]> git.ipfire.org Git - thirdparty/linux.git/blob - tools/testing/selftests/kvm/lib/kvm_util.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / tools / testing / selftests / kvm / lib / kvm_util.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "kvm_util_internal.h"
11 #include "processor.h"
12
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <linux/kernel.h>
18
19 #define KVM_UTIL_PGS_PER_HUGEPG 512
20 #define KVM_UTIL_MIN_PFN 2
21
22 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
23 static void *align(void *x, size_t size)
24 {
25 size_t mask = size - 1;
26 TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 "size not a power of 2: %lu", size);
28 return (void *) (((size_t) x + mask) & ~mask);
29 }
30
31 /*
32 * Capability
33 *
34 * Input Args:
35 * cap - Capability
36 *
37 * Output Args: None
38 *
39 * Return:
40 * On success, the Value corresponding to the capability (KVM_CAP_*)
41 * specified by the value of cap. On failure a TEST_ASSERT failure
42 * is produced.
43 *
44 * Looks up and returns the value corresponding to the capability
45 * (KVM_CAP_*) given by cap.
46 */
47 int kvm_check_cap(long cap)
48 {
49 int ret;
50 int kvm_fd;
51
52 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 if (kvm_fd < 0)
54 exit(KSFT_SKIP);
55
56 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 " rc: %i errno: %i", ret, errno);
59
60 close(kvm_fd);
61
62 return ret;
63 }
64
65 /* VM Enable Capability
66 *
67 * Input Args:
68 * vm - Virtual Machine
69 * cap - Capability
70 *
71 * Output Args: None
72 *
73 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74 *
75 * Enables a capability (KVM_CAP_*) on the VM.
76 */
77 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78 {
79 int ret;
80
81 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 " rc: %i errno: %i", ret, errno);
84
85 return ret;
86 }
87
88 static void vm_open(struct kvm_vm *vm, int perm)
89 {
90 vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 if (vm->kvm_fd < 0)
92 exit(KSFT_SKIP);
93
94 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
95 print_skip("immediate_exit not available");
96 exit(KSFT_SKIP);
97 }
98
99 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
100 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
101 "rc: %i errno: %i", vm->fd, errno);
102 }
103
104 const char * const vm_guest_mode_string[] = {
105 "PA-bits:52, VA-bits:48, 4K pages",
106 "PA-bits:52, VA-bits:48, 64K pages",
107 "PA-bits:48, VA-bits:48, 4K pages",
108 "PA-bits:48, VA-bits:48, 64K pages",
109 "PA-bits:40, VA-bits:48, 4K pages",
110 "PA-bits:40, VA-bits:48, 64K pages",
111 "PA-bits:ANY, VA-bits:48, 4K pages",
112 };
113 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
114 "Missing new mode strings?");
115
116 struct vm_guest_mode_params {
117 unsigned int pa_bits;
118 unsigned int va_bits;
119 unsigned int page_size;
120 unsigned int page_shift;
121 };
122
123 static const struct vm_guest_mode_params vm_guest_mode_params[] = {
124 { 52, 48, 0x1000, 12 },
125 { 52, 48, 0x10000, 16 },
126 { 48, 48, 0x1000, 12 },
127 { 48, 48, 0x10000, 16 },
128 { 40, 48, 0x1000, 12 },
129 { 40, 48, 0x10000, 16 },
130 { 0, 0, 0x1000, 12 },
131 };
132 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
133 "Missing new mode params?");
134
135 /*
136 * VM Create
137 *
138 * Input Args:
139 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
140 * phy_pages - Physical memory pages
141 * perm - permission
142 *
143 * Output Args: None
144 *
145 * Return:
146 * Pointer to opaque structure that describes the created VM.
147 *
148 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
149 * When phy_pages is non-zero, a memory region of phy_pages physical pages
150 * is created and mapped starting at guest physical address 0. The file
151 * descriptor to control the created VM is created with the permissions
152 * given by perm (e.g. O_RDWR).
153 */
154 struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
155 {
156 struct kvm_vm *vm;
157
158 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
159 vm_guest_mode_string(mode), phy_pages, perm);
160
161 vm = calloc(1, sizeof(*vm));
162 TEST_ASSERT(vm != NULL, "Insufficient Memory");
163
164 vm->mode = mode;
165 vm->type = 0;
166
167 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
168 vm->va_bits = vm_guest_mode_params[mode].va_bits;
169 vm->page_size = vm_guest_mode_params[mode].page_size;
170 vm->page_shift = vm_guest_mode_params[mode].page_shift;
171
172 /* Setup mode specific traits. */
173 switch (vm->mode) {
174 case VM_MODE_P52V48_4K:
175 vm->pgtable_levels = 4;
176 break;
177 case VM_MODE_P52V48_64K:
178 vm->pgtable_levels = 3;
179 break;
180 case VM_MODE_P48V48_4K:
181 vm->pgtable_levels = 4;
182 break;
183 case VM_MODE_P48V48_64K:
184 vm->pgtable_levels = 3;
185 break;
186 case VM_MODE_P40V48_4K:
187 vm->pgtable_levels = 4;
188 break;
189 case VM_MODE_P40V48_64K:
190 vm->pgtable_levels = 3;
191 break;
192 case VM_MODE_PXXV48_4K:
193 #ifdef __x86_64__
194 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
195 TEST_ASSERT(vm->va_bits == 48, "Linear address width "
196 "(%d bits) not supported", vm->va_bits);
197 pr_debug("Guest physical address width detected: %d\n",
198 vm->pa_bits);
199 vm->pgtable_levels = 4;
200 #else
201 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
202 #endif
203 break;
204 default:
205 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
206 }
207
208 #ifdef __aarch64__
209 if (vm->pa_bits != 40)
210 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
211 #endif
212
213 vm_open(vm, perm);
214
215 /* Limit to VA-bit canonical virtual addresses. */
216 vm->vpages_valid = sparsebit_alloc();
217 sparsebit_set_num(vm->vpages_valid,
218 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
219 sparsebit_set_num(vm->vpages_valid,
220 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
221 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
222
223 /* Limit physical addresses to PA-bits. */
224 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
225
226 /* Allocate and setup memory for guest. */
227 vm->vpages_mapped = sparsebit_alloc();
228 if (phy_pages != 0)
229 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
230 0, 0, phy_pages, 0);
231
232 return vm;
233 }
234
235 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
236 {
237 return _vm_create(mode, phy_pages, perm);
238 }
239
240 /*
241 * VM Restart
242 *
243 * Input Args:
244 * vm - VM that has been released before
245 * perm - permission
246 *
247 * Output Args: None
248 *
249 * Reopens the file descriptors associated to the VM and reinstates the
250 * global state, such as the irqchip and the memory regions that are mapped
251 * into the guest.
