]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
54f0fcfd431ecca9e0c19b75ab87f097eb92e28f
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end, bool blockable)
145 {
146 return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 if (pfn_valid(pfn))
152 return PageReserved(pfn_to_page(pfn));
153
154 return true;
155 }
156
157 /*
158 * Switches to specified vcpu, until a matching vcpu_put()
159 */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 int cpu = get_cpu();
163 preempt_notifier_register(&vcpu->preempt_notifier);
164 kvm_arch_vcpu_load(vcpu, cpu);
165 put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 preempt_disable();
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 int i, cpu, me;
216 struct kvm_vcpu *vcpu;
217 bool called;
218
219 me = get_cpu();
220
221 kvm_for_each_vcpu(i, vcpu, kvm) {
222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 continue;
224
225 kvm_make_request(req, vcpu);
226 cpu = vcpu->cpu;
227
228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 continue;
230
231 if (tmp != NULL && cpu != -1 && cpu != me &&
232 kvm_request_needs_ipi(vcpu, req))
233 __cpumask_set_cpu(cpu, tmp);
234 }
235
236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 put_cpu();
238
239 return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 cpumask_var_t cpus;
245 bool called;
246
247 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251 free_cpumask_var(cpus);
252 return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 /*
259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 * kvm_make_all_cpus_request.
261 */
262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264 /*
265 * We want to publish modifications to the page tables before reading
266 * mode. Pairs with a memory barrier in arch-specific code.
267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 *
271 * There is already an smp_mb__after_atomic() before
272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 * barrier here.
274 */
275 if (!kvm_arch_flush_remote_tlb(kvm)
276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 ++kvm->stat.remote_tlb_flush;
278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 struct page *page;
291 int r;
292
293 mutex_init(&vcpu->mutex);
294 vcpu->cpu = -1;
295 vcpu->kvm = kvm;
296 vcpu->vcpu_id = id;
297 vcpu->pid = NULL;
298 init_swait_queue_head(&vcpu->wq);
299 kvm_async_pf_vcpu_init(vcpu);
300
301 vcpu->pre_pcpu = -1;
302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 if (!page) {
306 r = -ENOMEM;
307 goto fail;
308 }
309 vcpu->run = page_address(page);
310
311 kvm_vcpu_set_in_spin_loop(vcpu, false);
312 kvm_vcpu_set_dy_eligible(vcpu, false);
313 vcpu->preempted = false;
314
315 r = kvm_arch_vcpu_init(vcpu);
316 if (r < 0)
317 goto fail_free_run;
318 return 0;
319
320 fail_free_run:
321 free_page((unsigned long)vcpu->run);
322 fail:
323 return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 /*
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
333 */
334 put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 kvm_arch_vcpu_uninit(vcpu);
336 free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long address,
349 pte_t pte)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int idx;
353
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 kvm->mmu_notifier_seq++;
357 kvm_set_spte_hva(kvm, address, pte);
358 spin_unlock(&kvm->mmu_lock);
359 srcu_read_unlock(&kvm->srcu, idx);
360 }
361
362 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363 struct mm_struct *mm,
364 unsigned long start,
365 unsigned long end,
366 bool blockable)
367 {
368 struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 int need_tlb_flush = 0, idx;
370 int ret;
371
372 idx = srcu_read_lock(&kvm->srcu);
373 spin_lock(&kvm->mmu_lock);
374 /*
375 * The count increase must become visible at unlock time as no
376 * spte can be established without taking the mmu_lock and
377 * count is also read inside the mmu_lock critical section.
378 */
379 kvm->mmu_notifier_count++;
380 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
381 need_tlb_flush |= kvm->tlbs_dirty;
382 /* we've to flush the tlb before the pages can be freed */
383 if (need_tlb_flush)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387
388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
389
390 srcu_read_unlock(&kvm->srcu, idx);
391
392 return ret;
393 }
394
395 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396 struct mm_struct *mm,
397 unsigned long start,
398 unsigned long end)
399 {
400 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401
402 spin_lock(&kvm->mmu_lock);
403 /*
404 * This sequence increase will notify the kvm page fault that
405 * the page that is going to be mapped in the spte could have
406 * been freed.
407 */
408 kvm->mmu_notifier_seq++;
409 smp_wmb();
410 /*
411 * The above sequence increase must be visible before the
412 * below count decrease, which is ensured by the smp_wmb above
413 * in conjunction with the smp_rmb in mmu_notifier_retry().
414 */
415 kvm->mmu_notifier_count--;
416 spin_unlock(&kvm->mmu_lock);
417
418 BUG_ON(kvm->mmu_notifier_count < 0);
419 }
420
421 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
423 unsigned long start,
424 unsigned long end)
425 {
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 int young, idx;
428
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
431
432 young = kvm_age_hva(kvm, start, end);
433 if (young)
434 kvm_flush_remote_tlbs(kvm);
435
436 spin_unlock(&kvm->mmu_lock);
437 srcu_read_unlock(&kvm->srcu, idx);
438
439 return young;
440 }
441
442 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443 struct mm_struct *mm,
444 unsigned long start,
445 unsigned long end)
446 {
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 int young, idx;
449
450 idx = srcu_read_lock(&kvm->srcu);
451 spin_lock(&kvm->mmu_lock);
452 /*
453 * Even though we do not flush TLB, this will still adversely
454 * affect performance on pre-Haswell Intel EPT, where there is
455 * no EPT Access Bit to clear so that we have to tear down EPT
456 * tables instead. If we find this unacceptable, we can always
457 * add a parameter to kvm_age_hva so that it effectively doesn't
458 * do anything on clear_young.
459 *
460 * Also note that currently we never issue secondary TLB flushes
461 * from clear_young, leaving this job up to the regular system
462 * cadence. If we find this inaccurate, we might come up with a
463 * more sophisticated heuristic later.
464 */
465 young = kvm_age_hva(kvm, start, end);
466 spin_unlock(&kvm->mmu_lock);
467 srcu_read_unlock(&kvm->srcu, idx);
468
469 return young;
470 }
471
472 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473 struct mm_struct *mm,
474 unsigned long address)
475 {
476 struct kvm *kvm = mmu_notifier_to_kvm(mn);
477 int young, idx;
478
479 idx = srcu_read_lock(&kvm->srcu);
480 spin_lock(&kvm->mmu_lock);
481 young = kvm_test_age_hva(kvm, address);
482 spin_unlock(&kvm->mmu_lock);
483 srcu_read_unlock(&kvm->srcu, idx);
484
485 return young;
486 }
487
488 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489 struct mm_struct *mm)
490 {
491 struct kvm *kvm = mmu_notifier_to_kvm(mn);
492 int idx;
493
494 idx = srcu_read_lock(&kvm->srcu);
495 kvm_arch_flush_shadow_all(kvm);
496 srcu_read_unlock(&kvm->srcu, idx);
497 }
498
499 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
500 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
501 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
502 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
503 .clear_young = kvm_mmu_notifier_clear_young,
504 .test_young = kvm_mmu_notifier_test_young,
505 .change_pte = kvm_mmu_notifier_change_pte,
506 .release = kvm_mmu_notifier_release,
507 };
508
509 static int kvm_init_mmu_notifier(struct kvm *kvm)
510 {
511 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
512 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
513 }
514
515 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
516
517 static int kvm_init_mmu_notifier(struct kvm *kvm)
518 {
519 return 0;
520 }
521
522 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
523
524 static struct kvm_memslots *kvm_alloc_memslots(void)
525 {
526 int i;
527 struct kvm_memslots *slots;
528
529 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
530 if (!slots)
531 return NULL;
532
533 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
534 slots->id_to_index[i] = slots->memslots[i].id = i;
535
536 return slots;
537 }
538
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 {
541 if (!memslot->dirty_bitmap)
542 return;
543
544 kvfree(memslot->dirty_bitmap);
545 memslot->dirty_bitmap = NULL;
546 }
547
548 /*
549 * Free any memory in @free but not in @dont.
550 */
551 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
552 struct kvm_memory_slot *dont)
553 {
554 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 kvm_destroy_dirty_bitmap(free);
556
557 kvm_arch_free_memslot(kvm, free, dont);
558
559 free->npages = 0;
560 }
561
562 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
563 {
564 struct kvm_memory_slot *memslot;
565
566 if (!slots)
567 return;
568
569 kvm_for_each_memslot(memslot, slots)
570 kvm_free_memslot(kvm, memslot, NULL);
571
572 kvfree(slots);
573 }
574
575 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
576 {
577 int i;
578
579 if (!kvm->debugfs_dentry)
580 return;
581
582 debugfs_remove_recursive(kvm->debugfs_dentry);
583
584 if (kvm->debugfs_stat_data) {
585 for (i = 0; i < kvm_debugfs_num_entries; i++)
586 kfree(kvm->debugfs_stat_data[i]);
587 kfree(kvm->debugfs_stat_data);
588 }
589 }
590
591 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
592 {
593 char dir_name[ITOA_MAX_LEN * 2];
594 struct kvm_stat_data *stat_data;
595 struct kvm_stats_debugfs_item *p;
596
597 if (!debugfs_initialized())
598 return 0;
599
600 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
601 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
602
603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 sizeof(*kvm->debugfs_stat_data),
605 GFP_KERNEL);
606 if (!kvm->debugfs_stat_data)
607 return -ENOMEM;
608
609 for (p = debugfs_entries; p->name; p++) {
610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 if (!stat_data)
612 return -ENOMEM;
613
614 stat_data->kvm = kvm;
615 stat_data->offset = p->offset;
616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
618 stat_data, stat_fops_per_vm[p->kind]);
619 }
620 return 0;
621 }
622
623 static struct kvm *kvm_create_vm(unsigned long type)
624 {
625 int r, i;
626 struct kvm *kvm = kvm_arch_alloc_vm();
627
628 if (!kvm)
629 return ERR_PTR(-ENOMEM);
630
631 spin_lock_init(&kvm->mmu_lock);
632 mmgrab(current->mm);
633 kvm->mm = current->mm;
634 kvm_eventfd_init(kvm);
635 mutex_init(&kvm->lock);
636 mutex_init(&kvm->irq_lock);
637 mutex_init(&kvm->slots_lock);
638 refcount_set(&kvm->users_count, 1);
639 INIT_LIST_HEAD(&kvm->devices);
640
641 r = kvm_arch_init_vm(kvm, type);
642 if (r)
643 goto out_err_no_disable;
644
645 r = hardware_enable_all();
646 if (r)
647 goto out_err_no_disable;
648
649 #ifdef CONFIG_HAVE_KVM_IRQFD
650 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
651 #endif
652
653 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
654
655 r = -ENOMEM;
656 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
657 struct kvm_memslots *slots = kvm_alloc_memslots();
658 if (!slots)
659 goto out_err_no_srcu;
660 /*
661 * Generations must be different for each address space.
662 * Init kvm generation close to the maximum to easily test the
663 * code of handling generation number wrap-around.
664 */
665 slots->generation = i * 2 - 150;
666 rcu_assign_pointer(kvm->memslots[i], slots);
667 }
668
669 if (init_srcu_struct(&kvm->srcu))
670 goto out_err_no_srcu;
671 if (init_srcu_struct(&kvm->irq_srcu))
672 goto out_err_no_irq_srcu;
673 for (i = 0; i < KVM_NR_BUSES; i++) {
674 rcu_assign_pointer(kvm->buses[i],
675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
676 if (!kvm->buses[i])
677 goto out_err;
678 }
679
680 r = kvm_init_mmu_notifier(kvm);
681 if (r)
682 goto out_err;
683
684 spin_lock(&kvm_lock);
685 list_add(&kvm->vm_list, &vm_list);
686 spin_unlock(&kvm_lock);
687
688 preempt_notifier_inc();
689
690 return kvm;
691
692 out_err:
693 cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695 cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697 hardware_disable_all();
698 out_err_no_disable:
699 refcount_set(&kvm->users_count, 0);
700 for (i = 0; i < KVM_NR_BUSES; i++)
701 kfree(kvm_get_bus(kvm, i));
702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704 kvm_arch_free_vm(kvm);
705 mmdrop(current->mm);
706 return ERR_PTR(r);
707 }
708
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711 struct kvm_device *dev, *tmp;
712
713 /*
714 * We do not need to take the kvm->lock here, because nobody else
715 * has a reference to the struct kvm at this point and therefore
716 * cannot access the devices list anyhow.
