]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
maps: Terminate 'modes' map correctly.
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(int *lockid)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135
136 ret = get_cluster_name(&cluster_name);
137 if (ret) {
138 pr_err("The md can't get cluster name\n");
139 return -1;
140 }
141
142 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
143 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
144 if (!dlm_lock_res->ls) {
145 pr_err("%s failed to create lockspace\n", cluster_name);
146 return -ENOMEM;
147 }
148
149 snprintf(str, 64, "bitmap%s", cluster_name);
150 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
151 flags, str, strlen(str), 0, dlm_ast,
152 dlm_lock_res, NULL, NULL);
153 if (ret) {
154 pr_err("error %d when get PW mode on lock %s\n", errno, str);
155 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
156 return ret;
157 }
158
159 /* Wait for it to complete */
160 poll_for_ast(dlm_lock_res->ls);
161 *lockid = dlm_lock_res->lksb.sb_lkid;
162
163 return dlm_lock_res->lksb.sb_status;
164 }
165
166 int cluster_release_dlmlock(int lockid)
167 {
168 int ret = -1;
169
170 if (!cluster_name)
171 return -1;
172
173 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
174 &dlm_lock_res->lksb, dlm_lock_res);
175 if (ret) {
176 pr_err("error %d happened when unlock\n", errno);
177 /* XXX make sure the lock is unlocked eventually */
178 goto out;
179 }
180
181 /* Wait for it to complete */
182 poll_for_ast(dlm_lock_res->ls);
183
184 errno = dlm_lock_res->lksb.sb_status;
185 if (errno != EUNLOCK) {
186 pr_err("error %d happened in ast when unlock lockspace\n", errno);
187 /* XXX make sure the lockspace is unlocked eventually */
188 goto out;
189 }
190
191 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
192 if (ret) {
193 pr_err("error %d happened when release lockspace\n", errno);
194 /* XXX make sure the lockspace is released eventually */
195 goto out;
196 }
197 free(dlm_lock_res);
198
199 out:
200 return ret;
201 }
202
203 int md_array_active(int fd)
204 {
205 struct mdinfo *sra;
206 struct mdu_array_info_s array;
207 int ret;
208
209 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
210 if (sra) {
211 if (sra->array_state != ARRAY_CLEAR &&
212 sra->array_state != ARRAY_INACTIVE &&
213 sra->array_state != ARRAY_UNKNOWN_STATE)
214 ret = 0;
215 else
216 ret = -ENODEV;
217
218 free(sra);
219 } else {
220 /*
221 * GET_ARRAY_INFO doesn't provide access to the proper state
222 * information, so fallback to a basic check for raid_disks != 0
223 */
224 ret = ioctl(fd, GET_ARRAY_INFO, &array);
225 }
226
227 return !ret;
228 }
229
230 /*
231 * Get array info from the kernel. Longer term we want to deprecate the
232 * ioctl and get it from sysfs.
233 */
234 int md_get_array_info(int fd, struct mdu_array_info_s *array)
235 {
236 return ioctl(fd, GET_ARRAY_INFO, array);
237 }
238
239 /*
240 * Set array info
241 */
242 int md_set_array_info(int fd, struct mdu_array_info_s *array)
243 {
244 return ioctl(fd, SET_ARRAY_INFO, array);
245 }
246
247 /*
248 * Get disk info from the kernel.
249 */
250 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
251 {
252 return ioctl(fd, GET_DISK_INFO, disk);
253 }
254
255 /*
256 * Parse a 128 bit uuid in 4 integers
257 * format is 32 hexx nibbles with options :.<space> separator
258 * If not exactly 32 hex digits are found, return 0
259 * else return 1
260 */
261 int parse_uuid(char *str, int uuid[4])
262 {
263 int hit = 0; /* number of Hex digIT */
264 int i;
265 char c;
266 for (i = 0; i < 4; i++)
267 uuid[i] = 0;
268
269 while ((c = *str++) != 0) {
270 int n;
271 if (c >= '0' && c <= '9')
272 n = c-'0';
273 else if (c >= 'a' && c <= 'f')
274 n = 10 + c - 'a';
275 else if (c >= 'A' && c <= 'F')
276 n = 10 + c - 'A';
277 else if (strchr(":. -", c))
278 continue;
279 else return 0;
280
281 if (hit<32) {
282 uuid[hit/8] <<= 4;
283 uuid[hit/8] += n;
284 }
285 hit++;
286 }
287 if (hit == 32)
288 return 1;
289 return 0;
290 }
291
292 int get_linux_version()
293 {
294 struct utsname name;
295 char *cp;
296 int a = 0, b = 0,c = 0;
297 if (uname(&name) <0)
298 return -1;
299
300 cp = name.release;
301 a = strtoul(cp, &cp, 10);
302 if (*cp == '.')
303 b = strtoul(cp+1, &cp, 10);
304 if (*cp == '.')
305 c = strtoul(cp+1, &cp, 10);
306
307 return (a*1000000)+(b*1000)+c;
308 }
309
310 int mdadm_version(char *version)
311 {
312 int a, b, c;
313 char *cp;
314
315 if (!version)
316 version = Version;
317
318 cp = strchr(version, '-');
319 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
320 return -1;
321 cp += 3;
322 a = strtoul(cp, &cp, 10);
323 if (*cp != '.')
324 return -1;
325 b = strtoul(cp+1, &cp, 10);
326 if (*cp == '.')
327 c = strtoul(cp+1, &cp, 10);
328 else
329 c = 0;
330 if (*cp != ' ' && *cp != '-')
331 return -1;
332 return (a*1000000)+(b*1000)+c;
333 }
334
335 unsigned long long parse_size(char *size)
336 {
337 /* parse 'size' which should be a number optionally
338 * followed by 'K', 'M', or 'G'.
339 * Without a suffix, K is assumed.
340 * Number returned is in sectors (half-K)
341 * INVALID_SECTORS returned on error.
342 */
343 char *c;
344 long long s = strtoll(size, &c, 10);
345 if (s > 0) {
346 switch (*c) {
347 case 'K':
348 c++;
349 default:
350 s *= 2;
351 break;
352 case 'M':
353 c++;
354 s *= 1024 * 2;
355 break;
356 case 'G':
357 c++;
358 s *= 1024 * 1024 * 2;
359 break;
360 case 's': /* sectors */
361 c++;
362 break;
363 }
364 } else
365 s = INVALID_SECTORS;
366 if (*c)
367 s = INVALID_SECTORS;
368 return s;
369 }
370
371 int parse_layout_10(char *layout)
372 {
373 int copies, rv;
374 char *cp;
375 /* Parse the layout string for raid10 */
376 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
377 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
378 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
379 copies > 200 ||
380 *cp)
381 return -1;
382 if (layout[0] == 'n')
383 rv = 256 + copies;
384 else if (layout[0] == 'o')
385 rv = 0x10000 + (copies<<8) + 1;
386 else
387 rv = 1 + (copies<<8);
388 return rv;
389 }
390
391 int parse_layout_faulty(char *layout)
392 {
393 /* Parse the layout string for 'faulty' */
394 int ln = strcspn(layout, "0123456789");
395 char *m = xstrdup(layout);
396 int mode;
397 m[ln] = 0;
398 mode = map_name(faultylayout, m);
399 if (mode == UnSet)
400 return -1;
401
402 return mode | (atoi(layout+ln)<< ModeShift);
403 }
404
405 long parse_num(char *num)
406 {
407 /* Either return a valid number, or -1 */
408 char *c;
409 long rv = strtol(num, &c, 10);
410 if (rv < 0 || *c || !num[0])
411 return -1;
412 else
413 return rv;
414 }
415
416 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
417 {
418 char *dev;
419 *slot = strtoul(input, &dev, 10);
420 if (dev == input || dev[0] != ':')
421 return -1;
422 *devname = dev+1;
423 return 0;
424 }
425
426 void remove_partitions(int fd)
427 {
428 /* remove partitions from this block devices.
