]> git.ipfire.org Git - thirdparty/linux.git/blob - virt/kvm/arm/vgic/vgic-mmio.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / virt / kvm / arm / vgic / vgic-mmio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGIC MMIO handling functions
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 gpa_t addr, unsigned int len)
21 {
22 return 0;
23 }
24
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 gpa_t addr, unsigned int len)
27 {
28 return -1UL;
29 }
30
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 unsigned int len, unsigned long val)
33 {
34 /* Ignore */
35 }
36
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 unsigned int len, unsigned long val)
39 {
40 /* Ignore */
41 return 0;
42 }
43
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 gpa_t addr, unsigned int len)
46 {
47 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 u32 value = 0;
49 int i;
50
51 /* Loop over all IRQs affected by this read */
52 for (i = 0; i < len * 8; i++) {
53 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54
55 if (irq->group)
56 value |= BIT(i);
57
58 vgic_put_irq(vcpu->kvm, irq);
59 }
60
61 return value;
62 }
63
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 unsigned int len, unsigned long val)
71 {
72 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 int i;
74 unsigned long flags;
75
76 for (i = 0; i < len * 8; i++) {
77 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78
79 raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 irq->group = !!(val & BIT(i));
81 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 vgic_update_vsgi(irq);
83 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 } else {
85 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 }
87
88 vgic_put_irq(vcpu->kvm, irq);
89 }
90 }
91
92 /*
93 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94 * of the enabled bit, so there is only one function for both here.
95 */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 gpa_t addr, unsigned int len)
98 {
99 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 u32 value = 0;
101 int i;
102
103 /* Loop over all IRQs affected by this read */
104 for (i = 0; i < len * 8; i++) {
105 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106
107 if (irq->enabled)
108 value |= (1U << i);
109
110 vgic_put_irq(vcpu->kvm, irq);
111 }
112
113 return value;
114 }
115
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 gpa_t addr, unsigned int len,
118 unsigned long val)
119 {
120 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 int i;
122 unsigned long flags;
123
124 for_each_set_bit(i, &val, len * 8) {
125 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126
127 raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 if (!irq->enabled) {
130 struct irq_data *data;
131
132 irq->enabled = true;
133 data = &irq_to_desc(irq->host_irq)->irq_data;
134 while (irqd_irq_disabled(data))
135 enable_irq(irq->host_irq);
136 }
137
138 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 vgic_put_irq(vcpu->kvm, irq);
140
141 continue;
142 } else if (vgic_irq_is_mapped_level(irq)) {
143 bool was_high = irq->line_level;
144
145 /*
146 * We need to update the state of the interrupt because
147 * the guest might have changed the state of the device
148 * while the interrupt was disabled at the VGIC level.
149 */
150 irq->line_level = vgic_get_phys_line_level(irq);
151 /*
152 * Deactivate the physical interrupt so the GIC will let
153 * us know when it is asserted again.
154 */
155 if (!irq->active && was_high && !irq->line_level)
156 vgic_irq_set_phys_active(irq, false);
157 }
158 irq->enabled = true;
159 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160
161 vgic_put_irq(vcpu->kvm, irq);
162 }
163 }
164
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 gpa_t addr, unsigned int len,
167 unsigned long val)
168 {
169 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 int i;
171 unsigned long flags;
172
173 for_each_set_bit(i, &val, len * 8) {
174 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175
176 raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 disable_irq_nosync(irq->host_irq);
179
180 irq->enabled = false;
181
182 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 vgic_put_irq(vcpu->kvm, irq);
184 }
185 }
186
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 gpa_t addr, unsigned int len,
189 unsigned long val)
190 {
191 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 int i;
193 unsigned long flags;
194
195 for_each_set_bit(i, &val, len * 8) {
196 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197
198 raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 irq->enabled = true;
200 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201
202 vgic_put_irq(vcpu->kvm, irq);
203 }
204
205 return 0;
206 }
207
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 gpa_t addr, unsigned int len,
210 unsigned long val)
211 {
212 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 int i;
214 unsigned long flags;
215
216 for_each_set_bit(i, &val, len * 8) {
217 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218
219 raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 irq->enabled = false;
221 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222
223 vgic_put_irq(vcpu->kvm, irq);
224 }
225
226 return 0;
227 }
228
229 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
