]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - virt/kvm/kvm_main.c
666d0155662debc3e1ce7390f0e5ca4603cfa77e
[thirdparty/kernel/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90 * Ordering of locks:
91 *
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93 */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end, bool blockable)
145 {
146 return 0;
147 }
148
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 if (pfn_valid(pfn))
152 return PageReserved(pfn_to_page(pfn));
153
154 return true;
155 }
156
157 /*
158 * Switches to specified vcpu, until a matching vcpu_put()
159 */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 int cpu = get_cpu();
163 preempt_notifier_register(&vcpu->preempt_notifier);
164 kvm_arch_vcpu_load(vcpu, cpu);
165 put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 preempt_disable();
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182
183 /*
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
186 */
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
189
190 /*
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 */
193 return mode == IN_GUEST_MODE;
194 }
195
196 static void ack_flush(void *_completed)
197 {
198 }
199
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 if (unlikely(!cpus))
203 cpus = cpu_online_mask;
204
205 if (cpumask_empty(cpus))
206 return false;
207
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
209 return true;
210 }
211
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 int i, cpu, me;
216 struct kvm_vcpu *vcpu;
217 bool called;
218
219 me = get_cpu();
220
221 kvm_for_each_vcpu(i, vcpu, kvm) {
222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 continue;
224
225 kvm_make_request(req, vcpu);
226 cpu = vcpu->cpu;
227
228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 continue;
230
231 if (tmp != NULL && cpu != -1 && cpu != me &&
232 kvm_request_needs_ipi(vcpu, req))
233 __cpumask_set_cpu(cpu, tmp);
234 }
235
236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 put_cpu();
238
239 return called;
240 }
241
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 cpumask_var_t cpus;
245 bool called;
246
247 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248
249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250
251 free_cpumask_var(cpus);
252 return called;
253 }
254
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 /*
259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 * kvm_make_all_cpus_request.
261 */
262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263
264 /*
265 * We want to publish modifications to the page tables before reading
266 * mode. Pairs with a memory barrier in arch-specific code.
267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 *
271 * There is already an smp_mb__after_atomic() before
272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 * barrier here.
274 */
275 if (!kvm_arch_flush_remote_tlb(kvm)
276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 ++kvm->stat.remote_tlb_flush;
278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 struct page *page;
291 int r;
292
293 mutex_init(&vcpu->mutex);
294 vcpu->cpu = -1;
295 vcpu->kvm = kvm;
296 vcpu->vcpu_id = id;
297 vcpu->pid = NULL;
298 init_swait_queue_head(&vcpu->wq);
299 kvm_async_pf_vcpu_init(vcpu);
300
301 vcpu->pre_pcpu = -1;
302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 if (!page) {
306 r = -ENOMEM;
307 goto fail;
308 }
309 vcpu->run = page_address(page);
310
311 kvm_vcpu_set_in_spin_loop(vcpu, false);
312 kvm_vcpu_set_dy_eligible(vcpu, false);
313 vcpu->preempted = false;
314
315 r = kvm_arch_vcpu_init(vcpu);
316 if (r < 0)
317 goto fail_free_run;
318 return 0;
319
320 fail_free_run:
321 free_page((unsigned long)vcpu->run);
322 fail:
323 return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 /*
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
333 */
334 put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 kvm_arch_vcpu_uninit(vcpu);
336 free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long address,
349 pte_t pte)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int idx;
353
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 kvm->mmu_notifier_seq++;
357
358 if (kvm_set_spte_hva(kvm, address, pte))
359 kvm_flush_remote_tlbs(kvm);
360
361 spin_unlock(&kvm->mmu_lock);
362 srcu_read_unlock(&kvm->srcu, idx);
363 }
364
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 const struct mmu_notifier_range *range)
367 {
368 struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 int need_tlb_flush = 0, idx;
370 int ret;
371
372 idx = srcu_read_lock(&kvm->srcu);
373 spin_lock(&kvm->mmu_lock);
374 /*
375 * The count increase must become visible at unlock time as no
376 * spte can be established without taking the mmu_lock and
377 * count is also read inside the mmu_lock critical section.
378 */
379 kvm->mmu_notifier_count++;
380 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381 need_tlb_flush |= kvm->tlbs_dirty;
382 /* we've to flush the tlb before the pages can be freed */
383 if (need_tlb_flush)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387
388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389 range->end, range->blockable);
390
391 srcu_read_unlock(&kvm->srcu, idx);
392
393 return ret;
394 }
395
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397 const struct mmu_notifier_range *range)
398 {
399 struct kvm *kvm = mmu_notifier_to_kvm(mn);
400
401 spin_lock(&kvm->mmu_lock);
402 /*
403 * This sequence increase will notify the kvm page fault that
404 * the page that is going to be mapped in the spte could have
405 * been freed.
406 */
407 kvm->mmu_notifier_seq++;
408 smp_wmb();
409 /*
410 * The above sequence increase must be visible before the
411 * below count decrease, which is ensured by the smp_wmb above
412 * in conjunction with the smp_rmb in mmu_notifier_retry().
413 */
414 kvm->mmu_notifier_count--;
415 spin_unlock(&kvm->mmu_lock);
416
417 BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421 struct mm_struct *mm,
422 unsigned long start,
423 unsigned long end)
424 {
425 struct kvm *kvm = mmu_notifier_to_kvm(mn);
426 int young, idx;
427
428 idx = srcu_read_lock(&kvm->srcu);
429 spin_lock(&kvm->mmu_lock);
430
431 young = kvm_age_hva(kvm, start, end);
432 if (young)
433 kvm_flush_remote_tlbs(kvm);
434
435 spin_unlock(&kvm->mmu_lock);
436 srcu_read_unlock(&kvm->srcu, idx);
437
438 return young;
439 }
440
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442 struct mm_struct *mm,
443 unsigned long start,
444 unsigned long end)
445 {
446 struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 int young, idx;
448
449 idx = srcu_read_lock(&kvm->srcu);
450 spin_lock(&kvm->mmu_lock);
451 /*
452 * Even though we do not flush TLB, this will still adversely
453 * affect performance on pre-Haswell Intel EPT, where there is
454 * no EPT Access Bit to clear so that we have to tear down EPT
455 * tables instead. If we find this unacceptable, we can always
456 * add a parameter to kvm_age_hva so that it effectively doesn't
457 * do anything on clear_young.
458 *
459 * Also note that currently we never issue secondary TLB flushes
460 * from clear_young, leaving this job up to the regular system
461 * cadence. If we find this inaccurate, we might come up with a
462 * more sophisticated heuristic later.
463 */
464 young = kvm_age_hva(kvm, start, end);
465 spin_unlock(&kvm->mmu_lock);
466 srcu_read_unlock(&kvm->srcu, idx);
467
468 return young;
469 }
470
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472 struct mm_struct *mm,
473 unsigned long address)
474 {
475 struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 int young, idx;
477
478 idx = srcu_read_lock(&kvm->srcu);
479 spin_lock(&kvm->mmu_lock);
480 young = kvm_test_age_hva(kvm, address);
481 spin_unlock(&kvm->mmu_lock);
482 srcu_read_unlock(&kvm->srcu, idx);
483
484 return young;
485 }
486
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488 struct mm_struct *mm)
489 {
490 struct kvm *kvm = mmu_notifier_to_kvm(mn);
491 int idx;
492
493 idx = srcu_read_lock(&kvm->srcu);
494 kvm_arch_flush_shadow_all(kvm);
495 srcu_read_unlock(&kvm->srcu, idx);
496 }
497
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
500 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
501 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
502 .clear_young = kvm_mmu_notifier_clear_young,
503 .test_young = kvm_mmu_notifier_test_young,
504 .change_pte = kvm_mmu_notifier_change_pte,
505 .release = kvm_mmu_notifier_release,
506 };
507
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513
514 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518 return 0;
519 }
520
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525 int i;
526 struct kvm_memslots *slots;
527
528 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529 if (!slots)
530 return NULL;
531
532 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533 slots->id_to_index[i] = slots->memslots[i].id = i;
534
535 return slots;
536 }
537
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540 if (!memslot->dirty_bitmap)
541 return;
542
543 kvfree(memslot->dirty_bitmap);
544 memslot->dirty_bitmap = NULL;
545 }
546
547 /*
548 * Free any memory in @free but not in @dont.
549 */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551 struct kvm_memory_slot *dont)
552 {
553 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554 kvm_destroy_dirty_bitmap(free);
555
556 kvm_arch_free_memslot(kvm, free, dont);
557
558 free->npages = 0;
559 }
560
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563 struct kvm_memory_slot *memslot;
564
565 if (!slots)
566 return;
567
568 kvm_for_each_memslot(memslot, slots)
569 kvm_free_memslot(kvm, memslot, NULL);
570
571 kvfree(slots);
572 }
573
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576 int i;
577
578 if (!kvm->debugfs_dentry)
579 return;
580
581 debugfs_remove_recursive(kvm->debugfs_dentry);
582
583 if (kvm->debugfs_stat_data) {
584 for (i = 0; i < kvm_debugfs_num_entries; i++)
585 kfree(kvm->debugfs_stat_data[i]);
586 kfree(kvm->debugfs_stat_data);
587 }
588 }
589
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592 char dir_name[ITOA_MAX_LEN * 2];
593 struct kvm_stat_data *stat_data;
594 struct kvm_stats_debugfs_item *p;
595
596 if (!debugfs_initialized())
597 return 0;
598
599 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601
602 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603 sizeof(*kvm->debugfs_stat_data),
604 GFP_KERNEL);
605 if (!kvm->debugfs_stat_data)
606 return -ENOMEM;
607
608 for (p = debugfs_entries; p->name; p++) {
609 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610 if (!stat_data)
611 return -ENOMEM;
612
613 stat_data->kvm = kvm;
614 stat_data->offset = p->offset;
615 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617 stat_data, stat_fops_per_vm[p->kind]);
618 }
619 return 0;
620 }
621
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624 int r, i;
625 struct kvm *kvm = kvm_arch_alloc_vm();
626
627 if (!kvm)
628 return ERR_PTR(-ENOMEM);
629
630 spin_lock_init(&kvm->mmu_lock);
631 mmgrab(current->mm);
632 kvm->mm = current->mm;
633 kvm_eventfd_init(kvm);
634 mutex_init(&kvm->lock);
635 mutex_init(&kvm->irq_lock);
636 mutex_init(&kvm->slots_lock);
637 refcount_set(&kvm->users_count, 1);
638 INIT_LIST_HEAD(&kvm->devices);
639
640 r = kvm_arch_init_vm(kvm, type);
641 if (r)
642 goto out_err_no_disable;
643
644 r = hardware_enable_all();
645 if (r)
646 goto out_err_no_disable;
647
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651
652 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653
654 r = -ENOMEM;
655 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656 struct kvm_memslots *slots = kvm_alloc_memslots();
657 if (!slots)
658 goto out_err_no_srcu;
659 /*
660 * Generations must be different for each address space.
661 * Init kvm generation close to the maximum to easily test the
662 * code of handling generation number wrap-around.
663 */
664 slots->generation = i * 2 - 150;
665 rcu_assign_pointer(kvm->memslots[i], slots);
666 }
667
668 if (init_srcu_struct(&kvm->srcu))
669 goto out_err_no_srcu;
670 if (init_srcu_struct(&kvm->irq_srcu))
671 goto out_err_no_irq_srcu;
672 for (i = 0; i < KVM_NR_BUSES; i++) {
673 rcu_assign_pointer(kvm->buses[i],
674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675 if (!kvm->buses[i])
676 goto out_err;
677 }
678
679 r = kvm_init_mmu_notifier(kvm);
680 if (r)
681 goto out_err;
682
683 spin_lock(&kvm_lock);
684 list_add(&kvm->vm_list, &vm_list);
685 spin_unlock(&kvm_lock);
686
687 preempt_notifier_inc();
688
689 return kvm;
690
691 out_err:
692 cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 hardware_disable_all();
697 out_err_no_disable:
698 refcount_set(&kvm->users_count, 0);
699 for (i = 0; i < KVM_NR_BUSES; i++)
700 kfree(kvm_get_bus(kvm, i));
701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 kvm_arch_free_vm(kvm);
704 mmdrop(current->mm);
705 return ERR_PTR(r);
706 }
707
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710 struct kvm_device *dev, *tmp;
711
712 /*
713 * We do not need to take the kvm->lock here, because nobody else
714 * has a reference to the struct kvm at this point and therefore
715 * cannot access the devices list anyhow.
716 */
717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 list_del(&dev->vm_node);
719 dev->ops->destroy(dev);
720 }
721 }
722
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725 int i;
726 struct mm_struct *mm = kvm->mm;
727
728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 kvm_destroy_vm_debugfs(kvm);
730 kvm_arch_sync_events(kvm);
731 spin_lock(&kvm_lock);
732 list_del(&kvm->vm_list);
733 spin_unlock(&kvm_lock);
734 kvm_free_irq_routing(kvm);
735 for (i = 0; i < KVM_NR_BUSES; i++) {
736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737
738 if (bus)
739 kvm_io_bus_destroy(bus);
740 kvm->buses[i] = NULL;
741 }
742 kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 kvm_arch_flush_shadow_all(kvm);
747 #endif
748 kvm_arch_destroy_vm(kvm);
749 kvm_destroy_devices(kvm);
750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 cleanup_srcu_struct(&kvm->irq_srcu);
753 cleanup_srcu_struct(&kvm->srcu);
754 kvm_arch_free_vm(kvm);
755 preempt_notifier_dec();
756 hardware_disable_all();
757 mmdrop(mm);
758 }
759
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 if (refcount_dec_and_test(&kvm->users_count))
769 kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772
773
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 struct kvm *kvm = filp->private_data;
777
778 kvm_irqfd_release(kvm);
779
780 kvm_put_kvm(kvm);
781 return 0;
782 }
783
784 /*
785 * Allocation size is twice as large as the actual dirty bitmap size.
