]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - tools/testing/selftests/kvm/include/kvm_util_base.h
4c8a05cbc20c72e9f30c2925efa86d7f2a320880
[thirdparty/kernel/stable.git] / tools / testing / selftests / kvm / include / kvm_util_base.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * tools/testing/selftests/kvm/include/kvm_util_base.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7 #ifndef SELFTEST_KVM_UTIL_BASE_H
8 #define SELFTEST_KVM_UTIL_BASE_H
9
10 #include "test_util.h"
11
12 #include <linux/compiler.h>
13 #include "linux/hashtable.h"
14 #include "linux/list.h"
15 #include <linux/kernel.h>
16 #include <linux/kvm.h>
17 #include "linux/rbtree.h"
18 #include <linux/types.h>
19
20 #include <asm/atomic.h>
21
22 #include <sys/ioctl.h>
23
24 #include "sparsebit.h"
25
26 /*
27 * Provide a version of static_assert() that is guaranteed to have an optional
28 * message param. If _ISOC11_SOURCE is defined, glibc (/usr/include/assert.h)
29 * #undefs and #defines static_assert() as a direct alias to _Static_assert(),
30 * i.e. effectively makes the message mandatory. Many KVM selftests #define
31 * _GNU_SOURCE for various reasons, and _GNU_SOURCE implies _ISOC11_SOURCE. As
32 * a result, static_assert() behavior is non-deterministic and may or may not
33 * require a message depending on #include order.
34 */
35 #define __kvm_static_assert(expr, msg, ...) _Static_assert(expr, msg)
36 #define kvm_static_assert(expr, ...) __kvm_static_assert(expr, ##__VA_ARGS__, #expr)
37
38 #define KVM_DEV_PATH "/dev/kvm"
39 #define KVM_MAX_VCPUS 512
40
41 #define NSEC_PER_SEC 1000000000L
42
43 typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */
44 typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */
45
46 struct userspace_mem_region {
47 struct kvm_userspace_memory_region2 region;
48 struct sparsebit *unused_phy_pages;
49 int fd;
50 off_t offset;
51 enum vm_mem_backing_src_type backing_src_type;
52 void *host_mem;
53 void *host_alias;
54 void *mmap_start;
55 void *mmap_alias;
56 size_t mmap_size;
57 struct rb_node gpa_node;
58 struct rb_node hva_node;
59 struct hlist_node slot_node;
60 };
61
62 struct kvm_vcpu {
63 struct list_head list;
64 uint32_t id;
65 int fd;
66 struct kvm_vm *vm;
67 struct kvm_run *run;
68 #ifdef __x86_64__
69 struct kvm_cpuid2 *cpuid;
70 #endif
71 struct kvm_dirty_gfn *dirty_gfns;
72 uint32_t fetch_index;
73 uint32_t dirty_gfns_count;
74 };
75
76 struct userspace_mem_regions {
77 struct rb_root gpa_tree;
78 struct rb_root hva_tree;
79 DECLARE_HASHTABLE(slot_hash, 9);
80 };
81
82 enum kvm_mem_region_type {
83 MEM_REGION_CODE,
84 MEM_REGION_DATA,
85 MEM_REGION_PT,
86 MEM_REGION_TEST_DATA,
87 NR_MEM_REGIONS,
88 };
89
90 struct kvm_vm {
91 int mode;
92 unsigned long type;
93 int kvm_fd;
94 int fd;
95 unsigned int pgtable_levels;
96 unsigned int page_size;
97 unsigned int page_shift;
98 unsigned int pa_bits;
99 unsigned int va_bits;
100 uint64_t max_gfn;
101 struct list_head vcpus;
102 struct userspace_mem_regions regions;
103 struct sparsebit *vpages_valid;
104 struct sparsebit *vpages_mapped;
105 bool has_irqchip;
106 bool pgd_created;
107 vm_paddr_t ucall_mmio_addr;
108 vm_paddr_t pgd;
109 vm_vaddr_t gdt;
110 vm_vaddr_t tss;
111 vm_vaddr_t idt;
112 vm_vaddr_t handlers;
113 uint32_t dirty_ring_size;
114
115 /* Cache of information for binary stats interface */
116 int stats_fd;
117 struct kvm_stats_header stats_header;
118 struct kvm_stats_desc *stats_desc;
119
120 /*
121 * KVM region slots. These are the default memslots used by page
122 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
123 * memslot.
