]> git.ipfire.org Git - people/arne_f/kernel.git/blob - tools/perf/util/evsel.c
Merge tag 'perf-urgent-for-mingo-4.12-20170704' of git://git.kernel.org/pub/scm/linux...
[people/arne_f/kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40
41 #include "sane_ctype.h"
42
43 static struct {
44 bool sample_id_all;
45 bool exclude_guest;
46 bool mmap2;
47 bool cloexec;
48 bool clockid;
49 bool clockid_wrong;
50 bool lbr_flags;
51 bool write_backward;
52 } perf_missing_features;
53
54 static clockid_t clockid;
55
56 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
57 {
58 return 0;
59 }
60
61 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
62 {
63 }
64
65 static struct {
66 size_t size;
67 int (*init)(struct perf_evsel *evsel);
68 void (*fini)(struct perf_evsel *evsel);
69 } perf_evsel__object = {
70 .size = sizeof(struct perf_evsel),
71 .init = perf_evsel__no_extra_init,
72 .fini = perf_evsel__no_extra_fini,
73 };
74
75 int perf_evsel__object_config(size_t object_size,
76 int (*init)(struct perf_evsel *evsel),
77 void (*fini)(struct perf_evsel *evsel))
78 {
79
80 if (object_size == 0)
81 goto set_methods;
82
83 if (perf_evsel__object.size > object_size)
84 return -EINVAL;
85
86 perf_evsel__object.size = object_size;
87
88 set_methods:
89 if (init != NULL)
90 perf_evsel__object.init = init;
91
92 if (fini != NULL)
93 perf_evsel__object.fini = fini;
94
95 return 0;
96 }
97
98 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
99
100 int __perf_evsel__sample_size(u64 sample_type)
101 {
102 u64 mask = sample_type & PERF_SAMPLE_MASK;
103 int size = 0;
104 int i;
105
106 for (i = 0; i < 64; i++) {
107 if (mask & (1ULL << i))
108 size++;
109 }
110
111 size *= sizeof(u64);
112
113 return size;
114 }
115
116 /**
117 * __perf_evsel__calc_id_pos - calculate id_pos.
118 * @sample_type: sample type
119 *
120 * This function returns the position of the event id (PERF_SAMPLE_ID or
121 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
122 * sample_event.
123 */
124 static int __perf_evsel__calc_id_pos(u64 sample_type)
125 {
126 int idx = 0;
127
128 if (sample_type & PERF_SAMPLE_IDENTIFIER)
129 return 0;
130
131 if (!(sample_type & PERF_SAMPLE_ID))
132 return -1;
133
134 if (sample_type & PERF_SAMPLE_IP)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_TID)
138 idx += 1;
139
140 if (sample_type & PERF_SAMPLE_TIME)
141 idx += 1;
142
143 if (sample_type & PERF_SAMPLE_ADDR)
144 idx += 1;
145
146 return idx;
147 }
148
149 /**
150 * __perf_evsel__calc_is_pos - calculate is_pos.
151 * @sample_type: sample type
152 *
153 * This function returns the position (counting backwards) of the event id
154 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
155 * sample_id_all is used there is an id sample appended to non-sample events.
156 */
157 static int __perf_evsel__calc_is_pos(u64 sample_type)
158 {
159 int idx = 1;
160
161 if (sample_type & PERF_SAMPLE_IDENTIFIER)
162 return 1;
163
164 if (!(sample_type & PERF_SAMPLE_ID))
165 return -1;
166
167 if (sample_type & PERF_SAMPLE_CPU)
168 idx += 1;
169
170 if (sample_type & PERF_SAMPLE_STREAM_ID)
171 idx += 1;
172
173 return idx;
174 }
175
176 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
177 {
178 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
179 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
180 }
181
182 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
183 enum perf_event_sample_format bit)
184 {
185 if (!(evsel->attr.sample_type & bit)) {
186 evsel->attr.sample_type |= bit;
187 evsel->sample_size += sizeof(u64);
188 perf_evsel__calc_id_pos(evsel);
189 }
190 }
191
192 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
193 enum perf_event_sample_format bit)
194 {
195 if (evsel->attr.sample_type & bit) {
196 evsel->attr.sample_type &= ~bit;
197 evsel->sample_size -= sizeof(u64);
198 perf_evsel__calc_id_pos(evsel);
199 }
200 }
201
202 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
203 bool can_sample_identifier)
204 {
205 if (can_sample_identifier) {
206 perf_evsel__reset_sample_bit(evsel, ID);
207 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
208 } else {
209 perf_evsel__set_sample_bit(evsel, ID);
210 }
211 evsel->attr.read_format |= PERF_FORMAT_ID;
212 }
213
214 /**
215 * perf_evsel__is_function_event - Return whether given evsel is a function
216 * trace event
217 *
218 * @evsel - evsel selector to be tested
219 *
220 * Return %true if event is function trace event
221 */
222 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
223 {
224 #define FUNCTION_EVENT "ftrace:function"
225
226 return evsel->name &&
227 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
228
229 #undef FUNCTION_EVENT
230 }
231
232 void perf_evsel__init(struct perf_evsel *evsel,
233 struct perf_event_attr *attr, int idx)
234 {
235 evsel->idx = idx;
236 evsel->tracking = !idx;
237 evsel->attr = *attr;
238 evsel->leader = evsel;
239 evsel->unit = "";
240 evsel->scale = 1.0;
241 evsel->evlist = NULL;
242 evsel->bpf_fd = -1;
243 INIT_LIST_HEAD(&evsel->node);
244 INIT_LIST_HEAD(&evsel->config_terms);
245 perf_evsel__object.init(evsel);
246 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
247 perf_evsel__calc_id_pos(evsel);
248 evsel->cmdline_group_boundary = false;
249 evsel->metric_expr = NULL;
250 evsel->metric_name = NULL;
251 evsel->metric_events = NULL;
252 evsel->collect_stat = false;
253 }
254
255 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
256 {
257 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
258
259 if (evsel != NULL)
260 perf_evsel__init(evsel, attr, idx);
261
262 if (perf_evsel__is_bpf_output(evsel)) {
263 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
264 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
265 evsel->attr.sample_period = 1;
266 }
267
268 return evsel;
269 }
270
271 struct perf_evsel *perf_evsel__new_cycles(void)
272 {
273 struct perf_event_attr attr = {
274 .type = PERF_TYPE_HARDWARE,
275 .config = PERF_COUNT_HW_CPU_CYCLES,
276 .exclude_kernel = 1,
277 };
278 struct perf_evsel *evsel;
279
280 event_attr_init(&attr);
281 /*
282 * Unnamed union member, not supported as struct member named
283 * initializer in older compilers such as gcc 4.4.7
284 *
285 * Just for probing the precise_ip:
286 */
287 attr.sample_period = 1;
288
289 perf_event_attr__set_max_precise_ip(&attr);
290 /*
291 * Now let the usual logic to set up the perf_event_attr defaults
292 * to kick in when we return and before perf_evsel__open() is called.
293 */
294 attr.sample_period = 0;
295
296 evsel = perf_evsel__new(&attr);
297 if (evsel == NULL)
298 goto out;
299
300 /* use asprintf() because free(evsel) assumes name is allocated */
301 if (asprintf(&evsel->name, "cycles%.*s",
302 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
303 goto error_free;
304 out:
305 return evsel;
306 error_free:
307 perf_evsel__delete(evsel);
308 evsel = NULL;
309 goto out;
310 }
311
312 /*
313 * Returns pointer with encoded error via <linux/err.h> interface.
