]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - tools/testing/selftests/kvm/lib/kvm_util.c
Merge tag 'xtensa-20181115' of git://github.com/jcmvbkbc/linux-xtensa
[thirdparty/kernel/stable.git] / tools / testing / selftests / kvm / lib / kvm_util.c
1 /*
2 * tools/testing/selftests/kvm/lib/kvm_util.c
3 *
4 * Copyright (C) 2018, Google LLC.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2.
7 */
8
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <linux/kernel.h>
18
19 #define KVM_UTIL_PGS_PER_HUGEPG 512
20 #define KVM_UTIL_MIN_PFN 2
21
22 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
23 static void *align(void *x, size_t size)
24 {
25 size_t mask = size - 1;
26 TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 "size not a power of 2: %lu", size);
28 return (void *) (((size_t) x + mask) & ~mask);
29 }
30
31 /*
32 * Capability
33 *
34 * Input Args:
35 * cap - Capability
36 *
37 * Output Args: None
38 *
39 * Return:
40 * On success, the Value corresponding to the capability (KVM_CAP_*)
41 * specified by the value of cap. On failure a TEST_ASSERT failure
42 * is produced.
43 *
44 * Looks up and returns the value corresponding to the capability
45 * (KVM_CAP_*) given by cap.
46 */
47 int kvm_check_cap(long cap)
48 {
49 int ret;
50 int kvm_fd;
51
52 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 if (kvm_fd < 0)
54 exit(KSFT_SKIP);
55
56 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 " rc: %i errno: %i", ret, errno);
59
60 close(kvm_fd);
61
62 return ret;
63 }
64
65 /* VM Enable Capability
66 *
67 * Input Args:
68 * vm - Virtual Machine
69 * cap - Capability
70 *
71 * Output Args: None
72 *
73 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74 *
75 * Enables a capability (KVM_CAP_*) on the VM.
76 */
77 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78 {
79 int ret;
80
81 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 " rc: %i errno: %i", ret, errno);
84
85 return ret;
86 }
87
88 static void vm_open(struct kvm_vm *vm, int perm)
89 {
90 vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 if (vm->kvm_fd < 0)
92 exit(KSFT_SKIP);
93
94 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, NULL);
95 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
96 "rc: %i errno: %i", vm->fd, errno);
97 }
98
99 const char * const vm_guest_mode_string[] = {
100 "PA-bits:52, VA-bits:48, 4K pages",
101 "PA-bits:52, VA-bits:48, 64K pages",
102 "PA-bits:40, VA-bits:48, 4K pages",
103 "PA-bits:40, VA-bits:48, 64K pages",
104 };
105
106 /*
107 * VM Create
108 *
109 * Input Args:
110 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
111 * phy_pages - Physical memory pages
112 * perm - permission
113 *
114 * Output Args: None
115 *
116 * Return:
117 * Pointer to opaque structure that describes the created VM.
118 *
119 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
120 * When phy_pages is non-zero, a memory region of phy_pages physical pages
121 * is created and mapped starting at guest physical address 0. The file
122 * descriptor to control the created VM is created with the permissions
123 * given by perm (e.g. O_RDWR).
124 */
125 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
126 {
127 struct kvm_vm *vm;
128 int kvm_fd;
129
130 vm = calloc(1, sizeof(*vm));
131 TEST_ASSERT(vm != NULL, "Insufficient Memory");
132
133 vm->mode = mode;
134 vm_open(vm, perm);
135
136 /* Setup mode specific traits. */
137 switch (vm->mode) {
138 case VM_MODE_P52V48_4K:
139 vm->pgtable_levels = 4;
140 vm->page_size = 0x1000;
141 vm->page_shift = 12;
142 vm->va_bits = 48;
143 break;
144 case VM_MODE_P52V48_64K:
145 vm->pgtable_levels = 3;
146 vm->pa_bits = 52;
147 vm->page_size = 0x10000;
148 vm->page_shift = 16;
149 vm->va_bits = 48;
150 break;
151 case VM_MODE_P40V48_4K:
152 vm->pgtable_levels = 4;
153 vm->pa_bits = 40;
154 vm->va_bits = 48;
155 vm->page_size = 0x1000;
156 vm->page_shift = 12;
157 break;
158 case VM_MODE_P40V48_64K:
159 vm->pgtable_levels = 3;
160 vm->pa_bits = 40;
161 vm->va_bits = 48;
162 vm->page_size = 0x10000;
163 vm->page_shift = 16;
164 break;
165 default:
166 TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
167 }
168
169 /* Limit to VA-bit canonical virtual addresses. */
170 vm->vpages_valid = sparsebit_alloc();
171 sparsebit_set_num(vm->vpages_valid,
172 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
173 sparsebit_set_num(vm->vpages_valid,
174 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
175 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
176
177 /* Limit physical addresses to PA-bits. */
178 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
179
180 /* Allocate and setup memory for guest. */
181 vm->vpages_mapped = sparsebit_alloc();
182 if (phy_pages != 0)
183 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
184 0, 0, phy_pages, 0);
185
186 return vm;
187 }
188
189 /*
190 * VM Restart
191 *
192 * Input Args:
193 * vm - VM that has been released before
194 * perm - permission
195 *
196 * Output Args: None
197 *
198 * Reopens the file descriptors associated to the VM and reinstates the
199 * global state, such as the irqchip and the memory regions that are mapped
200 * into the guest.
