]> git.ipfire.org Git - thirdparty/linux.git/blob - virt/kvm/arm/vgic/vgic-mmio-v3.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGICv3 MMIO handling functions
4 */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 unsigned int num)
24 {
25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 unsigned long val)
31 {
32 int lower = (offset & 4) * 8;
33 int upper = lower + 8 * len - 1;
34
35 reg &= ~GENMASK_ULL(upper, lower);
36 val &= GENMASK_ULL(len * 8 - 1, 0);
37
38 return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43 struct vgic_dist *dist = &kvm->arch.vgic;
44
45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 return false;
47
48 return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 return (kvm_vgic_global_state.has_gicv4_1 ||
54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * their configured groups.
62 */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 gpa_t addr, unsigned int len)
66 {
67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 u32 value = 0;
69
70 switch (addr & 0x0c) {
71 case GICD_CTLR:
72 if (vgic->enabled)
73 value |= GICD_CTLR_ENABLE_SS_G1;
74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 if (vgic->nassgireq)
76 value |= GICD_CTLR_nASSGIreq;
77 break;
78 case GICD_TYPER:
79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 value = (value >> 5) - 1;
81 if (vgic_has_its(vcpu->kvm)) {
82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 value |= GICD_TYPER_LPIS;
84 } else {
85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 }
87 break;
88 case GICD_TYPER2:
89 if (kvm_vgic_global_state.has_gicv4_1)
90 value = GICD_TYPER2_nASSGIcap;
91 break;
92 case GICD_IIDR:
93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 break;
97 default:
98 return 0;
99 }
100
101 return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110 switch (addr & 0x0c) {
111 case GICD_CTLR: {
112 bool was_enabled, is_hwsgi;
113
114 mutex_lock(&vcpu->kvm->lock);
115
116 was_enabled = dist->enabled;
117 is_hwsgi = dist->nassgireq;
118
119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121 /* Not a GICv4.1? No HW SGIs */
122 if (!kvm_vgic_global_state.has_gicv4_1)
123 val &= ~GICD_CTLR_nASSGIreq;
124
125 /* Dist stays enabled? nASSGIreq is RO */
126 if (was_enabled && dist->enabled) {
127 val &= ~GICD_CTLR_nASSGIreq;
128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 }
130
131 /* Switching HW SGIs? */
132 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 if (is_hwsgi != dist->nassgireq)
134 vgic_v4_configure_vsgis(vcpu->kvm);
135
136 if (kvm_vgic_global_state.has_gicv4_1 &&
137 was_enabled != dist->enabled)
138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 else if (!was_enabled && dist->enabled)
140 vgic_kick_vcpus(vcpu->kvm);
141
142 mutex_unlock(&vcpu->kvm->lock);
143 break;
144 }
145 case GICD_TYPER:
146 case GICD_TYPER2:
147 case GICD_IIDR:
148 /* This is at best for documentation purposes... */
149 return;
150 }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 gpa_t addr, unsigned int len,
155 unsigned long val)
156 {
157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158
159 switch (addr & 0x0c) {
160 case GICD_TYPER2:
161 case GICD_IIDR:
162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 return -EINVAL;
164 return 0;
165 case GICD_CTLR:
166 /* Not a GICv4.1? No HW SGIs */
167 if (!kvm_vgic_global_state.has_gicv4_1)
168 val &= ~GICD_CTLR_nASSGIreq;
169
170 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
171 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
172 return 0;
173 }
174
175 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
176 return 0;
177 }
178
179 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
180 gpa_t addr, unsigned int len)
181 {
182 int intid = VGIC_ADDR_TO_INTID(addr, 64);
183 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
184 unsigned long ret = 0;
185
186 if (!irq)
187 return 0;
188
189 /* The upper word is RAZ for us. */
190 if (!(addr & 4))
191 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
192
193 vgic_put_irq(vcpu->kvm, irq);
194 return ret;
195 }
196
197 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