252 */
253 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
254 {
255 struct userspace_mem_region *region;
256
257 vm_open(vmp, perm);
258 if (vmp->has_irqchip)
259 vm_create_irqchip(vmp);
260
261 for (region = vmp->userspace_mem_region_head; region;
262 region = region->next) {
263 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
264 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
265 " rc: %i errno: %i\n"
266 " slot: %u flags: 0x%x\n"
267 " guest_phys_addr: 0x%llx size: 0x%llx",
268 ret, errno, region->region.slot,
269 region->region.flags,
270 region->region.guest_phys_addr,
271 region->region.memory_size);
272 }
273 }
274
275 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
276 {
277 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
278 int ret;
279
280 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
281 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
282 __func__, strerror(-ret));
283 }
284
285 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
286 uint64_t first_page, uint32_t num_pages)
287 {
288 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
289 .first_page = first_page,
290 .num_pages = num_pages };
291 int ret;
292
293 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
294 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
295 __func__, strerror(-ret));
296 }
297
298 /*
299 * Userspace Memory Region Find
300 *
301 * Input Args:
302 * vm - Virtual Machine
303 * start - Starting VM physical address
304 * end - Ending VM physical address, inclusive.
305 *
306 * Output Args: None
307 *
308 * Return:
309 * Pointer to overlapping region, NULL if no such region.
310 *
311 * Searches for a region with any physical memory that overlaps with
312 * any portion of the guest physical addresses from start to end
313 * inclusive. If multiple overlapping regions exist, a pointer to any
314 * of the regions is returned. Null is returned only when no overlapping
315 * region exists.
316 */
317 static struct userspace_mem_region *
318 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
319 {
320 struct userspace_mem_region *region;
321
322 for (region = vm->userspace_mem_region_head; region;
323 region = region->next) {
324 uint64_t existing_start = region->region.guest_phys_addr;
325 uint64_t existing_end = region->region.guest_phys_addr
326 + region->region.memory_size - 1;
327 if (start <= existing_end && end >= existing_start)
328 return region;
329 }
330
331 return NULL;
332 }
333
334 /*
335 * KVM Userspace Memory Region Find
336 *
337 * Input Args:
338 * vm - Virtual Machine
339 * start - Starting VM physical address
340 * end - Ending VM physical address, inclusive.
341 *
342 * Output Args: None
343 *
344 * Return:
345 * Pointer to overlapping region, NULL if no such region.
346 *
347 * Public interface to userspace_mem_region_find. Allows tests to look up
348 * the memslot datastructure for a given range of guest physical memory.
349 */
350 struct kvm_userspace_memory_region *
351 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
352 uint64_t end)
353 {
354 struct userspace_mem_region *region;
355
356 region = userspace_mem_region_find(vm, start, end);
357 if (!region)
358 return NULL;
359
360 return &region->region;
361 }
362
363 /*
364 * VCPU Find
365 *
366 * Input Args:
367 * vm - Virtual Machine
368 * vcpuid - VCPU ID
369 *
370 * Output Args: None
371 *
372 * Return:
373 * Pointer to VCPU structure
374 *
375 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
376 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
377 * for the specified vcpuid.
378 */
379 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
380 {
381 struct vcpu *vcpup;
382
383 for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
384 if (vcpup->id == vcpuid)
385 return vcpup;
386 }
387
388 return NULL;
389 }
390
391 /*
392 * VM VCPU Remove
393 *
394 * Input Args:
395 * vm - Virtual Machine
396 * vcpuid - VCPU ID
397 *
398 * Output Args: None
399 *
400 * Return: None, TEST_ASSERT failures for all error conditions
401 *
402 * Within the VM specified by vm, removes the VCPU given by vcpuid.
403 */
404 static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
405 {
406 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
407 int ret;
408
409 ret = munmap(vcpu->state, sizeof(*vcpu->state));
410 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
411 "errno: %i", ret, errno);
412 close(vcpu->fd);
413 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
414 "errno: %i", ret, errno);
415
416 if (vcpu->next)
417 vcpu->next->prev = vcpu->prev;
418 if (vcpu->prev)
419 vcpu->prev->next = vcpu->next;
420 else
421 vm->vcpu_head = vcpu->next;
422 free(vcpu);
423 }
424
425 void kvm_vm_release(struct kvm_vm *vmp)
426 {
427 int ret;
428
429 while (vmp->vcpu_head)
430 vm_vcpu_rm(vmp, vmp->vcpu_head->id);
431
432 ret = close(vmp->fd);
433 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
434 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
435
436 close(vmp->kvm_fd);
437 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
438 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
439 }
440
441 /*
442 * Destroys and frees the VM pointed to by vmp.