717 */
718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 list_del(&dev->vm_node);
720 dev->ops->destroy(dev);
721 }
722 }
723
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726 int i;
727 struct mm_struct *mm = kvm->mm;
728
729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730 kvm_destroy_vm_debugfs(kvm);
731 kvm_arch_sync_events(kvm);
732 spin_lock(&kvm_lock);
733 list_del(&kvm->vm_list);
734 spin_unlock(&kvm_lock);
735 kvm_free_irq_routing(kvm);
736 for (i = 0; i < KVM_NR_BUSES; i++) {
737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738
739 if (bus)
740 kvm_io_bus_destroy(bus);
741 kvm->buses[i] = NULL;
742 }
743 kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747 kvm_arch_flush_shadow_all(kvm);
748 #endif
749 kvm_arch_destroy_vm(kvm);
750 kvm_destroy_devices(kvm);
751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753 cleanup_srcu_struct(&kvm->irq_srcu);
754 cleanup_srcu_struct(&kvm->srcu);
755 kvm_arch_free_vm(kvm);
756 preempt_notifier_dec();
757 hardware_disable_all();
758 mmdrop(mm);
759 }
760
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763 refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769 if (refcount_dec_and_test(&kvm->users_count))
770 kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773
774
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777 struct kvm *kvm = filp->private_data;
778
779 kvm_irqfd_release(kvm);
780
781 kvm_put_kvm(kvm);
782 return 0;
783 }
784
785 /*
786 * Allocation size is twice as large as the actual dirty bitmap size.
787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788 */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792
793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
794 if (!memslot->dirty_bitmap)
795 return -ENOMEM;
796
797 return 0;
798 }
799
800 /*
801 * Insert memslot and re-sort memslots based on their GFN,
802 * so binary search could be used to lookup GFN.
803 * Sorting algorithm takes advantage of having initially
804 * sorted array and known changed memslot position.
805 */
806 static void update_memslots(struct kvm_memslots *slots,
807 struct kvm_memory_slot *new,
808 enum kvm_mr_change change)
809 {
810 int id = new->id;
811 int i = slots->id_to_index[id];
812 struct kvm_memory_slot *mslots = slots->memslots;
813
814 WARN_ON(mslots[i].id != id);
815 switch (change) {
816 case KVM_MR_CREATE:
817 slots->used_slots++;
818 WARN_ON(mslots[i].npages || !new->npages);
819 break;
820 case KVM_MR_DELETE:
821 slots->used_slots--;
822 WARN_ON(new->npages || !mslots[i].npages);
823 break;
824 default:
825 break;
826 }
827
828 while (i < KVM_MEM_SLOTS_NUM - 1 &&
829 new->base_gfn <= mslots[i + 1].base_gfn) {
830 if (!mslots[i + 1].npages)
831 break;
832 mslots[i] = mslots[i + 1];
833 slots->id_to_index[mslots[i].id] = i;
834 i++;
835 }
836
837 /*
838 * The ">=" is needed when creating a slot with base_gfn == 0,
839 * so that it moves before all those with base_gfn == npages == 0.
840 *
841 * On the other hand, if new->npages is zero, the above loop has
842 * already left i pointing to the beginning of the empty part of
843 * mslots, and the ">=" would move the hole backwards in this
844 * case---which is wrong. So skip the loop when deleting a slot.
845 */
846 if (new->npages) {
847 while (i > 0 &&
848 new->base_gfn >= mslots[i - 1].base_gfn) {
849 mslots[i] = mslots[i - 1];
850 slots->id_to_index[mslots[i].id] = i;
851 i--;
852 }
853 } else
854 WARN_ON_ONCE(i != slots->used_slots);
855
856 mslots[i] = *new;
857 slots->id_to_index[mslots[i].id] = i;
858 }
859
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863
864 #ifdef __KVM_HAVE_READONLY_MEM
865 valid_flags |= KVM_MEM_READONLY;
866 #endif
867
868 if (mem->flags & ~valid_flags)
869 return -EINVAL;
870
871 return 0;
872 }
873
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875 int as_id, struct kvm_memslots *slots)
876 {
877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878
879 /*
880 * Set the low bit in the generation, which disables SPTE caching
881 * until the end of synchronize_srcu_expedited.
882 */
883 WARN_ON(old_memslots->generation & 1);
884 slots->generation = old_memslots->generation + 1;
885
886 rcu_assign_pointer(kvm->memslots[as_id], slots);
887 synchronize_srcu_expedited(&kvm->srcu);
888
889 /*
890 * Increment the new memslot generation a second time. This prevents
891 * vm exits that race with memslot updates from caching a memslot
892 * generation that will (potentially) be valid forever.
893 *
894 * Generations must be unique even across address spaces. We do not need
895 * a global counter for that, instead the generation space is evenly split
896 * across address spaces. For example, with two address spaces, address
897 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
898 * use generations 2, 6, 10, 14, ...
899 */
900 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
901
902 kvm_arch_memslots_updated(kvm, slots);
903
904 return old_memslots;
905 }
906
907 /*
908 * Allocate some memory and give it an address in the guest physical address
909 * space.
910 *
911 * Discontiguous memory is allowed, mostly for framebuffers.
912 *
913 * Must be called holding kvm->slots_lock for write.
914 */
915 int __kvm_set_memory_region(struct kvm *kvm,
916 const struct kvm_userspace_memory_region *mem)
917 {
918 int r;
919 gfn_t base_gfn;
920 unsigned long npages;
921 struct kvm_memory_slot *slot;
922 struct kvm_memory_slot old, new;
923 struct kvm_memslots *slots = NULL, *old_memslots;
924 int as_id, id;
925 enum kvm_mr_change change;
926
927 r = check_memory_region_flags(mem);
928 if (r)
929 goto out;
930
931 r = -EINVAL;
932 as_id = mem->slot >> 16;
933 id = (u16)mem->slot;
934
935 /* General sanity checks */
936 if (mem->memory_size & (PAGE_SIZE - 1))
937 goto out;
938 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
939 goto out;
940 /* We can read the guest memory with __xxx_user() later on. */
941 if ((id < KVM_USER_MEM_SLOTS) &&
942 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
943 !access_ok(VERIFY_WRITE,
944 (void __user *)(unsigned long)mem->userspace_addr,
945 mem->memory_size)))
946 goto out;
947 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
948 goto out;
949 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
950 goto out;
951
952 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
953 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
954 npages = mem->memory_size >> PAGE_SHIFT;
955
956 if (npages > KVM_MEM_MAX_NR_PAGES)
957 goto out;
958
959 new = old = *slot;
960
961 new.id = id;
962 new.base_gfn = base_gfn;
963 new.npages = npages;
964 new.flags = mem->flags;
965
966 if (npages) {
967 if (!old.npages)
968 change = KVM_MR_CREATE;
969 else { /* Modify an existing slot. */
970 if ((mem->userspace_addr != old.userspace_addr) ||
971 (npages != old.npages) ||
972 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
973 goto out;
974
975 if (base_gfn != old.base_gfn)
976 change = KVM_MR_MOVE;
977 else if (new.flags != old.flags)
978 change = KVM_MR_FLAGS_ONLY;
979 else { /* Nothing to change. */
980 r = 0;
981 goto out;
982 }
983 }
984 } else {
985 if (!old.npages)
986 goto out;
987
988 change = KVM_MR_DELETE;
989 new.base_gfn = 0;
990 new.flags = 0;
991 }
992
993 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
994 /* Check for overlaps */
995 r = -EEXIST;
996 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
997 if (slot->id == id)
998 continue;
999 if (!((base_gfn + npages <= slot->base_gfn) ||
1000 (base_gfn >= slot->base_gfn + slot->npages)))
1001 goto out;
1002 }
1003 }
1004
1005 /* Free page dirty bitmap if unneeded */
1006 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1007 new.dirty_bitmap = NULL;
1008
1009 r = -ENOMEM;
1010 if (change == KVM_MR_CREATE) {
1011 new.userspace_addr = mem->userspace_addr;
1012
1013 if (kvm_arch_create_memslot(kvm, &new, npages))
1014 goto out_free;
1015 }
1016
1017 /* Allocate page dirty bitmap if needed */
1018 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1019 if (kvm_create_dirty_bitmap(&new) < 0)
1020 goto out_free;
1021 }
1022
1023 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1024 if (!slots)
1025 goto out_free;
1026 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1027
1028 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1029 slot = id_to_memslot(slots, id);
1030 slot->flags |= KVM_MEMSLOT_INVALID;
1031
1032 old_memslots = install_new_memslots(kvm, as_id, slots);
1033
1034 /* From this point no new shadow pages pointing to a deleted,
1035 * or moved, memslot will be created.
1036 *
1037 * validation of sp->gfn happens in:
1038 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1039 * - kvm_is_visible_gfn (mmu_check_roots)
1040 */
1041 kvm_arch_flush_shadow_memslot(kvm, slot);
1042
1043 /*
1044 * We can re-use the old_memslots from above, the only difference
1045 * from the currently installed memslots is the invalid flag. This
1046 * will get overwritten by update_memslots anyway.
1047 */
1048 slots = old_memslots;
1049 }
1050
1051 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1052 if (r)
1053 goto out_slots;
1054
1055 /* actual memory is freed via old in kvm_free_memslot below */
1056 if (change == KVM_MR_DELETE) {
1057 new.dirty_bitmap = NULL;
1058 memset(&new.arch, 0, sizeof(new.arch));
1059 }
1060
1061 update_memslots(slots, &new, change);
1062 old_memslots = install_new_memslots(kvm, as_id, slots);
1063
1064 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1065
1066 kvm_free_memslot(kvm, &old, &new);
1067 kvfree(old_memslots);
1068 return 0;
1069
1070 out_slots:
1071 kvfree(slots);
1072 out_free:
1073 kvm_free_memslot(kvm, &new, &old);
1074 out:
1075 return r;
1076 }
1077 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1078
1079 int kvm_set_memory_region(struct kvm *kvm,
1080 const struct kvm_userspace_memory_region *mem)
1081 {
1082 int r;
1083
1084 mutex_lock(&kvm->slots_lock);
1085 r = __kvm_set_memory_region(kvm, mem);
1086 mutex_unlock(&kvm->slots_lock);
1087 return r;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1090
1091 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1092 struct kvm_userspace_memory_region *mem)
1093 {
1094 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1095 return -EINVAL;
1096
1097 return kvm_set_memory_region(kvm, mem);
1098 }
1099
1100 int kvm_get_dirty_log(struct kvm *kvm,
1101 struct kvm_dirty_log *log, int *is_dirty)
1102 {
1103 struct kvm_memslots *slots;
1104 struct kvm_memory_slot *memslot;
1105 int i, as_id, id;
1106 unsigned long n;
1107 unsigned long any = 0;
1108
1109 as_id = log->slot >> 16;
1110 id = (u16)log->slot;
1111 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1112 return -EINVAL;
1113
1114 slots = __kvm_memslots(kvm, as_id);
1115 memslot = id_to_memslot(slots, id);
1116 if (!memslot->dirty_bitmap)
1117 return -ENOENT;
1118
1119 n = kvm_dirty_bitmap_bytes(memslot);
1120
1121 for (i = 0; !any && i < n/sizeof(long); ++i)
1122 any = memslot->dirty_bitmap[i];
1123
1124 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1125 return -EFAULT;
1126
1127 if (any)
1128 *is_dirty = 1;
1129 return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1132
1133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1134 /**
1135 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1136 * are dirty write protect them for next write.
1137 * @kvm: pointer to kvm instance
1138 * @log: slot id and address to which we copy the log
1139 * @is_dirty: flag set if any page is dirty
1140 *
1141 * We need to keep it in mind that VCPU threads can write to the bitmap
1142 * concurrently. So, to avoid losing track of dirty pages we keep the
1143 * following order:
1144 *
1145 * 1. Take a snapshot of the bit and clear it if needed.
1146 * 2. Write protect the corresponding page.
1147 * 3. Copy the snapshot to the userspace.
1148 * 4. Upon return caller flushes TLB's if needed.
1149 *
1150 * Between 2 and 4, the guest may write to the page using the remaining TLB
1151 * entry. This is not a problem because the page is reported dirty using
1152 * the snapshot taken before and step 4 ensures that writes done after
1153 * exiting to userspace will be logged for the next call.
