tid;
252 queue_array[i].cpu = queues->queue_array[i].cpu;
253 queue_array[i].set = queues->queue_array[i].set;
254 queue_array[i].priv = queues->queue_array[i].priv;
255 }
256
257 queues->nr_queues = nr_queues;
258 queues->queue_array = queue_array;
259
260 return 0;
261 }
262
263 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
264 {
265 int fd = perf_data__fd(session->data);
266 void *p;
267 ssize_t ret;
268
269 if (size > SSIZE_MAX)
270 return NULL;
271
272 p = malloc(size);
273 if (!p)
274 return NULL;
275
276 ret = readn(fd, p, size);
277 if (ret != (ssize_t)size) {
278 free(p);
279 return NULL;
280 }
281
282 return p;
283 }
284
285 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
286 unsigned int idx,
287 struct auxtrace_buffer *buffer)
288 {
289 struct auxtrace_queue *queue;
290 int err;
291
292 if (idx >= queues->nr_queues) {
293 err = auxtrace_queues__grow(queues, idx + 1);
294 if (err)
295 return err;
296 }
297
298 queue = &queues->queue_array[idx];
299
300 if (!queue->set) {
301 queue->set = true;
302 queue->tid = buffer->tid;
303 queue->cpu = buffer->cpu;
304 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
305 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
306 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
307 return -EINVAL;
308 }
309
310 buffer->buffer_nr = queues->next_buffer_nr++;
311
312 list_add_tail(&buffer->list, &queue->head);
313
314 queues->new_data = true;
315 queues->populated = true;
316
317 return 0;
318 }
319
320 /* Limit buffers to 32MiB on 32-bit */
321 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
322
323 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
324 unsigned int idx,
325 struct auxtrace_buffer *buffer)
326 {
327 u64 sz = buffer->size;
328 bool consecutive = false;
329 struct auxtrace_buffer *b;
330 int err;
331
332 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
333 b = memdup(buffer, sizeof(struct auxtrace_buffer));
334 if (!b)
335 return -ENOMEM;
336 b->size = BUFFER_LIMIT_FOR_32_BIT;
337 b->consecutive = consecutive;
338 err = auxtrace_queues__queue_buffer(queues, idx, b);
339 if (err) {
340 auxtrace_buffer__free(b);
341 return err;
342 }
343 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
344 sz -= BUFFER_LIMIT_FOR_32_BIT;
345 consecutive = true;
346 }
347
348 buffer->size = sz;
349 buffer->consecutive = consecutive;
350
351 return 0;
352 }
353
354 static bool filter_cpu(struct perf_session *session, int cpu)
355 {
356 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
357
358 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
359 }
360
361 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
362 struct perf_session *session,
363 unsigned int idx,
364 struct auxtrace_buffer *buffer,
365 struct auxtrace_buffer **buffer_ptr)
366 {
367 int err = -ENOMEM;
368
369 if (filter_cpu(session, buffer->cpu))
370 return 0;
371
372 buffer = memdup(buffer, sizeof(*buffer));
373 if (!buffer)
374 return -ENOMEM;
375
376 if (session->one_mmap) {
377 buffer->data = buffer->data_offset - session->one_mmap_offset +
378 session->one_mmap_addr;
379 } else if (perf_data__is_pipe(session->data)) {
380 buffer->data = auxtrace_copy_data(buffer->size, session);
381 if (!buffer->data)
382 goto out_free;
383 buffer->data_needs_freeing = true;
384 } else if (BITS_PER_LONG == 32 &&
385 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
386 err = auxtrace_queues__split_buffer(queues, idx, buffer);
387 if (err)
388 goto out_free;
389 }
390
391 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
392 if (err)
393 goto out_free;
394
395 /* FIXME: Doesn't work for split buffer */
396 if (buffer_ptr)
397 *buffer_ptr = buffer;
398
399 return 0;
400
401 out_free:
402 auxtrace_buffer__free(buffer);
403 return err;
404 }
405
406 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
407 struct perf_session *session,
408 union perf_event *event, off_t data_offset,
409 struct auxtrace_buffer **buffer_ptr)
410 {
411 struct auxtrace_buffer buffer = {
412 .pid = -1,
413 .tid = event->auxtrace.tid,
414 .cpu = event->auxtrace.cpu,
415 .data_offset = data_offset,
416 .offset = event->auxtrace.offset,
417 .reference = event->auxtrace.reference,
418 .size = event->auxtrace.size,
419 };
420 unsigned int idx = event->auxtrace.idx;
421
422 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
423 buffer_ptr);
424 }
425
426 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
427 struct perf_session *session,
428 off_t file_offset, size_t sz)
429 {
430 union perf_event *event;
431 int err;
432 char buf[PERF_SAMPLE_MAX_SIZE];
433
434 err = perf_session__peek_event(session, file_offset, buf,
435 PERF_SAMPLE_MAX_SIZE, &event, NULL);
436 if (err)
437 return err;
438
439 if (event->header.type == PERF_RECORD_AUXTRACE) {
440 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
441 event->header.size != sz) {
442 err = -EINVAL;
443 goto out;
444 }
445 file_offset += event->header.size;
446 err = auxtrace_queues__add_event(queues, session, event,
447 file_offset, NULL);
448 }
449 out:
450 return err;
451 }
452
453 void auxtrace_queues__free(struct auxtrace_queues *queues)
454 {
455 unsigned int i;
456
457 for (i = 0; i < queues->nr_queues; i++) {
458 while (!list_empty(&queues->queue_array[i].head)) {
459 struct auxtrace_buffer *buffer;
460
461 buffer = list_entry(queues->queue_array[i].head.next,
462 struct auxtrace_buffer, list);
463 list_del_init(&buffer->list);
464 auxtrace_buffer__free(buffer);
465 }
466 }
467
468 zfree(&queues->queue_array);
469 queues->nr_queues = 0;
470 }
471
472 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
473 unsigned int pos, unsigned int queue_nr,
474 u64 ordinal)
475 {
476 unsigned int parent;
477
478 while (pos) {
479 parent = (pos - 1) >> 1;
480 if (heap_array[parent].ordinal <= ordinal)
481 break;
482 heap_array[pos] = heap_array[parent];
483 pos = parent;
484 }
485 heap_array[pos].queue_nr = queue_nr;
486 heap_array[pos].ordinal = ordinal;
487 }
488
489 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
490 u64 ordinal)
491 {
492 struct auxtrace_heap_item *heap_array;
493
494 if (queue_nr >= heap->heap_sz) {
495 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
496
497 while (heap_sz <= queue_nr)
498 heap_sz <<= 1;
499 heap_array = realloc(heap->heap_array,
500 heap_sz * sizeof(struct auxtrace_heap_item));
501 if (!heap_array)
502 return -ENOMEM;
503 heap->heap_array = heap_array;
504 heap->heap_sz = heap_sz;
505 }
506
507 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
508
509 return 0;
510 }
511
512 void auxtrace_heap__free(struct auxtrace_heap *heap)
513 {
514 zfree(&heap->heap_array);
515 heap->heap_cnt = 0;
516 heap->heap_sz = 0;
517 }
518
519 void auxtrace_heap__pop(struct auxtrace_heap *heap)
520 {
521 unsigned int pos, last, heap_cnt = heap->heap_cnt;
522 struct auxtrace_heap_item *heap_array;
523
524 if (!heap_cnt)
525 return;
526
527 heap->heap_cnt -= 1;
528
529 heap_array = heap->heap_array;
530
531 pos = 0;
532 while (1) {
533 unsigned int left, right;
534
535 left = (pos << 1) + 1;
536 if (left >= heap_cnt)
