]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/arm/arm.c
kvm: introduce manual dirty log reprotect
[thirdparty/kernel/stable.git] / virt / kvm / arm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_RWLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84 * Must be called from non-preemptible context
85 */
86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88 return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93 */
94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96 return &kvm_arm_running_vcpu;
97 }
98
99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111 *(int *)rtn = 0;
112 }
113
114
115 /**
116 * kvm_arch_init_vm - initializes a VM data structure
117 * @kvm: pointer to the KVM struct
118 */
119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121 int ret, cpu;
122
123 ret = kvm_arm_setup_stage2(kvm, type);
124 if (ret)
125 return ret;
126
127 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
128 if (!kvm->arch.last_vcpu_ran)
129 return -ENOMEM;
130
131 for_each_possible_cpu(cpu)
132 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
133
134 ret = kvm_alloc_stage2_pgd(kvm);
135 if (ret)
136 goto out_fail_alloc;
137
138 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
139 if (ret)
140 goto out_free_stage2_pgd;
141
142 kvm_vgic_early_init(kvm);
143
144 /* Mark the initial VMID generation invalid */
145 kvm->arch.vmid_gen = 0;
146
147 /* The maximum number of VCPUs is limited by the host's GIC model */
148 kvm->arch.max_vcpus = vgic_present ?
149 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
150
151 return ret;
152 out_free_stage2_pgd:
153 kvm_free_stage2_pgd(kvm);
154 out_fail_alloc:
155 free_percpu(kvm->arch.last_vcpu_ran);
156 kvm->arch.last_vcpu_ran = NULL;
157 return ret;
158 }
159
160 bool kvm_arch_has_vcpu_debugfs(void)
161 {
162 return false;
163 }
164
165 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
166 {
167 return 0;
168 }
169
170 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
171 {
172 return VM_FAULT_SIGBUS;
173 }
174
175
176 /**
177 * kvm_arch_destroy_vm - destroy the VM data structure
178 * @kvm: pointer to the KVM struct
179 */
180 void kvm_arch_destroy_vm(struct kvm *kvm)
181 {
182 int i;
183
184 kvm_vgic_destroy(kvm);
185
186 free_percpu(kvm->arch.last_vcpu_ran);
187 kvm->arch.last_vcpu_ran = NULL;
188
189 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
190 if (kvm->vcpus[i]) {
191 kvm_arch_vcpu_free(kvm->vcpus[i]);
192 kvm->vcpus[i] = NULL;
193 }
194 }
195 atomic_set(&kvm->online_vcpus, 0);
196 }
197
198 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
199 {
200 int r;
201 switch (ext) {
202 case KVM_CAP_IRQCHIP:
203 r = vgic_present;
204 break;
205 case KVM_CAP_IOEVENTFD:
206 case KVM_CAP_DEVICE_CTRL:
207 case KVM_CAP_USER_MEMORY:
208 case KVM_CAP_SYNC_MMU:
209 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
210 case KVM_CAP_ONE_REG:
211 case KVM_CAP_ARM_PSCI:
212 case KVM_CAP_ARM_PSCI_0_2:
213 case KVM_CAP_READONLY_MEM:
214 case KVM_CAP_MP_STATE:
215 case KVM_CAP_IMMEDIATE_EXIT:
216 case KVM_CAP_VCPU_EVENTS:
217 r = 1;
218 break;
219 case KVM_CAP_ARM_SET_DEVICE_ADDR:
220 r = 1;
221 break;
222 case KVM_CAP_NR_VCPUS:
223 r = num_online_cpus();
224 break;
225 case KVM_CAP_MAX_VCPUS:
226 r = KVM_MAX_VCPUS;
227 break;
228 case KVM_CAP_NR_MEMSLOTS:
229 r = KVM_USER_MEM_SLOTS;
230 break;
231 case KVM_CAP_MSI_DEVID:
232 if (!kvm)
233 r = -EINVAL;
234 else
235 r = kvm->arch.vgic.msis_require_devid;
236 break;
237 case KVM_CAP_ARM_USER_IRQ:
238 /*
239 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
240 * (bump this number if adding more devices)
241 */
242 r = 1;
243 break;
244 default:
245 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
246 break;
247 }
248 return r;
249 }
250
251 long kvm_arch_dev_ioctl(struct file *filp,
252 unsigned int ioctl, unsigned long arg)
253 {
254 return -EINVAL;
255 }
256
257 struct kvm *kvm_arch_alloc_vm(void)
258 {
259 if (!has_vhe())
260 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
261
262 return vzalloc(sizeof(struct kvm));
263 }
264
265 void kvm_arch_free_vm(struct kvm *kvm)
266 {
267 if (!has_vhe())
268 kfree(kvm);
269 else
270 vfree(kvm);
271 }
272
273 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
274 {
275 int err;
276 struct kvm_vcpu *vcpu;
277
278 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
279 err = -EBUSY;
280 goto out;
281 }
282
283 if (id >= kvm->arch.max_vcpus) {
284 err = -EINVAL;
285 goto out;
286 }
287
288 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
289 if (!vcpu) {
290 err = -ENOMEM;
291 goto out;
292 }
293
294 err = kvm_vcpu_init(vcpu, kvm, id);
295 if (err)
296 goto free_vcpu;
297
298 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
299 if (err)
300 goto vcpu_uninit;
301
302 return vcpu;
303 vcpu_uninit:
304 kvm_vcpu_uninit(vcpu);
305 free_vcpu:
306 kmem_cache_free(kvm_vcpu_cache, vcpu);
307 out:
308 return ERR_PTR(err);
309 }
310
311 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
312 {
313 }
314
315 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
316 {
317 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
318 static_branch_dec(&userspace_irqchip_in_use);
319
320 kvm_mmu_free_memory_caches(vcpu);
321 kvm_timer_vcpu_terminate(vcpu);
322 kvm_pmu_vcpu_destroy(vcpu);
323 kvm_vcpu_uninit(vcpu);
324 kmem_cache_free(kvm_vcpu_cache, vcpu);
325 }
326
327 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
328 {
329 kvm_arch_vcpu_free(vcpu);
330 }
331
332 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
333 {
334 return kvm_timer_is_pending(vcpu);
335 }
336
337 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
338 {
339 kvm_timer_schedule(vcpu);
340 kvm_vgic_v4_enable_doorbell(vcpu);
341 }
342
343 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
344 {
345 kvm_timer_unschedule(vcpu);
346 kvm_vgic_v4_disable_doorbell(vcpu);
347 }
348
349 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
350 {
351 /* Force users to call KVM_ARM_VCPU_INIT */
352 vcpu->arch.target = -1;
353 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
354
355 /* Set up the timer */
356 kvm_timer_vcpu_init(vcpu);
357
358 kvm_arm_reset_debug_ptr(vcpu);
359
360 return kvm_vgic_vcpu_init(vcpu);
361 }
362
363 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
364 {
365 int *last_ran;
366
367 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
368
369 /*
370 * We might get preempted before the vCPU actually runs, but
371 * over-invalidation doesn't affect correctness.
