]> git.ipfire.org Git - thirdparty/qemu.git/blob - translate-all.c
Merge remote-tracking branch 'remotes/awilliam/tags/vfio-update-20150706.0' into...
[thirdparty/qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
30
31 #include "config.h"
32
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
59
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
65
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
75
76 #define SMC_BITMAP_USE_THRESHOLD 10
77
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
89
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
101
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
105
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
115
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_real_host_page_mask;
122 uintptr_t qemu_host_page_size;
123 uintptr_t qemu_host_page_mask;
124
125 /* This is a multi-level map on the virtual address space.
126 The bottom level has pointers to PageDesc. */
127 static void *l1_map[V_L1_SIZE];
128
129 /* code generation context */
130 TCGContext tcg_ctx;
131
132 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
133 tb_page_addr_t phys_page2);
134 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
135
136 void cpu_gen_init(void)
137 {
138 tcg_context_init(&tcg_ctx);
139 }
140
141 /* return non zero if the very first instruction is invalid so that
142 the virtual CPU can trigger an exception.
143
144 '*gen_code_size_ptr' contains the size of the generated code (host
145 code).
146 */
147 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
148 {
149 TCGContext *s = &tcg_ctx;
150 tcg_insn_unit *gen_code_buf;
151 int gen_code_size;
152 #ifdef CONFIG_PROFILER
153 int64_t ti;
154 #endif
155
156 #ifdef CONFIG_PROFILER
157 s->tb_count1++; /* includes aborted translations because of
158 exceptions */
159 ti = profile_getclock();
160 #endif
161 tcg_func_start(s);
162
163 gen_intermediate_code(env, tb);
164
165 trace_translate_block(tb, tb->pc, tb->tc_ptr);
166
167 /* generate machine code */
168 gen_code_buf = tb->tc_ptr;
169 tb->tb_next_offset[0] = 0xffff;
170 tb->tb_next_offset[1] = 0xffff;
171 s->tb_next_offset = tb->tb_next_offset;
172 #ifdef USE_DIRECT_JUMP
173 s->tb_jmp_offset = tb->tb_jmp_offset;
174 s->tb_next = NULL;
175 #else
176 s->tb_jmp_offset = NULL;
177 s->tb_next = tb->tb_next;
178 #endif
179
180 #ifdef CONFIG_PROFILER
181 s->tb_count++;
182 s->interm_time += profile_getclock() - ti;
183 s->code_time -= profile_getclock();
184 #endif
185 gen_code_size = tcg_gen_code(s, gen_code_buf);
186 *gen_code_size_ptr = gen_code_size;
187 #ifdef CONFIG_PROFILER
188 s->code_time += profile_getclock();
189 s->code_in_len += tb->size;
190 s->code_out_len += gen_code_size;
191 #endif
192
193 #ifdef DEBUG_DISAS
194 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
195 qemu_log("OUT: [size=%d]\n", gen_code_size);
196 log_disas(tb->tc_ptr, gen_code_size);
197 qemu_log("\n");
198 qemu_log_flush();
199 }
200 #endif
201 return 0;
202 }
203
204 /* The cpu state corresponding to 'searched_pc' is restored.
205 */
206 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
207 uintptr_t searched_pc)
208 {
209 CPUArchState *env = cpu->env_ptr;
210 TCGContext *s = &tcg_ctx;
211 int j;
212 uintptr_t tc_ptr;
213 #ifdef CONFIG_PROFILER
214 int64_t ti;
215 #endif
216
217 #ifdef CONFIG_PROFILER
218 ti = profile_getclock();
219 #endif
220 tcg_func_start(s);
221
222 gen_intermediate_code_pc(env, tb);
223
224 if (tb->cflags & CF_USE_ICOUNT) {
225 /* Reset the cycle counter to the start of the block. */
226 cpu->icount_decr.u16.low += tb->icount;
227 /* Clear the IO flag. */
228 cpu->can_do_io = 0;
229 }
230
231 /* find opc index corresponding to search_pc */
232 tc_ptr = (uintptr_t)tb->tc_ptr;
233 if (searched_pc < tc_ptr)
234 return -1;
235
236 s->tb_next_offset = tb->tb_next_offset;
237 #ifdef USE_DIRECT_JUMP
238 s->tb_jmp_offset = tb->tb_jmp_offset;
239 s->tb_next = NULL;
240 #else
241 s->tb_jmp_offset = NULL;
242 s->tb_next = tb->tb_next;
243 #endif
244 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
245 searched_pc - tc_ptr);
246 if (j < 0)
247 return -1;
248 /* now find start of instruction before */
249 while (s->gen_opc_instr_start[j] == 0) {
250 j--;
251 }
252 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
253
254 restore_state_to_opc(env, tb, j);
255
256 #ifdef CONFIG_PROFILER
257 s->restore_time += profile_getclock() - ti;
258 s->restore_count++;
259 #endif
260 return 0;
261 }
262
263 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
264 {
265 TranslationBlock *tb;
266
267 tb = tb_find_pc(retaddr);
268 if (tb) {
269 cpu_restore_state_from_tb(cpu, tb, retaddr);
270 if (tb->cflags & CF_NOCACHE) {
271 /* one-shot translation, invalidate it immediately */
272 cpu->current_tb = NULL;
273 tb_phys_invalidate(tb, -1);
274 tb_free(tb);
275 }
276 return true;
277 }
278 return false;
279 }
280
281 #ifdef _WIN32
282 static __attribute__((unused)) void map_exec(void *addr, long size)
283 {
284 DWORD old_protect;
285 VirtualProtect(addr, size,
286 PAGE_EXECUTE_READWRITE, &old_protect);
287 }
288 #else
289 static __attribute__((unused)) void map_exec(void *addr, long size)
290 {
291 unsigned long start, end, page_size;
292
293 page_size = getpagesize();
294 start = (unsigned long)addr;
295 start &= ~(page_size - 1);
296
297 end = (unsigned long)addr + size;
298 end += page_size - 1;
299 end &= ~(page_size - 1);
300
301 mprotect((void *)start, end - start,
302 PROT_READ | PROT_WRITE | PROT_EXEC);
303 }
304 #endif
305
306 void page_size_init(void)
307 {
308 /* NOTE: we can always suppose that qemu_host_page_size >=
309 TARGET_PAGE_SIZE */
310 qemu_real_host_page_size = getpagesize();
311 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
312 if (qemu_host_page_size == 0) {
313 qemu_host_page_size = qemu_real_host_page_size;
314 }
315 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
316 qemu_host_page_size = TARGET_PAGE_SIZE;
317 }
318 qemu_host_page_mask = ~(qemu_host_page_size - 1);
319 }
320
321 static void page_init(void)
322 {
323 page_size_init();
324 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
325 {
326 #ifdef HAVE_KINFO_GETVMMAP
327 struct kinfo_vmentry *freep;
328 int i, cnt;
329
330 freep = kinfo_getvmmap(getpid(), &cnt);
331 if (freep) {
332 mmap_lock();
333 for (i = 0; i < cnt; i++) {
334 unsigned long startaddr, endaddr;
335
336 startaddr = freep[i].kve_start;
337 endaddr = freep[i].kve_end;
338 if (h2g_valid(startaddr)) {
339 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
340
341 if (h2g_valid(endaddr)) {
342 endaddr = h2g(endaddr);
343 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
344 } else {
345 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