429 * This is used for components added to an array
430 */
431 #ifdef BLKPG_DEL_PARTITION
432 struct blkpg_ioctl_arg a;
433 struct blkpg_partition p;
434
435 a.op = BLKPG_DEL_PARTITION;
436 a.data = (void*)&p;
437 a.datalen = sizeof(p);
438 a.flags = 0;
439 memset(a.data, 0, a.datalen);
440 for (p.pno = 0; p.pno < 16; p.pno++)
441 ioctl(fd, BLKPG, &a);
442 #endif
443 }
444
445 int test_partition(int fd)
446 {
447 /* Check if fd is a whole-disk or a partition.
448 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
449 * will return ENXIO on an invalid partition number.
450 */
451 struct blkpg_ioctl_arg a;
452 struct blkpg_partition p;
453 a.op = BLKPG_DEL_PARTITION;
454 a.data = (void*)&p;
455 a.datalen = sizeof(p);
456 a.flags = 0;
457 memset(a.data, 0, a.datalen);
458 p.pno = 1<<30;
459 if (ioctl(fd, BLKPG, &a) == 0)
460 /* Very unlikely, but not a partition */
461 return 0;
462 if (errno == ENXIO || errno == ENOTTY)
463 /* not a partition */
464 return 0;
465
466 return 1;
467 }
468
469 int test_partition_from_id(dev_t id)
470 {
471 char buf[20];
472 int fd, rv;
473
474 sprintf(buf, "%d:%d", major(id), minor(id));
475 fd = dev_open(buf, O_RDONLY);
476 if (fd < 0)
477 return -1;
478 rv = test_partition(fd);
479 close(fd);
480 return rv;
481 }
482
483 int enough(int level, int raid_disks, int layout, int clean, char *avail)
484 {
485 int copies, first;
486 int i;
487 int avail_disks = 0;
488
489 for (i = 0; i < raid_disks; i++)
490 avail_disks += !!avail[i];
491
492 switch (level) {
493 case 10:
494 /* This is the tricky one - we need to check
495 * which actual disks are present.
496 */
497 copies = (layout&255)* ((layout>>8) & 255);
498 first = 0;
499 do {
500 /* there must be one of the 'copies' form 'first' */
501 int n = copies;
502 int cnt = 0;
503 int this = first;
504 while (n--) {
505 if (avail[this])
506 cnt++;
507 this = (this+1) % raid_disks;
508 }
509 if (cnt == 0)
510 return 0;
511 first = (first+(layout&255)) % raid_disks;
512 } while (first != 0);
513 return 1;
514
515 case LEVEL_MULTIPATH:
516 return avail_disks>= 1;
517 case LEVEL_LINEAR:
518 case 0:
519 return avail_disks == raid_disks;
520 case 1:
521 return avail_disks >= 1;
522 case 4:
523 if (avail_disks == raid_disks - 1 &&
524 !avail[raid_disks - 1])
525 /* If just the parity device is missing, then we
526 * have enough, even if not clean
527 */
528 return 1;
529 /* FALL THROUGH */
530 case 5:
531 if (clean)
532 return avail_disks >= raid_disks-1;
533 else
534 return avail_disks >= raid_disks;
535 case 6:
536 if (clean)
537 return avail_disks >= raid_disks-2;
538 else
539 return avail_disks >= raid_disks;
540 default:
541 return 0;
542 }
543 }
544
545 int enough_fd(int fd)
546 {
547 struct mdu_array_info_s array;
548 struct mdu_disk_info_s disk;
549 int i, rv;
550 char *avail;
551
552 if (md_get_array_info(fd, &array) != 0 || array.raid_disks <= 0)
553 return 0;
554 avail = xcalloc(array.raid_disks, 1);
555 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
556 disk.number = i;
557 if (md_get_disk_info(fd, &disk) != 0)
558 continue;
559 if (disk.major == 0 && disk.minor == 0)
560 continue;
561 array.nr_disks--;
562
563 if (! (disk.state & (1<<MD_DISK_SYNC)))
564 continue;
565 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
566 continue;
567 avail[disk.raid_disk] = 1;
568 }
569 /* This is used on an active array, so assume it is clean */
570 rv = enough(array.level, array.raid_disks, array.layout,
571 1, avail);
572 free(avail);
573 return rv;
574 }
575
576 const int uuid_zero[4] = { 0, 0, 0, 0 };
577
578 int same_uuid(int a[4], int b[4], int swapuuid)
579 {
580 if (swapuuid) {
581 /* parse uuids are hostendian.
582 * uuid's from some superblocks are big-ending
583 * if there is a difference, we need to swap..
584 */
585 unsigned char *ac = (unsigned char *)a;
586 unsigned char *bc = (unsigned char *)b;
587 int i;
588 for (i = 0; i < 16; i += 4) {
589 if (ac[i+0] != bc[i+3] ||
590 ac[i+1] != bc[i+2] ||
591 ac[i+2] != bc[i+1] ||
592 ac[i+3] != bc[i+0])
593 return 0;
594 }
595 return 1;
596 } else {
597 if (a[0]==b[0] &&
598 a[1]==b[1] &&
599 a[2]==b[2] &&
600 a[3]==b[3])
601 return 1;
602 return 0;
603 }
604 }
605
606 void copy_uuid(void *a, int b[4], int swapuuid)
607 {
608 if (swapuuid) {
609 /* parse uuids are hostendian.
610 * uuid's from some superblocks are big-ending
611 * if there is a difference, we need to swap..
612 */
613 unsigned char *ac = (unsigned char *)a;
614 unsigned char *bc = (unsigned char *)b;
615 int i;
616 for (i = 0; i < 16; i += 4) {
617 ac[i+0] = bc[i+3];
618 ac[i+1] = bc[i+2];
619 ac[i+2] = bc[i+1];
620 ac[i+3] = bc[i+0];
621 }
622 } else
623 memcpy(a, b, 16);
624 }
625
626 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
627 {
628 int i, j;
629 char uuid[16];
630 char *c = buf;
631 strcpy(c, "UUID-");
632 c += strlen(c);
633 copy_uuid(uuid, id, swap);
634 for (i = 0; i < 4; i++) {
635 if (i)
636 *c++ = sep;
637 for (j = 3; j >= 0; j--) {
638 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
639 c+= 2;
640 }
641 }
642 return buf;
643
644 }
645
646 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
647 {
648 // dirty hack to work around an issue with super1 superblocks...
649 // super1 superblocks need swapuuid set in order for assembly to
650 // work, but can't have it set if we want this printout to match
651 // all the other uuid printouts in super1.c, so we force swapuuid
652 // to 1 to make our printout match the rest of super1
653 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
654 }
655
656 int check_ext2(int fd, char *name)
657 {
658 /*
659 * Check for an ext2fs file system.