1154 *
1155 */
1156 int kvm_get_dirty_log_protect(struct kvm *kvm,
1157 struct kvm_dirty_log *log, bool *flush)
1158 {
1159 struct kvm_memslots *slots;
1160 struct kvm_memory_slot *memslot;
1161 int i, as_id, id;
1162 unsigned long n;
1163 unsigned long *dirty_bitmap;
1164 unsigned long *dirty_bitmap_buffer;
1165
1166 as_id = log->slot >> 16;
1167 id = (u16)log->slot;
1168 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1169 return -EINVAL;
1170
1171 slots = __kvm_memslots(kvm, as_id);
1172 memslot = id_to_memslot(slots, id);
1173
1174 dirty_bitmap = memslot->dirty_bitmap;
1175 if (!dirty_bitmap)
1176 return -ENOENT;
1177
1178 n = kvm_dirty_bitmap_bytes(memslot);
1179
1180 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1181 memset(dirty_bitmap_buffer, 0, n);
1182
1183 spin_lock(&kvm->mmu_lock);
1184 *flush = false;
1185 for (i = 0; i < n / sizeof(long); i++) {
1186 unsigned long mask;
1187 gfn_t offset;
1188
1189 if (!dirty_bitmap[i])
1190 continue;
1191
1192 *flush = true;
1193
1194 mask = xchg(&dirty_bitmap[i], 0);
1195 dirty_bitmap_buffer[i] = mask;
1196
1197 if (mask) {
1198 offset = i * BITS_PER_LONG;
1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 offset, mask);
1201 }
1202 }
1203
1204 spin_unlock(&kvm->mmu_lock);
1205 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1206 return -EFAULT;
1207 return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210 #endif
1211
1212 bool kvm_largepages_enabled(void)
1213 {
1214 return largepages_enabled;
1215 }
1216
1217 void kvm_disable_largepages(void)
1218 {
1219 largepages_enabled = false;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224 {
1225 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232 }
1233
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237
1238 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239 memslot->flags & KVM_MEMSLOT_INVALID)
1240 return false;
1241
1242 return true;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247 {
1248 struct vm_area_struct *vma;
1249 unsigned long addr, size;
1250
1251 size = PAGE_SIZE;
1252
1253 addr = gfn_to_hva(kvm, gfn);
1254 if (kvm_is_error_hva(addr))
1255 return PAGE_SIZE;
1256
1257 down_read(&current->mm->mmap_sem);
1258 vma = find_vma(current->mm, addr);
1259 if (!vma)
1260 goto out;
1261
1262 size = vma_kernel_pagesize(vma);
1263
1264 out:
1265 up_read(&current->mm->mmap_sem);
1266
1267 return size;
1268 }
1269
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271 {
1272 return slot->flags & KVM_MEM_READONLY;
1273 }
1274
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276 gfn_t *nr_pages, bool write)
1277 {
1278 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 return KVM_HVA_ERR_BAD;
1280
1281 if (memslot_is_readonly(slot) && write)
1282 return KVM_HVA_ERR_RO_BAD;
1283
1284 if (nr_pages)
1285 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1286
1287 return __gfn_to_hva_memslot(slot, gfn);
1288 }
1289
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291 gfn_t *nr_pages)
1292 {
1293 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294 }
1295
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297 gfn_t gfn)
1298 {
1299 return gfn_to_hva_many(slot, gfn, NULL);
1300 }
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304 {
1305 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1308
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314
1315 /*
1316 * Return the hva of a @gfn and the R/W attribute if possible.
1317 *
1318 * @slot: the kvm_memory_slot which contains @gfn
1319 * @gfn: the gfn to be translated
1320 * @writable: used to return the read/write attribute of the @slot if the hva
1321 * is valid and @writable is not NULL
1322 */
1323 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1324 gfn_t gfn, bool *writable)
1325 {
1326 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1327
1328 if (!kvm_is_error_hva(hva) && writable)
1329 *writable = !memslot_is_readonly(slot);
1330
1331 return hva;
1332 }
1333
1334 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1335 {
1336 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1337
1338 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1339 }
1340
1341 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1342 {
1343 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1344
1345 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1346 }
1347
1348 static inline int check_user_page_hwpoison(unsigned long addr)
1349 {
1350 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1351
1352 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1353 return rc == -EHWPOISON;
1354 }
1355
1356 /*
1357 * The fast path to get the writable pfn which will be stored in @pfn,
1358 * true indicates success, otherwise false is returned. It's also the
1359 * only part that runs if we can are in atomic context.
1360 */
1361 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1362 bool *writable, kvm_pfn_t *pfn)
1363 {
1364 struct page *page[1];
1365 int npages;
1366
1367 /*
1368 * Fast pin a writable pfn only if it is a write fault request
1369 * or the caller allows to map a writable pfn for a read fault
1370 * request.
1371 */
1372 if (!(write_fault || writable))
1373 return false;
1374
1375 npages = __get_user_pages_fast(addr, 1, 1, page);
1376 if (npages == 1) {
1377 *pfn = page_to_pfn(page[0]);
1378
1379 if (writable)
1380 *writable = true;
1381 return true;
1382 }
1383
1384 return false;
1385 }
1386
1387 /*
1388 * The slow path to get the pfn of the specified host virtual address,
1389 * 1 indicates success, -errno is returned if error is detected.
1390 */
1391 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1392 bool *writable, kvm_pfn_t *pfn)
1393 {
1394 unsigned int flags = FOLL_HWPOISON;
1395 struct page *page;
1396 int npages = 0;
1397
1398 might_sleep();
1399
1400 if (writable)
1401 *writable = write_fault;
1402
1403 if (write_fault)
1404 flags |= FOLL_WRITE;
1405 if (async)
1406 flags |= FOLL_NOWAIT;
1407
1408 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1409 if (npages != 1)
1410 return npages;
1411
1412 /* map read fault as writable if possible */
1413 if (unlikely(!write_fault) && writable) {
1414 struct page *wpage;
1415
1416 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1417 *writable = true;
1418 put_page(page);
1419 page = wpage;
1420 }
1421 }
1422 *pfn = page_to_pfn(page);
1423 return npages;
1424 }
1425
1426 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1427 {
1428 if (unlikely(!(vma->vm_flags & VM_READ)))
1429 return false;
1430
1431 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1432 return false;
1433
1434 return true;
1435 }
1436
1437 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1438 unsigned long addr, bool *async,
1439 bool write_fault, bool *writable,
1440 kvm_pfn_t *p_pfn)
1441 {
1442 unsigned long pfn;
1443 int r;
1444
1445 r = follow_pfn(vma, addr, &pfn);
1446 if (r) {
1447 /*
1448 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1449 * not call the fault handler, so do it here.
1450 */
1451 bool unlocked = false;
1452 r = fixup_user_fault(current, current->mm, addr,
1453 (write_fault ? FAULT_FLAG_WRITE : 0),
1454 &unlocked);
1455 if (unlocked)
1456 return -EAGAIN;
1457 if (r)
1458 return r;
1459
1460 r = follow_pfn(vma, addr, &pfn);
1461 if (r)
1462 return r;
1463
1464 }
1465
1466 if (writable)
1467 *writable = true;
1468
1469 /*
1470 * Get a reference here because callers of *hva_to_pfn* and
1471 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1472 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1473 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1474 * simply do nothing for reserved pfns.
1475 *
1476 * Whoever called remap_pfn_range is also going to call e.g.
1477 * unmap_mapping_range before the underlying pages are freed,
1478 * causing a call to our MMU notifier.
1479 */
1480 kvm_get_pfn(pfn);
1481
1482 *p_pfn = pfn;
1483 return 0;
1484 }
1485
1486 /*
1487 * Pin guest page in memory and return its pfn.
1488 * @addr: host virtual address which maps memory to the guest
1489 * @atomic: whether this function can sleep
1490 * @async: whether this function need to wait IO complete if the
1491 * host page is not in the memory
1492 * @write_fault: whether we should get a writable host page
1493 * @writable: whether it allows to map a writable host page for !@write_fault
1494 *
1495 * The function will map a writable host page for these two cases:
1496 * 1): @write_fault = true
1497 * 2): @write_fault = false && @writable, @writable will tell the caller
1498 * whether the mapping is writable.
1499 */
1500 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1501 bool write_fault, bool *writable)
1502 {
1503 struct vm_area_struct *vma;
1504 kvm_pfn_t pfn = 0;
1505 int npages, r;
1506
1507 /* we can do it either atomically or asynchronously, not both */
1508 BUG_ON(atomic && async);
1509
1510 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1511 return pfn;
1512
1513 if (atomic)
1514 return KVM_PFN_ERR_FAULT;
1515
1516 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1517 if (npages == 1)
1518 return pfn;
1519
1520 down_read(&current->mm->mmap_sem);
1521 if (npages == -EHWPOISON ||
1522 (!async && check_user_page_hwpoison(addr))) {
1523 pfn = KVM_PFN_ERR_HWPOISON;
1524 goto exit;
1525 }
1526
1527 retry:
1528 vma = find_vma_intersection(current->mm, addr, addr + 1);
1529
1530 if (vma == NULL)
1531 pfn = KVM_PFN_ERR_FAULT;
1532 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1533 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1534 if (r == -EAGAIN)
1535 goto retry;
1536 if (r < 0)
1537 pfn = KVM_PFN_ERR_FAULT;
1538 } else {
1539 if (async && vma_is_valid(vma, write_fault))
1540 *async = true;
1541 pfn = KVM_PFN_ERR_FAULT;
1542 }
1543 exit:
1544 up_read(&current->mm->mmap_sem);
1545 return pfn;
1546 }
1547
1548 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1549 bool atomic, bool *async, bool write_fault,
1550 bool *writable)
1551 {
1552 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1553
1554 if (addr == KVM_HVA_ERR_RO_BAD) {
1555 if (writable)
1556 *writable = false;
1557 return KVM_PFN_ERR_RO_FAULT;
1558 }
1559
1560 if (kvm_is_error_hva(addr)) {
1561 if (writable)
1562 *writable = false;
1563 return KVM_PFN_NOSLOT;
1564 }
1565
1566 /* Do not map writable pfn in the readonly memslot. */
1567 if (writable && memslot_is_readonly(slot)) {
1568 *writable = false;
1569 writable = NULL;
1570 }
1571
1572 return hva_to_pfn(addr, atomic, async, write_fault,
1573 writable);
1574 }
1575 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1576
1577 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1578 bool *writable)
1579 {
1580 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1581 write_fault, writable);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1584
1585 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1586 {
1587 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1590
1591 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1592 {
1593 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1596
1597 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1598 {
1599 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1602
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1608
1609 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1610 {
1611 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1614
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1620
1621 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1622 struct page **pages, int nr_pages)
1623 {
1624 unsigned long addr;
1625 gfn_t entry = 0;
1626
1627 addr = gfn_to_hva_many(slot, gfn, &entry);
1628 if (kvm_is_error_hva(addr))
1629 return -1;
1630
1631 if (entry < nr_pages)
1632 return 0;
1633
1634 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1635 }
1636 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1637
1638 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1639 {
1640 if (is_error_noslot_pfn(pfn))
1641 return KVM_ERR_PTR_BAD_PAGE;
1642
1643 if (kvm_is_reserved_pfn(pfn)) {
1644 WARN_ON(1);
1645 return KVM_ERR_PTR_BAD_PAGE;
1646 }
1647
1648 return pfn_to_page(pfn);
1649 }
1650
1651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1652 {
1653 kvm_pfn_t pfn;
1654
1655 pfn = gfn_to_pfn(kvm, gfn);
1656
1657 return kvm_pfn_to_page(pfn);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_page);
1660
1661 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1662 {
1663 kvm_pfn_t pfn;
1664
1665 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1666
1667 return kvm_pfn_to_page(pfn);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1670
1671 void kvm_release_page_clean(struct page *page)
1672 {
1673 WARN_ON(is_error_page(page));
1674
1675 kvm_release_pfn_clean(page_to_pfn(page));
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1678
1679 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1680 {
1681 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1682 put_page(pfn_to_page(pfn));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1685
1686 void kvm_release_page_dirty(struct page *page)
1687 {
1688 WARN_ON(is_error_page(page));
1689
1690 kvm_release_pfn_dirty(page_to_pfn(page));
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1693
1694 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1695 {
1696 kvm_set_pfn_dirty(pfn);
1697 kvm_release_pfn_clean(pfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1700
1701 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703 if (!kvm_is_reserved_pfn(pfn)) {
1704 struct page *page = pfn_to_page(pfn);
1705
1706 if (!PageReserved(page))
1707 SetPageDirty(page);
1708 }
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1711
1712 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1713 {
1714 if (!kvm_is_reserved_pfn(pfn))
1715 mark_page_accessed(pfn_to_page(pfn));
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1718
1719 void kvm_get_pfn(kvm_pfn_t pfn)
1720 {
1721 if (!kvm_is_reserved_pfn(pfn))
1722 get_page(pfn_to_page(pfn));
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1725
1726 static int next_segment(unsigned long len, int offset)
1727 {
1728 if (len > PAGE_SIZE - offset)
1729 return PAGE_SIZE - offset;
1730 else
1731 return len;
1732 }
1733
1734 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1735 void *data, int offset, int len)
1736 {
1737 int r;
1738 unsigned long addr;
1739
1740 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1741 if (kvm_is_error_hva(addr))
1742 return -EFAULT;
1743 r = __copy_from_user(data, (void __user *)addr + offset, len);
1744 if (r)
1745 return -EFAULT;
1746 return 0;
1747 }
1748
1749 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1750 int len)
1751 {
1752 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1753
1754 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1757
1758 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1759 int offset, int len)
1760 {
1761 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1762
1763 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1764 }
1765 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1766
1767 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1768 {
1769 gfn_t gfn = gpa >> PAGE_SHIFT;
1770 int seg;
1771 int offset = offset_in_page(gpa);
1772 int ret;
1773
1774 while ((seg = next_segment(len, offset)) != 0) {
1775 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1776 if (ret < 0)
1777 return ret;
1778 offset = 0;
1779 len -= seg;
1780 data += seg;
1781 ++gfn;
1782 }
1783 return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_read_guest);
1786
1787 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1788 {
1789 gfn_t gfn = gpa >> PAGE_SHIFT;
1790 int seg;
1791 int offset = offset_in_page(gpa);
1792 int ret;
1793
1794 while ((seg = next_segment(len, offset)) != 0) {
1795 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1796 if (ret < 0)
1797 return ret;
1798 offset = 0;
1799 len -= seg;
1800 data += seg;
1801 ++gfn;
1802 }
1803 return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1806
1807 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1808 void *data, int offset, unsigned long len)
1809 {
1810 int r;
1811 unsigned long addr;
1812
1813 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1814 if (kvm_is_error_hva(addr))
1815 return -EFAULT;
1816 pagefault_disable();
1817 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1818 pagefault_enable();
1819 if (r)
1820 return -EFAULT;
1821 return 0;
1822 }
1823
1824 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1825 unsigned long len)
1826 {
1827 gfn_t gfn = gpa >> PAGE_SHIFT;
1828 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829 int offset = offset_in_page(gpa);
1830
1831 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1834
1835 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1836 void *data, unsigned long len)
1837 {
1838 gfn_t gfn = gpa >> PAGE_SHIFT;
1839 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1840 int offset = offset_in_page(gpa);
1841
1842 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1845
1846 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1847 const void *data, int offset, int len)
1848 {
1849 int r;
1850 unsigned long addr;
1851
1852 addr = gfn_to_hva_memslot(memslot, gfn);
1853 if (kvm_is_error_hva(addr))
1854 return -EFAULT;
1855 r = __copy_to_user((void __user *)addr + offset, data, len);
1856 if (r)
1857 return -EFAULT;
1858 mark_page_dirty_in_slot(memslot, gfn);
1859 return 0;
1860 }
1861
1862 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1863 const void *data, int offset, int len)
1864 {
1865 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1866
1867 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1870
1871 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1872 const void *data, int offset, int len)
1873 {
1874 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1875
1876 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1879
1880 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1881 unsigned long len)
1882 {
1883 gfn_t gfn = gpa >> PAGE_SHIFT;
1884 int seg;
1885 int offset = offset_in_page(gpa);
1886 int ret;
1887
1888 while ((seg = next_segment(len, offset)) != 0) {
1889 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1890 if (ret < 0)
1891 return ret;
1892 offset = 0;
1893 len -= seg;
1894 data += seg;
1895 ++gfn;
1896 }
1897 return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_write_guest);
1900
1901 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1902 unsigned long len)
1903 {
1904 gfn_t gfn = gpa >> PAGE_SHIFT;
1905 int seg;
1906 int offset = offset_in_page(gpa);
1907 int ret;
1908
1909 while ((seg = next_segment(len, offset)) != 0) {
1910 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1911 if (ret < 0)
1912 return ret;
1913 offset = 0;
1914 len -= seg;
1915 data += seg;
1916 ++gfn;
1917 }
1918 return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1921
1922 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1923 struct gfn_to_hva_cache *ghc,
1924 gpa_t gpa, unsigned long len)
1925 {
1926 int offset = offset_in_page(gpa);
1927 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1928 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1929 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1930 gfn_t nr_pages_avail;
1931
1932 ghc->gpa = gpa;
1933 ghc->generation = slots->generation;
1934 ghc->len = len;
1935 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1937 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1938 ghc->hva += offset;
1939 } else {
1940 /*
1941 * If the requested region crosses two memslots, we still
1942 * verify that the entire region is valid here.