372 */
373 if (*last_ran != vcpu->vcpu_id) {
374 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
375 *last_ran = vcpu->vcpu_id;
376 }
377
378 vcpu->cpu = cpu;
379 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
380
381 kvm_arm_set_running_vcpu(vcpu);
382 kvm_vgic_load(vcpu);
383 kvm_timer_vcpu_load(vcpu);
384 kvm_vcpu_load_sysregs(vcpu);
385 kvm_arch_vcpu_load_fp(vcpu);
386
387 if (single_task_running())
388 vcpu_clear_wfe_traps(vcpu);
389 else
390 vcpu_set_wfe_traps(vcpu);
391 }
392
393 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
394 {
395 kvm_arch_vcpu_put_fp(vcpu);
396 kvm_vcpu_put_sysregs(vcpu);
397 kvm_timer_vcpu_put(vcpu);
398 kvm_vgic_put(vcpu);
399
400 vcpu->cpu = -1;
401
402 kvm_arm_set_running_vcpu(NULL);
403 }
404
405 static void vcpu_power_off(struct kvm_vcpu *vcpu)
406 {
407 vcpu->arch.power_off = true;
408 kvm_make_request(KVM_REQ_SLEEP, vcpu);
409 kvm_vcpu_kick(vcpu);
410 }
411
412 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
413 struct kvm_mp_state *mp_state)
414 {
415 if (vcpu->arch.power_off)
416 mp_state->mp_state = KVM_MP_STATE_STOPPED;
417 else
418 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
419
420 return 0;
421 }
422
423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
424 struct kvm_mp_state *mp_state)
425 {
426 int ret = 0;
427
428 switch (mp_state->mp_state) {
429 case KVM_MP_STATE_RUNNABLE:
430 vcpu->arch.power_off = false;
431 break;
432 case KVM_MP_STATE_STOPPED:
433 vcpu_power_off(vcpu);
434 break;
435 default:
436 ret = -EINVAL;
437 }
438
439 return ret;
440 }
441
442 /**
443 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
444 * @v: The VCPU pointer
445 *
446 * If the guest CPU is not waiting for interrupts or an interrupt line is
447 * asserted, the CPU is by definition runnable.
448 */
449 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
450 {
451 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
452 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453 && !v->arch.power_off && !v->arch.pause);
454 }
455
456 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
457 {
458 return vcpu_mode_priv(vcpu);
459 }
460
461 /* Just ensure a guest exit from a particular CPU */
462 static void exit_vm_noop(void *info)
463 {
464 }
465
466 void force_vm_exit(const cpumask_t *mask)
467 {
468 preempt_disable();
469 smp_call_function_many(mask, exit_vm_noop, NULL, true);
470 preempt_enable();
471 }
472
473 /**
474 * need_new_vmid_gen - check that the VMID is still valid
475 * @kvm: The VM's VMID to check
476 *
477 * return true if there is a new generation of VMIDs being used
478 *
479 * The hardware supports only 256 values with the value zero reserved for the
480 * host, so we check if an assigned value belongs to a previous generation,
481 * which which requires us to assign a new value. If we're the first to use a
482 * VMID for the new generation, we must flush necessary caches and TLBs on all
483 * CPUs.
484 */
485 static bool need_new_vmid_gen(struct kvm *kvm)
486 {
487 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
488 }
489
490 /**
491 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
492 * @kvm The guest that we are about to run
493 *
494 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
495 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
496 * caches and TLBs.
497 */
498 static void update_vttbr(struct kvm *kvm)
499 {
500 phys_addr_t pgd_phys;
501 u64 vmid, cnp = kvm_cpu_has_cnp() ? VTTBR_CNP_BIT : 0;
502 bool new_gen;
503
504 read_lock(&kvm_vmid_lock);
505 new_gen = need_new_vmid_gen(kvm);
506 read_unlock(&kvm_vmid_lock);
507
508 if (!new_gen)
509 return;
510
511 write_lock(&kvm_vmid_lock);
512
513 /*
514 * We need to re-check the vmid_gen here to ensure that if another vcpu
515 * already allocated a valid vmid for this vm, then this vcpu should
516 * use the same vmid.