660 * Superblock is always 1K at 1K offset
661 *
662 * s_magic is le16 at 56 == 0xEF53
663 * report mtime - le32 at 44
664 * blocks - le32 at 4
665 * logblksize - le32 at 24
666 */
667 unsigned char sb[1024];
668 time_t mtime;
669 unsigned long long size;
670 int bsize;
671 if (lseek(fd, 1024,0)!= 1024)
672 return 0;
673 if (read(fd, sb, 1024)!= 1024)
674 return 0;
675 if (sb[56] != 0x53 || sb[57] != 0xef)
676 return 0;
677
678 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
679 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
680 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
681 size <<= bsize;
682 pr_err("%s appears to contain an ext2fs file system\n",
683 name);
684 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
685 return 1;
686 }
687
688 int check_reiser(int fd, char *name)
689 {
690 /*
691 * superblock is at 64K
692 * size is 1024;
693 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
694 *
695 */
696 unsigned char sb[1024];
697 unsigned long long size;
698 if (lseek(fd, 64*1024, 0) != 64*1024)
699 return 0;
700 if (read(fd, sb, 1024) != 1024)
701 return 0;
702 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
703 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
704 return 0;
705 pr_err("%s appears to contain a reiserfs file system\n",name);
706 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
707 cont_err("size = %lluK\n", size*4);
708
709 return 1;
710 }
711
712 int check_raid(int fd, char *name)
713 {
714 struct mdinfo info;
715 time_t crtime;
716 char *level;
717 struct supertype *st = guess_super(fd);
718
719 if (!st)
720 return 0;
721 if (st->ss->add_to_super != NULL) {
722 st->ss->load_super(st, fd, name);
723 /* Looks like a raid array .. */
724 pr_err("%s appears to be part of a raid array:\n", name);
725 st->ss->getinfo_super(st, &info, NULL);
726 st->ss->free_super(st);
727 crtime = info.array.ctime;
728 level = map_num(pers, info.array.level);
729 if (!level)
730 level = "-unknown-";
731 cont_err("level=%s devices=%d ctime=%s",
732 level, info.array.raid_disks, ctime(&crtime));
733 } else {
734 /* Looks like GPT or MBR */
735 pr_err("partition table exists on %s\n", name);
736 }
737 return 1;
738 }
739
740 int ask(char *mesg)
741 {
742 char *add = "";
743 int i;
744 for (i = 0; i < 5; i++) {
745 char buf[100];
746 fprintf(stderr, "%s%s", mesg, add);
747 fflush(stderr);
748 if (fgets(buf, 100, stdin)==NULL)
749 return 0;
750 if (buf[0]=='y' || buf[0]=='Y')
751 return 1;
752 if (buf[0]=='n' || buf[0]=='N')
753 return 0;
754 add = "(y/n) ";
755 }
756 pr_err("assuming 'no'\n");
757 return 0;
758 }
759
760 int is_standard(char *dev, int *nump)
761 {
762 /* tests if dev is a "standard" md dev name.
763 * i.e if the last component is "/dNN" or "/mdNN",
764 * where NN is a string of digits
765 * Returns 1 if a partitionable standard,
766 * -1 if non-partitonable,
767 * 0 if not a standard name.
768 */
769 char *d = strrchr(dev, '/');
770 int type = 0;
771 int num;
772 if (!d)
773 return 0;
774 if (strncmp(d, "/d",2) == 0)
775 d += 2, type = 1; /* /dev/md/dN{pM} */
776 else if (strncmp(d, "/md_d", 5) == 0)
777 d += 5, type = 1; /* /dev/md_dN{pM} */
778 else if (strncmp(d, "/md", 3) == 0)
779 d += 3, type = -1; /* /dev/mdN */
780 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
781 d += 1, type = -1; /* /dev/md/N */
782 else
783 return 0;
784 if (!*d)
785 return 0;
786 num = atoi(d);
787 while (isdigit(*d))
788 d++;
789 if (*d)
790 return 0;
791 if (nump) *nump = num;
792
793 return type;
794 }
795
796 unsigned long calc_csum(void *super, int bytes)
797 {
798 unsigned long long newcsum = 0;
799 int i;
800 unsigned int csum;
801 unsigned int *superc = (unsigned int*) super;
802
803 for(i = 0; i < bytes/4; i++)
804 newcsum += superc[i];
805 csum = (newcsum& 0xffffffff) + (newcsum>>32);
806 #ifdef __alpha__
807 /* The in-kernel checksum calculation is always 16bit on
808 * the alpha, though it is 32 bit on i386...
809 * I wonder what it is elsewhere... (it uses an API in
810 * a way that it shouldn't).
811 */
812 csum = (csum & 0xffff) + (csum >> 16);
813 csum = (csum & 0xffff) + (csum >> 16);
814 #endif
815 return csum;
816 }
817
818 char *human_size(long long bytes)
819 {
820 static char buf[47];
821
822 /* We convert bytes to either centi-M{ega,ibi}bytes or
823 * centi-G{igi,ibi}bytes, with appropriate rounding,
824 * and then print 1/100th of those as a decimal.
825 * We allow upto 2048Megabytes before converting to
826 * gigabytes, as that shows more precision and isn't
827 * too large a number.
828 * Terabytes are not yet handled.
829 */
830
831 if (bytes < 5000*1024)
832 buf[0] = 0;
833 else if (bytes < 2*1024LL*1024LL*1024LL) {
834 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
835 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
836 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
837 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
838 } else {
839 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
840 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
841 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
842 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
843 }
844 return buf;
845 }
846
847 char *human_size_brief(long long bytes, int prefix)
848 {
849 static char buf[30];
850
851 /* We convert bytes to either centi-M{ega,ibi}bytes or
852 * centi-G{igi,ibi}bytes, with appropriate rounding,
853 * and then print 1/100th of those as a decimal.
854 * We allow upto 2048Megabytes before converting to
855 * gigabytes, as that shows more precision and isn't
856 * too large a number.
857 * Terabytes are not yet handled.
858 *
859 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
860 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
861 */
862
863 if (bytes < 5000*1024)
864 buf[0] = 0;
865 else if (prefix == IEC) {
866 if (bytes < 2*1024LL*1024LL*1024LL) {
867 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
868 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
869 cMiB/100, cMiB % 100);
870 } else {
871 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
872 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
873 cGiB/100, cGiB % 100);
874 }
875 }
876 else if (prefix == JEDEC) {
877 if (bytes < 2*1024LL*1024LL*1024LL) {
878 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
879 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
880 cMB/100, cMB % 100);
881 } else {
882 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
883 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
884 cGB/100, cGB % 100);
885 }
886 }
887 else
888 buf[0] = 0;
889
890 return buf;
891 }
892
893 void print_r10_layout(int layout)
894 {
895 int near = layout & 255;
896 int far = (layout >> 8) & 255;
897 int offset = (layout&0x10000);
898 char *sep = "";
899
900 if (near != 1) {
901 printf("%s near=%d", sep, near);
902 sep = ",";
903 }
904 if (far != 1)
905 printf("%s %s=%d", sep, offset?"offset":"far", far);
906 if (near*far == 1)
907 printf("NO REDUNDANCY");
908 }
909
910 unsigned long long calc_array_size(int level, int raid_disks, int layout,