124 */
125 uint32_t memslots[NR_MEM_REGIONS];
126 };
127
128 struct vcpu_reg_sublist {
129 const char *name;
130 long capability;
131 int feature;
132 int feature_type;
133 bool finalize;
134 __u64 *regs;
135 __u64 regs_n;
136 __u64 *rejects_set;
137 __u64 rejects_set_n;
138 __u64 *skips_set;
139 __u64 skips_set_n;
140 };
141
142 struct vcpu_reg_list {
143 char *name;
144 struct vcpu_reg_sublist sublists[];
145 };
146
147 #define for_each_sublist(c, s) \
148 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
149
150 #define kvm_for_each_vcpu(vm, i, vcpu) \
151 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
152 if (!((vcpu) = vm->vcpus[i])) \
153 continue; \
154 else
155
156 struct userspace_mem_region *
157 memslot2region(struct kvm_vm *vm, uint32_t memslot);
158
159 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
160 enum kvm_mem_region_type type)
161 {
162 assert(type < NR_MEM_REGIONS);
163 return memslot2region(vm, vm->memslots[type]);
164 }
165
166 /* Minimum allocated guest virtual and physical addresses */
167 #define KVM_UTIL_MIN_VADDR 0x2000
168 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
169
170 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
171 #define DEFAULT_STACK_PGS 5
172
173 enum vm_guest_mode {
174 VM_MODE_P52V48_4K,
175 VM_MODE_P52V48_64K,
176 VM_MODE_P48V48_4K,
177 VM_MODE_P48V48_16K,
178 VM_MODE_P48V48_64K,
179 VM_MODE_P40V48_4K,
180 VM_MODE_P40V48_16K,
181 VM_MODE_P40V48_64K,
182 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
183 VM_MODE_P47V64_4K,
184 VM_MODE_P44V64_4K,
185 VM_MODE_P36V48_4K,
186 VM_MODE_P36V48_16K,
187 VM_MODE_P36V48_64K,
188 VM_MODE_P36V47_16K,
189 NUM_VM_MODES,
190 };
191
192 struct vm_shape {
193 enum vm_guest_mode mode;
194 unsigned int type;
195 };
196
197 #define VM_TYPE_DEFAULT 0
198
199 #define VM_SHAPE(__mode) \
200 ({ \
201 struct vm_shape shape = { \
202 .mode = (__mode), \
203 .type = VM_TYPE_DEFAULT \
204 }; \
205 \
206 shape; \
207 })
208
209 #if defined(__aarch64__)
210
211 extern enum vm_guest_mode vm_mode_default;
212
213 #define VM_MODE_DEFAULT vm_mode_default
214 #define MIN_PAGE_SHIFT 12U
215 #define ptes_per_page(page_size) ((page_size) / 8)
216
217 #elif defined(__x86_64__)
218
219 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
220 #define MIN_PAGE_SHIFT 12U
221 #define ptes_per_page(page_size) ((page_size) / 8)
222
223 #elif defined(__s390x__)
224
225 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
226 #define MIN_PAGE_SHIFT 12U
227 #define ptes_per_page(page_size) ((page_size) / 16)
228
229 #elif defined(__riscv)
230
231 #if __riscv_xlen == 32
232 #error "RISC-V 32-bit kvm selftests not supported"
233 #endif
234
235 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
236 #define MIN_PAGE_SHIFT 12U
237 #define ptes_per_page(page_size) ((page_size) / 8)
238
239 #endif
240
241 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
242
243 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
244 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
245
246 struct vm_guest_mode_params {
247 unsigned int pa_bits;
248 unsigned int va_bits;
249 unsigned int page_size;
250 unsigned int page_shift;
251 };
252 extern const struct vm_guest_mode_params vm_guest_mode_params[];
253
254 int open_path_or_exit(const char *path, int flags);
255 int open_kvm_dev_path_or_exit(void);
256
257 bool get_kvm_param_bool(const char *param);
258 bool get_kvm_intel_param_bool(const char *param);
259 bool get_kvm_amd_param_bool(const char *param);
260
261 unsigned int kvm_check_cap(long cap);
262
263 static inline bool kvm_has_cap(long cap)
264 {
265 return kvm_check_cap(cap);
266 }
267
268 #define __KVM_SYSCALL_ERROR(_name, _ret) \
269 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
270
271 /*
272 * Use the "inner", double-underscore macro when reporting errors from within
273 * other macros so that the name of ioctl() and not its literal numeric value
274 * is printed on error. The "outer" macro is strongly preferred when reporting
275 * errors "directly", i.e. without an additional layer of macros, as it reduces
276 * the probability of passing in the wrong string.