198 gpa_t addr, unsigned int len,
199 unsigned long val)
200 {
201 int intid = VGIC_ADDR_TO_INTID(addr, 64);
202 struct vgic_irq *irq;
203 unsigned long flags;
204
205 /* The upper word is WI for us since we don't implement Aff3. */
206 if (addr & 4)
207 return;
208
209 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
210
211 if (!irq)
212 return;
213
214 raw_spin_lock_irqsave(&irq->irq_lock, flags);
215
216 /* We only care about and preserve Aff0, Aff1 and Aff2. */
217 irq->mpidr = val & GENMASK(23, 0);
218 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
219
220 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
221 vgic_put_irq(vcpu->kvm, irq);
222 }
223
224 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
225 gpa_t addr, unsigned int len)
226 {
227 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
228
229 return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
230 }
231
232
233 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
234 gpa_t addr, unsigned int len,
235 unsigned long val)
236 {
237 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
238 bool was_enabled = vgic_cpu->lpis_enabled;
239
240 if (!vgic_has_its(vcpu->kvm))
241 return;
242
243 vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
244
245 if (was_enabled && !vgic_cpu->lpis_enabled) {
246 vgic_flush_pending_lpis(vcpu);
247 vgic_its_invalidate_cache(vcpu->kvm);
248 }
249
250 if (!was_enabled && vgic_cpu->lpis_enabled)
251 vgic_enable_lpis(vcpu);
252 }
253
254 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
255 gpa_t addr, unsigned int len)
256 {
257 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
258 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
259 struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
260 int target_vcpu_id = vcpu->vcpu_id;
261 gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
262 (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
263 u64 value;
264
265 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
266 value |= ((target_vcpu_id & 0xffff) << 8);
267
268 if (addr == last_rdist_typer)
269 value |= GICR_TYPER_LAST;
270 if (vgic_has_its(vcpu->kvm))
271 value |= GICR_TYPER_PLPIS;
272
273 return extract_bytes(value, addr & 7, len);
274 }
275
276 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
277 gpa_t addr, unsigned int len)
278 {
279 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
280 }
281
282 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
283 gpa_t addr, unsigned int len)
284 {
285 switch (addr & 0xffff) {
286 case GICD_PIDR2:
287 /* report a GICv3 compliant implementation */
288 return 0x3b;
289 }
290
291 return 0;
292 }
293
294 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
295 gpa_t addr, unsigned int len)
296 {
297 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
298 u32 value = 0;
299 int i;
300
301 /*
302 * pending state of interrupt is latched in pending_latch variable.
303 * Userspace will save and restore pending state and line_level
304 * separately.
305 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
306 * for handling of ISPENDR and ICPENDR.
307 */
308 for (i = 0; i < len * 8; i++) {
309 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
310 bool state = irq->pending_latch;
311
312 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
313 int err;
314
315 err = irq_get_irqchip_state(irq->host_irq,
316 IRQCHIP_STATE_PENDING,
317 &state);
318 WARN_ON(err);
319 }
320
321 if (state)
322 value |= (1U << i);
323
324 vgic_put_irq(vcpu->kvm, irq);
325 }
326
327 return value;
328 }
329
330 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
331 gpa_t addr, unsigned int len,
332 unsigned long val)
333 {
334 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
335 int i;
336 unsigned long flags;
337
338 for (i = 0; i < len * 8; i++) {
339 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
340
341 raw_spin_lock_irqsave(&irq->irq_lock, flags);
342 if (test_bit(i, &val)) {
343 /*
344 * pending_latch is set irrespective of irq type
345 * (level or edge) to avoid dependency that VM should
346 * restore irq config before pending info.