537 break;
538 right = left + 1;
539 if (right >= heap_cnt) {
540 heap_array[pos] = heap_array[left];
541 return;
542 }
543 if (heap_array[left].ordinal < heap_array[right].ordinal) {
544 heap_array[pos] = heap_array[left];
545 pos = left;
546 } else {
547 heap_array[pos] = heap_array[right];
548 pos = right;
549 }
550 }
551
552 last = heap_cnt - 1;
553 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
554 heap_array[last].ordinal);
555 }
556
557 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
558 struct evlist *evlist)
559 {
560 if (itr)
561 return itr->info_priv_size(itr, evlist);
562 return 0;
563 }
564
565 static int auxtrace_not_supported(void)
566 {
567 pr_err("AUX area tracing is not supported on this architecture\n");
568 return -EINVAL;
569 }
570
571 int auxtrace_record__info_fill(struct auxtrace_record *itr,
572 struct perf_session *session,
573 struct perf_record_auxtrace_info *auxtrace_info,
574 size_t priv_size)
575 {
576 if (itr)
577 return itr->info_fill(itr, session, auxtrace_info, priv_size);
578 return auxtrace_not_supported();
579 }
580
581 void auxtrace_record__free(struct auxtrace_record *itr)
582 {
583 if (itr)
584 itr->free(itr);
585 }
586
587 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
588 {
589 if (itr && itr->snapshot_start)
590 return itr->snapshot_start(itr);
591 return 0;
592 }
593
594 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
595 {
596 if (!on_exit && itr && itr->snapshot_finish)
597 return itr->snapshot_finish(itr);
598 return 0;
599 }
600
601 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
602 struct auxtrace_mmap *mm,
603 unsigned char *data, u64 *head, u64 *old)
604 {
605 if (itr && itr->find_snapshot)
606 return itr->find_snapshot(itr, idx, mm, data, head, old);
607 return 0;
608 }
609
610 int auxtrace_record__options(struct auxtrace_record *itr,
611 struct evlist *evlist,
612 struct record_opts *opts)
613 {
614 if (itr) {
615 itr->evlist = evlist;
616 return itr->recording_options(itr, evlist, opts);
617 }
618 return 0;
619 }
620
621 u64 auxtrace_record__reference(struct auxtrace_record *itr)
622 {
623 if (itr)
624 return itr->reference(itr);
625 return 0;
626 }
627
628 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
629 struct record_opts *opts, const char *str)
630 {
631 if (!str)
632 return 0;
633
634 /* PMU-agnostic options */
635 switch (*str) {
636 case 'e':
637 opts->auxtrace_snapshot_on_exit = true;
638 str++;
639 break;
640 default:
641 break;
642 }
643
644 if (itr)
645 return itr->parse_snapshot_options(itr, opts, str);
646
647 pr_err("No AUX area tracing to snapshot\n");
648 return -EINVAL;
649 }
650
651 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
652 {
653 struct evsel *evsel;
654
655 if (!itr->evlist || !itr->pmu)
656 return -EINVAL;
657
658 evlist__for_each_entry(itr->evlist, evsel) {
659 if (evsel->core.attr.type == itr->pmu->type) {
660 if (evsel->disabled)
661 return 0;
662 return perf_evlist__enable_event_idx(itr->evlist, evsel,
663 idx);
664 }
665 }
666 return -EINVAL;
667 }
668
669 /*
670 * Event record size is 16-bit which results in a maximum size of about 64KiB.
671 * Allow about 4KiB for the rest of the sample record, to give a maximum
672 * AUX area sample size of 60KiB.
673 */
674 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
675
676 /* Arbitrary default size if no other default provided */
677 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
678
679 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
680 struct record_opts *opts)
681 {
682 struct evsel *evsel;
683 bool has_aux_leader = false;
684 u32 sz;
685
686 evlist__for_each_entry(evlist, evsel) {
687 sz = evsel->core.attr.aux_sample_size;
688 if (evsel__is_group_leader(evsel)) {
689 has_aux_leader = evsel__is_aux_event(evsel);
690 if (sz) {
691 if (has_aux_leader)
692 pr_err("Cannot add AUX area sampling to an AUX area event\n");
693 else
694 pr_err("Cannot add AUX area sampling to a group leader\n");
695 return -EINVAL;
696 }
697 }
698 if (sz > MAX_AUX_SAMPLE_SIZE) {
699 pr_err("AUX area sample size %u too big, max. %d\n",
700 sz, MAX_AUX_SAMPLE_SIZE);
701 return -EINVAL;
702 }
703 if (sz) {
704 if (!has_aux_leader) {
705 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
706 return -EINVAL;
707 }
708 evsel__set_sample_bit(evsel, AUX);
709 opts->auxtrace_sample_mode = true;
710 } else {
711 evsel__reset_sample_bit(evsel, AUX);
712 }
713 }
714
715 if (!opts->auxtrace_sample_mode) {
716 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
717 return -EINVAL;
718 }
719
720 if (!perf_can_aux_sample()) {
721 pr_err("AUX area sampling is not supported by kernel\n");
722 return -EINVAL;
723 }
724
725 return 0;
726 }
727
728 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
729 struct evlist *evlist,
730 struct record_opts *opts, const char *str)
731 {
732 struct perf_evsel_config_term *term;
733 struct evsel *aux_evsel;
734 bool has_aux_sample_size = false;
735 bool has_aux_leader = false;
736 struct evsel *evsel;
737 char *endptr;
738 unsigned long sz;
739
740 if (!str)
741 goto no_opt;
742
743 if (!itr) {
744 pr_err("No AUX area event to sample\n");
745 return -EINVAL;
746 }
747
748 sz = strtoul(str, &endptr, 0);
749 if (*endptr || sz > UINT_MAX) {
750 pr_err("Bad AUX area sampling option: '%s'\n", str);
751 return -EINVAL;
752 }
753
754 if (!sz)
755 sz = itr->default_aux_sample_size;
756
757 if (!sz)
758 sz = DEFAULT_AUX_SAMPLE_SIZE;
759
760 /* Set aux_sample_size based on --aux-sample option */
761 evlist__for_each_entry(evlist, evsel) {
762 if (evsel__is_group_leader(evsel)) {
763 has_aux_leader = evsel__is_aux_event(evsel);
764 } else if (has_aux_leader) {
765 evsel->core.attr.aux_sample_size = sz;
766 }
767 }
768 no_opt:
769 aux_evsel = NULL;
770 /* Override with aux_sample_size from config term */
771 evlist__for_each_entry(evlist, evsel) {
772 if (evsel__is_aux_event(evsel))
773 aux_evsel = evsel;
774 term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
775 if (term) {
776 has_aux_sample_size = true;
777 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
778 /* If possible, group with the AUX event */
779 if (aux_evsel && evsel->core.attr.aux_sample_size)
780 perf_evlist__regroup(evlist, aux_evsel, evsel);
781 }
782 }
783
784 if (!str && !has_aux_sample_size)
785 return 0;
786
787 if (!itr) {
788 pr_err("No AUX area event to sample\n");
789 return -EINVAL;
790 }
791
792 return auxtrace_validate_aux_sample_size(evlist, opts);
793 }
794
795 struct auxtrace_record *__weak
796 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
797 {
798 *err = 0;
799 return NULL;
800 }
801
802 static int auxtrace_index__alloc(struct list_head *head)
803 {
804 struct auxtrace_index *auxtrace_index;
805
806 auxtrace_index = malloc(sizeof(struct auxtrace_index));
807 if (!auxtrace_index)
808 return -ENOMEM;
809
810 auxtrace_index->nr = 0;
811 INIT_LIST_HEAD(&auxtrace_index->list);
812
813 list_add_tail(&auxtrace_index->list, head);
814
815 return 0;
816 }
817
818 void auxtrace_index__free(struct list_head *head)
819 {
