]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
KVM: Break dependency between vcpu index in vcpus array and vcpu_id.
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->irq_lock
69 */
70
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75
76 struct kmem_cache *kvm_vcpu_cache;
77 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78
79 static __read_mostly struct preempt_ops kvm_preempt_ops;
80
81 struct dentry *kvm_debugfs_dir;
82
83 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
84 unsigned long arg);
85
86 static bool kvm_rebooting;
87
88 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
89 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
90 int assigned_dev_id)
91 {
92 struct list_head *ptr;
93 struct kvm_assigned_dev_kernel *match;
94
95 list_for_each(ptr, head) {
96 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
97 if (match->assigned_dev_id == assigned_dev_id)
98 return match;
99 }
100 return NULL;
101 }
102
103 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
104 *assigned_dev, int irq)
105 {
106 int i, index;
107 struct msix_entry *host_msix_entries;
108
109 host_msix_entries = assigned_dev->host_msix_entries;
110
111 index = -1;
112 for (i = 0; i < assigned_dev->entries_nr; i++)
113 if (irq == host_msix_entries[i].vector) {
114 index = i;
115 break;
116 }
117 if (index < 0) {
118 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
119 return 0;
120 }
121
122 return index;
123 }
124
125 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
126 {
127 struct kvm_assigned_dev_kernel *assigned_dev;
128 struct kvm *kvm;
129 int i;
130
131 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
132 interrupt_work);
133 kvm = assigned_dev->kvm;
134
135 mutex_lock(&kvm->irq_lock);
136 spin_lock_irq(&assigned_dev->assigned_dev_lock);
137 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
138 struct kvm_guest_msix_entry *guest_entries =
139 assigned_dev->guest_msix_entries;
140 for (i = 0; i < assigned_dev->entries_nr; i++) {
141 if (!(guest_entries[i].flags &
142 KVM_ASSIGNED_MSIX_PENDING))
143 continue;
144 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
145 kvm_set_irq(assigned_dev->kvm,
146 assigned_dev->irq_source_id,
147 guest_entries[i].vector, 1);
148 }
149 } else
150 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
151 assigned_dev->guest_irq, 1);
152
153 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
154 mutex_unlock(&assigned_dev->kvm->irq_lock);
155 }
156
157 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
158 {
159 unsigned long flags;
160 struct kvm_assigned_dev_kernel *assigned_dev =
161 (struct kvm_assigned_dev_kernel *) dev_id;
162
163 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
164 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
165 int index = find_index_from_host_irq(assigned_dev, irq);
166 if (index < 0)
167 goto out;
168 assigned_dev->guest_msix_entries[index].flags |=
169 KVM_ASSIGNED_MSIX_PENDING;
170 }
171
172 schedule_work(&assigned_dev->interrupt_work);
173
174 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
175 disable_irq_nosync(irq);
176 assigned_dev->host_irq_disabled = true;
177 }
178
179 out:
180 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
181 return IRQ_HANDLED;
182 }
183
184 /* Ack the irq line for an assigned device */
185 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
186 {
187 struct kvm_assigned_dev_kernel *dev;
188 unsigned long flags;
189
190 if (kian->gsi == -1)
191 return;
192
193 dev = container_of(kian, struct kvm_assigned_dev_kernel,
194 ack_notifier);
195
196 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
197
198 /* The guest irq may be shared so this ack may be
199 * from another device.
200 */
201 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
202 if (dev->host_irq_disabled) {
203 enable_irq(dev->host_irq);
204 dev->host_irq_disabled = false;
205 }
206 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
207 }
208
209 static void deassign_guest_irq(struct kvm *kvm,
210 struct kvm_assigned_dev_kernel *assigned_dev)
211 {
212 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
213 assigned_dev->ack_notifier.gsi = -1;
214
215 if (assigned_dev->irq_source_id != -1)
216 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
217 assigned_dev->irq_source_id = -1;
218 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
219 }
220
221 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
222 static void deassign_host_irq(struct kvm *kvm,
223 struct kvm_assigned_dev_kernel *assigned_dev)
224 {
225 /*
226 * In kvm_free_device_irq, cancel_work_sync return true if:
227 * 1. work is scheduled, and then cancelled.
228 * 2. work callback is executed.
229 *
230 * The first one ensured that the irq is disabled and no more events
231 * would happen. But for the second one, the irq may be enabled (e.g.
232 * for MSI). So we disable irq here to prevent further events.
233 *
234 * Notice this maybe result in nested disable if the interrupt type is
235 * INTx, but it's OK for we are going to free it.
236 *
237 * If this function is a part of VM destroy, please ensure that till
238 * now, the kvm state is still legal for probably we also have to wait
239 * interrupt_work done.
240 */
241 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
242 int i;
243 for (i = 0; i < assigned_dev->entries_nr; i++)
244 disable_irq_nosync(assigned_dev->
245 host_msix_entries[i].vector);
246
247 cancel_work_sync(&assigned_dev->interrupt_work);
248
249 for (i = 0; i < assigned_dev->entries_nr; i++)
250 free_irq(assigned_dev->host_msix_entries[i].vector,
251 (void *)assigned_dev);
252
253 assigned_dev->entries_nr = 0;
254 kfree(assigned_dev->host_msix_entries);
255 kfree(assigned_dev->guest_msix_entries);
256 pci_disable_msix(assigned_dev->dev);
257 } else {
258 /* Deal with MSI and INTx */
259 disable_irq_nosync(assigned_dev->host_irq);
260 cancel_work_sync(&assigned_dev->interrupt_work);
261
262 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
263
264 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
265 pci_disable_msi(assigned_dev->dev);
266 }
267
268 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
269 }
270
271 static int kvm_deassign_irq(struct kvm *kvm,
272 struct kvm_assigned_dev_kernel *assigned_dev,
273 unsigned long irq_requested_type)
274 {
275 unsigned long guest_irq_type, host_irq_type;
276
277 if (!irqchip_in_kernel(kvm))
278 return -EINVAL;
279 /* no irq assignment to deassign */
280 if (!assigned_dev->irq_requested_type)
281 return -ENXIO;
282
283 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
284 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
285
286 if (host_irq_type)
287 deassign_host_irq(kvm, assigned_dev);
288 if (guest_irq_type)
289 deassign_guest_irq(kvm, assigned_dev);
290
291 return 0;
292 }
293
294 static void kvm_free_assigned_irq(struct kvm *kvm,
295 struct kvm_assigned_dev_kernel *assigned_dev)
296 {
297 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
298 }
299
300 static void kvm_free_assigned_device(struct kvm *kvm,
301 struct kvm_assigned_dev_kernel
302 *assigned_dev)
303 {
304 kvm_free_assigned_irq(kvm, assigned_dev);
305
306 pci_reset_function(assigned_dev->dev);
307
308 pci_release_regions(assigned_dev->dev);
309 pci_disable_device(assigned_dev->dev);
310 pci_dev_put(assigned_dev->dev);
311
312 list_del(&assigned_dev->list);
313 kfree(assigned_dev);
314 }
315
316 void kvm_free_all_assigned_devices(struct kvm *kvm)
317 {
318 struct list_head *ptr, *ptr2;
319 struct kvm_assigned_dev_kernel *assigned_dev;
320
321 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
322 assigned_dev = list_entry(ptr,
323 struct kvm_assigned_dev_kernel,
324 list);
325
326 kvm_free_assigned_device(kvm, assigned_dev);
327 }
328 }
329
330 static int assigned_device_enable_host_intx(struct kvm *kvm,
331 struct kvm_assigned_dev_kernel *dev)
332 {
333 dev->host_irq = dev->dev->irq;
334 /* Even though this is PCI, we don't want to use shared
335 * interrupts. Sharing host devices with guest-assigned devices
336 * on the same interrupt line is not a happy situation: there
337 * are going to be long delays in accepting, acking, etc.