346 endaddr = ~0ul;
347 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
348 #endif
349 }
350 }
351 }
352 free(freep);
353 mmap_unlock();
354 }
355 #else
356 FILE *f;
357
358 last_brk = (unsigned long)sbrk(0);
359
360 f = fopen("/compat/linux/proc/self/maps", "r");
361 if (f) {
362 mmap_lock();
363
364 do {
365 unsigned long startaddr, endaddr;
366 int n;
367
368 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
369
370 if (n == 2 && h2g_valid(startaddr)) {
371 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
372
373 if (h2g_valid(endaddr)) {
374 endaddr = h2g(endaddr);
375 } else {
376 endaddr = ~0ul;
377 }
378 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
379 }
380 } while (!feof(f));
381
382 fclose(f);
383 mmap_unlock();
384 }
385 #endif
386 }
387 #endif
388 }
389
390 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
391 {
392 PageDesc *pd;
393 void **lp;
394 int i;
395
396 /* Level 1. Always allocated. */
397 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
398
399 /* Level 2..N-1. */
400 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
401 void **p = *lp;
402
403 if (p == NULL) {
404 if (!alloc) {
405 return NULL;
406 }
407 p = g_new0(void *, V_L2_SIZE);
408 *lp = p;
409 }
410
411 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
412 }
413
414 pd = *lp;
415 if (pd == NULL) {
416 if (!alloc) {
417 return NULL;
418 }
419 pd = g_new0(PageDesc, V_L2_SIZE);
420 *lp = pd;
421 }
422
423 return pd + (index & (V_L2_SIZE - 1));
424 }
425
426 static inline PageDesc *page_find(tb_page_addr_t index)
427 {
428 return page_find_alloc(index, 0);
429 }
430
431 #if !defined(CONFIG_USER_ONLY)
432 #define mmap_lock() do { } while (0)
433 #define mmap_unlock() do { } while (0)
434 #endif
435
436 #if defined(CONFIG_USER_ONLY)
437 /* Currently it is not recommended to allocate big chunks of data in
438 user mode. It will change when a dedicated libc will be used. */
439 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
440 region in which the guest needs to run. Revisit this. */
441 #define USE_STATIC_CODE_GEN_BUFFER
442 #endif
443
444 /* ??? Should configure for this, not list operating systems here. */
445 #if (defined(__linux__) \
446 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
447 || defined(__DragonFly__) || defined(__OpenBSD__) \
448 || defined(__NetBSD__))
449 # define USE_MMAP
450 #endif
451
452 /* Minimum size of the code gen buffer. This number is randomly chosen,
453 but not so small that we can't have a fair number of TB's live. */
454 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
455
456 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
457 indicated, this is constrained by the range of direct branches on the
458 host cpu, as used by the TCG implementation of goto_tb. */
459 #if defined(__x86_64__)
460 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
461 #elif defined(__sparc__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__aarch64__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
465 #elif defined(__arm__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
467 #elif defined(__s390x__)
468 /* We have a +- 4GB range on the branches; leave some slop. */
469 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
470 #elif defined(__mips__)
471 /* We have a 256MB branch region, but leave room to make sure the
472 main executable is also within that region. */
473 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
474 #else
475 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
476 #endif
477
478 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
479
480 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
481 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
482 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
483
484 static inline size_t size_code_gen_buffer(size_t tb_size)
485 {
486 /* Size the buffer. */
487 if (tb_size == 0) {
488 #ifdef USE_STATIC_CODE_GEN_BUFFER
489 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490 #else
491 /* ??? Needs adjustments. */
492 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
493 static buffer, we could size this on RESERVED_VA, on the text
494 segment size of the executable, or continue to use the default. */
495 tb_size = (unsigned long)(ram_size / 4);
496 #endif
497 }
498 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
499 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
500 }
501 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
502 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
503 }
504 tcg_ctx.code_gen_buffer_size = tb_size;
505 return tb_size;
506 }
507
508 #ifdef __mips__
509 /* In order to use J and JAL within the code_gen_buffer, we require
510 that the buffer not cross a 256MB boundary. */
511 static inline bool cross_256mb(void *addr, size_t size)
512 {
513 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
514 }
515
516 /* We weren't able to allocate a buffer without crossing that boundary,
517 so make do with the larger portion of the buffer that doesn't cross.
518 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
519 static inline void *split_cross_256mb(void *buf1, size_t size1)
520 {
521 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
522 size_t size2 = buf1 + size1 - buf2;
523
524 size1 = buf2 - buf1;
525 if (size1 < size2) {
526 size1 = size2;
527 buf1 = buf2;
528 }
529
530 tcg_ctx.code_gen_buffer_size = size1;
531 return buf1;
532 }
533 #endif
534
535 #ifdef USE_STATIC_CODE_GEN_BUFFER
536 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
537 __attribute__((aligned(CODE_GEN_ALIGN)));
538
539 static inline void *alloc_code_gen_buffer(void)
540 {
541 void *buf = static_code_gen_buffer;
542 #ifdef __mips__
543 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
544 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
545 }
546 #endif
547 map_exec(buf, tcg_ctx.code_gen_buffer_size);
548 return buf;
549 }
550 #elif defined(USE_MMAP)
551 static inline void *alloc_code_gen_buffer(void)
552 {
553 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
554 uintptr_t start = 0;
555 void *buf;
556
557 /* Constrain the position of the buffer based on the host cpu.
558 Note that these addresses are chosen in concert with the
559 addresses assigned in the relevant linker script file. */
560 # if defined(__PIE__) || defined(__PIC__)
561 /* Don't bother setting a preferred location if we're building
562 a position-independent executable. We're more likely to get
563 an address near the main executable if we let the kernel
564 choose the address. */
565 # elif defined(__x86_64__) && defined(MAP_32BIT)
566 /* Force the memory down into low memory with the executable.
