]> git.ipfire.org Git - thirdparty/linux.git/blob - virt/kvm/arm/vgic/vgic-its.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / virt / kvm / arm / vgic / vgic-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 *
100 * Should any of these fail, behave as if we couldn't create the LPI
101 * by dropping the refcount and returning the error.
102 */
103 ret = update_lpi_config(kvm, irq, NULL, false);
104 if (ret) {
105 vgic_put_irq(kvm, irq);
106 return ERR_PTR(ret);
107 }
108
109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 if (ret) {
111 vgic_put_irq(kvm, irq);
112 return ERR_PTR(ret);
113 }
114
115 return irq;
116 }
117
118 struct its_device {
119 struct list_head dev_list;
120
121 /* the head for the list of ITTEs */
122 struct list_head itt_head;
123 u32 num_eventid_bits;
124 gpa_t itt_addr;
125 u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131 struct list_head coll_list;
132
133 u32 collection_id;
134 u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141 struct list_head ite_list;
142
143 struct vgic_irq *irq;
144 struct its_collection *collection;
145 u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149 struct list_head entry;
150 phys_addr_t db;
151 u32 devid;
152 u32 eventid;
153 struct vgic_irq *irq;
154 };
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308 if (irq->hw)
309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 return 0;
312 }
313
314 /*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 struct vgic_dist *dist = &kvm->arch.vgic;
322 struct vgic_irq *irq;
323 unsigned long flags;
324 u32 *intids;
325 int irq_count, i = 0;
326
327 /*
328 * There is an obvious race between allocating the array and LPIs
329 * being mapped/unmapped. If we ended up here as a result of a
330 * command, we're safe (locks are held, preventing another
331 * command). If coming from another path (such as enabling LPIs),
332 * we must be careful not to overrun the array.
333 */
334 irq_count = READ_ONCE(dist->lpi_list_count);
335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 if (!intids)
337 return -ENOMEM;
338
339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 if (i == irq_count)
342 break;
343 /* We don't need to "get" the IRQ, as we hold the list lock. */
344 if (vcpu && irq->target_vcpu != vcpu)
345 continue;
346 intids[i++] = irq->intid;
347 }
348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350 *intid_ptr = intids;
351 return i;
352 }
353
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 int ret = 0;
357 unsigned long flags;
358
359 raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 irq->target_vcpu = vcpu;
361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363 if (irq->hw) {
364 struct its_vlpi_map map;
365
366 ret = its_get_vlpi(irq->host_irq, &map);
367 if (ret)
368 return ret;
369
370 if (map.vpe)
371 atomic_dec(&map.vpe->vlpi_count);
372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 atomic_inc(&map.vpe->vlpi_count);
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
381 /*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 struct kvm_vcpu *vcpu;
390
391 if (!its_is_collection_mapped(ite->collection))
392 return;
393
394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 update_affinity(ite->irq, vcpu);
396 }
397
398 /*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 struct its_collection *coll)
404 {
405 struct its_device *device;
406 struct its_ite *ite;
407
408 for_each_lpi_its(device, ite, its) {
409 if (!ite->collection || coll != ite->collection)
410 continue;
411
412 update_affinity_ite(kvm, ite);
413 }
414 }
415
416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 int nr_idbits = (propbaser & 0x1f) + 1;
419
420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422
423 /*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 struct vgic_irq *irq;
432 int last_byte_offset = -1;
433 int ret = 0;
434 u32 *intids;
435 int nr_irqs, i;
436 unsigned long flags;
437 u8 pendmask;
438
439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 if (nr_irqs < 0)
441 return nr_irqs;
442
443 for (i = 0; i < nr_irqs; i++) {
444 int byte_offset, bit_nr;
445
446 byte_offset = intids[i] / BITS_PER_BYTE;
447 bit_nr = intids[i] % BITS_PER_BYTE;
448
449 /*
450 * For contiguously allocated LPIs chances are we just read
451 * this very same byte in the last iteration. Reuse that.
452 */
453 if (byte_offset != last_byte_offset) {
454 ret = kvm_read_guest_lock(vcpu->kvm,
455 pendbase + byte_offset,
456 &pendmask, 1);
457 if (ret) {
458 kfree(intids);
459 return ret;
460 }
461 last_byte_offset = byte_offset;
462 }
463
464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 irq->pending_latch = pendmask & (1U << bit_nr);
467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 vgic_put_irq(vcpu->kvm, irq);
469 }
470
471 kfree(intids);
472
473 return ret;
474 }
475
476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 struct vgic_its *its,
478 gpa_t addr, unsigned int len)
479 {
480 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 u64 reg = GITS_TYPER_PLPIS;
482
483 /*
484 * We use linear CPU numbers for redistributor addressing,
485 * so GITS_TYPER.PTA is 0.
486 * Also we force all PROPBASER registers to be the same, so
487 * CommonLPIAff is 0 as well.
488 * To avoid memory waste in the guest, we keep the number of IDBits and
489 * DevBits low - as least for the time being.
490 */
491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494
495 return extract_bytes(reg, addr & 7, len);
496 }
497
498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 struct vgic_its *its,
500 gpa_t addr, unsigned int len)
501 {
502 u32 val;
503
504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 return val;
507 }
508
509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 struct vgic_its *its,
511 gpa_t addr, unsigned int len,
512 unsigned long val)
513 {
514 u32 rev = GITS_IIDR_REV(val);
515
516 if (rev >= NR_ITS_ABIS)
517 return -EINVAL;
518 return vgic_its_set_abi(its, rev);
519 }
520
521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 struct vgic_its *its,
523 gpa_t addr, unsigned int len)
524 {
525 switch (addr & 0xffff) {
526 case GITS_PIDR0:
527 return 0x92; /* part number, bits[7:0] */
528 case GITS_PIDR1:
529 return 0xb4; /* part number, bits[11:8] */
530 case GITS_PIDR2:
531 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 case GITS_PIDR4:
533 return 0x40; /* This is a 64K software visible page */
534 /* The following are the ID registers for (any) GIC. */
535 case GITS_CIDR0:
536 return 0x0d;
537 case GITS_CIDR1:
538 return 0xf0;
539 case GITS_CIDR2:
540 return 0x05;
541 case GITS_CIDR3:
542 return 0xb1;
543 }
544
545 return 0;
546 }
547
548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 phys_addr_t db,
550 u32 devid, u32 eventid)
551 {
552 struct vgic_translation_cache_entry *cte;
553
554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 /*
556 * If we hit a NULL entry, there is nothing after this
557 * point.
558 */
559 if (!cte->irq)
560 break;
561
562 if (cte->db != db || cte->devid != devid ||
563 cte->eventid != eventid)
564 continue;
565
566 /*
567 * Move this entry to the head, as it is the most
568 * recently used.
569 */
570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 list_move(&cte->entry, &dist->lpi_translation_cache);
572
573 return cte->irq;
574 }
575
576 return NULL;
577 }
578
579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 u32 devid, u32 eventid)
581 {
582 struct vgic_dist *dist = &kvm->arch.vgic;
583 struct vgic_irq *irq;
584 unsigned long flags;
585
586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587 irq = __vgic_its_check_cache(dist, db, devid, eventid);
588 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
589
590 return irq;
591 }
592
593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
594 u32 devid, u32 eventid,
595 struct vgic_irq *irq)
596 {
597 struct vgic_dist *dist = &kvm->arch.vgic;
598 struct vgic_translation_cache_entry *cte;
599 unsigned long flags;
600 phys_addr_t db;
601
602 /* Do not cache a directly injected interrupt */
603 if (irq->hw)
604 return;
605
606 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
607
608 if (unlikely(list_empty(&dist->lpi_translation_cache)))
609 goto out;
610
611 /*
612 * We could have raced with another CPU caching the same
613 * translation behind our back, so let's check it is not in
614 * already
615 */
616 db = its->vgic_its_base + GITS_TRANSLATER;
617 if (__vgic_its_check_cache(dist, db, devid, eventid))
618 goto out;
619
620 /* Always reuse the last entry (LRU policy) */
621 cte = list_last_entry(&dist->lpi_translation_cache,
622 typeof(*cte), entry);
623
624 /*
625 * Caching the translation implies having an extra reference
626 * to the interrupt, so drop the potential reference on what
627 * was in the cache, and increment it on the new interrupt.