230 gpa_t addr, unsigned int len)
231 {
232 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
233 u32 value = 0;
234 int i;
235
236 /* Loop over all IRQs affected by this read */
237 for (i = 0; i < len * 8; i++) {
238 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
239 unsigned long flags;
240 bool val;
241
242 raw_spin_lock_irqsave(&irq->irq_lock, flags);
243 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
244 int err;
245
246 val = false;
247 err = irq_get_irqchip_state(irq->host_irq,
248 IRQCHIP_STATE_PENDING,
249 &val);
250 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
251 } else {
252 val = irq_is_pending(irq);
253 }
254
255 value |= ((u32)val << i);
256 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
257
258 vgic_put_irq(vcpu->kvm, irq);
259 }
260
261 return value;
262 }
263
264 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
265 {
266 return (vgic_irq_is_sgi(irq->intid) &&
267 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
268 }
269
270 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
271 gpa_t addr, unsigned int len,
272 unsigned long val)
273 {
274 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
275 int i;
276 unsigned long flags;
277
278 for_each_set_bit(i, &val, len * 8) {
279 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
280
281 /* GICD_ISPENDR0 SGI bits are WI */
282 if (is_vgic_v2_sgi(vcpu, irq)) {
283 vgic_put_irq(vcpu->kvm, irq);
284 continue;
285 }
286
287 raw_spin_lock_irqsave(&irq->irq_lock, flags);
288
289 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
290 /* HW SGI? Ask the GIC to inject it */
291 int err;
292 err = irq_set_irqchip_state(irq->host_irq,
293 IRQCHIP_STATE_PENDING,
294 true);
295 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
296
297 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
298 vgic_put_irq(vcpu->kvm, irq);
299
300 continue;
301 }
302
303 irq->pending_latch = true;
304 if (irq->hw)
305 vgic_irq_set_phys_active(irq, true);
306
307 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
308 vgic_put_irq(vcpu->kvm, irq);
309 }
310 }
311
312 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
313 gpa_t addr, unsigned int len,
314 unsigned long val)
315 {
316 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
317 int i;
318 unsigned long flags;
319
320 for_each_set_bit(i, &val, len * 8) {
321 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
322
323 raw_spin_lock_irqsave(&irq->irq_lock, flags);
324 irq->pending_latch = true;
325
326 /*
327 * GICv2 SGIs are terribly broken. We can't restore
328 * the source of the interrupt, so just pick the vcpu
329 * itself as the source...
330 */
331 if (is_vgic_v2_sgi(vcpu, irq))
332 irq->source |= BIT(vcpu->vcpu_id);
333
334 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
335
336 vgic_put_irq(vcpu->kvm, irq);
337 }
338
339 return 0;
340 }
341
342 /* Must be called with irq->irq_lock held */
343 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
344 {
345 irq->pending_latch = false;
346
347 /*
348 * We don't want the guest to effectively mask the physical
349 * interrupt by doing a write to SPENDR followed by a write to
350 * CPENDR for HW interrupts, so we clear the active state on
351 * the physical side if the virtual interrupt is not active.
352 * This may lead to taking an additional interrupt on the
353 * host, but that should not be a problem as the worst that
354 * can happen is an additional vgic injection. We also clear
355 * the pending state to maintain proper semantics for edge HW
356 * interrupts.
357 */
358 vgic_irq_set_phys_pending(irq, false);
359 if (!irq->active)
360 vgic_irq_set_phys_active(irq, false);
361 }
362
363 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
364 gpa_t addr, unsigned int len,
365 unsigned long val)
366 {
367 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
368 int i;
369 unsigned long flags;
370
371 for_each_set_bit(i, &val, len * 8) {
372 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
373
374 /* GICD_ICPENDR0 SGI bits are WI */
375 if (is_vgic_v2_sgi(vcpu, irq)) {
376 vgic_put_irq(vcpu->kvm, irq);
377 continue;
378 }
379
380 raw_spin_lock_irqsave(&irq->irq_lock, flags);
381
382 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
383 /* HW SGI? Ask the GIC to clear its pending bit */
384 int err;
385 err = irq_set_irqchip_state(irq->host_irq,
386 IRQCHIP_STATE_PENDING,
387 false);
388 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
389
390 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
391 vgic_put_irq(vcpu->kvm, irq);
392
393 continue;
394 }
395
396 if (irq->hw)
397 vgic_hw_irq_cpending(vcpu, irq);
398 else
399 irq->pending_latch = false;
400
401 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
402 vgic_put_irq(vcpu->kvm, irq);
403 }
404 }
405
406 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
407 gpa_t addr, unsigned int len,
408 unsigned long val)
409 {
410 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
411 int i;
412 unsigned long flags;
413
414 for_each_set_bit(i, &val, len * 8) {
415 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
416
417 raw_spin_lock_irqsave(&irq->irq_lock, flags);
418 /*
419 * More fun with GICv2 SGIs! If we're clearing one of them
420 * from userspace, which source vcpu to clear? Let's not
421 * even think of it, and blow the whole set.