338 */
339 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
340 0, "kvm_assigned_intx_device", (void *)dev))
341 return -EIO;
342 return 0;
343 }
344
345 #ifdef __KVM_HAVE_MSI
346 static int assigned_device_enable_host_msi(struct kvm *kvm,
347 struct kvm_assigned_dev_kernel *dev)
348 {
349 int r;
350
351 if (!dev->dev->msi_enabled) {
352 r = pci_enable_msi(dev->dev);
353 if (r)
354 return r;
355 }
356
357 dev->host_irq = dev->dev->irq;
358 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
359 "kvm_assigned_msi_device", (void *)dev)) {
360 pci_disable_msi(dev->dev);
361 return -EIO;
362 }
363
364 return 0;
365 }
366 #endif
367
368 #ifdef __KVM_HAVE_MSIX
369 static int assigned_device_enable_host_msix(struct kvm *kvm,
370 struct kvm_assigned_dev_kernel *dev)
371 {
372 int i, r = -EINVAL;
373
374 /* host_msix_entries and guest_msix_entries should have been
375 * initialized */
376 if (dev->entries_nr == 0)
377 return r;
378
379 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
380 if (r)
381 return r;
382
383 for (i = 0; i < dev->entries_nr; i++) {
384 r = request_irq(dev->host_msix_entries[i].vector,
385 kvm_assigned_dev_intr, 0,
386 "kvm_assigned_msix_device",
387 (void *)dev);
388 /* FIXME: free requested_irq's on failure */
389 if (r)
390 return r;
391 }
392
393 return 0;
394 }
395
396 #endif
397
398 static int assigned_device_enable_guest_intx(struct kvm *kvm,
399 struct kvm_assigned_dev_kernel *dev,
400 struct kvm_assigned_irq *irq)
401 {
402 dev->guest_irq = irq->guest_irq;
403 dev->ack_notifier.gsi = irq->guest_irq;
404 return 0;
405 }
406
407 #ifdef __KVM_HAVE_MSI
408 static int assigned_device_enable_guest_msi(struct kvm *kvm,
409 struct kvm_assigned_dev_kernel *dev,
410 struct kvm_assigned_irq *irq)
411 {
412 dev->guest_irq = irq->guest_irq;
413 dev->ack_notifier.gsi = -1;
414 dev->host_irq_disabled = false;
415 return 0;
416 }
417 #endif
418 #ifdef __KVM_HAVE_MSIX
419 static int assigned_device_enable_guest_msix(struct kvm *kvm,
420 struct kvm_assigned_dev_kernel *dev,
421 struct kvm_assigned_irq *irq)
422 {
423 dev->guest_irq = irq->guest_irq;
424 dev->ack_notifier.gsi = -1;
425 dev->host_irq_disabled = false;
426 return 0;
427 }
428 #endif
429
430 static int assign_host_irq(struct kvm *kvm,
431 struct kvm_assigned_dev_kernel *dev,
432 __u32 host_irq_type)
433 {
434 int r = -EEXIST;
435
436 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
437 return r;
438
439 switch (host_irq_type) {
440 case KVM_DEV_IRQ_HOST_INTX:
441 r = assigned_device_enable_host_intx(kvm, dev);
442 break;
443 #ifdef __KVM_HAVE_MSI
444 case KVM_DEV_IRQ_HOST_MSI:
445 r = assigned_device_enable_host_msi(kvm, dev);
446 break;
447 #endif
448 #ifdef __KVM_HAVE_MSIX
449 case KVM_DEV_IRQ_HOST_MSIX:
450 r = assigned_device_enable_host_msix(kvm, dev);
451 break;
452 #endif
453 default:
454 r = -EINVAL;
455 }
456
457 if (!r)
458 dev->irq_requested_type |= host_irq_type;
459
460 return r;
461 }
462
463 static int assign_guest_irq(struct kvm *kvm,
464 struct kvm_assigned_dev_kernel *dev,
465 struct kvm_assigned_irq *irq,
466 unsigned long guest_irq_type)
467 {
468 int id;
469 int r = -EEXIST;
470
471 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
472 return r;
473
474 id = kvm_request_irq_source_id(kvm);
475 if (id < 0)
476 return id;
477
478 dev->irq_source_id = id;
479
480 switch (guest_irq_type) {
481 case KVM_DEV_IRQ_GUEST_INTX:
482 r = assigned_device_enable_guest_intx(kvm, dev, irq);
483 break;
484 #ifdef __KVM_HAVE_MSI
485 case KVM_DEV_IRQ_GUEST_MSI:
486 r = assigned_device_enable_guest_msi(kvm, dev, irq);
487 break;
488 #endif
489 #ifdef __KVM_HAVE_MSIX
490 case KVM_DEV_IRQ_GUEST_MSIX:
491 r = assigned_device_enable_guest_msix(kvm, dev, irq);
492 break;
493 #endif
494 default:
495 r = -EINVAL;
496 }
497
498 if (!r) {
499 dev->irq_requested_type |= guest_irq_type;
500 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
501 } else
502 kvm_free_irq_source_id(kvm, dev->irq_source_id);
503
504 return r;
505 }
506
507 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
508 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
509 struct kvm_assigned_irq *assigned_irq)
510 {
511 int r = -EINVAL;
512 struct kvm_assigned_dev_kernel *match;
513 unsigned long host_irq_type, guest_irq_type;
514
515 if (!capable(CAP_SYS_RAWIO))
516 return -EPERM;
517
518 if (!irqchip_in_kernel(kvm))
519 return r;
520
521 mutex_lock(&kvm->lock);
522 r = -ENODEV;
523 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
524 assigned_irq->assigned_dev_id);
525 if (!match)
526 goto out;
527
528 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
529 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
530
531 r = -EINVAL;
532 /* can only assign one type at a time */
533 if (hweight_long(host_irq_type) > 1)
534 goto out;
535 if (hweight_long(guest_irq_type) > 1)
536 goto out;
537 if (host_irq_type == 0 && guest_irq_type == 0)
538 goto out;
539
540 r = 0;
541 if (host_irq_type)
542 r = assign_host_irq(kvm, match, host_irq_type);
543 if (r)
544 goto out;
545
546 if (guest_irq_type)
547 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
548 out:
549 mutex_unlock(&kvm->lock);
550 return r;
551 }
552
553 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
554 struct kvm_assigned_irq
555 *assigned_irq)
556 {
557 int r = -ENODEV;
558 struct kvm_assigned_dev_kernel *match;
559
560 mutex_lock(&kvm->lock);
561
562 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
563 assigned_irq->assigned_dev_id);
564 if (!match)
565 goto out;
566
567 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
568 out:
569 mutex_unlock(&kvm->lock);
570 return r;
571 }
572
573 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
574 struct kvm_assigned_pci_dev *assigned_dev)
575 {
576 int r = 0;
577 struct kvm_assigned_dev_kernel *match;
578 struct pci_dev *dev;
579
580 down_read(&kvm->slots_lock);
581 mutex_lock(&kvm->lock);
582
583 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
584 assigned_dev->assigned_dev_id);
585 if (match) {
586 /* device already assigned */
587 r = -EEXIST;
588 goto out;
589 }
590
591 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
592 if (match == NULL) {
593 printk(KERN_INFO "%s: Couldn't allocate memory\n",
594 __func__);
595 r = -ENOMEM;
596 goto out;
597 }
598 dev = pci_get_bus_and_slot(assigned_dev->busnr,
599 assigned_dev->devfn);
600 if (!dev) {
601 printk(KERN_INFO "%s: host device not found\n", __func__);
602 r = -EINVAL;
603 goto out_free;
604 }
605 if (pci_enable_device(dev)) {
606 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
607 r = -EBUSY;
608 goto out_put;
609 }
610 r = pci_request_regions(dev, "kvm_assigned_device");
611 if (r) {
612 printk(KERN_INFO "%s: Could not get access to device regions\n",
613 __func__);
614 goto out_disable;
615 }
616
617 pci_reset_function(dev);
618
619 match->assigned_dev_id = assigned_dev->assigned_dev_id;
620 match->host_busnr = assigned_dev->busnr;
621 match->host_devfn = assigned_dev->devfn;
622 match->flags = assigned_dev->flags;
623 match->dev = dev;
624 spin_lock_init(&match->assigned_dev_lock);
625 match->irq_source_id = -1;
626 match->kvm = kvm;
627 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
628 INIT_WORK(&match->interrupt_work,
629 kvm_assigned_dev_interrupt_work_handler);
630
631 list_add(&match->list, &kvm->arch.assigned_dev_head);
632
633 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
634 if (!kvm->arch.iommu_domain) {
635 r = kvm_iommu_map_guest(kvm);
636 if (r)
637 goto out_list_del;
638 }
639 r = kvm_assign_device(kvm, match);
640 if (r)
641 goto out_list_del;
642 }
643
644 out:
645 mutex_unlock(&kvm->lock);
646 up_read(&kvm->slots_lock);
647 return r;
648 out_list_del:
649 list_del(&match->list);
650 pci_release_regions(dev);
651 out_disable:
652 pci_disable_device(dev);
653 out_put:
654 pci_dev_put(dev);
655 out_free:
656 kfree(match);
657 mutex_unlock(&kvm->lock);
658 up_read(&kvm->slots_lock);
659 return r;
660 }
661 #endif
662
663 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
664 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
665 struct kvm_assigned_pci_dev *assigned_dev)
666 {
667 int r = 0;
668 struct kvm_assigned_dev_kernel *match;
669
670 mutex_lock(&kvm->lock);
671
672 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
673 assigned_dev->assigned_dev_id);
674 if (!match) {
675 printk(KERN_INFO "%s: device hasn't been assigned before, "
676 "so cannot be deassigned\n", __func__);
677 r = -EINVAL;
678 goto out;
679 }
680
681 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
682 kvm_deassign_device(kvm, match);
683
684 kvm_free_assigned_device(kvm, match);
685
686 out:
687 mutex_unlock(&kvm->lock);
688 return r;
689 }
690 #endif
691
692 inline int kvm_is_mmio_pfn(pfn_t pfn)
693 {
694 if (pfn_valid(pfn)) {
695 struct page *page = compound_head(pfn_to_page(pfn));
696 return PageReserved(page);
697 }
698
699 return true;
700 }
701
702 /*
703 * Switches to specified vcpu, until a matching vcpu_put()
704 */
705 void vcpu_load(struct kvm_vcpu *vcpu)
706 {
707 int cpu;
708
709 mutex_lock(&vcpu->mutex);
710 cpu = get_cpu();
711 preempt_notifier_register(&vcpu->preempt_notifier);
712 kvm_arch_vcpu_load(vcpu, cpu);
713 put_cpu();
714 }
715
716 void vcpu_put(struct kvm_vcpu *vcpu)
717 {
718 preempt_disable();
719 kvm_arch_vcpu_put(vcpu);
720 preempt_notifier_unregister(&vcpu->preempt_notifier);
721 preempt_enable();
722 mutex_unlock(&vcpu->mutex);
723 }
724
725 static void ack_flush(void *_completed)
726 {
727 }
728
729 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