628 */
629 if (cte->irq)
630 __vgic_put_lpi_locked(kvm, cte->irq);
631
632 vgic_get_irq_kref(irq);
633
634 cte->db = db;
635 cte->devid = devid;
636 cte->eventid = eventid;
637 cte->irq = irq;
638
639 /* Move the new translation to the head of the list */
640 list_move(&cte->entry, &dist->lpi_translation_cache);
641
642 out:
643 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
644 }
645
646 void vgic_its_invalidate_cache(struct kvm *kvm)
647 {
648 struct vgic_dist *dist = &kvm->arch.vgic;
649 struct vgic_translation_cache_entry *cte;
650 unsigned long flags;
651
652 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
653
654 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
655 /*
656 * If we hit a NULL entry, there is nothing after this
657 * point.
658 */
659 if (!cte->irq)
660 break;
661
662 __vgic_put_lpi_locked(kvm, cte->irq);
663 cte->irq = NULL;
664 }
665
666 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
667 }
668
669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
670 u32 devid, u32 eventid, struct vgic_irq **irq)
671 {
672 struct kvm_vcpu *vcpu;
673 struct its_ite *ite;
674
675 if (!its->enabled)
676 return -EBUSY;
677
678 ite = find_ite(its, devid, eventid);
679 if (!ite || !its_is_collection_mapped(ite->collection))
680 return E_ITS_INT_UNMAPPED_INTERRUPT;
681
682 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
683 if (!vcpu)
684 return E_ITS_INT_UNMAPPED_INTERRUPT;
685
686 if (!vcpu->arch.vgic_cpu.lpis_enabled)
687 return -EBUSY;
688
689 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
690
691 *irq = ite->irq;
692 return 0;
693 }
694
695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
696 {
697 u64 address;
698 struct kvm_io_device *kvm_io_dev;
699 struct vgic_io_device *iodev;
700
701 if (!vgic_has_its(kvm))
702 return ERR_PTR(-ENODEV);
703
704 if (!(msi->flags & KVM_MSI_VALID_DEVID))
705 return ERR_PTR(-EINVAL);
706
707 address = (u64)msi->address_hi << 32 | msi->address_lo;
708
709 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
710 if (!kvm_io_dev)
711 return ERR_PTR(-EINVAL);
712
713 if (kvm_io_dev->ops != &kvm_io_gic_ops)
714 return ERR_PTR(-EINVAL);
715
716 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
717 if (iodev->iodev_type != IODEV_ITS)
718 return ERR_PTR(-EINVAL);
719
720 return iodev->its;
721 }
722
723 /*
724 * Find the target VCPU and the LPI number for a given devid/eventid pair
725 * and make this IRQ pending, possibly injecting it.
726 * Must be called with the its_lock mutex held.
727 * Returns 0 on success, a positive error value for any ITS mapping
728 * related errors and negative error values for generic errors.
729 */
730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
731 u32 devid, u32 eventid)
732 {
733 struct vgic_irq *irq = NULL;
734 unsigned long flags;
735 int err;
736
737 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
738 if (err)
739 return err;
740
741 if (irq->hw)
742 return irq_set_irqchip_state(irq->host_irq,
743 IRQCHIP_STATE_PENDING, true);
744
745 raw_spin_lock_irqsave(&irq->irq_lock, flags);
746 irq->pending_latch = true;
747 vgic_queue_irq_unlock(kvm, irq, flags);
748
749 return 0;
750 }
751
752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
753 {
754 struct vgic_irq *irq;
755 unsigned long flags;
756 phys_addr_t db;
757
758 db = (u64)msi->address_hi << 32 | msi->address_lo;
759 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
760
761 if (!irq)
762 return -1;
763
764 raw_spin_lock_irqsave(&irq->irq_lock, flags);
765 irq->pending_latch = true;
766 vgic_queue_irq_unlock(kvm, irq, flags);
767
768 return 0;
769 }
770
771 /*
772 * Queries the KVM IO bus framework to get the ITS pointer from the given
773 * doorbell address.
774 * We then call vgic_its_trigger_msi() with the decoded data.
775 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
776 */
777 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
778 {
779 struct vgic_its *its;
780 int ret;
781
782 if (!vgic_its_inject_cached_translation(kvm, msi))
783 return 1;
784
785 its = vgic_msi_to_its(kvm, msi);
786 if (IS_ERR(its))
787 return PTR_ERR(its);
788
789 mutex_lock(&its->its_lock);
790 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
791 mutex_unlock(&its->its_lock);
792
793 if (ret < 0)
794 return ret;
795
796 /*
797 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
798 * if the guest has blocked the MSI. So we map any LPI mapping
799 * related error to that.
800 */
801 if (ret)
802 return 0;
803 else
804 return 1;
805 }
806
807 /* Requires the its_lock to be held. */
808 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
809 {
810 list_del(&ite->ite_list);
811
812 /* This put matches the get in vgic_add_lpi. */
813 if (ite->irq) {
814 if (ite->irq->hw)
815 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
816
817 vgic_put_irq(kvm, ite->irq);
818 }
819
820 kfree(ite);
821 }
822
823 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
824 {
825 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
826 }
827
828 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
829 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
830 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
831 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
832 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
833 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
834 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
835 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
836 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
837
838 /*
839 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
840 * Must be called with the its_lock mutex held.
841 */
842 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
843 u64 *its_cmd)
844 {
845 u32 device_id = its_cmd_get_deviceid(its_cmd);
846 u32 event_id = its_cmd_get_id(its_cmd);
847 struct its_ite *ite;
848
849 ite = find_ite(its, device_id, event_id);
850 if (ite && its_is_collection_mapped(ite->collection)) {
851 /*
852 * Though the spec talks about removing the pending state, we
853 * don't bother here since we clear the ITTE anyway and the
854 * pending state is a property of the ITTE struct.
855 */
856 vgic_its_invalidate_cache(kvm);
857
858 its_free_ite(kvm, ite);
859 return 0;
860 }
861
862 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
863 }
864
865 /*
866 * The MOVI command moves an ITTE to a different collection.
867 * Must be called with the its_lock mutex held.
868 */
869 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
870 u64 *its_cmd)
871 {
872 u32 device_id = its_cmd_get_deviceid(its_cmd);
873 u32 event_id = its_cmd_get_id(its_cmd);
874 u32 coll_id = its_cmd_get_collection(its_cmd);
875 struct kvm_vcpu *vcpu;
876 struct its_ite *ite;
877 struct its_collection *collection;
878
879 ite = find_ite(its, device_id, event_id);
880 if (!ite)
881 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
882
883 if (!its_is_collection_mapped(ite->collection))
884 return E_ITS_MOVI_UNMAPPED_COLLECTION;
885
886 collection = find_collection(its, coll_id);
887 if (!its_is_collection_mapped(collection))
888 return E_ITS_MOVI_UNMAPPED_COLLECTION;
889
890 ite->collection = collection;
891 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
892
893 vgic_its_invalidate_cache(kvm);
894
895 return update_affinity(ite->irq, vcpu);
896 }
897
898 /*
899 * Check whether an ID can be stored into the corresponding guest table.
900 * For a direct table this is pretty easy, but gets a bit nasty for
901 * indirect tables. We check whether the resulting guest physical address
902 * is actually valid (covered by a memslot and guest accessible).
903 * For this we have to read the respective first level entry.