1943 */
1944 while (start_gfn <= end_gfn) {
1945 nr_pages_avail = 0;
1946 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1947 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1948 &nr_pages_avail);
1949 if (kvm_is_error_hva(ghc->hva))
1950 return -EFAULT;
1951 start_gfn += nr_pages_avail;
1952 }
1953 /* Use the slow path for cross page reads and writes. */
1954 ghc->memslot = NULL;
1955 }
1956 return 0;
1957 }
1958
1959 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1960 gpa_t gpa, unsigned long len)
1961 {
1962 struct kvm_memslots *slots = kvm_memslots(kvm);
1963 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1966
1967 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 void *data, int offset, unsigned long len)
1969 {
1970 struct kvm_memslots *slots = kvm_memslots(kvm);
1971 int r;
1972 gpa_t gpa = ghc->gpa + offset;
1973
1974 BUG_ON(len + offset > ghc->len);
1975
1976 if (slots->generation != ghc->generation)
1977 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1978
1979 if (unlikely(!ghc->memslot))
1980 return kvm_write_guest(kvm, gpa, data, len);
1981
1982 if (kvm_is_error_hva(ghc->hva))
1983 return -EFAULT;
1984
1985 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1986 if (r)
1987 return -EFAULT;
1988 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1989
1990 return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1993
1994 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1995 void *data, unsigned long len)
1996 {
1997 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2000
2001 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 void *data, unsigned long len)
2003 {
2004 struct kvm_memslots *slots = kvm_memslots(kvm);
2005 int r;
2006
2007 BUG_ON(len > ghc->len);
2008
2009 if (slots->generation != ghc->generation)
2010 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2011
2012 if (unlikely(!ghc->memslot))
2013 return kvm_read_guest(kvm, ghc->gpa, data, len);
2014
2015 if (kvm_is_error_hva(ghc->hva))
2016 return -EFAULT;
2017
2018 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2019 if (r)
2020 return -EFAULT;
2021
2022 return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2025
2026 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2027 {
2028 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2029
2030 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2033
2034 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2035 {
2036 gfn_t gfn = gpa >> PAGE_SHIFT;
2037 int seg;
2038 int offset = offset_in_page(gpa);
2039 int ret;
2040
2041 while ((seg = next_segment(len, offset)) != 0) {
2042 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2043 if (ret < 0)
2044 return ret;
2045 offset = 0;
2046 len -= seg;
2047 ++gfn;
2048 }
2049 return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2052
2053 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2054 gfn_t gfn)
2055 {
2056 if (memslot && memslot->dirty_bitmap) {
2057 unsigned long rel_gfn = gfn - memslot->base_gfn;
2058
2059 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2060 }
2061 }
2062
2063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2064 {
2065 struct kvm_memory_slot *memslot;
2066
2067 memslot = gfn_to_memslot(kvm, gfn);
2068 mark_page_dirty_in_slot(memslot, gfn);
2069 }
2070 EXPORT_SYMBOL_GPL(mark_page_dirty);
2071
2072 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2073 {
2074 struct kvm_memory_slot *memslot;
2075
2076 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077 mark_page_dirty_in_slot(memslot, gfn);
2078 }
2079 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2080
2081 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2082 {
2083 if (!vcpu->sigset_active)
2084 return;
2085
2086 /*
2087 * This does a lockless modification of ->real_blocked, which is fine
2088 * because, only current can change ->real_blocked and all readers of
2089 * ->real_blocked don't care as long ->real_blocked is always a subset
2090 * of ->blocked.
2091 */
2092 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2093 }
2094
2095 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2096 {
2097 if (!vcpu->sigset_active)
2098 return;
2099
2100 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2101 sigemptyset(&current->real_blocked);
2102 }
2103
2104 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2105 {
2106 unsigned int old, val, grow;
2107
2108 old = val = vcpu->halt_poll_ns;
2109 grow = READ_ONCE(halt_poll_ns_grow);
2110 /* 10us base */
2111 if (val == 0 && grow)
2112 val = 10000;
2113 else
2114 val *= grow;
2115
2116 if (val > halt_poll_ns)
2117 val = halt_poll_ns;
2118
2119 vcpu->halt_poll_ns = val;
2120 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2121 }
2122
2123 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2124 {
2125 unsigned int old, val, shrink;
2126
2127 old = val = vcpu->halt_poll_ns;
2128 shrink = READ_ONCE(halt_poll_ns_shrink);
2129 if (shrink == 0)
2130 val = 0;
2131 else
2132 val /= shrink;
2133
2134 vcpu->halt_poll_ns = val;
2135 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2136 }
2137
2138 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2139 {
2140 int ret = -EINTR;
2141 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2142
2143 if (kvm_arch_vcpu_runnable(vcpu)) {
2144 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2145 goto out;
2146 }
2147 if (kvm_cpu_has_pending_timer(vcpu))
2148 goto out;
2149 if (signal_pending(current))
2150 goto out;
2151
2152 ret = 0;
2153 out:
2154 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2155 return ret;
2156 }
2157
2158 /*
2159 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2160 */
2161 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2162 {
2163 ktime_t start, cur;
2164 DECLARE_SWAITQUEUE(wait);
2165 bool waited = false;
2166 u64 block_ns;
2167
2168 start = cur = ktime_get();
2169 if (vcpu->halt_poll_ns) {
2170 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2171
2172 ++vcpu->stat.halt_attempted_poll;
2173 do {
2174 /*
2175 * This sets KVM_REQ_UNHALT if an interrupt
2176 * arrives.
2177 */
2178 if (kvm_vcpu_check_block(vcpu) < 0) {
2179 ++vcpu->stat.halt_successful_poll;
2180 if (!vcpu_valid_wakeup(vcpu))
2181 ++vcpu->stat.halt_poll_invalid;
2182 goto out;
2183 }
2184 cur = ktime_get();
2185 } while (single_task_running() && ktime_before(cur, stop));
2186 }
2187
2188 kvm_arch_vcpu_blocking(vcpu);
2189
2190 for (;;) {
2191 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2192
2193 if (kvm_vcpu_check_block(vcpu) < 0)
2194 break;
2195
2196 waited = true;
2197 schedule();
2198 }
2199
2200 finish_swait(&vcpu->wq, &wait);
2201 cur = ktime_get();
2202
2203 kvm_arch_vcpu_unblocking(vcpu);
2204 out:
2205 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2206
2207 if (!vcpu_valid_wakeup(vcpu))
2208 shrink_halt_poll_ns(vcpu);
2209 else if (halt_poll_ns) {
2210 if (block_ns <= vcpu->halt_poll_ns)
2211 ;
2212 /* we had a long block, shrink polling */
2213 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2214 shrink_halt_poll_ns(vcpu);
2215 /* we had a short halt and our poll time is too small */
2216 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2217 block_ns < halt_poll_ns)
2218 grow_halt_poll_ns(vcpu);
2219 } else
2220 vcpu->halt_poll_ns = 0;
2221
2222 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2223 kvm_arch_vcpu_block_finish(vcpu);
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2226
2227 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2228 {
2229 struct swait_queue_head *wqp;
2230
2231 wqp = kvm_arch_vcpu_wq(vcpu);
2232 if (swq_has_sleeper(wqp)) {
2233 swake_up_one(wqp);
2234 ++vcpu->stat.halt_wakeup;
2235 return true;
2236 }
2237
2238 return false;
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2241
2242 #ifndef CONFIG_S390
2243 /*
2244 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2245 */
2246 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2247 {
2248 int me;
2249 int cpu = vcpu->cpu;
2250
2251 if (kvm_vcpu_wake_up(vcpu))
2252 return;
2253
2254 me = get_cpu();
2255 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2256 if (kvm_arch_vcpu_should_kick(vcpu))
2257 smp_send_reschedule(cpu);
2258 put_cpu();
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2261 #endif /* !CONFIG_S390 */
2262
2263 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2264 {
2265 struct pid *pid;
2266 struct task_struct *task = NULL;
2267 int ret = 0;
2268
2269 rcu_read_lock();
2270 pid = rcu_dereference(target->pid);
2271 if (pid)
2272 task = get_pid_task(pid, PIDTYPE_PID);
2273 rcu_read_unlock();
2274 if (!task)
2275 return ret;
2276 ret = yield_to(task, 1);
2277 put_task_struct(task);
2278
2279 return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2282
2283 /*
2284 * Helper that checks whether a VCPU is eligible for directed yield.
2285 * Most eligible candidate to yield is decided by following heuristics:
2286 *
2287 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2288 * (preempted lock holder), indicated by @in_spin_loop.
2289 * Set at the beiginning and cleared at the end of interception/PLE handler.
2290 *
2291 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2292 * chance last time (mostly it has become eligible now since we have probably
2293 * yielded to lockholder in last iteration. This is done by toggling
2294 * @dy_eligible each time a VCPU checked for eligibility.)
2295 *
2296 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2297 * to preempted lock-holder could result in wrong VCPU selection and CPU
2298 * burning. Giving priority for a potential lock-holder increases lock
2299 * progress.
2300 *
2301 * Since algorithm is based on heuristics, accessing another VCPU data without
2302 * locking does not harm. It may result in trying to yield to same VCPU, fail
2303 * and continue with next VCPU and so on.