730 {
731 int i, cpu, me;
732 cpumask_var_t cpus;
733 bool called = true;
734 struct kvm_vcpu *vcpu;
735
736 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
737 cpumask_clear(cpus);
738
739 me = get_cpu();
740 spin_lock(&kvm->requests_lock);
741 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
742 vcpu = kvm->vcpus[i];
743 if (!vcpu)
744 continue;
745 if (test_and_set_bit(req, &vcpu->requests))
746 continue;
747 cpu = vcpu->cpu;
748 if (cpus != NULL && cpu != -1 && cpu != me)
749 cpumask_set_cpu(cpu, cpus);
750 }
751 if (unlikely(cpus == NULL))
752 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
753 else if (!cpumask_empty(cpus))
754 smp_call_function_many(cpus, ack_flush, NULL, 1);
755 else
756 called = false;
757 spin_unlock(&kvm->requests_lock);
758 put_cpu();
759 free_cpumask_var(cpus);
760 return called;
761 }
762
763 void kvm_flush_remote_tlbs(struct kvm *kvm)
764 {
765 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
766 ++kvm->stat.remote_tlb_flush;
767 }
768
769 void kvm_reload_remote_mmus(struct kvm *kvm)
770 {
771 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
772 }
773
774 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
775 {
776 struct page *page;
777 int r;
778
779 mutex_init(&vcpu->mutex);
780 vcpu->cpu = -1;
781 vcpu->kvm = kvm;
782 vcpu->vcpu_id = id;
783 init_waitqueue_head(&vcpu->wq);
784
785 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
786 if (!page) {
787 r = -ENOMEM;
788 goto fail;
789 }
790 vcpu->run = page_address(page);
791
792 r = kvm_arch_vcpu_init(vcpu);
793 if (r < 0)
794 goto fail_free_run;
795 return 0;
796
797 fail_free_run:
798 free_page((unsigned long)vcpu->run);
799 fail:
800 return r;
801 }
802 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
803
804 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
805 {
806 kvm_arch_vcpu_uninit(vcpu);
807 free_page((unsigned long)vcpu->run);
808 }
809 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
810
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
813 {
814 return container_of(mn, struct kvm, mmu_notifier);
815 }
816
817 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
818 struct mm_struct *mm,
819 unsigned long address)
820 {
821 struct kvm *kvm = mmu_notifier_to_kvm(mn);
822 int need_tlb_flush;
823
824 /*
825 * When ->invalidate_page runs, the linux pte has been zapped
826 * already but the page is still allocated until
827 * ->invalidate_page returns. So if we increase the sequence
828 * here the kvm page fault will notice if the spte can't be
829 * established because the page is going to be freed. If
830 * instead the kvm page fault establishes the spte before
831 * ->invalidate_page runs, kvm_unmap_hva will release it
832 * before returning.
833 *
834 * The sequence increase only need to be seen at spin_unlock
835 * time, and not at spin_lock time.
836 *
837 * Increasing the sequence after the spin_unlock would be
838 * unsafe because the kvm page fault could then establish the
839 * pte after kvm_unmap_hva returned, without noticing the page
840 * is going to be freed.
841 */
842 spin_lock(&kvm->mmu_lock);
843 kvm->mmu_notifier_seq++;
844 need_tlb_flush = kvm_unmap_hva(kvm, address);
845 spin_unlock(&kvm->mmu_lock);
846
847 /* we've to flush the tlb before the pages can be freed */
848 if (need_tlb_flush)
849 kvm_flush_remote_tlbs(kvm);
850
851 }
852
853 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
854 struct mm_struct *mm,
855 unsigned long start,
856 unsigned long end)
857 {
858 struct kvm *kvm = mmu_notifier_to_kvm(mn);
859 int need_tlb_flush = 0;
860
861 spin_lock(&kvm->mmu_lock);
862 /*
863 * The count increase must become visible at unlock time as no
864 * spte can be established without taking the mmu_lock and
865 * count is also read inside the mmu_lock critical section.
866 */
867 kvm->mmu_notifier_count++;
868 for (; start < end; start += PAGE_SIZE)
869 need_tlb_flush |= kvm_unmap_hva(kvm, start);
870 spin_unlock(&kvm->mmu_lock);
871
872 /* we've to flush the tlb before the pages can be freed */
873 if (need_tlb_flush)
874 kvm_flush_remote_tlbs(kvm);
875 }
876
877 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
878 struct mm_struct *mm,
879 unsigned long start,
880 unsigned long end)
881 {
882 struct kvm *kvm = mmu_notifier_to_kvm(mn);
883
884 spin_lock(&kvm->mmu_lock);
885 /*
886 * This sequence increase will notify the kvm page fault that
887 * the page that is going to be mapped in the spte could have
888 * been freed.
889 */
890 kvm->mmu_notifier_seq++;
891 /*
892 * The above sequence increase must be visible before the
893 * below count decrease but both values are read by the kvm
894 * page fault under mmu_lock spinlock so we don't need to add
895 * a smb_wmb() here in between the two.
896 */
897 kvm->mmu_notifier_count--;
898 spin_unlock(&kvm->mmu_lock);
899
900 BUG_ON(kvm->mmu_notifier_count < 0);
901 }
902
903 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
904 struct mm_struct *mm,
905 unsigned long address)
906 {
907 struct kvm *kvm = mmu_notifier_to_kvm(mn);
908 int young;
909
910 spin_lock(&kvm->mmu_lock);
911 young = kvm_age_hva(kvm, address);
912 spin_unlock(&kvm->mmu_lock);
913
914 if (young)
915 kvm_flush_remote_tlbs(kvm);
916
917 return young;
918 }
919
920 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
921 struct mm_struct *mm)
922 {
923 struct kvm *kvm = mmu_notifier_to_kvm(mn);
924 kvm_arch_flush_shadow(kvm);
925 }
926
927 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
928 .invalidate_page = kvm_mmu_notifier_invalidate_page,
929 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
930 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
931 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
932 .release = kvm_mmu_notifier_release,
933 };
934 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
935
936 static struct kvm *kvm_create_vm(void)
937 {
938 struct kvm *kvm = kvm_arch_create_vm();
939 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
940 struct page *page;
941 #endif
942
943 if (IS_ERR(kvm))
944 goto out;
945 #ifdef CONFIG_HAVE_KVM_IRQCHIP
946 INIT_LIST_HEAD(&kvm->irq_routing);
947 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
948 #endif
949
950 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
951 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
952 if (!page) {
953 kfree(kvm);
954 return ERR_PTR(-ENOMEM);
955 }
956 kvm->coalesced_mmio_ring =
957 (struct kvm_coalesced_mmio_ring *)page_address(page);
958 #endif
959
960 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
961 {
962 int err;
963 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
964 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
965 if (err) {
966 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
967 put_page(page);
968 #endif
969 kfree(kvm);
970 return ERR_PTR(err);
971 }
972 }
973 #endif
974
975 kvm->mm = current->mm;
976 atomic_inc(&kvm->mm->mm_count);
977 spin_lock_init(&kvm->mmu_lock);
978 spin_lock_init(&kvm->requests_lock);
979 kvm_io_bus_init(&kvm->pio_bus);
980 kvm_irqfd_init(kvm);
981 mutex_init(&kvm->lock);
982 mutex_init(&kvm->irq_lock);
983 kvm_io_bus_init(&kvm->mmio_bus);
984 init_rwsem(&kvm->slots_lock);
985 atomic_set(&kvm->users_count, 1);
986 spin_lock(&kvm_lock);
987 list_add(&kvm->vm_list, &vm_list);
988 spin_unlock(&kvm_lock);
989 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
990 kvm_coalesced_mmio_init(kvm);
991 #endif
992 out:
993 return kvm;
994 }
995
996 /*
997 * Free any memory in @free but not in @dont.
998 */
999 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1000 struct kvm_memory_slot *dont)
1001 {
1002 if (!dont || free->rmap != dont->rmap)
1003 vfree(free->rmap);
1004
1005 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1006 vfree(free->dirty_bitmap);
1007
1008 if (!dont || free->lpage_info != dont->lpage_info)
1009 vfree(free->lpage_info);
1010
1011 free->npages = 0;
1012 free->dirty_bitmap = NULL;
1013 free->rmap = NULL;
1014 free->lpage_info = NULL;
1015 }
1016
1017 void kvm_free_physmem(struct kvm *kvm)
1018 {
1019 int i;
1020
1021 for (i = 0; i < kvm->nmemslots; ++i)
1022 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1023 }
1024
1025 static void kvm_destroy_vm(struct kvm *kvm)
1026 {
1027 struct mm_struct *mm = kvm->mm;
1028
1029 kvm_arch_sync_events(kvm);
1030 spin_lock(&kvm_lock);
1031 list_del(&kvm->vm_list);
1032 spin_unlock(&kvm_lock);
1033 kvm_free_irq_routing(kvm);
1034 kvm_io_bus_destroy(&kvm->pio_bus);
1035 kvm_io_bus_destroy(&kvm->mmio_bus);
1036 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1037 if (kvm->coalesced_mmio_ring != NULL)
1038 free_page((unsigned long)kvm->coalesced_mmio_ring);
1039 #endif
1040 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1041 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1042 #else
1043 kvm_arch_flush_shadow(kvm);
1044 #endif
1045 kvm_arch_destroy_vm(kvm);
1046 mmdrop(mm);
1047 }
1048
1049 void kvm_get_kvm(struct kvm *kvm)
1050 {
1051 atomic_inc(&kvm->users_count);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1054
1055 void kvm_put_kvm(struct kvm *kvm)
1056 {
1057 if (atomic_dec_and_test(&kvm->users_count))
1058 kvm_destroy_vm(kvm);
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1061
1062
1063 static int kvm_vm_release(struct inode *inode, struct file *filp)
1064 {
1065 struct kvm *kvm = filp->private_data;
1066
1067 kvm_irqfd_release(kvm);
1068
1069 kvm_put_kvm(kvm);
1070 return 0;
1071 }
1072
1073 /*
1074 * Allocate some memory and give it an address in the guest physical address
1075 * space.