567 Leave the choice of exact location with the kernel. */
568 flags |= MAP_32BIT;
569 /* Cannot expect to map more than 800MB in low memory. */
570 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
571 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
572 }
573 # elif defined(__sparc__)
574 start = 0x40000000ul;
575 # elif defined(__s390x__)
576 start = 0x90000000ul;
577 # elif defined(__mips__)
578 /* ??? We ought to more explicitly manage layout for softmmu too. */
579 # ifdef CONFIG_USER_ONLY
580 start = 0x68000000ul;
581 # elif _MIPS_SIM == _ABI64
582 start = 0x128000000ul;
583 # else
584 start = 0x08000000ul;
585 # endif
586 # endif
587
588 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
589 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
590 if (buf == MAP_FAILED) {
591 return NULL;
592 }
593
594 #ifdef __mips__
595 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
596 /* Try again, with the original still mapped, to avoid re-acquiring
597 that 256mb crossing. This time don't specify an address. */
598 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
599 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
600 flags, -1, 0);
601 if (buf2 != MAP_FAILED) {
602 if (!cross_256mb(buf2, size1)) {
603 /* Success! Use the new buffer. */
604 munmap(buf, size1);
605 return buf2;
606 }
607 /* Failure. Work with what we had. */
608 munmap(buf2, size1);
609 }
610
611 /* Split the original buffer. Free the smaller half. */
612 buf2 = split_cross_256mb(buf, size1);
613 size2 = tcg_ctx.code_gen_buffer_size;
614 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
615 return buf2;
616 }
617 #endif
618
619 return buf;
620 }
621 #else
622 static inline void *alloc_code_gen_buffer(void)
623 {
624 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
625
626 if (buf == NULL) {
627 return NULL;
628 }
629
630 #ifdef __mips__
631 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
632 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
633 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
634 /* Success! Use the new buffer. */
635 free(buf);
636 buf = buf2;
637 } else {
638 /* Failure. Work with what we had. Since this is malloc
639 and not mmap, we can't free the other half. */
640 free(buf2);
641 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
642 }
643 }
644 #endif
645
646 map_exec(buf, tcg_ctx.code_gen_buffer_size);
647 return buf;
648 }
649 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
650
651 static inline void code_gen_alloc(size_t tb_size)
652 {
653 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
654 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
655 if (tcg_ctx.code_gen_buffer == NULL) {
656 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
657 exit(1);
658 }
659
660 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
661 QEMU_MADV_HUGEPAGE);
662
663 /* Steal room for the prologue at the end of the buffer. This ensures
664 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
665 from TB's to the prologue are going to be in range. It also means
666 that we don't need to mark (additional) portions of the data segment
667 as executable. */
668 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
669 tcg_ctx.code_gen_buffer_size - 1024;
670 tcg_ctx.code_gen_buffer_size -= 1024;
671
672 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
673 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
674 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
675 CODE_GEN_AVG_BLOCK_SIZE;
676 tcg_ctx.tb_ctx.tbs =
677 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
678 }
679
680 /* Must be called before using the QEMU cpus. 'tb_size' is the size
681 (in bytes) allocated to the translation buffer. Zero means default
682 size. */
683 void tcg_exec_init(unsigned long tb_size)
684 {
685 cpu_gen_init();
686 code_gen_alloc(tb_size);
687 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
688 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
689 page_init();
690 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
691 /* There's no guest base to take into account, so go ahead and
692 initialize the prologue now. */
693 tcg_prologue_init(&tcg_ctx);
694 #endif
695 }
696
697 bool tcg_enabled(void)
698 {
699 return tcg_ctx.code_gen_buffer != NULL;
700 }
701
702 /* Allocate a new translation block. Flush the translation buffer if
703 too many translation blocks or too much generated code. */
704 static TranslationBlock *tb_alloc(target_ulong pc)
705 {
706 TranslationBlock *tb;
707
708 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
709 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
710 tcg_ctx.code_gen_buffer_max_size) {
711 return NULL;
712 }
713 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
714 tb->pc = pc;
715 tb->cflags = 0;
716 return tb;
717 }
718
719 void tb_free(TranslationBlock *tb)
720 {
721 /* In practice this is mostly used for single use temporary TB
722 Ignore the hard cases and just back up if this TB happens to
723 be the last one generated. */
724 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
725 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
726 tcg_ctx.code_gen_ptr = tb->tc_ptr;
727 tcg_ctx.tb_ctx.nb_tbs--;
728 }
729 }
730
731 static inline void invalidate_page_bitmap(PageDesc *p)
732 {
733 if (p->code_bitmap) {
734 g_free(p->code_bitmap);
735 p->code_bitmap = NULL;
736 }
737 p->code_write_count = 0;
738 }
739
740 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
741 static void page_flush_tb_1(int level, void **lp)
742 {
743 int i;
744
745 if (*lp == NULL) {
746 return;
747 }
748 if (level == 0) {
749 PageDesc *pd = *lp;
750
751 for (i = 0; i < V_L2_SIZE; ++i) {
752 pd[i].first_tb = NULL;
753 invalidate_page_bitmap(pd + i);
754 }
755 } else {
756 void **pp = *lp;
757
758 for (i = 0; i < V_L2_SIZE; ++i) {
759 page_flush_tb_1(level - 1, pp + i);
760 }
761 }
762 }
763
764 static void page_flush_tb(void)
765 {
766 int i;
767
768 for (i = 0; i < V_L1_SIZE; i++) {
769 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
770 }
771 }
772
773 /* flush all the translation blocks */
774 /* XXX: tb_flush is currently not thread safe */
775 void tb_flush(CPUArchState *env1)
776 {
777 CPUState *cpu = ENV_GET_CPU(env1);
778
779 #if defined(DEBUG_FLUSH)
780 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
781 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
782 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
783 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
784 tcg_ctx.tb_ctx.nb_tbs : 0);
785 #endif
786 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
787 > tcg_ctx.code_gen_buffer_size) {
788 cpu_abort(cpu, "Internal error: code buffer overflow\n");
789 }
790 tcg_ctx.tb_ctx.nb_tbs = 0;
791
792 CPU_FOREACH(cpu) {
793 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
794 }
795
796 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
797 page_flush_tb();
798
799 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
800 /* XXX: flush processor icache at this point if cache flush is
801 expensive */
802 tcg_ctx.tb_ctx.tb_flush_count++;
803 }
804