911 int chunksize, unsigned long long devsize)
912 {
913 if (level == 1)
914 return devsize;
915 devsize &= ~(unsigned long long)((chunksize>>9)-1);
916 return get_data_disks(level, layout, raid_disks) * devsize;
917 }
918
919 int get_data_disks(int level, int layout, int raid_disks)
920 {
921 int data_disks = 0;
922 switch (level) {
923 case 0: data_disks = raid_disks;
924 break;
925 case 1: data_disks = 1;
926 break;
927 case 4:
928 case 5: data_disks = raid_disks - 1;
929 break;
930 case 6: data_disks = raid_disks - 2;
931 break;
932 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
933 break;
934 }
935
936 return data_disks;
937 }
938
939 dev_t devnm2devid(char *devnm)
940 {
941 /* First look in /sys/block/$DEVNM/dev for %d:%d
942 * If that fails, try parsing out a number
943 */
944 char path[100];
945 char *ep;
946 int fd;
947 int mjr,mnr;
948
949 sprintf(path, "/sys/block/%s/dev", devnm);
950 fd = open(path, O_RDONLY);
951 if (fd >= 0) {
952 char buf[20];
953 int n = read(fd, buf, sizeof(buf));
954 close(fd);
955 if (n > 0)
956 buf[n] = 0;
957 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
958 return makedev(mjr, mnr);
959 }
960 if (strncmp(devnm, "md_d", 4) == 0 &&
961 isdigit(devnm[4]) &&
962 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
963 ep > devnm && *ep == 0)
964 return makedev(get_mdp_major(), mnr << MdpMinorShift);
965
966 if (strncmp(devnm, "md", 2) == 0 &&
967 isdigit(devnm[2]) &&
968 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
969 ep > devnm && *ep == 0)
970 return makedev(MD_MAJOR, mnr);
971
972 return 0;
973 }
974
975 char *get_md_name(char *devnm)
976 {
977 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
978 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
979
980 static char devname[50];
981 struct stat stb;
982 dev_t rdev = devnm2devid(devnm);
983 char *dn;
984
985 if (rdev == 0)
986 return 0;
987 if (strncmp(devnm, "md_", 3) == 0) {
988 snprintf(devname, sizeof(devname), "/dev/md/%s",
989 devnm + 3);
990 if (stat(devname, &stb) == 0
991 && (S_IFMT&stb.st_mode) == S_IFBLK
992 && (stb.st_rdev == rdev))
993 return devname;
994 }
995 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
996 if (stat(devname, &stb) == 0
997 && (S_IFMT&stb.st_mode) == S_IFBLK
998 && (stb.st_rdev == rdev))
999 return devname;
1000
1001 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1002 if (stat(devname, &stb) == 0
1003 && (S_IFMT&stb.st_mode) == S_IFBLK
1004 && (stb.st_rdev == rdev))
1005 return devname;
1006
1007 dn = map_dev(major(rdev), minor(rdev), 0);
1008 if (dn)
1009 return dn;
1010 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1011 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1012 if (errno != EEXIST)
1013 return NULL;
1014
1015 if (stat(devname, &stb) == 0
1016 && (S_IFMT&stb.st_mode) == S_IFBLK
1017 && (stb.st_rdev == rdev))
1018 return devname;
1019 unlink(devname);
1020 return NULL;
1021 }
1022
1023 void put_md_name(char *name)
1024 {
1025 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1026 unlink(name);
1027 }
1028
1029 int get_maj_min(char *dev, int *major, int *minor)
1030 {
1031 char *e;
1032 *major = strtoul(dev, &e, 0);
1033 return (e > dev && *e == ':' && e[1] &&
1034 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1035 *e == 0);
1036 }
1037
1038 int dev_open(char *dev, int flags)
1039 {
1040 /* like 'open', but if 'dev' matches %d:%d, create a temp
1041 * block device and open that
1042 */
1043 int fd = -1;
1044 char devname[32];
1045 int major;
1046 int minor;
1047
1048 if (!dev)
1049 return -1;
1050 flags |= O_DIRECT;
1051
1052 if (get_maj_min(dev, &major, &minor)) {
1053 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1054 (int)getpid(), major, minor);
1055 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1056 fd = open(devname, flags);
1057 unlink(devname);
1058 }
1059 if (fd < 0) {
1060 /* Try /tmp as /dev appear to be read-only */
1061 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1062 (int)getpid(), major, minor);
1063 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1064 fd = open(devname, flags);
1065 unlink(devname);
1066 }
1067 }
1068 } else
1069 fd = open(dev, flags);
1070 return fd;
1071 }
1072
1073 int open_dev_flags(char *devnm, int flags)
1074 {
1075 dev_t devid;
1076 char buf[20];
1077
1078 devid = devnm2devid(devnm);
1079 sprintf(buf, "%d:%d", major(devid), minor(devid));
1080 return dev_open(buf, flags);
1081 }
1082
1083 int open_dev(char *devnm)
1084 {
1085 return open_dev_flags(devnm, O_RDONLY);
1086 }
1087
1088 int open_dev_excl(char *devnm)
1089 {
1090 char buf[20];
1091 int i;
1092 int flags = O_RDWR;
1093 dev_t devid = devnm2devid(devnm);
1094 long delay = 1000;
1095
1096 sprintf(buf, "%d:%d", major(devid), minor(devid));
1097 for (i = 0; i < 25; i++) {
1098 int fd = dev_open(buf, flags|O_EXCL);
1099 if (fd >= 0)
1100 return fd;
1101 if (errno == EACCES && flags == O_RDWR) {
1102 flags = O_RDONLY;
1103 continue;
1104 }
1105 if (errno != EBUSY)
1106 return fd;
1107 usleep(delay);
1108 if (delay < 200000)
1109 delay *= 2;
1110 }
1111 return -1;
1112 }
1113
1114 int same_dev(char *one, char *two)
1115 {
1116 struct stat st1, st2;
1117 if (stat(one, &st1) != 0)
1118 return 0;
1119 if (stat(two, &st2) != 0)
1120 return 0;
1121 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1122 return 0;
1123 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1124 return 0;
1125 return st1.st_rdev == st2.st_rdev;
1126 }
1127
1128 void wait_for(char *dev, int fd)
1129 {
1130 int i;
1131 struct stat stb_want;
1132 long delay = 1000;
1133
1134 if (fstat(fd, &stb_want) != 0 ||
1135 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1136 return;
1137
1138 for (i = 0; i < 25; i++) {
1139 struct stat stb;
1140 if (stat(dev, &stb) == 0 &&
1141 (stb.st_mode & S_IFMT) == S_IFBLK &&
1142 (stb.st_rdev == stb_want.st_rdev))
1143 return;
1144 usleep(delay);
1145 if (delay < 200000)
1146 delay *= 2;
1147 }
1148 if (i == 25)
1149 dprintf("timeout waiting for %s\n", dev);
1150 }
1151
1152 struct superswitch *superlist[] =
1153 {
1154 &super0, &super1,
1155 &super_ddf, &super_imsm,
1156 &mbr, &gpt,
1157 NULL
1158 };
1159
1160 struct supertype *super_by_fd(int fd, char **subarrayp)
1161 {
1162 mdu_array_info_t array;
1163 int vers;
1164 int minor;
1165 struct supertype *st = NULL;
1166 struct mdinfo *sra;
1167 char *verstr;
1168 char version[20];
1169 int i;
1170 char *subarray = NULL;
1171 char container[32] = "";
1172
1173 sra = sysfs_read(fd, NULL, GET_VERSION);
1174
1175 if (sra) {
1176 vers = sra->array.major_version;
1177 minor = sra->array.minor_version;
1178 verstr = sra->text_version;
1179 } else {
1180 if (md_get_array_info(fd, &array))
1181 array.major_version = array.minor_version = 0;
1182 vers = array.major_version;
1183 minor = array.minor_version;
1184 verstr = "";
1185 }
1186
1187 if (vers != -1) {
1188 sprintf(version, "%d.%d", vers, minor);
1189 verstr = version;
1190 }
1191 if (minor == -2 && is_subarray(verstr)) {
1192 char *dev = verstr+1;
1193