1076 *
1077 * Discontiguous memory is allowed, mostly for framebuffers.
1078 *
1079 * Must be called holding mmap_sem for write.
1080 */
1081 int __kvm_set_memory_region(struct kvm *kvm,
1082 struct kvm_userspace_memory_region *mem,
1083 int user_alloc)
1084 {
1085 int r;
1086 gfn_t base_gfn;
1087 unsigned long npages, ugfn;
1088 unsigned long largepages, i;
1089 struct kvm_memory_slot *memslot;
1090 struct kvm_memory_slot old, new;
1091
1092 r = -EINVAL;
1093 /* General sanity checks */
1094 if (mem->memory_size & (PAGE_SIZE - 1))
1095 goto out;
1096 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1097 goto out;
1098 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1099 goto out;
1100 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1101 goto out;
1102 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1103 goto out;
1104
1105 memslot = &kvm->memslots[mem->slot];
1106 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1107 npages = mem->memory_size >> PAGE_SHIFT;
1108
1109 if (!npages)
1110 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1111
1112 new = old = *memslot;
1113
1114 new.base_gfn = base_gfn;
1115 new.npages = npages;
1116 new.flags = mem->flags;
1117
1118 /* Disallow changing a memory slot's size. */
1119 r = -EINVAL;
1120 if (npages && old.npages && npages != old.npages)
1121 goto out_free;
1122
1123 /* Check for overlaps */
1124 r = -EEXIST;
1125 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1126 struct kvm_memory_slot *s = &kvm->memslots[i];
1127
1128 if (s == memslot || !s->npages)
1129 continue;
1130 if (!((base_gfn + npages <= s->base_gfn) ||
1131 (base_gfn >= s->base_gfn + s->npages)))
1132 goto out_free;
1133 }
1134
1135 /* Free page dirty bitmap if unneeded */
1136 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1137 new.dirty_bitmap = NULL;
1138
1139 r = -ENOMEM;
1140
1141 /* Allocate if a slot is being created */
1142 #ifndef CONFIG_S390
1143 if (npages && !new.rmap) {
1144 new.rmap = vmalloc(npages * sizeof(struct page *));
1145
1146 if (!new.rmap)
1147 goto out_free;
1148
1149 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1150
1151 new.user_alloc = user_alloc;
1152 /*
1153 * hva_to_rmmap() serialzies with the mmu_lock and to be
1154 * safe it has to ignore memslots with !user_alloc &&
1155 * !userspace_addr.
1156 */
1157 if (user_alloc)
1158 new.userspace_addr = mem->userspace_addr;
1159 else
1160 new.userspace_addr = 0;
1161 }
1162 if (npages && !new.lpage_info) {
1163 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1164 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1165
1166 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1167
1168 if (!new.lpage_info)
1169 goto out_free;
1170
1171 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1172
1173 if (base_gfn % KVM_PAGES_PER_HPAGE)
1174 new.lpage_info[0].write_count = 1;
1175 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1176 new.lpage_info[largepages-1].write_count = 1;
1177 ugfn = new.userspace_addr >> PAGE_SHIFT;
1178 /*
1179 * If the gfn and userspace address are not aligned wrt each
1180 * other, disable large page support for this slot
1181 */
1182 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1183 for (i = 0; i < largepages; ++i)
1184 new.lpage_info[i].write_count = 1;
1185 }
1186
1187 /* Allocate page dirty bitmap if needed */
1188 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1189 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1190
1191 new.dirty_bitmap = vmalloc(dirty_bytes);
1192 if (!new.dirty_bitmap)
1193 goto out_free;
1194 memset(new.dirty_bitmap, 0, dirty_bytes);
1195 if (old.npages)
1196 kvm_arch_flush_shadow(kvm);
1197 }
1198 #endif /* not defined CONFIG_S390 */
1199
1200 if (!npages)
1201 kvm_arch_flush_shadow(kvm);
1202
1203 spin_lock(&kvm->mmu_lock);
1204 if (mem->slot >= kvm->nmemslots)
1205 kvm->nmemslots = mem->slot + 1;
1206
1207 *memslot = new;
1208 spin_unlock(&kvm->mmu_lock);
1209
1210 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1211 if (r) {
1212 spin_lock(&kvm->mmu_lock);
1213 *memslot = old;
1214 spin_unlock(&kvm->mmu_lock);
1215 goto out_free;
1216 }
1217
1218 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1219 /* Slot deletion case: we have to update the current slot */
1220 spin_lock(&kvm->mmu_lock);
1221 if (!npages)
1222 *memslot = old;
1223 spin_unlock(&kvm->mmu_lock);
1224 #ifdef CONFIG_DMAR
1225 /* map the pages in iommu page table */
1226 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1227 if (r)
1228 goto out;
1229 #endif
1230 return 0;
1231
1232 out_free:
1233 kvm_free_physmem_slot(&new, &old);
1234 out:
1235 return r;
1236
1237 }
1238 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1239
1240 int kvm_set_memory_region(struct kvm *kvm,
1241 struct kvm_userspace_memory_region *mem,
1242 int user_alloc)
1243 {
1244 int r;
1245
1246 down_write(&kvm->slots_lock);
1247 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1248 up_write(&kvm->slots_lock);
1249 return r;
1250 }
1251 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1252
1253 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1254 struct
1255 kvm_userspace_memory_region *mem,
1256 int user_alloc)
1257 {
1258 if (mem->slot >= KVM_MEMORY_SLOTS)
1259 return -EINVAL;
1260 return kvm_set_memory_region(kvm, mem, user_alloc);
1261 }
1262
1263 int kvm_get_dirty_log(struct kvm *kvm,
1264 struct kvm_dirty_log *log, int *is_dirty)
1265 {
1266 struct kvm_memory_slot *memslot;
1267 int r, i;
1268 int n;
1269 unsigned long any = 0;
1270
1271 r = -EINVAL;
1272 if (log->slot >= KVM_MEMORY_SLOTS)
1273 goto out;
1274
1275 memslot = &kvm->memslots[log->slot];
1276 r = -ENOENT;
1277 if (!memslot->dirty_bitmap)
1278 goto out;
1279
1280 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1281
1282 for (i = 0; !any && i < n/sizeof(long); ++i)
1283 any = memslot->dirty_bitmap[i];
1284
1285 r = -EFAULT;
1286 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1287 goto out;
1288
1289 if (any)
1290 *is_dirty = 1;
1291
1292 r = 0;
1293 out:
1294 return r;
1295 }
1296
1297 int is_error_page(struct page *page)
1298 {
1299 return page == bad_page;
1300 }
1301 EXPORT_SYMBOL_GPL(is_error_page);
1302
1303 int is_error_pfn(pfn_t pfn)
1304 {
1305 return pfn == bad_pfn;
1306 }
1307 EXPORT_SYMBOL_GPL(is_error_pfn);
1308
1309 static inline unsigned long bad_hva(void)
1310 {
1311 return PAGE_OFFSET;
1312 }
1313
1314 int kvm_is_error_hva(unsigned long addr)
1315 {
1316 return addr == bad_hva();
1317 }
1318 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1319
1320 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1321 {
1322 int i;
1323
1324 for (i = 0; i < kvm->nmemslots; ++i) {
1325 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1326
1327 if (gfn >= memslot->base_gfn
1328 && gfn < memslot->base_gfn + memslot->npages)
1329 return memslot;
1330 }
1331 return NULL;
1332 }
1333 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1334
1335 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1336 {
1337 gfn = unalias_gfn(kvm, gfn);
1338 return gfn_to_memslot_unaliased(kvm, gfn);
1339 }
1340
1341 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1342 {
1343 int i;
1344
1345 gfn = unalias_gfn(kvm, gfn);
1346 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1347 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1348
1349 if (gfn >= memslot->base_gfn
1350 && gfn < memslot->base_gfn + memslot->npages)
1351 return 1;
1352 }
1353 return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1356
1357 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1358 {
1359 struct kvm_memory_slot *slot;
1360
1361 gfn = unalias_gfn(kvm, gfn);
1362 slot = gfn_to_memslot_unaliased(kvm, gfn);
1363 if (!slot)
1364 return bad_hva();
1365 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1366 }
1367 EXPORT_SYMBOL_GPL(gfn_to_hva);
1368
1369 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1370 {
1371 struct page *page[1];
1372 unsigned long addr;
1373 int npages;
1374 pfn_t pfn;
1375
1376 might_sleep();
1377
1378 addr = gfn_to_hva(kvm, gfn);
1379 if (kvm_is_error_hva(addr)) {
1380 get_page(bad_page);
1381 return page_to_pfn(bad_page);
1382 }
1383
1384 npages = get_user_pages_fast(addr, 1, 1, page);
1385