201 */
202 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
203 {
204 struct userspace_mem_region *region;
205
206 vm_open(vmp, perm);
207 if (vmp->has_irqchip)
208 vm_create_irqchip(vmp);
209
210 for (region = vmp->userspace_mem_region_head; region;
211 region = region->next) {
212 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
213 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
214 " rc: %i errno: %i\n"
215 " slot: %u flags: 0x%x\n"
216 " guest_phys_addr: 0x%lx size: 0x%lx",
217 ret, errno, region->region.slot,
218 region->region.flags,
219 region->region.guest_phys_addr,
220 region->region.memory_size);
221 }
222 }
223
224 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
225 {
226 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
227 int ret;
228
229 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
230 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
231 strerror(-ret));
232 }
233
234 /*
235 * Userspace Memory Region Find
236 *
237 * Input Args:
238 * vm - Virtual Machine
239 * start - Starting VM physical address
240 * end - Ending VM physical address, inclusive.
241 *
242 * Output Args: None
243 *
244 * Return:
245 * Pointer to overlapping region, NULL if no such region.
246 *
247 * Searches for a region with any physical memory that overlaps with
248 * any portion of the guest physical addresses from start to end
249 * inclusive. If multiple overlapping regions exist, a pointer to any
250 * of the regions is returned. Null is returned only when no overlapping
251 * region exists.
252 */
253 static struct userspace_mem_region *
254 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
255 {
256 struct userspace_mem_region *region;
257
258 for (region = vm->userspace_mem_region_head; region;
259 region = region->next) {
260 uint64_t existing_start = region->region.guest_phys_addr;
261 uint64_t existing_end = region->region.guest_phys_addr
262 + region->region.memory_size - 1;
263 if (start <= existing_end && end >= existing_start)
264 return region;
265 }
266
267 return NULL;
268 }
269
270 /*
271 * KVM Userspace Memory Region Find
272 *
273 * Input Args:
274 * vm - Virtual Machine
275 * start - Starting VM physical address
276 * end - Ending VM physical address, inclusive.
277 *
278 * Output Args: None
279 *
280 * Return:
281 * Pointer to overlapping region, NULL if no such region.
282 *
283 * Public interface to userspace_mem_region_find. Allows tests to look up
284 * the memslot datastructure for a given range of guest physical memory.
285 */
286 struct kvm_userspace_memory_region *
287 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
288 uint64_t end)
289 {
290 struct userspace_mem_region *region;
291
292 region = userspace_mem_region_find(vm, start, end);
293 if (!region)
294 return NULL;
295
296 return &region->region;
297 }
298
299 /*
300 * VCPU Find
301 *
302 * Input Args:
303 * vm - Virtual Machine
304 * vcpuid - VCPU ID
305 *
306 * Output Args: None
307 *
308 * Return:
309 * Pointer to VCPU structure
310 *
311 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
312 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
313 * for the specified vcpuid.
314 */
315 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
316 {
317 struct vcpu *vcpup;
318
319 for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
320 if (vcpup->id == vcpuid)
321 return vcpup;
322 }
323
324 return NULL;
325 }
326
327 /*
328 * VM VCPU Remove
329 *
330 * Input Args:
331 * vm - Virtual Machine
332 * vcpuid - VCPU ID
333 *
334 * Output Args: None
335 *
336 * Return: None, TEST_ASSERT failures for all error conditions
337 *
338 * Within the VM specified by vm, removes the VCPU given by vcpuid.
339 */
340 static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
341 {
342 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
343 int ret;
344
345 ret = munmap(vcpu->state, sizeof(*vcpu->state));
346 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
347 "errno: %i", ret, errno);
348 close(vcpu->fd);
349 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
350 "errno: %i", ret, errno);
351
352 if (vcpu->next)
353 vcpu->next->prev = vcpu->prev;
354 if (vcpu->prev)
355 vcpu->prev->next = vcpu->next;
356 else
357 vm->vcpu_head = vcpu->next;
358 free(vcpu);
359 }
360
361 void kvm_vm_release(struct kvm_vm *vmp)
362 {
363 int ret;
364
365 while (vmp->vcpu_head)
366 vm_vcpu_rm(vmp, vmp->vcpu_head->id);
367
368 ret = close(vmp->fd);
369 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
370 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
371
372 close(vmp->kvm_fd);
373 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
374 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
375 }
376
377 /*
378 * Destroys and frees the VM pointed to by vmp.