517 */
518 if (!need_new_vmid_gen(kvm)) {
519 write_unlock(&kvm_vmid_lock);
520 return;
521 }
522
523 /* First user of a new VMID generation? */
524 if (unlikely(kvm_next_vmid == 0)) {
525 atomic64_inc(&kvm_vmid_gen);
526 kvm_next_vmid = 1;
527
528 /*
529 * On SMP we know no other CPUs can use this CPU's or each
530 * other's VMID after force_vm_exit returns since the
531 * kvm_vmid_lock blocks them from reentry to the guest.
532 */
533 force_vm_exit(cpu_all_mask);
534 /*
535 * Now broadcast TLB + ICACHE invalidation over the inner
536 * shareable domain to make sure all data structures are
537 * clean.
538 */
539 kvm_call_hyp(__kvm_flush_vm_context);
540 }
541
542 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
543 kvm->arch.vmid = kvm_next_vmid;
544 kvm_next_vmid++;
545 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
546
547 /* update vttbr to be used with the new vmid */
548 pgd_phys = virt_to_phys(kvm->arch.pgd);
549 BUG_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm));
550 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
551 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid | cnp;
552
553 write_unlock(&kvm_vmid_lock);
554 }
555
556 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
557 {
558 struct kvm *kvm = vcpu->kvm;
559 int ret = 0;
560
561 if (likely(vcpu->arch.has_run_once))
562 return 0;
563
564 vcpu->arch.has_run_once = true;
565
566 if (likely(irqchip_in_kernel(kvm))) {
567 /*
568 * Map the VGIC hardware resources before running a vcpu the
569 * first time on this VM.
570 */
571 if (unlikely(!vgic_ready(kvm))) {
572 ret = kvm_vgic_map_resources(kvm);
573 if (ret)
574 return ret;
575 }
576 } else {
577 /*
578 * Tell the rest of the code that there are userspace irqchip
579 * VMs in the wild.
580 */
581 static_branch_inc(&userspace_irqchip_in_use);
582 }
583
584 ret = kvm_timer_enable(vcpu);
585 if (ret)
586 return ret;
587
588 ret = kvm_arm_pmu_v3_enable(vcpu);
589
590 return ret;
591 }
592
593 bool kvm_arch_intc_initialized(struct kvm *kvm)
594 {
595 return vgic_initialized(kvm);
596 }
597
598 void kvm_arm_halt_guest(struct kvm *kvm)
599 {
600 int i;
601 struct kvm_vcpu *vcpu;
602
603 kvm_for_each_vcpu(i, vcpu, kvm)
604 vcpu->arch.pause = true;
605 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
606 }
607
608 void kvm_arm_resume_guest(struct kvm *kvm)
609 {
610 int i;
611 struct kvm_vcpu *vcpu;
612
613 kvm_for_each_vcpu(i, vcpu, kvm) {
614 vcpu->arch.pause = false;
615 swake_up_one(kvm_arch_vcpu_wq(vcpu));
616 }
617 }
618
619 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
620 {
621 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
622
623 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
624 (!vcpu->arch.pause)));
625
626 if (vcpu->arch.power_off || vcpu->arch.pause) {
627 /* Awaken to handle a signal, request we sleep again later. */
628 kvm_make_request(KVM_REQ_SLEEP, vcpu);
629 }
630 }
631
632 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
633 {
634 return vcpu->arch.target >= 0;
635 }
636
637 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
638 {
639 if (kvm_request_pending(vcpu)) {
640 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
641 vcpu_req_sleep(vcpu);
642
643 /*
644 * Clear IRQ_PENDING requests that were made to guarantee
645 * that a VCPU sees new virtual interrupts.
646 */
647 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
648 }
649 }
650
651 /**
652 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
653 * @vcpu: The VCPU pointer
654 * @run: The kvm_run structure pointer used for userspace state exchange
655 *
656 * This function is called through the VCPU_RUN ioctl called from user space. It
657 * will execute VM code in a loop until the time slice for the process is used
658 * or some emulation is needed from user space in which case the function will
659 * return with return value 0 and with the kvm_run structure filled in with the
660 * required data for the requested emulation.
661 */
662 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
663 {
664 int ret;
665
666 if (unlikely(!kvm_vcpu_initialized(vcpu)))
667 return -ENOEXEC;
668
669 ret = kvm_vcpu_first_run_init(vcpu);
670 if (ret)
671 return ret;
672
673 if (run->exit_reason == KVM_EXIT_MMIO) {
674 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
675 if (ret)
676 return ret;
677 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
678 return 0;
679 }
680
681 if (run->immediate_exit)
682 return -EINTR;
683
684 vcpu_load(vcpu);
685
686 kvm_sigset_activate(vcpu);
687
688 ret = 1;
689 run->exit_reason = KVM_EXIT_UNKNOWN;
690 while (ret > 0) {
691 /*
692 * Check conditions before entering the guest
693 */
694 cond_resched();
695
696 update_vttbr(vcpu->kvm);
697
698 check_vcpu_requests(vcpu);
699
700 /*
701 * Preparing the interrupts to be injected also
702 * involves poking the GIC, which must be done in a
703 * non-preemptible context.
