]> git.ipfire.org Git - thirdparty/linux.git/blob - virt/kvm/kvm_main.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 /*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159 unsigned long start, unsigned long end, bool blockable)
160 {
161 return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166 /*
167 * The metadata used by is_zone_device_page() to determine whether or
168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169 * the device has been pinned, e.g. by get_user_pages(). WARN if the
170 * page_count() is zero to help detect bad usage of this helper.
171 */
172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173 return false;
174
175 return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180 /*
181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182 * perspective they are "normal" pages, albeit with slightly different
183 * usage rules.
184 */
185 if (pfn_valid(pfn))
186 return PageReserved(pfn_to_page(pfn)) &&
187 !is_zero_pfn(pfn) &&
188 !kvm_is_zone_device_pfn(pfn);
189
190 return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195 struct page *page = pfn_to_page(pfn);
196
197 if (!PageTransCompoundMap(page))
198 return false;
199
200 return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204 * Switches to specified vcpu, until a matching vcpu_put()
205 */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208 int cpu = get_cpu();
209
210 __this_cpu_write(kvm_running_vcpu, vcpu);
211 preempt_notifier_register(&vcpu->preempt_notifier);
212 kvm_arch_vcpu_load(vcpu, cpu);
213 put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219 preempt_disable();
220 kvm_arch_vcpu_put(vcpu);
221 preempt_notifier_unregister(&vcpu->preempt_notifier);
222 __this_cpu_write(kvm_running_vcpu, NULL);
223 preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232 /*
233 * We need to wait for the VCPU to reenable interrupts and get out of
234 * READING_SHADOW_PAGE_TABLES mode.
235 */
236 if (req & KVM_REQUEST_WAIT)
237 return mode != OUTSIDE_GUEST_MODE;
238
239 /*
240 * Need to kick a running VCPU, but otherwise there is nothing to do.
241 */
242 return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251 if (unlikely(!cpus))
252 cpus = cpu_online_mask;
253
254 if (cpumask_empty(cpus))
255 return false;
256
257 smp_call_function_many(cpus, ack_flush, NULL, wait);
258 return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264 int i, cpu, me;
265 struct kvm_vcpu *vcpu;
266 bool called;
267
268 me = get_cpu();
269
270 kvm_for_each_vcpu(i, vcpu, kvm) {
271 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
272 continue;
273
274 kvm_make_request(req, vcpu);
275 cpu = vcpu->cpu;
276
277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 continue;
279
280 if (tmp != NULL && cpu != -1 && cpu != me &&
281 kvm_request_needs_ipi(vcpu, req))
282 __cpumask_set_cpu(cpu, tmp);
283 }
284
285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
286 put_cpu();
287
288 return called;
289 }
290
291 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
292 {
293 cpumask_var_t cpus;
294 bool called;
295
296 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
297
298 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
299
300 free_cpumask_var(cpus);
301 return called;
302 }
303
304 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
305 void kvm_flush_remote_tlbs(struct kvm *kvm)
306 {
307 /*
308 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
309 * kvm_make_all_cpus_request.
310 */
311 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
312
313 /*
314 * We want to publish modifications to the page tables before reading
315 * mode. Pairs with a memory barrier in arch-specific code.
316 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
317 * and smp_mb in walk_shadow_page_lockless_begin/end.
318 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
319 *
320 * There is already an smp_mb__after_atomic() before
321 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
322 * barrier here.
323 */
324 if (!kvm_arch_flush_remote_tlb(kvm)
325 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
326 ++kvm->stat.remote_tlb_flush;
327 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
328 }
329 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
330 #endif
331
332 void kvm_reload_remote_mmus(struct kvm *kvm)
333 {
334 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
335 }
336
337 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
338 {
339 mutex_init(&vcpu->mutex);
340 vcpu->cpu = -1;
341 vcpu->kvm = kvm;
342 vcpu->vcpu_id = id;
343 vcpu->pid = NULL;
344 init_swait_queue_head(&vcpu->wq);
345 kvm_async_pf_vcpu_init(vcpu);
346
347 vcpu->pre_pcpu = -1;
348 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
349
350 kvm_vcpu_set_in_spin_loop(vcpu, false);
351 kvm_vcpu_set_dy_eligible(vcpu, false);
352 vcpu->preempted = false;
353 vcpu->ready = false;
354 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
355 }
356
357 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
358 {
359 kvm_arch_vcpu_destroy(vcpu);
360
361 /*
362 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
363 * the vcpu->pid pointer, and at destruction time all file descriptors
364 * are already gone.