314 */
315 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
316 {
317 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
318 int err = -ENOMEM;
319
320 if (evsel == NULL) {
321 goto out_err;
322 } else {
323 struct perf_event_attr attr = {
324 .type = PERF_TYPE_TRACEPOINT,
325 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
326 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
327 };
328
329 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
330 goto out_free;
331
332 evsel->tp_format = trace_event__tp_format(sys, name);
333 if (IS_ERR(evsel->tp_format)) {
334 err = PTR_ERR(evsel->tp_format);
335 goto out_free;
336 }
337
338 event_attr_init(&attr);
339 attr.config = evsel->tp_format->id;
340 attr.sample_period = 1;
341 perf_evsel__init(evsel, &attr, idx);
342 }
343
344 return evsel;
345
346 out_free:
347 zfree(&evsel->name);
348 free(evsel);
349 out_err:
350 return ERR_PTR(err);
351 }
352
353 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
354 "cycles",
355 "instructions",
356 "cache-references",
357 "cache-misses",
358 "branches",
359 "branch-misses",
360 "bus-cycles",
361 "stalled-cycles-frontend",
362 "stalled-cycles-backend",
363 "ref-cycles",
364 };
365
366 static const char *__perf_evsel__hw_name(u64 config)
367 {
368 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
369 return perf_evsel__hw_names[config];
370
371 return "unknown-hardware";
372 }
373
374 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
375 {
376 int colon = 0, r = 0;
377 struct perf_event_attr *attr = &evsel->attr;
378 bool exclude_guest_default = false;
379
380 #define MOD_PRINT(context, mod) do { \
381 if (!attr->exclude_##context) { \
382 if (!colon) colon = ++r; \
383 r += scnprintf(bf + r, size - r, "%c", mod); \
384 } } while(0)
385
386 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
387 MOD_PRINT(kernel, 'k');
388 MOD_PRINT(user, 'u');
389 MOD_PRINT(hv, 'h');
390 exclude_guest_default = true;
391 }
392
393 if (attr->precise_ip) {
394 if (!colon)
395 colon = ++r;
396 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
397 exclude_guest_default = true;
398 }
399
400 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
401 MOD_PRINT(host, 'H');
402 MOD_PRINT(guest, 'G');
403 }
404 #undef MOD_PRINT
405 if (colon)
406 bf[colon - 1] = ':';
407 return r;
408 }
409
410 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
411 {
412 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
413 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
414 }
415
416 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
417 "cpu-clock",
418 "task-clock",
419 "page-faults",
420 "context-switches",
421 "cpu-migrations",
422 "minor-faults",
423 "major-faults",
424 "alignment-faults",
425 "emulation-faults",
426 "dummy",
427 };
428
429 static const char *__perf_evsel__sw_name(u64 config)
430 {
431 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
432 return perf_evsel__sw_names[config];
433 return "unknown-software";
434 }
435
436 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
437 {
438 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
439 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
440 }
441
442 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
443 {
444 int r;
445
446 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
447
448 if (type & HW_BREAKPOINT_R)
449 r += scnprintf(bf + r, size - r, "r");
450
451 if (type & HW_BREAKPOINT_W)
452 r += scnprintf(bf + r, size - r, "w");
453
454 if (type & HW_BREAKPOINT_X)
455 r += scnprintf(bf + r, size - r, "x");
456
457 return r;
458 }
459
460 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
461 {
462 struct perf_event_attr *attr = &evsel->attr;
463 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
464 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
465 }
466
467 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
468 [PERF_EVSEL__MAX_ALIASES] = {
469 { "L1-dcache", "l1-d", "l1d", "L1-data", },
470 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
471 { "LLC", "L2", },
472 { "dTLB", "d-tlb", "Data-TLB", },
473 { "iTLB", "i-tlb", "Instruction-TLB", },
474 { "branch", "branches", "bpu", "btb", "bpc", },
475 { "node", },
476 };
477
478 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
479 [PERF_EVSEL__MAX_ALIASES] = {
480 { "load", "loads", "read", },
481 { "store", "stores", "write", },
482 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
483 };
484
485 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
486 [PERF_EVSEL__MAX_ALIASES] = {
487 { "refs", "Reference", "ops", "access", },
488 { "misses", "miss", },
489 };
490
491 #define C(x) PERF_COUNT_HW_CACHE_##x
492 #define CACHE_READ (1 << C(OP_READ))
493 #define CACHE_WRITE (1 << C(OP_WRITE))
494 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
495 #define COP(x) (1 << x)
496
497 /*
498 * cache operartion stat
499 * L1I : Read and prefetch only
500 * ITLB and BPU : Read-only
501 */
502 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
503 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
504 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
505 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
506 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
507 [C(ITLB)] = (CACHE_READ),
508 [C(BPU)] = (CACHE_READ),
509 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
510 };
511
512 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
513 {
514 if (perf_evsel__hw_cache_stat[type] & COP(op))
515 return true; /* valid */
516 else
517 return false; /* invalid */
518 }
519
520 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
521 char *bf, size_t size)
522 {
523 if (result) {
524 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
525 perf_evsel__hw_cache_op[op][0],
526 perf_evsel__hw_cache_result[result][0]);
527 }
528
529 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
530 perf_evsel__hw_cache_op[op][1]);
531 }
532
533 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
534 {
535 u8 op, result, type = (config >> 0) & 0xff;
536 const char *err = "unknown-ext-hardware-cache-type";
537
538 if (type >= PERF_COUNT_HW_CACHE_MAX)
539 goto out_err;
540
541 op = (config >> 8) & 0xff;
542 err = "unknown-ext-hardware-cache-op";
543 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
544 goto out_err;
545
546 result = (config >> 16) & 0xff;
547 err = "unknown-ext-hardware-cache-result";
548 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
549 goto out_err;
550
551 err = "invalid-cache";
552 if (!perf_evsel__is_cache_op_valid(type, op))
553 goto out_err;
554
555 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
556 out_err:
557 return scnprintf(bf, size, "%s", err);
558 }
559
560 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
561 {
562 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
563 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
564 }
565
566 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
567 {
568 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
569 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
570 }
571
572 const char *perf_evsel__name(struct perf_evsel *evsel)
573 {
574 char bf[128];
575
576 if (evsel->name)
577 return evsel->name;
578
579 switch (evsel->attr.type) {
580 case PERF_TYPE_RAW:
581 perf_evsel__raw_name(evsel, bf, sizeof(bf));
582 break;
583
584 case PERF_TYPE_HARDWARE:
585 perf_evsel__hw_name(evsel, bf, sizeof(bf));
586 break;
587
588 case PERF_TYPE_HW_CACHE:
589 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
590 break;
591
592 case PERF_TYPE_SOFTWARE:
593 perf_evsel__sw_name(evsel, bf, sizeof(bf));
594 break;
595
596 case PERF_TYPE_TRACEPOINT:
597 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
598 break;
599
600 case PERF_TYPE_BREAKPOINT:
601 perf_evsel__bp_name(evsel, bf, sizeof(bf));
602 break;
603
604 default:
605 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
606 evsel->attr.type);
607 break;
608 }
609
610 evsel->name = strdup(bf);
611
612 return evsel->name ?: "unknown";
613 }
614
615 const char *perf_evsel__group_name(struct perf_evsel *evsel)
616 {
617 return evsel->group_name ?: "anon group";
618 }
619
620 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
621 {
622 int ret;
623 struct perf_evsel *pos;
624 const char *group_name = perf_evsel__group_name(evsel);
625
626 ret = scnprintf(buf, size, "%s", group_name);
627
628 ret += scnprintf(buf + ret, size - ret, " { %s",
629 perf_evsel__name(evsel));
630
631 for_each_group_member(pos, evsel)
632 ret += scnprintf(buf + ret, size - ret, ", %s",
633 perf_evsel__name(pos));
634
635 ret += scnprintf(buf + ret, size - ret, " }");
636
637 return ret;
638 }
639
640 void perf_evsel__config_callchain(struct perf_evsel *evsel,
641 struct record_opts *opts,
642 struct callchain_param *param)
643 {
644 bool function = perf_evsel__is_function_event(evsel);
645 struct perf_event_attr *attr = &evsel->attr;
646
647 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
648
649 attr->sample_max_stack = param->max_stack;
650
651 if (param->record_mode == CALLCHAIN_LBR) {
652 if (!opts->branch_stack) {
653 if (attr->exclude_user) {
654 pr_warning("LBR callstack option is only available "
655 "to get user callchain information. "
656 "Falling back to framepointers.\n");
657 } else {
658 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
659 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
660 PERF_SAMPLE_BRANCH_CALL_STACK |
661 PERF_SAMPLE_BRANCH_NO_CYCLES |
662 PERF_SAMPLE_BRANCH_NO_FLAGS;
663 }
664 } else
665 pr_warning("Cannot use LBR callstack with branch stack. "
666 "Falling back to framepointers.\n");
667 }
668
669 if (param->record_mode == CALLCHAIN_DWARF) {
670 if (!function) {
671 perf_evsel__set_sample_bit(evsel, REGS_USER);
672 perf_evsel__set_sample_bit(evsel, STACK_USER);
673 attr->sample_regs_user = PERF_REGS_MASK;
674 attr->sample_stack_user = param->dump_size;
675 attr->exclude_callchain_user = 1;
676 } else {
677 pr_info("Cannot use DWARF unwind for function trace event,"
678 " falling back to framepointers.\n");
679 }
680 }
681
682 if (function) {
683 pr_info("Disabling user space callchains for function trace event.\n");
684 attr->exclude_callchain_user = 1;
685 }
686 }
687
688 static void
689 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
690 struct callchain_param *param)
691 {
692 struct perf_event_attr *attr = &evsel->attr;
693
694 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
695 if (param->record_mode == CALLCHAIN_LBR) {
696 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
697 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
698 PERF_SAMPLE_BRANCH_CALL_STACK);
699 }
700 if (param->record_mode == CALLCHAIN_DWARF) {
701 perf_evsel__reset_sample_bit(evsel, REGS_USER);
702 perf_evsel__reset_sample_bit(evsel, STACK_USER);
703 }
704 }
705
706 static void apply_config_terms(struct perf_evsel *evsel,
707 struct record_opts *opts)
708 {
709 struct perf_evsel_config_term *term;
710 struct list_head *config_terms = &evsel->config_terms;
711 struct perf_event_attr *attr = &evsel->attr;
712 struct callchain_param param;
713 u32 dump_size = 0;
714 int max_stack = 0;
715 const char *callgraph_buf = NULL;
716
717 /* callgraph default */
718 param.record_mode = callchain_param.record_mode;
719
720 list_for_each_entry(term, config_terms, list) {
721 switch (term->type) {
722 case PERF_EVSEL__CONFIG_TERM_PERIOD:
723 attr->sample_period = term->val.period;
724 attr->freq = 0;
725 break;
726 case PERF_EVSEL__CONFIG_TERM_FREQ:
727 attr->sample_freq = term->val.freq;
728 attr->freq = 1;
729 break;
730 case PERF_EVSEL__CONFIG_TERM_TIME:
731 if (term->val.time)
732 perf_evsel__set_sample_bit(evsel, TIME);
733 else
734 perf_evsel__reset_sample_bit(evsel, TIME);
735 break;
736 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
737 callgraph_buf = term->val.callgraph;
738 break;
739 case PERF_EVSEL__CONFIG_TERM_BRANCH:
740 if (term->val.branch && strcmp(term->val.branch, "no")) {
741 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
742 parse_branch_str(term->val.branch,
743 &attr->branch_sample_type);
744 } else
745 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
746 break;
747 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
748 dump_size = term->val.stack_user;
749 break;
750 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
751 max_stack = term->val.max_stack;
752 break;
753 case PERF_EVSEL__CONFIG_TERM_INHERIT:
754 /*
755 * attr->inherit should has already been set by
756 * perf_evsel__config. If user explicitly set
757 * inherit using config terms, override global
758 * opt->no_inherit setting.