805 #ifdef DEBUG_TB_CHECK
806
807 static void tb_invalidate_check(target_ulong address)
808 {
809 TranslationBlock *tb;
810 int i;
811
812 address &= TARGET_PAGE_MASK;
813 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
814 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
815 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
816 address >= tb->pc + tb->size)) {
817 printf("ERROR invalidate: address=" TARGET_FMT_lx
818 " PC=%08lx size=%04x\n",
819 address, (long)tb->pc, tb->size);
820 }
821 }
822 }
823 }
824
825 /* verify that all the pages have correct rights for code */
826 static void tb_page_check(void)
827 {
828 TranslationBlock *tb;
829 int i, flags1, flags2;
830
831 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
832 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
833 tb = tb->phys_hash_next) {
834 flags1 = page_get_flags(tb->pc);
835 flags2 = page_get_flags(tb->pc + tb->size - 1);
836 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
837 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
838 (long)tb->pc, tb->size, flags1, flags2);
839 }
840 }
841 }
842 }
843
844 #endif
845
846 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
847 {
848 TranslationBlock *tb1;
849
850 for (;;) {
851 tb1 = *ptb;
852 if (tb1 == tb) {
853 *ptb = tb1->phys_hash_next;
854 break;
855 }
856 ptb = &tb1->phys_hash_next;
857 }
858 }
859
860 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
861 {
862 TranslationBlock *tb1;
863 unsigned int n1;
864
865 for (;;) {
866 tb1 = *ptb;
867 n1 = (uintptr_t)tb1 & 3;
868 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
869 if (tb1 == tb) {
870 *ptb = tb1->page_next[n1];
871 break;
872 }
873 ptb = &tb1->page_next[n1];
874 }
875 }
876
877 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
878 {
879 TranslationBlock *tb1, **ptb;
880 unsigned int n1;
881
882 ptb = &tb->jmp_next[n];
883 tb1 = *ptb;
884 if (tb1) {
885 /* find tb(n) in circular list */
886 for (;;) {
887 tb1 = *ptb;
888 n1 = (uintptr_t)tb1 & 3;
889 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
890 if (n1 == n && tb1 == tb) {
891 break;
892 }
893 if (n1 == 2) {
894 ptb = &tb1->jmp_first;
895 } else {
896 ptb = &tb1->jmp_next[n1];
897 }
898 }
899 /* now we can suppress tb(n) from the list */
900 *ptb = tb->jmp_next[n];
901
902 tb->jmp_next[n] = NULL;
903 }
904 }
905
906 /* reset the jump entry 'n' of a TB so that it is not chained to
907 another TB */
908 static inline void tb_reset_jump(TranslationBlock *tb, int n)
909 {
910 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
911 }
912
913 /* invalidate one TB */
914 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
915 {
916 CPUState *cpu;
917 PageDesc *p;
918 unsigned int h, n1;
919 tb_page_addr_t phys_pc;
920 TranslationBlock *tb1, *tb2;
921
922 /* remove the TB from the hash list */
923 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 h = tb_phys_hash_func(phys_pc);
925 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
926
927 /* remove the TB from the page list */
928 if (tb->page_addr[0] != page_addr) {
929 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
930 tb_page_remove(&p->first_tb, tb);
931 invalidate_page_bitmap(p);
932 }
933 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
934 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938
939 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
940
941 /* remove the TB from the hash list */
942 h = tb_jmp_cache_hash_func(tb->pc);
943 CPU_FOREACH(cpu) {
944 if (cpu->tb_jmp_cache[h] == tb) {
945 cpu->tb_jmp_cache[h] = NULL;
946 }
947 }
948
949 /* suppress this TB from the two jump lists */
950 tb_jmp_remove(tb, 0);
951 tb_jmp_remove(tb, 1);
952
953 /* suppress any remaining jumps to this TB */
954 tb1 = tb->jmp_first;
955 for (;;) {
956 n1 = (uintptr_t)tb1 & 3;
957 if (n1 == 2) {
958 break;
959 }
960 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
961 tb2 = tb1->jmp_next[n1];
962 tb_reset_jump(tb1, n1);
963 tb1->jmp_next[n1] = NULL;
964 tb1 = tb2;
965 }
966 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
967
968 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
969 }
970
971 static void build_page_bitmap(PageDesc *p)
972 {
973 int n, tb_start, tb_end;
974 TranslationBlock *tb;
975
976 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
977
978 tb = p->first_tb;
979 while (tb != NULL) {
980 n = (uintptr_t)tb & 3;
981 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
982 /* NOTE: this is subtle as a TB may span two physical pages */
983 if (n == 0) {
984 /* NOTE: tb_end may be after the end of the page, but
985 it is not a problem */
986 tb_start = tb->pc & ~TARGET_PAGE_MASK;
987 tb_end = tb_start + tb->size;
988 if (tb_end > TARGET_PAGE_SIZE) {
989 tb_end = TARGET_PAGE_SIZE;
990 }
991 } else {
992 tb_start = 0;
993 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
994 }
995 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
996 tb = tb->page_next[n];
997 }
998 }
999
1000 TranslationBlock *tb_gen_code(CPUState *cpu,
1001 target_ulong pc, target_ulong cs_base,
1002 int flags, int cflags)
1003 {
1004 CPUArchState *env = cpu->env_ptr;
1005 TranslationBlock *tb;
1006 tb_page_addr_t phys_pc, phys_page2;
1007 target_ulong virt_page2;
1008 int code_gen_size;
1009
1010 phys_pc = get_page_addr_code(env, pc);
1011 if (use_icount) {
1012 cflags |= CF_USE_ICOUNT;
1013 }
1014 tb = tb_alloc(pc);
1015 if (!tb) {
1016 /* flush must be done */
1017 tb_flush(env);
1018 /* cannot fail at this point */
1019 tb = tb_alloc(pc);
1020 /* Don't forget to invalidate previous TB info. */
1021 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1022 }
1023 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1024 tb->cs_base = cs_base;
1025 tb->flags = flags;
1026 tb->cflags = cflags;
1027 cpu_gen_code(env, tb, &code_gen_size);
1028 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1029 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1030
1031 /* check next page if needed */
1032 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1033 phys_page2 = -1;
1034 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1035 phys_page2 = get_page_addr_code(env, virt_page2);
1036 }
1037 tb_link_page(tb, phys_pc, phys_page2);
1038 return tb;
1039 }
1040
1041 /*
1042 * Invalidate all TBs which intersect with the target physical address range
1043 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1044 * 'is_cpu_write_access' should be true if called from a real cpu write
1045 * access: the virtual CPU will exit the current TB if code is modified inside
1046 * this TB.
1047 */
1048 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1049 {
1050 while (start < end) {
1051 tb_invalidate_phys_page_range(start, end, 0);
1052 start &= TARGET_PAGE_MASK;
1053 start += TARGET_PAGE_SIZE;
1054 }
1055 }
1056
1057 /*
1058 * Invalidate all TBs which intersect with the target physical address range
1059 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1060 * 'is_cpu_write_access' should be true if called from a real cpu write
1061 * access: the virtual CPU will exit the current TB if code is modified inside
1062 * this TB.