704 */
705 preempt_disable();
706
707 kvm_pmu_flush_hwstate(vcpu);
708
709 local_irq_disable();
710
711 kvm_vgic_flush_hwstate(vcpu);
712
713 /*
714 * Exit if we have a signal pending so that we can deliver the
715 * signal to user space.
716 */
717 if (signal_pending(current)) {
718 ret = -EINTR;
719 run->exit_reason = KVM_EXIT_INTR;
720 }
721
722 /*
723 * If we're using a userspace irqchip, then check if we need
724 * to tell a userspace irqchip about timer or PMU level
725 * changes and if so, exit to userspace (the actual level
726 * state gets updated in kvm_timer_update_run and
727 * kvm_pmu_update_run below).
728 */
729 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
730 if (kvm_timer_should_notify_user(vcpu) ||
731 kvm_pmu_should_notify_user(vcpu)) {
732 ret = -EINTR;
733 run->exit_reason = KVM_EXIT_INTR;
734 }
735 }
736
737 /*
738 * Ensure we set mode to IN_GUEST_MODE after we disable
739 * interrupts and before the final VCPU requests check.
740 * See the comment in kvm_vcpu_exiting_guest_mode() and
741 * Documentation/virtual/kvm/vcpu-requests.rst
742 */
743 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
744
745 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
746 kvm_request_pending(vcpu)) {
747 vcpu->mode = OUTSIDE_GUEST_MODE;
748 isb(); /* Ensure work in x_flush_hwstate is committed */
749 kvm_pmu_sync_hwstate(vcpu);
750 if (static_branch_unlikely(&userspace_irqchip_in_use))
751 kvm_timer_sync_hwstate(vcpu);
752 kvm_vgic_sync_hwstate(vcpu);
753 local_irq_enable();
754 preempt_enable();
755 continue;
756 }
757
758 kvm_arm_setup_debug(vcpu);
759
760 /**************************************************************
761 * Enter the guest
762 */
763 trace_kvm_entry(*vcpu_pc(vcpu));
764 guest_enter_irqoff();
765
766 if (has_vhe()) {
767 kvm_arm_vhe_guest_enter();
768 ret = kvm_vcpu_run_vhe(vcpu);
769 kvm_arm_vhe_guest_exit();
770 } else {
771 ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
772 }
773
774 vcpu->mode = OUTSIDE_GUEST_MODE;
775 vcpu->stat.exits++;
776 /*
777 * Back from guest
778 *************************************************************/
779
780 kvm_arm_clear_debug(vcpu);
781
782 /*
783 * We must sync the PMU state before the vgic state so
784 * that the vgic can properly sample the updated state of the
785 * interrupt line.
786 */
787 kvm_pmu_sync_hwstate(vcpu);
788
789 /*
790 * Sync the vgic state before syncing the timer state because
791 * the timer code needs to know if the virtual timer
792 * interrupts are active.
793 */
794 kvm_vgic_sync_hwstate(vcpu);
795
796 /*
797 * Sync the timer hardware state before enabling interrupts as
798 * we don't want vtimer interrupts to race with syncing the
799 * timer virtual interrupt state.
800 */
801 if (static_branch_unlikely(&userspace_irqchip_in_use))
802 kvm_timer_sync_hwstate(vcpu);
803
804 kvm_arch_vcpu_ctxsync_fp(vcpu);
805
806 /*
807 * We may have taken a host interrupt in HYP mode (ie
808 * while executing the guest). This interrupt is still
809 * pending, as we haven't serviced it yet!
810 *
811 * We're now back in SVC mode, with interrupts
812 * disabled. Enabling the interrupts now will have
813 * the effect of taking the interrupt again, in SVC
814 * mode this time.
815 */
816 local_irq_enable();
817
818 /*
819 * We do local_irq_enable() before calling guest_exit() so
820 * that if a timer interrupt hits while running the guest we
821 * account that tick as being spent in the guest. We enable
822 * preemption after calling guest_exit() so that if we get
823 * preempted we make sure ticks after that is not counted as
824 * guest time.
825 */
826 guest_exit();
827 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
828
829 /* Exit types that need handling before we can be preempted */
830 handle_exit_early(vcpu, run, ret);
831
832 preempt_enable();
833
834 ret = handle_exit(vcpu, run, ret);
835 }
836
837 /* Tell userspace about in-kernel device output levels */
838 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
839 kvm_timer_update_run(vcpu);
840 kvm_pmu_update_run(vcpu);
841 }
842
843 kvm_sigset_deactivate(vcpu);
844
845 vcpu_put(vcpu);
846 return ret;
847 }
848
849 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
850 {
851 int bit_index;
852 bool set;
853 unsigned long *hcr;
854
855 if (number == KVM_ARM_IRQ_CPU_IRQ)
856 bit_index = __ffs(HCR_VI);
857 else /* KVM_ARM_IRQ_CPU_FIQ */
858 bit_index = __ffs(HCR_VF);
859
860 hcr = vcpu_hcr(vcpu);
861 if (level)
862 set = test_and_set_bit(bit_index, hcr);
863 else
864 set = test_and_clear_bit(bit_index, hcr);
865
866 /*
867 * If we didn't change anything, no need to wake up or kick other CPUs
868 */
869 if (set == level)
870 return 0;
871
872 /*
873 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
874 * trigger a world-switch round on the running physical CPU to set the
875 * virtual IRQ/FIQ fields in the HCR appropriately.