904 */
905 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
906 gpa_t *eaddr)
907 {
908 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
909 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
910 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
911 int esz = GITS_BASER_ENTRY_SIZE(baser);
912 int index, idx;
913 gfn_t gfn;
914 bool ret;
915
916 switch (type) {
917 case GITS_BASER_TYPE_DEVICE:
918 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
919 return false;
920 break;
921 case GITS_BASER_TYPE_COLLECTION:
922 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
923 if (id >= BIT_ULL(16))
924 return false;
925 break;
926 default:
927 return false;
928 }
929
930 if (!(baser & GITS_BASER_INDIRECT)) {
931 phys_addr_t addr;
932
933 if (id >= (l1_tbl_size / esz))
934 return false;
935
936 addr = base + id * esz;
937 gfn = addr >> PAGE_SHIFT;
938
939 if (eaddr)
940 *eaddr = addr;
941
942 goto out;
943 }
944
945 /* calculate and check the index into the 1st level */
946 index = id / (SZ_64K / esz);
947 if (index >= (l1_tbl_size / sizeof(u64)))
948 return false;
949
950 /* Each 1st level entry is represented by a 64-bit value. */
951 if (kvm_read_guest_lock(its->dev->kvm,
952 base + index * sizeof(indirect_ptr),
953 &indirect_ptr, sizeof(indirect_ptr)))
954 return false;
955
956 indirect_ptr = le64_to_cpu(indirect_ptr);
957
958 /* check the valid bit of the first level entry */
959 if (!(indirect_ptr & BIT_ULL(63)))
960 return false;
961
962 /* Mask the guest physical address and calculate the frame number. */
963 indirect_ptr &= GENMASK_ULL(51, 16);
964
965 /* Find the address of the actual entry */
966 index = id % (SZ_64K / esz);
967 indirect_ptr += index * esz;
968 gfn = indirect_ptr >> PAGE_SHIFT;
969
970 if (eaddr)
971 *eaddr = indirect_ptr;
972
973 out:
974 idx = srcu_read_lock(&its->dev->kvm->srcu);
975 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
976 srcu_read_unlock(&its->dev->kvm->srcu, idx);
977 return ret;
978 }
979
980 static int vgic_its_alloc_collection(struct vgic_its *its,
981 struct its_collection **colp,
982 u32 coll_id)
983 {
984 struct its_collection *collection;
985
986 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
987 return E_ITS_MAPC_COLLECTION_OOR;
988
989 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
990 if (!collection)
991 return -ENOMEM;
992
993 collection->collection_id = coll_id;
994 collection->target_addr = COLLECTION_NOT_MAPPED;
995
996 list_add_tail(&collection->coll_list, &its->collection_list);
997 *colp = collection;
998
999 return 0;
1000 }
1001
1002 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1003 {
1004 struct its_collection *collection;
1005 struct its_device *device;
1006 struct its_ite *ite;
1007
1008 /*
1009 * Clearing the mapping for that collection ID removes the
1010 * entry from the list. If there wasn't any before, we can
1011 * go home early.
1012 */
1013 collection = find_collection(its, coll_id);
1014 if (!collection)
1015 return;
1016
1017 for_each_lpi_its(device, ite, its)
1018 if (ite->collection &&
1019 ite->collection->collection_id == coll_id)
1020 ite->collection = NULL;
1021
1022 list_del(&collection->coll_list);
1023 kfree(collection);
1024 }
1025
1026 /* Must be called with its_lock mutex held */
1027 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1028 struct its_collection *collection,
1029 u32 event_id)
1030 {
1031 struct its_ite *ite;
1032
1033 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1034 if (!ite)
1035 return ERR_PTR(-ENOMEM);
1036
1037 ite->event_id = event_id;
1038 ite->collection = collection;
1039
1040 list_add_tail(&ite->ite_list, &device->itt_head);
1041 return ite;
1042 }
1043
1044 /*
1045 * The MAPTI and MAPI commands map LPIs to ITTEs.
1046 * Must be called with its_lock mutex held.
1047 */
1048 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1049 u64 *its_cmd)
1050 {
1051 u32 device_id = its_cmd_get_deviceid(its_cmd);
1052 u32 event_id = its_cmd_get_id(its_cmd);
1053 u32 coll_id = its_cmd_get_collection(its_cmd);
1054 struct its_ite *ite;
1055 struct kvm_vcpu *vcpu = NULL;
1056 struct its_device *device;
1057 struct its_collection *collection, *new_coll = NULL;
1058 struct vgic_irq *irq;
1059 int lpi_nr;
1060
1061 device = find_its_device(its, device_id);
1062 if (!device)
1063 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1064
1065 if (event_id >= BIT_ULL(device->num_eventid_bits))
1066 return E_ITS_MAPTI_ID_OOR;
1067
1068 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1069 lpi_nr = its_cmd_get_physical_id(its_cmd);
1070 else
1071 lpi_nr = event_id;
1072 if (lpi_nr < GIC_LPI_OFFSET ||
1073 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1074 return E_ITS_MAPTI_PHYSICALID_OOR;
1075
1076 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1077 if (find_ite(its, device_id, event_id))
1078 return 0;
1079
1080 collection = find_collection(its, coll_id);
1081 if (!collection) {
1082 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1083 if (ret)
1084 return ret;
1085 new_coll = collection;
1086 }
1087
1088 ite = vgic_its_alloc_ite(device, collection, event_id);
1089 if (IS_ERR(ite)) {
1090 if (new_coll)
1091 vgic_its_free_collection(its, coll_id);
1092 return PTR_ERR(ite);
1093 }
1094
1095 if (its_is_collection_mapped(collection))
1096 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1097
1098 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1099 if (IS_ERR(irq)) {
1100 if (new_coll)
1101 vgic_its_free_collection(its, coll_id);
1102 its_free_ite(kvm, ite);
1103 return PTR_ERR(irq);
1104 }
1105 ite->irq = irq;
1106
1107 return 0;
1108 }
1109
1110 /* Requires the its_lock to be held. */
1111 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1112 {
1113 struct its_ite *ite, *temp;
1114
1115 /*
1116 * The spec says that unmapping a device with still valid
1117 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1118 * since we cannot leave the memory unreferenced.
1119 */
1120 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1121 its_free_ite(kvm, ite);
1122
1123 vgic_its_invalidate_cache(kvm);
1124
1125 list_del(&device->dev_list);
1126 kfree(device);
1127 }
1128
1129 /* its lock must be held */
1130 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1131 {
1132 struct its_device *cur, *temp;
1133
1134 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1135 vgic_its_free_device(kvm, cur);
1136 }
1137
1138 /* its lock must be held */
1139 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1140 {
1141 struct its_collection *cur, *temp;
1142
1143 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1144 vgic_its_free_collection(its, cur->collection_id);
1145 }
1146
1147 /* Must be called with its_lock mutex held */
1148 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1149 u32 device_id, gpa_t itt_addr,
1150 u8 num_eventid_bits)
1151 {
1152 struct its_device *device;
1153
1154 device = kzalloc(sizeof(*device), GFP_KERNEL);
1155 if (!device)
1156 return ERR_PTR(-ENOMEM);
1157
1158 device->device_id = device_id;
1159 device->itt_addr = itt_addr;
1160 device->num_eventid_bits = num_eventid_bits;
1161 INIT_LIST_HEAD(&device->itt_head);
1162
1163 list_add_tail(&device->dev_list, &its->device_list);
1164 return device;
1165 }
1166
1167 /*
1168 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1169 * Must be called with the its_lock mutex held.
1170 */
1171 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1172 u64 *its_cmd)
1173 {
1174 u32 device_id = its_cmd_get_deviceid(its_cmd);
1175 bool valid = its_cmd_get_validbit(its_cmd);
1176 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1177 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1178 struct its_device *device;
1179
1180 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1181 return E_ITS_MAPD_DEVICE_OOR;
1182
1183 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1184 return E_ITS_MAPD_ITTSIZE_OOR;
1185
1186 device = find_its_device(its, device_id);
1187
1188 /*
1189 * The spec says that calling MAPD on an already mapped device
1190 * invalidates all cached data for this device. We implement this
1191 * by removing the mapping and re-establishing it.
1192 */
1193 if (device)
1194 vgic_its_free_device(kvm, device);
1195
1196 /*
1197 * The spec does not say whether unmapping a not-mapped device
1198 * is an error, so we are done in any case.
1199 */
1200 if (!valid)
1201 return 0;
1202
1203 device = vgic_its_alloc_device(its, device_id, itt_addr,
1204 num_eventid_bits);
1205
1206 return PTR_ERR_OR_ZERO(device);
1207 }
1208
1209 /*
1210 * The MAPC command maps collection IDs to redistributors.
1211 * Must be called with the its_lock mutex held.
1212 */
1213 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1214 u64 *its_cmd)
1215 {
1216 u16 coll_id;
1217 u32 target_addr;
1218 struct its_collection *collection;
1219 bool valid;
1220
1221 valid = its_cmd_get_validbit(its_cmd);
1222 coll_id = its_cmd_get_collection(its_cmd);
1223 target_addr = its_cmd_get_target_addr(its_cmd);
1224
1225 if (target_addr >= atomic_read(&kvm->online_vcpus))
1226 return E_ITS_MAPC_PROCNUM_OOR;
1227
1228 if (!valid) {
1229 vgic_its_free_collection(its, coll_id);
1230 vgic_its_invalidate_cache(kvm);
1231 } else {
1232 collection = find_collection(its, coll_id);
1233
1234 if (!collection) {
1235 int ret;
1236
1237 ret = vgic_its_alloc_collection(its, &collection,
1238 coll_id);
1239 if (ret)
1240 return ret;
1241 collection->target_addr = target_addr;
1242 } else {
1243 collection->target_addr = target_addr;
1244 update_affinity_collection(kvm, its, collection);
1245 }
1246 }
1247
1248 return 0;
1249 }
1250
1251 /*
1252 * The CLEAR command removes the pending state for a particular LPI.