379 */
380 void kvm_vm_free(struct kvm_vm *vmp)
381 {
382 int ret;
383
384 if (vmp == NULL)
385 return;
386
387 /* Free userspace_mem_regions. */
388 while (vmp->userspace_mem_region_head) {
389 struct userspace_mem_region *region
390 = vmp->userspace_mem_region_head;
391
392 region->region.memory_size = 0;
393 ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
394 &region->region);
395 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
396 "rc: %i errno: %i", ret, errno);
397
398 vmp->userspace_mem_region_head = region->next;
399 sparsebit_free(&region->unused_phy_pages);
400 ret = munmap(region->mmap_start, region->mmap_size);
401 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
402 ret, errno);
403
404 free(region);
405 }
406
407 /* Free sparsebit arrays. */
408 sparsebit_free(&vmp->vpages_valid);
409 sparsebit_free(&vmp->vpages_mapped);
410
411 kvm_vm_release(vmp);
412
413 /* Free the structure describing the VM. */
414 free(vmp);
415 }
416
417 /*
418 * Memory Compare, host virtual to guest virtual
419 *
420 * Input Args:
421 * hva - Starting host virtual address
422 * vm - Virtual Machine
423 * gva - Starting guest virtual address
424 * len - number of bytes to compare
425 *
426 * Output Args: None
427 *
428 * Input/Output Args: None
429 *
430 * Return:
431 * Returns 0 if the bytes starting at hva for a length of len
432 * are equal the guest virtual bytes starting at gva. Returns
433 * a value < 0, if bytes at hva are less than those at gva.
434 * Otherwise a value > 0 is returned.
435 *
436 * Compares the bytes starting at the host virtual address hva, for
437 * a length of len, to the guest bytes starting at the guest virtual
438 * address given by gva.
439 */
440 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
441 {
442 size_t amt;
443
444 /*
445 * Compare a batch of bytes until either a match is found
446 * or all the bytes have been compared.
447 */
448 for (uintptr_t offset = 0; offset < len; offset += amt) {
449 uintptr_t ptr1 = (uintptr_t)hva + offset;
450
451 /*
452 * Determine host address for guest virtual address
453 * at offset.
454 */
455 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
456
457 /*
458 * Determine amount to compare on this pass.
459 * Don't allow the comparsion to cross a page boundary.
460 */
461 amt = len - offset;
462 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
463 amt = vm->page_size - (ptr1 % vm->page_size);
464 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
465 amt = vm->page_size - (ptr2 % vm->page_size);
466
467 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
468 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
469
470 /*
471 * Perform the comparison. If there is a difference
472 * return that result to the caller, otherwise need
473 * to continue on looking for a mismatch.
474 */
475 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
476 if (ret != 0)
477 return ret;
478 }
479
480 /*
481 * No mismatch found. Let the caller know the two memory
482 * areas are equal.
483 */
484 return 0;
485 }
486
487 /*
488 * VM Userspace Memory Region Add
489 *
490 * Input Args:
491 * vm - Virtual Machine
492 * backing_src - Storage source for this region.
493 * NULL to use anonymous memory.
494 * guest_paddr - Starting guest physical address
495 * slot - KVM region slot
496 * npages - Number of physical pages
497 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
498 *
499 * Output Args: None
500 *
501 * Return: None
502 *
503 * Allocates a memory area of the number of pages specified by npages
504 * and maps it to the VM specified by vm, at a starting physical address
505 * given by guest_paddr. The region is created with a KVM region slot
506 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
507 * region is created with the flags given by flags.
508 */
509 void vm_userspace_mem_region_add(struct kvm_vm *vm,
510 enum vm_mem_backing_src_type src_type,
511 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
512 uint32_t flags)
513 {
514 int ret;
515 unsigned long pmem_size = 0;
516 struct userspace_mem_region *region;
517 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
518
519 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
520 "address not on a page boundary.\n"
521 " guest_paddr: 0x%lx vm->page_size: 0x%x",
522 guest_paddr, vm->page_size);
523 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
524 <= vm->max_gfn, "Physical range beyond maximum "
525 "supported physical address,\n"
526 " guest_paddr: 0x%lx npages: 0x%lx\n"
527 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
528 guest_paddr, npages, vm->max_gfn, vm->page_size);
529
530 /*
531 * Confirm a mem region with an overlapping address doesn't
532 * already exist.