347 */
348 irq->pending_latch = true;
349 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
350 } else {
351 irq->pending_latch = false;
352 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
353 }
354
355 vgic_put_irq(vcpu->kvm, irq);
356 }
357
358 return 0;
359 }
360
361 /* We want to avoid outer shareable. */
362 u64 vgic_sanitise_shareability(u64 field)
363 {
364 switch (field) {
365 case GIC_BASER_OuterShareable:
366 return GIC_BASER_InnerShareable;
367 default:
368 return field;
369 }
370 }
371
372 /* Avoid any inner non-cacheable mapping. */
373 u64 vgic_sanitise_inner_cacheability(u64 field)
374 {
375 switch (field) {
376 case GIC_BASER_CACHE_nCnB:
377 case GIC_BASER_CACHE_nC:
378 return GIC_BASER_CACHE_RaWb;
379 default:
380 return field;
381 }
382 }
383
384 /* Non-cacheable or same-as-inner are OK. */
385 u64 vgic_sanitise_outer_cacheability(u64 field)
386 {
387 switch (field) {
388 case GIC_BASER_CACHE_SameAsInner:
389 case GIC_BASER_CACHE_nC:
390 return field;
391 default:
392 return GIC_BASER_CACHE_nC;
393 }
394 }
395
396 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
397 u64 (*sanitise_fn)(u64))
398 {
399 u64 field = (reg & field_mask) >> field_shift;
400
401 field = sanitise_fn(field) << field_shift;
402 return (reg & ~field_mask) | field;
403 }
404
405 #define PROPBASER_RES0_MASK \
406 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
407 #define PENDBASER_RES0_MASK \
408 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
409 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
410
411 static u64 vgic_sanitise_pendbaser(u64 reg)
412 {
413 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
414 GICR_PENDBASER_SHAREABILITY_SHIFT,
415 vgic_sanitise_shareability);
416 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
417 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
418 vgic_sanitise_inner_cacheability);
419 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
420 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
421 vgic_sanitise_outer_cacheability);
422
423 reg &= ~PENDBASER_RES0_MASK;
424
425 return reg;
426 }
427
428 static u64 vgic_sanitise_propbaser(u64 reg)
429 {
430 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
431 GICR_PROPBASER_SHAREABILITY_SHIFT,
432 vgic_sanitise_shareability);
433 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
434 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
435 vgic_sanitise_inner_cacheability);
436 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
437 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
438 vgic_sanitise_outer_cacheability);
439
440 reg &= ~PROPBASER_RES0_MASK;
441 return reg;
442 }
443
444 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
445 gpa_t addr, unsigned int len)
446 {
447 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
448
449 return extract_bytes(dist->propbaser, addr & 7, len);
450 }
451
452 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
453 gpa_t addr, unsigned int len,
454 unsigned long val)
455 {
456 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
457 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
458 u64 old_propbaser, propbaser;
459
460 /* Storing a value with LPIs already enabled is undefined */
461 if (vgic_cpu->lpis_enabled)
462 return;
463
464 do {
465 old_propbaser = READ_ONCE(dist->propbaser);
466 propbaser = old_propbaser;
467 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
468 propbaser = vgic_sanitise_propbaser(propbaser);
469 } while (cmpxchg64(&dist->propbaser, old_propbaser,
470 propbaser) != old_propbaser);
471 }
472
473 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
474 gpa_t addr, unsigned int len)
475 {
476 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
477 u64 value = vgic_cpu->pendbaser;
478
479 value &= ~GICR_PENDBASER_PTZ;
480
481 return extract_bytes(value, addr & 7, len);
482 }
483
484 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
485 gpa_t addr, unsigned int len,
486 unsigned long val)
487 {
488 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
489 u64 old_pendbaser, pendbaser;
490
491 /* Storing a value with LPIs already enabled is undefined */
492 if (vgic_cpu->lpis_enabled)
493 return;
494
495 do {
496 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
497 pendbaser = old_pendbaser;
498 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
499 pendbaser = vgic_sanitise_pendbaser(pendbaser);
500 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
501 pendbaser) != old_pendbaser);
502 }
503
504 /*
505 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
506 * redistributors, while SPIs are covered by registers in the distributor
507 * block. Trying to set private IRQs in this block gets ignored.
508 * We take some special care here to fix the calculation of the register
509 * offset.