1063 */
1064 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1065 int is_cpu_write_access)
1066 {
1067 TranslationBlock *tb, *tb_next, *saved_tb;
1068 CPUState *cpu = current_cpu;
1069 #if defined(TARGET_HAS_PRECISE_SMC)
1070 CPUArchState *env = NULL;
1071 #endif
1072 tb_page_addr_t tb_start, tb_end;
1073 PageDesc *p;
1074 int n;
1075 #ifdef TARGET_HAS_PRECISE_SMC
1076 int current_tb_not_found = is_cpu_write_access;
1077 TranslationBlock *current_tb = NULL;
1078 int current_tb_modified = 0;
1079 target_ulong current_pc = 0;
1080 target_ulong current_cs_base = 0;
1081 int current_flags = 0;
1082 #endif /* TARGET_HAS_PRECISE_SMC */
1083
1084 p = page_find(start >> TARGET_PAGE_BITS);
1085 if (!p) {
1086 return;
1087 }
1088 #if defined(TARGET_HAS_PRECISE_SMC)
1089 if (cpu != NULL) {
1090 env = cpu->env_ptr;
1091 }
1092 #endif
1093
1094 /* we remove all the TBs in the range [start, end[ */
1095 /* XXX: see if in some cases it could be faster to invalidate all
1096 the code */
1097 tb = p->first_tb;
1098 while (tb != NULL) {
1099 n = (uintptr_t)tb & 3;
1100 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1101 tb_next = tb->page_next[n];
1102 /* NOTE: this is subtle as a TB may span two physical pages */
1103 if (n == 0) {
1104 /* NOTE: tb_end may be after the end of the page, but
1105 it is not a problem */
1106 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1107 tb_end = tb_start + tb->size;
1108 } else {
1109 tb_start = tb->page_addr[1];
1110 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1111 }
1112 if (!(tb_end <= start || tb_start >= end)) {
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 if (current_tb_not_found) {
1115 current_tb_not_found = 0;
1116 current_tb = NULL;
1117 if (cpu->mem_io_pc) {
1118 /* now we have a real cpu fault */
1119 current_tb = tb_find_pc(cpu->mem_io_pc);
1120 }
1121 }
1122 if (current_tb == tb &&
1123 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1124 /* If we are modifying the current TB, we must stop
1125 its execution. We could be more precise by checking
1126 that the modification is after the current PC, but it
1127 would require a specialized function to partially
1128 restore the CPU state */
1129
1130 current_tb_modified = 1;
1131 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1132 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1133 &current_flags);
1134 }
1135 #endif /* TARGET_HAS_PRECISE_SMC */
1136 /* we need to do that to handle the case where a signal
1137 occurs while doing tb_phys_invalidate() */
1138 saved_tb = NULL;
1139 if (cpu != NULL) {
1140 saved_tb = cpu->current_tb;
1141 cpu->current_tb = NULL;
1142 }
1143 tb_phys_invalidate(tb, -1);
1144 if (cpu != NULL) {
1145 cpu->current_tb = saved_tb;
1146 if (cpu->interrupt_request && cpu->current_tb) {
1147 cpu_interrupt(cpu, cpu->interrupt_request);
1148 }
1149 }
1150 }
1151 tb = tb_next;
1152 }
1153 #if !defined(CONFIG_USER_ONLY)
1154 /* if no code remaining, no need to continue to use slow writes */
1155 if (!p->first_tb) {
1156 invalidate_page_bitmap(p);
1157 tlb_unprotect_code(start);
1158 }
1159 #endif
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
1165 cpu->current_tb = NULL;
1166 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1167 cpu_resume_from_signal(cpu, NULL);
1168 }
1169 #endif
1170 }
1171
1172 /* len must be <= 8 and start must be a multiple of len */
1173 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1174 {
1175 PageDesc *p;
1176
1177 #if 0
1178 if (1) {
1179 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1180 cpu_single_env->mem_io_vaddr, len,
1181 cpu_single_env->eip,
1182 cpu_single_env->eip +
1183 (intptr_t)cpu_single_env->segs[R_CS].base);
1184 }
1185 #endif
1186 p = page_find(start >> TARGET_PAGE_BITS);
1187 if (!p) {
1188 return;
1189 }
1190 if (!p->code_bitmap &&
1191 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1192 /* build code bitmap */
1193 build_page_bitmap(p);
1194 }
1195 if (p->code_bitmap) {
1196 unsigned int nr;
1197 unsigned long b;
1198
1199 nr = start & ~TARGET_PAGE_MASK;
1200 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1201 if (b & ((1 << len) - 1)) {
1202 goto do_invalidate;
1203 }
1204 } else {
1205 do_invalidate:
1206 tb_invalidate_phys_page_range(start, start + len, 1);
1207 }
1208 }
1209
1210 #if !defined(CONFIG_SOFTMMU)
1211 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1212 uintptr_t pc, void *puc,
1213 bool locked)
1214 {
1215 TranslationBlock *tb;
1216 PageDesc *p;
1217 int n;
1218 #ifdef TARGET_HAS_PRECISE_SMC
1219 TranslationBlock *current_tb = NULL;
1220 CPUState *cpu = current_cpu;
1221 CPUArchState *env = NULL;
1222 int current_tb_modified = 0;
1223 target_ulong current_pc = 0;
1224 target_ulong current_cs_base = 0;
1225 int current_flags = 0;
1226 #endif
1227
1228 addr &= TARGET_PAGE_MASK;
1229 p = page_find(addr >> TARGET_PAGE_BITS);
1230 if (!p) {
1231 return;
1232 }
1233 tb = p->first_tb;
1234 #ifdef TARGET_HAS_PRECISE_SMC
1235 if (tb && pc != 0) {
1236 current_tb = tb_find_pc(pc);
1237 }
1238 if (cpu != NULL) {
1239 env = cpu->env_ptr;
1240 }
1241 #endif
1242 while (tb != NULL) {
1243 n = (uintptr_t)tb & 3;
1244 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1245 #ifdef TARGET_HAS_PRECISE_SMC
1246 if (current_tb == tb &&
1247 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1248 /* If we are modifying the current TB, we must stop
1249 its execution. We could be more precise by checking
1250 that the modification is after the current PC, but it
1251 would require a specialized function to partially
1252 restore the CPU state */
1253
1254 current_tb_modified = 1;
1255 cpu_restore_state_from_tb(cpu, current_tb, pc);
1256 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1257 &current_flags);
1258 }
1259 #endif /* TARGET_HAS_PRECISE_SMC */
1260 tb_phys_invalidate(tb, addr);
1261 tb = tb->page_next[n];
1262 }