876 */
877 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
878 kvm_vcpu_kick(vcpu);
879
880 return 0;
881 }
882
883 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
884 bool line_status)
885 {
886 u32 irq = irq_level->irq;
887 unsigned int irq_type, vcpu_idx, irq_num;
888 int nrcpus = atomic_read(&kvm->online_vcpus);
889 struct kvm_vcpu *vcpu = NULL;
890 bool level = irq_level->level;
891
892 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
893 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
894 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
895
896 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
897
898 switch (irq_type) {
899 case KVM_ARM_IRQ_TYPE_CPU:
900 if (irqchip_in_kernel(kvm))
901 return -ENXIO;
902
903 if (vcpu_idx >= nrcpus)
904 return -EINVAL;
905
906 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
907 if (!vcpu)
908 return -EINVAL;
909
910 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
911 return -EINVAL;
912
913 return vcpu_interrupt_line(vcpu, irq_num, level);
914 case KVM_ARM_IRQ_TYPE_PPI:
915 if (!irqchip_in_kernel(kvm))
916 return -ENXIO;
917
918 if (vcpu_idx >= nrcpus)
919 return -EINVAL;
920
921 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
922 if (!vcpu)
923 return -EINVAL;
924
925 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
926 return -EINVAL;
927
928 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
929 case KVM_ARM_IRQ_TYPE_SPI:
930 if (!irqchip_in_kernel(kvm))
931 return -ENXIO;
932
933 if (irq_num < VGIC_NR_PRIVATE_IRQS)
934 return -EINVAL;
935
936 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
937 }
938
939 return -EINVAL;
940 }
941
942 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
943 const struct kvm_vcpu_init *init)
944 {
945 unsigned int i;
946 int phys_target = kvm_target_cpu();
947
948 if (init->target != phys_target)
949 return -EINVAL;
950
951 /*
952 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
953 * use the same target.
954 */
955 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
956 return -EINVAL;
957
958 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
959 for (i = 0; i < sizeof(init->features) * 8; i++) {
960 bool set = (init->features[i / 32] & (1 << (i % 32)));
961
962 if (set && i >= KVM_VCPU_MAX_FEATURES)
963 return -ENOENT;
964
965 /*
966 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
967 * use the same feature set.
968 */
969 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
970 test_bit(i, vcpu->arch.features) != set)
971 return -EINVAL;
972
973 if (set)
974 set_bit(i, vcpu->arch.features);
975 }
976
977 vcpu->arch.target = phys_target;
978
979 /* Now we know what it is, we can reset it. */
980 return kvm_reset_vcpu(vcpu);
981 }
982
983
984 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
985 struct kvm_vcpu_init *init)
986 {
987 int ret;
988
989 ret = kvm_vcpu_set_target(vcpu, init);
990 if (ret)
991 return ret;
992
993 /*
994 * Ensure a rebooted VM will fault in RAM pages and detect if the
995 * guest MMU is turned off and flush the caches as needed.
996 */
997 if (vcpu->arch.has_run_once)
998 stage2_unmap_vm(vcpu->kvm);
999
1000 vcpu_reset_hcr(vcpu);
1001
1002 /*
1003 * Handle the "start in power-off" case.
1004 */
1005 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1006 vcpu_power_off(vcpu);
1007 else
1008 vcpu->arch.power_off = false;
1009
1010 return 0;
1011 }
1012
1013 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1014 struct kvm_device_attr *attr)
1015 {
1016 int ret = -ENXIO;
1017
1018 switch (attr->group) {
1019 default:
1020 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1021 break;
1022 }
1023
1024 return ret;
1025 }
1026
1027 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1028 struct kvm_device_attr *attr)
1029 {
1030 int ret = -ENXIO;
1031
1032 switch (attr->group) {
1033 default:
1034 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1035 break;
1036 }
1037
1038 return ret;
1039 }
1040
1041 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1042 struct kvm_device_attr *attr)
1043 {
1044 int ret = -ENXIO;
1045
1046 switch (attr->group) {
1047 default:
1048 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1049 break;
1050 }
1051
1052 return ret;
1053 }
1054
1055 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1056 struct kvm_vcpu_events *events)
1057 {
1058 memset(events, 0, sizeof(*events));
1059
1060 return __kvm_arm_vcpu_get_events(vcpu, events);
1061 }
1062
1063 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1064 struct kvm_vcpu_events *events)
1065 {
1066 int i;
1067
1068 /* check whether the reserved field is zero */
1069 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1070 if (events->reserved[i])