820 struct auxtrace_index *auxtrace_index, *n;
821
822 list_for_each_entry_safe(auxtrace_index, n, head, list) {
823 list_del_init(&auxtrace_index->list);
824 free(auxtrace_index);
825 }
826 }
827
828 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
829 {
830 struct auxtrace_index *auxtrace_index;
831 int err;
832
833 if (list_empty(head)) {
834 err = auxtrace_index__alloc(head);
835 if (err)
836 return NULL;
837 }
838
839 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
840
841 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
842 err = auxtrace_index__alloc(head);
843 if (err)
844 return NULL;
845 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
846 list);
847 }
848
849 return auxtrace_index;
850 }
851
852 int auxtrace_index__auxtrace_event(struct list_head *head,
853 union perf_event *event, off_t file_offset)
854 {
855 struct auxtrace_index *auxtrace_index;
856 size_t nr;
857
858 auxtrace_index = auxtrace_index__last(head);
859 if (!auxtrace_index)
860 return -ENOMEM;
861
862 nr = auxtrace_index->nr;
863 auxtrace_index->entries[nr].file_offset = file_offset;
864 auxtrace_index->entries[nr].sz = event->header.size;
865 auxtrace_index->nr += 1;
866
867 return 0;
868 }
869
870 static int auxtrace_index__do_write(int fd,
871 struct auxtrace_index *auxtrace_index)
872 {
873 struct auxtrace_index_entry ent;
874 size_t i;
875
876 for (i = 0; i < auxtrace_index->nr; i++) {
877 ent.file_offset = auxtrace_index->entries[i].file_offset;
878 ent.sz = auxtrace_index->entries[i].sz;
879 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
880 return -errno;
881 }
882 return 0;
883 }
884
885 int auxtrace_index__write(int fd, struct list_head *head)
886 {
887 struct auxtrace_index *auxtrace_index;
888 u64 total = 0;
889 int err;
890
891 list_for_each_entry(auxtrace_index, head, list)
892 total += auxtrace_index->nr;
893
894 if (writen(fd, &total, sizeof(total)) != sizeof(total))
895 return -errno;
896
897 list_for_each_entry(auxtrace_index, head, list) {
898 err = auxtrace_index__do_write(fd, auxtrace_index);
899 if (err)
900 return err;
901 }
902
903 return 0;
904 }
905
906 static int auxtrace_index__process_entry(int fd, struct list_head *head,
907 bool needs_swap)
908 {
909 struct auxtrace_index *auxtrace_index;
910 struct auxtrace_index_entry ent;
911 size_t nr;
912
913 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
914 return -1;
915
916 auxtrace_index = auxtrace_index__last(head);
917 if (!auxtrace_index)
918 return -1;
919
920 nr = auxtrace_index->nr;
921 if (needs_swap) {
922 auxtrace_index->entries[nr].file_offset =
923 bswap_64(ent.file_offset);
924 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
925 } else {
926 auxtrace_index->entries[nr].file_offset = ent.file_offset;
927 auxtrace_index->entries[nr].sz = ent.sz;
928 }
929
930 auxtrace_index->nr = nr + 1;
931
932 return 0;
933 }
934
935 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
936 bool needs_swap)
937 {
938 struct list_head *head = &session->auxtrace_index;
939 u64 nr;
940
941 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
942 return -1;
943
944 if (needs_swap)
945 nr = bswap_64(nr);
946
947 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
948 return -1;
949
950 while (nr--) {
951 int err;
952
953 err = auxtrace_index__process_entry(fd, head, needs_swap);
954 if (err)
955 return -1;
956 }
957
958 return 0;
959 }
960
961 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
962 struct perf_session *session,
963 struct auxtrace_index_entry *ent)
964 {
965 return auxtrace_queues__add_indexed_event(queues, session,
966 ent->file_offset, ent->sz);
967 }
968
969 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
970 struct perf_session *session)
971 {
972 struct auxtrace_index *auxtrace_index;
973 struct auxtrace_index_entry *ent;
974 size_t i;
975 int err;
976
977 if (auxtrace__dont_decode(session))
978 return 0;
979
980 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
981 for (i = 0; i < auxtrace_index->nr; i++) {
982 ent = &auxtrace_index->entries[i];
983 err = auxtrace_queues__process_index_entry(queues,
984 session,
985 ent);
986 if (err)
987 return err;
988 }
989 }
990 return 0;
991 }
992
993 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
994 struct auxtrace_buffer *buffer)
995 {
996 if (buffer) {
997 if (list_is_last(&buffer->list, &queue->head))
998 return NULL;
999 return list_entry(buffer->list.next, struct auxtrace_buffer,
1000 list);
1001 } else {
1002 if (list_empty(&queue->head))
1003 return NULL;
1004 return list_entry(queue->head.next, struct auxtrace_buffer,
1005 list);
1006 }
1007 }
1008
1009 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1010 struct perf_sample *sample,
1011 struct perf_session *session)
1012 {
1013 struct perf_sample_id *sid;
1014 unsigned int idx;
1015 u64 id;
1016
1017 id = sample->id;
1018 if (!id)
1019 return NULL;
1020
1021 sid = perf_evlist__id2sid(session->evlist, id);
1022 if (!sid)
1023 return NULL;
1024
1025 idx = sid->idx;
1026
1027 if (idx >= queues->nr_queues)
1028 return NULL;
1029
1030 return &queues->queue_array[idx];
1031 }
1032
1033 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1034 struct perf_session *session,
1035 struct perf_sample *sample, u64 data_offset,
1036 u64 reference)
1037 {
1038 struct auxtrace_buffer buffer = {
1039 .pid = -1,
1040 .data_offset = data_offset,
1041 .reference = reference,
1042 .size = sample->aux_sample.size,
1043 };
1044 struct perf_sample_id *sid;
1045 u64 id = sample->id;
1046 unsigned int idx;
1047
1048 if (!id)
1049 return -EINVAL;
1050
1051 sid = perf_evlist__id2sid(session->evlist, id);
1052 if (!sid)
1053 return -ENOENT;
1054
1055 idx = sid->idx;
1056 buffer.tid = sid->tid;
1057 buffer.cpu = sid->cpu;
1058
1059 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1060 }
1061
1062 struct queue_data {
1063 bool samples;
1064 bool events;
1065 };
1066
1067 static int auxtrace_queue_data_cb(struct perf_session *session,
1068 union perf_event *event, u64 offset,
1069 void *data)
1070 {
1071 struct queue_data *qd = data;
1072 struct perf_sample sample;
1073 int err;
1074
1075 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1076 if (event->header.size < sizeof(struct perf_record_auxtrace))
1077 return -EINVAL;
1078 offset += event->header.size;
1079 return session->auxtrace->queue_data(session, NULL, event,
1080 offset);
1081 }
1082
1083 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1084 return 0;
1085
1086 err = perf_evlist__parse_sample(session->evlist, event, &sample);
1087 if (err)
1088 return err;
1089
1090 if (!sample.aux_sample.size)
1091 return 0;
1092
1093 offset += sample.aux_sample.data - (void *)event;
1094
1095 return session->auxtrace->queue_data(session, &sample, NULL, offset);
1096 }
1097
1098 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1099 {
1100 struct queue_data qd = {
1101 .samples = samples,
1102 .events = events,
1103 };
1104
1105 if (auxtrace__dont_decode(session))
1106 return 0;
1107
1108 if (!session->auxtrace || !session->auxtrace->queue_data)