759 */
760 attr->inherit = term->val.inherit ? 1 : 0;
761 break;
762 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
763 attr->write_backward = term->val.overwrite ? 1 : 0;
764 break;
765 default:
766 break;
767 }
768 }
769
770 /* User explicitly set per-event callgraph, clear the old setting and reset. */
771 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
772 if (max_stack) {
773 param.max_stack = max_stack;
774 if (callgraph_buf == NULL)
775 callgraph_buf = "fp";
776 }
777
778 /* parse callgraph parameters */
779 if (callgraph_buf != NULL) {
780 if (!strcmp(callgraph_buf, "no")) {
781 param.enabled = false;
782 param.record_mode = CALLCHAIN_NONE;
783 } else {
784 param.enabled = true;
785 if (parse_callchain_record(callgraph_buf, &param)) {
786 pr_err("per-event callgraph setting for %s failed. "
787 "Apply callgraph global setting for it\n",
788 evsel->name);
789 return;
790 }
791 }
792 }
793 if (dump_size > 0) {
794 dump_size = round_up(dump_size, sizeof(u64));
795 param.dump_size = dump_size;
796 }
797
798 /* If global callgraph set, clear it */
799 if (callchain_param.enabled)
800 perf_evsel__reset_callgraph(evsel, &callchain_param);
801
802 /* set perf-event callgraph */
803 if (param.enabled)
804 perf_evsel__config_callchain(evsel, opts, &param);
805 }
806 }
807
808 /*
809 * The enable_on_exec/disabled value strategy:
810 *
811 * 1) For any type of traced program:
812 * - all independent events and group leaders are disabled
813 * - all group members are enabled
814 *
815 * Group members are ruled by group leaders. They need to
816 * be enabled, because the group scheduling relies on that.
817 *
818 * 2) For traced programs executed by perf:
819 * - all independent events and group leaders have
820 * enable_on_exec set
821 * - we don't specifically enable or disable any event during
822 * the record command
823 *
824 * Independent events and group leaders are initially disabled
825 * and get enabled by exec. Group members are ruled by group
826 * leaders as stated in 1).
827 *
828 * 3) For traced programs attached by perf (pid/tid):
829 * - we specifically enable or disable all events during
830 * the record command
831 *
832 * When attaching events to already running traced we
833 * enable/disable events specifically, as there's no
834 * initial traced exec call.
835 */
836 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
837 struct callchain_param *callchain)
838 {
839 struct perf_evsel *leader = evsel->leader;
840 struct perf_event_attr *attr = &evsel->attr;
841 int track = evsel->tracking;
842 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
843
844 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
845 attr->inherit = !opts->no_inherit;
846 attr->write_backward = opts->overwrite ? 1 : 0;
847
848 perf_evsel__set_sample_bit(evsel, IP);
849 perf_evsel__set_sample_bit(evsel, TID);
850
851 if (evsel->sample_read) {
852 perf_evsel__set_sample_bit(evsel, READ);
853
854 /*
855 * We need ID even in case of single event, because
856 * PERF_SAMPLE_READ process ID specific data.
857 */
858 perf_evsel__set_sample_id(evsel, false);
859
860 /*
861 * Apply group format only if we belong to group
862 * with more than one members.
863 */
864 if (leader->nr_members > 1) {
865 attr->read_format |= PERF_FORMAT_GROUP;
866 attr->inherit = 0;
867 }
868 }
869
870 /*
871 * We default some events to have a default interval. But keep
872 * it a weak assumption overridable by the user.
873 */
874 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
875 opts->user_interval != ULLONG_MAX)) {
876 if (opts->freq) {
877 perf_evsel__set_sample_bit(evsel, PERIOD);
878 attr->freq = 1;
879 attr->sample_freq = opts->freq;
880 } else {
881 attr->sample_period = opts->default_interval;
882 }
883 }
884
885 /*
886 * Disable sampling for all group members other
887 * than leader in case leader 'leads' the sampling.
888 */
889 if ((leader != evsel) && leader->sample_read) {
890 attr->sample_freq = 0;
891 attr->sample_period = 0;
892 }
893
894 if (opts->no_samples)
895 attr->sample_freq = 0;
896
897 if (opts->inherit_stat)
898 attr->inherit_stat = 1;
899
900 if (opts->sample_address) {
901 perf_evsel__set_sample_bit(evsel, ADDR);
902 attr->mmap_data = track;
903 }
904
905 /*
906 * We don't allow user space callchains for function trace
907 * event, due to issues with page faults while tracing page
908 * fault handler and its overall trickiness nature.
909 */
910 if (perf_evsel__is_function_event(evsel))
911 evsel->attr.exclude_callchain_user = 1;
912
913 if (callchain && callchain->enabled && !evsel->no_aux_samples)
914 perf_evsel__config_callchain(evsel, opts, callchain);
915
916 if (opts->sample_intr_regs) {
917 attr->sample_regs_intr = opts->sample_intr_regs;
918 perf_evsel__set_sample_bit(evsel, REGS_INTR);
919 }
920
921 if (target__has_cpu(&opts->target) || opts->sample_cpu)
922 perf_evsel__set_sample_bit(evsel, CPU);
923
924 if (opts->period)
925 perf_evsel__set_sample_bit(evsel, PERIOD);
926
927 /*
928 * When the user explicitly disabled time don't force it here.
929 */
930 if (opts->sample_time &&
931 (!perf_missing_features.sample_id_all &&
932 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
933 opts->sample_time_set)))
934 perf_evsel__set_sample_bit(evsel, TIME);
935
936 if (opts->raw_samples && !evsel->no_aux_samples) {
937 perf_evsel__set_sample_bit(evsel, TIME);
938 perf_evsel__set_sample_bit(evsel, RAW);
939 perf_evsel__set_sample_bit(evsel, CPU);
940 }
941
942 if (opts->sample_address)
943 perf_evsel__set_sample_bit(evsel, DATA_SRC);
944
945 if (opts->no_buffering) {
946 attr->watermark = 0;
947 attr->wakeup_events = 1;
948 }
949 if (opts->branch_stack && !evsel->no_aux_samples) {
950 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
951 attr->branch_sample_type = opts->branch_stack;
952 }
953
954 if (opts->sample_weight)
955 perf_evsel__set_sample_bit(evsel, WEIGHT);
956
957 attr->task = track;
958 attr->mmap = track;
959 attr->mmap2 = track && !perf_missing_features.mmap2;
960 attr->comm = track;
961
962 if (opts->record_namespaces)
963 attr->namespaces = track;
964
965 if (opts->record_switch_events)
966 attr->context_switch = track;
967
968 if (opts->sample_transaction)
969 perf_evsel__set_sample_bit(evsel, TRANSACTION);
970
971 if (opts->running_time) {
972 evsel->attr.read_format |=
973 PERF_FORMAT_TOTAL_TIME_ENABLED |
974 PERF_FORMAT_TOTAL_TIME_RUNNING;
975 }
976
977 /*
978 * XXX see the function comment above
979 *
980 * Disabling only independent events or group leaders,
981 * keeping group members enabled.
982 */
983 if (perf_evsel__is_group_leader(evsel))
984 attr->disabled = 1;
985
986 /*
987 * Setting enable_on_exec for independent events and
988 * group leaders for traced executed by perf.
989 */
990 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
991 !opts->initial_delay)
992 attr->enable_on_exec = 1;
993
994 if (evsel->immediate) {
995 attr->disabled = 0;
996 attr->enable_on_exec = 0;
997 }
998
999 clockid = opts->clockid;
1000 if (opts->use_clockid) {
1001 attr->use_clockid = 1;
1002 attr->clockid = opts->clockid;
1003 }
1004
1005 if (evsel->precise_max)
1006 perf_event_attr__set_max_precise_ip(attr);
1007
1008 if (opts->all_user) {
1009 attr->exclude_kernel = 1;
1010 attr->exclude_user = 0;
1011 }
1012
1013 if (opts->all_kernel) {
1014 attr->exclude_kernel = 0;
1015 attr->exclude_user = 1;
1016 }
1017
1018 /*
1019 * Apply event specific term settings,
1020 * it overloads any global configuration.