422 */
423 if (is_vgic_v2_sgi(vcpu, irq))
424 irq->source = 0;
425
426 irq->pending_latch = false;
427
428 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
429
430 vgic_put_irq(vcpu->kvm, irq);
431 }
432
433 return 0;
434 }
435
436 /*
437 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
438 * is not queued on some running VCPU's LRs, because then the change to the
439 * active state can be overwritten when the VCPU's state is synced coming back
440 * from the guest.
441 *
442 * For shared interrupts as well as GICv3 private interrupts, we have to
443 * stop all the VCPUs because interrupts can be migrated while we don't hold
444 * the IRQ locks and we don't want to be chasing moving targets.
445 *
446 * For GICv2 private interrupts we don't have to do anything because
447 * userspace accesses to the VGIC state already require all VCPUs to be
448 * stopped, and only the VCPU itself can modify its private interrupts
449 * active state, which guarantees that the VCPU is not running.
450 */
451 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
452 {
453 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
454 intid >= VGIC_NR_PRIVATE_IRQS)
455 kvm_arm_halt_guest(vcpu->kvm);
456 }
457
458 /* See vgic_access_active_prepare */
459 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
460 {
461 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
462 intid >= VGIC_NR_PRIVATE_IRQS)
463 kvm_arm_resume_guest(vcpu->kvm);
464 }
465
466 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
467 gpa_t addr, unsigned int len)
468 {
469 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
470 u32 value = 0;
471 int i;
472
473 /* Loop over all IRQs affected by this read */
474 for (i = 0; i < len * 8; i++) {
475 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
476
477 /*
478 * Even for HW interrupts, don't evaluate the HW state as
479 * all the guest is interested in is the virtual state.
480 */
481 if (irq->active)
482 value |= (1U << i);
483
484 vgic_put_irq(vcpu->kvm, irq);
485 }
486
487 return value;
488 }
489
490 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
491 gpa_t addr, unsigned int len)
492 {
493 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
494 u32 val;
495
496 mutex_lock(&vcpu->kvm->lock);
497 vgic_access_active_prepare(vcpu, intid);
498
499 val = __vgic_mmio_read_active(vcpu, addr, len);
500
501 vgic_access_active_finish(vcpu, intid);
502 mutex_unlock(&vcpu->kvm->lock);
503
504 return val;
505 }
506
507 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
508 gpa_t addr, unsigned int len)
509 {
510 return __vgic_mmio_read_active(vcpu, addr, len);
511 }
512
513 /* Must be called with irq->irq_lock held */
514 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
515 bool active, bool is_uaccess)
516 {
517 if (is_uaccess)
518 return;
519
520 irq->active = active;
521 vgic_irq_set_phys_active(irq, active);
522 }
523
524 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
525 bool active)
526 {
527 unsigned long flags;
528 struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
529
530 raw_spin_lock_irqsave(&irq->irq_lock, flags);
531
532 if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
533 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
534 } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
535 /*
536 * GICv4.1 VSGI feature doesn't track an active state,
537 * so let's not kid ourselves, there is nothing we can
538 * do here.
539 */
540 irq->active = false;
541 } else {
542 u32 model = vcpu->kvm->arch.vgic.vgic_model;
543 u8 active_source;
544
545 irq->active = active;
546
547 /*
548 * The GICv2 architecture indicates that the source CPUID for
549 * an SGI should be provided during an EOI which implies that
550 * the active state is stored somewhere, but at the same time
551 * this state is not architecturally exposed anywhere and we
552 * have no way of knowing the right source.
553 *
554 * This may lead to a VCPU not being able to receive
555 * additional instances of a particular SGI after migration
556 * for a GICv2 VM on some GIC implementations. Oh well.