1194 subarray = strchr(dev, '/');
1195 if (subarray) {
1196 *subarray++ = '\0';
1197 subarray = xstrdup(subarray);
1198 }
1199 strcpy(container, dev);
1200 sysfs_free(sra);
1201 sra = sysfs_read(-1, container, GET_VERSION);
1202 if (sra && sra->text_version[0])
1203 verstr = sra->text_version;
1204 else
1205 verstr = "-no-metadata-";
1206 }
1207
1208 for (i = 0; st == NULL && superlist[i]; i++)
1209 st = superlist[i]->match_metadata_desc(verstr);
1210
1211 sysfs_free(sra);
1212 if (st) {
1213 st->sb = NULL;
1214 if (subarrayp)
1215 *subarrayp = subarray;
1216 strcpy(st->container_devnm, container);
1217 strcpy(st->devnm, fd2devnm(fd));
1218 } else
1219 free(subarray);
1220
1221 return st;
1222 }
1223
1224 int dev_size_from_id(dev_t id, unsigned long long *size)
1225 {
1226 char buf[20];
1227 int fd;
1228
1229 sprintf(buf, "%d:%d", major(id), minor(id));
1230 fd = dev_open(buf, O_RDONLY);
1231 if (fd < 0)
1232 return 0;
1233 if (get_dev_size(fd, NULL, size)) {
1234 close(fd);
1235 return 1;
1236 }
1237 close(fd);
1238 return 0;
1239 }
1240
1241 struct supertype *dup_super(struct supertype *orig)
1242 {
1243 struct supertype *st;
1244
1245 if (!orig)
1246 return orig;
1247 st = xcalloc(1, sizeof(*st));
1248 st->ss = orig->ss;
1249 st->max_devs = orig->max_devs;
1250 st->minor_version = orig->minor_version;
1251 st->ignore_hw_compat = orig->ignore_hw_compat;
1252 st->data_offset = orig->data_offset;
1253 st->sb = NULL;
1254 st->info = NULL;
1255 return st;
1256 }
1257
1258 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1259 {
1260 /* try each load_super to find the best match,
1261 * and return the best superswitch
1262 */
1263 struct superswitch *ss;
1264 struct supertype *st;
1265 unsigned int besttime = 0;
1266 int bestsuper = -1;
1267 int i;
1268
1269 st = xcalloc(1, sizeof(*st));
1270 st->container_devnm[0] = 0;
1271
1272 for (i = 0; superlist[i]; i++) {
1273 int rv;
1274 ss = superlist[i];
1275 if (guess_type == guess_array && ss->add_to_super == NULL)
1276 continue;
1277 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1278 continue;
1279 memset(st, 0, sizeof(*st));
1280 st->ignore_hw_compat = 1;
1281 rv = ss->load_super(st, fd, NULL);
1282 if (rv == 0) {
1283 struct mdinfo info;
1284 st->ss->getinfo_super(st, &info, NULL);
1285 if (bestsuper == -1 ||
1286 besttime < info.array.ctime) {
1287 bestsuper = i;
1288 besttime = info.array.ctime;
1289 }
1290 ss->free_super(st);
1291 }
1292 }
1293 if (bestsuper != -1) {
1294 int rv;
1295 memset(st, 0, sizeof(*st));
1296 st->ignore_hw_compat = 1;
1297 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1298 if (rv == 0) {
1299 superlist[bestsuper]->free_super(st);
1300 return st;
1301 }
1302 }
1303 free(st);
1304 return NULL;
1305 }
1306
1307 /* Return size of device in bytes */
1308 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1309 {
1310 unsigned long long ldsize;
1311 struct stat st;
1312
1313 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1314 ldsize = (unsigned long long)st.st_size;
1315 else
1316 #ifdef BLKGETSIZE64
1317 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1318 #endif
1319 {
1320 unsigned long dsize;
1321 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1322 ldsize = dsize;
1323 ldsize <<= 9;
1324 } else {
1325 if (dname)
1326 pr_err("Cannot get size of %s: %s\n",
1327 dname, strerror(errno));
1328 return 0;
1329 }
1330 }
1331 *sizep = ldsize;
1332 return 1;
1333 }
1334
1335 /* Return sector size of device in bytes */
1336 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1337 {
1338 unsigned int sectsize;
1339
1340 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1341 if (dname)
1342 pr_err("Cannot get sector size of %s: %s\n",
1343 dname, strerror(errno));
1344 return 0;
1345 }
1346
1347 *sectsizep = sectsize;
1348 return 1;
1349 }
1350
1351 /* Return true if this can only be a container, not a member device.
1352 * i.e. is and md device and size is zero
1353 */
1354 int must_be_container(int fd)
1355 {
1356 struct mdinfo *mdi;
1357 unsigned long long size;
1358
1359 mdi = sysfs_read(fd, NULL, GET_VERSION);
1360 if (!mdi)
1361 return 0;
1362 sysfs_free(mdi);
1363
1364 if (get_dev_size(fd, NULL, &size) == 0)
1365 return 1;
1366 if (size == 0)
1367 return 1;
1368 return 0;
1369 }
1370
1371 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1372 * Returns: 1 if successful
1373 * -1 for unknown partition type
1374 * 0 for other errors
1375 */
1376 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1377 {
1378 struct GPT gpt;
1379 unsigned char empty_gpt_entry[16]= {0};
1380 struct GPT_part_entry *part;
1381 char buf[512];
1382 unsigned long long curr_part_end;
1383 unsigned all_partitions, entry_size;
1384 unsigned part_nr;
1385 unsigned int sector_size = 0;
1386
1387 *endofpart = 0;
1388
1389 BUILD_BUG_ON(sizeof(gpt) != 512);
1390 /* skip protective MBR */
1391 if (!get_dev_sector_size(fd, NULL, &sector_size))
1392 return 0;
1393 lseek(fd, sector_size, SEEK_SET);
1394 /* read GPT header */
1395 if (read(fd, &gpt, 512) != 512)
1396 return 0;
1397
1398 /* get the number of partition entries and the entry size */
1399 all_partitions = __le32_to_cpu(gpt.part_cnt);
1400 entry_size = __le32_to_cpu(gpt.part_size);
1401
1402 /* Check GPT signature*/
1403 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1404 return -1;
1405
1406 /* sanity checks */
1407 if (all_partitions > 1024 ||
1408 entry_size > sizeof(buf))
1409 return -1;
1410
1411 part = (struct GPT_part_entry *)buf;
1412
1413 /* set offset to third block (GPT entries) */
1414 lseek(fd, sector_size*2, SEEK_SET);
1415 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1416 /* read partition entry */
1417 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1418 return 0;
1419
1420 /* is this valid partition? */
1421 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1422 /* check the last lba for the current partition */
1423 curr_part_end = __le64_to_cpu(part->ending_lba);
1424 if (curr_part_end > *endofpart)
1425 *endofpart = curr_part_end;
1426 }
1427
1428 }
1429 return 1;
1430 }
1431
1432 /* Sets endofpart parameter to the last block used by the last partition on the device.
1433 * Returns: 1 if successful
1434 * -1 for unknown partition type
1435 * 0 for other errors
1436 */
1437 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1438 {
1439 struct MBR boot_sect;
1440 unsigned long long curr_part_end;
1441 unsigned part_nr;
1442 unsigned int sector_size;
1443 int retval = 0;
1444
1445 *endofpart = 0;
1446
1447 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1448 /* read MBR */
1449 lseek(fd, 0, 0);
1450 if (read(fd, &boot_sect, 512) != 512)
1451 goto abort;
1452
1453 /* check MBP signature */
1454 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1455 retval = 1;
1456 /* found the correct signature */
1457
1458 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1459 /*
1460 * Have to make every access through boot_sect rather
1461 * than using a pointer to the partition table (or an
1462 * entry), since the entries are not properly aligned.