2304 */
2305 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2306 {
2307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2308 bool eligible;
2309
2310 eligible = !vcpu->spin_loop.in_spin_loop ||
2311 vcpu->spin_loop.dy_eligible;
2312
2313 if (vcpu->spin_loop.in_spin_loop)
2314 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2315
2316 return eligible;
2317 #else
2318 return true;
2319 #endif
2320 }
2321
2322 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2323 {
2324 struct kvm *kvm = me->kvm;
2325 struct kvm_vcpu *vcpu;
2326 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2327 int yielded = 0;
2328 int try = 3;
2329 int pass;
2330 int i;
2331
2332 kvm_vcpu_set_in_spin_loop(me, true);
2333 /*
2334 * We boost the priority of a VCPU that is runnable but not
2335 * currently running, because it got preempted by something
2336 * else and called schedule in __vcpu_run. Hopefully that
2337 * VCPU is holding the lock that we need and will release it.
2338 * We approximate round-robin by starting at the last boosted VCPU.
2339 */
2340 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2341 kvm_for_each_vcpu(i, vcpu, kvm) {
2342 if (!pass && i <= last_boosted_vcpu) {
2343 i = last_boosted_vcpu;
2344 continue;
2345 } else if (pass && i > last_boosted_vcpu)
2346 break;
2347 if (!READ_ONCE(vcpu->preempted))
2348 continue;
2349 if (vcpu == me)
2350 continue;
2351 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2352 continue;
2353 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2354 continue;
2355 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2356 continue;
2357
2358 yielded = kvm_vcpu_yield_to(vcpu);
2359 if (yielded > 0) {
2360 kvm->last_boosted_vcpu = i;
2361 break;
2362 } else if (yielded < 0) {
2363 try--;
2364 if (!try)
2365 break;
2366 }
2367 }
2368 }
2369 kvm_vcpu_set_in_spin_loop(me, false);
2370
2371 /* Ensure vcpu is not eligible during next spinloop */
2372 kvm_vcpu_set_dy_eligible(me, false);
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2375
2376 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2377 {
2378 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2379 struct page *page;
2380
2381 if (vmf->pgoff == 0)
2382 page = virt_to_page(vcpu->run);
2383 #ifdef CONFIG_X86
2384 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2385 page = virt_to_page(vcpu->arch.pio_data);
2386 #endif
2387 #ifdef CONFIG_KVM_MMIO
2388 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2389 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2390 #endif
2391 else
2392 return kvm_arch_vcpu_fault(vcpu, vmf);
2393 get_page(page);
2394 vmf->page = page;
2395 return 0;
2396 }
2397
2398 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2399 .fault = kvm_vcpu_fault,
2400 };
2401
2402 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2403 {
2404 vma->vm_ops = &kvm_vcpu_vm_ops;
2405 return 0;
2406 }
2407
2408 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2409 {
2410 struct kvm_vcpu *vcpu = filp->private_data;
2411
2412 debugfs_remove_recursive(vcpu->debugfs_dentry);
2413 kvm_put_kvm(vcpu->kvm);
2414 return 0;
2415 }
2416
2417 static struct file_operations kvm_vcpu_fops = {
2418 .release = kvm_vcpu_release,
2419 .unlocked_ioctl = kvm_vcpu_ioctl,
2420 .mmap = kvm_vcpu_mmap,
2421 .llseek = noop_llseek,
2422 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2423 };
2424
2425 /*
2426 * Allocates an inode for the vcpu.
2427 */
2428 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2429 {
2430 char name[8 + 1 + ITOA_MAX_LEN + 1];
2431
2432 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2433 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2434 }
2435
2436 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2437 {
2438 char dir_name[ITOA_MAX_LEN * 2];
2439 int ret;
2440
2441 if (!kvm_arch_has_vcpu_debugfs())
2442 return 0;
2443
2444 if (!debugfs_initialized())
2445 return 0;
2446
2447 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2448 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2449 vcpu->kvm->debugfs_dentry);
2450 if (!vcpu->debugfs_dentry)
2451 return -ENOMEM;
2452
2453 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2454 if (ret < 0) {
2455 debugfs_remove_recursive(vcpu->debugfs_dentry);
2456 return ret;
2457 }
2458
2459 return 0;
2460 }
2461
2462 /*
2463 * Creates some virtual cpus. Good luck creating more than one.
2464 */
2465 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2466 {
2467 int r;
2468 struct kvm_vcpu *vcpu;
2469
2470 if (id >= KVM_MAX_VCPU_ID)
2471 return -EINVAL;
2472
2473 mutex_lock(&kvm->lock);
2474 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2475 mutex_unlock(&kvm->lock);
2476 return -EINVAL;
2477 }
2478
2479 kvm->created_vcpus++;
2480 mutex_unlock(&kvm->lock);
2481
2482 vcpu = kvm_arch_vcpu_create(kvm, id);
2483 if (IS_ERR(vcpu)) {
2484 r = PTR_ERR(vcpu);
2485 goto vcpu_decrement;
2486 }
2487
2488 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2489
2490 r = kvm_arch_vcpu_setup(vcpu);
2491 if (r)
2492 goto vcpu_destroy;
2493
2494 r = kvm_create_vcpu_debugfs(vcpu);
2495 if (r)
2496 goto vcpu_destroy;
2497
2498 mutex_lock(&kvm->lock);
2499 if (kvm_get_vcpu_by_id(kvm, id)) {
2500 r = -EEXIST;
2501 goto unlock_vcpu_destroy;
2502 }
2503
2504 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2505
2506 /* Now it's all set up, let userspace reach it */
2507 kvm_get_kvm(kvm);
2508 r = create_vcpu_fd(vcpu);
2509 if (r < 0) {
2510 kvm_put_kvm(kvm);
2511 goto unlock_vcpu_destroy;
2512 }
2513
2514 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2515
2516 /*
2517 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2518 * before kvm->online_vcpu's incremented value.
2519 */
2520 smp_wmb();
2521 atomic_inc(&kvm->online_vcpus);
2522
2523 mutex_unlock(&kvm->lock);
2524 kvm_arch_vcpu_postcreate(vcpu);
2525 return r;
2526
2527 unlock_vcpu_destroy:
2528 mutex_unlock(&kvm->lock);
2529 debugfs_remove_recursive(vcpu->debugfs_dentry);
2530 vcpu_destroy:
2531 kvm_arch_vcpu_destroy(vcpu);
2532 vcpu_decrement:
2533 mutex_lock(&kvm->lock);
2534 kvm->created_vcpus--;
2535 mutex_unlock(&kvm->lock);
2536 return r;
2537 }
2538
2539 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2540 {
2541 if (sigset) {
2542 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2543 vcpu->sigset_active = 1;
2544 vcpu->sigset = *sigset;
2545 } else
2546 vcpu->sigset_active = 0;
2547 return 0;
2548 }
2549
2550 static long kvm_vcpu_ioctl(struct file *filp,
2551 unsigned int ioctl, unsigned long arg)
2552 {
2553 struct kvm_vcpu *vcpu = filp->private_data;
2554 void __user *argp = (void __user *)arg;
2555 int r;
2556 struct kvm_fpu *fpu = NULL;
2557 struct kvm_sregs *kvm_sregs = NULL;
2558
2559 if (vcpu->kvm->mm != current->mm)
2560 return -EIO;
2561
2562 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2563 return -EINVAL;
2564
2565 /*
2566 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2567 * execution; mutex_lock() would break them.
2568 */
2569 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2570 if (r != -ENOIOCTLCMD)
2571 return r;
2572
2573 if (mutex_lock_killable(&vcpu->mutex))
2574 return -EINTR;
2575 switch (ioctl) {
2576 case KVM_RUN: {
2577 struct pid *oldpid;
2578 r = -EINVAL;
2579 if (arg)
2580 goto out;
2581 oldpid = rcu_access_pointer(vcpu->pid);
2582 if (unlikely(oldpid != task_pid(current))) {
2583 /* The thread running this VCPU changed. */
2584 struct pid *newpid;
2585
2586 r = kvm_arch_vcpu_run_pid_change(vcpu);
2587 if (r)
2588 break;
2589
2590 newpid = get_task_pid(current, PIDTYPE_PID);
2591 rcu_assign_pointer(vcpu->pid, newpid);
2592 if (oldpid)
2593 synchronize_rcu();
2594 put_pid(oldpid);
2595 }
2596 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2597 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2598 break;
2599 }
2600 case KVM_GET_REGS: {
2601 struct kvm_regs *kvm_regs;
2602
2603 r = -ENOMEM;
2604 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2605 if (!kvm_regs)
2606 goto out;
2607 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2608 if (r)
2609 goto out_free1;
2610 r = -EFAULT;
2611 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2612 goto out_free1;
2613 r = 0;
2614 out_free1:
2615 kfree(kvm_regs);
2616 break;
2617 }
2618 case KVM_SET_REGS: {
2619 struct kvm_regs *kvm_regs;
2620
2621 r = -ENOMEM;
2622 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2623 if (IS_ERR(kvm_regs)) {
2624 r = PTR_ERR(kvm_regs);
2625 goto out;
2626 }
2627 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2628 kfree(kvm_regs);
2629 break;
2630 }
2631 case KVM_GET_SREGS: {
2632 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2633 r = -ENOMEM;
2634 if (!kvm_sregs)
2635 goto out;
2636 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2637 if (r)
2638 goto out;
2639 r = -EFAULT;
2640 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2641 goto out;
2642 r = 0;
2643 break;
2644 }
2645 case KVM_SET_SREGS: {
2646 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2647 if (IS_ERR(kvm_sregs)) {
2648 r = PTR_ERR(kvm_sregs);
2649 kvm_sregs = NULL;
2650 goto out;
2651 }
2652 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2653 break;
2654 }
2655 case KVM_GET_MP_STATE: {
2656 struct kvm_mp_state mp_state;
2657
2658 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2659 if (r)
2660 goto out;
2661 r = -EFAULT;
2662 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2663 goto out;
2664 r = 0;
2665 break;
2666 }
2667 case KVM_SET_MP_STATE: {
2668 struct kvm_mp_state mp_state;
2669
2670 r = -EFAULT;
2671 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2672 goto out;
2673 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2674 break;
2675 }
2676 case KVM_TRANSLATE: {
2677 struct kvm_translation tr;
2678
2679 r = -EFAULT;
2680 if (copy_from_user(&tr, argp, sizeof(tr)))
2681 goto out;
2682 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2683 if (r)
2684 goto out;
2685 r = -EFAULT;
2686 if (copy_to_user(argp, &tr, sizeof(tr)))
2687 goto out;
2688 r = 0;
2689 break;
2690 }
2691 case KVM_SET_GUEST_DEBUG: {
2692 struct kvm_guest_debug dbg;
2693
2694 r = -EFAULT;
2695 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2696 goto out;
2697 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2698 break;
2699 }
2700 case KVM_SET_SIGNAL_MASK: {
2701 struct kvm_signal_mask __user *sigmask_arg = argp;
2702 struct kvm_signal_mask kvm_sigmask;
2703 sigset_t sigset, *p;
2704
2705 p = NULL;
2706 if (argp) {
2707 r = -EFAULT;
2708 if (copy_from_user(&kvm_sigmask, argp,
2709 sizeof(kvm_sigmask)))
2710 goto out;
2711 r = -EINVAL;
2712 if (kvm_sigmask.len != sizeof(sigset))
2713 goto out;
2714 r = -EFAULT;
2715 if (copy_from_user(&sigset, sigmask_arg->sigset,
2716 sizeof(sigset)))
2717 goto out;
2718 p = &sigset;
2719 }
2720 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2721 break;
2722 }
2723 case KVM_GET_FPU: {
2724 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2725 r = -ENOMEM;
2726 if (!fpu)
2727 goto out;
2728 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2729 if (r)
2730 goto out;
2731 r = -EFAULT;
2732 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2733 goto out;
2734 r = 0;
2735 break;
2736 }
2737 case KVM_SET_FPU: {
2738 fpu = memdup_user(argp, sizeof(*fpu));
2739 if (IS_ERR(fpu)) {
2740 r = PTR_ERR(fpu);
2741 fpu = NULL;
2742 goto out;
2743 }
2744 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2745 break;
2746 }
2747 default:
2748 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2749 }
2750 out:
2751 mutex_unlock(&vcpu->mutex);
2752 kfree(fpu);
2753 kfree(kvm_sregs);
2754 return r;
2755 }
2756
2757 #ifdef CONFIG_KVM_COMPAT
2758 static long kvm_vcpu_compat_ioctl(struct file *filp,
2759 unsigned int ioctl, unsigned long arg)
2760 {
2761 struct kvm_vcpu *vcpu = filp->private_data;
2762 void __user *argp = compat_ptr(arg);
2763 int r;
2764
2765 if (vcpu->kvm->mm != current->mm)
2766 return -EIO;
2767
2768 switch (ioctl) {
2769 case KVM_SET_SIGNAL_MASK: {
2770 struct kvm_signal_mask __user *sigmask_arg = argp;