557 */
558 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
559
560 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
561 active && vgic_irq_is_sgi(irq->intid))
562 irq->active_source = active_source;
563 }
564
565 if (irq->active)
566 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
567 else
568 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
569 }
570
571 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
572 gpa_t addr, unsigned int len,
573 unsigned long val)
574 {
575 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
576 int i;
577
578 for_each_set_bit(i, &val, len * 8) {
579 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
580 vgic_mmio_change_active(vcpu, irq, false);
581 vgic_put_irq(vcpu->kvm, irq);
582 }
583 }
584
585 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
586 gpa_t addr, unsigned int len,
587 unsigned long val)
588 {
589 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
590
591 mutex_lock(&vcpu->kvm->lock);
592 vgic_access_active_prepare(vcpu, intid);
593
594 __vgic_mmio_write_cactive(vcpu, addr, len, val);
595
596 vgic_access_active_finish(vcpu, intid);
597 mutex_unlock(&vcpu->kvm->lock);
598 }
599
600 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
601 gpa_t addr, unsigned int len,
602 unsigned long val)
603 {
604 __vgic_mmio_write_cactive(vcpu, addr, len, val);
605 return 0;
606 }
607
608 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
609 gpa_t addr, unsigned int len,
610 unsigned long val)
611 {
612 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
613 int i;
614
615 for_each_set_bit(i, &val, len * 8) {
616 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
617 vgic_mmio_change_active(vcpu, irq, true);
618 vgic_put_irq(vcpu->kvm, irq);
619 }
620 }
621
622 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
623 gpa_t addr, unsigned int len,
624 unsigned long val)
625 {
626 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
627
628 mutex_lock(&vcpu->kvm->lock);
629 vgic_access_active_prepare(vcpu, intid);
630
631 __vgic_mmio_write_sactive(vcpu, addr, len, val);
632
633 vgic_access_active_finish(vcpu, intid);
634 mutex_unlock(&vcpu->kvm->lock);
635 }
636
637 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
638 gpa_t addr, unsigned int len,
639 unsigned long val)
640 {
641 __vgic_mmio_write_sactive(vcpu, addr, len, val);
642 return 0;
643 }
644
645 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
646 gpa_t addr, unsigned int len)
647 {
648 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
649 int i;
650 u64 val = 0;
651
652 for (i = 0; i < len; i++) {
653 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
654
655 val |= (u64)irq->priority << (i * 8);
656
657 vgic_put_irq(vcpu->kvm, irq);
658 }
659
660 return val;
661 }
662
663 /*
664 * We currently don't handle changing the priority of an interrupt that
665 * is already pending on a VCPU. If there is a need for this, we would
666 * need to make this VCPU exit and re-evaluate the priorities, potentially
667 * leading to this interrupt getting presented now to the guest (if it has
668 * been masked by the priority mask before).
669 */
670 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
671 gpa_t addr, unsigned int len,
672 unsigned long val)
673 {
674 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
675 int i;
676 unsigned long flags;
677
678 for (i = 0; i < len; i++) {
679 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
680
681 raw_spin_lock_irqsave(&irq->irq_lock, flags);
682 /* Narrow the priority range to what we actually support */
683 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
684 if (irq->hw && vgic_irq_is_sgi(irq->intid))
685 vgic_update_vsgi(irq);
686 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
687
688 vgic_put_irq(vcpu->kvm, irq);
689 }
690 }
691
692 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
693 gpa_t addr, unsigned int len)
694 {
695 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
696 u32 value = 0;
697 int i;
698
699 for (i = 0; i < len * 4; i++) {
700 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
701
702 if (irq->config == VGIC_CONFIG_EDGE)
703 value |= (2U << (i * 2));
704
705 vgic_put_irq(vcpu->kvm, irq);
706 }
707
708 return value;
709 }
710
711 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
712 gpa_t addr, unsigned int len,
713 unsigned long val)
714 {
715 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
716 int i;
717 unsigned long flags;
718
719 for (i = 0; i < len * 4; i++) {
720 struct vgic_irq *irq;
721
722 /*
723 * The configuration cannot be changed for SGIs in general,
724 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
725 * code relies on PPIs being level triggered, so we also
726 * make them read-only here.