1253 * Must be called with the its_lock mutex held.
1254 */
1255 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1256 u64 *its_cmd)
1257 {
1258 u32 device_id = its_cmd_get_deviceid(its_cmd);
1259 u32 event_id = its_cmd_get_id(its_cmd);
1260 struct its_ite *ite;
1261
1262
1263 ite = find_ite(its, device_id, event_id);
1264 if (!ite)
1265 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1266
1267 ite->irq->pending_latch = false;
1268
1269 if (ite->irq->hw)
1270 return irq_set_irqchip_state(ite->irq->host_irq,
1271 IRQCHIP_STATE_PENDING, false);
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * The INV command syncs the configuration bits from the memory table.
1278 * Must be called with the its_lock mutex held.
1279 */
1280 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1281 u64 *its_cmd)
1282 {
1283 u32 device_id = its_cmd_get_deviceid(its_cmd);
1284 u32 event_id = its_cmd_get_id(its_cmd);
1285 struct its_ite *ite;
1286
1287
1288 ite = find_ite(its, device_id, event_id);
1289 if (!ite)
1290 return E_ITS_INV_UNMAPPED_INTERRUPT;
1291
1292 return update_lpi_config(kvm, ite->irq, NULL, true);
1293 }
1294
1295 /*
1296 * The INVALL command requests flushing of all IRQ data in this collection.
1297 * Find the VCPU mapped to that collection, then iterate over the VM's list
1298 * of mapped LPIs and update the configuration for each IRQ which targets
1299 * the specified vcpu. The configuration will be read from the in-memory
1300 * configuration table.
1301 * Must be called with the its_lock mutex held.
1302 */
1303 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1304 u64 *its_cmd)
1305 {
1306 u32 coll_id = its_cmd_get_collection(its_cmd);
1307 struct its_collection *collection;
1308 struct kvm_vcpu *vcpu;
1309 struct vgic_irq *irq;
1310 u32 *intids;
1311 int irq_count, i;
1312
1313 collection = find_collection(its, coll_id);
1314 if (!its_is_collection_mapped(collection))
1315 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1316
1317 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1318
1319 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1320 if (irq_count < 0)
1321 return irq_count;
1322
1323 for (i = 0; i < irq_count; i++) {
1324 irq = vgic_get_irq(kvm, NULL, intids[i]);
1325 if (!irq)
1326 continue;
1327 update_lpi_config(kvm, irq, vcpu, false);
1328 vgic_put_irq(kvm, irq);
1329 }
1330
1331 kfree(intids);
1332
1333 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1334 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1335
1336 return 0;
1337 }
1338
1339 /*
1340 * The MOVALL command moves the pending state of all IRQs targeting one
1341 * redistributor to another. We don't hold the pending state in the VCPUs,
1342 * but in the IRQs instead, so there is really not much to do for us here.
1343 * However the spec says that no IRQ must target the old redistributor
1344 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1345 * This command affects all LPIs in the system that target that redistributor.
1346 */
1347 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1348 u64 *its_cmd)
1349 {
1350 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1351 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1352 struct kvm_vcpu *vcpu1, *vcpu2;
1353 struct vgic_irq *irq;
1354 u32 *intids;
1355 int irq_count, i;
1356
1357 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1358 target2_addr >= atomic_read(&kvm->online_vcpus))
1359 return E_ITS_MOVALL_PROCNUM_OOR;
1360
1361 if (target1_addr == target2_addr)
1362 return 0;
1363
1364 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1365 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1366
1367 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1368 if (irq_count < 0)
1369 return irq_count;
1370
1371 for (i = 0; i < irq_count; i++) {
1372 irq = vgic_get_irq(kvm, NULL, intids[i]);
1373
1374 update_affinity(irq, vcpu2);
1375
1376 vgic_put_irq(kvm, irq);
1377 }
1378
1379 vgic_its_invalidate_cache(kvm);
1380
1381 kfree(intids);
1382 return 0;
1383 }
1384
1385 /*
1386 * The INT command injects the LPI associated with that DevID/EvID pair.
1387 * Must be called with the its_lock mutex held.
1388 */
1389 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1390 u64 *its_cmd)
1391 {
1392 u32 msi_data = its_cmd_get_id(its_cmd);
1393 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1394
1395 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1396 }
1397
1398 /*
1399 * This function is called with the its_cmd lock held, but the ITS data
1400 * structure lock dropped.
1401 */
1402 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1403 u64 *its_cmd)
1404 {
1405 int ret = -ENODEV;
1406
1407 mutex_lock(&its->its_lock);
1408 switch (its_cmd_get_command(its_cmd)) {
1409 case GITS_CMD_MAPD:
1410 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1411 break;
1412 case GITS_CMD_MAPC:
1413 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1414 break;
1415 case GITS_CMD_MAPI:
1416 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1417 break;
1418 case GITS_CMD_MAPTI:
1419 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1420 break;
1421 case GITS_CMD_MOVI:
1422 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1423 break;
1424 case GITS_CMD_DISCARD:
1425 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1426 break;
1427 case GITS_CMD_CLEAR:
1428 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1429 break;
1430 case GITS_CMD_MOVALL:
1431 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1432 break;
1433 case GITS_CMD_INT:
1434 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1435 break;
1436 case GITS_CMD_INV:
1437 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1438 break;
1439 case GITS_CMD_INVALL:
1440 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1441 break;
1442 case GITS_CMD_SYNC:
1443 /* we ignore this command: we are in sync all of the time */
1444 ret = 0;
1445 break;
1446 }
1447 mutex_unlock(&its->its_lock);
1448
1449 return ret;
1450 }
1451
1452 static u64 vgic_sanitise_its_baser(u64 reg)
1453 {
1454 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1455 GITS_BASER_SHAREABILITY_SHIFT,
1456 vgic_sanitise_shareability);
1457 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1458 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1459 vgic_sanitise_inner_cacheability);
1460 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1461 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1462 vgic_sanitise_outer_cacheability);
1463
1464 /* We support only one (ITS) page size: 64K */
1465 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1466
1467 return reg;
1468 }
1469
1470 static u64 vgic_sanitise_its_cbaser(u64 reg)
1471 {
1472 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1473 GITS_CBASER_SHAREABILITY_SHIFT,
1474 vgic_sanitise_shareability);
1475 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1476 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1477 vgic_sanitise_inner_cacheability);
1478 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1479 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1480 vgic_sanitise_outer_cacheability);
1481
1482 /* Sanitise the physical address to be 64k aligned. */
1483 reg &= ~GENMASK_ULL(15, 12);
1484
1485 return reg;
1486 }
1487
1488 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1489 struct vgic_its *its,
1490 gpa_t addr, unsigned int len)
1491 {
1492 return extract_bytes(its->cbaser, addr & 7, len);
1493 }
1494
1495 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1496 gpa_t addr, unsigned int len,
1497 unsigned long val)
1498 {
1499 /* When GITS_CTLR.Enable is 1, this register is RO. */
1500 if (its->enabled)
1501 return;
1502
1503 mutex_lock(&its->cmd_lock);
1504 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1505 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1506 its->creadr = 0;
1507 /*
1508 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1509 * it to CREADR to make sure we start with an empty command buffer.
1510 */
1511 its->cwriter = its->creadr;
1512 mutex_unlock(&its->cmd_lock);
1513 }
1514
1515 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1516 #define ITS_CMD_SIZE 32
1517 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1518
1519 /* Must be called with the cmd_lock held. */
1520 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1521 {
1522 gpa_t cbaser;
1523 u64 cmd_buf[4];
1524
1525 /* Commands are only processed when the ITS is enabled. */
1526 if (!its->enabled)
1527 return;
1528
1529 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1530
1531 while (its->cwriter != its->creadr) {
1532 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1533 cmd_buf, ITS_CMD_SIZE);
1534 /*
1535 * If kvm_read_guest() fails, this could be due to the guest
1536 * programming a bogus value in CBASER or something else going
1537 * wrong from which we cannot easily recover.