277 */
278 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
279 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
280
281 #define kvm_do_ioctl(fd, cmd, arg) \
282 ({ \
283 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
284 ioctl(fd, cmd, arg); \
285 })
286
287 #define __kvm_ioctl(kvm_fd, cmd, arg) \
288 kvm_do_ioctl(kvm_fd, cmd, arg)
289
290 #define kvm_ioctl(kvm_fd, cmd, arg) \
291 ({ \
292 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
293 \
294 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
295 })
296
297 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
298
299 #define __vm_ioctl(vm, cmd, arg) \
300 ({ \
301 static_assert_is_vm(vm); \
302 kvm_do_ioctl((vm)->fd, cmd, arg); \
303 })
304
305 /*
306 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
307 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
308 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
309 * selftests existed and (b) should never outright fail, i.e. is supposed to
310 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
311 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
312 */
313 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
314 do { \
315 int __errno = errno; \
316 \
317 static_assert_is_vm(vm); \
318 \
319 if (cond) \
320 break; \
321 \
322 if (errno == EIO && \
323 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
324 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
325 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
326 } \
327 errno = __errno; \
328 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
329 } while (0)
330
331 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
332 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
333
334 #define vm_ioctl(vm, cmd, arg) \
335 ({ \
336 int ret = __vm_ioctl(vm, cmd, arg); \
337 \
338 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
339 })
340
341 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
342
343 #define __vcpu_ioctl(vcpu, cmd, arg) \
344 ({ \
345 static_assert_is_vcpu(vcpu); \
346 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
347 })
348
349 #define vcpu_ioctl(vcpu, cmd, arg) \
350 ({ \
351 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
352 \
353 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
354 })
355
356 /*
357 * Looks up and returns the value corresponding to the capability
358 * (KVM_CAP_*) given by cap.
359 */
360 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
361 {
362 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
363
364 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
365 return ret;
366 }
367
368 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
369 {
370 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
371
372 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
373 }
374 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
375 {
376 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
377
378 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
379 }
380
381 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
382 uint64_t size, uint64_t attributes)
383 {
384 struct kvm_memory_attributes attr = {
385 .attributes = attributes,
386 .address = gpa,
387 .size = size,
388 .flags = 0,
389 };
390
391 /*
392 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
393 * need significant enhancements to support multiple attributes.
394 */
395 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
396 "Update me to support multiple attributes!");
397
398 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
399 }
400
401
402 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
403 uint64_t size)
404 {
405 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
406 }
407
408 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
409 uint64_t size)
410 {
411 vm_set_memory_attributes(vm, gpa, size, 0);
412 }
413
414 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
415 bool punch_hole);
416
417 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
418 uint64_t size)
419 {
420 vm_guest_mem_fallocate(vm, gpa, size, true);
421 }
422
423 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
424 uint64_t size)
425 {
426 vm_guest_mem_fallocate(vm, gpa, size, false);
427 }
428
429 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
430 const char *vm_guest_mode_string(uint32_t i);
431
432 void kvm_vm_free(struct kvm_vm *vmp);
433 void kvm_vm_restart(struct kvm_vm *vmp);
434 void kvm_vm_release(struct kvm_vm *vmp);
435 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva,
436 size_t len);
437 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
438 int kvm_memfd_alloc(size_t size, bool hugepages);
439
440 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
441
442 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
443 {
444 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
445
446 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
447 }
448
449 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
450 uint64_t first_page, uint32_t num_pages)
451 {
452 struct kvm_clear_dirty_log args = {
453 .dirty_bitmap = log,
454 .slot = slot,
455 .first_page = first_page,
456 .num_pages = num_pages
457 };
458
459 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
460 }
461
462 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
463 {
464 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
465 }
466
467 static inline int vm_get_stats_fd(struct kvm_vm *vm)
468 {
469 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
470
471 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
472 return fd;
473 }
474
475 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
476 {
477 ssize_t ret;
478
479 ret = pread(stats_fd, header, sizeof(*header), 0);
480 TEST_ASSERT(ret == sizeof(*header),
481 "Failed to read '%lu' header bytes, ret = '%ld'",
482 sizeof(*header), ret);
483 }
484
485 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
486 struct kvm_stats_header *header);
487
488 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
489 {
490 /*
491 * The base size of the descriptor is defined by KVM's ABI, but the
492 * size of the name field is variable, as far as KVM's ABI is
493 * concerned. For a given instance of KVM, the name field is the same
494 * size for all stats and is provided in the overall stats header.