443 */
444 void kvm_vm_free(struct kvm_vm *vmp)
445 {
446 int ret;
447
448 if (vmp == NULL)
449 return;
450
451 /* Free userspace_mem_regions. */
452 while (vmp->userspace_mem_region_head) {
453 struct userspace_mem_region *region
454 = vmp->userspace_mem_region_head;
455
456 region->region.memory_size = 0;
457 ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
458 &region->region);
459 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
460 "rc: %i errno: %i", ret, errno);
461
462 vmp->userspace_mem_region_head = region->next;
463 sparsebit_free(&region->unused_phy_pages);
464 ret = munmap(region->mmap_start, region->mmap_size);
465 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
466 ret, errno);
467
468 free(region);
469 }
470
471 /* Free sparsebit arrays. */
472 sparsebit_free(&vmp->vpages_valid);
473 sparsebit_free(&vmp->vpages_mapped);
474
475 kvm_vm_release(vmp);
476
477 /* Free the structure describing the VM. */
478 free(vmp);
479 }
480
481 /*
482 * Memory Compare, host virtual to guest virtual
483 *
484 * Input Args:
485 * hva - Starting host virtual address
486 * vm - Virtual Machine
487 * gva - Starting guest virtual address
488 * len - number of bytes to compare
489 *
490 * Output Args: None
491 *
492 * Input/Output Args: None
493 *
494 * Return:
495 * Returns 0 if the bytes starting at hva for a length of len
496 * are equal the guest virtual bytes starting at gva. Returns
497 * a value < 0, if bytes at hva are less than those at gva.
498 * Otherwise a value > 0 is returned.
499 *
500 * Compares the bytes starting at the host virtual address hva, for
501 * a length of len, to the guest bytes starting at the guest virtual
502 * address given by gva.
503 */
504 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
505 {
506 size_t amt;
507
508 /*
509 * Compare a batch of bytes until either a match is found
510 * or all the bytes have been compared.
511 */
512 for (uintptr_t offset = 0; offset < len; offset += amt) {
513 uintptr_t ptr1 = (uintptr_t)hva + offset;
514
515 /*
516 * Determine host address for guest virtual address
517 * at offset.
518 */
519 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
520
521 /*
522 * Determine amount to compare on this pass.
523 * Don't allow the comparsion to cross a page boundary.
524 */
525 amt = len - offset;
526 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
527 amt = vm->page_size - (ptr1 % vm->page_size);
528 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
529 amt = vm->page_size - (ptr2 % vm->page_size);
530
531 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
532 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
533
534 /*
535 * Perform the comparison. If there is a difference
536 * return that result to the caller, otherwise need
537 * to continue on looking for a mismatch.
538 */
539 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
540 if (ret != 0)
541 return ret;
542 }
543
544 /*
545 * No mismatch found. Let the caller know the two memory
546 * areas are equal.
547 */
548 return 0;
549 }
550
551 /*
552 * VM Userspace Memory Region Add
553 *
554 * Input Args:
555 * vm - Virtual Machine
556 * backing_src - Storage source for this region.
557 * NULL to use anonymous memory.
558 * guest_paddr - Starting guest physical address
559 * slot - KVM region slot
560 * npages - Number of physical pages
561 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
562 *
563 * Output Args: None
564 *
565 * Return: None
566 *
567 * Allocates a memory area of the number of pages specified by npages
568 * and maps it to the VM specified by vm, at a starting physical address
569 * given by guest_paddr. The region is created with a KVM region slot
570 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
571 * region is created with the flags given by flags.
572 */
573 void vm_userspace_mem_region_add(struct kvm_vm *vm,
574 enum vm_mem_backing_src_type src_type,
575 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
576 uint32_t flags)
577 {
578 int ret;
579 struct userspace_mem_region *region;
580 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
581 size_t alignment;
582
583 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
584 "Number of guest pages is not compatible with the host. "
585 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
586
587 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
588 "address not on a page boundary.\n"
589 " guest_paddr: 0x%lx vm->page_size: 0x%x",
590 guest_paddr, vm->page_size);
591 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
592 <= vm->max_gfn, "Physical range beyond maximum "
593 "supported physical address,\n"
594 " guest_paddr: 0x%lx npages: 0x%lx\n"
595 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
596 guest_paddr, npages, vm->max_gfn, vm->page_size);
597
598 /*
599 * Confirm a mem region with an overlapping address doesn't
600 * already exist.