1538 * According to section 6.3.2 in the GICv3 spec we can just
1539 * ignore that command then.
1540 */
1541 if (!ret)
1542 vgic_its_handle_command(kvm, its, cmd_buf);
1543
1544 its->creadr += ITS_CMD_SIZE;
1545 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1546 its->creadr = 0;
1547 }
1548 }
1549
1550 /*
1551 * By writing to CWRITER the guest announces new commands to be processed.
1552 * To avoid any races in the first place, we take the its_cmd lock, which
1553 * protects our ring buffer variables, so that there is only one user
1554 * per ITS handling commands at a given time.
1555 */
1556 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1557 gpa_t addr, unsigned int len,
1558 unsigned long val)
1559 {
1560 u64 reg;
1561
1562 if (!its)
1563 return;
1564
1565 mutex_lock(&its->cmd_lock);
1566
1567 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1568 reg = ITS_CMD_OFFSET(reg);
1569 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1570 mutex_unlock(&its->cmd_lock);
1571 return;
1572 }
1573 its->cwriter = reg;
1574
1575 vgic_its_process_commands(kvm, its);
1576
1577 mutex_unlock(&its->cmd_lock);
1578 }
1579
1580 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1581 struct vgic_its *its,
1582 gpa_t addr, unsigned int len)
1583 {
1584 return extract_bytes(its->cwriter, addr & 0x7, len);
1585 }
1586
1587 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1588 struct vgic_its *its,
1589 gpa_t addr, unsigned int len)
1590 {
1591 return extract_bytes(its->creadr, addr & 0x7, len);
1592 }
1593
1594 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1595 struct vgic_its *its,
1596 gpa_t addr, unsigned int len,
1597 unsigned long val)
1598 {
1599 u32 cmd_offset;
1600 int ret = 0;
1601
1602 mutex_lock(&its->cmd_lock);
1603
1604 if (its->enabled) {
1605 ret = -EBUSY;
1606 goto out;
1607 }
1608
1609 cmd_offset = ITS_CMD_OFFSET(val);
1610 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1611 ret = -EINVAL;
1612 goto out;
1613 }
1614
1615 its->creadr = cmd_offset;
1616 out:
1617 mutex_unlock(&its->cmd_lock);
1618 return ret;
1619 }
1620
1621 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1622 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1623 struct vgic_its *its,
1624 gpa_t addr, unsigned int len)
1625 {
1626 u64 reg;
1627
1628 switch (BASER_INDEX(addr)) {
1629 case 0:
1630 reg = its->baser_device_table;
1631 break;
1632 case 1:
1633 reg = its->baser_coll_table;
1634 break;
1635 default:
1636 reg = 0;
1637 break;
1638 }
1639
1640 return extract_bytes(reg, addr & 7, len);
1641 }
1642
1643 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1644 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1645 struct vgic_its *its,
1646 gpa_t addr, unsigned int len,
1647 unsigned long val)
1648 {
1649 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1650 u64 entry_size, table_type;
1651 u64 reg, *regptr, clearbits = 0;
1652
1653 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1654 if (its->enabled)
1655 return;
1656
1657 switch (BASER_INDEX(addr)) {
1658 case 0:
1659 regptr = &its->baser_device_table;
1660 entry_size = abi->dte_esz;
1661 table_type = GITS_BASER_TYPE_DEVICE;
1662 break;
1663 case 1:
1664 regptr = &its->baser_coll_table;
1665 entry_size = abi->cte_esz;
1666 table_type = GITS_BASER_TYPE_COLLECTION;
1667 clearbits = GITS_BASER_INDIRECT;
1668 break;
1669 default:
1670 return;
1671 }
1672
1673 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1674 reg &= ~GITS_BASER_RO_MASK;
1675 reg &= ~clearbits;
1676
1677 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1678 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1679 reg = vgic_sanitise_its_baser(reg);
1680
1681 *regptr = reg;
1682
1683 if (!(reg & GITS_BASER_VALID)) {
1684 /* Take the its_lock to prevent a race with a save/restore */
1685 mutex_lock(&its->its_lock);
1686 switch (table_type) {
1687 case GITS_BASER_TYPE_DEVICE:
1688 vgic_its_free_device_list(kvm, its);
1689 break;
1690 case GITS_BASER_TYPE_COLLECTION:
1691 vgic_its_free_collection_list(kvm, its);
1692 break;
1693 }
1694 mutex_unlock(&its->its_lock);
1695 }
1696 }
1697
1698 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1699 struct vgic_its *its,
1700 gpa_t addr, unsigned int len)
1701 {
1702 u32 reg = 0;
1703
1704 mutex_lock(&its->cmd_lock);
1705 if (its->creadr == its->cwriter)
1706 reg |= GITS_CTLR_QUIESCENT;
1707 if (its->enabled)
1708 reg |= GITS_CTLR_ENABLE;
1709 mutex_unlock(&its->cmd_lock);
1710
1711 return reg;
1712 }
1713
1714 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1715 gpa_t addr, unsigned int len,
1716 unsigned long val)
1717 {
1718 mutex_lock(&its->cmd_lock);
1719
1720 /*
1721 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1722 * device/collection BASER are invalid
1723 */
1724 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1725 (!(its->baser_device_table & GITS_BASER_VALID) ||
1726 !(its->baser_coll_table & GITS_BASER_VALID) ||
1727 !(its->cbaser & GITS_CBASER_VALID)))
1728 goto out;
1729
1730 its->enabled = !!(val & GITS_CTLR_ENABLE);
1731 if (!its->enabled)
1732 vgic_its_invalidate_cache(kvm);
1733
1734 /*
1735 * Try to process any pending commands. This function bails out early
1736 * if the ITS is disabled or no commands have been queued.