365 */
366 put_pid(rcu_dereference_protected(vcpu->pid, 1));
367
368 free_page((unsigned long)vcpu->run);
369 kmem_cache_free(kvm_vcpu_cache, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
372
373 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
374 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
375 {
376 return container_of(mn, struct kvm, mmu_notifier);
377 }
378
379 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
380 struct mm_struct *mm,
381 unsigned long address,
382 pte_t pte)
383 {
384 struct kvm *kvm = mmu_notifier_to_kvm(mn);
385 int idx;
386
387 idx = srcu_read_lock(&kvm->srcu);
388 spin_lock(&kvm->mmu_lock);
389 kvm->mmu_notifier_seq++;
390
391 if (kvm_set_spte_hva(kvm, address, pte))
392 kvm_flush_remote_tlbs(kvm);
393
394 spin_unlock(&kvm->mmu_lock);
395 srcu_read_unlock(&kvm->srcu, idx);
396 }
397
398 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
399 const struct mmu_notifier_range *range)
400 {
401 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 int need_tlb_flush = 0, idx;
403 int ret;
404
405 idx = srcu_read_lock(&kvm->srcu);
406 spin_lock(&kvm->mmu_lock);
407 /*
408 * The count increase must become visible at unlock time as no
409 * spte can be established without taking the mmu_lock and
410 * count is also read inside the mmu_lock critical section.
411 */
412 kvm->mmu_notifier_count++;
413 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
414 need_tlb_flush |= kvm->tlbs_dirty;
415 /* we've to flush the tlb before the pages can be freed */
416 if (need_tlb_flush)
417 kvm_flush_remote_tlbs(kvm);
418
419 spin_unlock(&kvm->mmu_lock);
420
421 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
422 range->end,
423 mmu_notifier_range_blockable(range));
424
425 srcu_read_unlock(&kvm->srcu, idx);
426
427 return ret;
428 }
429
430 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
431 const struct mmu_notifier_range *range)
432 {
433 struct kvm *kvm = mmu_notifier_to_kvm(mn);
434
435 spin_lock(&kvm->mmu_lock);
436 /*
437 * This sequence increase will notify the kvm page fault that
438 * the page that is going to be mapped in the spte could have
439 * been freed.
440 */
441 kvm->mmu_notifier_seq++;
442 smp_wmb();
443 /*
444 * The above sequence increase must be visible before the
445 * below count decrease, which is ensured by the smp_wmb above
446 * in conjunction with the smp_rmb in mmu_notifier_retry().
447 */
448 kvm->mmu_notifier_count--;
449 spin_unlock(&kvm->mmu_lock);
450
451 BUG_ON(kvm->mmu_notifier_count < 0);
452 }
453
454 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
455 struct mm_struct *mm,
456 unsigned long start,
457 unsigned long end)
458 {
459 struct kvm *kvm = mmu_notifier_to_kvm(mn);
460 int young, idx;
461
462 idx = srcu_read_lock(&kvm->srcu);
463 spin_lock(&kvm->mmu_lock);
464
465 young = kvm_age_hva(kvm, start, end);
466 if (young)
467 kvm_flush_remote_tlbs(kvm);
468
469 spin_unlock(&kvm->mmu_lock);
470 srcu_read_unlock(&kvm->srcu, idx);
471
472 return young;
473 }
474
475 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
476 struct mm_struct *mm,
477 unsigned long start,
478 unsigned long end)
479 {
480 struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 int young, idx;
482
483 idx = srcu_read_lock(&kvm->srcu);
484 spin_lock(&kvm->mmu_lock);
485 /*
486 * Even though we do not flush TLB, this will still adversely
487 * affect performance on pre-Haswell Intel EPT, where there is
488 * no EPT Access Bit to clear so that we have to tear down EPT
489 * tables instead. If we find this unacceptable, we can always
490 * add a parameter to kvm_age_hva so that it effectively doesn't
491 * do anything on clear_young.