601 */
602 region = (struct userspace_mem_region *) userspace_mem_region_find(
603 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
604 if (region != NULL)
605 TEST_FAIL("overlapping userspace_mem_region already "
606 "exists\n"
607 " requested guest_paddr: 0x%lx npages: 0x%lx "
608 "page_size: 0x%x\n"
609 " existing guest_paddr: 0x%lx size: 0x%lx",
610 guest_paddr, npages, vm->page_size,
611 (uint64_t) region->region.guest_phys_addr,
612 (uint64_t) region->region.memory_size);
613
614 /* Confirm no region with the requested slot already exists. */
615 for (region = vm->userspace_mem_region_head; region;
616 region = region->next) {
617 if (region->region.slot == slot)
618 break;
619 }
620 if (region != NULL)
621 TEST_FAIL("A mem region with the requested slot "
622 "already exists.\n"
623 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
624 " existing slot: %u paddr: 0x%lx size: 0x%lx",
625 slot, guest_paddr, npages,
626 region->region.slot,
627 (uint64_t) region->region.guest_phys_addr,
628 (uint64_t) region->region.memory_size);
629
630 /* Allocate and initialize new mem region structure. */
631 region = calloc(1, sizeof(*region));
632 TEST_ASSERT(region != NULL, "Insufficient Memory");
633 region->mmap_size = npages * vm->page_size;
634
635 #ifdef __s390x__
636 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
637 alignment = 0x100000;
638 #else
639 alignment = 1;
640 #endif
641
642 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
643 alignment = max(huge_page_size, alignment);
644
645 /* Add enough memory to align up if necessary */
646 if (alignment > 1)
647 region->mmap_size += alignment;
648
649 region->mmap_start = mmap(NULL, region->mmap_size,
650 PROT_READ | PROT_WRITE,
651 MAP_PRIVATE | MAP_ANONYMOUS
652 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
653 -1, 0);
654 TEST_ASSERT(region->mmap_start != MAP_FAILED,
655 "test_malloc failed, mmap_start: %p errno: %i",
656 region->mmap_start, errno);
657
658 /* Align host address */
659 region->host_mem = align(region->mmap_start, alignment);
660
661 /* As needed perform madvise */
662 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
663 ret = madvise(region->host_mem, npages * vm->page_size,
664 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
665 TEST_ASSERT(ret == 0, "madvise failed,\n"
666 " addr: %p\n"
667 " length: 0x%lx\n"
668 " src_type: %x",
669 region->host_mem, npages * vm->page_size, src_type);
670 }
671
672 region->unused_phy_pages = sparsebit_alloc();
673 sparsebit_set_num(region->unused_phy_pages,
674 guest_paddr >> vm->page_shift, npages);
675 region->region.slot = slot;
676 region->region.flags = flags;
677 region->region.guest_phys_addr = guest_paddr;
678 region->region.memory_size = npages * vm->page_size;
679 region->region.userspace_addr = (uintptr_t) region->host_mem;
680 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
681 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
682 " rc: %i errno: %i\n"
683 " slot: %u flags: 0x%x\n"
684 " guest_phys_addr: 0x%lx size: 0x%lx",
685 ret, errno, slot, flags,
686 guest_paddr, (uint64_t) region->region.memory_size);
687
688 /* Add to linked-list of memory regions. */
689 if (vm->userspace_mem_region_head)
690 vm->userspace_mem_region_head->prev = region;
691 region->next = vm->userspace_mem_region_head;
692 vm->userspace_mem_region_head = region;
693 }
694
695 /*
696 * Memslot to region
697 *
698 * Input Args:
699 * vm - Virtual Machine
700 * memslot - KVM memory slot ID
701 *
702 * Output Args: None
703 *
704 * Return:
705 * Pointer to memory region structure that describe memory region
706 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
707 * on error (e.g. currently no memory region using memslot as a KVM
708 * memory slot ID).
709 */
710 struct userspace_mem_region *
711 memslot2region(struct kvm_vm *vm, uint32_t memslot)
712 {
713 struct userspace_mem_region *region;
714
715 for (region = vm->userspace_mem_region_head; region;
716 region = region->next) {
717 if (region->region.slot == memslot)
718 break;
719 }
720 if (region == NULL) {
721 fprintf(stderr, "No mem region with the requested slot found,\n"
722 " requested slot: %u\n", memslot);
723 fputs("---- vm dump ----\n", stderr);
724 vm_dump(stderr, vm, 2);
725 TEST_FAIL("Mem region not found");
726 }
727
728 return region;
729 }
730
731 /*
732 * VM Memory Region Flags Set
733 *
734 * Input Args:
735 * vm - Virtual Machine
736 * flags - Starting guest physical address
737 *
738 * Output Args: None
739 *
740 * Return: None
741 *
742 * Sets the flags of the memory region specified by the value of slot,
743 * to the values given by flags.
744 */
745 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
746 {
747 int ret;
748 struct userspace_mem_region *region;
749
750 region = memslot2region(vm, slot);
751
752 region->region.flags = flags;
753
754 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
755
756 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
757 " rc: %i errno: %i slot: %u flags: 0x%x",
758 ret, errno, slot, flags);
759 }
760
761 /*
762 * VM Memory Region Move
763 *
764 * Input Args:
765 * vm - Virtual Machine
766 * slot - Slot of the memory region to move
767 * new_gpa - Starting guest physical address
768 *
769 * Output Args: None
770 *
771 * Return: None
772 *
773 * Change the gpa of a memory region.
774 */
775 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
776 {
777 struct userspace_mem_region *region;
778 int ret;
779
780 region = memslot2region(vm, slot);
781
782 region->region.guest_phys_addr = new_gpa;
783
784 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
785
786 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
787 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
788 ret, errno, slot, new_gpa);
789 }
790
791 /*
792 * VCPU mmap Size
793 *
794 * Input Args: None
795 *
796 * Output Args: None
797 *
798 * Return:
799 * Size of VCPU state
800 *
801 * Returns the size of the structure pointed to by the return value
802 * of vcpu_state().
803 */
804 static int vcpu_mmap_sz(void)
805 {
806 int dev_fd, ret;
807
808 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
809 if (dev_fd < 0)
810 exit(KSFT_SKIP);
811
812 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
813 TEST_ASSERT(ret >= sizeof(struct kvm_run),
814 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
815 __func__, ret, errno);
816
817 close(dev_fd);
818
819 return ret;
820 }
821
822 /*
823 * VM VCPU Add
824 *
825 * Input Args:
826 * vm - Virtual Machine
827 * vcpuid - VCPU ID
828 *
829 * Output Args: None
830 *
831 * Return: None
832 *
833 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
834 * No additional VCPU setup is done.