1737 */
1738 vgic_its_process_commands(kvm, its);
1739
1740 out:
1741 mutex_unlock(&its->cmd_lock);
1742 }
1743
1744 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1745 { \
1746 .reg_offset = off, \
1747 .len = length, \
1748 .access_flags = acc, \
1749 .its_read = rd, \
1750 .its_write = wr, \
1751 }
1752
1753 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1754 { \
1755 .reg_offset = off, \
1756 .len = length, \
1757 .access_flags = acc, \
1758 .its_read = rd, \
1759 .its_write = wr, \
1760 .uaccess_its_write = uwr, \
1761 }
1762
1763 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1764 gpa_t addr, unsigned int len, unsigned long val)
1765 {
1766 /* Ignore */
1767 }
1768
1769 static struct vgic_register_region its_registers[] = {
1770 REGISTER_ITS_DESC(GITS_CTLR,
1771 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1772 VGIC_ACCESS_32bit),
1773 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1774 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1775 vgic_mmio_uaccess_write_its_iidr, 4,
1776 VGIC_ACCESS_32bit),
1777 REGISTER_ITS_DESC(GITS_TYPER,
1778 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1779 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1780 REGISTER_ITS_DESC(GITS_CBASER,
1781 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1782 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1783 REGISTER_ITS_DESC(GITS_CWRITER,
1784 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1785 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1786 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1787 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1788 vgic_mmio_uaccess_write_its_creadr, 8,
1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790 REGISTER_ITS_DESC(GITS_BASER,
1791 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1792 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1793 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1794 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1795 VGIC_ACCESS_32bit),
1796 };
1797
1798 /* This is called on setting the LPI enable bit in the redistributor. */
1799 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1800 {
1801 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1802 its_sync_lpi_pending_table(vcpu);
1803 }
1804
1805 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1806 u64 addr)
1807 {
1808 struct vgic_io_device *iodev = &its->iodev;
1809 int ret;
1810
1811 mutex_lock(&kvm->slots_lock);
1812 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1813 ret = -EBUSY;
1814 goto out;
1815 }
1816
1817 its->vgic_its_base = addr;
1818 iodev->regions = its_registers;
1819 iodev->nr_regions = ARRAY_SIZE(its_registers);
1820 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1821
1822 iodev->base_addr = its->vgic_its_base;
1823 iodev->iodev_type = IODEV_ITS;
1824 iodev->its = its;
1825 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1826 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1827 out:
1828 mutex_unlock(&kvm->slots_lock);
1829
1830 return ret;
1831 }
1832
1833 /* Default is 16 cached LPIs per vcpu */
1834 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1835
1836 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1837 {
1838 struct vgic_dist *dist = &kvm->arch.vgic;
1839 unsigned int sz;
1840 int i;
1841
1842 if (!list_empty(&dist->lpi_translation_cache))
1843 return;
1844
1845 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1846
1847 for (i = 0; i < sz; i++) {
1848 struct vgic_translation_cache_entry *cte;
1849
1850 /* An allocation failure is not fatal */
1851 cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1852 if (WARN_ON(!cte))
1853 break;
1854
1855 INIT_LIST_HEAD(&cte->entry);
1856 list_add(&cte->entry, &dist->lpi_translation_cache);
1857 }
1858 }
1859
1860 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1861 {
1862 struct vgic_dist *dist = &kvm->arch.vgic;
1863 struct vgic_translation_cache_entry *cte, *tmp;
1864
1865 vgic_its_invalidate_cache(kvm);
1866
1867 list_for_each_entry_safe(cte, tmp,
1868 &dist->lpi_translation_cache, entry) {
1869 list_del(&cte->entry);
1870 kfree(cte);
1871 }
1872 }
1873
1874 #define INITIAL_BASER_VALUE \
1875 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1876 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1877 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1878 GITS_BASER_PAGE_SIZE_64K)
1879
1880 #define INITIAL_PROPBASER_VALUE \
1881 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1882 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1883 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1884
1885 static int vgic_its_create(struct kvm_device *dev, u32 type)
1886 {
1887 struct vgic_its *its;
1888
1889 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1890 return -ENODEV;
1891
1892 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1893 if (!its)
1894 return -ENOMEM;
1895
1896 if (vgic_initialized(dev->kvm)) {
1897 int ret = vgic_v4_init(dev->kvm);
1898 if (ret < 0) {
1899 kfree(its);
1900 return ret;
1901 }
1902
1903 vgic_lpi_translation_cache_init(dev->kvm);
1904 }
1905
1906 mutex_init(&its->its_lock);
1907 mutex_init(&its->cmd_lock);
1908
1909 its->vgic_its_base = VGIC_ADDR_UNDEF;
1910
1911 INIT_LIST_HEAD(&its->device_list);
1912 INIT_LIST_HEAD(&its->collection_list);
1913
1914 dev->kvm->arch.vgic.msis_require_devid = true;
1915 dev->kvm->arch.vgic.has_its = true;
1916 its->enabled = false;
1917 its->dev = dev;
1918
1919 its->baser_device_table = INITIAL_BASER_VALUE |
1920 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1921 its->baser_coll_table = INITIAL_BASER_VALUE |
1922 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1923 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1924
1925 dev->private = its;
1926
1927 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1928 }
1929
1930 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1931 {
1932 struct kvm *kvm = kvm_dev->kvm;
1933 struct vgic_its *its = kvm_dev->private;
1934
1935 mutex_lock(&its->its_lock);
1936
1937 vgic_its_free_device_list(kvm, its);
1938 vgic_its_free_collection_list(kvm, its);
1939
1940 mutex_unlock(&its->its_lock);
1941 kfree(its);
1942 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1943 }
1944
1945 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1946 struct kvm_device_attr *attr)
1947 {
1948 const struct vgic_register_region *region;
1949 gpa_t offset = attr->attr;
1950 int align;
1951
1952 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1953
1954 if (offset & align)
1955 return -EINVAL;
1956
1957 region = vgic_find_mmio_region(its_registers,
1958 ARRAY_SIZE(its_registers),
1959 offset);
1960 if (!region)
1961 return -ENXIO;
1962
1963 return 0;
1964 }
1965
1966 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1967 struct kvm_device_attr *attr,
1968 u64 *reg, bool is_write)
1969 {
1970 const struct vgic_register_region *region;
1971 struct vgic_its *its;
1972 gpa_t addr, offset;
1973 unsigned int len;
1974 int align, ret = 0;
1975
1976 its = dev->private;
1977 offset = attr->attr;
1978
1979 /*
1980 * Although the spec supports upper/lower 32-bit accesses to
1981 * 64-bit ITS registers, the userspace ABI requires 64-bit
1982 * accesses to all 64-bit wide registers. We therefore only
1983 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1984 * registers
1985 */
1986 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1987 align = 0x3;
1988 else
1989 align = 0x7;
1990
1991 if (offset & align)
1992 return -EINVAL;
1993
1994 mutex_lock(&dev->kvm->lock);
1995
1996 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1997 ret = -ENXIO;
1998 goto out;
1999 }
2000
2001 region = vgic_find_mmio_region(its_registers,
2002 ARRAY_SIZE(its_registers),
2003 offset);
2004 if (!region) {
2005 ret = -ENXIO;
2006 goto out;
2007 }
2008
2009 if (!lock_all_vcpus(dev->kvm)) {
2010 ret = -EBUSY;
2011 goto out;
2012 }
2013
2014 addr = its->vgic_its_base + offset;
2015
2016 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2017
2018 if (is_write) {
2019 if (region->uaccess_its_write)
2020 ret = region->uaccess_its_write(dev->kvm, its, addr,
2021 len, *reg);
2022 else
2023 region->its_write(dev->kvm, its, addr, len, *reg);
2024 } else {
2025 *reg = region->its_read(dev->kvm, its, addr, len);
2026 }
2027 unlock_all_vcpus(dev->kvm);
2028 out:
2029 mutex_unlock(&dev->kvm->lock);
2030 return ret;
2031 }
2032
2033 static u32 compute_next_devid_offset(struct list_head *h,
2034 struct its_device *dev)
2035 {
2036 struct its_device *next;
2037 u32 next_offset;
2038
2039 if (list_is_last(&dev->dev_list, h))
2040 return 0;
2041 next = list_next_entry(dev, dev_list);
2042 next_offset = next->device_id - dev->device_id;
2043
2044 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2045 }
2046
2047 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2048 {
2049 struct its_ite *next;
2050 u32 next_offset;
2051
2052 if (list_is_last(&ite->ite_list, h))
2053 return 0;
2054 next = list_next_entry(ite, ite_list);
2055 next_offset = next->event_id - ite->event_id;
2056
2057 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2058 }
2059
2060 /**
2061 * entry_fn_t - Callback called on a table entry restore path
2062 * @its: its handle
2063 * @id: id of the entry
2064 * @entry: pointer to the entry
2065 * @opaque: pointer to an opaque data
2066 *
2067 * Return: < 0 on error, 0 if last element was identified, id offset to next
2068 * element otherwise
2069 */
2070 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2071 void *opaque);
2072
2073 /**
2074 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2075 * to each entry
2076 *
2077 * @its: its handle
2078 * @base: base gpa of the table
2079 * @size: size of the table in bytes
2080 * @esz: entry size in bytes
2081 * @start_id: the ID of the first entry in the table
2082 * (non zero for 2d level tables)
2083 * @fn: function to apply on each entry
2084 *
2085 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2086 * (the last element may not be found on second level tables)
2087 */
2088 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2089 int start_id, entry_fn_t fn, void *opaque)
2090 {
2091 struct kvm *kvm = its->dev->kvm;
2092 unsigned long len = size;
2093 int id = start_id;
2094 gpa_t gpa = base;
2095 char entry[ESZ_MAX];
2096 int ret;
2097
2098 memset(entry, 0, esz);
2099
2100 while (len > 0) {
2101 int next_offset;
2102 size_t byte_offset;
2103
2104 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2105 if (ret)
2106 return ret;
2107
2108 next_offset = fn(its, id, entry, opaque);
2109 if (next_offset <= 0)
2110 return next_offset;
2111
2112 byte_offset = next_offset * esz;
2113 id += next_offset;
2114 gpa += byte_offset;
2115 len -= byte_offset;
2116 }
2117 return 1;
2118 }
2119
2120 /**
2121 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2122 */
2123 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2124 struct its_ite *ite, gpa_t gpa, int ite_esz)
2125 {
2126 struct kvm *kvm = its->dev->kvm;
2127 u32 next_offset;
2128 u64 val;
2129
2130 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2131 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2132 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2133 ite->collection->collection_id;
2134 val = cpu_to_le64(val);
2135 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2136 }
2137
2138 /**
2139 * vgic_its_restore_ite - restore an interrupt translation entry
2140 * @event_id: id used for indexing
2141 * @ptr: pointer to the ITE entry
2142 * @opaque: pointer to the its_device
2143 */
2144 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2145 void *ptr, void *opaque)
2146 {
2147 struct its_device *dev = (struct its_device *)opaque;
2148 struct its_collection *collection;
2149 struct kvm *kvm = its->dev->kvm;
2150 struct kvm_vcpu *vcpu = NULL;
2151 u64 val;
2152 u64 *p = (u64 *)ptr;
2153 struct vgic_irq *irq;
2154 u32 coll_id, lpi_id;
2155 struct its_ite *ite;
2156 u32 offset;
2157
2158 val = *p;
2159
2160 val = le64_to_cpu(val);
2161
2162 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2163 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2164
2165 if (!lpi_id)
2166 return 1; /* invalid entry, no choice but to scan next entry */
2167
2168 if (lpi_id < VGIC_MIN_LPI)
2169 return -EINVAL;
2170
2171 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2172 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2173 return -EINVAL;
2174
2175 collection = find_collection(its, coll_id);
2176 if (!collection)
2177 return -EINVAL;
2178
2179 ite = vgic_its_alloc_ite(dev, collection, event_id);
2180 if (IS_ERR(ite))
2181 return PTR_ERR(ite);
2182
2183 if (its_is_collection_mapped(collection))
2184 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2185
2186 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2187 if (IS_ERR(irq))
2188 return PTR_ERR(irq);
2189 ite->irq = irq;
2190
2191 return offset;
2192 }
2193
2194 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2195 struct list_head *b)
2196 {
2197 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2198 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2199
2200 if (itea->event_id < iteb->event_id)
2201 return -1;
2202 else
2203 return 1;
2204 }
2205
2206 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2207 {
2208 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2209 gpa_t base = device->itt_addr;
2210 struct its_ite *ite;
2211 int ret;
2212 int ite_esz = abi->ite_esz;
2213
2214 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2215
2216 list_for_each_entry(ite, &device->itt_head, ite_list) {
2217 gpa_t gpa = base + ite->event_id * ite_esz;
2218
2219 /*
2220 * If an LPI carries the HW bit, this means that this
2221 * interrupt is controlled by GICv4, and we do not
2222 * have direct access to that state. Let's simply fail
2223 * the save operation...