495 */
496 return sizeof(struct kvm_stats_desc) + header->name_size;
497 }
498
499 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
500 int index,
501 struct kvm_stats_header *header)
502 {
503 /*
504 * Note, size_desc includes the size of the name field, which is
505 * variable. i.e. this is NOT equivalent to &stats_desc[i].
506 */
507 return (void *)stats + index * get_stats_descriptor_size(header);
508 }
509
510 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
511 struct kvm_stats_desc *desc, uint64_t *data,
512 size_t max_elements);
513
514 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
515 size_t max_elements);
516
517 static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name)
518 {
519 uint64_t data;
520
521 __vm_get_stat(vm, stat_name, &data, 1);
522 return data;
523 }
524
525 void vm_create_irqchip(struct kvm_vm *vm);
526
527 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
528 uint64_t flags)
529 {
530 struct kvm_create_guest_memfd guest_memfd = {
531 .size = size,
532 .flags = flags,
533 };
534
535 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
536 }
537
538 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
539 uint64_t flags)
540 {
541 int fd = __vm_create_guest_memfd(vm, size, flags);
542
543 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
544 return fd;
545 }
546
547 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
548 uint64_t gpa, uint64_t size, void *hva);
549 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
550 uint64_t gpa, uint64_t size, void *hva);
551 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
552 uint64_t gpa, uint64_t size, void *hva,
553 uint32_t guest_memfd, uint64_t guest_memfd_offset);
554 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
555 uint64_t gpa, uint64_t size, void *hva,
556 uint32_t guest_memfd, uint64_t guest_memfd_offset);
557
558 void vm_userspace_mem_region_add(struct kvm_vm *vm,
559 enum vm_mem_backing_src_type src_type,
560 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
561 uint32_t flags);
562 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
563 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
564 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
565
566 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
567 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
568 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
569 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
570 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
571 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
572 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
573 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
574 enum kvm_mem_region_type type);
575 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
576 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
577 enum kvm_mem_region_type type);
578 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
579
580 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
581 unsigned int npages);
582 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
583 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
584 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
585 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
586
587 void vcpu_run(struct kvm_vcpu *vcpu);
588 int _vcpu_run(struct kvm_vcpu *vcpu);
589
590 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
591 {
592 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
593 }
594
595 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
596 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
597
598 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
599 uint64_t arg0)
600 {
601 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
602
603 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
604 }
605
606 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
607 struct kvm_guest_debug *debug)
608 {
609 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
610 }
611
612 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
613 struct kvm_mp_state *mp_state)
614 {
615 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
616 }
617 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
618 struct kvm_mp_state *mp_state)
619 {
620 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
621 }
622
623 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
624 {
625 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
626 }
627
628 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
629 {
630 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
631 }
632 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
633 {
634 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
635
636 }
637 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
638 {
639 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
640 }
641 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
642 {
643 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
644 }
645 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
646 {
647 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
648 }
649 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
650 {
651 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
652 }
653
654 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
655 {
656 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
657
658 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
659 }
660 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
661 {
662 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
663
664 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
665 }
666 static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
667 {
668 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
669
670 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg);
671 }
672 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
673 {
674 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
675
676 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg);
677 }
678
679 #ifdef __KVM_HAVE_VCPU_EVENTS
680 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