1071 return -EINVAL;
1072
1073 /* check whether the pad field is zero */
1074 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1075 if (events->exception.pad[i])
1076 return -EINVAL;
1077
1078 return __kvm_arm_vcpu_set_events(vcpu, events);
1079 }
1080
1081 long kvm_arch_vcpu_ioctl(struct file *filp,
1082 unsigned int ioctl, unsigned long arg)
1083 {
1084 struct kvm_vcpu *vcpu = filp->private_data;
1085 void __user *argp = (void __user *)arg;
1086 struct kvm_device_attr attr;
1087 long r;
1088
1089 switch (ioctl) {
1090 case KVM_ARM_VCPU_INIT: {
1091 struct kvm_vcpu_init init;
1092
1093 r = -EFAULT;
1094 if (copy_from_user(&init, argp, sizeof(init)))
1095 break;
1096
1097 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1098 break;
1099 }
1100 case KVM_SET_ONE_REG:
1101 case KVM_GET_ONE_REG: {
1102 struct kvm_one_reg reg;
1103
1104 r = -ENOEXEC;
1105 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1106 break;
1107
1108 r = -EFAULT;
1109 if (copy_from_user(&reg, argp, sizeof(reg)))
1110 break;
1111
1112 if (ioctl == KVM_SET_ONE_REG)
1113 r = kvm_arm_set_reg(vcpu, &reg);
1114 else
1115 r = kvm_arm_get_reg(vcpu, &reg);
1116 break;
1117 }
1118 case KVM_GET_REG_LIST: {
1119 struct kvm_reg_list __user *user_list = argp;
1120 struct kvm_reg_list reg_list;
1121 unsigned n;
1122
1123 r = -ENOEXEC;
1124 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1125 break;
1126
1127 r = -EFAULT;
1128 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1129 break;
1130 n = reg_list.n;
1131 reg_list.n = kvm_arm_num_regs(vcpu);
1132 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1133 break;
1134 r = -E2BIG;
1135 if (n < reg_list.n)
1136 break;
1137 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1138 break;
1139 }
1140 case KVM_SET_DEVICE_ATTR: {
1141 r = -EFAULT;
1142 if (copy_from_user(&attr, argp, sizeof(attr)))
1143 break;
1144 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1145 break;
1146 }
1147 case KVM_GET_DEVICE_ATTR: {
1148 r = -EFAULT;
1149 if (copy_from_user(&attr, argp, sizeof(attr)))
1150 break;
1151 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1152 break;
1153 }
1154 case KVM_HAS_DEVICE_ATTR: {
1155 r = -EFAULT;
1156 if (copy_from_user(&attr, argp, sizeof(attr)))
1157 break;
1158 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1159 break;
1160 }
1161 case KVM_GET_VCPU_EVENTS: {
1162 struct kvm_vcpu_events events;
1163
1164 if (kvm_arm_vcpu_get_events(vcpu, &events))
1165 return -EINVAL;
1166
1167 if (copy_to_user(argp, &events, sizeof(events)))
1168 return -EFAULT;
1169
1170 return 0;
1171 }
1172 case KVM_SET_VCPU_EVENTS: {
1173 struct kvm_vcpu_events events;
1174
1175 if (copy_from_user(&events, argp, sizeof(events)))
1176 return -EFAULT;
1177
1178 return kvm_arm_vcpu_set_events(vcpu, &events);
1179 }
1180 default:
1181 r = -EINVAL;
1182 }
1183
1184 return r;
1185 }
1186
1187 /**
1188 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1189 * @kvm: kvm instance
1190 * @log: slot id and address to which we copy the log
1191 *
1192 * Steps 1-4 below provide general overview of dirty page logging. See
1193 * kvm_get_dirty_log_protect() function description for additional details.
1194 *
1195 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1196 * always flush the TLB (step 4) even if previous step failed and the dirty
1197 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1198 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1199 * writes will be marked dirty for next log read.
1200 *
1201 * 1. Take a snapshot of the bit and clear it if needed.
1202 * 2. Write protect the corresponding page.
1203 * 3. Copy the snapshot to the userspace.
1204 * 4. Flush TLB's if needed.
1205 */
1206 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1207 {
1208 bool flush = false;
1209 int r;
1210
1211 mutex_lock(&kvm->slots_lock);
1212
1213 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1214
1215 if (flush)
1216 kvm_flush_remote_tlbs(kvm);
1217
1218 mutex_unlock(&kvm->slots_lock);
1219 return r;
1220 }
1221
1222 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1223 {
1224 bool flush = false;
1225 int r;
1226
1227 mutex_lock(&kvm->slots_lock);
1228
1229 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1230
1231 if (flush)
1232 kvm_flush_remote_tlbs(kvm);
1233
1234 mutex_unlock(&kvm->slots_lock);
1235 return r;
1236 }
1237
1238 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1239 struct kvm_arm_device_addr *dev_addr)
1240 {
1241 unsigned long dev_id, type;
1242
1243 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1244 KVM_ARM_DEVICE_ID_SHIFT;
1245 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1246 KVM_ARM_DEVICE_TYPE_SHIFT;