1109 return -EINVAL;
1110
1111 return perf_session__peek_events(session, session->header.data_offset,
1112 session->header.data_size,
1113 auxtrace_queue_data_cb, &qd);
1114 }
1115
1116 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1117 {
1118 size_t adj = buffer->data_offset & (page_size - 1);
1119 size_t size = buffer->size + adj;
1120 off_t file_offset = buffer->data_offset - adj;
1121 void *addr;
1122
1123 if (buffer->data)
1124 return buffer->data;
1125
1126 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1127 if (addr == MAP_FAILED)
1128 return NULL;
1129
1130 buffer->mmap_addr = addr;
1131 buffer->mmap_size = size;
1132
1133 buffer->data = addr + adj;
1134
1135 return buffer->data;
1136 }
1137
1138 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1139 {
1140 if (!buffer->data || !buffer->mmap_addr)
1141 return;
1142 munmap(buffer->mmap_addr, buffer->mmap_size);
1143 buffer->mmap_addr = NULL;
1144 buffer->mmap_size = 0;
1145 buffer->data = NULL;
1146 buffer->use_data = NULL;
1147 }
1148
1149 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1150 {
1151 auxtrace_buffer__put_data(buffer);
1152 if (buffer->data_needs_freeing) {
1153 buffer->data_needs_freeing = false;
1154 zfree(&buffer->data);
1155 buffer->use_data = NULL;
1156 buffer->size = 0;
1157 }
1158 }
1159
1160 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1161 {
1162 auxtrace_buffer__drop_data(buffer);
1163 free(buffer);
1164 }
1165
1166 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1167 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1168 const char *msg, u64 timestamp)
1169 {
1170 size_t size;
1171
1172 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1173
1174 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1175 auxtrace_error->type = type;
1176 auxtrace_error->code = code;
1177 auxtrace_error->cpu = cpu;
1178 auxtrace_error->pid = pid;
1179 auxtrace_error->tid = tid;
1180 auxtrace_error->fmt = 1;
1181 auxtrace_error->ip = ip;
1182 auxtrace_error->time = timestamp;
1183 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1184
1185 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1186 strlen(auxtrace_error->msg) + 1;
1187 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1188 }
1189
1190 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1191 struct perf_tool *tool,
1192 struct perf_session *session,
1193 perf_event__handler_t process)
1194 {
1195 union perf_event *ev;
1196 size_t priv_size;
1197 int err;
1198
1199 pr_debug2("Synthesizing auxtrace information\n");
1200 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1201 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1202 if (!ev)
1203 return -ENOMEM;
1204
1205 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1206 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1207 priv_size;
1208 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1209 priv_size);
1210 if (err)
1211 goto out_free;
1212
1213 err = process(tool, ev, NULL, NULL);
1214 out_free:
1215 free(ev);
1216 return err;
1217 }
1218
1219 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1220 {
1221 struct evsel *new_leader = NULL;
1222 struct evsel *evsel;
1223
1224 /* Find new leader for the group */
1225 evlist__for_each_entry(evlist, evsel) {
1226 if (evsel->leader != leader || evsel == leader)
1227 continue;
1228 if (!new_leader)
1229 new_leader = evsel;
1230 evsel->leader = new_leader;
1231 }
1232
1233 /* Update group information */
1234 if (new_leader) {
1235 zfree(&new_leader->group_name);
1236 new_leader->group_name = leader->group_name;
1237 leader->group_name = NULL;
1238
1239 new_leader->core.nr_members = leader->core.nr_members - 1;
1240 leader->core.nr_members = 1;
1241 }
1242 }
1243
1244 static void unleader_auxtrace(struct perf_session *session)
1245 {
1246 struct evsel *evsel;
1247
1248 evlist__for_each_entry(session->evlist, evsel) {
1249 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1250 evsel__is_group_leader(evsel)) {
1251 unleader_evsel(session->evlist, evsel);
1252 }
1253 }
1254 }
1255
1256 int perf_event__process_auxtrace_info(struct perf_session *session,
1257 union perf_event *event)
1258 {
1259 enum auxtrace_type type = event->auxtrace_info.type;
1260 int err;
1261
1262 if (dump_trace)
1263 fprintf(stdout, " type: %u\n", type);
1264
1265 switch (type) {
1266 case PERF_AUXTRACE_INTEL_PT:
1267 err = intel_pt_process_auxtrace_info(event, session);
1268 break;
1269 case PERF_AUXTRACE_INTEL_BTS:
1270 err = intel_bts_process_auxtrace_info(event, session);
1271 break;
1272 case PERF_AUXTRACE_ARM_SPE:
1273 err = arm_spe_process_auxtrace_info(event, session);
1274 break;
1275 case PERF_AUXTRACE_CS_ETM:
1276 err = cs_etm__process_auxtrace_info(event, session);
1277 break;
1278 case PERF_AUXTRACE_S390_CPUMSF:
1279 err = s390_cpumsf_process_auxtrace_info(event, session);
1280 break;
1281 case PERF_AUXTRACE_UNKNOWN:
1282 default:
1283 return -EINVAL;
1284 }
1285
1286 if (err)
1287 return err;
1288
1289 unleader_auxtrace(session);
1290
1291 return 0;
1292 }
1293
1294 s64 perf_event__process_auxtrace(struct perf_session *session,
1295 union perf_event *event)
1296 {
1297 s64 err;
1298
1299 if (dump_trace)
1300 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1301 event->auxtrace.size, event->auxtrace.offset,
1302 event->auxtrace.reference, event->auxtrace.idx,
1303 event->auxtrace.tid, event->auxtrace.cpu);
1304
1305 if (auxtrace__dont_decode(session))
1306 return event->auxtrace.size;
1307
1308 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1309 return -EINVAL;
1310
1311 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1312 if (err < 0)
1313 return err;
1314
1315 return event->auxtrace.size;
1316 }
1317
1318 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1319 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1320 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1321 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1322 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1323 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1324
1325 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1326 bool no_sample)
1327 {
1328 synth_opts->branches = true;
1329 synth_opts->transactions = true;
1330 synth_opts->ptwrites = true;
1331 synth_opts->pwr_events = true;
1332 synth_opts->other_events = true;
1333 synth_opts->errors = true;
1334 if (no_sample) {
1335 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1336 synth_opts->period = 1;
1337 synth_opts->calls = true;
1338 } else {
1339 synth_opts->instructions = true;
1340 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1341 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1342 }
1343 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1344 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1345 synth_opts->initial_skip = 0;
1346 }
1347
1348 /*
1349 * Please check tools/perf/Documentation/perf-script.txt for information
1350 * about the options parsed here, which is introduced after this cset,
1351 * when support in 'perf script' for these options is introduced.