786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787 */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791
792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 if (!memslot->dirty_bitmap)
794 return -ENOMEM;
795
796 return 0;
797 }
798
799 /*
800 * Insert memslot and re-sort memslots based on their GFN,
801 * so binary search could be used to lookup GFN.
802 * Sorting algorithm takes advantage of having initially
803 * sorted array and known changed memslot position.
804 */
805 static void update_memslots(struct kvm_memslots *slots,
806 struct kvm_memory_slot *new,
807 enum kvm_mr_change change)
808 {
809 int id = new->id;
810 int i = slots->id_to_index[id];
811 struct kvm_memory_slot *mslots = slots->memslots;
812
813 WARN_ON(mslots[i].id != id);
814 switch (change) {
815 case KVM_MR_CREATE:
816 slots->used_slots++;
817 WARN_ON(mslots[i].npages || !new->npages);
818 break;
819 case KVM_MR_DELETE:
820 slots->used_slots--;
821 WARN_ON(new->npages || !mslots[i].npages);
822 break;
823 default:
824 break;
825 }
826
827 while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 new->base_gfn <= mslots[i + 1].base_gfn) {
829 if (!mslots[i + 1].npages)
830 break;
831 mslots[i] = mslots[i + 1];
832 slots->id_to_index[mslots[i].id] = i;
833 i++;
834 }
835
836 /*
837 * The ">=" is needed when creating a slot with base_gfn == 0,
838 * so that it moves before all those with base_gfn == npages == 0.
839 *
840 * On the other hand, if new->npages is zero, the above loop has
841 * already left i pointing to the beginning of the empty part of
842 * mslots, and the ">=" would move the hole backwards in this
843 * case---which is wrong. So skip the loop when deleting a slot.
844 */
845 if (new->npages) {
846 while (i > 0 &&
847 new->base_gfn >= mslots[i - 1].base_gfn) {
848 mslots[i] = mslots[i - 1];
849 slots->id_to_index[mslots[i].id] = i;
850 i--;
851 }
852 } else
853 WARN_ON_ONCE(i != slots->used_slots);
854
855 mslots[i] = *new;
856 slots->id_to_index[mslots[i].id] = i;
857 }
858
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862
863 #ifdef __KVM_HAVE_READONLY_MEM
864 valid_flags |= KVM_MEM_READONLY;
865 #endif
866
867 if (mem->flags & ~valid_flags)
868 return -EINVAL;
869
870 return 0;
871 }
872
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 int as_id, struct kvm_memslots *slots)
875 {
876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877
878 /*
879 * Set the low bit in the generation, which disables SPTE caching
880 * until the end of synchronize_srcu_expedited.
881 */
882 WARN_ON(old_memslots->generation & 1);
883 slots->generation = old_memslots->generation + 1;
884
885 rcu_assign_pointer(kvm->memslots[as_id], slots);
886 synchronize_srcu_expedited(&kvm->srcu);
887
888 /*
889 * Increment the new memslot generation a second time. This prevents
890 * vm exits that race with memslot updates from caching a memslot
891 * generation that will (potentially) be valid forever.
892 *
893 * Generations must be unique even across address spaces. We do not need
894 * a global counter for that, instead the generation space is evenly split
895 * across address spaces. For example, with two address spaces, address
896 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897 * use generations 2, 6, 10, 14, ...
898 */
899 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900
901 kvm_arch_memslots_updated(kvm, slots);
902
903 return old_memslots;
904 }
905
906 /*
907 * Allocate some memory and give it an address in the guest physical address
908 * space.
909 *
910 * Discontiguous memory is allowed, mostly for framebuffers.
911 *
912 * Must be called holding kvm->slots_lock for write.
913 */
914 int __kvm_set_memory_region(struct kvm *kvm,
915 const struct kvm_userspace_memory_region *mem)
916 {
917 int r;
918 gfn_t base_gfn;
919 unsigned long npages;
920 struct kvm_memory_slot *slot;
921 struct kvm_memory_slot old, new;
922 struct kvm_memslots *slots = NULL, *old_memslots;
923 int as_id, id;
924 enum kvm_mr_change change;
925
926 r = check_memory_region_flags(mem);
927 if (r)
928 goto out;
929
930 r = -EINVAL;
931 as_id = mem->slot >> 16;
932 id = (u16)mem->slot;
933
934 /* General sanity checks */
935 if (mem->memory_size & (PAGE_SIZE - 1))
936 goto out;
937 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938 goto out;
939 /* We can read the guest memory with __xxx_user() later on. */
940 if ((id < KVM_USER_MEM_SLOTS) &&
941 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942 !access_ok(VERIFY_WRITE,
943 (void __user *)(unsigned long)mem->userspace_addr,
944 mem->memory_size)))
945 goto out;
946 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
947 goto out;
948 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
949 goto out;
950
951 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
952 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
953 npages = mem->memory_size >> PAGE_SHIFT;
954
955 if (npages > KVM_MEM_MAX_NR_PAGES)
956 goto out;
957
958 new = old = *slot;
959
960 new.id = id;
961 new.base_gfn = base_gfn;
962 new.npages = npages;
963 new.flags = mem->flags;
964
965 if (npages) {
966 if (!old.npages)
967 change = KVM_MR_CREATE;
968 else { /* Modify an existing slot. */
969 if ((mem->userspace_addr != old.userspace_addr) ||
970 (npages != old.npages) ||
971 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
972 goto out;
973
974 if (base_gfn != old.base_gfn)
975 change = KVM_MR_MOVE;
976 else if (new.flags != old.flags)
977 change = KVM_MR_FLAGS_ONLY;
978 else { /* Nothing to change. */
979 r = 0;
980 goto out;
981 }
982 }
983 } else {
984 if (!old.npages)
985 goto out;
986
987 change = KVM_MR_DELETE;
988 new.base_gfn = 0;
989 new.flags = 0;
990 }
991
992 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
993 /* Check for overlaps */
994 r = -EEXIST;
995 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
996 if (slot->id == id)
997 continue;
998 if (!((base_gfn + npages <= slot->base_gfn) ||
999 (base_gfn >= slot->base_gfn + slot->npages)))
1000 goto out;
1001 }
1002 }
1003
1004 /* Free page dirty bitmap if unneeded */
1005 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1006 new.dirty_bitmap = NULL;
1007
1008 r = -ENOMEM;
1009 if (change == KVM_MR_CREATE) {
1010 new.userspace_addr = mem->userspace_addr;
1011
1012 if (kvm_arch_create_memslot(kvm, &new, npages))
1013 goto out_free;
1014 }
1015
1016 /* Allocate page dirty bitmap if needed */
1017 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1018 if (kvm_create_dirty_bitmap(&new) < 0)
1019 goto out_free;
1020 }
1021
1022 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1023 if (!slots)
1024 goto out_free;
1025 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1026
1027 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1028 slot = id_to_memslot(slots, id);
1029 slot->flags |= KVM_MEMSLOT_INVALID;
1030
1031 old_memslots = install_new_memslots(kvm, as_id, slots);
1032
1033 /* From this point no new shadow pages pointing to a deleted,
1034 * or moved, memslot will be created.
1035 *
1036 * validation of sp->gfn happens in:
1037 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1038 * - kvm_is_visible_gfn (mmu_check_roots)
1039 */
1040 kvm_arch_flush_shadow_memslot(kvm, slot);
1041
1042 /*
1043 * We can re-use the old_memslots from above, the only difference
1044 * from the currently installed memslots is the invalid flag. This
1045 * will get overwritten by update_memslots anyway.
1046 */
1047 slots = old_memslots;
1048 }
1049
1050 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1051 if (r)
1052 goto out_slots;
1053
1054 /* actual memory is freed via old in kvm_free_memslot below */
1055 if (change == KVM_MR_DELETE) {
1056 new.dirty_bitmap = NULL;
1057 memset(&new.arch, 0, sizeof(new.arch));
1058 }
1059
1060 update_memslots(slots, &new, change);
1061 old_memslots = install_new_memslots(kvm, as_id, slots);
1062
1063 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1064
1065 kvm_free_memslot(kvm, &old, &new);
1066 kvfree(old_memslots);
1067 return 0;
1068
1069 out_slots:
1070 kvfree(slots);
1071 out_free:
1072 kvm_free_memslot(kvm, &new, &old);
1073 out:
1074 return r;
1075 }
1076 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1077
1078 int kvm_set_memory_region(struct kvm *kvm,
1079 const struct kvm_userspace_memory_region *mem)
1080 {
1081 int r;
1082
1083 mutex_lock(&kvm->slots_lock);
1084 r = __kvm_set_memory_region(kvm, mem);
1085 mutex_unlock(&kvm->slots_lock);
1086 return r;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1089
1090 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1091 struct kvm_userspace_memory_region *mem)
1092 {
1093 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1094 return -EINVAL;
1095
1096 return kvm_set_memory_region(kvm, mem);
1097 }
1098
1099 int kvm_get_dirty_log(struct kvm *kvm,
1100 struct kvm_dirty_log *log, int *is_dirty)
1101 {
1102 struct kvm_memslots *slots;
1103 struct kvm_memory_slot *memslot;
1104 int i, as_id, id;
1105 unsigned long n;
1106 unsigned long any = 0;
1107
1108 as_id = log->slot >> 16;
1109 id = (u16)log->slot;
1110 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1111 return -EINVAL;
1112
1113 slots = __kvm_memslots(kvm, as_id);
1114 memslot = id_to_memslot(slots, id);
1115 if (!memslot->dirty_bitmap)
1116 return -ENOENT;
1117
1118 n = kvm_dirty_bitmap_bytes(memslot);
1119
1120 for (i = 0; !any && i < n/sizeof(long); ++i)
1121 any = memslot->dirty_bitmap[i];
1122
1123 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1124 return -EFAULT;
1125
1126 if (any)
1127 *is_dirty = 1;
1128 return 0;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1131
1132 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1133 /**
1134 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1135 * and reenable dirty page tracking for the corresponding pages.
1136 * @kvm: pointer to kvm instance
1137 * @log: slot id and address to which we copy the log
1138 * @is_dirty: flag set if any page is dirty
1139 *
1140 * We need to keep it in mind that VCPU threads can write to the bitmap
1141 * concurrently. So, to avoid losing track of dirty pages we keep the
1142 * following order:
1143 *
1144 * 1. Take a snapshot of the bit and clear it if needed.
1145 * 2. Write protect the corresponding page.
1146 * 3. Copy the snapshot to the userspace.
1147 * 4. Upon return caller flushes TLB's if needed.
1148 *
1149 * Between 2 and 4, the guest may write to the page using the remaining TLB
1150 * entry. This is not a problem because the page is reported dirty using
1151 * the snapshot taken before and step 4 ensures that writes done after
1152 * exiting to userspace will be logged for the next call.
1153 *
1154 */
1155 int kvm_get_dirty_log_protect(struct kvm *kvm,
1156 struct kvm_dirty_log *log, bool *flush)
1157 {
1158 struct kvm_memslots *slots;
1159 struct kvm_memory_slot *memslot;
1160 int i, as_id, id;
1161 unsigned long n;
1162 unsigned long *dirty_bitmap;
1163 unsigned long *dirty_bitmap_buffer;
1164
1165 as_id = log->slot >> 16;
1166 id = (u16)log->slot;
1167 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1168 return -EINVAL;
1169
1170 slots = __kvm_memslots(kvm, as_id);
1171 memslot = id_to_memslot(slots, id);
1172
1173 dirty_bitmap = memslot->dirty_bitmap;
1174 if (!dirty_bitmap)
1175 return -ENOENT;
1176
1177 n = kvm_dirty_bitmap_bytes(memslot);
1178 *flush = false;
1179 if (kvm->manual_dirty_log_protect) {
1180 /*
1181 * Unlike kvm_get_dirty_log, we always return false in *flush,
1182 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1183 * is some code duplication between this function and
1184 * kvm_get_dirty_log, but hopefully all architecture
1185 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1186 * can be eliminated.
1187 */
1188 dirty_bitmap_buffer = dirty_bitmap;
1189 } else {
1190 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1191 memset(dirty_bitmap_buffer, 0, n);
1192
1193 spin_lock(&kvm->mmu_lock);
1194 for (i = 0; i < n / sizeof(long); i++) {
1195 unsigned long mask;
1196 gfn_t offset;
1197
1198 if (!dirty_bitmap[i])
1199 continue;
1200
1201 *flush = true;
1202 mask = xchg(&dirty_bitmap[i], 0);
1203 dirty_bitmap_buffer[i] = mask;
1204
1205 if (mask) {
1206 offset = i * BITS_PER_LONG;
1207 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1208 offset, mask);
1209 }
1210 }
1211 spin_unlock(&kvm->mmu_lock);
1212 }
1213
1214 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1215 return -EFAULT;
1216 return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1219
1220 /**
1221 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1222 * and reenable dirty page tracking for the corresponding pages.