492 *
493 * Also note that currently we never issue secondary TLB flushes
494 * from clear_young, leaving this job up to the regular system
495 * cadence. If we find this inaccurate, we might come up with a
496 * more sophisticated heuristic later.
497 */
498 young = kvm_age_hva(kvm, start, end);
499 spin_unlock(&kvm->mmu_lock);
500 srcu_read_unlock(&kvm->srcu, idx);
501
502 return young;
503 }
504
505 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
506 struct mm_struct *mm,
507 unsigned long address)
508 {
509 struct kvm *kvm = mmu_notifier_to_kvm(mn);
510 int young, idx;
511
512 idx = srcu_read_lock(&kvm->srcu);
513 spin_lock(&kvm->mmu_lock);
514 young = kvm_test_age_hva(kvm, address);
515 spin_unlock(&kvm->mmu_lock);
516 srcu_read_unlock(&kvm->srcu, idx);
517
518 return young;
519 }
520
521 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
522 struct mm_struct *mm)
523 {
524 struct kvm *kvm = mmu_notifier_to_kvm(mn);
525 int idx;
526
527 idx = srcu_read_lock(&kvm->srcu);
528 kvm_arch_flush_shadow_all(kvm);
529 srcu_read_unlock(&kvm->srcu, idx);
530 }
531
532 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
533 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
534 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
535 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
536 .clear_young = kvm_mmu_notifier_clear_young,
537 .test_young = kvm_mmu_notifier_test_young,
538 .change_pte = kvm_mmu_notifier_change_pte,
539 .release = kvm_mmu_notifier_release,
540 };
541
542 static int kvm_init_mmu_notifier(struct kvm *kvm)
543 {
544 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
545 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
546 }
547
548 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552 return 0;
553 }
554
555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
556
557 static struct kvm_memslots *kvm_alloc_memslots(void)
558 {
559 int i;
560 struct kvm_memslots *slots;
561
562 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
563 if (!slots)
564 return NULL;
565
566 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
567 slots->id_to_index[i] = -1;
568
569 return slots;
570 }
571
572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
573 {
574 if (!memslot->dirty_bitmap)
575 return;
576
577 kvfree(memslot->dirty_bitmap);
578 memslot->dirty_bitmap = NULL;
579 }
580
581 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
582 {
583 kvm_destroy_dirty_bitmap(slot);
584
585 kvm_arch_free_memslot(kvm, slot);
586
587 slot->flags = 0;
588 slot->npages = 0;
589 }
590
591 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
592 {
593 struct kvm_memory_slot *memslot;
594
595 if (!slots)
596 return;
597
598 kvm_for_each_memslot(memslot, slots)
599 kvm_free_memslot(kvm, memslot);
600
601 kvfree(slots);
602 }
603
604 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
605 {
606 int i;
607
608 if (!kvm->debugfs_dentry)
609 return;
610
611 debugfs_remove_recursive(kvm->debugfs_dentry);
612
613 if (kvm->debugfs_stat_data) {
614 for (i = 0; i < kvm_debugfs_num_entries; i++)
615 kfree(kvm->debugfs_stat_data[i]);
616 kfree(kvm->debugfs_stat_data);
617 }
618 }
619
620 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
621 {
622 char dir_name[ITOA_MAX_LEN * 2];
623 struct kvm_stat_data *stat_data;
624 struct kvm_stats_debugfs_item *p;
625
626 if (!debugfs_initialized())
627 return 0;
628
629 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
630 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
631
632 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
633 sizeof(*kvm->debugfs_stat_data),
634 GFP_KERNEL_ACCOUNT);
635 if (!kvm->debugfs_stat_data)
636 return -ENOMEM;
637
638 for (p = debugfs_entries; p->name; p++) {
639 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
640 if (!stat_data)
641 return -ENOMEM;
642
643 stat_data->kvm = kvm;
644 stat_data->dbgfs_item = p;
645 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
646 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
647 kvm->debugfs_dentry, stat_data,
648 &stat_fops_per_vm);
649 }
650 return 0;
651 }
652
653 /*
654 * Called after the VM is otherwise initialized, but just before adding it to
655 * the vm_list.