1352 */
1353 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1354 int unset)
1355 {
1356 struct itrace_synth_opts *synth_opts = opt->value;
1357 const char *p;
1358 char *endptr;
1359 bool period_type_set = false;
1360 bool period_set = false;
1361
1362 synth_opts->set = true;
1363
1364 if (unset) {
1365 synth_opts->dont_decode = true;
1366 return 0;
1367 }
1368
1369 if (!str) {
1370 itrace_synth_opts__set_default(synth_opts,
1371 synth_opts->default_no_sample);
1372 return 0;
1373 }
1374
1375 for (p = str; *p;) {
1376 switch (*p++) {
1377 case 'i':
1378 synth_opts->instructions = true;
1379 while (*p == ' ' || *p == ',')
1380 p += 1;
1381 if (isdigit(*p)) {
1382 synth_opts->period = strtoull(p, &endptr, 10);
1383 period_set = true;
1384 p = endptr;
1385 while (*p == ' ' || *p == ',')
1386 p += 1;
1387 switch (*p++) {
1388 case 'i':
1389 synth_opts->period_type =
1390 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1391 period_type_set = true;
1392 break;
1393 case 't':
1394 synth_opts->period_type =
1395 PERF_ITRACE_PERIOD_TICKS;
1396 period_type_set = true;
1397 break;
1398 case 'm':
1399 synth_opts->period *= 1000;
1400 /* Fall through */
1401 case 'u':
1402 synth_opts->period *= 1000;
1403 /* Fall through */
1404 case 'n':
1405 if (*p++ != 's')
1406 goto out_err;
1407 synth_opts->period_type =
1408 PERF_ITRACE_PERIOD_NANOSECS;
1409 period_type_set = true;
1410 break;
1411 case '\0':
1412 goto out;
1413 default:
1414 goto out_err;
1415 }
1416 }
1417 break;
1418 case 'b':
1419 synth_opts->branches = true;
1420 break;
1421 case 'x':
1422 synth_opts->transactions = true;
1423 break;
1424 case 'w':
1425 synth_opts->ptwrites = true;
1426 break;
1427 case 'p':
1428 synth_opts->pwr_events = true;
1429 break;
1430 case 'o':
1431 synth_opts->other_events = true;
1432 break;
1433 case 'e':
1434 synth_opts->errors = true;
1435 break;
1436 case 'd':
1437 synth_opts->log = true;
1438 break;
1439 case 'c':
1440 synth_opts->branches = true;
1441 synth_opts->calls = true;
1442 break;
1443 case 'r':
1444 synth_opts->branches = true;
1445 synth_opts->returns = true;
1446 break;
1447 case 'G':
1448 case 'g':
1449 if (p[-1] == 'G')
1450 synth_opts->add_callchain = true;
1451 else
1452 synth_opts->callchain = true;
1453 synth_opts->callchain_sz =
1454 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1455 while (*p == ' ' || *p == ',')
1456 p += 1;
1457 if (isdigit(*p)) {
1458 unsigned int val;
1459
1460 val = strtoul(p, &endptr, 10);
1461 p = endptr;
1462 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1463 goto out_err;
1464 synth_opts->callchain_sz = val;
1465 }
1466 break;
1467 case 'L':
1468 case 'l':
1469 if (p[-1] == 'L')
1470 synth_opts->add_last_branch = true;
1471 else
1472 synth_opts->last_branch = true;
1473 synth_opts->last_branch_sz =
1474 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1475 while (*p == ' ' || *p == ',')
1476 p += 1;
1477 if (isdigit(*p)) {
1478 unsigned int val;
1479
1480 val = strtoul(p, &endptr, 10);
1481 p = endptr;
1482 if (!val ||
1483 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1484 goto out_err;
1485 synth_opts->last_branch_sz = val;
1486 }
1487 break;
1488 case 's':
1489 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1490 if (p == endptr)
1491 goto out_err;
1492 p = endptr;
1493 break;
1494 case ' ':
1495 case ',':
1496 break;
1497 default:
1498 goto out_err;
1499 }
1500 }
1501 out:
1502 if (synth_opts->instructions) {
1503 if (!period_type_set)
1504 synth_opts->period_type =
1505 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1506 if (!period_set)
1507 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1508 }
1509
1510 return 0;
1511
1512 out_err:
1513 pr_err("Bad Instruction Tracing options '%s'\n", str);
1514 return -EINVAL;
1515 }
1516
1517 static const char * const auxtrace_error_type_name[] = {
1518 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1519 };
1520
1521 static const char *auxtrace_error_name(int type)
1522 {
1523 const char *error_type_name = NULL;
1524
1525 if (type < PERF_AUXTRACE_ERROR_MAX)
1526 error_type_name = auxtrace_error_type_name[type];
1527 if (!error_type_name)
1528 error_type_name = "unknown AUX";
1529 return error_type_name;
1530 }
1531
1532 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1533 {
1534 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1535 unsigned long long nsecs = e->time;
1536 const char *msg = e->msg;
1537 int ret;
1538
1539 ret = fprintf(fp, " %s error type %u",
1540 auxtrace_error_name(e->type), e->type);
1541
1542 if (e->fmt && nsecs) {
1543 unsigned long secs = nsecs / NSEC_PER_SEC;
1544
1545 nsecs -= secs * NSEC_PER_SEC;
1546 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1547 } else {
1548 ret += fprintf(fp, " time 0");
1549 }
1550
1551 if (!e->fmt)
1552 msg = (const char *)&e->time;
1553
1554 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1555 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1556 return ret;
1557 }
1558
1559 void perf_session__auxtrace_error_inc(struct perf_session *session,
1560 union perf_event *event)
1561 {
1562 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1563
1564 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1565 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1566 }
1567
1568 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1569 {
1570 int i;
1571
1572 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1573 if (!stats->nr_auxtrace_errors[i])
1574 continue;
1575 ui__warning("%u %s errors\n",
1576 stats->nr_auxtrace_errors[i],
1577 auxtrace_error_name(i));
1578 }
1579 }
1580
1581 int perf_event__process_auxtrace_error(struct perf_session *session,
1582 union perf_event *event)
1583 {
1584 if (auxtrace__dont_decode(session))
1585 return 0;
1586
1587 perf_event__fprintf_auxtrace_error(event, stdout);
1588 return 0;
1589 }
1590
1591 static int __auxtrace_mmap__read(struct mmap *map,
1592 struct auxtrace_record *itr,
1593 struct perf_tool *tool, process_auxtrace_t fn,
1594 bool snapshot, size_t snapshot_size)
1595 {
1596 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1597 u64 head, old = mm->prev, offset, ref;
1598 unsigned char *data = mm->base;
1599 size_t size, head_off, old_off, len1, len2, padding;
1600 union perf_event ev;
1601 void *data1, *data2;
1602
1603 if (snapshot) {
1604 head = auxtrace_mmap__read_snapshot_head(mm);
1605 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1606 &head, &old))
1607 return -1;
1608 } else {
1609 head = auxtrace_mmap__read_head(mm);
1610 }
1611
1612 if (old == head)
1613 return 0;
1614
1615 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1616 mm->idx, old, head, head - old);
1617
1618 if (mm->mask) {
1619 head_off = head & mm->mask;
1620 old_off = old & mm->mask;
1621 } else {
1622 head_off = head % mm->len;
1623 old_off = old % mm->len;
1624 }
1625
1626 if (head_off > old_off)
1627 size = head_off - old_off;
1628 else
1629 size = mm->len - (old_off - head_off);
1630
1631 if (snapshot && size > snapshot_size)
1632 size = snapshot_size;
1633
1634 ref = auxtrace_record__reference(itr);
1635
1636 if (head > old || size <= head || mm->mask) {
1637 offset = head - size;
1638 } else {
1639 /*
1640 * When the buffer size is not a power of 2, 'head' wraps at the
1641 * highest multiple of the buffer size, so we have to subtract
1642 * the remainder here.