1223 * @kvm: pointer to kvm instance
1224 * @log: slot id and address from which to fetch the bitmap of dirty pages
1225 */
1226 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1227 struct kvm_clear_dirty_log *log, bool *flush)
1228 {
1229 struct kvm_memslots *slots;
1230 struct kvm_memory_slot *memslot;
1231 int as_id, id, n;
1232 gfn_t offset;
1233 unsigned long i;
1234 unsigned long *dirty_bitmap;
1235 unsigned long *dirty_bitmap_buffer;
1236
1237 as_id = log->slot >> 16;
1238 id = (u16)log->slot;
1239 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1240 return -EINVAL;
1241
1242 if ((log->first_page & 63) || (log->num_pages & 63))
1243 return -EINVAL;
1244
1245 slots = __kvm_memslots(kvm, as_id);
1246 memslot = id_to_memslot(slots, id);
1247
1248 dirty_bitmap = memslot->dirty_bitmap;
1249 if (!dirty_bitmap)
1250 return -ENOENT;
1251
1252 n = kvm_dirty_bitmap_bytes(memslot);
1253 *flush = false;
1254 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1255 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1256 return -EFAULT;
1257
1258 spin_lock(&kvm->mmu_lock);
1259 for (offset = log->first_page,
1260 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1261 i++, offset += BITS_PER_LONG) {
1262 unsigned long mask = *dirty_bitmap_buffer++;
1263 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1264 if (!mask)
1265 continue;
1266
1267 mask &= atomic_long_fetch_andnot(mask, p);
1268
1269 /*
1270 * mask contains the bits that really have been cleared. This
1271 * never includes any bits beyond the length of the memslot (if
1272 * the length is not aligned to 64 pages), therefore it is not
1273 * a problem if userspace sets them in log->dirty_bitmap.
1274 */
1275 if (mask) {
1276 *flush = true;
1277 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1278 offset, mask);
1279 }
1280 }
1281 spin_unlock(&kvm->mmu_lock);
1282
1283 return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1286 #endif
1287
1288 bool kvm_largepages_enabled(void)
1289 {
1290 return largepages_enabled;
1291 }
1292
1293 void kvm_disable_largepages(void)
1294 {
1295 largepages_enabled = false;
1296 }
1297 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1298
1299 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1300 {
1301 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1302 }
1303 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1304
1305 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1306 {
1307 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1308 }
1309
1310 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1311 {
1312 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1313
1314 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1315 memslot->flags & KVM_MEMSLOT_INVALID)
1316 return false;
1317
1318 return true;
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1321
1322 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1323 {
1324 struct vm_area_struct *vma;
1325 unsigned long addr, size;
1326
1327 size = PAGE_SIZE;
1328
1329 addr = gfn_to_hva(kvm, gfn);
1330 if (kvm_is_error_hva(addr))
1331 return PAGE_SIZE;
1332
1333 down_read(&current->mm->mmap_sem);
1334 vma = find_vma(current->mm, addr);
1335 if (!vma)
1336 goto out;
1337
1338 size = vma_kernel_pagesize(vma);
1339
1340 out:
1341 up_read(&current->mm->mmap_sem);
1342
1343 return size;
1344 }
1345
1346 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1347 {
1348 return slot->flags & KVM_MEM_READONLY;
1349 }
1350
1351 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1352 gfn_t *nr_pages, bool write)
1353 {
1354 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1355 return KVM_HVA_ERR_BAD;
1356
1357 if (memslot_is_readonly(slot) && write)
1358 return KVM_HVA_ERR_RO_BAD;
1359
1360 if (nr_pages)
1361 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1362
1363 return __gfn_to_hva_memslot(slot, gfn);
1364 }
1365
1366 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1367 gfn_t *nr_pages)
1368 {
1369 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1370 }
1371
1372 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1373 gfn_t gfn)
1374 {
1375 return gfn_to_hva_many(slot, gfn, NULL);
1376 }
1377 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1378
1379 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1380 {
1381 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1382 }
1383 EXPORT_SYMBOL_GPL(gfn_to_hva);
1384
1385 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1386 {
1387 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1390
1391 /*
1392 * Return the hva of a @gfn and the R/W attribute if possible.
1393 *
1394 * @slot: the kvm_memory_slot which contains @gfn
1395 * @gfn: the gfn to be translated
1396 * @writable: used to return the read/write attribute of the @slot if the hva
1397 * is valid and @writable is not NULL
1398 */
1399 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1400 gfn_t gfn, bool *writable)
1401 {
1402 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1403
1404 if (!kvm_is_error_hva(hva) && writable)
1405 *writable = !memslot_is_readonly(slot);
1406
1407 return hva;
1408 }
1409
1410 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1411 {
1412 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1413
1414 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1415 }
1416
1417 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1418 {
1419 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1420
1421 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1422 }
1423
1424 static inline int check_user_page_hwpoison(unsigned long addr)
1425 {
1426 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1427
1428 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1429 return rc == -EHWPOISON;
1430 }
1431
1432 /*
1433 * The fast path to get the writable pfn which will be stored in @pfn,
1434 * true indicates success, otherwise false is returned. It's also the
1435 * only part that runs if we can are in atomic context.
1436 */
1437 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1438 bool *writable, kvm_pfn_t *pfn)
1439 {
1440 struct page *page[1];
1441 int npages;
1442
1443 /*
1444 * Fast pin a writable pfn only if it is a write fault request
1445 * or the caller allows to map a writable pfn for a read fault
1446 * request.
1447 */
1448 if (!(write_fault || writable))
1449 return false;
1450
1451 npages = __get_user_pages_fast(addr, 1, 1, page);
1452 if (npages == 1) {
1453 *pfn = page_to_pfn(page[0]);
1454
1455 if (writable)
1456 *writable = true;
1457 return true;
1458 }
1459
1460 return false;
1461 }
1462
1463 /*
1464 * The slow path to get the pfn of the specified host virtual address,
1465 * 1 indicates success, -errno is returned if error is detected.
1466 */
1467 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1468 bool *writable, kvm_pfn_t *pfn)
1469 {
1470 unsigned int flags = FOLL_HWPOISON;
1471 struct page *page;
1472 int npages = 0;
1473
1474 might_sleep();
1475
1476 if (writable)
1477 *writable = write_fault;
1478
1479 if (write_fault)
1480 flags |= FOLL_WRITE;
1481 if (async)
1482 flags |= FOLL_NOWAIT;
1483
1484 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1485 if (npages != 1)
1486 return npages;
1487
1488 /* map read fault as writable if possible */
1489 if (unlikely(!write_fault) && writable) {
1490 struct page *wpage;
1491
1492 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1493 *writable = true;
1494 put_page(page);
1495 page = wpage;
1496 }
1497 }
1498 *pfn = page_to_pfn(page);
1499 return npages;
1500 }
1501
1502 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1503 {
1504 if (unlikely(!(vma->vm_flags & VM_READ)))
1505 return false;
1506
1507 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1508 return false;
1509
1510 return true;
1511 }
1512
1513 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1514 unsigned long addr, bool *async,
1515 bool write_fault, bool *writable,
1516 kvm_pfn_t *p_pfn)
1517 {
1518 unsigned long pfn;
1519 int r;
1520
1521 r = follow_pfn(vma, addr, &pfn);
1522 if (r) {
1523 /*
1524 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1525 * not call the fault handler, so do it here.
1526 */
1527 bool unlocked = false;
1528 r = fixup_user_fault(current, current->mm, addr,
1529 (write_fault ? FAULT_FLAG_WRITE : 0),
1530 &unlocked);
1531 if (unlocked)
1532 return -EAGAIN;
1533 if (r)
1534 return r;
1535
1536 r = follow_pfn(vma, addr, &pfn);
1537 if (r)
1538 return r;
1539
1540 }
1541
1542 if (writable)
1543 *writable = true;
1544
1545 /*
1546 * Get a reference here because callers of *hva_to_pfn* and
1547 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1548 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1549 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1550 * simply do nothing for reserved pfns.
1551 *
1552 * Whoever called remap_pfn_range is also going to call e.g.
1553 * unmap_mapping_range before the underlying pages are freed,
1554 * causing a call to our MMU notifier.
1555 */
1556 kvm_get_pfn(pfn);
1557
1558 *p_pfn = pfn;
1559 return 0;
1560 }
1561
1562 /*
1563 * Pin guest page in memory and return its pfn.
1564 * @addr: host virtual address which maps memory to the guest
1565 * @atomic: whether this function can sleep
1566 * @async: whether this function need to wait IO complete if the
1567 * host page is not in the memory
1568 * @write_fault: whether we should get a writable host page
1569 * @writable: whether it allows to map a writable host page for !@write_fault
1570 *
1571 * The function will map a writable host page for these two cases:
1572 * 1): @write_fault = true
1573 * 2): @write_fault = false && @writable, @writable will tell the caller
1574 * whether the mapping is writable.
1575 */
1576 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1577 bool write_fault, bool *writable)
1578 {
1579 struct vm_area_struct *vma;
1580 kvm_pfn_t pfn = 0;
1581 int npages, r;
1582
1583 /* we can do it either atomically or asynchronously, not both */
1584 BUG_ON(atomic && async);
1585
1586 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1587 return pfn;
1588
1589 if (atomic)
1590 return KVM_PFN_ERR_FAULT;
1591
1592 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1593 if (npages == 1)
1594 return pfn;
1595
1596 down_read(&current->mm->mmap_sem);
1597 if (npages == -EHWPOISON ||
1598 (!async && check_user_page_hwpoison(addr))) {
1599 pfn = KVM_PFN_ERR_HWPOISON;
1600 goto exit;
1601 }
1602
1603 retry:
1604 vma = find_vma_intersection(current->mm, addr, addr + 1);
1605
1606 if (vma == NULL)
1607 pfn = KVM_PFN_ERR_FAULT;
1608 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1609 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1610 if (r == -EAGAIN)
1611 goto retry;
1612 if (r < 0)
1613 pfn = KVM_PFN_ERR_FAULT;
1614 } else {
1615 if (async && vma_is_valid(vma, write_fault))
1616 *async = true;
1617 pfn = KVM_PFN_ERR_FAULT;
1618 }
1619 exit:
1620 up_read(&current->mm->mmap_sem);
1621 return pfn;
1622 }
1623
1624 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1625 bool atomic, bool *async, bool write_fault,
1626 bool *writable)
1627 {
1628 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1629
1630 if (addr == KVM_HVA_ERR_RO_BAD) {
1631 if (writable)
1632 *writable = false;
1633 return KVM_PFN_ERR_RO_FAULT;
1634 }
1635
1636 if (kvm_is_error_hva(addr)) {
1637 if (writable)
1638 *writable = false;
1639 return KVM_PFN_NOSLOT;
1640 }
1641
1642 /* Do not map writable pfn in the readonly memslot. */
1643 if (writable && memslot_is_readonly(slot)) {
1644 *writable = false;
1645 writable = NULL;
1646 }
1647
1648 return hva_to_pfn(addr, atomic, async, write_fault,
1649 writable);
1650 }
1651 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1652
1653 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1654 bool *writable)
1655 {
1656 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1657 write_fault, writable);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1660
1661 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1662 {
1663 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1664 }
1665 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1666
1667 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1668 {
1669 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1670 }
1671 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1672
1673 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1674 {
1675 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1676 }
1677 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1678
1679 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1680 {
1681 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1684
1685 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1686 {
1687 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1688 }
1689 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1690
1691 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1692 {
1693 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1696
1697 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1698 struct page **pages, int nr_pages)
1699 {
1700 unsigned long addr;
1701 gfn_t entry = 0;
1702
1703 addr = gfn_to_hva_many(slot, gfn, &entry);
1704 if (kvm_is_error_hva(addr))
1705 return -1;
1706
1707 if (entry < nr_pages)
1708 return 0;
1709
1710 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1711 }
1712 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1713
1714 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1715 {
1716 if (is_error_noslot_pfn(pfn))
1717 return KVM_ERR_PTR_BAD_PAGE;
1718
1719 if (kvm_is_reserved_pfn(pfn)) {
1720 WARN_ON(1);
1721 return KVM_ERR_PTR_BAD_PAGE;
1722 }
1723
1724 return pfn_to_page(pfn);
1725 }
1726
1727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1728 {
1729 kvm_pfn_t pfn;
1730
1731 pfn = gfn_to_pfn(kvm, gfn);
1732
1733 return kvm_pfn_to_page(pfn);
1734 }
1735 EXPORT_SYMBOL_GPL(gfn_to_page);
1736
1737 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1738 {
1739 kvm_pfn_t pfn;
1740
1741 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1742
1743 return kvm_pfn_to_page(pfn);
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1746
1747 void kvm_release_page_clean(struct page *page)
1748 {
1749 WARN_ON(is_error_page(page));
1750
1751 kvm_release_pfn_clean(page_to_pfn(page));
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1754
1755 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1756 {
1757 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1758 put_page(pfn_to_page(pfn));
1759 }
1760 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1761
1762 void kvm_release_page_dirty(struct page *page)
1763 {
1764 WARN_ON(is_error_page(page));
1765
1766 kvm_release_pfn_dirty(page_to_pfn(page));
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1769
1770 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1771 {
1772 kvm_set_pfn_dirty(pfn);
1773 kvm_release_pfn_clean(pfn);
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1776
1777 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1778 {