533 */
534 region = (struct userspace_mem_region *) userspace_mem_region_find(
535 vm, guest_paddr, guest_paddr + npages * vm->page_size);
536 if (region != NULL)
537 TEST_ASSERT(false, "overlapping userspace_mem_region already "
538 "exists\n"
539 " requested guest_paddr: 0x%lx npages: 0x%lx "
540 "page_size: 0x%x\n"
541 " existing guest_paddr: 0x%lx size: 0x%lx",
542 guest_paddr, npages, vm->page_size,
543 (uint64_t) region->region.guest_phys_addr,
544 (uint64_t) region->region.memory_size);
545
546 /* Confirm no region with the requested slot already exists. */
547 for (region = vm->userspace_mem_region_head; region;
548 region = region->next) {
549 if (region->region.slot == slot)
550 break;
551 if ((guest_paddr <= (region->region.guest_phys_addr
552 + region->region.memory_size))
553 && ((guest_paddr + npages * vm->page_size)
554 >= region->region.guest_phys_addr))
555 break;
556 }
557 if (region != NULL)
558 TEST_ASSERT(false, "A mem region with the requested slot "
559 "or overlapping physical memory range already exists.\n"
560 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
561 " existing slot: %u paddr: 0x%lx size: 0x%lx",
562 slot, guest_paddr, npages,
563 region->region.slot,
564 (uint64_t) region->region.guest_phys_addr,
565 (uint64_t) region->region.memory_size);
566
567 /* Allocate and initialize new mem region structure. */
568 region = calloc(1, sizeof(*region));
569 TEST_ASSERT(region != NULL, "Insufficient Memory");
570 region->mmap_size = npages * vm->page_size;
571
572 /* Enough memory to align up to a huge page. */
573 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
574 region->mmap_size += huge_page_size;
575 region->mmap_start = mmap(NULL, region->mmap_size,
576 PROT_READ | PROT_WRITE,
577 MAP_PRIVATE | MAP_ANONYMOUS
578 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
579 -1, 0);
580 TEST_ASSERT(region->mmap_start != MAP_FAILED,
581 "test_malloc failed, mmap_start: %p errno: %i",
582 region->mmap_start, errno);
583
584 /* Align THP allocation up to start of a huge page. */
585 region->host_mem = align(region->mmap_start,
586 src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1);
587
588 /* As needed perform madvise */
589 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
590 ret = madvise(region->host_mem, npages * vm->page_size,
591 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
592 TEST_ASSERT(ret == 0, "madvise failed,\n"
593 " addr: %p\n"
594 " length: 0x%lx\n"
595 " src_type: %x",
596 region->host_mem, npages * vm->page_size, src_type);
597 }
598
599 region->unused_phy_pages = sparsebit_alloc();
600 sparsebit_set_num(region->unused_phy_pages,
601 guest_paddr >> vm->page_shift, npages);
602 region->region.slot = slot;
603 region->region.flags = flags;
604 region->region.guest_phys_addr = guest_paddr;
605 region->region.memory_size = npages * vm->page_size;
606 region->region.userspace_addr = (uintptr_t) region->host_mem;
607 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
608 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
609 " rc: %i errno: %i\n"
610 " slot: %u flags: 0x%x\n"
611 " guest_phys_addr: 0x%lx size: 0x%lx",
612 ret, errno, slot, flags,
613 guest_paddr, (uint64_t) region->region.memory_size);
614
615 /* Add to linked-list of memory regions. */
616 if (vm->userspace_mem_region_head)
617 vm->userspace_mem_region_head->prev = region;
618 region->next = vm->userspace_mem_region_head;
619 vm->userspace_mem_region_head = region;
620 }
621
622 /*
623 * Memslot to region
624 *
625 * Input Args:
626 * vm - Virtual Machine
627 * memslot - KVM memory slot ID
628 *
629 * Output Args: None
630 *
631 * Return:
632 * Pointer to memory region structure that describe memory region
633 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
634 * on error (e.g. currently no memory region using memslot as a KVM
635 * memory slot ID).
636 */
637 static struct userspace_mem_region *
638 memslot2region(struct kvm_vm *vm, uint32_t memslot)
639 {
640 struct userspace_mem_region *region;
641
642 for (region = vm->userspace_mem_region_head; region;
643 region = region->next) {
644 if (region->region.slot == memslot)
645 break;
646 }
647 if (region == NULL) {
648 fprintf(stderr, "No mem region with the requested slot found,\n"
649 " requested slot: %u\n", memslot);
650 fputs("---- vm dump ----\n", stderr);
651 vm_dump(stderr, vm, 2);
652 TEST_ASSERT(false, "Mem region not found");
653 }
654
655 return region;
656 }
657
658 /*
659 * VM Memory Region Flags Set
660 *
661 * Input Args:
662 * vm - Virtual Machine
663 * flags - Starting guest physical address
664 *
665 * Output Args: None
666 *
667 * Return: None
668 *
669 * Sets the flags of the memory region specified by the value of slot,
670 * to the values given by flags.
671 */
672 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
673 {
674 int ret;
675 struct userspace_mem_region *region;
676
677 region = memslot2region(vm, slot);
678
679 region->region.flags = flags;
680
681 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
682
683 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
684 " rc: %i errno: %i slot: %u flags: 0x%x",
685 ret, errno, slot, flags);
686 }
687
688 /*
689 * VCPU mmap Size
690 *
691 * Input Args: None
692 *
693 * Output Args: None
694 *
695 * Return:
696 * Size of VCPU state
697 *
698 * Returns the size of the structure pointed to by the return value
699 * of vcpu_state().
700 */
701 static int vcpu_mmap_sz(void)
702 {
703 int dev_fd, ret;
704
705 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
706 if (dev_fd < 0)
707 exit(KSFT_SKIP);
708
709 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
710 TEST_ASSERT(ret >= sizeof(struct kvm_run),
711 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
712 __func__, ret, errno);
713
714 close(dev_fd);
715
716 return ret;
717 }
718
719 /*
720 * VM VCPU Add
721 *
722 * Input Args:
723 * vm - Virtual Machine
724 * vcpuid - VCPU ID
725 *
726 * Output Args: None
727 *
728 * Return: None
729 *
730 * Creates and adds to the VM specified by vm and virtual CPU with
731 * the ID given by vcpuid.