1021 */
1022 apply_config_terms(evsel, opts);
1023
1024 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1025 }
1026
1027 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1028 {
1029 if (evsel->system_wide)
1030 nthreads = 1;
1031
1032 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1033
1034 if (evsel->fd) {
1035 int cpu, thread;
1036 for (cpu = 0; cpu < ncpus; cpu++) {
1037 for (thread = 0; thread < nthreads; thread++) {
1038 FD(evsel, cpu, thread) = -1;
1039 }
1040 }
1041 }
1042
1043 return evsel->fd != NULL ? 0 : -ENOMEM;
1044 }
1045
1046 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1047 int ioc, void *arg)
1048 {
1049 int cpu, thread;
1050
1051 if (evsel->system_wide)
1052 nthreads = 1;
1053
1054 for (cpu = 0; cpu < ncpus; cpu++) {
1055 for (thread = 0; thread < nthreads; thread++) {
1056 int fd = FD(evsel, cpu, thread),
1057 err = ioctl(fd, ioc, arg);
1058
1059 if (err)
1060 return err;
1061 }
1062 }
1063
1064 return 0;
1065 }
1066
1067 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1068 const char *filter)
1069 {
1070 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1071 PERF_EVENT_IOC_SET_FILTER,
1072 (void *)filter);
1073 }
1074
1075 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1076 {
1077 char *new_filter = strdup(filter);
1078
1079 if (new_filter != NULL) {
1080 free(evsel->filter);
1081 evsel->filter = new_filter;
1082 return 0;
1083 }
1084
1085 return -1;
1086 }
1087
1088 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1089 const char *fmt, const char *filter)
1090 {
1091 char *new_filter;
1092
1093 if (evsel->filter == NULL)
1094 return perf_evsel__set_filter(evsel, filter);
1095
1096 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1097 free(evsel->filter);
1098 evsel->filter = new_filter;
1099 return 0;
1100 }
1101
1102 return -1;
1103 }
1104
1105 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1106 {
1107 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1108 }
1109
1110 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1111 {
1112 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1113 }
1114
1115 int perf_evsel__enable(struct perf_evsel *evsel)
1116 {
1117 int nthreads = thread_map__nr(evsel->threads);
1118 int ncpus = cpu_map__nr(evsel->cpus);
1119
1120 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1121 PERF_EVENT_IOC_ENABLE,
1122 0);
1123 }
1124
1125 int perf_evsel__disable(struct perf_evsel *evsel)
1126 {
1127 int nthreads = thread_map__nr(evsel->threads);
1128 int ncpus = cpu_map__nr(evsel->cpus);
1129
1130 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1131 PERF_EVENT_IOC_DISABLE,
1132 0);
1133 }
1134
1135 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1136 {
1137 if (ncpus == 0 || nthreads == 0)
1138 return 0;
1139
1140 if (evsel->system_wide)
1141 nthreads = 1;
1142
1143 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1144 if (evsel->sample_id == NULL)
1145 return -ENOMEM;
1146
1147 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1148 if (evsel->id == NULL) {
1149 xyarray__delete(evsel->sample_id);
1150 evsel->sample_id = NULL;
1151 return -ENOMEM;
1152 }
1153
1154 return 0;
1155 }
1156
1157 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1158 {
1159 xyarray__delete(evsel->fd);
1160 evsel->fd = NULL;
1161 }
1162
1163 static void perf_evsel__free_id(struct perf_evsel *evsel)
1164 {
1165 xyarray__delete(evsel->sample_id);
1166 evsel->sample_id = NULL;
1167 zfree(&evsel->id);
1168 }
1169
1170 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1171 {
1172 struct perf_evsel_config_term *term, *h;
1173
1174 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1175 list_del(&term->list);
1176 free(term);
1177 }
1178 }
1179
1180 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1181 {
1182 int cpu, thread;
1183
1184 if (evsel->system_wide)
1185 nthreads = 1;
1186
1187 for (cpu = 0; cpu < ncpus; cpu++)
1188 for (thread = 0; thread < nthreads; ++thread) {
1189 close(FD(evsel, cpu, thread));
1190 FD(evsel, cpu, thread) = -1;
1191 }
1192 }
1193
1194 void perf_evsel__exit(struct perf_evsel *evsel)
1195 {
1196 assert(list_empty(&evsel->node));
1197 assert(evsel->evlist == NULL);
1198 perf_evsel__free_fd(evsel);
1199 perf_evsel__free_id(evsel);
1200 perf_evsel__free_config_terms(evsel);
1201 close_cgroup(evsel->cgrp);
1202 cpu_map__put(evsel->cpus);
1203 cpu_map__put(evsel->own_cpus);
1204 thread_map__put(evsel->threads);
1205 zfree(&evsel->group_name);
1206 zfree(&evsel->name);
1207 perf_evsel__object.fini(evsel);
1208 }
1209
1210 void perf_evsel__delete(struct perf_evsel *evsel)
1211 {
1212 perf_evsel__exit(evsel);
1213 free(evsel);
1214 }
1215
1216 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1217 struct perf_counts_values *count)
1218 {
1219 struct perf_counts_values tmp;
1220
1221 if (!evsel->prev_raw_counts)
1222 return;
1223
1224 if (cpu == -1) {
1225 tmp = evsel->prev_raw_counts->aggr;
1226 evsel->prev_raw_counts->aggr = *count;
1227 } else {
1228 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1229 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1230 }
1231
1232 count->val = count->val - tmp.val;
1233 count->ena = count->ena - tmp.ena;
1234 count->run = count->run - tmp.run;
1235 }
1236
1237 void perf_counts_values__scale(struct perf_counts_values *count,
1238 bool scale, s8 *pscaled)
1239 {
1240 s8 scaled = 0;
1241
1242 if (scale) {
1243 if (count->run == 0) {
1244 scaled = -1;
1245 count->val = 0;
1246 } else if (count->run < count->ena) {
1247 scaled = 1;
1248 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1249 }
1250 } else
1251 count->ena = count->run = 0;
1252
1253 if (pscaled)
1254 *pscaled = scaled;
1255 }
1256
1257 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1258 struct perf_counts_values *count)
1259 {
1260 memset(count, 0, sizeof(*count));
1261
1262 if (FD(evsel, cpu, thread) < 0)
1263 return -EINVAL;
1264
1265 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1266 return -errno;
1267
1268 return 0;
1269 }
1270
1271 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1272 int cpu, int thread, bool scale)
1273 {
1274 struct perf_counts_values count;
1275 size_t nv = scale ? 3 : 1;
1276
1277 if (FD(evsel, cpu, thread) < 0)
1278 return -EINVAL;
1279
1280 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1281 return -ENOMEM;
1282
1283 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1284 return -errno;
1285
1286 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1287 perf_counts_values__scale(&count, scale, NULL);
1288 *perf_counts(evsel->counts, cpu, thread) = count;
1289 return 0;
1290 }
1291
1292 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1293 {
1294 struct perf_evsel *leader = evsel->leader;
1295 int fd;
1296
1297 if (perf_evsel__is_group_leader(evsel))
1298 return -1;
1299
1300 /*
1301 * Leader must be already processed/open,
1302 * if not it's a bug.