1247
1248 switch (dev_id) {
1249 case KVM_ARM_DEVICE_VGIC_V2:
1250 if (!vgic_present)
1251 return -ENXIO;
1252 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1253 default:
1254 return -ENODEV;
1255 }
1256 }
1257
1258 long kvm_arch_vm_ioctl(struct file *filp,
1259 unsigned int ioctl, unsigned long arg)
1260 {
1261 struct kvm *kvm = filp->private_data;
1262 void __user *argp = (void __user *)arg;
1263
1264 switch (ioctl) {
1265 case KVM_CREATE_IRQCHIP: {
1266 int ret;
1267 if (!vgic_present)
1268 return -ENXIO;
1269 mutex_lock(&kvm->lock);
1270 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1271 mutex_unlock(&kvm->lock);
1272 return ret;
1273 }
1274 case KVM_ARM_SET_DEVICE_ADDR: {
1275 struct kvm_arm_device_addr dev_addr;
1276
1277 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1278 return -EFAULT;
1279 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1280 }
1281 case KVM_ARM_PREFERRED_TARGET: {
1282 int err;
1283 struct kvm_vcpu_init init;
1284
1285 err = kvm_vcpu_preferred_target(&init);
1286 if (err)
1287 return err;
1288
1289 if (copy_to_user(argp, &init, sizeof(init)))
1290 return -EFAULT;
1291
1292 return 0;
1293 }
1294 default:
1295 return -EINVAL;
1296 }
1297 }
1298
1299 static void cpu_init_hyp_mode(void *dummy)
1300 {
1301 phys_addr_t pgd_ptr;
1302 unsigned long hyp_stack_ptr;
1303 unsigned long stack_page;
1304 unsigned long vector_ptr;
1305
1306 /* Switch from the HYP stub to our own HYP init vector */
1307 __hyp_set_vectors(kvm_get_idmap_vector());
1308
1309 pgd_ptr = kvm_mmu_get_httbr();
1310 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1311 hyp_stack_ptr = stack_page + PAGE_SIZE;
1312 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1313
1314 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1315 __cpu_init_stage2();
1316 }
1317
1318 static void cpu_hyp_reset(void)
1319 {
1320 if (!is_kernel_in_hyp_mode())
1321 __hyp_reset_vectors();
1322 }
1323
1324 static void cpu_hyp_reinit(void)
1325 {
1326 cpu_hyp_reset();
1327
1328 if (is_kernel_in_hyp_mode())
1329 kvm_timer_init_vhe();
1330 else
1331 cpu_init_hyp_mode(NULL);
1332
1333 kvm_arm_init_debug();
1334
1335 if (vgic_present)
1336 kvm_vgic_init_cpu_hardware();
1337 }
1338
1339 static void _kvm_arch_hardware_enable(void *discard)
1340 {
1341 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1342 cpu_hyp_reinit();
1343 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1344 }
1345 }
1346
1347 int kvm_arch_hardware_enable(void)
1348 {
1349 _kvm_arch_hardware_enable(NULL);
1350 return 0;
1351 }
1352
1353 static void _kvm_arch_hardware_disable(void *discard)
1354 {
1355 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1356 cpu_hyp_reset();
1357 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1358 }
1359 }
1360
1361 void kvm_arch_hardware_disable(void)
1362 {
1363 _kvm_arch_hardware_disable(NULL);
1364 }
1365
1366 #ifdef CONFIG_CPU_PM
1367 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1368 unsigned long cmd,
1369 void *v)
1370 {
1371 /*
1372 * kvm_arm_hardware_enabled is left with its old value over
1373 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1374 * re-enable hyp.
1375 */
1376 switch (cmd) {
1377 case CPU_PM_ENTER:
1378 if (__this_cpu_read(kvm_arm_hardware_enabled))
1379 /*
1380 * don't update kvm_arm_hardware_enabled here
1381 * so that the hardware will be re-enabled
1382 * when we resume. See below.
1383 */
1384 cpu_hyp_reset();
1385
1386 return NOTIFY_OK;
1387 case CPU_PM_ENTER_FAILED:
1388 case CPU_PM_EXIT:
1389 if (__this_cpu_read(kvm_arm_hardware_enabled))
1390 /* The hardware was enabled before suspend. */
1391 cpu_hyp_reinit();
1392
1393 return NOTIFY_OK;
1394
1395 default:
1396 return NOTIFY_DONE;
1397 }
1398 }
1399
1400 static struct notifier_block hyp_init_cpu_pm_nb = {
1401 .notifier_call = hyp_init_cpu_pm_notifier,
1402 };
1403
1404 static void __init hyp_cpu_pm_init(void)
1405 {
1406 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1407 }
1408 static void __init hyp_cpu_pm_exit(void)
1409 {
1410 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1411 }
1412 #else
1413 static inline void hyp_cpu_pm_init(void)
1414 {
1415 }
1416 static inline void hyp_cpu_pm_exit(void)
1417 {
1418 }
1419 #endif
1420
1421 static int init_common_resources(void)
1422 {
1423 /* set size of VMID supported by CPU */
1424 kvm_vmid_bits = kvm_get_vmid_bits();
1425 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1426
1427 kvm_set_ipa_limit();
1428
1429 return 0;
1430 }
1431
1432 static int init_subsystems(void)
1433 {
1434 int err = 0;
1435
1436 /*
1437 * Enable hardware so that subsystem initialisation can access EL2.