732 */
733 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
734 int gdt_memslot)
735 {
736 struct vcpu *vcpu;
737
738 /* Confirm a vcpu with the specified id doesn't already exist. */
739 vcpu = vcpu_find(vm, vcpuid);
740 if (vcpu != NULL)
741 TEST_ASSERT(false, "vcpu with the specified id "
742 "already exists,\n"
743 " requested vcpuid: %u\n"
744 " existing vcpuid: %u state: %p",
745 vcpuid, vcpu->id, vcpu->state);
746
747 /* Allocate and initialize new vcpu structure. */
748 vcpu = calloc(1, sizeof(*vcpu));
749 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
750 vcpu->id = vcpuid;
751 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
752 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
753 vcpu->fd, errno);
754
755 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
756 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
757 vcpu_mmap_sz(), sizeof(*vcpu->state));
758 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
759 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
760 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
761 "vcpu id: %u errno: %i", vcpuid, errno);
762
763 /* Add to linked-list of VCPUs. */
764 if (vm->vcpu_head)
765 vm->vcpu_head->prev = vcpu;
766 vcpu->next = vm->vcpu_head;
767 vm->vcpu_head = vcpu;
768
769 vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
770 }
771
772 /*
773 * VM Virtual Address Unused Gap
774 *
775 * Input Args:
776 * vm - Virtual Machine
777 * sz - Size (bytes)
778 * vaddr_min - Minimum Virtual Address
779 *
780 * Output Args: None
781 *
782 * Return:
783 * Lowest virtual address at or below vaddr_min, with at least
784 * sz unused bytes. TEST_ASSERT failure if no area of at least
785 * size sz is available.
786 *
787 * Within the VM specified by vm, locates the lowest starting virtual
788 * address >= vaddr_min, that has at least sz unallocated bytes. A
789 * TEST_ASSERT failure occurs for invalid input or no area of at least
790 * sz unallocated bytes >= vaddr_min is available.
791 */
792 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
793 vm_vaddr_t vaddr_min)
794 {
795 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
796
797 /* Determine lowest permitted virtual page index. */
798 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
799 if ((pgidx_start * vm->page_size) < vaddr_min)
800 goto no_va_found;
801
802 /* Loop over section with enough valid virtual page indexes. */
803 if (!sparsebit_is_set_num(vm->vpages_valid,
804 pgidx_start, pages))
805 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
806 pgidx_start, pages);
807 do {
808 /*
809 * Are there enough unused virtual pages available at
810 * the currently proposed starting virtual page index.
811 * If not, adjust proposed starting index to next
812 * possible.
813 */
814 if (sparsebit_is_clear_num(vm->vpages_mapped,
815 pgidx_start, pages))
816 goto va_found;
817 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
818 pgidx_start, pages);
819 if (pgidx_start == 0)
820 goto no_va_found;
821
822 /*
823 * If needed, adjust proposed starting virtual address,
824 * to next range of valid virtual addresses.
825 */
826 if (!sparsebit_is_set_num(vm->vpages_valid,
827 pgidx_start, pages)) {
828 pgidx_start = sparsebit_next_set_num(
829 vm->vpages_valid, pgidx_start, pages);
830 if (pgidx_start == 0)
831 goto no_va_found;
832 }
833 } while (pgidx_start != 0);
834
835 no_va_found:
836 TEST_ASSERT(false, "No vaddr of specified pages available, "
837 "pages: 0x%lx", pages);
838
839 /* NOT REACHED */
840 return -1;
841
842 va_found:
843 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
844 pgidx_start, pages),
845 "Unexpected, invalid virtual page index range,\n"
846 " pgidx_start: 0x%lx\n"
847 " pages: 0x%lx",
848 pgidx_start, pages);
849 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
850 pgidx_start, pages),
851 "Unexpected, pages already mapped,\n"
852 " pgidx_start: 0x%lx\n"
853 " pages: 0x%lx",
854 pgidx_start, pages);
855
856 return pgidx_start * vm->page_size;
857 }
858
859 /*
860 * VM Virtual Address Allocate
861 *
862 * Input Args:
863 * vm - Virtual Machine
864 * sz - Size in bytes
865 * vaddr_min - Minimum starting virtual address
866 * data_memslot - Memory region slot for data pages
867 * pgd_memslot - Memory region slot for new virtual translation tables
868 *
869 * Output Args: None
870 *
871 * Return:
872 * Starting guest virtual address
873 *
874 * Allocates at least sz bytes within the virtual address space of the vm
875 * given by vm. The allocated bytes are mapped to a virtual address >=
876 * the address given by vaddr_min. Note that each allocation uses a
877 * a unique set of pages, with the minimum real allocation being at least
878 * a page.