835 */
836 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
837 {
838 struct vcpu *vcpu;
839
840 /* Confirm a vcpu with the specified id doesn't already exist. */
841 vcpu = vcpu_find(vm, vcpuid);
842 if (vcpu != NULL)
843 TEST_FAIL("vcpu with the specified id "
844 "already exists,\n"
845 " requested vcpuid: %u\n"
846 " existing vcpuid: %u state: %p",
847 vcpuid, vcpu->id, vcpu->state);
848
849 /* Allocate and initialize new vcpu structure. */
850 vcpu = calloc(1, sizeof(*vcpu));
851 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
852 vcpu->id = vcpuid;
853 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
854 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
855 vcpu->fd, errno);
856
857 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
858 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
859 vcpu_mmap_sz(), sizeof(*vcpu->state));
860 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
861 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
862 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
863 "vcpu id: %u errno: %i", vcpuid, errno);
864
865 /* Add to linked-list of VCPUs. */
866 if (vm->vcpu_head)
867 vm->vcpu_head->prev = vcpu;
868 vcpu->next = vm->vcpu_head;
869 vm->vcpu_head = vcpu;
870 }
871
872 /*
873 * VM Virtual Address Unused Gap
874 *
875 * Input Args:
876 * vm - Virtual Machine
877 * sz - Size (bytes)
878 * vaddr_min - Minimum Virtual Address
879 *
880 * Output Args: None
881 *
882 * Return:
883 * Lowest virtual address at or below vaddr_min, with at least
884 * sz unused bytes. TEST_ASSERT failure if no area of at least
885 * size sz is available.
886 *
887 * Within the VM specified by vm, locates the lowest starting virtual
888 * address >= vaddr_min, that has at least sz unallocated bytes. A
889 * TEST_ASSERT failure occurs for invalid input or no area of at least
890 * sz unallocated bytes >= vaddr_min is available.
891 */
892 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
893 vm_vaddr_t vaddr_min)
894 {
895 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
896
897 /* Determine lowest permitted virtual page index. */
898 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
899 if ((pgidx_start * vm->page_size) < vaddr_min)
900 goto no_va_found;
901
902 /* Loop over section with enough valid virtual page indexes. */
903 if (!sparsebit_is_set_num(vm->vpages_valid,
904 pgidx_start, pages))
905 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
906 pgidx_start, pages);
907 do {
908 /*
909 * Are there enough unused virtual pages available at
910 * the currently proposed starting virtual page index.
911 * If not, adjust proposed starting index to next
912 * possible.
913 */
914 if (sparsebit_is_clear_num(vm->vpages_mapped,
915 pgidx_start, pages))
916 goto va_found;
917 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
918 pgidx_start, pages);
919 if (pgidx_start == 0)
920 goto no_va_found;
921
922 /*
923 * If needed, adjust proposed starting virtual address,
924 * to next range of valid virtual addresses.
925 */
926 if (!sparsebit_is_set_num(vm->vpages_valid,
927 pgidx_start, pages)) {
928 pgidx_start = sparsebit_next_set_num(
929 vm->vpages_valid, pgidx_start, pages);
930 if (pgidx_start == 0)
931 goto no_va_found;
932 }
933 } while (pgidx_start != 0);
934
935 no_va_found:
936 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
937
938 /* NOT REACHED */
939 return -1;
940
941 va_found:
942 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
943 pgidx_start, pages),
944 "Unexpected, invalid virtual page index range,\n"
945 " pgidx_start: 0x%lx\n"
946 " pages: 0x%lx",
947 pgidx_start, pages);
948 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
949 pgidx_start, pages),
950 "Unexpected, pages already mapped,\n"
951 " pgidx_start: 0x%lx\n"
952 " pages: 0x%lx",
953 pgidx_start, pages);
954
955 return pgidx_start * vm->page_size;
956 }
957
958 /*
959 * VM Virtual Address Allocate
960 *
961 * Input Args:
962 * vm - Virtual Machine
963 * sz - Size in bytes
964 * vaddr_min - Minimum starting virtual address
965 * data_memslot - Memory region slot for data pages
966 * pgd_memslot - Memory region slot for new virtual translation tables
967 *
968 * Output Args: None
969 *
970 * Return:
971 * Starting guest virtual address
972 *
973 * Allocates at least sz bytes within the virtual address space of the vm
974 * given by vm. The allocated bytes are mapped to a virtual address >=
975 * the address given by vaddr_min. Note that each allocation uses a
976 * a unique set of pages, with the minimum real allocation being at least
977 * a page.
978 */
979 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
980 uint32_t data_memslot, uint32_t pgd_memslot)
981 {
982 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
983
984 virt_pgd_alloc(vm, pgd_memslot);
985
986 /*
987 * Find an unused range of virtual page addresses of at least
988 * pages in length.
989 */
990 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
991
992 /* Map the virtual pages. */
993 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
994 pages--, vaddr += vm->page_size) {
995 vm_paddr_t paddr;
996
997 paddr = vm_phy_page_alloc(vm,
998 KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
999
1000 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1001
1002 sparsebit_set(vm->vpages_mapped,
1003 vaddr >> vm->page_shift);
1004 }
1005
1006 return vaddr_start;
1007 }
1008
1009 /*
1010 * Map a range of VM virtual address to the VM's physical address
1011 *
1012 * Input Args:
1013 * vm - Virtual Machine
1014 * vaddr - Virtuall address to map
1015 * paddr - VM Physical Address
1016 * npages - The number of pages to map
1017 * pgd_memslot - Memory region slot for new virtual translation tables
1018 *
1019 * Output Args: None
1020 *
1021 * Return: None
1022 *
1023 * Within the VM given by @vm, creates a virtual translation for
1024 * @npages starting at @vaddr to the page range starting at @paddr.
1025 */
1026 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1027 unsigned int npages, uint32_t pgd_memslot)
1028 {
1029 size_t page_size = vm->page_size;
1030 size_t size = npages * page_size;
1031
1032 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1033 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1034
1035 while (npages--) {
1036 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1037 vaddr += page_size;
1038 paddr += page_size;
1039 }
1040 }
1041
1042 /*
1043 * Address VM Physical to Host Virtual
1044 *
1045 * Input Args:
1046 * vm - Virtual Machine
1047 * gpa - VM physical address
1048 *
1049 * Output Args: None
1050 *
1051 * Return:
1052 * Equivalent host virtual address
1053 *
1054 * Locates the memory region containing the VM physical address given
1055 * by gpa, within the VM given by vm. When found, the host virtual
1056 * address providing the memory to the vm physical address is returned.