2224 */
2225 if (ite->irq->hw)
2226 return -EACCES;
2227
2228 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2229 if (ret)
2230 return ret;
2231 }
2232 return 0;
2233 }
2234
2235 /**
2236 * vgic_its_restore_itt - restore the ITT of a device
2237 *
2238 * @its: its handle
2239 * @dev: device handle
2240 *
2241 * Return 0 on success, < 0 on error
2242 */
2243 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2244 {
2245 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2246 gpa_t base = dev->itt_addr;
2247 int ret;
2248 int ite_esz = abi->ite_esz;
2249 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2250
2251 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2252 vgic_its_restore_ite, dev);
2253
2254 /* scan_its_table returns +1 if all ITEs are invalid */
2255 if (ret > 0)
2256 ret = 0;
2257
2258 return ret;
2259 }
2260
2261 /**
2262 * vgic_its_save_dte - Save a device table entry at a given GPA
2263 *
2264 * @its: ITS handle
2265 * @dev: ITS device
2266 * @ptr: GPA
2267 */
2268 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2269 gpa_t ptr, int dte_esz)
2270 {
2271 struct kvm *kvm = its->dev->kvm;
2272 u64 val, itt_addr_field;
2273 u32 next_offset;
2274
2275 itt_addr_field = dev->itt_addr >> 8;
2276 next_offset = compute_next_devid_offset(&its->device_list, dev);
2277 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2278 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2279 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2280 (dev->num_eventid_bits - 1));
2281 val = cpu_to_le64(val);
2282 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2283 }
2284
2285 /**
2286 * vgic_its_restore_dte - restore a device table entry
2287 *
2288 * @its: its handle
2289 * @id: device id the DTE corresponds to
2290 * @ptr: kernel VA where the 8 byte DTE is located
2291 * @opaque: unused
2292 *
2293 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2294 * next dte otherwise
2295 */
2296 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2297 void *ptr, void *opaque)
2298 {
2299 struct its_device *dev;
2300 gpa_t itt_addr;
2301 u8 num_eventid_bits;
2302 u64 entry = *(u64 *)ptr;
2303 bool valid;
2304 u32 offset;
2305 int ret;
2306
2307 entry = le64_to_cpu(entry);
2308
2309 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2310 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2311 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2312 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2313
2314 if (!valid)
2315 return 1;
2316
2317 /* dte entry is valid */
2318 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2319
2320 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2321 if (IS_ERR(dev))
2322 return PTR_ERR(dev);
2323
2324 ret = vgic_its_restore_itt(its, dev);
2325 if (ret) {
2326 vgic_its_free_device(its->dev->kvm, dev);
2327 return ret;
2328 }
2329
2330 return offset;
2331 }
2332
2333 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2334 struct list_head *b)
2335 {
2336 struct its_device *deva = container_of(a, struct its_device, dev_list);
2337 struct its_device *devb = container_of(b, struct its_device, dev_list);
2338
2339 if (deva->device_id < devb->device_id)
2340 return -1;
2341 else
2342 return 1;
2343 }
2344
2345 /**
2346 * vgic_its_save_device_tables - Save the device table and all ITT
2347 * into guest RAM
2348 *
2349 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2350 * returns the GPA of the device entry
2351 */
2352 static int vgic_its_save_device_tables(struct vgic_its *its)
2353 {
2354 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2355 u64 baser = its->baser_device_table;
2356 struct its_device *dev;
2357 int dte_esz = abi->dte_esz;
2358
2359 if (!(baser & GITS_BASER_VALID))
2360 return 0;
2361
2362 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2363
2364 list_for_each_entry(dev, &its->device_list, dev_list) {
2365 int ret;
2366 gpa_t eaddr;
2367
2368 if (!vgic_its_check_id(its, baser,
2369 dev->device_id, &eaddr))
2370 return -EINVAL;
2371
2372 ret = vgic_its_save_itt(its, dev);
2373 if (ret)
2374 return ret;
2375
2376 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2377 if (ret)
2378 return ret;
2379 }
2380 return 0;
2381 }
2382
2383 /**
2384 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2385 *
2386 * @its: its handle
2387 * @id: index of the entry in the L1 table
2388 * @addr: kernel VA
2389 * @opaque: unused
2390 *
2391 * L1 table entries are scanned by steps of 1 entry
2392 * Return < 0 if error, 0 if last dte was found when scanning the L2
2393 * table, +1 otherwise (meaning next L1 entry must be scanned)
2394 */
2395 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2396 void *opaque)
2397 {
2398 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2399 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2400 u64 entry = *(u64 *)addr;
2401 int dte_esz = abi->dte_esz;
2402 gpa_t gpa;
2403 int ret;
2404
2405 entry = le64_to_cpu(entry);
2406
2407 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2408 return 1;
2409
2410 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2411
2412 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2413 l2_start_id, vgic_its_restore_dte, NULL);
2414
2415 return ret;
2416 }
2417
2418 /**
2419 * vgic_its_restore_device_tables - Restore the device table and all ITT
2420 * from guest RAM to internal data structs
2421 */
2422 static int vgic_its_restore_device_tables(struct vgic_its *its)
2423 {
2424 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2425 u64 baser = its->baser_device_table;
2426 int l1_esz, ret;
2427 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2428 gpa_t l1_gpa;
2429
2430 if (!(baser & GITS_BASER_VALID))
2431 return 0;
2432
2433 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2434
2435 if (baser & GITS_BASER_INDIRECT) {
2436 l1_esz = GITS_LVL1_ENTRY_SIZE;
2437 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2438 handle_l1_dte, NULL);
2439 } else {
2440 l1_esz = abi->dte_esz;
2441 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2442 vgic_its_restore_dte, NULL);
2443 }
2444
2445 /* scan_its_table returns +1 if all entries are invalid */
2446 if (ret > 0)
2447 ret = 0;
2448
2449 return ret;
2450 }
2451
2452 static int vgic_its_save_cte(struct vgic_its *its,
2453 struct its_collection *collection,
2454 gpa_t gpa, int esz)
2455 {
2456 u64 val;
2457
2458 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2459 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2460 collection->collection_id);
2461 val = cpu_to_le64(val);
2462 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2463 }
2464
2465 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2466 {
2467 struct its_collection *collection;
2468 struct kvm *kvm = its->dev->kvm;
2469 u32 target_addr, coll_id;
2470 u64 val;
2471 int ret;
2472
2473 BUG_ON(esz > sizeof(val));
2474 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2475 if (ret)
2476 return ret;
2477 val = le64_to_cpu(val);
2478 if (!(val & KVM_ITS_CTE_VALID_MASK))
2479 return 0;
2480
2481 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2482 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2483
2484 if (target_addr != COLLECTION_NOT_MAPPED &&
2485 target_addr >= atomic_read(&kvm->online_vcpus))
2486 return -EINVAL;
2487
2488 collection = find_collection(its, coll_id);
2489 if (collection)
2490 return -EEXIST;
2491 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2492 if (ret)
2493 return ret;
2494 collection->target_addr = target_addr;
2495 return 1;
2496 }
2497
2498 /**
2499 * vgic_its_save_collection_table - Save the collection table into
2500 * guest RAM
2501 */
2502 static int vgic_its_save_collection_table(struct vgic_its *its)
2503 {
2504 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2505 u64 baser = its->baser_coll_table;
2506 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2507 struct its_collection *collection;
2508 u64 val;
2509 size_t max_size, filled = 0;
2510 int ret, cte_esz = abi->cte_esz;
2511
2512 if (!(baser & GITS_BASER_VALID))
2513 return 0;
2514
2515 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2516
2517 list_for_each_entry(collection, &its->collection_list, coll_list) {
2518 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2519 if (ret)
2520 return ret;
2521 gpa += cte_esz;
2522 filled += cte_esz;
2523 }
2524
2525 if (filled == max_size)
2526 return 0;
2527
2528 /*
2529 * table is not fully filled, add a last dummy element
2530 * with valid bit unset
2531 */
2532 val = 0;
2533 BUG_ON(cte_esz > sizeof(val));
2534 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2535 return ret;
2536 }
2537
2538 /**
2539 * vgic_its_restore_collection_table - reads the collection table
2540 * in guest memory and restores the ITS internal state. Requires the
2541 * BASER registers to be restored before.