1263 p->first_tb = NULL;
1264 #ifdef TARGET_HAS_PRECISE_SMC
1265 if (current_tb_modified) {
1266 /* we generate a block containing just the instruction
1267 modifying the memory. It will ensure that it cannot modify
1268 itself */
1269 cpu->current_tb = NULL;
1270 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1271 if (locked) {
1272 mmap_unlock();
1273 }
1274 cpu_resume_from_signal(cpu, puc);
1275 }
1276 #endif
1277 }
1278 #endif
1279
1280 /* add the tb in the target page and protect it if necessary */
1281 static inline void tb_alloc_page(TranslationBlock *tb,
1282 unsigned int n, tb_page_addr_t page_addr)
1283 {
1284 PageDesc *p;
1285 #ifndef CONFIG_USER_ONLY
1286 bool page_already_protected;
1287 #endif
1288
1289 tb->page_addr[n] = page_addr;
1290 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1291 tb->page_next[n] = p->first_tb;
1292 #ifndef CONFIG_USER_ONLY
1293 page_already_protected = p->first_tb != NULL;
1294 #endif
1295 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1296 invalidate_page_bitmap(p);
1297
1298 #if defined(CONFIG_USER_ONLY)
1299 if (p->flags & PAGE_WRITE) {
1300 target_ulong addr;
1301 PageDesc *p2;
1302 int prot;
1303
1304 /* force the host page as non writable (writes will have a
1305 page fault + mprotect overhead) */
1306 page_addr &= qemu_host_page_mask;
1307 prot = 0;
1308 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1309 addr += TARGET_PAGE_SIZE) {
1310
1311 p2 = page_find(addr >> TARGET_PAGE_BITS);
1312 if (!p2) {
1313 continue;
1314 }
1315 prot |= p2->flags;
1316 p2->flags &= ~PAGE_WRITE;
1317 }
1318 mprotect(g2h(page_addr), qemu_host_page_size,
1319 (prot & PAGE_BITS) & ~PAGE_WRITE);
1320 #ifdef DEBUG_TB_INVALIDATE
1321 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1322 page_addr);
1323 #endif
1324 }
1325 #else
1326 /* if some code is already present, then the pages are already
1327 protected. So we handle the case where only the first TB is
1328 allocated in a physical page */
1329 if (!page_already_protected) {
1330 tlb_protect_code(page_addr);
1331 }
1332 #endif
1333 }
1334
1335 /* add a new TB and link it to the physical page tables. phys_page2 is
1336 (-1) to indicate that only one page contains the TB. */
1337 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1338 tb_page_addr_t phys_page2)
1339 {
1340 unsigned int h;
1341 TranslationBlock **ptb;
1342
1343 /* Grab the mmap lock to stop another thread invalidating this TB
1344 before we are done. */
1345 mmap_lock();
1346 /* add in the physical hash table */
1347 h = tb_phys_hash_func(phys_pc);
1348 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1349 tb->phys_hash_next = *ptb;
1350 *ptb = tb;
1351
1352 /* add in the page list */
1353 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1354 if (phys_page2 != -1) {
1355 tb_alloc_page(tb, 1, phys_page2);
1356 } else {
1357 tb->page_addr[1] = -1;
1358 }
1359
1360 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1361 tb->jmp_next[0] = NULL;
1362 tb->jmp_next[1] = NULL;
1363
1364 /* init original jump addresses */
1365 if (tb->tb_next_offset[0] != 0xffff) {
1366 tb_reset_jump(tb, 0);
1367 }
1368 if (tb->tb_next_offset[1] != 0xffff) {
1369 tb_reset_jump(tb, 1);
1370 }
1371
1372 #ifdef DEBUG_TB_CHECK
1373 tb_page_check();
1374 #endif
1375 mmap_unlock();
1376 }
1377
1378 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1379 tb[1].tc_ptr. Return NULL if not found */
1380 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1381 {
1382 int m_min, m_max, m;
1383 uintptr_t v;
1384 TranslationBlock *tb;
1385
1386 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1387 return NULL;
1388 }
1389 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1390 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1391 return NULL;
1392 }
1393 /* binary search (cf Knuth) */
1394 m_min = 0;
1395 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1396 while (m_min <= m_max) {
1397 m = (m_min + m_max) >> 1;
1398 tb = &tcg_ctx.tb_ctx.tbs[m];
1399 v = (uintptr_t)tb->tc_ptr;
1400 if (v == tc_ptr) {
1401 return tb;
1402 } else if (tc_ptr < v) {
1403 m_max = m - 1;
1404 } else {
1405 m_min = m + 1;
1406 }
1407 }
1408 return &tcg_ctx.tb_ctx.tbs[m_max];
1409 }
1410
1411 #if !defined(CONFIG_USER_ONLY)
1412 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1413 {
1414 ram_addr_t ram_addr;
1415 MemoryRegion *mr;
1416 hwaddr l = 1;
1417
1418 rcu_read_lock();
1419 mr = address_space_translate(as, addr, &addr, &l, false);
1420 if (!(memory_region_is_ram(mr)
1421 || memory_region_is_romd(mr))) {
1422 rcu_read_unlock();
1423 return;
1424 }
1425 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1426 + addr;
1427 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1428 rcu_read_unlock();
1429 }
1430 #endif /* !defined(CONFIG_USER_ONLY) */
1431
1432 void tb_check_watchpoint(CPUState *cpu)
1433 {
1434 TranslationBlock *tb;
1435
1436 tb = tb_find_pc(cpu->mem_io_pc);
1437 if (tb) {
1438 /* We can use retranslation to find the PC. */
1439 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1440 tb_phys_invalidate(tb, -1);
1441 } else {
1442 /* The exception probably happened in a helper. The CPU state should
1443 have been saved before calling it. Fetch the PC from there. */
1444 CPUArchState *env = cpu->env_ptr;
1445 target_ulong pc, cs_base;
1446 tb_page_addr_t addr;
1447 int flags;
1448
1449 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1450 addr = get_page_addr_code(env, pc);
1451 tb_invalidate_phys_range(addr, addr + 1);
1452 }
1453 }
1454
1455 #ifndef CONFIG_USER_ONLY
1456 /* mask must never be zero, except for A20 change call */
1457 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1458 {
1459 int old_mask;
1460
1461 old_mask = cpu->interrupt_request;
1462 cpu->interrupt_request |= mask;
1463
1464 /*
1465 * If called from iothread context, wake the target cpu in
1466 * case its halted.