879 */
880 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
881 uint32_t data_memslot, uint32_t pgd_memslot)
882 {
883 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
884
885 virt_pgd_alloc(vm, pgd_memslot);
886
887 /*
888 * Find an unused range of virtual page addresses of at least
889 * pages in length.
890 */
891 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
892
893 /* Map the virtual pages. */
894 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
895 pages--, vaddr += vm->page_size) {
896 vm_paddr_t paddr;
897
898 paddr = vm_phy_page_alloc(vm,
899 KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
900
901 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
902
903 sparsebit_set(vm->vpages_mapped,
904 vaddr >> vm->page_shift);
905 }
906
907 return vaddr_start;
908 }
909
910 /*
911 * Map a range of VM virtual address to the VM's physical address
912 *
913 * Input Args:
914 * vm - Virtual Machine
915 * vaddr - Virtuall address to map
916 * paddr - VM Physical Address
917 * size - The size of the range to map
918 * pgd_memslot - Memory region slot for new virtual translation tables
919 *
920 * Output Args: None
921 *
922 * Return: None
923 *
924 * Within the VM given by vm, creates a virtual translation for the
925 * page range starting at vaddr to the page range starting at paddr.
926 */
927 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
928 size_t size, uint32_t pgd_memslot)
929 {
930 size_t page_size = vm->page_size;
931 size_t npages = size / page_size;
932
933 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
934 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
935
936 while (npages--) {
937 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
938 vaddr += page_size;
939 paddr += page_size;
940 }
941 }
942
943 /*
944 * Address VM Physical to Host Virtual
945 *
946 * Input Args:
947 * vm - Virtual Machine
948 * gpa - VM physical address
949 *
950 * Output Args: None
951 *
952 * Return:
953 * Equivalent host virtual address
954 *
955 * Locates the memory region containing the VM physical address given
956 * by gpa, within the VM given by vm. When found, the host virtual
957 * address providing the memory to the vm physical address is returned.
958 * A TEST_ASSERT failure occurs if no region containing gpa exists.
959 */
960 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
961 {
962 struct userspace_mem_region *region;
963 for (region = vm->userspace_mem_region_head; region;
964 region = region->next) {
965 if ((gpa >= region->region.guest_phys_addr)
966 && (gpa <= (region->region.guest_phys_addr
967 + region->region.memory_size - 1)))
968 return (void *) ((uintptr_t) region->host_mem
969 + (gpa - region->region.guest_phys_addr));
970 }
971
972 TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
973 return NULL;
974 }
975
976 /*
977 * Address Host Virtual to VM Physical
978 *
979 * Input Args:
980 * vm - Virtual Machine
981 * hva - Host virtual address
982 *
983 * Output Args: None
984 *
985 * Return:
986 * Equivalent VM physical address
987 *
988 * Locates the memory region containing the host virtual address given
989 * by hva, within the VM given by vm. When found, the equivalent
990 * VM physical address is returned. A TEST_ASSERT failure occurs if no
991 * region containing hva exists.
992 */
993 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
994 {
995 struct userspace_mem_region *region;
996 for (region = vm->userspace_mem_region_head; region;
997 region = region->next) {
998 if ((hva >= region->host_mem)
999 && (hva <= (region->host_mem
1000 + region->region.memory_size - 1)))
1001 return (vm_paddr_t) ((uintptr_t)
1002 region->region.guest_phys_addr
1003 + (hva - (uintptr_t) region->host_mem));
1004 }
1005
1006 TEST_ASSERT(false, "No mapping to a guest physical address, "
1007 "hva: %p", hva);
1008 return -1;
1009 }
1010
1011 /*
1012 * VM Create IRQ Chip
1013 *
1014 * Input Args:
1015 * vm - Virtual Machine
1016 *
1017 * Output Args: None
1018 *
1019 * Return: None
1020 *
1021 * Creates an interrupt controller chip for the VM specified by vm.
1022 */
1023 void vm_create_irqchip(struct kvm_vm *vm)
1024 {
1025 int ret;
1026
1027 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1028 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1029 "rc: %i errno: %i", ret, errno);
1030
1031 vm->has_irqchip = true;
1032 }
1033
1034 /*
1035 * VM VCPU State
1036 *
1037 * Input Args:
1038 * vm - Virtual Machine
1039 * vcpuid - VCPU ID
1040 *
1041 * Output Args: None
1042 *
1043 * Return:
1044 * Pointer to structure that describes the state of the VCPU.
1045 *
1046 * Locates and returns a pointer to a structure that describes the
1047 * state of the VCPU with the given vcpuid.
1048 */
1049 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1050 {
1051 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1052 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1053
1054 return vcpu->state;
1055 }
1056
1057 /*
1058 * VM VCPU Run
1059 *
1060 * Input Args:
1061 * vm - Virtual Machine
1062 * vcpuid - VCPU ID
1063 *
1064 * Output Args: None
1065 *
1066 * Return: None
1067 *
1068 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1069 * given by vm.