510 */
511 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
512 { \
513 .reg_offset = off, \
514 .bits_per_irq = bpi, \
515 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
516 .access_flags = acc, \
517 .read = vgic_mmio_read_raz, \
518 .write = vgic_mmio_write_wi, \
519 }, { \
520 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
521 .bits_per_irq = bpi, \
522 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
523 .access_flags = acc, \
524 .read = rd, \
525 .write = wr, \
526 .uaccess_read = ur, \
527 .uaccess_write = uw, \
528 }
529
530 static const struct vgic_register_region vgic_v3_dist_registers[] = {
531 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
532 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
533 NULL, vgic_mmio_uaccess_write_v3_misc,
534 16, VGIC_ACCESS_32bit),
535 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
536 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
537 VGIC_ACCESS_32bit),
538 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
539 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
540 VGIC_ACCESS_32bit),
541 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
542 vgic_mmio_read_enable, vgic_mmio_write_senable,
543 NULL, vgic_uaccess_write_senable, 1,
544 VGIC_ACCESS_32bit),
545 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
546 vgic_mmio_read_enable, vgic_mmio_write_cenable,
547 NULL, vgic_uaccess_write_cenable, 1,
548 VGIC_ACCESS_32bit),
549 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
550 vgic_mmio_read_pending, vgic_mmio_write_spending,
551 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
552 VGIC_ACCESS_32bit),
553 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
554 vgic_mmio_read_pending, vgic_mmio_write_cpending,
555 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
556 VGIC_ACCESS_32bit),
557 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
558 vgic_mmio_read_active, vgic_mmio_write_sactive,
559 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
560 VGIC_ACCESS_32bit),
561 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
562 vgic_mmio_read_active, vgic_mmio_write_cactive,
563 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
564 1, VGIC_ACCESS_32bit),
565 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
566 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
567 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
568 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
569 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
570 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
571 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
572 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
573 VGIC_ACCESS_32bit),
574 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
575 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
576 VGIC_ACCESS_32bit),
577 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
578 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
579 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
580 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
581 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
582 VGIC_ACCESS_32bit),
583 };
584
585 static const struct vgic_register_region vgic_v3_rd_registers[] = {
586 /* RD_base registers */
587 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
588 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
589 VGIC_ACCESS_32bit),
590 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
591 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
592 VGIC_ACCESS_32bit),
593 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
594 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
595 VGIC_ACCESS_32bit),
596 REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
597 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
598 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
599 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
600 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
601 VGIC_ACCESS_32bit),
602 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
603 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
604 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
605 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
606 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
607 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
608 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
609 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
610 VGIC_ACCESS_32bit),
611 /* SGI_base registers */
612 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
613 vgic_mmio_read_group, vgic_mmio_write_group, 4,
614 VGIC_ACCESS_32bit),
615 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
616 vgic_mmio_read_enable, vgic_mmio_write_senable,
617 NULL, vgic_uaccess_write_senable, 4,
618 VGIC_ACCESS_32bit),
619 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
620 vgic_mmio_read_enable, vgic_mmio_write_cenable,
621 NULL, vgic_uaccess_write_cenable, 4,
622 VGIC_ACCESS_32bit),
623 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
624 vgic_mmio_read_pending, vgic_mmio_write_spending,
625 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
626 VGIC_ACCESS_32bit),
627 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
628 vgic_mmio_read_pending, vgic_mmio_write_cpending,
629 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
630 VGIC_ACCESS_32bit),
631 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
632 vgic_mmio_read_active, vgic_mmio_write_sactive,
633 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
634 VGIC_ACCESS_32bit),
635 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
636 vgic_mmio_read_active, vgic_mmio_write_cactive,
637 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
638 VGIC_ACCESS_32bit),
639 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
640 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
641 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
642 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
643 vgic_mmio_read_config, vgic_mmio_write_config, 8,
644 VGIC_ACCESS_32bit),
645 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
646 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
647 VGIC_ACCESS_32bit),
648 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
649 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
650 VGIC_ACCESS_32bit),
651 };
652
653 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
654 {
655 dev->regions = vgic_v3_dist_registers;
656 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
657
658 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
659
660 return SZ_64K;
661 }
662
663 /**
664 * vgic_register_redist_iodev - register a single redist iodev
665 * @vcpu: The VCPU to which the redistributor belongs
666 *
667 * Register a KVM iodev for this VCPU's redistributor using the address
668 * provided.
669 *
670 * Return 0 on success, -ERRNO otherwise.
671 */
672 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
673 {
674 struct kvm *kvm = vcpu->kvm;
675 struct vgic_dist *vgic = &kvm->arch.vgic;
676 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
677 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
678 struct vgic_redist_region *rdreg;
679 gpa_t rd_base;
680 int ret;
681
682 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
683 return 0;
684
685 /*
686 * We may be creating VCPUs before having set the base address for the
687 * redistributor region, in which case we will come back to this
688 * function for all VCPUs when the base address is set. Just return
689 * without doing any work for now.