1303 */
1304 BUG_ON(!leader->fd);
1305
1306 fd = FD(leader, cpu, thread);
1307 BUG_ON(fd == -1);
1308
1309 return fd;
1310 }
1311
1312 struct bit_names {
1313 int bit;
1314 const char *name;
1315 };
1316
1317 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1318 {
1319 bool first_bit = true;
1320 int i = 0;
1321
1322 do {
1323 if (value & bits[i].bit) {
1324 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1325 first_bit = false;
1326 }
1327 } while (bits[++i].name != NULL);
1328 }
1329
1330 static void __p_sample_type(char *buf, size_t size, u64 value)
1331 {
1332 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1333 struct bit_names bits[] = {
1334 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1335 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1336 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1337 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1338 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1339 bit_name(WEIGHT),
1340 { .name = NULL, }
1341 };
1342 #undef bit_name
1343 __p_bits(buf, size, value, bits);
1344 }
1345
1346 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1347 {
1348 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1349 struct bit_names bits[] = {
1350 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1351 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1352 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1353 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1354 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1355 { .name = NULL, }
1356 };
1357 #undef bit_name
1358 __p_bits(buf, size, value, bits);
1359 }
1360
1361 static void __p_read_format(char *buf, size_t size, u64 value)
1362 {
1363 #define bit_name(n) { PERF_FORMAT_##n, #n }
1364 struct bit_names bits[] = {
1365 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1366 bit_name(ID), bit_name(GROUP),
1367 { .name = NULL, }
1368 };
1369 #undef bit_name
1370 __p_bits(buf, size, value, bits);
1371 }
1372
1373 #define BUF_SIZE 1024
1374
1375 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1376 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1377 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1378 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1379 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1380 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1381
1382 #define PRINT_ATTRn(_n, _f, _p) \
1383 do { \
1384 if (attr->_f) { \
1385 _p(attr->_f); \
1386 ret += attr__fprintf(fp, _n, buf, priv);\
1387 } \
1388 } while (0)
1389
1390 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1391
1392 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1393 attr__fprintf_f attr__fprintf, void *priv)
1394 {
1395 char buf[BUF_SIZE];
1396 int ret = 0;
1397
1398 PRINT_ATTRf(type, p_unsigned);
1399 PRINT_ATTRf(size, p_unsigned);
1400 PRINT_ATTRf(config, p_hex);
1401 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1402 PRINT_ATTRf(sample_type, p_sample_type);
1403 PRINT_ATTRf(read_format, p_read_format);
1404
1405 PRINT_ATTRf(disabled, p_unsigned);
1406 PRINT_ATTRf(inherit, p_unsigned);
1407 PRINT_ATTRf(pinned, p_unsigned);
1408 PRINT_ATTRf(exclusive, p_unsigned);
1409 PRINT_ATTRf(exclude_user, p_unsigned);
1410 PRINT_ATTRf(exclude_kernel, p_unsigned);
1411 PRINT_ATTRf(exclude_hv, p_unsigned);
1412 PRINT_ATTRf(exclude_idle, p_unsigned);
1413 PRINT_ATTRf(mmap, p_unsigned);
1414 PRINT_ATTRf(comm, p_unsigned);
1415 PRINT_ATTRf(freq, p_unsigned);
1416 PRINT_ATTRf(inherit_stat, p_unsigned);
1417 PRINT_ATTRf(enable_on_exec, p_unsigned);
1418 PRINT_ATTRf(task, p_unsigned);
1419 PRINT_ATTRf(watermark, p_unsigned);
1420 PRINT_ATTRf(precise_ip, p_unsigned);
1421 PRINT_ATTRf(mmap_data, p_unsigned);
1422 PRINT_ATTRf(sample_id_all, p_unsigned);
1423 PRINT_ATTRf(exclude_host, p_unsigned);
1424 PRINT_ATTRf(exclude_guest, p_unsigned);
1425 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1426 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1427 PRINT_ATTRf(mmap2, p_unsigned);
1428 PRINT_ATTRf(comm_exec, p_unsigned);
1429 PRINT_ATTRf(use_clockid, p_unsigned);
1430 PRINT_ATTRf(context_switch, p_unsigned);
1431 PRINT_ATTRf(write_backward, p_unsigned);
1432
1433 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1434 PRINT_ATTRf(bp_type, p_unsigned);
1435 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1436 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1437 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1438 PRINT_ATTRf(sample_regs_user, p_hex);
1439 PRINT_ATTRf(sample_stack_user, p_unsigned);
1440 PRINT_ATTRf(clockid, p_signed);
1441 PRINT_ATTRf(sample_regs_intr, p_hex);
1442 PRINT_ATTRf(aux_watermark, p_unsigned);
1443 PRINT_ATTRf(sample_max_stack, p_unsigned);
1444
1445 return ret;
1446 }
1447
1448 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1449 void *priv __maybe_unused)
1450 {
1451 return fprintf(fp, " %-32s %s\n", name, val);
1452 }
1453
1454 static bool ignore_missing_thread(struct perf_evsel *evsel,
1455 struct thread_map *threads,
1456 int thread, int err)
1457 {
1458 if (!evsel->ignore_missing_thread)
1459 return false;
1460
1461 /* The system wide setup does not work with threads. */
1462 if (evsel->system_wide)
1463 return false;
1464
1465 /* The -ESRCH is perf event syscall errno for pid's not found. */
1466 if (err != -ESRCH)
1467 return false;
1468
1469 /* If there's only one thread, let it fail. */
1470 if (threads->nr == 1)
1471 return false;
1472
1473 if (thread_map__remove(threads, thread))
1474 return false;
1475
1476 pr_warning("WARNING: Ignored open failure for pid %d\n",
1477 thread_map__pid(threads, thread));
1478 return true;
1479 }
1480
1481 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1482 struct thread_map *threads)
1483 {
1484 int cpu, thread, nthreads;
1485 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1486 int pid = -1, err;
1487 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1488
1489 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1490 return -EINVAL;
1491
1492 if (cpus == NULL) {
1493 static struct cpu_map *empty_cpu_map;
1494
1495 if (empty_cpu_map == NULL) {
1496 empty_cpu_map = cpu_map__dummy_new();
1497 if (empty_cpu_map == NULL)
1498 return -ENOMEM;
1499 }
1500
1501 cpus = empty_cpu_map;
1502 }
1503
1504 if (threads == NULL) {
1505 static struct thread_map *empty_thread_map;
1506
1507 if (empty_thread_map == NULL) {
1508 empty_thread_map = thread_map__new_by_tid(-1);
1509 if (empty_thread_map == NULL)
1510 return -ENOMEM;
1511 }
1512
1513 threads = empty_thread_map;
1514 }
1515
1516 if (evsel->system_wide)
1517 nthreads = 1;
1518 else
1519 nthreads = threads->nr;
1520
1521 if (evsel->fd == NULL &&
1522 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1523 return -ENOMEM;
1524
1525 if (evsel->cgrp) {
1526 flags |= PERF_FLAG_PID_CGROUP;
1527 pid = evsel->cgrp->fd;
1528 }
1529
1530 fallback_missing_features:
1531 if (perf_missing_features.clockid_wrong)
1532 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1533 if (perf_missing_features.clockid) {
1534 evsel->attr.use_clockid = 0;
1535 evsel->attr.clockid = 0;
1536 }
1537 if (perf_missing_features.cloexec)
1538 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1539 if (perf_missing_features.mmap2)
1540 evsel->attr.mmap2 = 0;
1541 if (perf_missing_features.exclude_guest)
1542 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1543 if (perf_missing_features.lbr_flags)
1544 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1545 PERF_SAMPLE_BRANCH_NO_CYCLES);
1546 retry_sample_id:
1547 if (perf_missing_features.sample_id_all)
1548 evsel->attr.sample_id_all = 0;
1549
1550 if (verbose >= 2) {
1551 fprintf(stderr, "%.60s\n", graph_dotted_line);
1552 fprintf(stderr, "perf_event_attr:\n");
1553 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1554 fprintf(stderr, "%.60s\n", graph_dotted_line);
1555 }
1556
1557 for (cpu = 0; cpu < cpus->nr; cpu++) {
1558
1559 for (thread = 0; thread < nthreads; thread++) {
1560 int fd, group_fd;
1561
1562 if (!evsel->cgrp && !evsel->system_wide)
1563 pid = thread_map__pid(threads, thread);
1564
1565 group_fd = get_group_fd(evsel, cpu, thread);
1566 retry_open:
1567 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1568 pid, cpus->map[cpu], group_fd, flags);
1569
1570 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1571 group_fd, flags);
1572
1573 FD(evsel, cpu, thread) = fd;
1574
1575 if (fd < 0) {
1576 err = -errno;
1577
1578 if (ignore_missing_thread(evsel, threads, thread, err)) {
1579 /*
1580 * We just removed 1 thread, so take a step
1581 * back on thread index and lower the upper
1582 * nthreads limit.
1583 */
1584 nthreads--;
1585 thread--;
1586
1587 /* ... and pretend like nothing have happened. */
1588 err = 0;
1589 continue;
1590 }
1591
1592 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1593 err);
1594 goto try_fallback;
1595 }
1596
1597 pr_debug2(" = %d\n", fd);
1598
1599 if (evsel->bpf_fd >= 0) {
1600 int evt_fd = fd;
1601 int bpf_fd = evsel->bpf_fd;
1602
1603 err = ioctl(evt_fd,
1604 PERF_EVENT_IOC_SET_BPF,
1605 bpf_fd);
1606 if (err && errno != EEXIST) {
1607 pr_err("failed to attach bpf fd %d: %s\n",
1608 bpf_fd, strerror(errno));
1609 err = -EINVAL;
1610 goto out_close;
1611 }
1612 }
1613
1614 set_rlimit = NO_CHANGE;
1615
1616 /*
1617 * If we succeeded but had to kill clockid, fail and
1618 * have perf_evsel__open_strerror() print us a nice
1619 * error.
1620 */
1621 if (perf_missing_features.clockid ||
1622 perf_missing_features.clockid_wrong) {
1623 err = -EINVAL;
1624 goto out_close;
1625 }
1626 }
1627 }
1628
1629 return 0;
1630
1631 try_fallback:
1632 /*
1633 * perf stat needs between 5 and 22 fds per CPU. When we run out
1634 * of them try to increase the limits.
1635 */
1636 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1637 struct rlimit l;
1638 int old_errno = errno;
1639
1640 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1641 if (set_rlimit == NO_CHANGE)
1642 l.rlim_cur = l.rlim_max;
1643 else {
1644 l.rlim_cur = l.rlim_max + 1000;
1645 l.rlim_max = l.rlim_cur;
1646 }
1647 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1648 set_rlimit++;
1649 errno = old_errno;
1650 goto retry_open;
1651 }
1652 }
1653 errno = old_errno;
1654 }
1655
1656 if (err != -EINVAL || cpu > 0 || thread > 0)
1657 goto out_close;
1658
1659 /*
1660 * Must probe features in the order they were added to the
1661 * perf_event_attr interface.