1070 */
1071 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1072 {
1073 int ret = _vcpu_run(vm, vcpuid);
1074 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1075 "rc: %i errno: %i", ret, errno);
1076 }
1077
1078 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1079 {
1080 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1081 int rc;
1082
1083 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1084 do {
1085 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1086 } while (rc == -1 && errno == EINTR);
1087 return rc;
1088 }
1089
1090 /*
1091 * VM VCPU Set MP State
1092 *
1093 * Input Args:
1094 * vm - Virtual Machine
1095 * vcpuid - VCPU ID
1096 * mp_state - mp_state to be set
1097 *
1098 * Output Args: None
1099 *
1100 * Return: None
1101 *
1102 * Sets the MP state of the VCPU given by vcpuid, to the state given
1103 * by mp_state.
1104 */
1105 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1106 struct kvm_mp_state *mp_state)
1107 {
1108 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1109 int ret;
1110
1111 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1112
1113 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1114 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1115 "rc: %i errno: %i", ret, errno);
1116 }
1117
1118 /*
1119 * VM VCPU Regs Get
1120 *
1121 * Input Args:
1122 * vm - Virtual Machine
1123 * vcpuid - VCPU ID
1124 *
1125 * Output Args:
1126 * regs - current state of VCPU regs
1127 *
1128 * Return: None
1129 *
1130 * Obtains the current register state for the VCPU specified by vcpuid
1131 * and stores it at the location given by regs.
1132 */
1133 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1134 {
1135 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1136 int ret;
1137
1138 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1139
1140 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1141 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1142 ret, errno);
1143 }
1144
1145 /*
1146 * VM VCPU Regs Set
1147 *
1148 * Input Args:
1149 * vm - Virtual Machine
1150 * vcpuid - VCPU ID
1151 * regs - Values to set VCPU regs to
1152 *
1153 * Output Args: None
1154 *
1155 * Return: None
1156 *
1157 * Sets the regs of the VCPU specified by vcpuid to the values
1158 * given by regs.
1159 */
1160 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1161 {
1162 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1163 int ret;
1164
1165 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1166
1167 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1168 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1169 ret, errno);
1170 }
1171
1172 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1173 struct kvm_vcpu_events *events)
1174 {
1175 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1176 int ret;
1177
1178 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1179
1180 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1181 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1182 ret, errno);
1183 }
1184
1185 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1186 struct kvm_vcpu_events *events)
1187 {
1188 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1189 int ret;
1190
1191 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1192
1193 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1194 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1195 ret, errno);
1196 }
1197
1198 /*
1199 * VM VCPU System Regs Get
1200 *
1201 * Input Args:
1202 * vm - Virtual Machine
1203 * vcpuid - VCPU ID
1204 *
1205 * Output Args:
1206 * sregs - current state of VCPU system regs
1207 *
1208 * Return: None
1209 *
1210 * Obtains the current system register state for the VCPU specified by
1211 * vcpuid and stores it at the location given by sregs.
1212 */
1213 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1214 {
1215 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1216 int ret;
1217
1218 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1219
1220 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1221 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1222 ret, errno);
1223 }
1224
1225 /*
1226 * VM VCPU System Regs Set
1227 *
1228 * Input Args:
1229 * vm - Virtual Machine
1230 * vcpuid - VCPU ID
1231 * sregs - Values to set VCPU system regs to
1232 *
1233 * Output Args: None
1234 *
1235 * Return: None
1236 *
1237 * Sets the system regs of the VCPU specified by vcpuid to the values
1238 * given by sregs.
1239 */
1240 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1241 {
1242 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1243 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1244 "rc: %i errno: %i", ret, errno);
1245 }
1246
1247 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1248 {
1249 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1250 int ret;
1251
1252 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1253
1254 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1255 }
1256
1257 /*
1258 * VCPU Ioctl
1259 *
1260 * Input Args:
1261 * vm - Virtual Machine
1262 * vcpuid - VCPU ID
1263 * cmd - Ioctl number
1264 * arg - Argument to pass to the ioctl
1265 *
1266 * Return: None
1267 *
1268 * Issues an arbitrary ioctl on a VCPU fd.
1269 */
1270 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1271 unsigned long cmd, void *arg)
1272 {
1273 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1274 int ret;
1275
1276 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1277
1278 ret = ioctl(vcpu->fd, cmd, arg);
1279 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1280 cmd, ret, errno, strerror(errno));
1281 }
1282
1283 /*
1284 * VM Ioctl
1285 *
1286 * Input Args:
1287 * vm - Virtual Machine
1288 * cmd - Ioctl number
1289 * arg - Argument to pass to the ioctl
1290 *
1291 * Return: None
1292 *
1293 * Issues an arbitrary ioctl on a VM fd.
1294 */
1295 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1296 {
1297 int ret;
1298
1299 ret = ioctl(vm->fd, cmd, arg);
1300 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1301 cmd, ret, errno, strerror(errno));
1302 }
1303
1304 /*
1305 * VM Dump
1306 *
1307 * Input Args:
1308 * vm - Virtual Machine
1309 * indent - Left margin indent amount
1310 *
1311 * Output Args:
1312 * stream - Output FILE stream
1313 *
1314 * Return: None
1315 *
1316 * Dumps the current state of the VM given by vm, to the FILE stream
1317 * given by stream.