1467 */
1468 if (!qemu_cpu_is_self(cpu)) {
1469 qemu_cpu_kick(cpu);
1470 return;
1471 }
1472
1473 if (use_icount) {
1474 cpu->icount_decr.u16.high = 0xffff;
1475 if (!cpu_can_do_io(cpu)
1476 && (mask & ~old_mask) != 0) {
1477 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1478 }
1479 } else {
1480 cpu->tcg_exit_req = 1;
1481 }
1482 }
1483
1484 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1485
1486 /* in deterministic execution mode, instructions doing device I/Os
1487 must be at the end of the TB */
1488 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1489 {
1490 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1491 CPUArchState *env = cpu->env_ptr;
1492 #endif
1493 TranslationBlock *tb;
1494 uint32_t n, cflags;
1495 target_ulong pc, cs_base;
1496 uint64_t flags;
1497
1498 tb = tb_find_pc(retaddr);
1499 if (!tb) {
1500 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1501 (void *)retaddr);
1502 }
1503 n = cpu->icount_decr.u16.low + tb->icount;
1504 cpu_restore_state_from_tb(cpu, tb, retaddr);
1505 /* Calculate how many instructions had been executed before the fault
1506 occurred. */
1507 n = n - cpu->icount_decr.u16.low;
1508 /* Generate a new TB ending on the I/O insn. */
1509 n++;
1510 /* On MIPS and SH, delay slot instructions can only be restarted if
1511 they were already the first instruction in the TB. If this is not
1512 the first instruction in a TB then re-execute the preceding
1513 branch. */
1514 #if defined(TARGET_MIPS)
1515 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1516 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1517 cpu->icount_decr.u16.low++;
1518 env->hflags &= ~MIPS_HFLAG_BMASK;
1519 }
1520 #elif defined(TARGET_SH4)
1521 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1522 && n > 1) {
1523 env->pc -= 2;
1524 cpu->icount_decr.u16.low++;
1525 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1526 }
1527 #endif
1528 /* This should never happen. */
1529 if (n > CF_COUNT_MASK) {
1530 cpu_abort(cpu, "TB too big during recompile");
1531 }
1532
1533 cflags = n | CF_LAST_IO;
1534 pc = tb->pc;
1535 cs_base = tb->cs_base;
1536 flags = tb->flags;
1537 tb_phys_invalidate(tb, -1);
1538 /* FIXME: In theory this could raise an exception. In practice
1539 we have already translated the block once so it's probably ok. */
1540 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1541 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1542 the first in the TB) then we end up generating a whole new TB and
1543 repeating the fault, which is horribly inefficient.
1544 Better would be to execute just this insn uncached, or generate a
1545 second new TB. */
1546 cpu_resume_from_signal(cpu, NULL);
1547 }
1548
1549 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1550 {
1551 unsigned int i;
1552
1553 /* Discard jump cache entries for any tb which might potentially
1554 overlap the flushed page. */
1555 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1556 memset(&cpu->tb_jmp_cache[i], 0,
1557 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1558
1559 i = tb_jmp_cache_hash_page(addr);
1560 memset(&cpu->tb_jmp_cache[i], 0,
1561 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1562 }
1563
1564 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1565 {
1566 int i, target_code_size, max_target_code_size;
1567 int direct_jmp_count, direct_jmp2_count, cross_page;
1568 TranslationBlock *tb;
1569
1570 target_code_size = 0;
1571 max_target_code_size = 0;
1572 cross_page = 0;
1573 direct_jmp_count = 0;
1574 direct_jmp2_count = 0;
1575 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1576 tb = &tcg_ctx.tb_ctx.tbs[i];
1577 target_code_size += tb->size;
1578 if (tb->size > max_target_code_size) {
1579 max_target_code_size = tb->size;
1580 }
1581 if (tb->page_addr[1] != -1) {
1582 cross_page++;
1583 }
1584 if (tb->tb_next_offset[0] != 0xffff) {
1585 direct_jmp_count++;
1586 if (tb->tb_next_offset[1] != 0xffff) {
1587 direct_jmp2_count++;
1588 }
1589 }
1590 }
1591 /* XXX: avoid using doubles ? */
1592 cpu_fprintf(f, "Translation buffer state:\n");
1593 cpu_fprintf(f, "gen code size %td/%zd\n",
1594 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1595 tcg_ctx.code_gen_buffer_max_size);
1596 cpu_fprintf(f, "TB count %d/%d\n",
1597 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1598 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1599 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1600 tcg_ctx.tb_ctx.nb_tbs : 0,
1601 max_target_code_size);
1602 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1603 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1604 tcg_ctx.code_gen_buffer) /
1605 tcg_ctx.tb_ctx.nb_tbs : 0,
1606 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1607 tcg_ctx.code_gen_buffer) /
1608 target_code_size : 0);
1609 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1610 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1611 tcg_ctx.tb_ctx.nb_tbs : 0);
1612 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1613 direct_jmp_count,
1614 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1615 tcg_ctx.tb_ctx.nb_tbs : 0,
1616 direct_jmp2_count,
1617 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1618 tcg_ctx.tb_ctx.nb_tbs : 0);
1619 cpu_fprintf(f, "\nStatistics:\n");
1620 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1621 cpu_fprintf(f, "TB invalidate count %d\n",
1622 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1623 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1624 tcg_dump_info(f, cpu_fprintf);
1625 }
1626
1627 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1628 {
1629 tcg_dump_op_count(f, cpu_fprintf);
1630 }
1631
1632 #else /* CONFIG_USER_ONLY */
1633
1634 void cpu_interrupt(CPUState *cpu, int mask)
1635 {
1636 cpu->interrupt_request |= mask;
1637 cpu->tcg_exit_req = 1;
1638 }
1639
1640 /*
1641 * Walks guest process memory "regions" one by one
1642 * and calls callback function 'fn' for each region.