1779 if (!kvm_is_reserved_pfn(pfn)) {
1780 struct page *page = pfn_to_page(pfn);
1781
1782 if (!PageReserved(page))
1783 SetPageDirty(page);
1784 }
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1787
1788 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1789 {
1790 if (!kvm_is_reserved_pfn(pfn))
1791 mark_page_accessed(pfn_to_page(pfn));
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1794
1795 void kvm_get_pfn(kvm_pfn_t pfn)
1796 {
1797 if (!kvm_is_reserved_pfn(pfn))
1798 get_page(pfn_to_page(pfn));
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1801
1802 static int next_segment(unsigned long len, int offset)
1803 {
1804 if (len > PAGE_SIZE - offset)
1805 return PAGE_SIZE - offset;
1806 else
1807 return len;
1808 }
1809
1810 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1811 void *data, int offset, int len)
1812 {
1813 int r;
1814 unsigned long addr;
1815
1816 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1817 if (kvm_is_error_hva(addr))
1818 return -EFAULT;
1819 r = __copy_from_user(data, (void __user *)addr + offset, len);
1820 if (r)
1821 return -EFAULT;
1822 return 0;
1823 }
1824
1825 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1826 int len)
1827 {
1828 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829
1830 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1833
1834 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1835 int offset, int len)
1836 {
1837 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1838
1839 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1842
1843 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1844 {
1845 gfn_t gfn = gpa >> PAGE_SHIFT;
1846 int seg;
1847 int offset = offset_in_page(gpa);
1848 int ret;
1849
1850 while ((seg = next_segment(len, offset)) != 0) {
1851 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1852 if (ret < 0)
1853 return ret;
1854 offset = 0;
1855 len -= seg;
1856 data += seg;
1857 ++gfn;
1858 }
1859 return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_read_guest);
1862
1863 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1864 {
1865 gfn_t gfn = gpa >> PAGE_SHIFT;
1866 int seg;
1867 int offset = offset_in_page(gpa);
1868 int ret;
1869
1870 while ((seg = next_segment(len, offset)) != 0) {
1871 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1872 if (ret < 0)
1873 return ret;
1874 offset = 0;
1875 len -= seg;
1876 data += seg;
1877 ++gfn;
1878 }
1879 return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1882
1883 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1884 void *data, int offset, unsigned long len)
1885 {
1886 int r;
1887 unsigned long addr;
1888
1889 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1890 if (kvm_is_error_hva(addr))
1891 return -EFAULT;
1892 pagefault_disable();
1893 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1894 pagefault_enable();
1895 if (r)
1896 return -EFAULT;
1897 return 0;
1898 }
1899
1900 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1901 unsigned long len)
1902 {
1903 gfn_t gfn = gpa >> PAGE_SHIFT;
1904 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1905 int offset = offset_in_page(gpa);
1906
1907 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1910
1911 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1912 void *data, unsigned long len)
1913 {
1914 gfn_t gfn = gpa >> PAGE_SHIFT;
1915 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1916 int offset = offset_in_page(gpa);
1917
1918 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1921
1922 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1923 const void *data, int offset, int len)
1924 {
1925 int r;
1926 unsigned long addr;
1927
1928 addr = gfn_to_hva_memslot(memslot, gfn);
1929 if (kvm_is_error_hva(addr))
1930 return -EFAULT;
1931 r = __copy_to_user((void __user *)addr + offset, data, len);
1932 if (r)
1933 return -EFAULT;
1934 mark_page_dirty_in_slot(memslot, gfn);
1935 return 0;
1936 }
1937
1938 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1939 const void *data, int offset, int len)
1940 {
1941 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1942
1943 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1946
1947 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1948 const void *data, int offset, int len)
1949 {
1950 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1951
1952 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1955
1956 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1957 unsigned long len)
1958 {
1959 gfn_t gfn = gpa >> PAGE_SHIFT;
1960 int seg;
1961 int offset = offset_in_page(gpa);
1962 int ret;
1963
1964 while ((seg = next_segment(len, offset)) != 0) {
1965 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1966 if (ret < 0)
1967 return ret;
1968 offset = 0;
1969 len -= seg;
1970 data += seg;
1971 ++gfn;
1972 }
1973 return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(kvm_write_guest);
1976
1977 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1978 unsigned long len)
1979 {
1980 gfn_t gfn = gpa >> PAGE_SHIFT;
1981 int seg;
1982 int offset = offset_in_page(gpa);
1983 int ret;
1984
1985 while ((seg = next_segment(len, offset)) != 0) {
1986 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1987 if (ret < 0)
1988 return ret;
1989 offset = 0;
1990 len -= seg;
1991 data += seg;
1992 ++gfn;
1993 }
1994 return 0;
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1997
1998 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1999 struct gfn_to_hva_cache *ghc,
2000 gpa_t gpa, unsigned long len)
2001 {
2002 int offset = offset_in_page(gpa);
2003 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2004 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2005 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2006 gfn_t nr_pages_avail;
2007 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2008
2009 ghc->gpa = gpa;
2010 ghc->generation = slots->generation;
2011 ghc->len = len;
2012 ghc->hva = KVM_HVA_ERR_BAD;
2013
2014 /*
2015 * If the requested region crosses two memslots, we still
2016 * verify that the entire region is valid here.
2017 */
2018 while (!r && start_gfn <= end_gfn) {
2019 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2020 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2021 &nr_pages_avail);
2022 if (kvm_is_error_hva(ghc->hva))
2023 r = -EFAULT;
2024 start_gfn += nr_pages_avail;
2025 }
2026
2027 /* Use the slow path for cross page reads and writes. */
2028 if (!r && nr_pages_needed == 1)
2029 ghc->hva += offset;
2030 else
2031 ghc->memslot = NULL;
2032
2033 return r;
2034 }
2035
2036 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2037 gpa_t gpa, unsigned long len)
2038 {
2039 struct kvm_memslots *slots = kvm_memslots(kvm);
2040 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2043
2044 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2045 void *data, unsigned int offset,
2046 unsigned long len)
2047 {
2048 struct kvm_memslots *slots = kvm_memslots(kvm);
2049 int r;
2050 gpa_t gpa = ghc->gpa + offset;
2051
2052 BUG_ON(len + offset > ghc->len);
2053
2054 if (slots->generation != ghc->generation)
2055 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2056
2057 if (unlikely(!ghc->memslot))
2058 return kvm_write_guest(kvm, gpa, data, len);
2059
2060 if (kvm_is_error_hva(ghc->hva))
2061 return -EFAULT;
2062
2063 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2064 if (r)
2065 return -EFAULT;
2066 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2067
2068 return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2071
2072 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2073 void *data, unsigned long len)
2074 {
2075 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2078
2079 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2080 void *data, unsigned long len)
2081 {
2082 struct kvm_memslots *slots = kvm_memslots(kvm);
2083 int r;
2084
2085 BUG_ON(len > ghc->len);
2086
2087 if (slots->generation != ghc->generation)
2088 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2089
2090 if (unlikely(!ghc->memslot))
2091 return kvm_read_guest(kvm, ghc->gpa, data, len);
2092
2093 if (kvm_is_error_hva(ghc->hva))
2094 return -EFAULT;
2095
2096 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2097 if (r)
2098 return -EFAULT;
2099
2100 return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2103
2104 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2105 {
2106 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2107
2108 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2111
2112 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2113 {
2114 gfn_t gfn = gpa >> PAGE_SHIFT;
2115 int seg;
2116 int offset = offset_in_page(gpa);
2117 int ret;
2118
2119 while ((seg = next_segment(len, offset)) != 0) {
2120 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2121 if (ret < 0)
2122 return ret;
2123 offset = 0;
2124 len -= seg;
2125 ++gfn;
2126 }
2127 return 0;
2128 }
2129 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2130
2131 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2132 gfn_t gfn)
2133 {
2134 if (memslot && memslot->dirty_bitmap) {
2135 unsigned long rel_gfn = gfn - memslot->base_gfn;
2136
2137 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2138 }
2139 }
2140
2141 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2142 {
2143 struct kvm_memory_slot *memslot;
2144
2145 memslot = gfn_to_memslot(kvm, gfn);
2146 mark_page_dirty_in_slot(memslot, gfn);
2147 }
2148 EXPORT_SYMBOL_GPL(mark_page_dirty);
2149
2150 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2151 {
2152 struct kvm_memory_slot *memslot;
2153
2154 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2155 mark_page_dirty_in_slot(memslot, gfn);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2158
2159 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2160 {
2161 if (!vcpu->sigset_active)
2162 return;
2163
2164 /*
2165 * This does a lockless modification of ->real_blocked, which is fine
2166 * because, only current can change ->real_blocked and all readers of
2167 * ->real_blocked don't care as long ->real_blocked is always a subset
2168 * of ->blocked.
2169 */
2170 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2171 }
2172
2173 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2174 {
2175 if (!vcpu->sigset_active)
2176 return;
2177
2178 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2179 sigemptyset(&current->real_blocked);
2180 }
2181
2182 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2183 {
2184 unsigned int old, val, grow;
2185
2186 old = val = vcpu->halt_poll_ns;
2187 grow = READ_ONCE(halt_poll_ns_grow);
2188 /* 10us base */
2189 if (val == 0 && grow)
2190 val = 10000;
2191 else
2192 val *= grow;
2193
2194 if (val > halt_poll_ns)
2195 val = halt_poll_ns;
2196
2197 vcpu->halt_poll_ns = val;
2198 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2199 }
2200
2201 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2202 {
2203 unsigned int old, val, shrink;
2204
2205 old = val = vcpu->halt_poll_ns;
2206 shrink = READ_ONCE(halt_poll_ns_shrink);
2207 if (shrink == 0)
2208 val = 0;
2209 else
2210 val /= shrink;
2211
2212 vcpu->halt_poll_ns = val;
2213 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2214 }
2215
2216 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2217 {
2218 int ret = -EINTR;
2219 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2220
2221 if (kvm_arch_vcpu_runnable(vcpu)) {
2222 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2223 goto out;
2224 }
2225 if (kvm_cpu_has_pending_timer(vcpu))
2226 goto out;
2227 if (signal_pending(current))
2228 goto out;
2229
2230 ret = 0;
2231 out:
2232 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2233 return ret;
2234 }
2235
2236 /*
2237 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2238 */
2239 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2240 {
2241 ktime_t start, cur;
2242 DECLARE_SWAITQUEUE(wait);
2243 bool waited = false;
2244 u64 block_ns;
2245
2246 start = cur = ktime_get();
2247 if (vcpu->halt_poll_ns) {
2248 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2249
2250 ++vcpu->stat.halt_attempted_poll;
2251 do {
2252 /*
2253 * This sets KVM_REQ_UNHALT if an interrupt
2254 * arrives.
2255 */
2256 if (kvm_vcpu_check_block(vcpu) < 0) {
2257 ++vcpu->stat.halt_successful_poll;
2258 if (!vcpu_valid_wakeup(vcpu))
2259 ++vcpu->stat.halt_poll_invalid;
2260 goto out;
2261 }
2262 cur = ktime_get();
2263 } while (single_task_running() && ktime_before(cur, stop));
2264 }
2265
2266 kvm_arch_vcpu_blocking(vcpu);
2267
2268 for (;;) {
2269 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2270
2271 if (kvm_vcpu_check_block(vcpu) < 0)
2272 break;
2273
2274 waited = true;
2275 schedule();
2276 }
2277
2278 finish_swait(&vcpu->wq, &wait);
2279 cur = ktime_get();
2280
2281 kvm_arch_vcpu_unblocking(vcpu);
2282 out:
2283 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2284
2285 if (!vcpu_valid_wakeup(vcpu))
2286 shrink_halt_poll_ns(vcpu);
2287 else if (halt_poll_ns) {
2288 if (block_ns <= vcpu->halt_poll_ns)
2289 ;
2290 /* we had a long block, shrink polling */
2291 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2292 shrink_halt_poll_ns(vcpu);
2293 /* we had a short halt and our poll time is too small */
2294 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2295 block_ns < halt_poll_ns)
2296 grow_halt_poll_ns(vcpu);
2297 } else
2298 vcpu->halt_poll_ns = 0;
2299
2300 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2301 kvm_arch_vcpu_block_finish(vcpu);
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2304
2305 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2306 {
2307 struct swait_queue_head *wqp;
2308
2309 wqp = kvm_arch_vcpu_wq(vcpu);
2310 if (swq_has_sleeper(wqp)) {
2311 swake_up_one(wqp);
2312 ++vcpu->stat.halt_wakeup;
2313 return true;
2314 }
2315
2316 return false;
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2319
2320 #ifndef CONFIG_S390
2321 /*
2322 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2323 */
2324 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2325 {
2326 int me;
2327 int cpu = vcpu->cpu;
2328
2329 if (kvm_vcpu_wake_up(vcpu))
2330 return;
2331
2332 me = get_cpu();
2333 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2334 if (kvm_arch_vcpu_should_kick(vcpu))
2335 smp_send_reschedule(cpu);
2336 put_cpu();
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2339 #endif /* !CONFIG_S390 */
2340
2341 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2342 {
2343 struct pid *pid;
2344 struct task_struct *task = NULL;
2345 int ret = 0;
2346
2347 rcu_read_lock();
2348 pid = rcu_dereference(target->pid);
2349 if (pid)
2350 task = get_pid_task(pid, PIDTYPE_PID);
2351 rcu_read_unlock();
2352 if (!task)
2353 return ret;
2354 ret = yield_to(task, 1);
2355 put_task_struct(task);
2356
2357 return ret;
2358 }
2359 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2360
2361 /*
2362 * Helper that checks whether a VCPU is eligible for directed yield.