2771 struct kvm_signal_mask kvm_sigmask;
2772 sigset_t sigset;
2773
2774 if (argp) {
2775 r = -EFAULT;
2776 if (copy_from_user(&kvm_sigmask, argp,
2777 sizeof(kvm_sigmask)))
2778 goto out;
2779 r = -EINVAL;
2780 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2781 goto out;
2782 r = -EFAULT;
2783 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2784 goto out;
2785 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2786 } else
2787 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2788 break;
2789 }
2790 default:
2791 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2792 }
2793
2794 out:
2795 return r;
2796 }
2797 #endif
2798
2799 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2800 int (*accessor)(struct kvm_device *dev,
2801 struct kvm_device_attr *attr),
2802 unsigned long arg)
2803 {
2804 struct kvm_device_attr attr;
2805
2806 if (!accessor)
2807 return -EPERM;
2808
2809 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2810 return -EFAULT;
2811
2812 return accessor(dev, &attr);
2813 }
2814
2815 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2816 unsigned long arg)
2817 {
2818 struct kvm_device *dev = filp->private_data;
2819
2820 switch (ioctl) {
2821 case KVM_SET_DEVICE_ATTR:
2822 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2823 case KVM_GET_DEVICE_ATTR:
2824 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2825 case KVM_HAS_DEVICE_ATTR:
2826 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2827 default:
2828 if (dev->ops->ioctl)
2829 return dev->ops->ioctl(dev, ioctl, arg);
2830
2831 return -ENOTTY;
2832 }
2833 }
2834
2835 static int kvm_device_release(struct inode *inode, struct file *filp)
2836 {
2837 struct kvm_device *dev = filp->private_data;
2838 struct kvm *kvm = dev->kvm;
2839
2840 kvm_put_kvm(kvm);
2841 return 0;
2842 }
2843
2844 static const struct file_operations kvm_device_fops = {
2845 .unlocked_ioctl = kvm_device_ioctl,
2846 .release = kvm_device_release,
2847 KVM_COMPAT(kvm_device_ioctl),
2848 };
2849
2850 struct kvm_device *kvm_device_from_filp(struct file *filp)
2851 {
2852 if (filp->f_op != &kvm_device_fops)
2853 return NULL;
2854
2855 return filp->private_data;
2856 }
2857
2858 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2859 #ifdef CONFIG_KVM_MPIC
2860 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2861 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2862 #endif
2863 };
2864
2865 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2866 {
2867 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2868 return -ENOSPC;
2869
2870 if (kvm_device_ops_table[type] != NULL)
2871 return -EEXIST;
2872
2873 kvm_device_ops_table[type] = ops;
2874 return 0;
2875 }
2876
2877 void kvm_unregister_device_ops(u32 type)
2878 {
2879 if (kvm_device_ops_table[type] != NULL)
2880 kvm_device_ops_table[type] = NULL;
2881 }
2882
2883 static int kvm_ioctl_create_device(struct kvm *kvm,
2884 struct kvm_create_device *cd)
2885 {
2886 struct kvm_device_ops *ops = NULL;
2887 struct kvm_device *dev;
2888 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2889 int ret;
2890
2891 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2892 return -ENODEV;
2893
2894 ops = kvm_device_ops_table[cd->type];
2895 if (ops == NULL)
2896 return -ENODEV;
2897
2898 if (test)
2899 return 0;
2900
2901 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2902 if (!dev)
2903 return -ENOMEM;
2904
2905 dev->ops = ops;
2906 dev->kvm = kvm;
2907
2908 mutex_lock(&kvm->lock);
2909 ret = ops->create(dev, cd->type);
2910 if (ret < 0) {
2911 mutex_unlock(&kvm->lock);
2912 kfree(dev);
2913 return ret;
2914 }
2915 list_add(&dev->vm_node, &kvm->devices);
2916 mutex_unlock(&kvm->lock);
2917
2918 if (ops->init)
2919 ops->init(dev);
2920
2921 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2922 if (ret < 0) {
2923 mutex_lock(&kvm->lock);
2924 list_del(&dev->vm_node);
2925 mutex_unlock(&kvm->lock);
2926 ops->destroy(dev);
2927 return ret;
2928 }
2929
2930 kvm_get_kvm(kvm);
2931 cd->fd = ret;
2932 return 0;
2933 }
2934
2935 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2936 {
2937 switch (arg) {
2938 case KVM_CAP_USER_MEMORY:
2939 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2940 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2941 case KVM_CAP_INTERNAL_ERROR_DATA:
2942 #ifdef CONFIG_HAVE_KVM_MSI
2943 case KVM_CAP_SIGNAL_MSI:
2944 #endif
2945 #ifdef CONFIG_HAVE_KVM_IRQFD
2946 case KVM_CAP_IRQFD:
2947 case KVM_CAP_IRQFD_RESAMPLE:
2948 #endif
2949 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2950 case KVM_CAP_CHECK_EXTENSION_VM:
2951 case KVM_CAP_ENABLE_CAP_VM:
2952 return 1;
2953 #ifdef CONFIG_KVM_MMIO
2954 case KVM_CAP_COALESCED_MMIO:
2955 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2956 case KVM_CAP_COALESCED_PIO:
2957 return 1;
2958 #endif
2959 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2960 case KVM_CAP_IRQ_ROUTING:
2961 return KVM_MAX_IRQ_ROUTES;
2962 #endif
2963 #if KVM_ADDRESS_SPACE_NUM > 1
2964 case KVM_CAP_MULTI_ADDRESS_SPACE:
2965 return KVM_ADDRESS_SPACE_NUM;
2966 #endif
2967 case KVM_CAP_MAX_VCPU_ID:
2968 return KVM_MAX_VCPU_ID;
2969 default:
2970 break;
2971 }
2972 return kvm_vm_ioctl_check_extension(kvm, arg);
2973 }
2974
2975 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2976 struct kvm_enable_cap *cap)
2977 {
2978 return -EINVAL;
2979 }
2980
2981 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
2982 struct kvm_enable_cap *cap)
2983 {
2984 switch (cap->cap) {
2985 default:
2986 return kvm_vm_ioctl_enable_cap(kvm, cap);
2987 }
2988 }
2989
2990 static long kvm_vm_ioctl(struct file *filp,
2991 unsigned int ioctl, unsigned long arg)
2992 {
2993 struct kvm *kvm = filp->private_data;
2994 void __user *argp = (void __user *)arg;
2995 int r;
2996
2997 if (kvm->mm != current->mm)
2998 return -EIO;
2999 switch (ioctl) {
3000 case KVM_CREATE_VCPU:
3001 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3002 break;
3003 case KVM_ENABLE_CAP: {
3004 struct kvm_enable_cap cap;
3005
3006 r = -EFAULT;
3007 if (copy_from_user(&cap, argp, sizeof(cap)))
3008 goto out;
3009 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3010 break;
3011 }
3012 case KVM_SET_USER_MEMORY_REGION: {
3013 struct kvm_userspace_memory_region kvm_userspace_mem;
3014
3015 r = -EFAULT;
3016 if (copy_from_user(&kvm_userspace_mem, argp,
3017 sizeof(kvm_userspace_mem)))
3018 goto out;
3019
3020 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3021 break;
3022 }
3023 case KVM_GET_DIRTY_LOG: {
3024 struct kvm_dirty_log log;
3025
3026 r = -EFAULT;
3027 if (copy_from_user(&log, argp, sizeof(log)))
3028 goto out;
3029 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3030 break;
3031 }
3032 #ifdef CONFIG_KVM_MMIO
3033 case KVM_REGISTER_COALESCED_MMIO: {
3034 struct kvm_coalesced_mmio_zone zone;
3035
3036 r = -EFAULT;
3037 if (copy_from_user(&zone, argp, sizeof(zone)))
3038 goto out;
3039 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3040 break;
3041 }
3042 case KVM_UNREGISTER_COALESCED_MMIO: {
3043 struct kvm_coalesced_mmio_zone zone;
3044
3045 r = -EFAULT;
3046 if (copy_from_user(&zone, argp, sizeof(zone)))
3047 goto out;
3048 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3049 break;
3050 }
3051 #endif
3052 case KVM_IRQFD: {
3053 struct kvm_irqfd data;
3054
3055 r = -EFAULT;
3056 if (copy_from_user(&data, argp, sizeof(data)))
3057 goto out;
3058 r = kvm_irqfd(kvm, &data);
3059 break;
3060 }
3061 case KVM_IOEVENTFD: {
3062 struct kvm_ioeventfd data;
3063
3064 r = -EFAULT;
3065 if (copy_from_user(&data, argp, sizeof(data)))
3066 goto out;
3067 r = kvm_ioeventfd(kvm, &data);
3068 break;
3069 }
3070 #ifdef CONFIG_HAVE_KVM_MSI
3071 case KVM_SIGNAL_MSI: {
3072 struct kvm_msi msi;
3073
3074 r = -EFAULT;
3075 if (copy_from_user(&msi, argp, sizeof(msi)))
3076 goto out;
3077 r = kvm_send_userspace_msi(kvm, &msi);
3078 break;
3079 }
3080 #endif
3081 #ifdef __KVM_HAVE_IRQ_LINE
3082 case KVM_IRQ_LINE_STATUS:
3083 case KVM_IRQ_LINE: {
3084 struct kvm_irq_level irq_event;
3085
3086 r = -EFAULT;
3087 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3088 goto out;
3089
3090 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3091 ioctl == KVM_IRQ_LINE_STATUS);
3092 if (r)
3093 goto out;
3094
3095 r = -EFAULT;
3096 if (ioctl == KVM_IRQ_LINE_STATUS) {
3097 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3098 goto out;
3099 }
3100
3101 r = 0;
3102 break;
3103 }
3104 #endif
3105 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3106 case KVM_SET_GSI_ROUTING: {
3107 struct kvm_irq_routing routing;
3108 struct kvm_irq_routing __user *urouting;
3109 struct kvm_irq_routing_entry *entries = NULL;
3110
3111 r = -EFAULT;
3112 if (copy_from_user(&routing, argp, sizeof(routing)))
3113 goto out;
3114 r = -EINVAL;
3115 if (!kvm_arch_can_set_irq_routing(kvm))
3116 goto out;
3117 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3118 goto out;
3119 if (routing.flags)
3120 goto out;
3121 if (routing.nr) {
3122 r = -ENOMEM;
3123 entries = vmalloc(array_size(sizeof(*entries),
3124 routing.nr));
3125 if (!entries)
3126 goto out;
3127 r = -EFAULT;
3128 urouting = argp;
3129 if (copy_from_user(entries, urouting->entries,
3130 routing.nr * sizeof(*entries)))
3131 goto out_free_irq_routing;
3132 }
3133 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3134 routing.flags);
3135 out_free_irq_routing:
3136 vfree(entries);
3137 break;
3138 }
3139 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3140 case KVM_CREATE_DEVICE: {
3141 struct kvm_create_device cd;
3142
3143 r = -EFAULT;
3144 if (copy_from_user(&cd, argp, sizeof(cd)))
3145 goto out;
3146
3147 r = kvm_ioctl_create_device(kvm, &cd);
3148 if (r)
3149 goto out;
3150
3151 r = -EFAULT;
3152 if (copy_to_user(argp, &cd, sizeof(cd)))
3153 goto out;
3154
3155 r = 0;
3156 break;
3157 }
3158 case KVM_CHECK_EXTENSION:
3159 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3160 break;
3161 default:
3162 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3163 }
3164 out:
3165 return r;
3166 }
3167
3168 #ifdef CONFIG_KVM_COMPAT
3169 struct compat_kvm_dirty_log {
3170 __u32 slot;
3171 __u32 padding1;
3172 union {
3173 compat_uptr_t dirty_bitmap; /* one bit per page */
3174 __u64 padding2;
3175 };
3176 };
3177
3178 static long kvm_vm_compat_ioctl(struct file *filp,
3179 unsigned int ioctl, unsigned long arg)
3180 {
3181 struct kvm *kvm = filp->private_data;
3182 int r;
3183
3184 if (kvm->mm != current->mm)
3185 return -EIO;
3186 switch (ioctl) {
3187 case KVM_GET_DIRTY_LOG: {
3188 struct compat_kvm_dirty_log compat_log;
3189 struct kvm_dirty_log log;
3190
3191 if (copy_from_user(&compat_log, (void __user *)arg,
3192 sizeof(compat_log)))
3193 return -EFAULT;
3194 log.slot = compat_log.slot;
3195 log.padding1 = compat_log.padding1;
3196 log.padding2 = compat_log.padding2;
3197 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3198
3199 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3200 break;
3201 }
3202 default:
3203 r = kvm_vm_ioctl(filp, ioctl, arg);
3204 }
3205 return r;
3206 }
3207 #endif
3208
3209 static struct file_operations kvm_vm_fops = {
3210 .release = kvm_vm_release,
3211 .unlocked_ioctl = kvm_vm_ioctl,
3212 .llseek = noop_llseek,
3213 KVM_COMPAT(kvm_vm_compat_ioctl),
3214 };
3215
3216 static int kvm_dev_ioctl_create_vm(unsigned long type)
3217 {
3218 int r;
3219 struct kvm *kvm;
3220 struct file *file;
3221
3222 kvm = kvm_create_vm(type);
3223 if (IS_ERR(kvm))
3224 return PTR_ERR(kvm);
3225 #ifdef CONFIG_KVM_MMIO
3226 r = kvm_coalesced_mmio_init(kvm);
3227 if (r < 0)
3228 goto put_kvm;
3229 #endif
3230 r = get_unused_fd_flags(O_CLOEXEC);
3231 if (r < 0)
3232 goto put_kvm;
3233
3234 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3235 if (IS_ERR(file)) {
3236 put_unused_fd(r);
3237 r = PTR_ERR(file);
3238 goto put_kvm;
3239 }
3240
3241 /*
3242 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3243 * already set, with ->release() being kvm_vm_release(). In error
3244 * cases it will be called by the final fput(file) and will take
3245 * care of doing kvm_put_kvm(kvm).