2542 */
2543 static int vgic_its_restore_collection_table(struct vgic_its *its)
2544 {
2545 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2546 u64 baser = its->baser_coll_table;
2547 int cte_esz = abi->cte_esz;
2548 size_t max_size, read = 0;
2549 gpa_t gpa;
2550 int ret;
2551
2552 if (!(baser & GITS_BASER_VALID))
2553 return 0;
2554
2555 gpa = GITS_BASER_ADDR_48_to_52(baser);
2556
2557 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2558
2559 while (read < max_size) {
2560 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2561 if (ret <= 0)
2562 break;
2563 gpa += cte_esz;
2564 read += cte_esz;
2565 }
2566
2567 if (ret > 0)
2568 return 0;
2569
2570 return ret;
2571 }
2572
2573 /**
2574 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2575 * according to v0 ABI
2576 */
2577 static int vgic_its_save_tables_v0(struct vgic_its *its)
2578 {
2579 int ret;
2580
2581 ret = vgic_its_save_device_tables(its);
2582 if (ret)
2583 return ret;
2584
2585 return vgic_its_save_collection_table(its);
2586 }
2587
2588 /**
2589 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2590 * to internal data structs according to V0 ABI
2591 *
2592 */
2593 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2594 {
2595 int ret;
2596
2597 ret = vgic_its_restore_collection_table(its);
2598 if (ret)
2599 return ret;
2600
2601 return vgic_its_restore_device_tables(its);
2602 }
2603
2604 static int vgic_its_commit_v0(struct vgic_its *its)
2605 {
2606 const struct vgic_its_abi *abi;
2607
2608 abi = vgic_its_get_abi(its);
2609 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2610 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2611
2612 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2613 << GITS_BASER_ENTRY_SIZE_SHIFT);
2614
2615 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2616 << GITS_BASER_ENTRY_SIZE_SHIFT);
2617 return 0;
2618 }
2619
2620 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2621 {
2622 /* We need to keep the ABI specific field values */
2623 its->baser_coll_table &= ~GITS_BASER_VALID;
2624 its->baser_device_table &= ~GITS_BASER_VALID;
2625 its->cbaser = 0;
2626 its->creadr = 0;
2627 its->cwriter = 0;
2628 its->enabled = 0;
2629 vgic_its_free_device_list(kvm, its);
2630 vgic_its_free_collection_list(kvm, its);
2631 }
2632
2633 static int vgic_its_has_attr(struct kvm_device *dev,
2634 struct kvm_device_attr *attr)
2635 {
2636 switch (attr->group) {
2637 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2638 switch (attr->attr) {
2639 case KVM_VGIC_ITS_ADDR_TYPE:
2640 return 0;
2641 }
2642 break;
2643 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2644 switch (attr->attr) {
2645 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2646 return 0;
2647 case KVM_DEV_ARM_ITS_CTRL_RESET:
2648 return 0;
2649 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2650 return 0;
2651 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2652 return 0;
2653 }
2654 break;
2655 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2656 return vgic_its_has_attr_regs(dev, attr);
2657 }
2658 return -ENXIO;
2659 }
2660
2661 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2662 {
2663 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2664 int ret = 0;
2665
2666 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2667 return 0;
2668
2669 mutex_lock(&kvm->lock);
2670 mutex_lock(&its->its_lock);
2671
2672 if (!lock_all_vcpus(kvm)) {
2673 mutex_unlock(&its->its_lock);
2674 mutex_unlock(&kvm->lock);
2675 return -EBUSY;
2676 }
2677
2678 switch (attr) {
2679 case KVM_DEV_ARM_ITS_CTRL_RESET:
2680 vgic_its_reset(kvm, its);
2681 break;
2682 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2683 ret = abi->save_tables(its);
2684 break;
2685 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2686 ret = abi->restore_tables(its);
2687 break;
2688 }
2689
2690 unlock_all_vcpus(kvm);
2691 mutex_unlock(&its->its_lock);
2692 mutex_unlock(&kvm->lock);
2693 return ret;
2694 }
2695
2696 static int vgic_its_set_attr(struct kvm_device *dev,
2697 struct kvm_device_attr *attr)
2698 {
2699 struct vgic_its *its = dev->private;
2700 int ret;
2701
2702 switch (attr->group) {
2703 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2704 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2705 unsigned long type = (unsigned long)attr->attr;
2706 u64 addr;
2707
2708 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2709 return -ENODEV;
2710
2711 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2712 return -EFAULT;
2713
2714 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2715 addr, SZ_64K);
2716 if (ret)
2717 return ret;
2718
2719 return vgic_register_its_iodev(dev->kvm, its, addr);
2720 }
2721 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2722 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2723 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2724 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2725 u64 reg;
2726
2727 if (get_user(reg, uaddr))
2728 return -EFAULT;
2729
2730 return vgic_its_attr_regs_access(dev, attr, &reg, true);
2731 }
2732 }
2733 return -ENXIO;
2734 }
2735
2736 static int vgic_its_get_attr(struct kvm_device *dev,
2737 struct kvm_device_attr *attr)
2738 {
2739 switch (attr->group) {
2740 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2741 struct vgic_its *its = dev->private;
2742 u64 addr = its->vgic_its_base;
2743 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2744 unsigned long type = (unsigned long)attr->attr;
2745
2746 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2747 return -ENODEV;
2748
2749 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2750 return -EFAULT;
2751 break;
2752 }
2753 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2754 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2755 u64 reg;
2756 int ret;
2757
2758 ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2759 if (ret)
2760 return ret;
2761 return put_user(reg, uaddr);
2762 }
2763 default:
2764 return -ENXIO;
2765 }
2766
2767 return 0;
2768 }
2769
2770 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2771 .name = "kvm-arm-vgic-its",
2772 .create = vgic_its_create,
2773 .destroy = vgic_its_destroy,
2774 .set_attr = vgic_its_set_attr,
2775 .get_attr = vgic_its_get_attr,
2776 .has_attr = vgic_its_has_attr,
2777 };
2778
2779 int kvm_vgic_register_its_device(void)
2780 {
2781 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2782 KVM_DEV_TYPE_ARM_VGIC_ITS);
2783 }