2363 * Most eligible candidate to yield is decided by following heuristics:
2364 *
2365 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2366 * (preempted lock holder), indicated by @in_spin_loop.
2367 * Set at the beiginning and cleared at the end of interception/PLE handler.
2368 *
2369 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2370 * chance last time (mostly it has become eligible now since we have probably
2371 * yielded to lockholder in last iteration. This is done by toggling
2372 * @dy_eligible each time a VCPU checked for eligibility.)
2373 *
2374 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2375 * to preempted lock-holder could result in wrong VCPU selection and CPU
2376 * burning. Giving priority for a potential lock-holder increases lock
2377 * progress.
2378 *
2379 * Since algorithm is based on heuristics, accessing another VCPU data without
2380 * locking does not harm. It may result in trying to yield to same VCPU, fail
2381 * and continue with next VCPU and so on.
2382 */
2383 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2384 {
2385 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2386 bool eligible;
2387
2388 eligible = !vcpu->spin_loop.in_spin_loop ||
2389 vcpu->spin_loop.dy_eligible;
2390
2391 if (vcpu->spin_loop.in_spin_loop)
2392 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2393
2394 return eligible;
2395 #else
2396 return true;
2397 #endif
2398 }
2399
2400 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2401 {
2402 struct kvm *kvm = me->kvm;
2403 struct kvm_vcpu *vcpu;
2404 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2405 int yielded = 0;
2406 int try = 3;
2407 int pass;
2408 int i;
2409
2410 kvm_vcpu_set_in_spin_loop(me, true);
2411 /*
2412 * We boost the priority of a VCPU that is runnable but not
2413 * currently running, because it got preempted by something
2414 * else and called schedule in __vcpu_run. Hopefully that
2415 * VCPU is holding the lock that we need and will release it.
2416 * We approximate round-robin by starting at the last boosted VCPU.
2417 */
2418 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2419 kvm_for_each_vcpu(i, vcpu, kvm) {
2420 if (!pass && i <= last_boosted_vcpu) {
2421 i = last_boosted_vcpu;
2422 continue;
2423 } else if (pass && i > last_boosted_vcpu)
2424 break;
2425 if (!READ_ONCE(vcpu->preempted))
2426 continue;
2427 if (vcpu == me)
2428 continue;
2429 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2430 continue;
2431 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2432 continue;
2433 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2434 continue;
2435
2436 yielded = kvm_vcpu_yield_to(vcpu);
2437 if (yielded > 0) {
2438 kvm->last_boosted_vcpu = i;
2439 break;
2440 } else if (yielded < 0) {
2441 try--;
2442 if (!try)
2443 break;
2444 }
2445 }
2446 }
2447 kvm_vcpu_set_in_spin_loop(me, false);
2448
2449 /* Ensure vcpu is not eligible during next spinloop */
2450 kvm_vcpu_set_dy_eligible(me, false);
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2453
2454 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2455 {
2456 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2457 struct page *page;
2458
2459 if (vmf->pgoff == 0)
2460 page = virt_to_page(vcpu->run);
2461 #ifdef CONFIG_X86
2462 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2463 page = virt_to_page(vcpu->arch.pio_data);
2464 #endif
2465 #ifdef CONFIG_KVM_MMIO
2466 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2467 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2468 #endif
2469 else
2470 return kvm_arch_vcpu_fault(vcpu, vmf);
2471 get_page(page);
2472 vmf->page = page;
2473 return 0;
2474 }
2475
2476 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2477 .fault = kvm_vcpu_fault,
2478 };
2479
2480 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2481 {
2482 vma->vm_ops = &kvm_vcpu_vm_ops;
2483 return 0;
2484 }
2485
2486 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2487 {
2488 struct kvm_vcpu *vcpu = filp->private_data;
2489
2490 debugfs_remove_recursive(vcpu->debugfs_dentry);
2491 kvm_put_kvm(vcpu->kvm);
2492 return 0;
2493 }
2494
2495 static struct file_operations kvm_vcpu_fops = {
2496 .release = kvm_vcpu_release,
2497 .unlocked_ioctl = kvm_vcpu_ioctl,
2498 .mmap = kvm_vcpu_mmap,
2499 .llseek = noop_llseek,
2500 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2501 };
2502
2503 /*
2504 * Allocates an inode for the vcpu.
2505 */
2506 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2507 {
2508 char name[8 + 1 + ITOA_MAX_LEN + 1];
2509
2510 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2511 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2512 }
2513
2514 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2515 {
2516 char dir_name[ITOA_MAX_LEN * 2];
2517 int ret;
2518
2519 if (!kvm_arch_has_vcpu_debugfs())
2520 return 0;
2521
2522 if (!debugfs_initialized())
2523 return 0;
2524
2525 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2526 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2527 vcpu->kvm->debugfs_dentry);
2528 if (!vcpu->debugfs_dentry)
2529 return -ENOMEM;
2530
2531 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2532 if (ret < 0) {
2533 debugfs_remove_recursive(vcpu->debugfs_dentry);
2534 return ret;
2535 }
2536
2537 return 0;
2538 }
2539
2540 /*
2541 * Creates some virtual cpus. Good luck creating more than one.
2542 */
2543 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2544 {
2545 int r;
2546 struct kvm_vcpu *vcpu;
2547
2548 if (id >= KVM_MAX_VCPU_ID)
2549 return -EINVAL;
2550
2551 mutex_lock(&kvm->lock);
2552 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2553 mutex_unlock(&kvm->lock);
2554 return -EINVAL;
2555 }
2556
2557 kvm->created_vcpus++;
2558 mutex_unlock(&kvm->lock);
2559
2560 vcpu = kvm_arch_vcpu_create(kvm, id);
2561 if (IS_ERR(vcpu)) {
2562 r = PTR_ERR(vcpu);
2563 goto vcpu_decrement;
2564 }
2565
2566 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2567
2568 r = kvm_arch_vcpu_setup(vcpu);
2569 if (r)
2570 goto vcpu_destroy;
2571
2572 r = kvm_create_vcpu_debugfs(vcpu);
2573 if (r)
2574 goto vcpu_destroy;
2575
2576 mutex_lock(&kvm->lock);
2577 if (kvm_get_vcpu_by_id(kvm, id)) {
2578 r = -EEXIST;
2579 goto unlock_vcpu_destroy;
2580 }
2581
2582 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2583
2584 /* Now it's all set up, let userspace reach it */
2585 kvm_get_kvm(kvm);
2586 r = create_vcpu_fd(vcpu);
2587 if (r < 0) {
2588 kvm_put_kvm(kvm);
2589 goto unlock_vcpu_destroy;
2590 }
2591
2592 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2593
2594 /*
2595 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2596 * before kvm->online_vcpu's incremented value.
2597 */
2598 smp_wmb();
2599 atomic_inc(&kvm->online_vcpus);
2600
2601 mutex_unlock(&kvm->lock);
2602 kvm_arch_vcpu_postcreate(vcpu);
2603 return r;
2604
2605 unlock_vcpu_destroy:
2606 mutex_unlock(&kvm->lock);
2607 debugfs_remove_recursive(vcpu->debugfs_dentry);
2608 vcpu_destroy:
2609 kvm_arch_vcpu_destroy(vcpu);
2610 vcpu_decrement:
2611 mutex_lock(&kvm->lock);
2612 kvm->created_vcpus--;
2613 mutex_unlock(&kvm->lock);
2614 return r;
2615 }
2616
2617 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2618 {
2619 if (sigset) {
2620 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2621 vcpu->sigset_active = 1;
2622 vcpu->sigset = *sigset;
2623 } else
2624 vcpu->sigset_active = 0;
2625 return 0;
2626 }
2627
2628 static long kvm_vcpu_ioctl(struct file *filp,
2629 unsigned int ioctl, unsigned long arg)
2630 {
2631 struct kvm_vcpu *vcpu = filp->private_data;
2632 void __user *argp = (void __user *)arg;
2633 int r;
2634 struct kvm_fpu *fpu = NULL;
2635 struct kvm_sregs *kvm_sregs = NULL;
2636
2637 if (vcpu->kvm->mm != current->mm)
2638 return -EIO;
2639
2640 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2641 return -EINVAL;
2642
2643 /*
2644 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2645 * execution; mutex_lock() would break them.
2646 */
2647 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2648 if (r != -ENOIOCTLCMD)
2649 return r;
2650
2651 if (mutex_lock_killable(&vcpu->mutex))
2652 return -EINTR;
2653 switch (ioctl) {
2654 case KVM_RUN: {
2655 struct pid *oldpid;
2656 r = -EINVAL;
2657 if (arg)
2658 goto out;
2659 oldpid = rcu_access_pointer(vcpu->pid);
2660 if (unlikely(oldpid != task_pid(current))) {
2661 /* The thread running this VCPU changed. */
2662 struct pid *newpid;
2663
2664 r = kvm_arch_vcpu_run_pid_change(vcpu);
2665 if (r)
2666 break;
2667
2668 newpid = get_task_pid(current, PIDTYPE_PID);
2669 rcu_assign_pointer(vcpu->pid, newpid);
2670 if (oldpid)
2671 synchronize_rcu();
2672 put_pid(oldpid);
2673 }
2674 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2675 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2676 break;
2677 }
2678 case KVM_GET_REGS: {
2679 struct kvm_regs *kvm_regs;
2680
2681 r = -ENOMEM;
2682 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2683 if (!kvm_regs)
2684 goto out;
2685 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2686 if (r)
2687 goto out_free1;
2688 r = -EFAULT;
2689 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2690 goto out_free1;
2691 r = 0;
2692 out_free1:
2693 kfree(kvm_regs);
2694 break;
2695 }
2696 case KVM_SET_REGS: {
2697 struct kvm_regs *kvm_regs;
2698
2699 r = -ENOMEM;
2700 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2701 if (IS_ERR(kvm_regs)) {
2702 r = PTR_ERR(kvm_regs);
2703 goto out;
2704 }
2705 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2706 kfree(kvm_regs);
2707 break;
2708 }
2709 case KVM_GET_SREGS: {
2710 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2711 r = -ENOMEM;
2712 if (!kvm_sregs)
2713 goto out;
2714 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2715 if (r)
2716 goto out;
2717 r = -EFAULT;
2718 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2719 goto out;
2720 r = 0;
2721 break;
2722 }
2723 case KVM_SET_SREGS: {
2724 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2725 if (IS_ERR(kvm_sregs)) {
2726 r = PTR_ERR(kvm_sregs);
2727 kvm_sregs = NULL;
2728 goto out;
2729 }
2730 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2731 break;
2732 }
2733 case KVM_GET_MP_STATE: {
2734 struct kvm_mp_state mp_state;
2735
2736 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2737 if (r)
2738 goto out;
2739 r = -EFAULT;
2740 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2741 goto out;
2742 r = 0;
2743 break;
2744 }
2745 case KVM_SET_MP_STATE: {
2746 struct kvm_mp_state mp_state;
2747
2748 r = -EFAULT;
2749 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2750 goto out;
2751 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2752 break;
2753 }
2754 case KVM_TRANSLATE: {
2755 struct kvm_translation tr;
2756
2757 r = -EFAULT;
2758 if (copy_from_user(&tr, argp, sizeof(tr)))
2759 goto out;
2760 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2761 if (r)
2762 goto out;
2763 r = -EFAULT;
2764 if (copy_to_user(argp, &tr, sizeof(tr)))
2765 goto out;
2766 r = 0;
2767 break;
2768 }
2769 case KVM_SET_GUEST_DEBUG: {
2770 struct kvm_guest_debug dbg;
2771
2772 r = -EFAULT;
2773 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2774 goto out;
2775 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2776 break;
2777 }
2778 case KVM_SET_SIGNAL_MASK: {
2779 struct kvm_signal_mask __user *sigmask_arg = argp;
2780 struct kvm_signal_mask kvm_sigmask;
2781 sigset_t sigset, *p;
2782
2783 p = NULL;
2784 if (argp) {
2785 r = -EFAULT;
2786 if (copy_from_user(&kvm_sigmask, argp,
2787 sizeof(kvm_sigmask)))
2788 goto out;
2789 r = -EINVAL;
2790 if (kvm_sigmask.len != sizeof(sigset))
2791 goto out;
2792 r = -EFAULT;
2793 if (copy_from_user(&sigset, sigmask_arg->sigset,
2794 sizeof(sigset)))
2795 goto out;
2796 p = &sigset;
2797 }
2798 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2799 break;
2800 }
2801 case KVM_GET_FPU: {
2802 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2803 r = -ENOMEM;
2804 if (!fpu)
2805 goto out;
2806 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2807 if (r)
2808 goto out;
2809 r = -EFAULT;
2810 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2811 goto out;
2812 r = 0;
2813 break;
2814 }
2815 case KVM_SET_FPU: {
2816 fpu = memdup_user(argp, sizeof(*fpu));
2817 if (IS_ERR(fpu)) {
2818 r = PTR_ERR(fpu);
2819 fpu = NULL;
2820 goto out;
2821 }
2822 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2823 break;
2824 }
2825 default:
2826 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2827 }
2828 out:
2829 mutex_unlock(&vcpu->mutex);
2830 kfree(fpu);
2831 kfree(kvm_sregs);
2832 return r;
2833 }
2834
2835 #ifdef CONFIG_KVM_COMPAT
2836 static long kvm_vcpu_compat_ioctl(struct file *filp,
2837 unsigned int ioctl, unsigned long arg)
2838 {
2839 struct kvm_vcpu *vcpu = filp->private_data;
2840 void __user *argp = compat_ptr(arg);
2841 int r;
2842