3246 */
3247 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3248 put_unused_fd(r);
3249 fput(file);
3250 return -ENOMEM;
3251 }
3252 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3253
3254 fd_install(r, file);
3255 return r;
3256
3257 put_kvm:
3258 kvm_put_kvm(kvm);
3259 return r;
3260 }
3261
3262 static long kvm_dev_ioctl(struct file *filp,
3263 unsigned int ioctl, unsigned long arg)
3264 {
3265 long r = -EINVAL;
3266
3267 switch (ioctl) {
3268 case KVM_GET_API_VERSION:
3269 if (arg)
3270 goto out;
3271 r = KVM_API_VERSION;
3272 break;
3273 case KVM_CREATE_VM:
3274 r = kvm_dev_ioctl_create_vm(arg);
3275 break;
3276 case KVM_CHECK_EXTENSION:
3277 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3278 break;
3279 case KVM_GET_VCPU_MMAP_SIZE:
3280 if (arg)
3281 goto out;
3282 r = PAGE_SIZE; /* struct kvm_run */
3283 #ifdef CONFIG_X86
3284 r += PAGE_SIZE; /* pio data page */
3285 #endif
3286 #ifdef CONFIG_KVM_MMIO
3287 r += PAGE_SIZE; /* coalesced mmio ring page */
3288 #endif
3289 break;
3290 case KVM_TRACE_ENABLE:
3291 case KVM_TRACE_PAUSE:
3292 case KVM_TRACE_DISABLE:
3293 r = -EOPNOTSUPP;
3294 break;
3295 default:
3296 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3297 }
3298 out:
3299 return r;
3300 }
3301
3302 static struct file_operations kvm_chardev_ops = {
3303 .unlocked_ioctl = kvm_dev_ioctl,
3304 .llseek = noop_llseek,
3305 KVM_COMPAT(kvm_dev_ioctl),
3306 };
3307
3308 static struct miscdevice kvm_dev = {
3309 KVM_MINOR,
3310 "kvm",
3311 &kvm_chardev_ops,
3312 };
3313
3314 static void hardware_enable_nolock(void *junk)
3315 {
3316 int cpu = raw_smp_processor_id();
3317 int r;
3318
3319 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3320 return;
3321
3322 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3323
3324 r = kvm_arch_hardware_enable();
3325
3326 if (r) {
3327 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3328 atomic_inc(&hardware_enable_failed);
3329 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3330 }
3331 }
3332
3333 static int kvm_starting_cpu(unsigned int cpu)
3334 {
3335 raw_spin_lock(&kvm_count_lock);
3336 if (kvm_usage_count)
3337 hardware_enable_nolock(NULL);
3338 raw_spin_unlock(&kvm_count_lock);
3339 return 0;
3340 }
3341
3342 static void hardware_disable_nolock(void *junk)
3343 {
3344 int cpu = raw_smp_processor_id();
3345
3346 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3347 return;
3348 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3349 kvm_arch_hardware_disable();
3350 }
3351
3352 static int kvm_dying_cpu(unsigned int cpu)
3353 {
3354 raw_spin_lock(&kvm_count_lock);
3355 if (kvm_usage_count)
3356 hardware_disable_nolock(NULL);
3357 raw_spin_unlock(&kvm_count_lock);
3358 return 0;
3359 }
3360
3361 static void hardware_disable_all_nolock(void)
3362 {
3363 BUG_ON(!kvm_usage_count);
3364
3365 kvm_usage_count--;
3366 if (!kvm_usage_count)
3367 on_each_cpu(hardware_disable_nolock, NULL, 1);
3368 }
3369
3370 static void hardware_disable_all(void)
3371 {
3372 raw_spin_lock(&kvm_count_lock);
3373 hardware_disable_all_nolock();
3374 raw_spin_unlock(&kvm_count_lock);
3375 }
3376
3377 static int hardware_enable_all(void)
3378 {
3379 int r = 0;
3380
3381 raw_spin_lock(&kvm_count_lock);
3382
3383 kvm_usage_count++;
3384 if (kvm_usage_count == 1) {
3385 atomic_set(&hardware_enable_failed, 0);
3386 on_each_cpu(hardware_enable_nolock, NULL, 1);
3387
3388 if (atomic_read(&hardware_enable_failed)) {
3389 hardware_disable_all_nolock();
3390 r = -EBUSY;
3391 }
3392 }
3393
3394 raw_spin_unlock(&kvm_count_lock);
3395
3396 return r;
3397 }
3398
3399 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3400 void *v)
3401 {
3402 /*
3403 * Some (well, at least mine) BIOSes hang on reboot if
3404 * in vmx root mode.
3405 *
3406 * And Intel TXT required VMX off for all cpu when system shutdown.
3407 */
3408 pr_info("kvm: exiting hardware virtualization\n");
3409 kvm_rebooting = true;
3410 on_each_cpu(hardware_disable_nolock, NULL, 1);
3411 return NOTIFY_OK;
3412 }
3413
3414 static struct notifier_block kvm_reboot_notifier = {
3415 .notifier_call = kvm_reboot,
3416 .priority = 0,
3417 };
3418
3419 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3420 {
3421 int i;
3422
3423 for (i = 0; i < bus->dev_count; i++) {
3424 struct kvm_io_device *pos = bus->range[i].dev;
3425
3426 kvm_iodevice_destructor(pos);
3427 }
3428 kfree(bus);
3429 }
3430
3431 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3432 const struct kvm_io_range *r2)
3433 {
3434 gpa_t addr1 = r1->addr;
3435 gpa_t addr2 = r2->addr;
3436
3437 if (addr1 < addr2)
3438 return -1;
3439
3440 /* If r2->len == 0, match the exact address. If r2->len != 0,
3441 * accept any overlapping write. Any order is acceptable for
3442 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3443 * we process all of them.
3444 */
3445 if (r2->len) {
3446 addr1 += r1->len;
3447 addr2 += r2->len;
3448 }
3449
3450 if (addr1 > addr2)
3451 return 1;
3452
3453 return 0;
3454 }
3455
3456 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3457 {
3458 return kvm_io_bus_cmp(p1, p2);
3459 }
3460
3461 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3462 gpa_t addr, int len)
3463 {
3464 struct kvm_io_range *range, key;
3465 int off;
3466
3467 key = (struct kvm_io_range) {
3468 .addr = addr,
3469 .len = len,
3470 };
3471
3472 range = bsearch(&key, bus->range, bus->dev_count,
3473 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3474 if (range == NULL)
3475 return -ENOENT;
3476
3477 off = range - bus->range;
3478
3479 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3480 off--;
3481
3482 return off;
3483 }
3484
3485 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3486 struct kvm_io_range *range, const void *val)
3487 {
3488 int idx;
3489
3490 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3491 if (idx < 0)
3492 return -EOPNOTSUPP;
3493
3494 while (idx < bus->dev_count &&
3495 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3496 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3497 range->len, val))
3498 return idx;
3499 idx++;
3500 }
3501
3502 return -EOPNOTSUPP;
3503 }
3504
3505 /* kvm_io_bus_write - called under kvm->slots_lock */
3506 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3507 int len, const void *val)
3508 {
3509 struct kvm_io_bus *bus;
3510 struct kvm_io_range range;
3511 int r;
3512
3513 range = (struct kvm_io_range) {
3514 .addr = addr,
3515 .len = len,
3516 };
3517
3518 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3519 if (!bus)
3520 return -ENOMEM;
3521 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3522 return r < 0 ? r : 0;
3523 }
3524
3525 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3526 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3527 gpa_t addr, int len, const void *val, long cookie)
3528 {
3529 struct kvm_io_bus *bus;
3530 struct kvm_io_range range;
3531
3532 range = (struct kvm_io_range) {
3533 .addr = addr,
3534 .len = len,
3535 };
3536
3537 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3538 if (!bus)
3539 return -ENOMEM;
3540
3541 /* First try the device referenced by cookie. */
3542 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3543 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3544 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3545 val))
3546 return cookie;
3547
3548 /*
3549 * cookie contained garbage; fall back to search and return the
3550 * correct cookie value.
3551 */
3552 return __kvm_io_bus_write(vcpu, bus, &range, val);
3553 }
3554
3555 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3556 struct kvm_io_range *range, void *val)
3557 {
3558 int idx;
3559
3560 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3561 if (idx < 0)
3562 return -EOPNOTSUPP;
3563
3564 while (idx < bus->dev_count &&
3565 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3566 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3567 range->len, val))
3568 return idx;
3569 idx++;
3570 }
3571
3572 return -EOPNOTSUPP;
3573 }
3574 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3575
3576 /* kvm_io_bus_read - called under kvm->slots_lock */
3577 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3578 int len, void *val)
3579 {
3580 struct kvm_io_bus *bus;
3581 struct kvm_io_range range;
3582 int r;
3583
3584 range = (struct kvm_io_range) {
3585 .addr = addr,
3586 .len = len,
3587 };
3588
3589 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3590 if (!bus)
3591 return -ENOMEM;
3592 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3593 return r < 0 ? r : 0;
3594 }
3595
3596
3597 /* Caller must hold slots_lock. */
3598 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3599 int len, struct kvm_io_device *dev)
3600 {
3601 int i;
3602 struct kvm_io_bus *new_bus, *bus;
3603 struct kvm_io_range range;
3604
3605 bus = kvm_get_bus(kvm, bus_idx);
3606 if (!bus)
3607 return -ENOMEM;
3608
3609 /* exclude ioeventfd which is limited by maximum fd */
3610 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3611 return -ENOSPC;
3612
3613 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3614 sizeof(struct kvm_io_range)), GFP_KERNEL);
3615 if (!new_bus)
3616 return -ENOMEM;
3617
3618 range = (struct kvm_io_range) {
3619 .addr = addr,
3620 .len = len,
3621 .dev = dev,
3622 };
3623
3624 for (i = 0; i < bus->dev_count; i++)
3625 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3626 break;
3627
3628 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3629 new_bus->dev_count++;
3630 new_bus->range[i] = range;
3631 memcpy(new_bus->range + i + 1, bus->range + i,
3632 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3633 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3634 synchronize_srcu_expedited(&kvm->srcu);
3635 kfree(bus);
3636
3637 return 0;
3638 }
3639
3640 /* Caller must hold slots_lock. */
3641 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3642 struct kvm_io_device *dev)
3643 {
3644 int i;
3645 struct kvm_io_bus *new_bus, *bus;
3646
3647 bus = kvm_get_bus(kvm, bus_idx);
3648 if (!bus)
3649 return;
3650
3651 for (i = 0; i < bus->dev_count; i++)
3652 if (bus->range[i].dev == dev) {
3653 break;
3654 }
3655
3656 if (i == bus->dev_count)
3657 return;
3658
3659 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3660 sizeof(struct kvm_io_range)), GFP_KERNEL);
3661 if (!new_bus) {
3662 pr_err("kvm: failed to shrink bus, removing it completely\n");
3663 goto broken;
3664 }
3665
3666 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3667 new_bus->dev_count--;
3668 memcpy(new_bus->range + i, bus->range + i + 1,
3669 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3670
3671 broken:
3672 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3673 synchronize_srcu_expedited(&kvm->srcu);
3674 kfree(bus);
3675 return;
3676 }
3677
3678 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3679 gpa_t addr)
3680 {
3681 struct kvm_io_bus *bus;
3682 int dev_idx, srcu_idx;
3683 struct kvm_io_device *iodev = NULL;
3684
3685 srcu_idx = srcu_read_lock(&kvm->srcu);
3686
3687 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3688 if (!bus)
3689 goto out_unlock;
3690
3691 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3692 if (dev_idx < 0)
3693 goto out_unlock;
3694
3695 iodev = bus->range[dev_idx].dev;
3696
3697 out_unlock:
3698 srcu_read_unlock(&kvm->srcu, srcu_idx);
3699
3700 return iodev;
3701 }
3702 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3703
3704 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3705 int (*get)(void *, u64 *), int (*set)(void *, u64),
3706 const char *fmt)
3707 {
3708 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3709 inode->i_private;
3710
3711 /* The debugfs files are a reference to the kvm struct which
3712 * is still valid when kvm_destroy_vm is called.