1057 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1058 */
1059 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1060 {
1061 struct userspace_mem_region *region;
1062 for (region = vm->userspace_mem_region_head; region;
1063 region = region->next) {
1064 if ((gpa >= region->region.guest_phys_addr)
1065 && (gpa <= (region->region.guest_phys_addr
1066 + region->region.memory_size - 1)))
1067 return (void *) ((uintptr_t) region->host_mem
1068 + (gpa - region->region.guest_phys_addr));
1069 }
1070
1071 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1072 return NULL;
1073 }
1074
1075 /*
1076 * Address Host Virtual to VM Physical
1077 *
1078 * Input Args:
1079 * vm - Virtual Machine
1080 * hva - Host virtual address
1081 *
1082 * Output Args: None
1083 *
1084 * Return:
1085 * Equivalent VM physical address
1086 *
1087 * Locates the memory region containing the host virtual address given
1088 * by hva, within the VM given by vm. When found, the equivalent
1089 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1090 * region containing hva exists.
1091 */
1092 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1093 {
1094 struct userspace_mem_region *region;
1095 for (region = vm->userspace_mem_region_head; region;
1096 region = region->next) {
1097 if ((hva >= region->host_mem)
1098 && (hva <= (region->host_mem
1099 + region->region.memory_size - 1)))
1100 return (vm_paddr_t) ((uintptr_t)
1101 region->region.guest_phys_addr
1102 + (hva - (uintptr_t) region->host_mem));
1103 }
1104
1105 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1106 return -1;
1107 }
1108
1109 /*
1110 * VM Create IRQ Chip
1111 *
1112 * Input Args:
1113 * vm - Virtual Machine
1114 *
1115 * Output Args: None
1116 *
1117 * Return: None
1118 *
1119 * Creates an interrupt controller chip for the VM specified by vm.
1120 */
1121 void vm_create_irqchip(struct kvm_vm *vm)
1122 {
1123 int ret;
1124
1125 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1126 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1127 "rc: %i errno: %i", ret, errno);
1128
1129 vm->has_irqchip = true;
1130 }
1131
1132 /*
1133 * VM VCPU State
1134 *
1135 * Input Args:
1136 * vm - Virtual Machine
1137 * vcpuid - VCPU ID
1138 *
1139 * Output Args: None
1140 *
1141 * Return:
1142 * Pointer to structure that describes the state of the VCPU.
1143 *
1144 * Locates and returns a pointer to a structure that describes the
1145 * state of the VCPU with the given vcpuid.
1146 */
1147 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1148 {
1149 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1150 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1151
1152 return vcpu->state;
1153 }
1154
1155 /*
1156 * VM VCPU Run
1157 *
1158 * Input Args:
1159 * vm - Virtual Machine
1160 * vcpuid - VCPU ID
1161 *
1162 * Output Args: None
1163 *
1164 * Return: None
1165 *
1166 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1167 * given by vm.
1168 */
1169 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1170 {
1171 int ret = _vcpu_run(vm, vcpuid);
1172 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1173 "rc: %i errno: %i", ret, errno);
1174 }
1175
1176 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1177 {
1178 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1179 int rc;
1180
1181 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1182 do {
1183 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1184 } while (rc == -1 && errno == EINTR);
1185 return rc;
1186 }
1187
1188 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1189 {
1190 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1191 int ret;
1192
1193 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1194
1195 vcpu->state->immediate_exit = 1;
1196 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1197 vcpu->state->immediate_exit = 0;
1198
1199 TEST_ASSERT(ret == -1 && errno == EINTR,
1200 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1201 ret, errno);
1202 }
1203
1204 /*
1205 * VM VCPU Set MP State
1206 *
1207 * Input Args:
1208 * vm - Virtual Machine
1209 * vcpuid - VCPU ID
1210 * mp_state - mp_state to be set
1211 *
1212 * Output Args: None
1213 *
1214 * Return: None
1215 *
1216 * Sets the MP state of the VCPU given by vcpuid, to the state given
1217 * by mp_state.
1218 */
1219 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1220 struct kvm_mp_state *mp_state)
1221 {
1222 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1223 int ret;
1224
1225 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1226
1227 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1228 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1229 "rc: %i errno: %i", ret, errno);
1230 }
1231
1232 /*
1233 * VM VCPU Regs Get
1234 *
1235 * Input Args:
1236 * vm - Virtual Machine
1237 * vcpuid - VCPU ID
1238 *
1239 * Output Args:
1240 * regs - current state of VCPU regs
1241 *
1242 * Return: None
1243 *
1244 * Obtains the current register state for the VCPU specified by vcpuid
1245 * and stores it at the location given by regs.
1246 */
1247 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1248 {
1249 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1250 int ret;
1251
1252 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1253
1254 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1255 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1256 ret, errno);
1257 }
1258
1259 /*
1260 * VM VCPU Regs Set
1261 *
1262 * Input Args:
1263 * vm - Virtual Machine
1264 * vcpuid - VCPU ID
1265 * regs - Values to set VCPU regs to
1266 *
1267 * Output Args: None
1268 *
1269 * Return: None
1270 *
1271 * Sets the regs of the VCPU specified by vcpuid to the values
1272 * given by regs.