1386 if (unlikely(npages != 1)) {
1387 struct vm_area_struct *vma;
1388
1389 down_read(&current->mm->mmap_sem);
1390 vma = find_vma(current->mm, addr);
1391
1392 if (vma == NULL || addr < vma->vm_start ||
1393 !(vma->vm_flags & VM_PFNMAP)) {
1394 up_read(&current->mm->mmap_sem);
1395 get_page(bad_page);
1396 return page_to_pfn(bad_page);
1397 }
1398
1399 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1400 up_read(&current->mm->mmap_sem);
1401 BUG_ON(!kvm_is_mmio_pfn(pfn));
1402 } else
1403 pfn = page_to_pfn(page[0]);
1404
1405 return pfn;
1406 }
1407
1408 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1409
1410 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1411 {
1412 pfn_t pfn;
1413
1414 pfn = gfn_to_pfn(kvm, gfn);
1415 if (!kvm_is_mmio_pfn(pfn))
1416 return pfn_to_page(pfn);
1417
1418 WARN_ON(kvm_is_mmio_pfn(pfn));
1419
1420 get_page(bad_page);
1421 return bad_page;
1422 }
1423
1424 EXPORT_SYMBOL_GPL(gfn_to_page);
1425
1426 void kvm_release_page_clean(struct page *page)
1427 {
1428 kvm_release_pfn_clean(page_to_pfn(page));
1429 }
1430 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1431
1432 void kvm_release_pfn_clean(pfn_t pfn)
1433 {
1434 if (!kvm_is_mmio_pfn(pfn))
1435 put_page(pfn_to_page(pfn));
1436 }
1437 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1438
1439 void kvm_release_page_dirty(struct page *page)
1440 {
1441 kvm_release_pfn_dirty(page_to_pfn(page));
1442 }
1443 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1444
1445 void kvm_release_pfn_dirty(pfn_t pfn)
1446 {
1447 kvm_set_pfn_dirty(pfn);
1448 kvm_release_pfn_clean(pfn);
1449 }
1450 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1451
1452 void kvm_set_page_dirty(struct page *page)
1453 {
1454 kvm_set_pfn_dirty(page_to_pfn(page));
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1457
1458 void kvm_set_pfn_dirty(pfn_t pfn)
1459 {
1460 if (!kvm_is_mmio_pfn(pfn)) {
1461 struct page *page = pfn_to_page(pfn);
1462 if (!PageReserved(page))
1463 SetPageDirty(page);
1464 }
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1467
1468 void kvm_set_pfn_accessed(pfn_t pfn)
1469 {
1470 if (!kvm_is_mmio_pfn(pfn))
1471 mark_page_accessed(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1474
1475 void kvm_get_pfn(pfn_t pfn)
1476 {
1477 if (!kvm_is_mmio_pfn(pfn))
1478 get_page(pfn_to_page(pfn));
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1481
1482 static int next_segment(unsigned long len, int offset)
1483 {
1484 if (len > PAGE_SIZE - offset)
1485 return PAGE_SIZE - offset;
1486 else
1487 return len;
1488 }
1489
1490 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1491 int len)
1492 {
1493 int r;
1494 unsigned long addr;
1495
1496 addr = gfn_to_hva(kvm, gfn);
1497 if (kvm_is_error_hva(addr))
1498 return -EFAULT;
1499 r = copy_from_user(data, (void __user *)addr + offset, len);
1500 if (r)
1501 return -EFAULT;
1502 return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1505
1506 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1507 {
1508 gfn_t gfn = gpa >> PAGE_SHIFT;
1509 int seg;
1510 int offset = offset_in_page(gpa);
1511 int ret;
1512
1513 while ((seg = next_segment(len, offset)) != 0) {
1514 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1515 if (ret < 0)
1516 return ret;
1517 offset = 0;
1518 len -= seg;
1519 data += seg;
1520 ++gfn;
1521 }
1522 return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest);
1525
1526 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1527 unsigned long len)
1528 {
1529 int r;
1530 unsigned long addr;
1531 gfn_t gfn = gpa >> PAGE_SHIFT;
1532 int offset = offset_in_page(gpa);
1533
1534 addr = gfn_to_hva(kvm, gfn);
1535 if (kvm_is_error_hva(addr))
1536 return -EFAULT;
1537 pagefault_disable();
1538 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1539 pagefault_enable();
1540 if (r)
1541 return -EFAULT;
1542 return 0;
1543 }
1544 EXPORT_SYMBOL(kvm_read_guest_atomic);
1545
1546 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1547 int offset, int len)
1548 {
1549 int r;
1550 unsigned long addr;
1551
1552 addr = gfn_to_hva(kvm, gfn);
1553 if (kvm_is_error_hva(addr))
1554 return -EFAULT;
1555 r = copy_to_user((void __user *)addr + offset, data, len);
1556 if (r)
1557 return -EFAULT;
1558 mark_page_dirty(kvm, gfn);
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1562
1563 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1564 unsigned long len)
1565 {
1566 gfn_t gfn = gpa >> PAGE_SHIFT;
1567 int seg;
1568 int offset = offset_in_page(gpa);
1569 int ret;
1570
1571 while ((seg = next_segment(len, offset)) != 0) {
1572 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1573 if (ret < 0)
1574 return ret;
1575 offset = 0;
1576 len -= seg;
1577 data += seg;
1578 ++gfn;
1579 }
1580 return 0;
1581 }
1582
1583 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1584 {
1585 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1586 }
1587 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1588
1589 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1590 {
1591 gfn_t gfn = gpa >> PAGE_SHIFT;
1592 int seg;
1593 int offset = offset_in_page(gpa);
1594 int ret;
1595
1596 while ((seg = next_segment(len, offset)) != 0) {
1597 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1598 if (ret < 0)
1599 return ret;
1600 offset = 0;
1601 len -= seg;
1602 ++gfn;
1603 }
1604 return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1607
1608 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1609 {
1610 struct kvm_memory_slot *memslot;
1611
1612 gfn = unalias_gfn(kvm, gfn);
1613 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1614 if (memslot && memslot->dirty_bitmap) {
1615 unsigned long rel_gfn = gfn - memslot->base_gfn;
1616
1617 /* avoid RMW */
1618 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1619 set_bit(rel_gfn, memslot->dirty_bitmap);
1620 }
1621 }
1622
1623 /*
1624 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1625 */
1626 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1627 {
1628 DEFINE_WAIT(wait);
1629
1630 for (;;) {
1631 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1632
1633 if ((kvm_arch_interrupt_allowed(vcpu) &&
1634 kvm_cpu_has_interrupt(vcpu)) ||
1635 kvm_arch_vcpu_runnable(vcpu)) {
1636 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1637 break;
1638 }
1639 if (kvm_cpu_has_pending_timer(vcpu))
1640 break;
1641 if (signal_pending(current))
1642 break;
1643
1644 vcpu_put(vcpu);
1645 schedule();
1646 vcpu_load(vcpu);
1647 }
1648
1649 finish_wait(&vcpu->wq, &wait);
1650 }
1651
1652 void kvm_resched(struct kvm_vcpu *vcpu)
1653 {
1654 if (!need_resched())
1655 return;
1656 cond_resched();
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_resched);
1659
1660 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1661 {
1662 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1663 struct page *page;
1664
1665 if (vmf->pgoff == 0)
1666 page = virt_to_page(vcpu->run);
1667 #ifdef CONFIG_X86
1668 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1669 page = virt_to_page(vcpu->arch.pio_data);
1670 #endif
1671 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1672 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1673 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1674 #endif
1675 else
1676 return VM_FAULT_SIGBUS;
1677 get_page(page);
1678 vmf->page = page;
1679 return 0;
1680 }
1681
1682 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1683 .fault = kvm_vcpu_fault,
1684 };
1685
1686 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1687 {
1688 vma->vm_ops = &kvm_vcpu_vm_ops;
1689 return 0;
1690 }
1691
1692 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1693 {
1694 struct kvm_vcpu *vcpu = filp->private_data;
1695
1696 kvm_put_kvm(vcpu->kvm);
1697 return 0;
1698 }
1699
1700 static struct file_operations kvm_vcpu_fops = {
1701 .release = kvm_vcpu_release,
1702 .unlocked_ioctl = kvm_vcpu_ioctl,
1703 .compat_ioctl = kvm_vcpu_ioctl,
1704 .mmap = kvm_vcpu_mmap,
1705 };
1706
1707 /*
1708 * Allocates an inode for the vcpu.
1709 */
1710 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1711 {
1712 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1713 }
1714
1715 /*
1716 * Creates some virtual cpus. Good luck creating more than one.