1643 */
1644 u64 rem = (0ULL - mm->len) % mm->len;
1645
1646 offset = head - size - rem;
1647 }
1648
1649 if (size > head_off) {
1650 len1 = size - head_off;
1651 data1 = &data[mm->len - len1];
1652 len2 = head_off;
1653 data2 = &data[0];
1654 } else {
1655 len1 = size;
1656 data1 = &data[head_off - len1];
1657 len2 = 0;
1658 data2 = NULL;
1659 }
1660
1661 if (itr->alignment) {
1662 unsigned int unwanted = len1 % itr->alignment;
1663
1664 len1 -= unwanted;
1665 size -= unwanted;
1666 }
1667
1668 /* padding must be written by fn() e.g. record__process_auxtrace() */
1669 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1670 if (padding)
1671 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1672
1673 memset(&ev, 0, sizeof(ev));
1674 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1675 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1676 ev.auxtrace.size = size + padding;
1677 ev.auxtrace.offset = offset;
1678 ev.auxtrace.reference = ref;
1679 ev.auxtrace.idx = mm->idx;
1680 ev.auxtrace.tid = mm->tid;
1681 ev.auxtrace.cpu = mm->cpu;
1682
1683 if (fn(tool, map, &ev, data1, len1, data2, len2))
1684 return -1;
1685
1686 mm->prev = head;
1687
1688 if (!snapshot) {
1689 auxtrace_mmap__write_tail(mm, head);
1690 if (itr->read_finish) {
1691 int err;
1692
1693 err = itr->read_finish(itr, mm->idx);
1694 if (err < 0)
1695 return err;
1696 }
1697 }
1698
1699 return 1;
1700 }
1701
1702 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1703 struct perf_tool *tool, process_auxtrace_t fn)
1704 {
1705 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1706 }
1707
1708 int auxtrace_mmap__read_snapshot(struct mmap *map,
1709 struct auxtrace_record *itr,
1710 struct perf_tool *tool, process_auxtrace_t fn,
1711 size_t snapshot_size)
1712 {
1713 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1714 }
1715
1716 /**
1717 * struct auxtrace_cache - hash table to implement a cache
1718 * @hashtable: the hashtable
1719 * @sz: hashtable size (number of hlists)
1720 * @entry_size: size of an entry
1721 * @limit: limit the number of entries to this maximum, when reached the cache
1722 * is dropped and caching begins again with an empty cache
1723 * @cnt: current number of entries
1724 * @bits: hashtable size (@sz = 2^@bits)
1725 */
1726 struct auxtrace_cache {
1727 struct hlist_head *hashtable;
1728 size_t sz;
1729 size_t entry_size;
1730 size_t limit;
1731 size_t cnt;
1732 unsigned int bits;
1733 };
1734
1735 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1736 unsigned int limit_percent)
1737 {
1738 struct auxtrace_cache *c;
1739 struct hlist_head *ht;
1740 size_t sz, i;
1741
1742 c = zalloc(sizeof(struct auxtrace_cache));
1743 if (!c)
1744 return NULL;
1745
1746 sz = 1UL << bits;
1747
1748 ht = calloc(sz, sizeof(struct hlist_head));
1749 if (!ht)
1750 goto out_free;
1751
1752 for (i = 0; i < sz; i++)
1753 INIT_HLIST_HEAD(&ht[i]);
1754
1755 c->hashtable = ht;
1756 c->sz = sz;
1757 c->entry_size = entry_size;
1758 c->limit = (c->sz * limit_percent) / 100;
1759 c->bits = bits;
1760
1761 return c;
1762
1763 out_free:
1764 free(c);
1765 return NULL;
1766 }
1767
1768 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1769 {
1770 struct auxtrace_cache_entry *entry;
1771 struct hlist_node *tmp;
1772 size_t i;
1773
1774 if (!c)
1775 return;
1776
1777 for (i = 0; i < c->sz; i++) {
1778 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1779 hlist_del(&entry->hash);
1780 auxtrace_cache__free_entry(c, entry);
1781 }
1782 }
1783
1784 c->cnt = 0;
1785 }
1786
1787 void auxtrace_cache__free(struct auxtrace_cache *c)
1788 {
1789 if (!c)
1790 return;
1791
1792 auxtrace_cache__drop(c);
1793 zfree(&c->hashtable);
1794 free(c);
1795 }
1796
1797 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1798 {
1799 return malloc(c->entry_size);
1800 }
1801
1802 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1803 void *entry)
1804 {
1805 free(entry);
1806 }
1807
1808 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1809 struct auxtrace_cache_entry *entry)
1810 {
1811 if (c->limit && ++c->cnt > c->limit)
1812 auxtrace_cache__drop(c);
1813
1814 entry->key = key;
1815 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1816
1817 return 0;
1818 }
1819
1820 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1821 u32 key)
1822 {
1823 struct auxtrace_cache_entry *entry;
1824 struct hlist_head *hlist;
1825 struct hlist_node *n;
1826
1827 if (!c)
1828 return NULL;
1829
1830 hlist = &c->hashtable[hash_32(key, c->bits)];
1831 hlist_for_each_entry_safe(entry, n, hlist, hash) {
1832 if (entry->key == key) {
1833 hlist_del(&entry->hash);
1834 return entry;
1835 }
1836 }
1837
1838 return NULL;
1839 }
1840
1841 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1842 {
1843 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1844
1845 auxtrace_cache__free_entry(c, entry);
1846 }
1847
1848 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1849 {
1850 struct auxtrace_cache_entry *entry;
1851 struct hlist_head *hlist;
1852
1853 if (!c)
1854 return NULL;
1855
1856 hlist = &c->hashtable[hash_32(key, c->bits)];
1857 hlist_for_each_entry(entry, hlist, hash) {
1858 if (entry->key == key)
1859 return entry;
1860 }
1861
1862 return NULL;
1863 }
1864
1865 static void addr_filter__free_str(struct addr_filter *filt)
1866 {
1867 zfree(&filt->str);
1868 filt->action = NULL;
1869 filt->sym_from = NULL;
1870 filt->sym_to = NULL;
1871 filt->filename = NULL;
1872 }
1873
1874 static struct addr_filter *addr_filter__new(void)
1875 {
1876 struct addr_filter *filt = zalloc(sizeof(*filt));
1877
1878 if (filt)
1879 INIT_LIST_HEAD(&filt->list);
1880
1881 return filt;
1882 }
1883
1884 static void addr_filter__free(struct addr_filter *filt)
1885 {
1886 if (filt)
1887 addr_filter__free_str(filt);
1888 free(filt);
1889 }
1890
1891 static void addr_filters__add(struct addr_filters *filts,
1892 struct addr_filter *filt)
1893 {
1894 list_add_tail(&filt->list, &filts->head);
1895 filts->cnt += 1;
1896 }
1897
1898 static void addr_filters__del(struct addr_filters *filts,
1899 struct addr_filter *filt)
1900 {
1901 list_del_init(&filt->list);
1902 filts->cnt -= 1;
1903 }
1904
1905 void addr_filters__init(struct addr_filters *filts)
1906 {
1907 INIT_LIST_HEAD(&filts->head);
1908 filts->cnt = 0;
1909 }
1910
1911 void addr_filters__exit(struct addr_filters *filts)
1912 {
1913 struct addr_filter *filt, *n;
1914
1915 list_for_each_entry_safe(filt, n, &filts->head, list) {
1916 addr_filters__del(filts, filt);
1917 addr_filter__free(filt);
1918 }
1919 }
1920
1921 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1922 const char *str_delim)
1923 {
1924 *inp += strspn(*inp, " ");
1925
1926 if (isdigit(**inp)) {
1927 char *endptr;
1928
1929 if (!num)
1930 return -EINVAL;
1931 errno = 0;
1932 *num = strtoull(*inp, &endptr, 0);
1933 if (errno)
1934 return -errno;
1935 if (endptr == *inp)
1936 return -EINVAL;
1937 *inp = endptr;
1938 } else {
1939 size_t n;
1940
1941 if (!str)
1942 return -EINVAL;
1943 *inp += strspn(*inp, " ");
1944 *str = *inp;
1945 n = strcspn(*inp, str_delim);
1946 if (!n)
1947 return -EINVAL;
1948 *inp += n;
1949 if (**inp) {
1950 **inp = '\0';
1951 *inp += 1;
1952 }
1953 }
1954 return 0;
1955 }
1956
1957 static int parse_action(struct addr_filter *filt)
1958 {
1959 if (!strcmp(filt->action, "filter")) {
1960 filt->start = true;
1961 filt->range = true;
1962 } else if (!strcmp(filt->action, "start")) {
1963 filt->start = true;
1964 } else if (!strcmp(filt->action, "stop")) {
1965 filt->start = false;
1966 } else if (!strcmp(filt->action, "tracestop")) {
1967 filt->start = false;
1968 filt->range = true;
1969 filt->action += 5; /* Change 'tracestop' to 'stop' */
1970 } else {