2843 if (vcpu->kvm->mm != current->mm)
2844 return -EIO;
2845
2846 switch (ioctl) {
2847 case KVM_SET_SIGNAL_MASK: {
2848 struct kvm_signal_mask __user *sigmask_arg = argp;
2849 struct kvm_signal_mask kvm_sigmask;
2850 sigset_t sigset;
2851
2852 if (argp) {
2853 r = -EFAULT;
2854 if (copy_from_user(&kvm_sigmask, argp,
2855 sizeof(kvm_sigmask)))
2856 goto out;
2857 r = -EINVAL;
2858 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2859 goto out;
2860 r = -EFAULT;
2861 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2862 goto out;
2863 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2864 } else
2865 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2866 break;
2867 }
2868 default:
2869 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2870 }
2871
2872 out:
2873 return r;
2874 }
2875 #endif
2876
2877 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2878 int (*accessor)(struct kvm_device *dev,
2879 struct kvm_device_attr *attr),
2880 unsigned long arg)
2881 {
2882 struct kvm_device_attr attr;
2883
2884 if (!accessor)
2885 return -EPERM;
2886
2887 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2888 return -EFAULT;
2889
2890 return accessor(dev, &attr);
2891 }
2892
2893 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2894 unsigned long arg)
2895 {
2896 struct kvm_device *dev = filp->private_data;
2897
2898 switch (ioctl) {
2899 case KVM_SET_DEVICE_ATTR:
2900 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2901 case KVM_GET_DEVICE_ATTR:
2902 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2903 case KVM_HAS_DEVICE_ATTR:
2904 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2905 default:
2906 if (dev->ops->ioctl)
2907 return dev->ops->ioctl(dev, ioctl, arg);
2908
2909 return -ENOTTY;
2910 }
2911 }
2912
2913 static int kvm_device_release(struct inode *inode, struct file *filp)
2914 {
2915 struct kvm_device *dev = filp->private_data;
2916 struct kvm *kvm = dev->kvm;
2917
2918 kvm_put_kvm(kvm);
2919 return 0;
2920 }
2921
2922 static const struct file_operations kvm_device_fops = {
2923 .unlocked_ioctl = kvm_device_ioctl,
2924 .release = kvm_device_release,
2925 KVM_COMPAT(kvm_device_ioctl),
2926 };
2927
2928 struct kvm_device *kvm_device_from_filp(struct file *filp)
2929 {
2930 if (filp->f_op != &kvm_device_fops)
2931 return NULL;
2932
2933 return filp->private_data;
2934 }
2935
2936 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2937 #ifdef CONFIG_KVM_MPIC
2938 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2939 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2940 #endif
2941 };
2942
2943 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2944 {
2945 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2946 return -ENOSPC;
2947
2948 if (kvm_device_ops_table[type] != NULL)
2949 return -EEXIST;
2950
2951 kvm_device_ops_table[type] = ops;
2952 return 0;
2953 }
2954
2955 void kvm_unregister_device_ops(u32 type)
2956 {
2957 if (kvm_device_ops_table[type] != NULL)
2958 kvm_device_ops_table[type] = NULL;
2959 }
2960
2961 static int kvm_ioctl_create_device(struct kvm *kvm,
2962 struct kvm_create_device *cd)
2963 {
2964 struct kvm_device_ops *ops = NULL;
2965 struct kvm_device *dev;
2966 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2967 int ret;
2968
2969 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2970 return -ENODEV;
2971
2972 ops = kvm_device_ops_table[cd->type];
2973 if (ops == NULL)
2974 return -ENODEV;
2975
2976 if (test)
2977 return 0;
2978
2979 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2980 if (!dev)
2981 return -ENOMEM;
2982
2983 dev->ops = ops;
2984 dev->kvm = kvm;
2985
2986 mutex_lock(&kvm->lock);
2987 ret = ops->create(dev, cd->type);
2988 if (ret < 0) {
2989 mutex_unlock(&kvm->lock);
2990 kfree(dev);
2991 return ret;
2992 }
2993 list_add(&dev->vm_node, &kvm->devices);
2994 mutex_unlock(&kvm->lock);
2995
2996 if (ops->init)
2997 ops->init(dev);
2998
2999 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3000 if (ret < 0) {
3001 mutex_lock(&kvm->lock);
3002 list_del(&dev->vm_node);
3003 mutex_unlock(&kvm->lock);
3004 ops->destroy(dev);
3005 return ret;
3006 }
3007
3008 kvm_get_kvm(kvm);
3009 cd->fd = ret;
3010 return 0;
3011 }
3012
3013 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3014 {
3015 switch (arg) {
3016 case KVM_CAP_USER_MEMORY:
3017 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3018 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3019 case KVM_CAP_INTERNAL_ERROR_DATA:
3020 #ifdef CONFIG_HAVE_KVM_MSI
3021 case KVM_CAP_SIGNAL_MSI:
3022 #endif
3023 #ifdef CONFIG_HAVE_KVM_IRQFD
3024 case KVM_CAP_IRQFD:
3025 case KVM_CAP_IRQFD_RESAMPLE:
3026 #endif
3027 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3028 case KVM_CAP_CHECK_EXTENSION_VM:
3029 case KVM_CAP_ENABLE_CAP_VM:
3030 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3031 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3032 #endif
3033 return 1;
3034 #ifdef CONFIG_KVM_MMIO
3035 case KVM_CAP_COALESCED_MMIO:
3036 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3037 case KVM_CAP_COALESCED_PIO:
3038 return 1;
3039 #endif
3040 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3041 case KVM_CAP_IRQ_ROUTING:
3042 return KVM_MAX_IRQ_ROUTES;
3043 #endif
3044 #if KVM_ADDRESS_SPACE_NUM > 1
3045 case KVM_CAP_MULTI_ADDRESS_SPACE:
3046 return KVM_ADDRESS_SPACE_NUM;
3047 #endif
3048 case KVM_CAP_MAX_VCPU_ID:
3049 return KVM_MAX_VCPU_ID;
3050 default:
3051 break;
3052 }
3053 return kvm_vm_ioctl_check_extension(kvm, arg);
3054 }
3055
3056 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3057 struct kvm_enable_cap *cap)
3058 {
3059 return -EINVAL;
3060 }
3061
3062 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3063 struct kvm_enable_cap *cap)
3064 {
3065 switch (cap->cap) {
3066 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3067 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3068 if (cap->flags || (cap->args[0] & ~1))
3069 return -EINVAL;
3070 kvm->manual_dirty_log_protect = cap->args[0];
3071 return 0;
3072 #endif
3073 default:
3074 return kvm_vm_ioctl_enable_cap(kvm, cap);
3075 }
3076 }
3077
3078 static long kvm_vm_ioctl(struct file *filp,
3079 unsigned int ioctl, unsigned long arg)
3080 {
3081 struct kvm *kvm = filp->private_data;
3082 void __user *argp = (void __user *)arg;
3083 int r;
3084
3085 if (kvm->mm != current->mm)
3086 return -EIO;
3087 switch (ioctl) {
3088 case KVM_CREATE_VCPU:
3089 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3090 break;
3091 case KVM_ENABLE_CAP: {
3092 struct kvm_enable_cap cap;
3093
3094 r = -EFAULT;
3095 if (copy_from_user(&cap, argp, sizeof(cap)))
3096 goto out;
3097 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3098 break;
3099 }
3100 case KVM_SET_USER_MEMORY_REGION: {
3101 struct kvm_userspace_memory_region kvm_userspace_mem;
3102
3103 r = -EFAULT;
3104 if (copy_from_user(&kvm_userspace_mem, argp,
3105 sizeof(kvm_userspace_mem)))
3106 goto out;
3107
3108 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3109 break;
3110 }
3111 case KVM_GET_DIRTY_LOG: {
3112 struct kvm_dirty_log log;
3113
3114 r = -EFAULT;
3115 if (copy_from_user(&log, argp, sizeof(log)))
3116 goto out;
3117 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3118 break;
3119 }
3120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3121 case KVM_CLEAR_DIRTY_LOG: {
3122 struct kvm_clear_dirty_log log;
3123
3124 r = -EFAULT;
3125 if (copy_from_user(&log, argp, sizeof(log)))
3126 goto out;
3127 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3128 break;
3129 }
3130 #endif
3131 #ifdef CONFIG_KVM_MMIO
3132 case KVM_REGISTER_COALESCED_MMIO: {
3133 struct kvm_coalesced_mmio_zone zone;
3134
3135 r = -EFAULT;
3136 if (copy_from_user(&zone, argp, sizeof(zone)))
3137 goto out;
3138 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3139 break;
3140 }
3141 case KVM_UNREGISTER_COALESCED_MMIO: {
3142 struct kvm_coalesced_mmio_zone zone;
3143
3144 r = -EFAULT;
3145 if (copy_from_user(&zone, argp, sizeof(zone)))
3146 goto out;
3147 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3148 break;
3149 }
3150 #endif
3151 case KVM_IRQFD: {
3152 struct kvm_irqfd data;
3153
3154 r = -EFAULT;
3155 if (copy_from_user(&data, argp, sizeof(data)))
3156 goto out;
3157 r = kvm_irqfd(kvm, &data);
3158 break;
3159 }
3160 case KVM_IOEVENTFD: {
3161 struct kvm_ioeventfd data;
3162
3163 r = -EFAULT;
3164 if (copy_from_user(&data, argp, sizeof(data)))
3165 goto out;
3166 r = kvm_ioeventfd(kvm, &data);
3167 break;
3168 }
3169 #ifdef CONFIG_HAVE_KVM_MSI
3170 case KVM_SIGNAL_MSI: {
3171 struct kvm_msi msi;
3172
3173 r = -EFAULT;
3174 if (copy_from_user(&msi, argp, sizeof(msi)))
3175 goto out;
3176 r = kvm_send_userspace_msi(kvm, &msi);
3177 break;
3178 }
3179 #endif
3180 #ifdef __KVM_HAVE_IRQ_LINE
3181 case KVM_IRQ_LINE_STATUS:
3182 case KVM_IRQ_LINE: {
3183 struct kvm_irq_level irq_event;
3184
3185 r = -EFAULT;
3186 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3187 goto out;
3188
3189 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3190 ioctl == KVM_IRQ_LINE_STATUS);
3191 if (r)
3192 goto out;
3193
3194 r = -EFAULT;
3195 if (ioctl == KVM_IRQ_LINE_STATUS) {
3196 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3197 goto out;
3198 }
3199
3200 r = 0;
3201 break;
3202 }
3203 #endif
3204 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3205 case KVM_SET_GSI_ROUTING: {
3206 struct kvm_irq_routing routing;
3207 struct kvm_irq_routing __user *urouting;
3208 struct kvm_irq_routing_entry *entries = NULL;
3209
3210 r = -EFAULT;
3211 if (copy_from_user(&routing, argp, sizeof(routing)))
3212 goto out;
3213 r = -EINVAL;
3214 if (!kvm_arch_can_set_irq_routing(kvm))
3215 goto out;
3216 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3217 goto out;
3218 if (routing.flags)
3219 goto out;
3220 if (routing.nr) {
3221 r = -ENOMEM;
3222 entries = vmalloc(array_size(sizeof(*entries),
3223 routing.nr));
3224 if (!entries)
3225 goto out;
3226 r = -EFAULT;
3227 urouting = argp;
3228 if (copy_from_user(entries, urouting->entries,
3229 routing.nr * sizeof(*entries)))
3230 goto out_free_irq_routing;
3231 }
3232 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3233 routing.flags);
3234 out_free_irq_routing:
3235 vfree(entries);
3236 break;
3237 }
3238 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3239 case KVM_CREATE_DEVICE: {
3240 struct kvm_create_device cd;
3241
3242 r = -EFAULT;
3243 if (copy_from_user(&cd, argp, sizeof(cd)))
3244 goto out;
3245
3246 r = kvm_ioctl_create_device(kvm, &cd);
3247 if (r)
3248 goto out;
3249
3250 r = -EFAULT;
3251 if (copy_to_user(argp, &cd, sizeof(cd)))
3252 goto out;
3253
3254 r = 0;
3255 break;
3256 }
3257 case KVM_CHECK_EXTENSION:
3258 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3259 break;
3260 default:
3261 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3262 }
3263 out:
3264 return r;
3265 }
3266
3267 #ifdef CONFIG_KVM_COMPAT
3268 struct compat_kvm_dirty_log {
3269 __u32 slot;
3270 __u32 padding1;
3271 union {
3272 compat_uptr_t dirty_bitmap; /* one bit per page */
3273 __u64 padding2;
3274 };
3275 };
3276
3277 static long kvm_vm_compat_ioctl(struct file *filp,
3278 unsigned int ioctl, unsigned long arg)
3279 {
3280 struct kvm *kvm = filp->private_data;
3281 int r;
3282
3283 if (kvm->mm != current->mm)
3284 return -EIO;
3285 switch (ioctl) {
3286 case KVM_GET_DIRTY_LOG: {
3287 struct compat_kvm_dirty_log compat_log;
3288 struct kvm_dirty_log log;
3289
3290 if (copy_from_user(&compat_log, (void __user *)arg,
3291 sizeof(compat_log)))
3292 return -EFAULT;
3293 log.slot = compat_log.slot;
3294 log.padding1 = compat_log.padding1;
3295 log.padding2 = compat_log.padding2;
3296 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3297
3298 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3299 break;
3300 }
3301 default:
3302 r = kvm_vm_ioctl(filp, ioctl, arg);
3303 }
3304 return r;
3305 }
3306 #endif
3307
3308 static struct file_operations kvm_vm_fops = {
3309 .release = kvm_vm_release,
3310 .unlocked_ioctl = kvm_vm_ioctl,
3311 .llseek = noop_llseek,
3312 KVM_COMPAT(kvm_vm_compat_ioctl),
3313 };
3314
3315 static int kvm_dev_ioctl_create_vm(unsigned long type)
3316 {
3317 int r;
3318 struct kvm *kvm;
3319 struct file *file;
3320
3321 kvm = kvm_create_vm(type);
3322 if (IS_ERR(kvm))
3323 return PTR_ERR(kvm);
3324 #ifdef CONFIG_KVM_MMIO
3325 r = kvm_coalesced_mmio_init(kvm);
3326 if (r < 0)
3327 goto put_kvm;
3328 #endif
3329 r = get_unused_fd_flags(O_CLOEXEC);
3330 if (r < 0)
3331 goto put_kvm;
3332
3333 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3334 if (IS_ERR(file)) {
3335 put_unused_fd(r);
3336 r = PTR_ERR(file);
3337 goto put_kvm;
3338 }
3339
3340 /*
3341 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3342 * already set, with ->release() being kvm_vm_release(). In error
3343 * cases it will be called by the final fput(file) and will take
3344 * care of doing kvm_put_kvm(kvm).