1717 */
1718 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1719 {
1720 int r;
1721 struct kvm_vcpu *vcpu;
1722
1723 vcpu = kvm_arch_vcpu_create(kvm, id);
1724 if (IS_ERR(vcpu))
1725 return PTR_ERR(vcpu);
1726
1727 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1728
1729 r = kvm_arch_vcpu_setup(vcpu);
1730 if (r)
1731 return r;
1732
1733 mutex_lock(&kvm->lock);
1734 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1735 r = -EINVAL;
1736 goto vcpu_destroy;
1737 }
1738
1739 for (r = 0; r < atomic_read(&kvm->online_vcpus); r++)
1740 if (kvm->vcpus[r]->vcpu_id == id) {
1741 r = -EEXIST;
1742 goto vcpu_destroy;
1743 }
1744
1745 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1746
1747 /* Now it's all set up, let userspace reach it */
1748 kvm_get_kvm(kvm);
1749 r = create_vcpu_fd(vcpu);
1750 if (r < 0) {
1751 kvm_put_kvm(kvm);
1752 goto vcpu_destroy;
1753 }
1754
1755 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1756 smp_wmb();
1757 atomic_inc(&kvm->online_vcpus);
1758
1759 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1760 if (kvm->bsp_vcpu_id == id)
1761 kvm->bsp_vcpu = vcpu;
1762 #endif
1763 mutex_unlock(&kvm->lock);
1764 return r;
1765
1766 vcpu_destroy:
1767 mutex_unlock(&kvm->lock);
1768 kvm_arch_vcpu_destroy(vcpu);
1769 return r;
1770 }
1771
1772 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1773 {
1774 if (sigset) {
1775 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1776 vcpu->sigset_active = 1;
1777 vcpu->sigset = *sigset;
1778 } else
1779 vcpu->sigset_active = 0;
1780 return 0;
1781 }
1782
1783 #ifdef __KVM_HAVE_MSIX
1784 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1785 struct kvm_assigned_msix_nr *entry_nr)
1786 {
1787 int r = 0;
1788 struct kvm_assigned_dev_kernel *adev;
1789
1790 mutex_lock(&kvm->lock);
1791
1792 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1793 entry_nr->assigned_dev_id);
1794 if (!adev) {
1795 r = -EINVAL;
1796 goto msix_nr_out;
1797 }
1798
1799 if (adev->entries_nr == 0) {
1800 adev->entries_nr = entry_nr->entry_nr;
1801 if (adev->entries_nr == 0 ||
1802 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1803 r = -EINVAL;
1804 goto msix_nr_out;
1805 }
1806
1807 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1808 entry_nr->entry_nr,
1809 GFP_KERNEL);
1810 if (!adev->host_msix_entries) {
1811 r = -ENOMEM;
1812 goto msix_nr_out;
1813 }
1814 adev->guest_msix_entries = kzalloc(
1815 sizeof(struct kvm_guest_msix_entry) *
1816 entry_nr->entry_nr, GFP_KERNEL);
1817 if (!adev->guest_msix_entries) {
1818 kfree(adev->host_msix_entries);
1819 r = -ENOMEM;
1820 goto msix_nr_out;
1821 }
1822 } else /* Not allowed set MSI-X number twice */
1823 r = -EINVAL;
1824 msix_nr_out:
1825 mutex_unlock(&kvm->lock);
1826 return r;
1827 }
1828
1829 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1830 struct kvm_assigned_msix_entry *entry)
1831 {
1832 int r = 0, i;
1833 struct kvm_assigned_dev_kernel *adev;
1834
1835 mutex_lock(&kvm->lock);
1836
1837 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1838 entry->assigned_dev_id);
1839
1840 if (!adev) {
1841 r = -EINVAL;
1842 goto msix_entry_out;
1843 }
1844
1845 for (i = 0; i < adev->entries_nr; i++)
1846 if (adev->guest_msix_entries[i].vector == 0 ||
1847 adev->guest_msix_entries[i].entry == entry->entry) {
1848 adev->guest_msix_entries[i].entry = entry->entry;
1849 adev->guest_msix_entries[i].vector = entry->gsi;
1850 adev->host_msix_entries[i].entry = entry->entry;
1851 break;
1852 }
1853 if (i == adev->entries_nr) {
1854 r = -ENOSPC;
1855 goto msix_entry_out;
1856 }
1857
1858 msix_entry_out:
1859 mutex_unlock(&kvm->lock);
1860
1861 return r;
1862 }
1863 #endif
1864
1865 static long kvm_vcpu_ioctl(struct file *filp,
1866 unsigned int ioctl, unsigned long arg)
1867 {
1868 struct kvm_vcpu *vcpu = filp->private_data;
1869 void __user *argp = (void __user *)arg;
1870 int r;
1871 struct kvm_fpu *fpu = NULL;
1872 struct kvm_sregs *kvm_sregs = NULL;
1873
1874 if (vcpu->kvm->mm != current->mm)
1875 return -EIO;
1876 switch (ioctl) {
1877 case KVM_RUN:
1878 r = -EINVAL;
1879 if (arg)
1880 goto out;
1881 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1882 break;
1883 case KVM_GET_REGS: {
1884 struct kvm_regs *kvm_regs;
1885
1886 r = -ENOMEM;
1887 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1888 if (!kvm_regs)
1889 goto out;
1890 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1891 if (r)
1892 goto out_free1;
1893 r = -EFAULT;
1894 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1895 goto out_free1;
1896 r = 0;
1897 out_free1:
1898 kfree(kvm_regs);
1899 break;
1900 }
1901 case KVM_SET_REGS: {
1902 struct kvm_regs *kvm_regs;
1903
1904 r = -ENOMEM;
1905 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1906 if (!kvm_regs)
1907 goto out;
1908 r = -EFAULT;
1909 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1910 goto out_free2;
1911 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1912 if (r)
1913 goto out_free2;
1914 r = 0;
1915 out_free2:
1916 kfree(kvm_regs);
1917 break;
1918 }
1919 case KVM_GET_SREGS: {
1920 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1921 r = -ENOMEM;
1922 if (!kvm_sregs)
1923 goto out;
1924 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1925 if (r)
1926 goto out;
1927 r = -EFAULT;
1928 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1929 goto out;
1930 r = 0;
1931 break;
1932 }
1933 case KVM_SET_SREGS: {
1934 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1935 r = -ENOMEM;
1936 if (!kvm_sregs)
1937 goto out;
1938 r = -EFAULT;
1939 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1940 goto out;
1941 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1942 if (r)
1943 goto out;
1944 r = 0;
1945 break;
1946 }
1947 case KVM_GET_MP_STATE: {
1948 struct kvm_mp_state mp_state;
1949
1950 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1951 if (r)
1952 goto out;
1953 r = -EFAULT;
1954 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1955 goto out;
1956 r = 0;
1957 break;
1958 }
1959 case KVM_SET_MP_STATE: {
1960 struct kvm_mp_state mp_state;
1961
1962 r = -EFAULT;
1963 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1964 goto out;
1965 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1966 if (r)
1967 goto out;
1968 r = 0;
1969 break;
1970 }
1971 case KVM_TRANSLATE: {
1972 struct kvm_translation tr;
1973
1974 r = -EFAULT;
1975 if (copy_from_user(&tr, argp, sizeof tr))
1976 goto out;
1977 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1978 if (r)
1979 goto out;
1980 r = -EFAULT;
1981 if (copy_to_user(argp, &tr, sizeof tr))
1982 goto out;
1983 r = 0;
1984 break;
1985 }
1986 case KVM_SET_GUEST_DEBUG: {
1987 struct kvm_guest_debug dbg;
1988
1989 r = -EFAULT;
1990 if (copy_from_user(&dbg, argp, sizeof dbg))
1991 goto out;
1992 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1993 if (r)
1994 goto out;
1995 r = 0;
1996 break;
1997 }
1998 case KVM_SET_SIGNAL_MASK: {
1999 struct kvm_signal_mask __user *sigmask_arg = argp;
2000 struct kvm_signal_mask kvm_sigmask;
2001 sigset_t sigset, *p;
2002
2003 p = NULL;
2004 if (argp) {
2005 r = -EFAULT;
2006 if (copy_from_user(&kvm_sigmask, argp,
2007 sizeof kvm_sigmask))
2008 goto out;
2009 r = -EINVAL;
2010 if (kvm_sigmask.len != sizeof sigset)
2011 goto out;
2012 r = -EFAULT;
2013 if (copy_from_user(&sigset, sigmask_arg->sigset,
2014 sizeof sigset))
2015 goto out;
2016 p = &sigset;
2017 }
2018 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2019 break;
2020 }
2021 case KVM_GET_FPU: {
2022 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2023 r = -ENOMEM;
2024 if (!fpu)
2025 goto out;
2026 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2027 if (r)
2028 goto out;
2029 r = -EFAULT;
2030 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2031 goto out;
2032 r = 0;
2033 break;
2034 }
2035 case KVM_SET_FPU: {
2036 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2037 r = -ENOMEM;
2038 if (!fpu)
2039 goto out;
2040 r = -EFAULT;
2041 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2042 goto out;
2043 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2044 if (r)
2045 goto out;
2046 r = 0;
2047 break;
2048 }
2049 default:
2050 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2051 }
2052 out:
2053 kfree(fpu);
2054 kfree(kvm_sregs);
2055 return r;
2056 }
2057
2058 static long kvm_vm_ioctl(struct file *filp,
2059 unsigned int ioctl, unsigned long arg)
2060 {
2061 struct kvm *kvm = filp->private_data;
2062 void __user *argp = (void __user *)arg;
2063 int r;
2064
2065 if (kvm->mm != current->mm)
2066 return -EIO;
2067 switch (ioctl) {
2068 case KVM_CREATE_VCPU:
2069 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2070 if (r < 0)
2071 goto out;
2072 break;
2073 case KVM_SET_USER_MEMORY_REGION: {
2074 struct kvm_userspace_memory_region kvm_userspace_mem;
2075
2076 r = -EFAULT;
2077 if (copy_from_user(&kvm_userspace_mem, argp,
2078 sizeof kvm_userspace_mem))
2079 goto out;
2080
2081 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2082 if (r)
2083 goto out;
2084 break;
2085 }
2086 case KVM_GET_DIRTY_LOG: {
2087 struct kvm_dirty_log log;