656 */
657 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
658 {
659 return 0;
660 }
661
662 /*
663 * Called just after removing the VM from the vm_list, but before doing any
664 * other destruction.
665 */
666 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
667 {
668 }
669
670 static struct kvm *kvm_create_vm(unsigned long type)
671 {
672 struct kvm *kvm = kvm_arch_alloc_vm();
673 int r = -ENOMEM;
674 int i;
675
676 if (!kvm)
677 return ERR_PTR(-ENOMEM);
678
679 spin_lock_init(&kvm->mmu_lock);
680 mmgrab(current->mm);
681 kvm->mm = current->mm;
682 kvm_eventfd_init(kvm);
683 mutex_init(&kvm->lock);
684 mutex_init(&kvm->irq_lock);
685 mutex_init(&kvm->slots_lock);
686 INIT_LIST_HEAD(&kvm->devices);
687
688 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
689
690 if (init_srcu_struct(&kvm->srcu))
691 goto out_err_no_srcu;
692 if (init_srcu_struct(&kvm->irq_srcu))
693 goto out_err_no_irq_srcu;
694
695 refcount_set(&kvm->users_count, 1);
696 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
697 struct kvm_memslots *slots = kvm_alloc_memslots();
698
699 if (!slots)
700 goto out_err_no_arch_destroy_vm;
701 /* Generations must be different for each address space. */
702 slots->generation = i;
703 rcu_assign_pointer(kvm->memslots[i], slots);
704 }
705
706 for (i = 0; i < KVM_NR_BUSES; i++) {
707 rcu_assign_pointer(kvm->buses[i],
708 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
709 if (!kvm->buses[i])
710 goto out_err_no_arch_destroy_vm;
711 }
712
713 r = kvm_arch_init_vm(kvm, type);
714 if (r)
715 goto out_err_no_arch_destroy_vm;
716
717 r = hardware_enable_all();
718 if (r)
719 goto out_err_no_disable;
720
721 #ifdef CONFIG_HAVE_KVM_IRQFD
722 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
723 #endif
724
725 r = kvm_init_mmu_notifier(kvm);
726 if (r)
727 goto out_err_no_mmu_notifier;
728
729 r = kvm_arch_post_init_vm(kvm);
730 if (r)
731 goto out_err;
732
733 mutex_lock(&kvm_lock);
734 list_add(&kvm->vm_list, &vm_list);
735 mutex_unlock(&kvm_lock);
736
737 preempt_notifier_inc();
738
739 return kvm;
740
741 out_err:
742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
743 if (kvm->mmu_notifier.ops)
744 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
745 #endif
746 out_err_no_mmu_notifier:
747 hardware_disable_all();
748 out_err_no_disable:
749 kvm_arch_destroy_vm(kvm);
750 out_err_no_arch_destroy_vm:
751 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
752 for (i = 0; i < KVM_NR_BUSES; i++)
753 kfree(kvm_get_bus(kvm, i));
754 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
755 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
756 cleanup_srcu_struct(&kvm->irq_srcu);
757 out_err_no_irq_srcu:
758 cleanup_srcu_struct(&kvm->srcu);
759 out_err_no_srcu:
760 kvm_arch_free_vm(kvm);
761 mmdrop(current->mm);
762 return ERR_PTR(r);
763 }
764
765 static void kvm_destroy_devices(struct kvm *kvm)
766 {
767 struct kvm_device *dev, *tmp;
768
769 /*
770 * We do not need to take the kvm->lock here, because nobody else
771 * has a reference to the struct kvm at this point and therefore
772 * cannot access the devices list anyhow.