1662 */
1663 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1664 perf_missing_features.write_backward = true;
1665 goto out_close;
1666 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1667 perf_missing_features.clockid_wrong = true;
1668 goto fallback_missing_features;
1669 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1670 perf_missing_features.clockid = true;
1671 goto fallback_missing_features;
1672 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1673 perf_missing_features.cloexec = true;
1674 goto fallback_missing_features;
1675 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1676 perf_missing_features.mmap2 = true;
1677 goto fallback_missing_features;
1678 } else if (!perf_missing_features.exclude_guest &&
1679 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1680 perf_missing_features.exclude_guest = true;
1681 goto fallback_missing_features;
1682 } else if (!perf_missing_features.sample_id_all) {
1683 perf_missing_features.sample_id_all = true;
1684 goto retry_sample_id;
1685 } else if (!perf_missing_features.lbr_flags &&
1686 (evsel->attr.branch_sample_type &
1687 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1688 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1689 perf_missing_features.lbr_flags = true;
1690 goto fallback_missing_features;
1691 }
1692 out_close:
1693 do {
1694 while (--thread >= 0) {
1695 close(FD(evsel, cpu, thread));
1696 FD(evsel, cpu, thread) = -1;
1697 }
1698 thread = nthreads;
1699 } while (--cpu >= 0);
1700 return err;
1701 }
1702
1703 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1704 {
1705 if (evsel->fd == NULL)
1706 return;
1707
1708 perf_evsel__close_fd(evsel, ncpus, nthreads);
1709 perf_evsel__free_fd(evsel);
1710 }
1711
1712 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1713 struct cpu_map *cpus)
1714 {
1715 return perf_evsel__open(evsel, cpus, NULL);
1716 }
1717
1718 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1719 struct thread_map *threads)
1720 {
1721 return perf_evsel__open(evsel, NULL, threads);
1722 }
1723
1724 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1725 const union perf_event *event,
1726 struct perf_sample *sample)
1727 {
1728 u64 type = evsel->attr.sample_type;
1729 const u64 *array = event->sample.array;
1730 bool swapped = evsel->needs_swap;
1731 union u64_swap u;
1732
1733 array += ((event->header.size -
1734 sizeof(event->header)) / sizeof(u64)) - 1;
1735
1736 if (type & PERF_SAMPLE_IDENTIFIER) {
1737 sample->id = *array;
1738 array--;
1739 }
1740
1741 if (type & PERF_SAMPLE_CPU) {
1742 u.val64 = *array;
1743 if (swapped) {
1744 /* undo swap of u64, then swap on individual u32s */
1745 u.val64 = bswap_64(u.val64);
1746 u.val32[0] = bswap_32(u.val32[0]);
1747 }
1748
1749 sample->cpu = u.val32[0];
1750 array--;
1751 }
1752
1753 if (type & PERF_SAMPLE_STREAM_ID) {
1754 sample->stream_id = *array;
1755 array--;
1756 }
1757
1758 if (type & PERF_SAMPLE_ID) {
1759 sample->id = *array;
1760 array--;
1761 }
1762
1763 if (type & PERF_SAMPLE_TIME) {
1764 sample->time = *array;
1765 array--;
1766 }
1767
1768 if (type & PERF_SAMPLE_TID) {
1769 u.val64 = *array;
1770 if (swapped) {
1771 /* undo swap of u64, then swap on individual u32s */
1772 u.val64 = bswap_64(u.val64);
1773 u.val32[0] = bswap_32(u.val32[0]);
1774 u.val32[1] = bswap_32(u.val32[1]);
1775 }
1776
1777 sample->pid = u.val32[0];
1778 sample->tid = u.val32[1];
1779 array--;
1780 }
1781
1782 return 0;
1783 }
1784
1785 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1786 u64 size)
1787 {
1788 return size > max_size || offset + size > endp;
1789 }
1790
1791 #define OVERFLOW_CHECK(offset, size, max_size) \
1792 do { \
1793 if (overflow(endp, (max_size), (offset), (size))) \
1794 return -EFAULT; \
1795 } while (0)
1796
1797 #define OVERFLOW_CHECK_u64(offset) \
1798 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1799
1800 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1801 struct perf_sample *data)
1802 {
1803 u64 type = evsel->attr.sample_type;
1804 bool swapped = evsel->needs_swap;
1805 const u64 *array;
1806 u16 max_size = event->header.size;
1807 const void *endp = (void *)event + max_size;
1808 u64 sz;
1809
1810 /*
1811 * used for cross-endian analysis. See git commit 65014ab3
1812 * for why this goofiness is needed.
1813 */
1814 union u64_swap u;
1815
1816 memset(data, 0, sizeof(*data));
1817 data->cpu = data->pid = data->tid = -1;
1818 data->stream_id = data->id = data->time = -1ULL;
1819 data->period = evsel->attr.sample_period;
1820 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1821
1822 if (event->header.type != PERF_RECORD_SAMPLE) {
1823 if (!evsel->attr.sample_id_all)
1824 return 0;
1825 return perf_evsel__parse_id_sample(evsel, event, data);
1826 }
1827
1828 array = event->sample.array;
1829
1830 /*
1831 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1832 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1833 * check the format does not go past the end of the event.
1834 */
1835 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1836 return -EFAULT;
1837
1838 data->id = -1ULL;
1839 if (type & PERF_SAMPLE_IDENTIFIER) {
1840 data->id = *array;
1841 array++;
1842 }
1843
1844 if (type & PERF_SAMPLE_IP) {
1845 data->ip = *array;
1846 array++;
1847 }
1848
1849 if (type & PERF_SAMPLE_TID) {
1850 u.val64 = *array;
1851 if (swapped) {
1852 /* undo swap of u64, then swap on individual u32s */
1853 u.val64 = bswap_64(u.val64);
1854 u.val32[0] = bswap_32(u.val32[0]);
1855 u.val32[1] = bswap_32(u.val32[1]);
1856 }
1857
1858 data->pid = u.val32[0];
1859 data->tid = u.val32[1];
1860 array++;
1861 }
1862
1863 if (type & PERF_SAMPLE_TIME) {
1864 data->time = *array;
1865 array++;
1866 }
1867
1868 data->addr = 0;
1869 if (type & PERF_SAMPLE_ADDR) {
1870 data->addr = *array;
1871 array++;
1872 }
1873
1874 if (type & PERF_SAMPLE_ID) {
1875 data->id = *array;
1876 array++;
1877 }
1878
1879 if (type & PERF_SAMPLE_STREAM_ID) {
1880 data->stream_id = *array;
1881 array++;
1882 }
1883
1884 if (type & PERF_SAMPLE_CPU) {
1885
1886 u.val64 = *array;
1887 if (swapped) {
1888 /* undo swap of u64, then swap on individual u32s */
1889 u.val64 = bswap_64(u.val64);
1890 u.val32[0] = bswap_32(u.val32[0]);
1891 }
1892
1893 data->cpu = u.val32[0];
1894 array++;
1895 }
1896
1897 if (type & PERF_SAMPLE_PERIOD) {
1898 data->period = *array;
1899 array++;
1900 }
1901
1902 if (type & PERF_SAMPLE_READ) {
1903 u64 read_format = evsel->attr.read_format;
1904
1905 OVERFLOW_CHECK_u64(array);
1906 if (read_format & PERF_FORMAT_GROUP)
1907 data->read.group.nr = *array;
1908 else
1909 data->read.one.value = *array;
1910
1911 array++;
1912
1913 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1914 OVERFLOW_CHECK_u64(array);
1915 data->read.time_enabled = *array;
1916 array++;
1917 }
1918
1919 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1920 OVERFLOW_CHECK_u64(array);
1921 data->read.time_running = *array;
1922 array++;
1923 }
1924
1925 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1926 if (read_format & PERF_FORMAT_GROUP) {
1927 const u64 max_group_nr = UINT64_MAX /
1928 sizeof(struct sample_read_value);
1929
1930 if (data->read.group.nr > max_group_nr)
1931 return -EFAULT;
1932 sz = data->read.group.nr *
1933 sizeof(struct sample_read_value);
1934 OVERFLOW_CHECK(array, sz, max_size);
1935 data->read.group.values =
1936 (struct sample_read_value *)array;
1937 array = (void *)array + sz;
1938 } else {
1939 OVERFLOW_CHECK_u64(array);
1940 data->read.one.id = *array;
1941 array++;
1942 }
1943 }
1944
1945 if (type & PERF_SAMPLE_CALLCHAIN) {
1946 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1947
1948 OVERFLOW_CHECK_u64(array);
1949 data->callchain = (struct ip_callchain *)array++;
1950 if (data->callchain->nr > max_callchain_nr)
1951 return -EFAULT;
1952 sz = data->callchain->nr * sizeof(u64);
1953 OVERFLOW_CHECK(array, sz, max_size);
1954 array = (void *)array + sz;
1955 }
1956
1957 if (type & PERF_SAMPLE_RAW) {
1958 OVERFLOW_CHECK_u64(array);
1959 u.val64 = *array;
1960 if (WARN_ONCE(swapped,
1961 "Endianness of raw data not corrected!\n")) {
1962 /* undo swap of u64, then swap on individual u32s */
1963 u.val64 = bswap_64(u.val64);
1964 u.val32[0] = bswap_32(u.val32[0]);
1965 u.val32[1] = bswap_32(u.val32[1]);
1966 }
1967 data->raw_size = u.val32[0];
1968 array = (void *)array + sizeof(u32);
1969
1970 OVERFLOW_CHECK(array, data->raw_size, max_size);
1971 data->raw_data = (void *)array;