690 */
691 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
692 if (!rdreg)
693 return 0;
694
695 if (!vgic_v3_check_base(kvm))
696 return -EINVAL;
697
698 vgic_cpu->rdreg = rdreg;
699
700 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
701
702 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
703 rd_dev->base_addr = rd_base;
704 rd_dev->iodev_type = IODEV_REDIST;
705 rd_dev->regions = vgic_v3_rd_registers;
706 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
707 rd_dev->redist_vcpu = vcpu;
708
709 mutex_lock(&kvm->slots_lock);
710 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
711 2 * SZ_64K, &rd_dev->dev);
712 mutex_unlock(&kvm->slots_lock);
713
714 if (ret)
715 return ret;
716
717 rdreg->free_index++;
718 return 0;
719 }
720
721 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
722 {
723 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
724
725 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
726 }
727
728 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
729 {
730 struct kvm_vcpu *vcpu;
731 int c, ret = 0;
732
733 kvm_for_each_vcpu(c, vcpu, kvm) {
734 ret = vgic_register_redist_iodev(vcpu);
735 if (ret)
736 break;
737 }
738
739 if (ret) {
740 /* The current c failed, so we start with the previous one. */
741 mutex_lock(&kvm->slots_lock);
742 for (c--; c >= 0; c--) {
743 vcpu = kvm_get_vcpu(kvm, c);
744 vgic_unregister_redist_iodev(vcpu);
745 }
746 mutex_unlock(&kvm->slots_lock);
747 }
748
749 return ret;
750 }
751
752 /**
753 * vgic_v3_insert_redist_region - Insert a new redistributor region
754 *
755 * Performs various checks before inserting the rdist region in the list.
756 * Those tests depend on whether the size of the rdist region is known
757 * (ie. count != 0). The list is sorted by rdist region index.
758 *
759 * @kvm: kvm handle
760 * @index: redist region index
761 * @base: base of the new rdist region
762 * @count: number of redistributors the region is made of (0 in the old style
763 * single region, whose size is induced from the number of vcpus)
764 *
765 * Return 0 on success, < 0 otherwise
766 */
767 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
768 gpa_t base, uint32_t count)
769 {
770 struct vgic_dist *d = &kvm->arch.vgic;
771 struct vgic_redist_region *rdreg;
772 struct list_head *rd_regions = &d->rd_regions;
773 size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
774 int ret;
775
776 /* single rdist region already set ?*/
777 if (!count && !list_empty(rd_regions))
778 return -EINVAL;
779
780 /* cross the end of memory ? */
781 if (base + size < base)
782 return -EINVAL;
783
784 if (list_empty(rd_regions)) {
785 if (index != 0)
786 return -EINVAL;
787 } else {
788 rdreg = list_last_entry(rd_regions,
789 struct vgic_redist_region, list);
790 if (index != rdreg->index + 1)
791 return -EINVAL;
792
793 /* Cannot add an explicitly sized regions after legacy region */
794 if (!rdreg->count)
795 return -EINVAL;
796 }
797
798 /*
799 * For legacy single-region redistributor regions (!count),
800 * check that the redistributor region does not overlap with the
801 * distributor's address space.
802 */
803 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
804 vgic_dist_overlap(kvm, base, size))
805 return -EINVAL;
806
807 /* collision with any other rdist region? */
808 if (vgic_v3_rdist_overlap(kvm, base, size))
809 return -EINVAL;
810
811 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
812 if (!rdreg)
813 return -ENOMEM;
814
815 rdreg->base = VGIC_ADDR_UNDEF;
816
817 ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
818 if (ret)
819 goto free;
820
821 rdreg->base = base;
822 rdreg->count = count;
823 rdreg->free_index = 0;
824 rdreg->index = index;
825
826 list_add_tail(&rdreg->list, rd_regions);
827 return 0;
828 free:
829 kfree(rdreg);
830 return ret;
831 }
832
833 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
834 {
835 int ret;
836
837 ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
838 if (ret)
839 return ret;
840
841 /*
842 * Register iodevs for each existing VCPU. Adding more VCPUs
843 * afterwards will register the iodevs when needed.
844 */
845 ret = vgic_register_all_redist_iodevs(kvm);
846 if (ret)
847 return ret;
848
849 return 0;
850 }
851
852 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
853 {
854 const struct vgic_register_region *region;
855 struct vgic_io_device iodev;
856 struct vgic_reg_attr reg_attr;
857 struct kvm_vcpu *vcpu;
858 gpa_t addr;
859 int ret;
860
861 ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
862 if (ret)
863 return ret;
864
865 vcpu = reg_attr.vcpu;
866 addr = reg_attr.addr;
867
868 switch (attr->group) {
869 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
870 iodev.regions = vgic_v3_dist_registers;
871 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
872 iodev.base_addr = 0;
873 break;
874 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
875 iodev.regions = vgic_v3_rd_registers;
876 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
877 iodev.base_addr = 0;
878 break;
879 }
880 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
881 u64 reg, id;
882
883 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
884 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
885 }
886 default:
887 return -ENXIO;
888 }
889
890 /* We only support aligned 32-bit accesses. */
891 if (addr & 3)
892 return -ENXIO;
893
894 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
895 if (!region)
896 return -ENXIO;
897
898 return 0;
899 }
900 /*
901 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
902 * generation register ICC_SGI1R_EL1) with a given VCPU.