773 */
774 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
775 list_del(&dev->vm_node);
776 dev->ops->destroy(dev);
777 }
778 }
779
780 static void kvm_destroy_vm(struct kvm *kvm)
781 {
782 int i;
783 struct mm_struct *mm = kvm->mm;
784
785 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
786 kvm_destroy_vm_debugfs(kvm);
787 kvm_arch_sync_events(kvm);
788 mutex_lock(&kvm_lock);
789 list_del(&kvm->vm_list);
790 mutex_unlock(&kvm_lock);
791 kvm_arch_pre_destroy_vm(kvm);
792
793 kvm_free_irq_routing(kvm);
794 for (i = 0; i < KVM_NR_BUSES; i++) {
795 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
796
797 if (bus)
798 kvm_io_bus_destroy(bus);
799 kvm->buses[i] = NULL;
800 }
801 kvm_coalesced_mmio_free(kvm);
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
803 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
804 #else
805 kvm_arch_flush_shadow_all(kvm);
806 #endif
807 kvm_arch_destroy_vm(kvm);
808 kvm_destroy_devices(kvm);
809 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
810 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
811 cleanup_srcu_struct(&kvm->irq_srcu);
812 cleanup_srcu_struct(&kvm->srcu);
813 kvm_arch_free_vm(kvm);
814 preempt_notifier_dec();
815 hardware_disable_all();
816 mmdrop(mm);
817 }
818
819 void kvm_get_kvm(struct kvm *kvm)
820 {
821 refcount_inc(&kvm->users_count);
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_kvm);
824
825 void kvm_put_kvm(struct kvm *kvm)
826 {
827 if (refcount_dec_and_test(&kvm->users_count))
828 kvm_destroy_vm(kvm);
829 }
830 EXPORT_SYMBOL_GPL(kvm_put_kvm);
831
832 /*
833 * Used to put a reference that was taken on behalf of an object associated
834 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
835 * of the new file descriptor fails and the reference cannot be transferred to
836 * its final owner. In such cases, the caller is still actively using @kvm and
837 * will fail miserably if the refcount unexpectedly hits zero.
838 */
839 void kvm_put_kvm_no_destroy(struct kvm *kvm)
840 {
841 WARN_ON(refcount_dec_and_test(&kvm->users_count));
842 }
843 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
844
845 static int kvm_vm_release(struct inode *inode, struct file *filp)
846 {
847 struct kvm *kvm = filp->private_data;
848
849 kvm_irqfd_release(kvm);
850
851 kvm_put_kvm(kvm);
852 return 0;
853 }
854
855 /*
856 * Allocation size is twice as large as the actual dirty bitmap size.
857 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
858 */
859 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
860 {
861 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
862
863 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
864 if (!memslot->dirty_bitmap)
865 return -ENOMEM;
866
867 return 0;
868 }
869
870 /*
871 * Delete a memslot by decrementing the number of used slots and shifting all
872 * other entries in the array forward one spot.
873 */
874 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
875 struct kvm_memory_slot *memslot)
876 {
877 struct kvm_memory_slot *mslots = slots->memslots;
878 int i;
879
880 if (WARN_ON(slots->id_to_index[memslot->id] == -1))
881 return;
882
883 slots->used_slots--;
884
885 if (atomic_read(&slots->lru_slot) >= slots->used_slots)
886 atomic_set(&slots->lru_slot, 0);
887
888 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
889 mslots[i] = mslots[i + 1];
890 slots->id_to_index[mslots[i].id] = i;
891 }
892 mslots[i] = *memslot;
893 slots->id_to_index[memslot->id] = -1;
894 }
895
896 /*
897 * "Insert" a new memslot by incrementing the number of used slots. Returns
898 * the new slot's initial index into the memslots array.
899 */
900 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
901 {
902 return slots->used_slots++;
903 }
904
905 /*
906 * Move a changed memslot backwards in the array by shifting existing slots
907 * with a higher GFN toward the front of the array. Note, the changed memslot
908 * itself is not preserved in the array, i.e. not swapped at this time, only
909 * its new index into the array is tracked. Returns the changed memslot's
910 * current index into the memslots array.
911 */
912 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
913 struct kvm_memory_slot *memslot)
914 {
915 struct kvm_memory_slot *mslots = slots->memslots;
916 int i;
917
918 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
919 WARN_ON_ONCE(!slots->used_slots))
920 return -1;
921
922 /*
923 * Move the target memslot backward in the array by shifting existing
924 * memslots with a higher GFN (than the target memslot) towards the
925 * front of the array.
926 */
927 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
928 if (memslot->base_gfn > mslots[i + 1].base_gfn)
929 break;
930
931 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
932
933 /* Shift the next memslot forward one and update its index. */
934 mslots[i] = mslots[i + 1];
935 slots->id_to_index[mslots[i].id] = i;
936 }
937 return i;
938 }
939
940 /*
941 * Move a changed memslot forwards in the array by shifting existing slots with
942 * a lower GFN toward the back of the array. Note, the changed memslot itself
943 * is not preserved in the array, i.e. not swapped at this time, only its new
944 * index into the array is tracked. Returns the changed memslot's final index
945 * into the memslots array.