1438 */
1439 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1440
1441 /*
1442 * Register CPU lower-power notifier
1443 */
1444 hyp_cpu_pm_init();
1445
1446 /*
1447 * Init HYP view of VGIC
1448 */
1449 err = kvm_vgic_hyp_init();
1450 switch (err) {
1451 case 0:
1452 vgic_present = true;
1453 break;
1454 case -ENODEV:
1455 case -ENXIO:
1456 vgic_present = false;
1457 err = 0;
1458 break;
1459 default:
1460 goto out;
1461 }
1462
1463 /*
1464 * Init HYP architected timer support
1465 */
1466 err = kvm_timer_hyp_init(vgic_present);
1467 if (err)
1468 goto out;
1469
1470 kvm_perf_init();
1471 kvm_coproc_table_init();
1472
1473 out:
1474 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1475
1476 return err;
1477 }
1478
1479 static void teardown_hyp_mode(void)
1480 {
1481 int cpu;
1482
1483 free_hyp_pgds();
1484 for_each_possible_cpu(cpu)
1485 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1486 hyp_cpu_pm_exit();
1487 }
1488
1489 /**
1490 * Inits Hyp-mode on all online CPUs
1491 */
1492 static int init_hyp_mode(void)
1493 {
1494 int cpu;
1495 int err = 0;
1496
1497 /*
1498 * Allocate Hyp PGD and setup Hyp identity mapping
1499 */
1500 err = kvm_mmu_init();
1501 if (err)
1502 goto out_err;
1503
1504 /*
1505 * Allocate stack pages for Hypervisor-mode
1506 */
1507 for_each_possible_cpu(cpu) {
1508 unsigned long stack_page;
1509
1510 stack_page = __get_free_page(GFP_KERNEL);
1511 if (!stack_page) {
1512 err = -ENOMEM;
1513 goto out_err;
1514 }
1515
1516 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1517 }
1518
1519 /*
1520 * Map the Hyp-code called directly from the host
1521 */
1522 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1523 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1524 if (err) {
1525 kvm_err("Cannot map world-switch code\n");
1526 goto out_err;
1527 }
1528
1529 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1530 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1531 if (err) {
1532 kvm_err("Cannot map rodata section\n");
1533 goto out_err;
1534 }
1535
1536 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1537 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1538 if (err) {
1539 kvm_err("Cannot map bss section\n");
1540 goto out_err;
1541 }
1542
1543 err = kvm_map_vectors();
1544 if (err) {
1545 kvm_err("Cannot map vectors\n");
1546 goto out_err;
1547 }
1548
1549 /*
1550 * Map the Hyp stack pages
1551 */
1552 for_each_possible_cpu(cpu) {
1553 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1554 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1555 PAGE_HYP);
1556
1557 if (err) {
1558 kvm_err("Cannot map hyp stack\n");
1559 goto out_err;
1560 }
1561 }
1562
1563 for_each_possible_cpu(cpu) {
1564 kvm_cpu_context_t *cpu_ctxt;
1565
1566 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1567 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1568
1569 if (err) {
1570 kvm_err("Cannot map host CPU state: %d\n", err);
1571 goto out_err;
1572 }
1573 }
1574
1575 err = hyp_map_aux_data();
1576 if (err)
1577 kvm_err("Cannot map host auxilary data: %d\n", err);
1578
1579 return 0;
1580
1581 out_err:
1582 teardown_hyp_mode();
1583 kvm_err("error initializing Hyp mode: %d\n", err);
1584 return err;
1585 }
1586
1587 static void check_kvm_target_cpu(void *ret)
1588 {
1589 *(int *)ret = kvm_target_cpu();
1590 }
1591
1592 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1593 {
1594 struct kvm_vcpu *vcpu;
1595 int i;
1596
1597 mpidr &= MPIDR_HWID_BITMASK;
1598 kvm_for_each_vcpu(i, vcpu, kvm) {
1599 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1600 return vcpu;
1601 }
1602 return NULL;
1603 }
1604
1605 bool kvm_arch_has_irq_bypass(void)
1606 {
1607 return true;
1608 }
1609
1610 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1611 struct irq_bypass_producer *prod)
1612 {
1613 struct kvm_kernel_irqfd *irqfd =
1614 container_of(cons, struct kvm_kernel_irqfd, consumer);
1615
1616 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1617 &irqfd->irq_entry);
1618 }
1619 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1620 struct irq_bypass_producer *prod)
1621 {
1622 struct kvm_kernel_irqfd *irqfd =
1623 container_of(cons, struct kvm_kernel_irqfd, consumer);
1624
1625 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1626 &irqfd->irq_entry);
1627 }
1628
1629 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1630 {
1631 struct kvm_kernel_irqfd *irqfd =
1632 container_of(cons, struct kvm_kernel_irqfd, consumer);
1633
1634 kvm_arm_halt_guest(irqfd->kvm);
1635 }
1636
1637 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1638 {
1639 struct kvm_kernel_irqfd *irqfd =
1640 container_of(cons, struct kvm_kernel_irqfd, consumer);
1641
1642 kvm_arm_resume_guest(irqfd->kvm);
1643 }
1644
1645 /**
1646 * Initialize Hyp-mode and memory mappings on all CPUs.
1647 */
1648 int kvm_arch_init(void *opaque)
1649 {
1650 int err;
1651 int ret, cpu;
1652 bool in_hyp_mode;
1653
1654 if (!is_hyp_mode_available()) {
1655 kvm_info("HYP mode not available\n");
1656 return -ENODEV;
1657 }
1658
1659 if (!kvm_arch_check_sve_has_vhe()) {
1660 kvm_pr_unimpl("SVE system without VHE unsupported. Broken cpu?");
1661 return -ENODEV;
1662 }
1663
1664 for_each_online_cpu(cpu) {
1665 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1666 if (ret < 0) {
1667 kvm_err("Error, CPU %d not supported!\n", cpu);
1668 return -ENODEV;
1669 }
1670 }
1671
1672 err = init_common_resources();
1673 if (err)
1674 return err;
1675
1676 in_hyp_mode = is_kernel_in_hyp_mode();
1677
1678 if (!in_hyp_mode) {
1679 err = init_hyp_mode();
1680 if (err)
1681 goto out_err;
1682 }
1683
1684 err = init_subsystems();
1685 if (err)
1686 goto out_hyp;
1687
1688 if (in_hyp_mode)
1689 kvm_info("VHE mode initialized successfully\n");
1690 else
1691 kvm_info("Hyp mode initialized successfully\n");
1692
1693 return 0;
1694
1695 out_hyp:
1696 if (!in_hyp_mode)
1697 teardown_hyp_mode();
1698 out_err:
1699 return err;
1700 }
1701
1702 /* NOP: Compiling as a module not supported */
1703 void kvm_arch_exit(void)
1704 {
1705 kvm_perf_teardown();
1706 }
1707
1708 static int arm_init(void)
1709 {
1710 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1711 return rc;
1712 }
1713
1714 module_init(arm_init);