1273 */
1274 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1275 {
1276 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1277 int ret;
1278
1279 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1280
1281 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1282 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1283 ret, errno);
1284 }
1285
1286 #ifdef __KVM_HAVE_VCPU_EVENTS
1287 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1288 struct kvm_vcpu_events *events)
1289 {
1290 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1291 int ret;
1292
1293 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1294
1295 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1296 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1297 ret, errno);
1298 }
1299
1300 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1301 struct kvm_vcpu_events *events)
1302 {
1303 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1304 int ret;
1305
1306 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1307
1308 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1309 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1310 ret, errno);
1311 }
1312 #endif
1313
1314 #ifdef __x86_64__
1315 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1316 struct kvm_nested_state *state)
1317 {
1318 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1319 int ret;
1320
1321 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1322
1323 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1324 TEST_ASSERT(ret == 0,
1325 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1326 ret, errno);
1327 }
1328
1329 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1330 struct kvm_nested_state *state, bool ignore_error)
1331 {
1332 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1333 int ret;
1334
1335 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1336
1337 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1338 if (!ignore_error) {
1339 TEST_ASSERT(ret == 0,
1340 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1341 ret, errno);
1342 }
1343
1344 return ret;
1345 }
1346 #endif
1347
1348 /*
1349 * VM VCPU System Regs Get
1350 *
1351 * Input Args:
1352 * vm - Virtual Machine
1353 * vcpuid - VCPU ID
1354 *
1355 * Output Args:
1356 * sregs - current state of VCPU system regs
1357 *
1358 * Return: None
1359 *
1360 * Obtains the current system register state for the VCPU specified by
1361 * vcpuid and stores it at the location given by sregs.
1362 */
1363 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1364 {
1365 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1366 int ret;
1367
1368 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1369
1370 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1371 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1372 ret, errno);
1373 }
1374
1375 /*
1376 * VM VCPU System Regs Set
1377 *
1378 * Input Args:
1379 * vm - Virtual Machine
1380 * vcpuid - VCPU ID
1381 * sregs - Values to set VCPU system regs to
1382 *
1383 * Output Args: None
1384 *
1385 * Return: None
1386 *
1387 * Sets the system regs of the VCPU specified by vcpuid to the values
1388 * given by sregs.
1389 */
1390 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1391 {
1392 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1393 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1394 "rc: %i errno: %i", ret, errno);
1395 }
1396
1397 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1398 {
1399 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1400
1401 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1402
1403 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1404 }
1405
1406 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1407 {
1408 int ret;
1409
1410 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1411 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1412 ret, errno, strerror(errno));
1413 }
1414
1415 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1416 {
1417 int ret;
1418
1419 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1420 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1421 ret, errno, strerror(errno));
1422 }
1423
1424 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1425 {
1426 int ret;
1427
1428 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1429 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1430 ret, errno, strerror(errno));
1431 }
1432
1433 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1434 {
1435 int ret;
1436
1437 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1438 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1439 ret, errno, strerror(errno));
1440 }
1441
1442 /*
1443 * VCPU Ioctl
1444 *
1445 * Input Args:
1446 * vm - Virtual Machine
1447 * vcpuid - VCPU ID
1448 * cmd - Ioctl number
1449 * arg - Argument to pass to the ioctl
1450 *
1451 * Return: None
1452 *
1453 * Issues an arbitrary ioctl on a VCPU fd.
1454 */
1455 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1456 unsigned long cmd, void *arg)
1457 {
1458 int ret;
1459
1460 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1461 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1462 cmd, ret, errno, strerror(errno));
1463 }
1464
1465 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1466 unsigned long cmd, void *arg)
1467 {
1468 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1469 int ret;
1470
1471 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1472
1473 ret = ioctl(vcpu->fd, cmd, arg);
1474
1475 return ret;
1476 }
1477
1478 /*
1479 * VM Ioctl
1480 *
1481 * Input Args:
1482 * vm - Virtual Machine
1483 * cmd - Ioctl number
1484 * arg - Argument to pass to the ioctl
1485 *
1486 * Return: None
1487 *
1488 * Issues an arbitrary ioctl on a VM fd.
1489 */
1490 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1491 {
1492 int ret;
1493
1494 ret = ioctl(vm->fd, cmd, arg);
1495 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1496 cmd, ret, errno, strerror(errno));
1497 }
1498
1499 /*
1500 * VM Dump
1501 *
1502 * Input Args:
1503 * vm - Virtual Machine
1504 * indent - Left margin indent amount
1505 *
1506 * Output Args:
1507 * stream - Output FILE stream
1508 *
1509 * Return: None
1510 *
1511 * Dumps the current state of the VM given by vm, to the FILE stream
1512 * given by stream.
1513 */
1514 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1515 {
1516 struct userspace_mem_region *region;
1517 struct vcpu *vcpu;
1518
1519 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1520 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1521 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1522 fprintf(stream, "%*sMem Regions:\n", indent, "");
1523 for (region = vm->userspace_mem_region_head; region;
1524 region = region->next) {
1525 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1526 "host_virt: %p\n", indent + 2, "",
1527 (uint64_t) region->region.guest_phys_addr,
1528 (uint64_t) region->region.memory_size,
1529 region->host_mem);
1530 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1531 sparsebit_dump(stream, region->unused_phy_pages, 0);
1532 }
1533 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1534 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1535 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1536 vm->pgd_created);
1537 if (vm->pgd_created) {
1538 fprintf(stream, "%*sVirtual Translation Tables:\n",
1539 indent + 2, "");
1540 virt_dump(stream, vm, indent + 4);
1541 }
1542 fprintf(stream, "%*sVCPUs:\n", indent, "");
1543 for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1544 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1545 }
1546
1547 /* Known KVM exit reasons */
1548 static struct exit_reason {
1549 unsigned int reason;
1550 const char *name;
1551 } exit_reasons_known[] = {
1552 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1553 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1554 {KVM_EXIT_IO, "IO"},
1555 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1556 {KVM_EXIT_DEBUG, "DEBUG"},
1557 {KVM_EXIT_HLT, "HLT"},
1558 {KVM_EXIT_MMIO, "MMIO"},
1559 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1560 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1561 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1562 {KVM_EXIT_INTR, "INTR"},
1563 {KVM_EXIT_SET_TPR, "SET_TPR"},
1564 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1565 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1566 {KVM_EXIT_S390_RESET, "S390_RESET"},
1567 {KVM_EXIT_DCR, "DCR"},
1568 {KVM_EXIT_NMI, "NMI"},
1569 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1570 {KVM_EXIT_OSI, "OSI"},
1571 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1572 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1573 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1574 #endif
1575 };
1576
1577 /*
1578 * Exit Reason String
1579 *
1580 * Input Args:
1581 * exit_reason - Exit reason
1582 *
1583 * Output Args: None
1584 *
1585 * Return:
1586 * Constant string pointer describing the exit reason.