2088
2089 r = -EFAULT;
2090 if (copy_from_user(&log, argp, sizeof log))
2091 goto out;
2092 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2093 if (r)
2094 goto out;
2095 break;
2096 }
2097 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2098 case KVM_REGISTER_COALESCED_MMIO: {
2099 struct kvm_coalesced_mmio_zone zone;
2100 r = -EFAULT;
2101 if (copy_from_user(&zone, argp, sizeof zone))
2102 goto out;
2103 r = -ENXIO;
2104 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2105 if (r)
2106 goto out;
2107 r = 0;
2108 break;
2109 }
2110 case KVM_UNREGISTER_COALESCED_MMIO: {
2111 struct kvm_coalesced_mmio_zone zone;
2112 r = -EFAULT;
2113 if (copy_from_user(&zone, argp, sizeof zone))
2114 goto out;
2115 r = -ENXIO;
2116 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2117 if (r)
2118 goto out;
2119 r = 0;
2120 break;
2121 }
2122 #endif
2123 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2124 case KVM_ASSIGN_PCI_DEVICE: {
2125 struct kvm_assigned_pci_dev assigned_dev;
2126
2127 r = -EFAULT;
2128 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2129 goto out;
2130 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2131 if (r)
2132 goto out;
2133 break;
2134 }
2135 case KVM_ASSIGN_IRQ: {
2136 r = -EOPNOTSUPP;
2137 break;
2138 }
2139 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2140 case KVM_ASSIGN_DEV_IRQ: {
2141 struct kvm_assigned_irq assigned_irq;
2142
2143 r = -EFAULT;
2144 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2145 goto out;
2146 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2147 if (r)
2148 goto out;
2149 break;
2150 }
2151 case KVM_DEASSIGN_DEV_IRQ: {
2152 struct kvm_assigned_irq assigned_irq;
2153
2154 r = -EFAULT;
2155 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2156 goto out;
2157 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2158 if (r)
2159 goto out;
2160 break;
2161 }
2162 #endif
2163 #endif
2164 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2165 case KVM_DEASSIGN_PCI_DEVICE: {
2166 struct kvm_assigned_pci_dev assigned_dev;
2167
2168 r = -EFAULT;
2169 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2170 goto out;
2171 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2172 if (r)
2173 goto out;
2174 break;
2175 }
2176 #endif
2177 #ifdef KVM_CAP_IRQ_ROUTING
2178 case KVM_SET_GSI_ROUTING: {
2179 struct kvm_irq_routing routing;
2180 struct kvm_irq_routing __user *urouting;
2181 struct kvm_irq_routing_entry *entries;
2182
2183 r = -EFAULT;
2184 if (copy_from_user(&routing, argp, sizeof(routing)))
2185 goto out;
2186 r = -EINVAL;
2187 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2188 goto out;
2189 if (routing.flags)
2190 goto out;
2191 r = -ENOMEM;
2192 entries = vmalloc(routing.nr * sizeof(*entries));
2193 if (!entries)
2194 goto out;
2195 r = -EFAULT;
2196 urouting = argp;
2197 if (copy_from_user(entries, urouting->entries,
2198 routing.nr * sizeof(*entries)))
2199 goto out_free_irq_routing;
2200 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2201 routing.flags);
2202 out_free_irq_routing:
2203 vfree(entries);
2204 break;
2205 }
2206 #ifdef __KVM_HAVE_MSIX
2207 case KVM_ASSIGN_SET_MSIX_NR: {
2208 struct kvm_assigned_msix_nr entry_nr;
2209 r = -EFAULT;
2210 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2211 goto out;
2212 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2213 if (r)
2214 goto out;
2215 break;
2216 }
2217 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2218 struct kvm_assigned_msix_entry entry;
2219 r = -EFAULT;
2220 if (copy_from_user(&entry, argp, sizeof entry))
2221 goto out;
2222 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2223 if (r)
2224 goto out;
2225 break;
2226 }
2227 #endif
2228 #endif /* KVM_CAP_IRQ_ROUTING */
2229 case KVM_IRQFD: {
2230 struct kvm_irqfd data;
2231
2232 r = -EFAULT;
2233 if (copy_from_user(&data, argp, sizeof data))
2234 goto out;
2235 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2236 break;
2237 }
2238 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2239 case KVM_SET_BOOT_CPU_ID:
2240 r = 0;
2241 if (atomic_read(&kvm->online_vcpus) != 0)
2242 r = -EBUSY;
2243 else
2244 kvm->bsp_vcpu_id = arg;
2245 break;
2246 #endif
2247 default:
2248 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2249 }
2250 out:
2251 return r;
2252 }
2253
2254 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2255 {
2256 struct page *page[1];
2257 unsigned long addr;
2258 int npages;
2259 gfn_t gfn = vmf->pgoff;
2260 struct kvm *kvm = vma->vm_file->private_data;
2261
2262 addr = gfn_to_hva(kvm, gfn);
2263 if (kvm_is_error_hva(addr))
2264 return VM_FAULT_SIGBUS;
2265
2266 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2267 NULL);
2268 if (unlikely(npages != 1))
2269 return VM_FAULT_SIGBUS;
2270
2271 vmf->page = page[0];
2272 return 0;
2273 }
2274
2275 static struct vm_operations_struct kvm_vm_vm_ops = {
2276 .fault = kvm_vm_fault,
2277 };
2278
2279 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2280 {
2281 vma->vm_ops = &kvm_vm_vm_ops;
2282 return 0;
2283 }
2284
2285 static struct file_operations kvm_vm_fops = {
2286 .release = kvm_vm_release,
2287 .unlocked_ioctl = kvm_vm_ioctl,
2288 .compat_ioctl = kvm_vm_ioctl,
2289 .mmap = kvm_vm_mmap,
2290 };
2291
2292 static int kvm_dev_ioctl_create_vm(void)
2293 {
2294 int fd;
2295 struct kvm *kvm;
2296
2297 kvm = kvm_create_vm();
2298 if (IS_ERR(kvm))
2299 return PTR_ERR(kvm);
2300 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2301 if (fd < 0)
2302 kvm_put_kvm(kvm);
2303
2304 return fd;
2305 }
2306
2307 static long kvm_dev_ioctl_check_extension_generic(long arg)
2308 {
2309 switch (arg) {
2310 case KVM_CAP_USER_MEMORY:
2311 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2312 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2313 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2314 case KVM_CAP_SET_BOOT_CPU_ID:
2315 #endif
2316 return 1;
2317 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2318 case KVM_CAP_IRQ_ROUTING:
2319 return KVM_MAX_IRQ_ROUTES;
2320 #endif
2321 default:
2322 break;
2323 }
2324 return kvm_dev_ioctl_check_extension(arg);
2325 }
2326
2327 static long kvm_dev_ioctl(struct file *filp,
2328 unsigned int ioctl, unsigned long arg)
2329 {
2330 long r = -EINVAL;
2331
2332 switch (ioctl) {
2333 case KVM_GET_API_VERSION:
2334 r = -EINVAL;
2335 if (arg)
2336 goto out;
2337 r = KVM_API_VERSION;
2338 break;
2339 case KVM_CREATE_VM:
2340 r = -EINVAL;
2341 if (arg)
2342 goto out;
2343 r = kvm_dev_ioctl_create_vm();
2344 break;
2345 case KVM_CHECK_EXTENSION:
2346 r = kvm_dev_ioctl_check_extension_generic(arg);
2347 break;
2348 case KVM_GET_VCPU_MMAP_SIZE:
2349 r = -EINVAL;
2350 if (arg)
2351 goto out;
2352 r = PAGE_SIZE; /* struct kvm_run */
2353 #ifdef CONFIG_X86
2354 r += PAGE_SIZE; /* pio data page */
2355 #endif
2356 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2357 r += PAGE_SIZE; /* coalesced mmio ring page */
2358 #endif
2359 break;
2360 case KVM_TRACE_ENABLE:
2361 case KVM_TRACE_PAUSE:
2362 case KVM_TRACE_DISABLE:
2363 r = kvm_trace_ioctl(ioctl, arg);
2364 break;
2365 default:
2366 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2367 }
2368 out:
2369 return r;
2370 }
2371
2372 static struct file_operations kvm_chardev_ops = {
2373 .unlocked_ioctl = kvm_dev_ioctl,
2374 .compat_ioctl = kvm_dev_ioctl,
2375 };
2376
2377 static struct miscdevice kvm_dev = {
2378 KVM_MINOR,
2379 "kvm",
2380 &kvm_chardev_ops,
2381 };
2382
2383 static void hardware_enable(void *junk)
2384 {
2385 int cpu = raw_smp_processor_id();
2386
2387 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2388 return;
2389 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2390 kvm_arch_hardware_enable(NULL);
2391 }
2392
2393 static void hardware_disable(void *junk)
2394 {
2395 int cpu = raw_smp_processor_id();
2396
2397 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2398 return;
2399 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2400 kvm_arch_hardware_disable(NULL);
2401 }
2402
2403 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2404 void *v)
2405 {
2406 int cpu = (long)v;
2407
2408 val &= ~CPU_TASKS_FROZEN;
2409 switch (val) {
2410 case CPU_DYING:
2411 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2412 cpu);
2413 hardware_disable(NULL);
2414 break;
2415 case CPU_UP_CANCELED:
2416 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2417 cpu);
2418 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2419 break;
2420 case CPU_ONLINE:
2421 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2422 cpu);
2423 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2424 break;
2425 }
2426 return NOTIFY_OK;
2427 }
2428
2429
2430 asmlinkage void kvm_handle_fault_on_reboot(void)
2431 {
2432 if (kvm_rebooting)
2433 /* spin while reset goes on */
2434 while (true)
2435 ;
2436 /* Fault while not rebooting. We want the trace. */
2437 BUG();
2438 }
2439 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2440
2441 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2442 void *v)
2443 {
2444 /*
2445 * Some (well, at least mine) BIOSes hang on reboot if
2446 * in vmx root mode.