727 */
728 if (intid + i < VGIC_NR_PRIVATE_IRQS)
729 continue;
730
731 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
732 raw_spin_lock_irqsave(&irq->irq_lock, flags);
733
734 if (test_bit(i * 2 + 1, &val))
735 irq->config = VGIC_CONFIG_EDGE;
736 else
737 irq->config = VGIC_CONFIG_LEVEL;
738
739 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
740 vgic_put_irq(vcpu->kvm, irq);
741 }
742 }
743
744 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
745 {
746 int i;
747 u64 val = 0;
748 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
749
750 for (i = 0; i < 32; i++) {
751 struct vgic_irq *irq;
752
753 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
754 continue;
755
756 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
757 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
758 val |= (1U << i);
759
760 vgic_put_irq(vcpu->kvm, irq);
761 }
762
763 return val;
764 }
765
766 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
767 const u64 val)
768 {
769 int i;
770 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
771 unsigned long flags;
772
773 for (i = 0; i < 32; i++) {
774 struct vgic_irq *irq;
775 bool new_level;
776
777 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
778 continue;
779
780 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
781
782 /*
783 * Line level is set irrespective of irq type
784 * (level or edge) to avoid dependency that VM should
785 * restore irq config before line level.
786 */
787 new_level = !!(val & (1U << i));
788 raw_spin_lock_irqsave(&irq->irq_lock, flags);
789 irq->line_level = new_level;
790 if (new_level)
791 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
792 else
793 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
794
795 vgic_put_irq(vcpu->kvm, irq);
796 }
797 }
798
799 static int match_region(const void *key, const void *elt)
800 {
801 const unsigned int offset = (unsigned long)key;
802 const struct vgic_register_region *region = elt;
803
804 if (offset < region->reg_offset)
805 return -1;
806
807 if (offset >= region->reg_offset + region->len)
808 return 1;
809
810 return 0;
811 }
812
813 const struct vgic_register_region *
814 vgic_find_mmio_region(const struct vgic_register_region *regions,
815 int nr_regions, unsigned int offset)
816 {
817 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
818 sizeof(regions[0]), match_region);
819 }
820
821 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
822 {
823 if (kvm_vgic_global_state.type == VGIC_V2)
824 vgic_v2_set_vmcr(vcpu, vmcr);
825 else
826 vgic_v3_set_vmcr(vcpu, vmcr);
827 }
828
829 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
830 {
831 if (kvm_vgic_global_state.type == VGIC_V2)
832 vgic_v2_get_vmcr(vcpu, vmcr);
833 else
834 vgic_v3_get_vmcr(vcpu, vmcr);
835 }
836
837 /*
838 * kvm_mmio_read_buf() returns a value in a format where it can be converted
839 * to a byte array and be directly observed as the guest wanted it to appear
840 * in memory if it had done the store itself, which is LE for the GIC, as the
841 * guest knows the GIC is always LE.
842 *
843 * We convert this value to the CPUs native format to deal with it as a data
844 * value.
845 */
846 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
847 {
848 unsigned long data = kvm_mmio_read_buf(val, len);
849
850 switch (len) {
851 case 1:
852 return data;
853 case 2:
854 return le16_to_cpu(data);
855 case 4:
856 return le32_to_cpu(data);
857 default:
858 return le64_to_cpu(data);
859 }
860 }
861
862 /*
863 * kvm_mmio_write_buf() expects a value in a format such that if converted to
864 * a byte array it is observed as the guest would see it if it could perform
865 * the load directly. Since the GIC is LE, and the guest knows this, the
866 * guest expects a value in little endian format.
867 *
868 * We convert the data value from the CPUs native format to LE so that the
869 * value is returned in the proper format.