1463 */
1464
1465 /* check for GPT type */
1466 if (boot_sect.parts[part_nr].part_type ==
1467 MBR_GPT_PARTITION_TYPE) {
1468 retval = get_gpt_last_partition_end(fd, endofpart);
1469 break;
1470 }
1471 /* check the last used lba for the current partition */
1472 curr_part_end =
1473 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1474 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1475 if (curr_part_end > *endofpart)
1476 *endofpart = curr_part_end;
1477 }
1478 } else {
1479 /* Unknown partition table */
1480 retval = -1;
1481 }
1482 /* calculate number of 512-byte blocks */
1483 if (get_dev_sector_size(fd, NULL, &sector_size))
1484 *endofpart *= (sector_size / 512);
1485 abort:
1486 return retval;
1487 }
1488
1489 int check_partitions(int fd, char *dname, unsigned long long freesize,
1490 unsigned long long size)
1491 {
1492 /*
1493 * Check where the last partition ends
1494 */
1495 unsigned long long endofpart;
1496
1497 if (get_last_partition_end(fd, &endofpart) > 0) {
1498 /* There appears to be a partition table here */
1499 if (freesize == 0) {
1500 /* partitions will not be visible in new device */
1501 pr_err("partition table exists on %s but will be lost or\n"
1502 " meaningless after creating array\n",
1503 dname);
1504 return 1;
1505 } else if (endofpart > freesize) {
1506 /* last partition overlaps metadata */
1507 pr_err("metadata will over-write last partition on %s.\n",
1508 dname);
1509 return 1;
1510 } else if (size && endofpart > size) {
1511 /* partitions will be truncated in new device */
1512 pr_err("array size is too small to cover all partitions on %s.\n",
1513 dname);
1514 return 1;
1515 }
1516 }
1517 return 0;
1518 }
1519
1520 int open_container(int fd)
1521 {
1522 /* 'fd' is a block device. Find out if it is in use
1523 * by a container, and return an open fd on that container.
1524 */
1525 char path[256];
1526 char *e;
1527 DIR *dir;
1528 struct dirent *de;
1529 int dfd, n;
1530 char buf[200];
1531 int major, minor;
1532 struct stat st;
1533
1534 if (fstat(fd, &st) != 0)
1535 return -1;
1536 sprintf(path, "/sys/dev/block/%d:%d/holders",
1537 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1538 e = path + strlen(path);
1539
1540 dir = opendir(path);
1541 if (!dir)
1542 return -1;
1543 while ((de = readdir(dir))) {
1544 if (de->d_ino == 0)
1545 continue;
1546 if (de->d_name[0] == '.')
1547 continue;
1548 /* Need to make sure it is a container and not a volume */
1549 sprintf(e, "/%s/md/metadata_version", de->d_name);
1550 dfd = open(path, O_RDONLY);
1551 if (dfd < 0)
1552 continue;
1553 n = read(dfd, buf, sizeof(buf));
1554 close(dfd);
1555 if (n <= 0 || (unsigned)n >= sizeof(buf))
1556 continue;
1557 buf[n] = 0;
1558 if (strncmp(buf, "external", 8) != 0 ||
1559 n < 10 ||
1560 buf[9] == '/')
1561 continue;
1562 sprintf(e, "/%s/dev", de->d_name);
1563 dfd = open(path, O_RDONLY);
1564 if (dfd < 0)
1565 continue;
1566 n = read(dfd, buf, sizeof(buf));
1567 close(dfd);
1568 if (n <= 0 || (unsigned)n >= sizeof(buf))
1569 continue;
1570 buf[n] = 0;
1571 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1572 continue;
1573 sprintf(buf, "%d:%d", major, minor);
1574 dfd = dev_open(buf, O_RDONLY);
1575 if (dfd >= 0) {
1576 closedir(dir);
1577 return dfd;
1578 }
1579 }
1580 closedir(dir);
1581 return -1;
1582 }
1583
1584 struct superswitch *version_to_superswitch(char *vers)
1585 {
1586 int i;
1587
1588 for (i = 0; superlist[i]; i++) {
1589 struct superswitch *ss = superlist[i];
1590
1591 if (strcmp(vers, ss->name) == 0)
1592 return ss;
1593 }
1594
1595 return NULL;
1596 }
1597
1598 int metadata_container_matches(char *metadata, char *devnm)
1599 {
1600 /* Check if 'devnm' is the container named in 'metadata'
1601 * which is
1602 * /containername/componentname or
1603 * -containername/componentname
1604 */
1605 int l;
1606 if (*metadata != '/' && *metadata != '-')
1607 return 0;
1608 l = strlen(devnm);
1609 if (strncmp(metadata+1, devnm, l) != 0)
1610 return 0;
1611 if (metadata[l+1] != '/')
1612 return 0;
1613 return 1;
1614 }
1615
1616 int metadata_subdev_matches(char *metadata, char *devnm)
1617 {
1618 /* Check if 'devnm' is the subdev named in 'metadata'
1619 * which is
1620 * /containername/subdev or
1621 * -containername/subdev
1622 */
1623 char *sl;
1624 if (*metadata != '/' && *metadata != '-')
1625 return 0;
1626 sl = strchr(metadata+1, '/');
1627 if (!sl)
1628 return 0;
1629 if (strcmp(sl+1, devnm) == 0)
1630 return 1;
1631 return 0;
1632 }
1633
1634 int is_container_member(struct mdstat_ent *mdstat, char *container)
1635 {
1636 if (mdstat->metadata_version == NULL ||
1637 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1638 !metadata_container_matches(mdstat->metadata_version+9, container))
1639 return 0;
1640
1641 return 1;
1642 }
1643
1644 int is_subarray_active(char *subarray, char *container)
1645 {
1646 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1647 struct mdstat_ent *ent;
1648
1649 for (ent = mdstat; ent; ent = ent->next)
1650 if (is_container_member(ent, container))
1651 if (strcmp(to_subarray(ent, container), subarray) == 0)
1652 break;
1653
1654 free_mdstat(mdstat);
1655
1656 return ent != NULL;
1657 }
1658
1659 /* open_subarray - opens a subarray in a container
1660 * @dev: container device name
1661 * @st: empty supertype
1662 * @quiet: block reporting errors flag
1663 *
1664 * On success returns an fd to a container and fills in *st
1665 */
1666 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1667 {
1668 struct mdinfo *mdi;
1669 struct mdinfo *info;
1670 int fd, err = 1;
1671 char *_devnm;
1672
1673 fd = open(dev, O_RDWR|O_EXCL);
1674 if (fd < 0) {
1675 if (!quiet)
1676 pr_err("Couldn't open %s, aborting\n",
1677 dev);
1678 return -1;
1679 }
1680
1681 _devnm = fd2devnm(fd);
1682 if (_devnm == NULL) {
1683 if (!quiet)
1684 pr_err("Failed to determine device number for %s\n",
1685 dev);
1686 goto close_fd;
1687 }
1688 strcpy(st->devnm, _devnm);
1689
1690 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1691 if (!mdi) {
1692 if (!quiet)
1693 pr_err("Failed to read sysfs for %s\n",
1694 dev);
1695 goto close_fd;
1696 }
1697
1698 if (mdi->array.level != UnSet) {
1699 if (!quiet)
1700 pr_err("%s is not a container\n", dev);
1701 goto free_sysfs;
1702 }
1703
1704 st->ss = version_to_superswitch(mdi->text_version);
1705 if (!st->ss) {
1706 if (!quiet)
1707 pr_err("Operation not supported for %s metadata\n",
1708 mdi->text_version);
1709 goto free_sysfs;
1710 }
1711
1712 if (st->devnm[0] == 0) {
1713 if (!quiet)
1714 pr_err("Failed to allocate device name\n");
1715 goto free_sysfs;
1716 }
1717
1718 if (!st->ss->load_container) {
1719 if (!quiet)
1720 pr_err("%s is not a container\n", dev);
1721 goto free_sysfs;
1722 }
1723
1724 if (st->ss->load_container(st, fd, NULL)) {
1725 if (!quiet)
1726 pr_err("Failed to load metadata for %s\n",
1727 dev);
1728 goto free_sysfs;
1729 }
1730
1731 info = st->ss->container_content(st, subarray);
1732 if (!info) {
1733 if (!quiet)
1734 pr_err("Failed to find subarray-%s in %s\n",
1735 subarray, dev);
1736 goto free_super;
1737 }
1738 free(info);
1739
1740 err = 0;
1741
1742 free_super:
1743 if (err)
1744 st->ss->free_super(st);
1745 free_sysfs:
1746 sysfs_free(mdi);
1747 close_fd:
1748 if (err)
1749 close(fd);
1750
1751 if (err)
1752 return -1;
1753 else
1754 return fd;
1755 }
1756
1757 int add_disk(int mdfd, struct supertype *st,
1758 struct mdinfo *sra, struct mdinfo *info)
1759 {
1760 /* Add a device to an array, in one of 2 ways. */
1761 int rv;
1762
1763 if (st->ss->external) {
1764 if (info->disk.state & (1<<MD_DISK_SYNC))
1765 info->recovery_start = MaxSector;
1766 else
1767 info->recovery_start = 0;
1768 rv = sysfs_add_disk(sra, info, 0);
1769 if (! rv) {
1770 struct mdinfo *sd2;
1771 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1772 if (sd2 == info)
1773 break;
1774 if (sd2 == NULL) {
1775 sd2 = xmalloc(sizeof(*sd2));
1776 *sd2 = *info;
1777 sd2->next = sra->devs;
1778 sra->devs = sd2;
1779 }
1780 }
1781 } else
1782 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1783 return rv;
1784 }
1785
1786 int remove_disk(int mdfd, struct supertype *st,
1787 struct mdinfo *sra, struct mdinfo *info)
1788 {
1789 int rv;
1790
1791 /* Remove the disk given by 'info' from the array */
1792 if (st->ss->external)
1793 rv = sysfs_set_str(sra, info, "slot", "none");
1794 else
1795 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1796 info->disk.minor));
1797 return rv;
1798 }
1799
1800 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1801 {
1802 int cnt = force ? 500 : 5;
1803 int ret;
1804
1805 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1806 * outstanding IO requests to the device.