2447 *
2448 * And Intel TXT required VMX off for all cpu when system shutdown.
2449 */
2450 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2451 kvm_rebooting = true;
2452 on_each_cpu(hardware_disable, NULL, 1);
2453 return NOTIFY_OK;
2454 }
2455
2456 static struct notifier_block kvm_reboot_notifier = {
2457 .notifier_call = kvm_reboot,
2458 .priority = 0,
2459 };
2460
2461 void kvm_io_bus_init(struct kvm_io_bus *bus)
2462 {
2463 memset(bus, 0, sizeof(*bus));
2464 }
2465
2466 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2467 {
2468 int i;
2469
2470 for (i = 0; i < bus->dev_count; i++) {
2471 struct kvm_io_device *pos = bus->devs[i];
2472
2473 kvm_iodevice_destructor(pos);
2474 }
2475 }
2476
2477 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2478 gpa_t addr, int len, int is_write)
2479 {
2480 int i;
2481
2482 for (i = 0; i < bus->dev_count; i++) {
2483 struct kvm_io_device *pos = bus->devs[i];
2484
2485 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2486 return pos;
2487 }
2488
2489 return NULL;
2490 }
2491
2492 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2493 {
2494 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2495
2496 bus->devs[bus->dev_count++] = dev;
2497 }
2498
2499 static struct notifier_block kvm_cpu_notifier = {
2500 .notifier_call = kvm_cpu_hotplug,
2501 .priority = 20, /* must be > scheduler priority */
2502 };
2503
2504 static int vm_stat_get(void *_offset, u64 *val)
2505 {
2506 unsigned offset = (long)_offset;
2507 struct kvm *kvm;
2508
2509 *val = 0;
2510 spin_lock(&kvm_lock);
2511 list_for_each_entry(kvm, &vm_list, vm_list)
2512 *val += *(u32 *)((void *)kvm + offset);
2513 spin_unlock(&kvm_lock);
2514 return 0;
2515 }
2516
2517 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2518
2519 static int vcpu_stat_get(void *_offset, u64 *val)
2520 {
2521 unsigned offset = (long)_offset;
2522 struct kvm *kvm;
2523 struct kvm_vcpu *vcpu;
2524 int i;
2525
2526 *val = 0;
2527 spin_lock(&kvm_lock);
2528 list_for_each_entry(kvm, &vm_list, vm_list)
2529 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2530 vcpu = kvm->vcpus[i];
2531 if (vcpu)
2532 *val += *(u32 *)((void *)vcpu + offset);
2533 }
2534 spin_unlock(&kvm_lock);
2535 return 0;
2536 }
2537
2538 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2539
2540 static struct file_operations *stat_fops[] = {
2541 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2542 [KVM_STAT_VM] = &vm_stat_fops,
2543 };
2544
2545 static void kvm_init_debug(void)
2546 {
2547 struct kvm_stats_debugfs_item *p;
2548
2549 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2550 for (p = debugfs_entries; p->name; ++p)
2551 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2552 (void *)(long)p->offset,
2553 stat_fops[p->kind]);
2554 }
2555
2556 static void kvm_exit_debug(void)
2557 {
2558 struct kvm_stats_debugfs_item *p;
2559
2560 for (p = debugfs_entries; p->name; ++p)
2561 debugfs_remove(p->dentry);
2562 debugfs_remove(kvm_debugfs_dir);
2563 }
2564
2565 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2566 {
2567 hardware_disable(NULL);
2568 return 0;
2569 }
2570
2571 static int kvm_resume(struct sys_device *dev)
2572 {
2573 hardware_enable(NULL);
2574 return 0;
2575 }
2576
2577 static struct sysdev_class kvm_sysdev_class = {
2578 .name = "kvm",
2579 .suspend = kvm_suspend,
2580 .resume = kvm_resume,
2581 };
2582
2583 static struct sys_device kvm_sysdev = {
2584 .id = 0,
2585 .cls = &kvm_sysdev_class,
2586 };
2587
2588 struct page *bad_page;
2589 pfn_t bad_pfn;
2590
2591 static inline
2592 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2593 {
2594 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2595 }
2596
2597 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2598 {
2599 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2600
2601 kvm_arch_vcpu_load(vcpu, cpu);
2602 }
2603
2604 static void kvm_sched_out(struct preempt_notifier *pn,
2605 struct task_struct *next)
2606 {
2607 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2608
2609 kvm_arch_vcpu_put(vcpu);
2610 }
2611
2612 int kvm_init(void *opaque, unsigned int vcpu_size,
2613 struct module *module)
2614 {
2615 int r;
2616 int cpu;
2617
2618 kvm_init_debug();
2619
2620 r = kvm_arch_init(opaque);
2621 if (r)
2622 goto out_fail;
2623
2624 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2625
2626 if (bad_page == NULL) {
2627 r = -ENOMEM;
2628 goto out;
2629 }
2630
2631 bad_pfn = page_to_pfn(bad_page);
2632
2633 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2634 r = -ENOMEM;
2635 goto out_free_0;
2636 }
2637
2638 r = kvm_arch_hardware_setup();
2639 if (r < 0)
2640 goto out_free_0a;
2641
2642 for_each_online_cpu(cpu) {
2643 smp_call_function_single(cpu,
2644 kvm_arch_check_processor_compat,
2645 &r, 1);
2646 if (r < 0)
2647 goto out_free_1;
2648 }
2649
2650 on_each_cpu(hardware_enable, NULL, 1);
2651 r = register_cpu_notifier(&kvm_cpu_notifier);
2652 if (r)
2653 goto out_free_2;
2654 register_reboot_notifier(&kvm_reboot_notifier);
2655
2656 r = sysdev_class_register(&kvm_sysdev_class);
2657 if (r)
2658 goto out_free_3;
2659
2660 r = sysdev_register(&kvm_sysdev);
2661 if (r)
2662 goto out_free_4;
2663
2664 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2665 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2666 __alignof__(struct kvm_vcpu),
2667 0, NULL);
2668 if (!kvm_vcpu_cache) {
2669 r = -ENOMEM;
2670 goto out_free_5;
2671 }
2672
2673 kvm_chardev_ops.owner = module;
2674 kvm_vm_fops.owner = module;
2675 kvm_vcpu_fops.owner = module;
2676
2677 r = misc_register(&kvm_dev);
2678 if (r) {
2679 printk(KERN_ERR "kvm: misc device register failed\n");
2680 goto out_free;
2681 }
2682
2683 kvm_preempt_ops.sched_in = kvm_sched_in;
2684 kvm_preempt_ops.sched_out = kvm_sched_out;
2685
2686 return 0;
2687
2688 out_free:
2689 kmem_cache_destroy(kvm_vcpu_cache);
2690 out_free_5:
2691 sysdev_unregister(&kvm_sysdev);
2692 out_free_4:
2693 sysdev_class_unregister(&kvm_sysdev_class);
2694 out_free_3:
2695 unregister_reboot_notifier(&kvm_reboot_notifier);
2696 unregister_cpu_notifier(&kvm_cpu_notifier);
2697 out_free_2:
2698 on_each_cpu(hardware_disable, NULL, 1);
2699 out_free_1:
2700 kvm_arch_hardware_unsetup();
2701 out_free_0a:
2702 free_cpumask_var(cpus_hardware_enabled);
2703 out_free_0:
2704 __free_page(bad_page);
2705 out:
2706 kvm_arch_exit();
2707 kvm_exit_debug();
2708 out_fail:
2709 return r;
2710 }
2711 EXPORT_SYMBOL_GPL(kvm_init);
2712
2713 void kvm_exit(void)
2714 {
2715 kvm_trace_cleanup();
2716 misc_deregister(&kvm_dev);
2717 kmem_cache_destroy(kvm_vcpu_cache);
2718 sysdev_unregister(&kvm_sysdev);
2719 sysdev_class_unregister(&kvm_sysdev_class);
2720 unregister_reboot_notifier(&kvm_reboot_notifier);
2721 unregister_cpu_notifier(&kvm_cpu_notifier);
2722 on_each_cpu(hardware_disable, NULL, 1);
2723 kvm_arch_hardware_unsetup();
2724 kvm_arch_exit();
2725 kvm_exit_debug();
2726 free_cpumask_var(cpus_hardware_enabled);
2727 __free_page(bad_page);
2728 }
2729 EXPORT_SYMBOL_GPL(kvm_exit);