1971 return -EINVAL;
1972 }
1973 return 0;
1974 }
1975
1976 static int parse_sym_idx(char **inp, int *idx)
1977 {
1978 *idx = -1;
1979
1980 *inp += strspn(*inp, " ");
1981
1982 if (**inp != '#')
1983 return 0;
1984
1985 *inp += 1;
1986
1987 if (**inp == 'g' || **inp == 'G') {
1988 *inp += 1;
1989 *idx = 0;
1990 } else {
1991 unsigned long num;
1992 char *endptr;
1993
1994 errno = 0;
1995 num = strtoul(*inp, &endptr, 0);
1996 if (errno)
1997 return -errno;
1998 if (endptr == *inp || num > INT_MAX)
1999 return -EINVAL;
2000 *inp = endptr;
2001 *idx = num;
2002 }
2003
2004 return 0;
2005 }
2006
2007 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2008 {
2009 int err = parse_num_or_str(inp, num, str, " ");
2010
2011 if (!err && *str)
2012 err = parse_sym_idx(inp, idx);
2013
2014 return err;
2015 }
2016
2017 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2018 {
2019 char *fstr;
2020 int err;
2021
2022 filt->str = fstr = strdup(*filter_inp);
2023 if (!fstr)
2024 return -ENOMEM;
2025
2026 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2027 if (err)
2028 goto out_err;
2029
2030 err = parse_action(filt);
2031 if (err)
2032 goto out_err;
2033
2034 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2035 &filt->sym_from_idx);
2036 if (err)
2037 goto out_err;
2038
2039 fstr += strspn(fstr, " ");
2040
2041 if (*fstr == '/') {
2042 fstr += 1;
2043 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2044 &filt->sym_to_idx);
2045 if (err)
2046 goto out_err;
2047 filt->range = true;
2048 }
2049
2050 fstr += strspn(fstr, " ");
2051
2052 if (*fstr == '@') {
2053 fstr += 1;
2054 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2055 if (err)
2056 goto out_err;
2057 }
2058
2059 fstr += strspn(fstr, " ,");
2060
2061 *filter_inp += fstr - filt->str;
2062
2063 return 0;
2064
2065 out_err:
2066 addr_filter__free_str(filt);
2067
2068 return err;
2069 }
2070
2071 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2072 const char *filter)
2073 {
2074 struct addr_filter *filt;
2075 const char *fstr = filter;
2076 int err;
2077
2078 while (*fstr) {
2079 filt = addr_filter__new();
2080 err = parse_one_filter(filt, &fstr);
2081 if (err) {
2082 addr_filter__free(filt);
2083 addr_filters__exit(filts);
2084 return err;
2085 }
2086 addr_filters__add(filts, filt);
2087 }
2088
2089 return 0;
2090 }
2091
2092 struct sym_args {
2093 const char *name;
2094 u64 start;
2095 u64 size;
2096 int idx;
2097 int cnt;
2098 bool started;
2099 bool global;
2100 bool selected;
2101 bool duplicate;
2102 bool near;
2103 };
2104
2105 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2106 {
2107 /* A function with the same name, and global or the n'th found or any */
2108 return kallsyms__is_function(type) &&
2109 !strcmp(name, args->name) &&
2110 ((args->global && isupper(type)) ||
2111 (args->selected && ++(args->cnt) == args->idx) ||
2112 (!args->global && !args->selected));
2113 }
2114
2115 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2116 {
2117 struct sym_args *args = arg;
2118
2119 if (args->started) {
2120 if (!args->size)
2121 args->size = start - args->start;
2122 if (args->selected) {
2123 if (args->size)
2124 return 1;
2125 } else if (kern_sym_match(args, name, type)) {
2126 args->duplicate = true;
2127 return 1;
2128 }
2129 } else if (kern_sym_match(args, name, type)) {
2130 args->started = true;
2131 args->start = start;
2132 }
2133
2134 return 0;
2135 }
2136
2137 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2138 {
2139 struct sym_args *args = arg;
2140
2141 if (kern_sym_match(args, name, type)) {
2142 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2143 ++args->cnt, start, type, name);
2144 args->near = true;
2145 } else if (args->near) {
2146 args->near = false;
2147 pr_err("\t\twhich is near\t\t%s\n", name);
2148 }
2149
2150 return 0;
2151 }
2152
2153 static int sym_not_found_error(const char *sym_name, int idx)
2154 {
2155 if (idx > 0) {
2156 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2157 idx, sym_name);
2158 } else if (!idx) {
2159 pr_err("Global symbol '%s' not found.\n", sym_name);
2160 } else {
2161 pr_err("Symbol '%s' not found.\n", sym_name);
2162 }
2163 pr_err("Note that symbols must be functions.\n");
2164
2165 return -EINVAL;
2166 }
2167
2168 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2169 {
2170 struct sym_args args = {
2171 .name = sym_name,
2172 .idx = idx,
2173 .global = !idx,
2174 .selected = idx > 0,
2175 };
2176 int err;
2177
2178 *start = 0;
2179 *size = 0;
2180
2181 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2182 if (err < 0) {
2183 pr_err("Failed to parse /proc/kallsyms\n");
2184 return err;
2185 }
2186
2187 if (args.duplicate) {
2188 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2189 args.cnt = 0;
2190 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2191 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2192 sym_name);
2193 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2194 return -EINVAL;
2195 }
2196
2197 if (!args.started) {
2198 pr_err("Kernel symbol lookup: ");
2199 return sym_not_found_error(sym_name, idx);
2200 }
2201
2202 *start = args.start;
2203 *size = args.size;
2204
2205 return 0;
2206 }
2207
2208 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2209 char type, u64 start)
2210 {
2211 struct sym_args *args = arg;
2212
2213 if (!kallsyms__is_function(type))
2214 return 0;
2215
2216 if (!args->started) {
2217 args->started = true;
2218 args->start = start;
2219 }
2220 /* Don't know exactly where the kernel ends, so we add a page */
2221 args->size = round_up(start, page_size) + page_size - args->start;
2222
2223 return 0;
2224 }
2225
2226 static int addr_filter__entire_kernel(struct addr_filter *filt)
2227 {
2228 struct sym_args args = { .started = false };
2229 int err;
2230
2231 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2232 if (err < 0 || !args.started) {
2233 pr_err("Failed to parse /proc/kallsyms\n");
2234 return err;
2235 }
2236
2237 filt->addr = args.start;
2238 filt->size = args.size;
2239
2240 return 0;
2241 }
2242
2243 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2244 {
2245 if (start + size >= filt->addr)
2246 return 0;
2247
2248 if (filt->sym_from) {
2249 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2250 filt->sym_to, start, filt->sym_from, filt->addr);
2251 } else {
2252 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2253 filt->sym_to, start, filt->addr);
2254 }
2255
2256 return -EINVAL;
2257 }
2258
2259 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2260 {
2261 bool no_size = false;
2262 u64 start, size;
2263 int err;
2264
2265 if (symbol_conf.kptr_restrict) {
2266 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2267 return -EINVAL;
2268 }
2269
2270 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2271 return addr_filter__entire_kernel(filt);
2272
2273 if (filt->sym_from) {
2274 err = find_kern_sym(filt->sym_from, &start, &size,
2275 filt->sym_from_idx);
2276 if (err)
2277 return err;
2278 filt->addr = start;
2279 if (filt->range && !filt->size && !filt->sym_to) {
2280 filt->size = size;
2281 no_size = !size;
2282 }
2283 }
2284
2285 if (filt->sym_to) {
2286 err = find_kern_sym(filt->sym_to, &start, &size,
2287 filt->sym_to_idx);
2288 if (err)
2289 return err;
2290
2291 err = check_end_after_start(filt, start, size);
2292 if (err)
2293 return err;
2294 filt->size = start + size - filt->addr;
2295 no_size = !size;
2296 }
2297
2298 /* The very last symbol in kallsyms does not imply a particular size */
2299 if (no_size) {
2300 pr_err("Cannot determine size of symbol '%s'\n",
2301 filt->sym_to ? filt->sym_to : filt->sym_from);
2302 return -EINVAL;
2303 }
2304
2305 return 0;
2306 }
2307