681 struct kvm_vcpu_events *events)
682 {
683 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
684 }
685 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
686 struct kvm_vcpu_events *events)
687 {
688 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
689 }
690 #endif
691 #ifdef __x86_64__
692 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
693 struct kvm_nested_state *state)
694 {
695 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
696 }
697 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
698 struct kvm_nested_state *state)
699 {
700 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
701 }
702
703 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
704 struct kvm_nested_state *state)
705 {
706 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
707 }
708 #endif
709 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
710 {
711 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
712
713 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
714 return fd;
715 }
716
717 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
718
719 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
720 {
721 int ret = __kvm_has_device_attr(dev_fd, group, attr);
722
723 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
724 }
725
726 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
727
728 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
729 uint64_t attr, void *val)
730 {
731 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
732
733 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
734 }
735
736 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
737
738 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
739 uint64_t attr, void *val)
740 {
741 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
742
743 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
744 }
745
746 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
747 uint64_t attr)
748 {
749 return __kvm_has_device_attr(vcpu->fd, group, attr);
750 }
751
752 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
753 uint64_t attr)
754 {
755 kvm_has_device_attr(vcpu->fd, group, attr);
756 }
757
758 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
759 uint64_t attr, void *val)
760 {
761 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
762 }
763
764 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
765 uint64_t attr, void *val)
766 {
767 kvm_device_attr_get(vcpu->fd, group, attr, val);
768 }
769
770 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
771 uint64_t attr, void *val)
772 {
773 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
774 }
775
776 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
777 uint64_t attr, void *val)
778 {
779 kvm_device_attr_set(vcpu->fd, group, attr, val);
780 }
781
782 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
783 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
784
785 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
786 {
787 int fd = __kvm_create_device(vm, type);
788
789 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
790 return fd;
791 }
792
793 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
794
795 /*
796 * VM VCPU Args Set
797 *
798 * Input Args:
799 * vm - Virtual Machine
800 * num - number of arguments
801 * ... - arguments, each of type uint64_t
802 *
803 * Output Args: None
804 *
805 * Return: None
806 *
807 * Sets the first @num input parameters for the function at @vcpu's entry point,
808 * per the C calling convention of the architecture, to the values given as
809 * variable args. Each of the variable args is expected to be of type uint64_t.
810 * The maximum @num can be is specific to the architecture.
811 */
812 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
813
814 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
815 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
816
817 #define KVM_MAX_IRQ_ROUTES 4096
818
819 struct kvm_irq_routing *kvm_gsi_routing_create(void);
820 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
821 uint32_t gsi, uint32_t pin);
822 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
823 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
824
825 const char *exit_reason_str(unsigned int exit_reason);
826
827 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
828 uint32_t memslot);
829 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
830 vm_paddr_t paddr_min, uint32_t memslot);
831 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
832
833 /*
834 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
835 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
836 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
837 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
838 */
839 struct kvm_vm *____vm_create(struct vm_shape shape);
840 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
841 uint64_t nr_extra_pages);
842
843 static inline struct kvm_vm *vm_create_barebones(void)
844 {
845 return ____vm_create(VM_SHAPE_DEFAULT);
846 }
847
848 #ifdef __x86_64__
849 static inline struct kvm_vm *vm_create_barebones_protected_vm(void)
850 {
851 const struct vm_shape shape = {
852 .mode = VM_MODE_DEFAULT,
853 .type = KVM_X86_SW_PROTECTED_VM,
854 };
855
856 return ____vm_create(shape);
857 }
858 #endif
859
860 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
861 {
862 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
863 }
864
865 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
866 uint64_t extra_mem_pages,
867 void *guest_code, struct kvm_vcpu *vcpus[]);
868
869 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
870 void *guest_code,
871 struct kvm_vcpu *vcpus[])
872 {
873 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
874 guest_code, vcpus);
875 }
876
877
878 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
879 struct kvm_vcpu **vcpu,
880 uint64_t extra_mem_pages,
881 void *guest_code);
882
883 /*
884 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
885 * additional pages of guest memory. Returns the VM and vCPU (via out param).