3713 * To avoid the race between open and the removal of the debugfs
3714 * directory we test against the users count.
3715 */
3716 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3717 return -ENOENT;
3718
3719 if (simple_attr_open(inode, file, get, set, fmt)) {
3720 kvm_put_kvm(stat_data->kvm);
3721 return -ENOMEM;
3722 }
3723
3724 return 0;
3725 }
3726
3727 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3728 {
3729 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3730 inode->i_private;
3731
3732 simple_attr_release(inode, file);
3733 kvm_put_kvm(stat_data->kvm);
3734
3735 return 0;
3736 }
3737
3738 static int vm_stat_get_per_vm(void *data, u64 *val)
3739 {
3740 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3741
3742 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3743
3744 return 0;
3745 }
3746
3747 static int vm_stat_clear_per_vm(void *data, u64 val)
3748 {
3749 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750
3751 if (val)
3752 return -EINVAL;
3753
3754 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3755
3756 return 0;
3757 }
3758
3759 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3760 {
3761 __simple_attr_check_format("%llu\n", 0ull);
3762 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3763 vm_stat_clear_per_vm, "%llu\n");
3764 }
3765
3766 static const struct file_operations vm_stat_get_per_vm_fops = {
3767 .owner = THIS_MODULE,
3768 .open = vm_stat_get_per_vm_open,
3769 .release = kvm_debugfs_release,
3770 .read = simple_attr_read,
3771 .write = simple_attr_write,
3772 .llseek = no_llseek,
3773 };
3774
3775 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3776 {
3777 int i;
3778 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3779 struct kvm_vcpu *vcpu;
3780
3781 *val = 0;
3782
3783 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3784 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3785
3786 return 0;
3787 }
3788
3789 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3790 {
3791 int i;
3792 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3793 struct kvm_vcpu *vcpu;
3794
3795 if (val)
3796 return -EINVAL;
3797
3798 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3799 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3800
3801 return 0;
3802 }
3803
3804 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3805 {
3806 __simple_attr_check_format("%llu\n", 0ull);
3807 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3808 vcpu_stat_clear_per_vm, "%llu\n");
3809 }
3810
3811 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3812 .owner = THIS_MODULE,
3813 .open = vcpu_stat_get_per_vm_open,
3814 .release = kvm_debugfs_release,
3815 .read = simple_attr_read,
3816 .write = simple_attr_write,
3817 .llseek = no_llseek,
3818 };
3819
3820 static const struct file_operations *stat_fops_per_vm[] = {
3821 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3822 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3823 };
3824
3825 static int vm_stat_get(void *_offset, u64 *val)
3826 {
3827 unsigned offset = (long)_offset;
3828 struct kvm *kvm;
3829 struct kvm_stat_data stat_tmp = {.offset = offset};
3830 u64 tmp_val;
3831
3832 *val = 0;
3833 spin_lock(&kvm_lock);
3834 list_for_each_entry(kvm, &vm_list, vm_list) {
3835 stat_tmp.kvm = kvm;
3836 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3837 *val += tmp_val;
3838 }
3839 spin_unlock(&kvm_lock);
3840 return 0;
3841 }
3842
3843 static int vm_stat_clear(void *_offset, u64 val)
3844 {
3845 unsigned offset = (long)_offset;
3846 struct kvm *kvm;
3847 struct kvm_stat_data stat_tmp = {.offset = offset};
3848
3849 if (val)
3850 return -EINVAL;
3851
3852 spin_lock(&kvm_lock);
3853 list_for_each_entry(kvm, &vm_list, vm_list) {
3854 stat_tmp.kvm = kvm;
3855 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3856 }
3857 spin_unlock(&kvm_lock);
3858
3859 return 0;
3860 }
3861
3862 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3863
3864 static int vcpu_stat_get(void *_offset, u64 *val)
3865 {
3866 unsigned offset = (long)_offset;
3867 struct kvm *kvm;
3868 struct kvm_stat_data stat_tmp = {.offset = offset};
3869 u64 tmp_val;
3870
3871 *val = 0;
3872 spin_lock(&kvm_lock);
3873 list_for_each_entry(kvm, &vm_list, vm_list) {
3874 stat_tmp.kvm = kvm;
3875 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3876 *val += tmp_val;
3877 }
3878 spin_unlock(&kvm_lock);
3879 return 0;
3880 }
3881
3882 static int vcpu_stat_clear(void *_offset, u64 val)
3883 {
3884 unsigned offset = (long)_offset;
3885 struct kvm *kvm;
3886 struct kvm_stat_data stat_tmp = {.offset = offset};
3887
3888 if (val)
3889 return -EINVAL;
3890
3891 spin_lock(&kvm_lock);
3892 list_for_each_entry(kvm, &vm_list, vm_list) {
3893 stat_tmp.kvm = kvm;
3894 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3895 }
3896 spin_unlock(&kvm_lock);
3897
3898 return 0;
3899 }
3900
3901 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3902 "%llu\n");
3903
3904 static const struct file_operations *stat_fops[] = {
3905 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3906 [KVM_STAT_VM] = &vm_stat_fops,
3907 };
3908
3909 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3910 {
3911 struct kobj_uevent_env *env;
3912 unsigned long long created, active;
3913
3914 if (!kvm_dev.this_device || !kvm)
3915 return;
3916
3917 spin_lock(&kvm_lock);
3918 if (type == KVM_EVENT_CREATE_VM) {
3919 kvm_createvm_count++;
3920 kvm_active_vms++;
3921 } else if (type == KVM_EVENT_DESTROY_VM) {
3922 kvm_active_vms--;
3923 }
3924 created = kvm_createvm_count;
3925 active = kvm_active_vms;
3926 spin_unlock(&kvm_lock);
3927
3928 env = kzalloc(sizeof(*env), GFP_KERNEL);
3929 if (!env)
3930 return;
3931
3932 add_uevent_var(env, "CREATED=%llu", created);
3933 add_uevent_var(env, "COUNT=%llu", active);
3934
3935 if (type == KVM_EVENT_CREATE_VM) {
3936 add_uevent_var(env, "EVENT=create");
3937 kvm->userspace_pid = task_pid_nr(current);
3938 } else if (type == KVM_EVENT_DESTROY_VM) {
3939 add_uevent_var(env, "EVENT=destroy");
3940 }
3941 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3942
3943 if (kvm->debugfs_dentry) {
3944 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3945
3946 if (p) {
3947 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3948 if (!IS_ERR(tmp))
3949 add_uevent_var(env, "STATS_PATH=%s", tmp);
3950 kfree(p);
3951 }
3952 }
3953 /* no need for checks, since we are adding at most only 5 keys */
3954 env->envp[env->envp_idx++] = NULL;
3955 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3956 kfree(env);
3957 }
3958
3959 static void kvm_init_debug(void)
3960 {
3961 struct kvm_stats_debugfs_item *p;
3962
3963 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3964
3965 kvm_debugfs_num_entries = 0;
3966 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3967 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3968 (void *)(long)p->offset,
3969 stat_fops[p->kind]);
3970 }
3971 }
3972
3973 static int kvm_suspend(void)
3974 {
3975 if (kvm_usage_count)
3976 hardware_disable_nolock(NULL);
3977 return 0;
3978 }
3979
3980 static void kvm_resume(void)
3981 {
3982 if (kvm_usage_count) {
3983 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3984 hardware_enable_nolock(NULL);
3985 }
3986 }
3987
3988 static struct syscore_ops kvm_syscore_ops = {
3989 .suspend = kvm_suspend,
3990 .resume = kvm_resume,
3991 };
3992
3993 static inline
3994 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3995 {
3996 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3997 }
3998
3999 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4000 {
4001 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4002
4003 if (vcpu->preempted)
4004 vcpu->preempted = false;
4005
4006 kvm_arch_sched_in(vcpu, cpu);
4007
4008 kvm_arch_vcpu_load(vcpu, cpu);
4009 }
4010
4011 static void kvm_sched_out(struct preempt_notifier *pn,
4012 struct task_struct *next)
4013 {
4014 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4015
4016 if (current->state == TASK_RUNNING)
4017 vcpu->preempted = true;
4018 kvm_arch_vcpu_put(vcpu);
4019 }
4020
4021 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4022 struct module *module)
4023 {
4024 int r;
4025 int cpu;
4026
4027 r = kvm_arch_init(opaque);
4028 if (r)
4029 goto out_fail;
4030
4031 /*
4032 * kvm_arch_init makes sure there's at most one caller
4033 * for architectures that support multiple implementations,
4034 * like intel and amd on x86.
4035 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4036 * conflicts in case kvm is already setup for another implementation.
4037 */
4038 r = kvm_irqfd_init();
4039 if (r)
4040 goto out_irqfd;
4041
4042 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4043 r = -ENOMEM;
4044 goto out_free_0;
4045 }
4046
4047 r = kvm_arch_hardware_setup();
4048 if (r < 0)
4049 goto out_free_0a;
4050
4051 for_each_online_cpu(cpu) {
4052 smp_call_function_single(cpu,
4053 kvm_arch_check_processor_compat,
4054 &r, 1);
4055 if (r < 0)
4056 goto out_free_1;
4057 }
4058
4059 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4060 kvm_starting_cpu, kvm_dying_cpu);
4061 if (r)
4062 goto out_free_2;
4063 register_reboot_notifier(&kvm_reboot_notifier);
4064
4065 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4066 if (!vcpu_align)
4067 vcpu_align = __alignof__(struct kvm_vcpu);
4068 kvm_vcpu_cache =
4069 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4070 SLAB_ACCOUNT,
4071 offsetof(struct kvm_vcpu, arch),
4072 sizeof_field(struct kvm_vcpu, arch),
4073 NULL);
4074 if (!kvm_vcpu_cache) {
4075 r = -ENOMEM;
4076 goto out_free_3;
4077 }
4078
4079 r = kvm_async_pf_init();
4080 if (r)
4081 goto out_free;
4082
4083 kvm_chardev_ops.owner = module;
4084 kvm_vm_fops.owner = module;
4085 kvm_vcpu_fops.owner = module;
4086
4087 r = misc_register(&kvm_dev);
4088 if (r) {
4089 pr_err("kvm: misc device register failed\n");
4090 goto out_unreg;
4091 }
4092
4093 register_syscore_ops(&kvm_syscore_ops);
4094
4095 kvm_preempt_ops.sched_in = kvm_sched_in;
4096 kvm_preempt_ops.sched_out = kvm_sched_out;
4097
4098 kvm_init_debug();
4099
4100 r = kvm_vfio_ops_init();
4101 WARN_ON(r);
4102
4103 return 0;
4104
4105 out_unreg:
4106 kvm_async_pf_deinit();
4107 out_free:
4108 kmem_cache_destroy(kvm_vcpu_cache);
4109 out_free_3:
4110 unregister_reboot_notifier(&kvm_reboot_notifier);
4111 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4112 out_free_2:
4113 out_free_1:
4114 kvm_arch_hardware_unsetup();
4115 out_free_0a:
4116 free_cpumask_var(cpus_hardware_enabled);
4117 out_free_0:
4118 kvm_irqfd_exit();
4119 out_irqfd:
4120 kvm_arch_exit();
4121 out_fail:
4122 return r;
4123 }
4124 EXPORT_SYMBOL_GPL(kvm_init);
4125
4126 void kvm_exit(void)
4127 {
4128 debugfs_remove_recursive(kvm_debugfs_dir);
4129 misc_deregister(&kvm_dev);
4130 kmem_cache_destroy(kvm_vcpu_cache);
4131 kvm_async_pf_deinit();
4132 unregister_syscore_ops(&kvm_syscore_ops);
4133 unregister_reboot_notifier(&kvm_reboot_notifier);
4134 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4135 on_each_cpu(hardware_disable_nolock, NULL, 1);
4136 kvm_arch_hardware_unsetup();
4137 kvm_arch_exit();
4138 kvm_irqfd_exit();
4139 free_cpumask_var(cpus_hardware_enabled);
4140 kvm_vfio_ops_exit();
4141 }
4142 EXPORT_SYMBOL_GPL(kvm_exit);