3345 */
3346 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3347 put_unused_fd(r);
3348 fput(file);
3349 return -ENOMEM;
3350 }
3351 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3352
3353 fd_install(r, file);
3354 return r;
3355
3356 put_kvm:
3357 kvm_put_kvm(kvm);
3358 return r;
3359 }
3360
3361 static long kvm_dev_ioctl(struct file *filp,
3362 unsigned int ioctl, unsigned long arg)
3363 {
3364 long r = -EINVAL;
3365
3366 switch (ioctl) {
3367 case KVM_GET_API_VERSION:
3368 if (arg)
3369 goto out;
3370 r = KVM_API_VERSION;
3371 break;
3372 case KVM_CREATE_VM:
3373 r = kvm_dev_ioctl_create_vm(arg);
3374 break;
3375 case KVM_CHECK_EXTENSION:
3376 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3377 break;
3378 case KVM_GET_VCPU_MMAP_SIZE:
3379 if (arg)
3380 goto out;
3381 r = PAGE_SIZE; /* struct kvm_run */
3382 #ifdef CONFIG_X86
3383 r += PAGE_SIZE; /* pio data page */
3384 #endif
3385 #ifdef CONFIG_KVM_MMIO
3386 r += PAGE_SIZE; /* coalesced mmio ring page */
3387 #endif
3388 break;
3389 case KVM_TRACE_ENABLE:
3390 case KVM_TRACE_PAUSE:
3391 case KVM_TRACE_DISABLE:
3392 r = -EOPNOTSUPP;
3393 break;
3394 default:
3395 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3396 }
3397 out:
3398 return r;
3399 }
3400
3401 static struct file_operations kvm_chardev_ops = {
3402 .unlocked_ioctl = kvm_dev_ioctl,
3403 .llseek = noop_llseek,
3404 KVM_COMPAT(kvm_dev_ioctl),
3405 };
3406
3407 static struct miscdevice kvm_dev = {
3408 KVM_MINOR,
3409 "kvm",
3410 &kvm_chardev_ops,
3411 };
3412
3413 static void hardware_enable_nolock(void *junk)
3414 {
3415 int cpu = raw_smp_processor_id();
3416 int r;
3417
3418 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3419 return;
3420
3421 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3422
3423 r = kvm_arch_hardware_enable();
3424
3425 if (r) {
3426 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3427 atomic_inc(&hardware_enable_failed);
3428 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3429 }
3430 }
3431
3432 static int kvm_starting_cpu(unsigned int cpu)
3433 {
3434 raw_spin_lock(&kvm_count_lock);
3435 if (kvm_usage_count)
3436 hardware_enable_nolock(NULL);
3437 raw_spin_unlock(&kvm_count_lock);
3438 return 0;
3439 }
3440
3441 static void hardware_disable_nolock(void *junk)
3442 {
3443 int cpu = raw_smp_processor_id();
3444
3445 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3446 return;
3447 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3448 kvm_arch_hardware_disable();
3449 }
3450
3451 static int kvm_dying_cpu(unsigned int cpu)
3452 {
3453 raw_spin_lock(&kvm_count_lock);
3454 if (kvm_usage_count)
3455 hardware_disable_nolock(NULL);
3456 raw_spin_unlock(&kvm_count_lock);
3457 return 0;
3458 }
3459
3460 static void hardware_disable_all_nolock(void)
3461 {
3462 BUG_ON(!kvm_usage_count);
3463
3464 kvm_usage_count--;
3465 if (!kvm_usage_count)
3466 on_each_cpu(hardware_disable_nolock, NULL, 1);
3467 }
3468
3469 static void hardware_disable_all(void)
3470 {
3471 raw_spin_lock(&kvm_count_lock);
3472 hardware_disable_all_nolock();
3473 raw_spin_unlock(&kvm_count_lock);
3474 }
3475
3476 static int hardware_enable_all(void)
3477 {
3478 int r = 0;
3479
3480 raw_spin_lock(&kvm_count_lock);
3481
3482 kvm_usage_count++;
3483 if (kvm_usage_count == 1) {
3484 atomic_set(&hardware_enable_failed, 0);
3485 on_each_cpu(hardware_enable_nolock, NULL, 1);
3486
3487 if (atomic_read(&hardware_enable_failed)) {
3488 hardware_disable_all_nolock();
3489 r = -EBUSY;
3490 }
3491 }
3492
3493 raw_spin_unlock(&kvm_count_lock);
3494
3495 return r;
3496 }
3497
3498 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3499 void *v)
3500 {
3501 /*
3502 * Some (well, at least mine) BIOSes hang on reboot if
3503 * in vmx root mode.
3504 *
3505 * And Intel TXT required VMX off for all cpu when system shutdown.
3506 */
3507 pr_info("kvm: exiting hardware virtualization\n");
3508 kvm_rebooting = true;
3509 on_each_cpu(hardware_disable_nolock, NULL, 1);
3510 return NOTIFY_OK;
3511 }
3512
3513 static struct notifier_block kvm_reboot_notifier = {
3514 .notifier_call = kvm_reboot,
3515 .priority = 0,
3516 };
3517
3518 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3519 {
3520 int i;
3521
3522 for (i = 0; i < bus->dev_count; i++) {
3523 struct kvm_io_device *pos = bus->range[i].dev;
3524
3525 kvm_iodevice_destructor(pos);
3526 }
3527 kfree(bus);
3528 }
3529
3530 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3531 const struct kvm_io_range *r2)
3532 {
3533 gpa_t addr1 = r1->addr;
3534 gpa_t addr2 = r2->addr;
3535
3536 if (addr1 < addr2)
3537 return -1;
3538
3539 /* If r2->len == 0, match the exact address. If r2->len != 0,
3540 * accept any overlapping write. Any order is acceptable for
3541 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3542 * we process all of them.
3543 */
3544 if (r2->len) {
3545 addr1 += r1->len;
3546 addr2 += r2->len;
3547 }
3548
3549 if (addr1 > addr2)
3550 return 1;
3551
3552 return 0;
3553 }
3554
3555 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3556 {
3557 return kvm_io_bus_cmp(p1, p2);
3558 }
3559
3560 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3561 gpa_t addr, int len)
3562 {
3563 struct kvm_io_range *range, key;
3564 int off;
3565
3566 key = (struct kvm_io_range) {
3567 .addr = addr,
3568 .len = len,
3569 };
3570
3571 range = bsearch(&key, bus->range, bus->dev_count,
3572 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3573 if (range == NULL)
3574 return -ENOENT;
3575
3576 off = range - bus->range;
3577
3578 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3579 off--;
3580
3581 return off;
3582 }
3583
3584 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3585 struct kvm_io_range *range, const void *val)
3586 {
3587 int idx;
3588
3589 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3590 if (idx < 0)
3591 return -EOPNOTSUPP;
3592
3593 while (idx < bus->dev_count &&
3594 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3595 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3596 range->len, val))
3597 return idx;
3598 idx++;
3599 }
3600
3601 return -EOPNOTSUPP;
3602 }
3603
3604 /* kvm_io_bus_write - called under kvm->slots_lock */
3605 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3606 int len, const void *val)
3607 {
3608 struct kvm_io_bus *bus;
3609 struct kvm_io_range range;
3610 int r;
3611
3612 range = (struct kvm_io_range) {
3613 .addr = addr,
3614 .len = len,
3615 };
3616
3617 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3618 if (!bus)
3619 return -ENOMEM;
3620 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3621 return r < 0 ? r : 0;
3622 }
3623
3624 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3625 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3626 gpa_t addr, int len, const void *val, long cookie)
3627 {
3628 struct kvm_io_bus *bus;
3629 struct kvm_io_range range;
3630
3631 range = (struct kvm_io_range) {
3632 .addr = addr,
3633 .len = len,
3634 };
3635
3636 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3637 if (!bus)
3638 return -ENOMEM;
3639
3640 /* First try the device referenced by cookie. */
3641 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3642 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3643 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3644 val))
3645 return cookie;
3646
3647 /*
3648 * cookie contained garbage; fall back to search and return the
3649 * correct cookie value.
3650 */
3651 return __kvm_io_bus_write(vcpu, bus, &range, val);
3652 }
3653
3654 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3655 struct kvm_io_range *range, void *val)
3656 {
3657 int idx;
3658
3659 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3660 if (idx < 0)
3661 return -EOPNOTSUPP;
3662
3663 while (idx < bus->dev_count &&
3664 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3665 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3666 range->len, val))
3667 return idx;
3668 idx++;
3669 }
3670
3671 return -EOPNOTSUPP;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3674
3675 /* kvm_io_bus_read - called under kvm->slots_lock */
3676 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3677 int len, void *val)
3678 {
3679 struct kvm_io_bus *bus;
3680 struct kvm_io_range range;
3681 int r;
3682
3683 range = (struct kvm_io_range) {
3684 .addr = addr,
3685 .len = len,
3686 };
3687
3688 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3689 if (!bus)
3690 return -ENOMEM;
3691 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3692 return r < 0 ? r : 0;
3693 }
3694
3695
3696 /* Caller must hold slots_lock. */
3697 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3698 int len, struct kvm_io_device *dev)
3699 {
3700 int i;
3701 struct kvm_io_bus *new_bus, *bus;
3702 struct kvm_io_range range;
3703
3704 bus = kvm_get_bus(kvm, bus_idx);
3705 if (!bus)
3706 return -ENOMEM;
3707
3708 /* exclude ioeventfd which is limited by maximum fd */
3709 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3710 return -ENOSPC;
3711
3712 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3713 sizeof(struct kvm_io_range)), GFP_KERNEL);
3714 if (!new_bus)
3715 return -ENOMEM;
3716
3717 range = (struct kvm_io_range) {
3718 .addr = addr,
3719 .len = len,
3720 .dev = dev,
3721 };
3722
3723 for (i = 0; i < bus->dev_count; i++)
3724 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3725 break;
3726
3727 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3728 new_bus->dev_count++;
3729 new_bus->range[i] = range;
3730 memcpy(new_bus->range + i + 1, bus->range + i,
3731 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3732 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3733 synchronize_srcu_expedited(&kvm->srcu);
3734 kfree(bus);
3735
3736 return 0;
3737 }
3738
3739 /* Caller must hold slots_lock. */
3740 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3741 struct kvm_io_device *dev)
3742 {
3743 int i;
3744 struct kvm_io_bus *new_bus, *bus;
3745
3746 bus = kvm_get_bus(kvm, bus_idx);
3747 if (!bus)
3748 return;
3749
3750 for (i = 0; i < bus->dev_count; i++)
3751 if (bus->range[i].dev == dev) {
3752 break;
3753 }
3754
3755 if (i == bus->dev_count)
3756 return;
3757
3758 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3759 sizeof(struct kvm_io_range)), GFP_KERNEL);
3760 if (!new_bus) {
3761 pr_err("kvm: failed to shrink bus, removing it completely\n");
3762 goto broken;
3763 }
3764
3765 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3766 new_bus->dev_count--;
3767 memcpy(new_bus->range + i, bus->range + i + 1,
3768 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3769
3770 broken:
3771 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3772 synchronize_srcu_expedited(&kvm->srcu);
3773 kfree(bus);
3774 return;
3775 }
3776
3777 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3778 gpa_t addr)
3779 {
3780 struct kvm_io_bus *bus;
3781 int dev_idx, srcu_idx;
3782 struct kvm_io_device *iodev = NULL;
3783
3784 srcu_idx = srcu_read_lock(&kvm->srcu);
3785
3786 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3787 if (!bus)
3788 goto out_unlock;
3789
3790 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3791 if (dev_idx < 0)
3792 goto out_unlock;
3793
3794 iodev = bus->range[dev_idx].dev;
3795
3796 out_unlock:
3797 srcu_read_unlock(&kvm->srcu, srcu_idx);
3798
3799 return iodev;
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3802
3803 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3804 int (*get)(void *, u64 *), int (*set)(void *, u64),
3805 const char *fmt)
3806 {
3807 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3808 inode->i_private;
3809
3810 /* The debugfs files are a reference to the kvm struct which
3811 * is still valid when kvm_destroy_vm is called.