886 */
887 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
888 uint64_t extra_mem_pages,
889 void *guest_code)
890 {
891 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
892 extra_mem_pages, guest_code);
893 }
894
895 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
896 void *guest_code)
897 {
898 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
899 }
900
901 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
902 struct kvm_vcpu **vcpu,
903 void *guest_code)
904 {
905 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
906 }
907
908 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
909
910 void kvm_pin_this_task_to_pcpu(uint32_t pcpu);
911 void kvm_print_vcpu_pinning_help(void);
912 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
913 int nr_vcpus);
914
915 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
916 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
917 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
918 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
919 static inline unsigned int
920 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
921 {
922 unsigned int n;
923 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
924 #ifdef __s390x__
925 /* s390 requires 1M aligned guest sizes */
926 n = (n + 255) & ~255;
927 #endif
928 return n;
929 }
930
931 #define sync_global_to_guest(vm, g) ({ \
932 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
933 memcpy(_p, &(g), sizeof(g)); \
934 })
935
936 #define sync_global_from_guest(vm, g) ({ \
937 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
938 memcpy(&(g), _p, sizeof(g)); \
939 })
940
941 /*
942 * Write a global value, but only in the VM's (guest's) domain. Primarily used
943 * for "globals" that hold per-VM values (VMs always duplicate code and global
944 * data into their own region of physical memory), but can be used anytime it's
945 * undesirable to change the host's copy of the global.
946 */
947 #define write_guest_global(vm, g, val) ({ \
948 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
949 typeof(g) _val = val; \
950 \
951 memcpy(_p, &(_val), sizeof(g)); \
952 })
953
954 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
955
956 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
957 uint8_t indent);
958
959 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
960 uint8_t indent)
961 {
962 vcpu_arch_dump(stream, vcpu, indent);
963 }
964
965 /*
966 * Adds a vCPU with reasonable defaults (e.g. a stack)
967 *
968 * Input Args:
969 * vm - Virtual Machine
970 * vcpu_id - The id of the VCPU to add to the VM.
971 * guest_code - The vCPU's entry point
972 */
973 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
974 void *guest_code);
975
976 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
977 void *guest_code)
978 {
979 return vm_arch_vcpu_add(vm, vcpu_id, guest_code);
980 }
981
982 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
983 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
984
985 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
986 uint32_t vcpu_id)
987 {
988 return vm_arch_vcpu_recreate(vm, vcpu_id);
989 }
990
991 void vcpu_arch_free(struct kvm_vcpu *vcpu);
992
993 void virt_arch_pgd_alloc(struct kvm_vm *vm);
994
995 static inline void virt_pgd_alloc(struct kvm_vm *vm)
996 {
997 virt_arch_pgd_alloc(vm);
998 }
999
1000 /*
1001 * VM Virtual Page Map
1002 *
1003 * Input Args:
1004 * vm - Virtual Machine
1005 * vaddr - VM Virtual Address
1006 * paddr - VM Physical Address
1007 * memslot - Memory region slot for new virtual translation tables
1008 *
1009 * Output Args: None
1010 *
1011 * Return: None
1012 *
1013 * Within @vm, creates a virtual translation for the page starting
1014 * at @vaddr to the page starting at @paddr.
1015 */
1016 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1017
1018 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1019 {
1020 virt_arch_pg_map(vm, vaddr, paddr);
1021 }
1022
1023
1024 /*
1025 * Address Guest Virtual to Guest Physical
1026 *
1027 * Input Args:
1028 * vm - Virtual Machine
1029 * gva - VM virtual address
1030 *
1031 * Output Args: None
1032 *
1033 * Return:
1034 * Equivalent VM physical address
1035 *
1036 * Returns the VM physical address of the translated VM virtual
1037 * address given by @gva.
1038 */
1039 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1040
1041 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1042 {
1043 return addr_arch_gva2gpa(vm, gva);
1044 }
1045
1046 /*
1047 * Virtual Translation Tables Dump
1048 *
1049 * Input Args:
1050 * stream - Output FILE stream
1051 * vm - Virtual Machine
1052 * indent - Left margin indent amount
1053 *
1054 * Output Args: None
1055 *
1056 * Return: None
1057 *
1058 * Dumps to the FILE stream given by @stream, the contents of all the
1059 * virtual translation tables for the VM given by @vm.
1060 */
1061 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1062
1063 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1064 {
1065 virt_arch_dump(stream, vm, indent);
1066 }
1067
1068
1069 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1070 {
1071 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1072 }
1073
1074 /*
1075 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1076 * to allow for arch-specific setup that is common to all tests, e.g. computing
1077 * the default guest "mode".
1078 */
1079 void kvm_selftest_arch_init(void);
1080
1081 void kvm_arch_vm_post_create(struct kvm_vm *vm);
1082
1083 #endif /* SELFTEST_KVM_UTIL_BASE_H */