2308 static struct dso *load_dso(const char *name)
2309 {
2310 struct map *map;
2311 struct dso *dso;
2312
2313 map = dso__new_map(name);
2314 if (!map)
2315 return NULL;
2316
2317 if (map__load(map) < 0)
2318 pr_err("File '%s' not found or has no symbols.\n", name);
2319
2320 dso = dso__get(map->dso);
2321
2322 map__put(map);
2323
2324 return dso;
2325 }
2326
2327 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2328 int idx)
2329 {
2330 /* Same name, and global or the n'th found or any */
2331 return !arch__compare_symbol_names(name, sym->name) &&
2332 ((!idx && sym->binding == STB_GLOBAL) ||
2333 (idx > 0 && ++*cnt == idx) ||
2334 idx < 0);
2335 }
2336
2337 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2338 {
2339 struct symbol *sym;
2340 bool near = false;
2341 int cnt = 0;
2342
2343 pr_err("Multiple symbols with name '%s'\n", sym_name);
2344
2345 sym = dso__first_symbol(dso);
2346 while (sym) {
2347 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2348 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2349 ++cnt, sym->start,
2350 sym->binding == STB_GLOBAL ? 'g' :
2351 sym->binding == STB_LOCAL ? 'l' : 'w',
2352 sym->name);
2353 near = true;
2354 } else if (near) {
2355 near = false;
2356 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2357 }
2358 sym = dso__next_symbol(sym);
2359 }
2360
2361 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2362 sym_name);
2363 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2364 }
2365
2366 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2367 u64 *size, int idx)
2368 {
2369 struct symbol *sym;
2370 int cnt = 0;
2371
2372 *start = 0;
2373 *size = 0;
2374
2375 sym = dso__first_symbol(dso);
2376 while (sym) {
2377 if (*start) {
2378 if (!*size)
2379 *size = sym->start - *start;
2380 if (idx > 0) {
2381 if (*size)
2382 return 1;
2383 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2384 print_duplicate_syms(dso, sym_name);
2385 return -EINVAL;
2386 }
2387 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2388 *start = sym->start;
2389 *size = sym->end - sym->start;
2390 }
2391 sym = dso__next_symbol(sym);
2392 }
2393
2394 if (!*start)
2395 return sym_not_found_error(sym_name, idx);
2396
2397 return 0;
2398 }
2399
2400 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2401 {
2402 if (dso__data_file_size(dso, NULL)) {
2403 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2404 filt->filename);
2405 return -EINVAL;
2406 }
2407
2408 filt->addr = 0;
2409 filt->size = dso->data.file_size;
2410
2411 return 0;
2412 }
2413
2414 static int addr_filter__resolve_syms(struct addr_filter *filt)
2415 {
2416 u64 start, size;
2417 struct dso *dso;
2418 int err = 0;
2419
2420 if (!filt->sym_from && !filt->sym_to)
2421 return 0;
2422
2423 if (!filt->filename)
2424 return addr_filter__resolve_kernel_syms(filt);
2425
2426 dso = load_dso(filt->filename);
2427 if (!dso) {
2428 pr_err("Failed to load symbols from: %s\n", filt->filename);
2429 return -EINVAL;
2430 }
2431
2432 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2433 err = addr_filter__entire_dso(filt, dso);
2434 goto put_dso;
2435 }
2436
2437 if (filt->sym_from) {
2438 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2439 filt->sym_from_idx);
2440 if (err)
2441 goto put_dso;
2442 filt->addr = start;
2443 if (filt->range && !filt->size && !filt->sym_to)
2444 filt->size = size;
2445 }
2446
2447 if (filt->sym_to) {
2448 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2449 filt->sym_to_idx);
2450 if (err)
2451 goto put_dso;
2452
2453 err = check_end_after_start(filt, start, size);
2454 if (err)
2455 return err;
2456
2457 filt->size = start + size - filt->addr;
2458 }
2459
2460 put_dso:
2461 dso__put(dso);
2462
2463 return err;
2464 }
2465
2466 static char *addr_filter__to_str(struct addr_filter *filt)
2467 {
2468 char filename_buf[PATH_MAX];
2469 const char *at = "";
2470 const char *fn = "";
2471 char *filter;
2472 int err;
2473
2474 if (filt->filename) {
2475 at = "@";
2476 fn = realpath(filt->filename, filename_buf);
2477 if (!fn)
2478 return NULL;
2479 }
2480
2481 if (filt->range) {
2482 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2483 filt->action, filt->addr, filt->size, at, fn);
2484 } else {
2485 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2486 filt->action, filt->addr, at, fn);
2487 }
2488
2489 return err < 0 ? NULL : filter;
2490 }
2491
2492 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2493 int max_nr)
2494 {
2495 struct addr_filters filts;
2496 struct addr_filter *filt;
2497 int err;
2498
2499 addr_filters__init(&filts);
2500
2501 err = addr_filters__parse_bare_filter(&filts, filter);
2502 if (err)
2503 goto out_exit;
2504
2505 if (filts.cnt > max_nr) {
2506 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2507 filts.cnt, max_nr);
2508 err = -EINVAL;
2509 goto out_exit;
2510 }
2511
2512 list_for_each_entry(filt, &filts.head, list) {
2513 char *new_filter;
2514
2515 err = addr_filter__resolve_syms(filt);
2516 if (err)
2517 goto out_exit;
2518
2519 new_filter = addr_filter__to_str(filt);
2520 if (!new_filter) {
2521 err = -ENOMEM;
2522 goto out_exit;
2523 }
2524
2525 if (evsel__append_addr_filter(evsel, new_filter)) {
2526 err = -ENOMEM;
2527 goto out_exit;
2528 }
2529 }
2530
2531 out_exit:
2532 addr_filters__exit(&filts);
2533
2534 if (err) {
2535 pr_err("Failed to parse address filter: '%s'\n", filter);
2536 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2537 pr_err("Where multiple filters are separated by space or comma.\n");
2538 }
2539
2540 return err;
2541 }
2542
2543 static int evsel__nr_addr_filter(struct evsel *evsel)
2544 {
2545 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2546 int nr_addr_filters = 0;
2547
2548 if (!pmu)
2549 return 0;
2550
2551 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2552
2553 return nr_addr_filters;
2554 }
2555
2556 int auxtrace_parse_filters(struct evlist *evlist)
2557 {
2558 struct evsel *evsel;
2559 char *filter;
2560 int err, max_nr;
2561
2562 evlist__for_each_entry(evlist, evsel) {
2563 filter = evsel->filter;
2564 max_nr = evsel__nr_addr_filter(evsel);
2565 if (!filter || !max_nr)
2566 continue;
2567 evsel->filter = NULL;
2568 err = parse_addr_filter(evsel, filter, max_nr);
2569 free(filter);
2570 if (err)
2571 return err;
2572 pr_debug("Address filter: %s\n", evsel->filter);
2573 }
2574
2575 return 0;
2576 }
2577
2578 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2579 struct perf_sample *sample, struct perf_tool *tool)
2580 {
2581 if (!session->auxtrace)
2582 return 0;
2583
2584 return session->auxtrace->process_event(session, event, sample, tool);
2585 }
2586
2587 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2588 struct perf_sample *sample)
2589 {
2590 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2591 auxtrace__dont_decode(session))
2592 return;
2593
2594 session->auxtrace->dump_auxtrace_sample(session, sample);
2595 }
2596
2597 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2598 {
2599 if (!session->auxtrace)
2600 return 0;
2601
2602 return session->auxtrace->flush_events(session, tool);
2603 }
2604
2605 void auxtrace__free_events(struct perf_session *session)
2606 {
2607 if (!session->auxtrace)
2608 return;
2609
2610 return session->auxtrace->free_events(session);
2611 }
2612
2613 void auxtrace__free(struct perf_session *session)
2614 {
2615 if (!session->auxtrace)
2616 return;
2617
2618 return session->auxtrace->free(session);
2619 }
2620
2621 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2622 struct evsel *evsel)
2623 {
2624 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2625 return false;
2626
2627 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2628 }