1807 * In this case, it can be helpful to wait a little while,
1808 * up to 5 seconds if 'force' is set, or 50 msec if not.
1809 */
1810 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1811 errno == EBUSY &&
1812 cnt-- > 0)
1813 usleep(10000);
1814
1815 return ret;
1816 }
1817
1818 int sys_hot_remove_disk(int statefd, int force)
1819 {
1820 int cnt = force ? 500 : 5;
1821 int ret;
1822
1823 while ((ret = write(statefd, "remove", 6)) == -1 &&
1824 errno == EBUSY &&
1825 cnt-- > 0)
1826 usleep(10000);
1827 return ret == 6 ? 0 : -1;
1828 }
1829
1830 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1831 {
1832 /* Initialise kernel's knowledge of array.
1833 * This varies between externally managed arrays
1834 * and older kernels
1835 */
1836 mdu_array_info_t inf;
1837 int rv;
1838
1839 if (st->ss->external)
1840 return sysfs_set_array(info, 9003);
1841
1842 memset(&inf, 0, sizeof(inf));
1843 inf.major_version = info->array.major_version;
1844 inf.minor_version = info->array.minor_version;
1845 rv = md_set_array_info(mdfd, &inf);
1846
1847 return rv;
1848 }
1849
1850 unsigned long long min_recovery_start(struct mdinfo *array)
1851 {
1852 /* find the minimum recovery_start in an array for metadata
1853 * formats that only record per-array recovery progress instead
1854 * of per-device
1855 */
1856 unsigned long long recovery_start = MaxSector;
1857 struct mdinfo *d;
1858
1859 for (d = array->devs; d; d = d->next)
1860 recovery_start = min(recovery_start, d->recovery_start);
1861
1862 return recovery_start;
1863 }
1864
1865 int mdmon_pid(char *devnm)
1866 {
1867 char path[100];
1868 char pid[10];
1869 int fd;
1870 int n;
1871
1872 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1873
1874 fd = open(path, O_RDONLY | O_NOATIME, 0);
1875
1876 if (fd < 0)
1877 return -1;
1878 n = read(fd, pid, 9);
1879 close(fd);
1880 if (n <= 0)
1881 return -1;
1882 return atoi(pid);
1883 }
1884
1885 int mdmon_running(char *devnm)
1886 {
1887 int pid = mdmon_pid(devnm);
1888 if (pid <= 0)
1889 return 0;
1890 if (kill(pid, 0) == 0)
1891 return 1;
1892 return 0;
1893 }
1894
1895 int start_mdmon(char *devnm)
1896 {
1897 int i, skipped;
1898 int len;
1899 pid_t pid;
1900 int status;
1901 char pathbuf[1024];
1902 char *paths[4] = {
1903 pathbuf,
1904 BINDIR "/mdmon",
1905 "./mdmon",
1906 NULL
1907 };
1908
1909 if (check_env("MDADM_NO_MDMON"))
1910 return 0;
1911
1912 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1913 if (len > 0) {
1914 char *sl;
1915 pathbuf[len] = 0;
1916 sl = strrchr(pathbuf, '/');
1917 if (sl)
1918 sl++;
1919 else
1920 sl = pathbuf;
1921 strcpy(sl, "mdmon");
1922 } else
1923 pathbuf[0] = '\0';
1924
1925 /* First try to run systemctl */
1926 if (!check_env("MDADM_NO_SYSTEMCTL"))
1927 switch(fork()) {
1928 case 0:
1929 /* FIXME yuk. CLOSE_EXEC?? */
1930 skipped = 0;
1931 for (i = 3; skipped < 20; i++)
1932 if (close(i) < 0)
1933 skipped++;
1934 else
1935 skipped = 0;
1936
1937 /* Don't want to see error messages from
1938 * systemctl. If the service doesn't exist,
1939 * we start mdmon ourselves.