1972 array = (void *)array + data->raw_size;
1973 }
1974
1975 if (type & PERF_SAMPLE_BRANCH_STACK) {
1976 const u64 max_branch_nr = UINT64_MAX /
1977 sizeof(struct branch_entry);
1978
1979 OVERFLOW_CHECK_u64(array);
1980 data->branch_stack = (struct branch_stack *)array++;
1981
1982 if (data->branch_stack->nr > max_branch_nr)
1983 return -EFAULT;
1984 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1985 OVERFLOW_CHECK(array, sz, max_size);
1986 array = (void *)array + sz;
1987 }
1988
1989 if (type & PERF_SAMPLE_REGS_USER) {
1990 OVERFLOW_CHECK_u64(array);
1991 data->user_regs.abi = *array;
1992 array++;
1993
1994 if (data->user_regs.abi) {
1995 u64 mask = evsel->attr.sample_regs_user;
1996
1997 sz = hweight_long(mask) * sizeof(u64);
1998 OVERFLOW_CHECK(array, sz, max_size);
1999 data->user_regs.mask = mask;
2000 data->user_regs.regs = (u64 *)array;
2001 array = (void *)array + sz;
2002 }
2003 }
2004
2005 if (type & PERF_SAMPLE_STACK_USER) {
2006 OVERFLOW_CHECK_u64(array);
2007 sz = *array++;
2008
2009 data->user_stack.offset = ((char *)(array - 1)
2010 - (char *) event);
2011
2012 if (!sz) {
2013 data->user_stack.size = 0;
2014 } else {
2015 OVERFLOW_CHECK(array, sz, max_size);
2016 data->user_stack.data = (char *)array;
2017 array = (void *)array + sz;
2018 OVERFLOW_CHECK_u64(array);
2019 data->user_stack.size = *array++;
2020 if (WARN_ONCE(data->user_stack.size > sz,
2021 "user stack dump failure\n"))
2022 return -EFAULT;
2023 }
2024 }
2025
2026 if (type & PERF_SAMPLE_WEIGHT) {
2027 OVERFLOW_CHECK_u64(array);
2028 data->weight = *array;
2029 array++;
2030 }
2031
2032 data->data_src = PERF_MEM_DATA_SRC_NONE;
2033 if (type & PERF_SAMPLE_DATA_SRC) {
2034 OVERFLOW_CHECK_u64(array);
2035 data->data_src = *array;
2036 array++;
2037 }
2038
2039 data->transaction = 0;
2040 if (type & PERF_SAMPLE_TRANSACTION) {
2041 OVERFLOW_CHECK_u64(array);
2042 data->transaction = *array;
2043 array++;
2044 }
2045
2046 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2047 if (type & PERF_SAMPLE_REGS_INTR) {
2048 OVERFLOW_CHECK_u64(array);
2049 data->intr_regs.abi = *array;
2050 array++;
2051
2052 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2053 u64 mask = evsel->attr.sample_regs_intr;
2054
2055 sz = hweight_long(mask) * sizeof(u64);
2056 OVERFLOW_CHECK(array, sz, max_size);
2057 data->intr_regs.mask = mask;
2058 data->intr_regs.regs = (u64 *)array;
2059 array = (void *)array + sz;
2060 }
2061 }
2062
2063 return 0;
2064 }
2065
2066 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2067 u64 read_format)
2068 {
2069 size_t sz, result = sizeof(struct sample_event);
2070
2071 if (type & PERF_SAMPLE_IDENTIFIER)
2072 result += sizeof(u64);
2073
2074 if (type & PERF_SAMPLE_IP)
2075 result += sizeof(u64);
2076
2077 if (type & PERF_SAMPLE_TID)
2078 result += sizeof(u64);
2079
2080 if (type & PERF_SAMPLE_TIME)
2081 result += sizeof(u64);
2082
2083 if (type & PERF_SAMPLE_ADDR)
2084 result += sizeof(u64);
2085
2086 if (type & PERF_SAMPLE_ID)
2087 result += sizeof(u64);
2088
2089 if (type & PERF_SAMPLE_STREAM_ID)
2090 result += sizeof(u64);
2091
2092 if (type & PERF_SAMPLE_CPU)
2093 result += sizeof(u64);
2094
2095 if (type & PERF_SAMPLE_PERIOD)
2096 result += sizeof(u64);
2097
2098 if (type & PERF_SAMPLE_READ) {
2099 result += sizeof(u64);
2100 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2101 result += sizeof(u64);
2102 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2103 result += sizeof(u64);
2104 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2105 if (read_format & PERF_FORMAT_GROUP) {
2106 sz = sample->read.group.nr *
2107 sizeof(struct sample_read_value);
2108 result += sz;
2109 } else {
2110 result += sizeof(u64);
2111 }
2112 }
2113
2114 if (type & PERF_SAMPLE_CALLCHAIN) {
2115 sz = (sample->callchain->nr + 1) * sizeof(u64);
2116 result += sz;
2117 }
2118
2119 if (type & PERF_SAMPLE_RAW) {
2120 result += sizeof(u32);
2121 result += sample->raw_size;
2122 }
2123
2124 if (type & PERF_SAMPLE_BRANCH_STACK) {
2125 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2126 sz += sizeof(u64);
2127 result += sz;
2128 }
2129
2130 if (type & PERF_SAMPLE_REGS_USER) {
2131 if (sample->user_regs.abi) {
2132 result += sizeof(u64);
2133 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2134 result += sz;
2135 } else {
2136 result += sizeof(u64);
2137 }
2138 }
2139
2140 if (type & PERF_SAMPLE_STACK_USER) {
2141 sz = sample->user_stack.size;
2142 result += sizeof(u64);
2143 if (sz) {
2144 result += sz;
2145 result += sizeof(u64);
2146 }
2147 }
2148
2149 if (type & PERF_SAMPLE_WEIGHT)
2150 result += sizeof(u64);
2151
2152 if (type & PERF_SAMPLE_DATA_SRC)
2153 result += sizeof(u64);
2154
2155 if (type & PERF_SAMPLE_TRANSACTION)
2156 result += sizeof(u64);
2157
2158 if (type & PERF_SAMPLE_REGS_INTR) {
2159 if (sample->intr_regs.abi) {
2160 result += sizeof(u64);
2161 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2162 result += sz;
2163 } else {
2164 result += sizeof(u64);
2165 }
2166 }
2167
2168 return result;
2169 }
2170
2171 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2172 u64 read_format,
2173 const struct perf_sample *sample,
2174 bool swapped)
2175 {
2176 u64 *array;
2177 size_t sz;
2178 /*
2179 * used for cross-endian analysis. See git commit 65014ab3
2180 * for why this goofiness is needed.
2181 */
2182 union u64_swap u;
2183
2184 array = event->sample.array;
2185
2186 if (type & PERF_SAMPLE_IDENTIFIER) {
2187 *array = sample->id;
2188 array++;
2189 }
2190
2191 if (type & PERF_SAMPLE_IP) {
2192 *array = sample->ip;
2193 array++;
2194 }
2195
2196 if (type & PERF_SAMPLE_TID) {
2197 u.val32[0] = sample->pid;
2198 u.val32[1] = sample->tid;
2199 if (swapped) {
2200 /*
2201 * Inverse of what is done in perf_evsel__parse_sample
2202 */
2203 u.val32[0] = bswap_32(u.val32[0]);
2204 u.val32[1] = bswap_32(u.val32[1]);
2205 u.val64 = bswap_64(u.val64);
2206 }
2207
2208 *array = u.val64;
2209 array++;
2210 }
2211
2212 if (type & PERF_SAMPLE_TIME) {
2213 *array = sample->time;
2214 array++;
2215 }
2216
2217 if (type & PERF_SAMPLE_ADDR) {
2218 *array = sample->addr;
2219 array++;
2220 }
2221
2222 if (type & PERF_SAMPLE_ID) {
2223 *array = sample->id;
2224 array++;
2225 }
2226
2227 if (type & PERF_SAMPLE_STREAM_ID) {
2228 *array = sample->stream_id;
2229 array++;
2230 }
2231
2232 if (type & PERF_SAMPLE_CPU) {
2233 u.val32[0] = sample->cpu;
2234 if (swapped) {
2235 /*
2236 * Inverse of what is done in perf_evsel__parse_sample
2237 */
2238 u.val32[0] = bswap_32(u.val32[0]);
2239 u.val64 = bswap_64(u.val64);
2240 }
2241 *array = u.val64;
2242 array++;
2243 }
2244
2245 if (type & PERF_SAMPLE_PERIOD) {
2246 *array = sample->period;
2247 array++;
2248 }
2249
2250 if (type & PERF_SAMPLE_READ) {
2251 if (read_format & PERF_FORMAT_GROUP)
2252 *array = sample->read.group.nr;
2253 else
2254 *array = sample->read.one.value;
2255 array++;
2256
2257 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2258 *array = sample->read.time_enabled;
2259 array++;
2260 }
2261
2262 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2263 *array = sample->read.time_running;
2264 array++;
2265 }
2266
2267 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2268 if (read_format & PERF_FORMAT_GROUP) {
2269 sz = sample->read.group.nr *
2270 sizeof(struct sample_read_value);
2271 memcpy(array, sample->read.group.values, sz);
2272 array = (void *)array + sz;
2273 } else {
2274 *array = sample->read.one.id;
2275 array++;
2276 }
2277 }
2278
2279 if (type & PERF_SAMPLE_CALLCHAIN) {
2280 sz = (sample->callchain->nr + 1) * sizeof(u64);
2281 memcpy(array, sample->callchain, sz);
2282 array = (void *)array + sz;
2283 }
2284
2285 if (type & PERF_SAMPLE_RAW) {
2286 u.val32[0] = sample->raw_size;
2287 if (WARN_ONCE(swapped,
2288 "Endianness of raw data not corrected!\n")) {
2289 /*
2290 * Inverse of what is done in perf_evsel__parse_sample
2291 */
2292 u.val32[0] = bswap_32(u.val32[0]);
2293 u.val32[1] = bswap_32(u.val32[1]);
2294 u.val64 = bswap_64(u.val64);
2295 }
2296 *array = u.val64;
2297 array = (void *)array + sizeof(u32);
2298
2299 memcpy(array, sample->raw_data, sample->raw_size);
2300 array = (void *)array + sample->raw_size;
2301 }
2302
2303 if (type & PERF_SAMPLE_BRANCH_STACK) {
2304 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2305 sz += sizeof(u64);
2306 memcpy(array, sample->branch_stack, sz);
2307 array = (void *)array + sz;
2308 }
2309
2310 if (type & PERF_SAMPLE_REGS_USER) {
2311 if (sample->user_regs.abi) {