1318 */
1319 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1320 {
1321 struct userspace_mem_region *region;
1322 struct vcpu *vcpu;
1323
1324 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1325 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1326 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1327 fprintf(stream, "%*sMem Regions:\n", indent, "");
1328 for (region = vm->userspace_mem_region_head; region;
1329 region = region->next) {
1330 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1331 "host_virt: %p\n", indent + 2, "",
1332 (uint64_t) region->region.guest_phys_addr,
1333 (uint64_t) region->region.memory_size,
1334 region->host_mem);
1335 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1336 sparsebit_dump(stream, region->unused_phy_pages, 0);
1337 }
1338 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1339 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1340 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1341 vm->pgd_created);
1342 if (vm->pgd_created) {
1343 fprintf(stream, "%*sVirtual Translation Tables:\n",
1344 indent + 2, "");
1345 virt_dump(stream, vm, indent + 4);
1346 }
1347 fprintf(stream, "%*sVCPUs:\n", indent, "");
1348 for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1349 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1350 }
1351
1352 /* Known KVM exit reasons */
1353 static struct exit_reason {
1354 unsigned int reason;
1355 const char *name;
1356 } exit_reasons_known[] = {
1357 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1358 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1359 {KVM_EXIT_IO, "IO"},
1360 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1361 {KVM_EXIT_DEBUG, "DEBUG"},
1362 {KVM_EXIT_HLT, "HLT"},
1363 {KVM_EXIT_MMIO, "MMIO"},
1364 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1365 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1366 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1367 {KVM_EXIT_INTR, "INTR"},
1368 {KVM_EXIT_SET_TPR, "SET_TPR"},
1369 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1370 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1371 {KVM_EXIT_S390_RESET, "S390_RESET"},
1372 {KVM_EXIT_DCR, "DCR"},
1373 {KVM_EXIT_NMI, "NMI"},
1374 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1375 {KVM_EXIT_OSI, "OSI"},
1376 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1377 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1378 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1379 #endif
1380 };
1381
1382 /*
1383 * Exit Reason String
1384 *
1385 * Input Args:
1386 * exit_reason - Exit reason
1387 *
1388 * Output Args: None
1389 *
1390 * Return:
1391 * Constant string pointer describing the exit reason.
1392 *
1393 * Locates and returns a constant string that describes the KVM exit
1394 * reason given by exit_reason. If no such string is found, a constant
1395 * string of "Unknown" is returned.
1396 */
1397 const char *exit_reason_str(unsigned int exit_reason)
1398 {
1399 unsigned int n1;
1400
1401 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1402 if (exit_reason == exit_reasons_known[n1].reason)
1403 return exit_reasons_known[n1].name;
1404 }
1405
1406 return "Unknown";
1407 }
1408
1409 /*
1410 * Physical Contiguous Page Allocator
1411 *
1412 * Input Args:
1413 * vm - Virtual Machine
1414 * num - number of pages
1415 * paddr_min - Physical address minimum
1416 * memslot - Memory region to allocate page from
1417 *
1418 * Output Args: None
1419 *
1420 * Return:
1421 * Starting physical address
1422 *
1423 * Within the VM specified by vm, locates a range of available physical
1424 * pages at or above paddr_min. If found, the pages are marked as in use
1425 * and thier base address is returned. A TEST_ASSERT failure occurs if
1426 * not enough pages are available at or above paddr_min.
1427 */
1428 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1429 vm_paddr_t paddr_min, uint32_t memslot)
1430 {
1431 struct userspace_mem_region *region;
1432 sparsebit_idx_t pg, base;
1433
1434 TEST_ASSERT(num > 0, "Must allocate at least one page");
1435
1436 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1437 "not divisible by page size.\n"
1438 " paddr_min: 0x%lx page_size: 0x%x",
1439 paddr_min, vm->page_size);
1440
1441 region = memslot2region(vm, memslot);
1442 base = pg = paddr_min >> vm->page_shift;
1443
1444 do {
1445 for (; pg < base + num; ++pg) {
1446 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1447 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1448 break;
1449 }
1450 }
1451 } while (pg && pg != base + num);
1452
1453 if (pg == 0) {
1454 fprintf(stderr, "No guest physical page available, "
1455 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1456 paddr_min, vm->page_size, memslot);
1457 fputs("---- vm dump ----\n", stderr);
1458 vm_dump(stderr, vm, 2);
1459 abort();
1460 }
1461
1462 for (pg = base; pg < base + num; ++pg)
1463 sparsebit_clear(region->unused_phy_pages, pg);
1464
1465 return base * vm->page_size;
1466 }
1467
1468 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1469 uint32_t memslot)
1470 {
1471 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1472 }
1473
1474 /*
1475 * Address Guest Virtual to Host Virtual
1476 *
1477 * Input Args:
1478 * vm - Virtual Machine
1479 * gva - VM virtual address
1480 *
1481 * Output Args: None
1482 *
1483 * Return:
1484 * Equivalent host virtual address
1485 */
1486 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1487 {
1488 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1489 }