1643 */
1644 struct walk_memory_regions_data {
1645 walk_memory_regions_fn fn;
1646 void *priv;
1647 target_ulong start;
1648 int prot;
1649 };
1650
1651 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1652 target_ulong end, int new_prot)
1653 {
1654 if (data->start != -1u) {
1655 int rc = data->fn(data->priv, data->start, end, data->prot);
1656 if (rc != 0) {
1657 return rc;
1658 }
1659 }
1660
1661 data->start = (new_prot ? end : -1u);
1662 data->prot = new_prot;
1663
1664 return 0;
1665 }
1666
1667 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1668 target_ulong base, int level, void **lp)
1669 {
1670 target_ulong pa;
1671 int i, rc;
1672
1673 if (*lp == NULL) {
1674 return walk_memory_regions_end(data, base, 0);
1675 }
1676
1677 if (level == 0) {
1678 PageDesc *pd = *lp;
1679
1680 for (i = 0; i < V_L2_SIZE; ++i) {
1681 int prot = pd[i].flags;
1682
1683 pa = base | (i << TARGET_PAGE_BITS);
1684 if (prot != data->prot) {
1685 rc = walk_memory_regions_end(data, pa, prot);
1686 if (rc != 0) {
1687 return rc;
1688 }
1689 }
1690 }
1691 } else {
1692 void **pp = *lp;
1693
1694 for (i = 0; i < V_L2_SIZE; ++i) {
1695 pa = base | ((target_ulong)i <<
1696 (TARGET_PAGE_BITS + V_L2_BITS * level));
1697 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1698 if (rc != 0) {
1699 return rc;
1700 }
1701 }
1702 }
1703
1704 return 0;
1705 }
1706
1707 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1708 {
1709 struct walk_memory_regions_data data;
1710 uintptr_t i;
1711
1712 data.fn = fn;
1713 data.priv = priv;
1714 data.start = -1u;
1715 data.prot = 0;
1716
1717 for (i = 0; i < V_L1_SIZE; i++) {
1718 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1719 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1720 if (rc != 0) {
1721 return rc;
1722 }
1723 }
1724
1725 return walk_memory_regions_end(&data, 0, 0);
1726 }
1727
1728 static int dump_region(void *priv, target_ulong start,
1729 target_ulong end, unsigned long prot)
1730 {
1731 FILE *f = (FILE *)priv;
1732
1733 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1734 " "TARGET_FMT_lx" %c%c%c\n",
1735 start, end, end - start,
1736 ((prot & PAGE_READ) ? 'r' : '-'),
1737 ((prot & PAGE_WRITE) ? 'w' : '-'),
1738 ((prot & PAGE_EXEC) ? 'x' : '-'));
1739
1740 return 0;
1741 }
1742
1743 /* dump memory mappings */
1744 void page_dump(FILE *f)
1745 {
1746 const int length = sizeof(target_ulong) * 2;
1747 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1748 length, "start", length, "end", length, "size", "prot");
1749 walk_memory_regions(f, dump_region);
1750 }
1751
1752 int page_get_flags(target_ulong address)
1753 {
1754 PageDesc *p;
1755
1756 p = page_find(address >> TARGET_PAGE_BITS);
1757 if (!p) {
1758 return 0;
1759 }
1760 return p->flags;
1761 }
1762
1763 /* Modify the flags of a page and invalidate the code if necessary.
1764 The flag PAGE_WRITE_ORG is positioned automatically depending
1765 on PAGE_WRITE. The mmap_lock should already be held. */
1766 void page_set_flags(target_ulong start, target_ulong end, int flags)
1767 {
1768 target_ulong addr, len;
1769
1770 /* This function should never be called with addresses outside the
1771 guest address space. If this assert fires, it probably indicates
1772 a missing call to h2g_valid. */
1773 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1774 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1775 #endif
1776 assert(start < end);
1777
1778 start = start & TARGET_PAGE_MASK;
1779 end = TARGET_PAGE_ALIGN(end);
1780
1781 if (flags & PAGE_WRITE) {
1782 flags |= PAGE_WRITE_ORG;
1783 }
1784
1785 for (addr = start, len = end - start;
1786 len != 0;
1787 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1788 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1789
1790 /* If the write protection bit is set, then we invalidate
1791 the code inside. */
1792 if (!(p->flags & PAGE_WRITE) &&
1793 (flags & PAGE_WRITE) &&
1794 p->first_tb) {
1795 tb_invalidate_phys_page(addr, 0, NULL, false);
1796 }
1797 p->flags = flags;
1798 }
1799 }
1800
1801 int page_check_range(target_ulong start, target_ulong len, int flags)
1802 {
1803 PageDesc *p;
1804 target_ulong end;
1805 target_ulong addr;
1806
1807 /* This function should never be called with addresses outside the
1808 guest address space. If this assert fires, it probably indicates
1809 a missing call to h2g_valid. */
1810 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1811 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1812 #endif
1813
1814 if (len == 0) {
1815 return 0;
1816 }
1817 if (start + len - 1 < start) {
1818 /* We've wrapped around. */
1819 return -1;
1820 }
1821
1822 /* must do before we loose bits in the next step */
1823 end = TARGET_PAGE_ALIGN(start + len);
1824 start = start & TARGET_PAGE_MASK;
1825
1826 for (addr = start, len = end - start;
1827 len != 0;
1828 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1829 p = page_find(addr >> TARGET_PAGE_BITS);
1830 if (!p) {
1831 return -1;
1832 }
1833 if (!(p->flags & PAGE_VALID)) {
1834 return -1;
1835 }
1836
1837 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1838 return -1;
1839 }
1840 if (flags & PAGE_WRITE) {
1841 if (!(p->flags & PAGE_WRITE_ORG)) {
1842 return -1;
1843 }
1844 /* unprotect the page if it was put read-only because it
1845 contains translated code */
1846 if (!(p->flags & PAGE_WRITE)) {
1847 if (!page_unprotect(addr, 0, NULL)) {
1848 return -1;
1849 }
1850 }
1851 }
1852 }
1853 return 0;
1854 }
1855
1856 /* called from signal handler: invalidate the code and unprotect the
1857 page. Return TRUE if the fault was successfully handled. */
1858 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1859 {
1860 unsigned int prot;
1861 PageDesc *p;
1862 target_ulong host_start, host_end, addr;
1863
1864 /* Technically this isn't safe inside a signal handler. However we
1865 know this only ever happens in a synchronous SEGV handler, so in
1866 practice it seems to be ok. */
1867 mmap_lock();
1868
1869 p = page_find(address >> TARGET_PAGE_BITS);
1870 if (!p) {
1871 mmap_unlock();
1872 return 0;
1873 }
1874
1875 /* if the page was really writable, then we change its
1876 protection back to writable */
1877 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1878 host_start = address & qemu_host_page_mask;
1879 host_end = host_start + qemu_host_page_size;
1880
1881 prot = 0;
1882 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1883 p = page_find(addr >> TARGET_PAGE_BITS);
1884 p->flags |= PAGE_WRITE;
1885 prot |= p->flags;
1886
1887 /* and since the content will be modified, we must invalidate
1888 the corresponding translated code. */
1889 tb_invalidate_phys_page(addr, pc, puc, true);
1890 #ifdef DEBUG_TB_CHECK
1891 tb_invalidate_check(addr);
1892 #endif
1893 }
1894 mprotect((void *)g2h(host_start), qemu_host_page_size,
1895 prot & PAGE_BITS);
1896
1897 mmap_unlock();
1898 return 1;
1899 }
1900 mmap_unlock();
1901 return 0;
1902 }
1903 #endif /* CONFIG_USER_ONLY */