2312 *array++ = sample->user_regs.abi;
2313 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2314 memcpy(array, sample->user_regs.regs, sz);
2315 array = (void *)array + sz;
2316 } else {
2317 *array++ = 0;
2318 }
2319 }
2320
2321 if (type & PERF_SAMPLE_STACK_USER) {
2322 sz = sample->user_stack.size;
2323 *array++ = sz;
2324 if (sz) {
2325 memcpy(array, sample->user_stack.data, sz);
2326 array = (void *)array + sz;
2327 *array++ = sz;
2328 }
2329 }
2330
2331 if (type & PERF_SAMPLE_WEIGHT) {
2332 *array = sample->weight;
2333 array++;
2334 }
2335
2336 if (type & PERF_SAMPLE_DATA_SRC) {
2337 *array = sample->data_src;
2338 array++;
2339 }
2340
2341 if (type & PERF_SAMPLE_TRANSACTION) {
2342 *array = sample->transaction;
2343 array++;
2344 }
2345
2346 if (type & PERF_SAMPLE_REGS_INTR) {
2347 if (sample->intr_regs.abi) {
2348 *array++ = sample->intr_regs.abi;
2349 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2350 memcpy(array, sample->intr_regs.regs, sz);
2351 array = (void *)array + sz;
2352 } else {
2353 *array++ = 0;
2354 }
2355 }
2356
2357 return 0;
2358 }
2359
2360 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2361 {
2362 return pevent_find_field(evsel->tp_format, name);
2363 }
2364
2365 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2366 const char *name)
2367 {
2368 struct format_field *field = perf_evsel__field(evsel, name);
2369 int offset;
2370
2371 if (!field)
2372 return NULL;
2373
2374 offset = field->offset;
2375
2376 if (field->flags & FIELD_IS_DYNAMIC) {
2377 offset = *(int *)(sample->raw_data + field->offset);
2378 offset &= 0xffff;
2379 }
2380
2381 return sample->raw_data + offset;
2382 }
2383
2384 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2385 bool needs_swap)
2386 {
2387 u64 value;
2388 void *ptr = sample->raw_data + field->offset;
2389
2390 switch (field->size) {
2391 case 1:
2392 return *(u8 *)ptr;
2393 case 2:
2394 value = *(u16 *)ptr;
2395 break;
2396 case 4:
2397 value = *(u32 *)ptr;
2398 break;
2399 case 8:
2400 memcpy(&value, ptr, sizeof(u64));
2401 break;
2402 default:
2403 return 0;
2404 }
2405
2406 if (!needs_swap)
2407 return value;
2408
2409 switch (field->size) {
2410 case 2:
2411 return bswap_16(value);
2412 case 4:
2413 return bswap_32(value);
2414 case 8:
2415 return bswap_64(value);
2416 default:
2417 return 0;
2418 }
2419
2420 return 0;
2421 }
2422
2423 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2424 const char *name)
2425 {
2426 struct format_field *field = perf_evsel__field(evsel, name);
2427
2428 if (!field)
2429 return 0;
2430
2431 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2432 }
2433
2434 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2435 char *msg, size_t msgsize)
2436 {
2437 int paranoid;
2438
2439 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2440 evsel->attr.type == PERF_TYPE_HARDWARE &&
2441 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2442 /*
2443 * If it's cycles then fall back to hrtimer based
2444 * cpu-clock-tick sw counter, which is always available even if
2445 * no PMU support.
2446 *
2447 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2448 * b0a873e).
2449 */
2450 scnprintf(msg, msgsize, "%s",
2451 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2452
2453 evsel->attr.type = PERF_TYPE_SOFTWARE;
2454 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2455
2456 zfree(&evsel->name);
2457 return true;
2458 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2459 (paranoid = perf_event_paranoid()) > 1) {
2460 const char *name = perf_evsel__name(evsel);
2461 char *new_name;
2462
2463 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2464 return false;
2465
2466 if (evsel->name)
2467 free(evsel->name);
2468 evsel->name = new_name;
2469 scnprintf(msg, msgsize,
2470 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2471 evsel->attr.exclude_kernel = 1;
2472
2473 return true;
2474 }
2475
2476 return false;
2477 }
2478
2479 static bool find_process(const char *name)
2480 {
2481 size_t len = strlen(name);
2482 DIR *dir;
2483 struct dirent *d;
2484 int ret = -1;
2485
2486 dir = opendir(procfs__mountpoint());
2487 if (!dir)
2488 return false;
2489
2490 /* Walk through the directory. */
2491 while (ret && (d = readdir(dir)) != NULL) {
2492 char path[PATH_MAX];
2493 char *data;
2494 size_t size;
2495
2496 if ((d->d_type != DT_DIR) ||
2497 !strcmp(".", d->d_name) ||
2498 !strcmp("..", d->d_name))
2499 continue;
2500
2501 scnprintf(path, sizeof(path), "%s/%s/comm",
2502 procfs__mountpoint(), d->d_name);
2503
2504 if (filename__read_str(path, &data, &size))
2505 continue;
2506
2507 ret = strncmp(name, data, len);
2508 free(data);
2509 }
2510
2511 closedir(dir);
2512 return ret ? false : true;
2513 }
2514
2515 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2516 int err, char *msg, size_t size)
2517 {
2518 char sbuf[STRERR_BUFSIZE];
2519 int printed = 0;
2520
2521 switch (err) {
2522 case EPERM:
2523 case EACCES:
2524 if (err == EPERM)
2525 printed = scnprintf(msg, size,
2526 "No permission to enable %s event.\n\n",
2527 perf_evsel__name(evsel));
2528
2529 return scnprintf(msg + printed, size - printed,
2530 "You may not have permission to collect %sstats.\n\n"
2531 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2532 "which controls use of the performance events system by\n"
2533 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2534 "The current value is %d:\n\n"
2535 " -1: Allow use of (almost) all events by all users\n"
2536 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2537 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2538 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2539 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2540 " kernel.perf_event_paranoid = -1\n" ,
2541 target->system_wide ? "system-wide " : "",
2542 perf_event_paranoid());
2543 case ENOENT:
2544 return scnprintf(msg, size, "The %s event is not supported.",
2545 perf_evsel__name(evsel));
2546 case EMFILE:
2547 return scnprintf(msg, size, "%s",
2548 "Too many events are opened.\n"
2549 "Probably the maximum number of open file descriptors has been reached.\n"
2550 "Hint: Try again after reducing the number of events.\n"
2551 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2552 case ENOMEM:
2553 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2554 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2555 return scnprintf(msg, size,
2556 "Not enough memory to setup event with callchain.\n"
2557 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2558 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2559 break;
2560 case ENODEV:
2561 if (target->cpu_list)
2562 return scnprintf(msg, size, "%s",
2563 "No such device - did you specify an out-of-range profile CPU?");
2564 break;
2565 case EOPNOTSUPP:
2566 if (evsel->attr.sample_period != 0)
2567 return scnprintf(msg, size, "%s",
2568 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2569 if (evsel->attr.precise_ip)
2570 return scnprintf(msg, size, "%s",
2571 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2572 #if defined(__i386__) || defined(__x86_64__)
2573 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2574 return scnprintf(msg, size, "%s",
2575 "No hardware sampling interrupt available.\n"
2576 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2577 #endif
2578 break;
2579 case EBUSY:
2580 if (find_process("oprofiled"))
2581 return scnprintf(msg, size,
2582 "The PMU counters are busy/taken by another profiler.\n"
2583 "We found oprofile daemon running, please stop it and try again.");
2584 break;
2585 case EINVAL:
2586 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2587 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2588 if (perf_missing_features.clockid)
2589 return scnprintf(msg, size, "clockid feature not supported.");
2590 if (perf_missing_features.clockid_wrong)
2591 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2592 break;
2593 default:
2594 break;
2595 }
2596
2597 return scnprintf(msg, size,
2598 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2599 "/bin/dmesg may provide additional information.\n"
2600 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2601 err, str_error_r(err, sbuf, sizeof(sbuf)),
2602 perf_evsel__name(evsel));
2603 }
2604
2605 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2606 {
2607 if (evsel && evsel->evlist && evsel->evlist->env)
2608 return evsel->evlist->env->arch;
2609 return NULL;
2610 }