1587 *
1588 * Locates and returns a constant string that describes the KVM exit
1589 * reason given by exit_reason. If no such string is found, a constant
1590 * string of "Unknown" is returned.
1591 */
1592 const char *exit_reason_str(unsigned int exit_reason)
1593 {
1594 unsigned int n1;
1595
1596 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1597 if (exit_reason == exit_reasons_known[n1].reason)
1598 return exit_reasons_known[n1].name;
1599 }
1600
1601 return "Unknown";
1602 }
1603
1604 /*
1605 * Physical Contiguous Page Allocator
1606 *
1607 * Input Args:
1608 * vm - Virtual Machine
1609 * num - number of pages
1610 * paddr_min - Physical address minimum
1611 * memslot - Memory region to allocate page from
1612 *
1613 * Output Args: None
1614 *
1615 * Return:
1616 * Starting physical address
1617 *
1618 * Within the VM specified by vm, locates a range of available physical
1619 * pages at or above paddr_min. If found, the pages are marked as in use
1620 * and their base address is returned. A TEST_ASSERT failure occurs if
1621 * not enough pages are available at or above paddr_min.
1622 */
1623 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1624 vm_paddr_t paddr_min, uint32_t memslot)
1625 {
1626 struct userspace_mem_region *region;
1627 sparsebit_idx_t pg, base;
1628
1629 TEST_ASSERT(num > 0, "Must allocate at least one page");
1630
1631 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1632 "not divisible by page size.\n"
1633 " paddr_min: 0x%lx page_size: 0x%x",
1634 paddr_min, vm->page_size);
1635
1636 region = memslot2region(vm, memslot);
1637 base = pg = paddr_min >> vm->page_shift;
1638
1639 do {
1640 for (; pg < base + num; ++pg) {
1641 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1642 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1643 break;
1644 }
1645 }
1646 } while (pg && pg != base + num);
1647
1648 if (pg == 0) {
1649 fprintf(stderr, "No guest physical page available, "
1650 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1651 paddr_min, vm->page_size, memslot);
1652 fputs("---- vm dump ----\n", stderr);
1653 vm_dump(stderr, vm, 2);
1654 abort();
1655 }
1656
1657 for (pg = base; pg < base + num; ++pg)
1658 sparsebit_clear(region->unused_phy_pages, pg);
1659
1660 return base * vm->page_size;
1661 }
1662
1663 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1664 uint32_t memslot)
1665 {
1666 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1667 }
1668
1669 /*
1670 * Address Guest Virtual to Host Virtual
1671 *
1672 * Input Args:
1673 * vm - Virtual Machine
1674 * gva - VM virtual address
1675 *
1676 * Output Args: None
1677 *
1678 * Return:
1679 * Equivalent host virtual address
1680 */
1681 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1682 {
1683 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1684 }
1685
1686 /*
1687 * Is Unrestricted Guest
1688 *
1689 * Input Args:
1690 * vm - Virtual Machine
1691 *
1692 * Output Args: None
1693 *
1694 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1695 *
1696 * Check if the unrestricted guest flag is enabled.
1697 */
1698 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1699 {
1700 char val = 'N';
1701 size_t count;
1702 FILE *f;
1703
1704 if (vm == NULL) {
1705 /* Ensure that the KVM vendor-specific module is loaded. */
1706 f = fopen(KVM_DEV_PATH, "r");
1707 TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1708 errno);
1709 fclose(f);
1710 }
1711
1712 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1713 if (f) {
1714 count = fread(&val, sizeof(char), 1, f);
1715 TEST_ASSERT(count == 1, "Unable to read from param file.");
1716 fclose(f);
1717 }
1718
1719 return val == 'Y';
1720 }
1721
1722 unsigned int vm_get_page_size(struct kvm_vm *vm)
1723 {
1724 return vm->page_size;
1725 }
1726
1727 unsigned int vm_get_page_shift(struct kvm_vm *vm)
1728 {
1729 return vm->page_shift;
1730 }
1731
1732 unsigned int vm_get_max_gfn(struct kvm_vm *vm)
1733 {
1734 return vm->max_gfn;
1735 }
1736
1737 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1738 unsigned int page_shift,
1739 unsigned int new_page_shift,
1740 bool ceil)
1741 {
1742 unsigned int n = 1 << (new_page_shift - page_shift);
1743
1744 if (page_shift >= new_page_shift)
1745 return num_pages * (1 << (page_shift - new_page_shift));
1746
1747 return num_pages / n + !!(ceil && num_pages % n);
1748 }
1749
1750 static inline int getpageshift(void)
1751 {
1752 return __builtin_ffs(getpagesize()) - 1;
1753 }
1754
1755 unsigned int
1756 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1757 {
1758 return vm_calc_num_pages(num_guest_pages,
1759 vm_guest_mode_params[mode].page_shift,
1760 getpageshift(), true);
1761 }
1762
1763 unsigned int
1764 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1765 {
1766 return vm_calc_num_pages(num_host_pages, getpageshift(),
1767 vm_guest_mode_params[mode].page_shift, false);
1768 }
1769
1770 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
1771 {
1772 unsigned int n;
1773 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
1774 return vm_adjust_num_guest_pages(mode, n);
1775 }