903 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
904 * return -1.
905 */
906 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
907 {
908 unsigned long affinity;
909 int level0;
910
911 /*
912 * Split the current VCPU's MPIDR into affinity level 0 and the
913 * rest as this is what we have to compare against.
914 */
915 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
916 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
917 affinity &= ~MPIDR_LEVEL_MASK;
918
919 /* bail out if the upper three levels don't match */
920 if (sgi_aff != affinity)
921 return -1;
922
923 /* Is this VCPU's bit set in the mask ? */
924 if (!(sgi_cpu_mask & BIT(level0)))
925 return -1;
926
927 return level0;
928 }
929
930 /*
931 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
932 * so provide a wrapper to use the existing defines to isolate a certain
933 * affinity level.
934 */
935 #define SGI_AFFINITY_LEVEL(reg, level) \
936 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
937 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
938
939 /**
940 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
941 * @vcpu: The VCPU requesting a SGI
942 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
943 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
944 *
945 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
946 * This will trap in sys_regs.c and call this function.
947 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
948 * target processors as well as a bitmask of 16 Aff0 CPUs.
949 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
950 * check for matching ones. If this bit is set, we signal all, but not the
951 * calling VCPU.
952 */
953 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
954 {
955 struct kvm *kvm = vcpu->kvm;
956 struct kvm_vcpu *c_vcpu;
957 u16 target_cpus;
958 u64 mpidr;
959 int sgi, c;
960 int vcpu_id = vcpu->vcpu_id;
961 bool broadcast;
962 unsigned long flags;
963
964 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
965 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
966 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
967 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
968 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
969 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
970
971 /*
972 * We iterate over all VCPUs to find the MPIDRs matching the request.
973 * If we have handled one CPU, we clear its bit to detect early
974 * if we are already finished. This avoids iterating through all
975 * VCPUs when most of the times we just signal a single VCPU.
976 */
977 kvm_for_each_vcpu(c, c_vcpu, kvm) {
978 struct vgic_irq *irq;
979
980 /* Exit early if we have dealt with all requested CPUs */
981 if (!broadcast && target_cpus == 0)
982 break;
983
984 /* Don't signal the calling VCPU */
985 if (broadcast && c == vcpu_id)
986 continue;
987
988 if (!broadcast) {
989 int level0;
990
991 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
992 if (level0 == -1)
993 continue;
994
995 /* remove this matching VCPU from the mask */
996 target_cpus &= ~BIT(level0);
997 }
998
999 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1000
1001 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1002
1003 /*
1004 * An access targetting Group0 SGIs can only generate
1005 * those, while an access targetting Group1 SGIs can
1006 * generate interrupts of either group.
1007 */
1008 if (!irq->group || allow_group1) {
1009 if (!irq->hw) {
1010 irq->pending_latch = true;
1011 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1012 } else {
1013 /* HW SGI? Ask the GIC to inject it */
1014 int err;
1015 err = irq_set_irqchip_state(irq->host_irq,
1016 IRQCHIP_STATE_PENDING,
1017 true);
1018 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1019 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1020 }
1021 } else {
1022 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1023 }
1024
1025 vgic_put_irq(vcpu->kvm, irq);
1026 }
1027 }
1028
1029 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1030 int offset, u32 *val)
1031 {
1032 struct vgic_io_device dev = {
1033 .regions = vgic_v3_dist_registers,
1034 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1035 };
1036
1037 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1038 }
1039
1040 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1041 int offset, u32 *val)
1042 {
1043 struct vgic_io_device rd_dev = {
1044 .regions = vgic_v3_rd_registers,
1045 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1046 };
1047
1048 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1049 }
1050
1051 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1052 u32 intid, u64 *val)
1053 {
1054 if (intid % 32)
1055 return -EINVAL;
1056
1057 if (is_write)
1058 vgic_write_irq_line_level_info(vcpu, intid, *val);
1059 else
1060 *val = vgic_read_irq_line_level_info(vcpu, intid);
1061
1062 return 0;
1063 }