870 */
871 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
872 unsigned long data)
873 {
874 switch (len) {
875 case 1:
876 break;
877 case 2:
878 data = cpu_to_le16(data);
879 break;
880 case 4:
881 data = cpu_to_le32(data);
882 break;
883 default:
884 data = cpu_to_le64(data);
885 }
886
887 kvm_mmio_write_buf(buf, len, data);
888 }
889
890 static
891 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
892 {
893 return container_of(dev, struct vgic_io_device, dev);
894 }
895
896 static bool check_region(const struct kvm *kvm,
897 const struct vgic_register_region *region,
898 gpa_t addr, int len)
899 {
900 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
901
902 switch (len) {
903 case sizeof(u8):
904 flags = VGIC_ACCESS_8bit;
905 break;
906 case sizeof(u32):
907 flags = VGIC_ACCESS_32bit;
908 break;
909 case sizeof(u64):
910 flags = VGIC_ACCESS_64bit;
911 break;
912 default:
913 return false;
914 }
915
916 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
917 if (!region->bits_per_irq)
918 return true;
919
920 /* Do we access a non-allocated IRQ? */
921 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
922 }
923
924 return false;
925 }
926
927 const struct vgic_register_region *
928 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
929 gpa_t addr, int len)
930 {
931 const struct vgic_register_region *region;
932
933 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
934 addr - iodev->base_addr);
935 if (!region || !check_region(vcpu->kvm, region, addr, len))
936 return NULL;
937
938 return region;
939 }
940
941 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
942 gpa_t addr, u32 *val)
943 {
944 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
945 const struct vgic_register_region *region;
946 struct kvm_vcpu *r_vcpu;
947
948 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
949 if (!region) {
950 *val = 0;
951 return 0;
952 }
953
954 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
955 if (region->uaccess_read)
956 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
957 else
958 *val = region->read(r_vcpu, addr, sizeof(u32));
959
960 return 0;
961 }
962
963 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
964 gpa_t addr, const u32 *val)
965 {
966 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
967 const struct vgic_register_region *region;
968 struct kvm_vcpu *r_vcpu;
969
970 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
971 if (!region)
972 return 0;
973
974 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
975 if (region->uaccess_write)
976 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
977
978 region->write(r_vcpu, addr, sizeof(u32), *val);
979 return 0;
980 }
981
982 /*
983 * Userland access to VGIC registers.
984 */
985 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
986 bool is_write, int offset, u32 *val)
987 {
988 if (is_write)
989 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
990 else
991 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
992 }
993
994 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
995 gpa_t addr, int len, void *val)
996 {
997 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
998 const struct vgic_register_region *region;
999 unsigned long data = 0;
1000
1001 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1002 if (!region) {
1003 memset(val, 0, len);
1004 return 0;
1005 }
1006
1007 switch (iodev->iodev_type) {
1008 case IODEV_CPUIF:
1009 data = region->read(vcpu, addr, len);
1010 break;
1011 case IODEV_DIST:
1012 data = region->read(vcpu, addr, len);
1013 break;
1014 case IODEV_REDIST:
1015 data = region->read(iodev->redist_vcpu, addr, len);
1016 break;
1017 case IODEV_ITS:
1018 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1019 break;
1020 }
1021
1022 vgic_data_host_to_mmio_bus(val, len, data);
1023 return 0;
1024 }
1025
1026 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027 gpa_t addr, int len, const void *val)
1028 {
1029 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030 const struct vgic_register_region *region;
1031 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1032
1033 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1034 if (!region)
1035 return 0;
1036
1037 switch (iodev->iodev_type) {
1038 case IODEV_CPUIF:
1039 region->write(vcpu, addr, len, data);
1040 break;
1041 case IODEV_DIST:
1042 region->write(vcpu, addr, len, data);
1043 break;
1044 case IODEV_REDIST:
1045 region->write(iodev->redist_vcpu, addr, len, data);
1046 break;
1047 case IODEV_ITS:
1048 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1049 break;
1050 }
1051
1052 return 0;
1053 }
1054
1055 struct kvm_io_device_ops kvm_io_gic_ops = {
1056 .read = dispatch_mmio_read,
1057 .write = dispatch_mmio_write,
1058 };
1059
1060 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1061 enum vgic_type type)
1062 {
1063 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1064 int ret = 0;
1065 unsigned int len;
1066
1067 switch (type) {
1068 case VGIC_V2:
1069 len = vgic_v2_init_dist_iodev(io_device);
1070 break;
1071 case VGIC_V3:
1072 len = vgic_v3_init_dist_iodev(io_device);
1073 break;
1074 default:
1075 BUG_ON(1);
1076 }
1077
1078 io_device->base_addr = dist_base_address;
1079 io_device->iodev_type = IODEV_DIST;
1080 io_device->redist_vcpu = NULL;
1081
1082 mutex_lock(&kvm->slots_lock);
1083 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1084 len, &io_device->dev);
1085 mutex_unlock(&kvm->slots_lock);
1086
1087 return ret;
1088 }