3812 * To avoid the race between open and the removal of the debugfs
3813 * directory we test against the users count.
3814 */
3815 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3816 return -ENOENT;
3817
3818 if (simple_attr_open(inode, file, get, set, fmt)) {
3819 kvm_put_kvm(stat_data->kvm);
3820 return -ENOMEM;
3821 }
3822
3823 return 0;
3824 }
3825
3826 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3827 {
3828 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3829 inode->i_private;
3830
3831 simple_attr_release(inode, file);
3832 kvm_put_kvm(stat_data->kvm);
3833
3834 return 0;
3835 }
3836
3837 static int vm_stat_get_per_vm(void *data, u64 *val)
3838 {
3839 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3840
3841 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3842
3843 return 0;
3844 }
3845
3846 static int vm_stat_clear_per_vm(void *data, u64 val)
3847 {
3848 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3849
3850 if (val)
3851 return -EINVAL;
3852
3853 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3854
3855 return 0;
3856 }
3857
3858 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3859 {
3860 __simple_attr_check_format("%llu\n", 0ull);
3861 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3862 vm_stat_clear_per_vm, "%llu\n");
3863 }
3864
3865 static const struct file_operations vm_stat_get_per_vm_fops = {
3866 .owner = THIS_MODULE,
3867 .open = vm_stat_get_per_vm_open,
3868 .release = kvm_debugfs_release,
3869 .read = simple_attr_read,
3870 .write = simple_attr_write,
3871 .llseek = no_llseek,
3872 };
3873
3874 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3875 {
3876 int i;
3877 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3878 struct kvm_vcpu *vcpu;
3879
3880 *val = 0;
3881
3882 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3883 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3884
3885 return 0;
3886 }
3887
3888 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3889 {
3890 int i;
3891 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3892 struct kvm_vcpu *vcpu;
3893
3894 if (val)
3895 return -EINVAL;
3896
3897 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3898 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3899
3900 return 0;
3901 }
3902
3903 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3904 {
3905 __simple_attr_check_format("%llu\n", 0ull);
3906 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3907 vcpu_stat_clear_per_vm, "%llu\n");
3908 }
3909
3910 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3911 .owner = THIS_MODULE,
3912 .open = vcpu_stat_get_per_vm_open,
3913 .release = kvm_debugfs_release,
3914 .read = simple_attr_read,
3915 .write = simple_attr_write,
3916 .llseek = no_llseek,
3917 };
3918
3919 static const struct file_operations *stat_fops_per_vm[] = {
3920 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3921 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3922 };
3923
3924 static int vm_stat_get(void *_offset, u64 *val)
3925 {
3926 unsigned offset = (long)_offset;
3927 struct kvm *kvm;
3928 struct kvm_stat_data stat_tmp = {.offset = offset};
3929 u64 tmp_val;
3930
3931 *val = 0;
3932 spin_lock(&kvm_lock);
3933 list_for_each_entry(kvm, &vm_list, vm_list) {
3934 stat_tmp.kvm = kvm;
3935 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3936 *val += tmp_val;
3937 }
3938 spin_unlock(&kvm_lock);
3939 return 0;
3940 }
3941
3942 static int vm_stat_clear(void *_offset, u64 val)
3943 {
3944 unsigned offset = (long)_offset;
3945 struct kvm *kvm;
3946 struct kvm_stat_data stat_tmp = {.offset = offset};
3947
3948 if (val)
3949 return -EINVAL;
3950
3951 spin_lock(&kvm_lock);
3952 list_for_each_entry(kvm, &vm_list, vm_list) {
3953 stat_tmp.kvm = kvm;
3954 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3955 }
3956 spin_unlock(&kvm_lock);
3957
3958 return 0;
3959 }
3960
3961 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3962
3963 static int vcpu_stat_get(void *_offset, u64 *val)
3964 {
3965 unsigned offset = (long)_offset;
3966 struct kvm *kvm;
3967 struct kvm_stat_data stat_tmp = {.offset = offset};
3968 u64 tmp_val;
3969
3970 *val = 0;
3971 spin_lock(&kvm_lock);
3972 list_for_each_entry(kvm, &vm_list, vm_list) {
3973 stat_tmp.kvm = kvm;
3974 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3975 *val += tmp_val;
3976 }
3977 spin_unlock(&kvm_lock);
3978 return 0;
3979 }
3980
3981 static int vcpu_stat_clear(void *_offset, u64 val)
3982 {
3983 unsigned offset = (long)_offset;
3984 struct kvm *kvm;
3985 struct kvm_stat_data stat_tmp = {.offset = offset};
3986
3987 if (val)
3988 return -EINVAL;
3989
3990 spin_lock(&kvm_lock);
3991 list_for_each_entry(kvm, &vm_list, vm_list) {
3992 stat_tmp.kvm = kvm;
3993 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3994 }
3995 spin_unlock(&kvm_lock);
3996
3997 return 0;
3998 }
3999
4000 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4001 "%llu\n");
4002
4003 static const struct file_operations *stat_fops[] = {
4004 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4005 [KVM_STAT_VM] = &vm_stat_fops,
4006 };
4007
4008 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4009 {
4010 struct kobj_uevent_env *env;
4011 unsigned long long created, active;
4012
4013 if (!kvm_dev.this_device || !kvm)
4014 return;
4015
4016 spin_lock(&kvm_lock);
4017 if (type == KVM_EVENT_CREATE_VM) {
4018 kvm_createvm_count++;
4019 kvm_active_vms++;
4020 } else if (type == KVM_EVENT_DESTROY_VM) {
4021 kvm_active_vms--;
4022 }
4023 created = kvm_createvm_count;
4024 active = kvm_active_vms;
4025 spin_unlock(&kvm_lock);
4026
4027 env = kzalloc(sizeof(*env), GFP_KERNEL);
4028 if (!env)
4029 return;
4030
4031 add_uevent_var(env, "CREATED=%llu", created);
4032 add_uevent_var(env, "COUNT=%llu", active);
4033
4034 if (type == KVM_EVENT_CREATE_VM) {
4035 add_uevent_var(env, "EVENT=create");
4036 kvm->userspace_pid = task_pid_nr(current);
4037 } else if (type == KVM_EVENT_DESTROY_VM) {
4038 add_uevent_var(env, "EVENT=destroy");
4039 }
4040 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4041
4042 if (kvm->debugfs_dentry) {
4043 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4044
4045 if (p) {
4046 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4047 if (!IS_ERR(tmp))
4048 add_uevent_var(env, "STATS_PATH=%s", tmp);
4049 kfree(p);
4050 }
4051 }
4052 /* no need for checks, since we are adding at most only 5 keys */
4053 env->envp[env->envp_idx++] = NULL;
4054 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4055 kfree(env);
4056 }
4057
4058 static void kvm_init_debug(void)
4059 {
4060 struct kvm_stats_debugfs_item *p;
4061
4062 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4063
4064 kvm_debugfs_num_entries = 0;
4065 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4066 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4067 (void *)(long)p->offset,
4068 stat_fops[p->kind]);
4069 }
4070 }
4071
4072 static int kvm_suspend(void)
4073 {
4074 if (kvm_usage_count)
4075 hardware_disable_nolock(NULL);
4076 return 0;
4077 }
4078
4079 static void kvm_resume(void)
4080 {
4081 if (kvm_usage_count) {
4082 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4083 hardware_enable_nolock(NULL);
4084 }
4085 }
4086
4087 static struct syscore_ops kvm_syscore_ops = {
4088 .suspend = kvm_suspend,
4089 .resume = kvm_resume,
4090 };
4091
4092 static inline
4093 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4094 {
4095 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4096 }
4097
4098 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4099 {
4100 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4101
4102 if (vcpu->preempted)
4103 vcpu->preempted = false;
4104
4105 kvm_arch_sched_in(vcpu, cpu);
4106
4107 kvm_arch_vcpu_load(vcpu, cpu);
4108 }
4109
4110 static void kvm_sched_out(struct preempt_notifier *pn,
4111 struct task_struct *next)
4112 {
4113 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4114
4115 if (current->state == TASK_RUNNING)
4116 vcpu->preempted = true;
4117 kvm_arch_vcpu_put(vcpu);
4118 }
4119
4120 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4121 struct module *module)
4122 {
4123 int r;
4124 int cpu;
4125
4126 r = kvm_arch_init(opaque);
4127 if (r)
4128 goto out_fail;
4129
4130 /*
4131 * kvm_arch_init makes sure there's at most one caller
4132 * for architectures that support multiple implementations,
4133 * like intel and amd on x86.
4134 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4135 * conflicts in case kvm is already setup for another implementation.
4136 */
4137 r = kvm_irqfd_init();
4138 if (r)
4139 goto out_irqfd;
4140
4141 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4142 r = -ENOMEM;
4143 goto out_free_0;
4144 }
4145
4146 r = kvm_arch_hardware_setup();
4147 if (r < 0)
4148 goto out_free_0a;
4149
4150 for_each_online_cpu(cpu) {
4151 smp_call_function_single(cpu,
4152 kvm_arch_check_processor_compat,
4153 &r, 1);
4154 if (r < 0)
4155 goto out_free_1;
4156 }
4157
4158 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4159 kvm_starting_cpu, kvm_dying_cpu);
4160 if (r)
4161 goto out_free_2;
4162 register_reboot_notifier(&kvm_reboot_notifier);
4163
4164 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4165 if (!vcpu_align)
4166 vcpu_align = __alignof__(struct kvm_vcpu);
4167 kvm_vcpu_cache =
4168 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4169 SLAB_ACCOUNT,
4170 offsetof(struct kvm_vcpu, arch),
4171 sizeof_field(struct kvm_vcpu, arch),
4172 NULL);
4173 if (!kvm_vcpu_cache) {
4174 r = -ENOMEM;
4175 goto out_free_3;
4176 }
4177
4178 r = kvm_async_pf_init();
4179 if (r)
4180 goto out_free;
4181
4182 kvm_chardev_ops.owner = module;
4183 kvm_vm_fops.owner = module;
4184 kvm_vcpu_fops.owner = module;
4185
4186 r = misc_register(&kvm_dev);
4187 if (r) {
4188 pr_err("kvm: misc device register failed\n");
4189 goto out_unreg;
4190 }
4191
4192 register_syscore_ops(&kvm_syscore_ops);
4193
4194 kvm_preempt_ops.sched_in = kvm_sched_in;
4195 kvm_preempt_ops.sched_out = kvm_sched_out;
4196
4197 kvm_init_debug();
4198
4199 r = kvm_vfio_ops_init();
4200 WARN_ON(r);
4201
4202 return 0;
4203
4204 out_unreg:
4205 kvm_async_pf_deinit();
4206 out_free:
4207 kmem_cache_destroy(kvm_vcpu_cache);
4208 out_free_3:
4209 unregister_reboot_notifier(&kvm_reboot_notifier);
4210 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4211 out_free_2:
4212 out_free_1:
4213 kvm_arch_hardware_unsetup();
4214 out_free_0a:
4215 free_cpumask_var(cpus_hardware_enabled);
4216 out_free_0:
4217 kvm_irqfd_exit();
4218 out_irqfd:
4219 kvm_arch_exit();
4220 out_fail:
4221 return r;
4222 }
4223 EXPORT_SYMBOL_GPL(kvm_init);
4224
4225 void kvm_exit(void)
4226 {
4227 debugfs_remove_recursive(kvm_debugfs_dir);
4228 misc_deregister(&kvm_dev);
4229 kmem_cache_destroy(kvm_vcpu_cache);
4230 kvm_async_pf_deinit();
4231 unregister_syscore_ops(&kvm_syscore_ops);
4232 unregister_reboot_notifier(&kvm_reboot_notifier);
4233 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4234 on_each_cpu(hardware_disable_nolock, NULL, 1);
4235 kvm_arch_hardware_unsetup();
4236 kvm_arch_exit();
4237 kvm_irqfd_exit();
4238 free_cpumask_var(cpus_hardware_enabled);
4239 kvm_vfio_ops_exit();
4240 }
4241 EXPORT_SYMBOL_GPL(kvm_exit);