1940 */
1941 close(2);
1942 open("/dev/null", O_WRONLY);
1943 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1944 devnm);
1945 status = execl("/usr/bin/systemctl", "systemctl",
1946 "start",
1947 pathbuf, NULL);
1948 status = execl("/bin/systemctl", "systemctl", "start",
1949 pathbuf, NULL);
1950 exit(1);
1951 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1952 return -1;
1953 default: /* parent - good */
1954 pid = wait(&status);
1955 if (pid >= 0 && status == 0)
1956 return 0;
1957 }
1958
1959 /* That failed, try running mdmon directly */
1960 switch(fork()) {
1961 case 0:
1962 /* FIXME yuk. CLOSE_EXEC?? */
1963 skipped = 0;
1964 for (i = 3; skipped < 20; i++)
1965 if (close(i) < 0)
1966 skipped++;
1967 else
1968 skipped = 0;
1969
1970 for (i = 0; paths[i]; i++)
1971 if (paths[i][0]) {
1972 execl(paths[i], paths[i],
1973 devnm, NULL);
1974 }
1975 exit(1);
1976 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1977 return -1;
1978 default: /* parent - good */
1979 pid = wait(&status);
1980 if (pid < 0 || status != 0) {
1981 pr_err("failed to launch mdmon. Array remains readonly\n");
1982 return -1;
1983 }
1984 }
1985 return 0;
1986 }
1987
1988 __u32 random32(void)
1989 {
1990 __u32 rv;
1991 int rfd = open("/dev/urandom", O_RDONLY);
1992 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1993 rv = random();
1994 if (rfd >= 0)
1995 close(rfd);
1996 return rv;
1997 }
1998
1999 void random_uuid(__u8 *buf)
2000 {
2001 int fd, i, len;
2002 __u32 r[4];
2003
2004 fd = open("/dev/urandom", O_RDONLY);
2005 if (fd < 0)
2006 goto use_random;
2007 len = read(fd, buf, 16);
2008 close(fd);
2009 if (len != 16)
2010 goto use_random;
2011
2012 return;
2013
2014 use_random:
2015 for (i = 0; i < 4; i++)
2016 r[i] = random();
2017 memcpy(buf, r, 16);
2018 }
2019
2020 int flush_metadata_updates(struct supertype *st)
2021 {
2022 int sfd;
2023 if (!st->updates) {
2024 st->update_tail = NULL;
2025 return -1;
2026 }
2027
2028 sfd = connect_monitor(st->container_devnm);
2029 if (sfd < 0)
2030 return -1;
2031
2032 while (st->updates) {
2033 struct metadata_update *mu = st->updates;
2034 st->updates = mu->next;
2035
2036 send_message(sfd, mu, 0);
2037 wait_reply(sfd, 0);
2038 free(mu->buf);
2039 free(mu);
2040 }
2041 ack(sfd, 0);
2042 wait_reply(sfd, 0);
2043 close(sfd);
2044 st->update_tail = NULL;
2045 return 0;
2046 }
2047
2048 void append_metadata_update(struct supertype *st, void *buf, int len)
2049 {
2050
2051 struct metadata_update *mu = xmalloc(sizeof(*mu));
2052
2053 mu->buf = buf;
2054 mu->len = len;
2055 mu->space = NULL;
2056 mu->space_list = NULL;
2057 mu->next = NULL;
2058 *st->update_tail = mu;
2059 st->update_tail = &mu->next;
2060 }
2061
2062 #ifdef __TINYC__
2063 /* tinyc doesn't optimize this check in ioctl.h out ... */
2064 unsigned int __invalid_size_argument_for_IOC = 0;
2065 #endif
2066
2067 int experimental(void)
2068 {
2069 if (check_env("MDADM_EXPERIMENTAL"))
2070 return 1;
2071 else {
2072 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2073 return 0;
2074 }
2075 }
2076
2077 /* Pick all spares matching given criteria from a container
2078 * if min_size == 0 do not check size
2079 * if domlist == NULL do not check domains
2080 * if spare_group given add it to domains of each spare
2081 * metadata allows to test domains using metadata of destination array */
2082 struct mdinfo *container_choose_spares(struct supertype *st,
2083 unsigned long long min_size,
2084 struct domainlist *domlist,
2085 char *spare_group,
2086 const char *metadata, int get_one)
2087 {
2088 struct mdinfo *d, **dp, *disks = NULL;
2089
2090 /* get list of all disks in container */
2091 if (st->ss->getinfo_super_disks)
2092 disks = st->ss->getinfo_super_disks(st);
2093
2094 if (!disks)
2095 return disks;
2096 /* find spare devices on the list */
2097 dp = &disks->devs;
2098 disks->array.spare_disks = 0;
2099 while (*dp) {
2100 int found = 0;
2101 d = *dp;
2102 if (d->disk.state == 0) {
2103 /* check if size is acceptable */
2104 unsigned long long dev_size;
2105 dev_t dev = makedev(d->disk.major,d->disk.minor);
2106
2107 if (!min_size ||
2108 (dev_size_from_id(dev, &dev_size) &&
2109 dev_size >= min_size))
2110 found = 1;
2111 /* check if domain matches */
2112 if (found && domlist) {
2113 struct dev_policy *pol = devid_policy(dev);
2114 if (spare_group)
2115 pol_add(&pol, pol_domain,
2116 spare_group, NULL);
2117 if (domain_test(domlist, pol, metadata) != 1)
2118 found = 0;
2119 dev_policy_free(pol);
2120 }
2121 }
2122 if (found) {
2123 dp = &d->next;
2124 disks->array.spare_disks++;
2125 if (get_one) {
2126 sysfs_free(*dp);
2127 d->next = NULL;
2128 }
2129 } else {
2130 *dp = d->next;
2131 d->next = NULL;
2132 sysfs_free(d);
2133 }
2134 }
2135 return disks;
2136 }
2137
2138 /* Checks if paths point to the same device
2139 * Returns 0 if they do.
2140 * Returns 1 if they don't.
2141 * Returns -1 if something went wrong,
2142 * e.g. paths are empty or the files
2143 * they point to don't exist */
2144 int compare_paths (char* path1, char* path2)
2145 {
2146 struct stat st1,st2;
2147
2148 if (path1 == NULL || path2 == NULL)
2149 return -1;
2150 if (stat(path1,&st1) != 0)
2151 return -1;
2152 if (stat(path2,&st2) != 0)
2153 return -1;
2154 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2155 return 0;
2156 return 1;
2157 }
2158
2159 /* Make sure we can open as many devices as needed */
2160 void enable_fds(int devices)
2161 {
2162 unsigned int fds = 20 + devices;
2163 struct rlimit lim;
2164 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2165 || lim.rlim_cur >= fds)
2166 return;
2167 if (lim.rlim_max < fds)
2168 lim.rlim_max = fds;
2169 lim.rlim_cur = fds;
2170 setrlimit(RLIMIT_NOFILE, &lim);
2171 }
2172
2173 int in_initrd(void)
2174 {
2175 /* This is based on similar function in systemd. */
2176 struct statfs s;
2177 /* statfs.f_type is signed long on s390x and MIPS, causing all
2178 sorts of sign extension problems with RAMFS_MAGIC being
2179 defined as 0x858458f6 */
2180 return statfs("/", &s) >= 0 &&
2181 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2182 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2183 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2184 }
2185
2186 void reopen_mddev(int mdfd)
2187 {
2188 /* Re-open without any O_EXCL, but keep
2189 * the same fd
2190 */
2191 char *devnm;
2192 int fd;
2193 devnm = fd2devnm(mdfd);
2194 close(mdfd);
2195 fd = open_dev(devnm);
2196 if (fd >= 0 && fd != mdfd)
2197 dup2(fd, mdfd);
2198 }
2199
2200 static struct cmap_hooks *cmap_hooks = NULL;
2201 static int is_cmap_hooks_ready = 0;
2202
2203 void set_cmap_hooks(void)
2204 {
2205 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2206 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2207 if (!cmap_hooks->cmap_handle)
2208 return;
2209
2210 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2211 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2212 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2213
2214 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2215 !cmap_hooks->finalize)
2216 dlclose(cmap_hooks->cmap_handle);
2217 else
2218 is_cmap_hooks_ready = 1;
2219 }
2220
2221 int get_cluster_name(char **cluster_name)
2222 {
2223 int rv = -1;
2224 cmap_handle_t handle;
2225
2226 if (!is_cmap_hooks_ready)
2227 return rv;
2228
2229 rv = cmap_hooks->initialize(&handle);
2230 if (rv != CS_OK)
2231 goto out;
2232
2233 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2234 if (rv != CS_OK) {
2235 free(*cluster_name);
2236 rv = -1;
2237 goto name_err;
2238 }
2239
2240 rv = 0;
2241 name_err:
2242 cmap_hooks->finalize(handle);
2243 out:
2244 return rv;
2245 }
2246
2247 void set_dlm_hooks(void)
2248 {
2249 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2250 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2251 if (!dlm_hooks->dlm_handle)
2252 return;
2253
2254 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2255 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2256 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2257 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2258 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2259 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2260
2261 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2262 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2263 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2264 dlclose(dlm_hooks->dlm_handle);
2265 else
2266 is_dlm_hooks_ready = 1;
2267 }
2268
2269 void set_hooks(void)
2270 {
2271 set_dlm_hooks();
2272 set_cmap_hooks();
2273 }