946 */
947 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
948 struct kvm_memory_slot *memslot,
949 int start)
950 {
951 struct kvm_memory_slot *mslots = slots->memslots;
952 int i;
953
954 for (i = start; i > 0; i--) {
955 if (memslot->base_gfn < mslots[i - 1].base_gfn)
956 break;
957
958 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
959
960 /* Shift the next memslot back one and update its index. */
961 mslots[i] = mslots[i - 1];
962 slots->id_to_index[mslots[i].id] = i;
963 }
964 return i;
965 }
966
967 /*
968 * Re-sort memslots based on their GFN to account for an added, deleted, or
969 * moved memslot. Sorting memslots by GFN allows using a binary search during
970 * memslot lookup.
971 *
972 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry
973 * at memslots[0] has the highest GFN.
974 *
975 * The sorting algorithm takes advantage of having initially sorted memslots
976 * and knowing the position of the changed memslot. Sorting is also optimized
977 * by not swapping the updated memslot and instead only shifting other memslots
978 * and tracking the new index for the update memslot. Only once its final
979 * index is known is the updated memslot copied into its position in the array.
980 *
981 * - When deleting a memslot, the deleted memslot simply needs to be moved to
982 * the end of the array.
983 *
984 * - When creating a memslot, the algorithm "inserts" the new memslot at the
985 * end of the array and then it forward to its correct location.
986 *
987 * - When moving a memslot, the algorithm first moves the updated memslot
988 * backward to handle the scenario where the memslot's GFN was changed to a
989 * lower value. update_memslots() then falls through and runs the same flow
990 * as creating a memslot to move the memslot forward to handle the scenario
991 * where its GFN was changed to a higher value.
992 *
993 * Note, slots are sorted from highest->lowest instead of lowest->highest for
994 * historical reasons. Originally, invalid memslots where denoted by having
995 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
996 * to the end of the array. The current algorithm uses dedicated logic to
997 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
998 *
999 * The other historical motiviation for highest->lowest was to improve the
1000 * performance of memslot lookup. KVM originally used a linear search starting
1001 * at memslots[0]. On x86, the largest memslot usually has one of the highest,
1002 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1003 * single memslot above the 4gb boundary. As the largest memslot is also the
1004 * most likely to be referenced, sorting it to the front of the array was
1005 * advantageous. The current binary search starts from the middle of the array
1006 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1007 */
1008 static void update_memslots(struct kvm_memslots *slots,
1009 struct kvm_memory_slot *memslot,
1010 enum kvm_mr_change change)
1011 {
1012 int i;
1013
1014 if (change == KVM_MR_DELETE) {
1015 kvm_memslot_delete(slots, memslot);
1016 } else {
1017 if (change == KVM_MR_CREATE)
1018 i = kvm_memslot_insert_back(slots);
1019 else
1020 i = kvm_memslot_move_backward(slots, memslot);
1021 i = kvm_memslot_move_forward(slots, memslot, i);
1022
1023 /*
1024 * Copy the memslot to its new position in memslots and update
1025 * its index accordingly.
1026 */
1027 slots->memslots[i] = *memslot;
1028 slots->id_to_index[memslot->id] = i;
1029 }
1030 }
1031
1032 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1033 {
1034 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1035
1036 #ifdef __KVM_HAVE_READONLY_MEM
1037 valid_flags |= KVM_MEM_READONLY;
1038 #endif
1039
1040 if (mem->flags & ~valid_flags)
1041 return -EINVAL;
1042
1043 return 0;
1044 }
1045
1046 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1047 int as_id, struct kvm_memslots *slots)
1048 {
1049 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1050 u64 gen = old_memslots->generation;
1051
1052 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1053 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1054
1055 rcu_assign_pointer(kvm->memslots[as_id], slots);
1056 synchronize_srcu_expedited(&kvm->srcu);
1057
1058 /*
1059 * Increment the new memslot generation a second time, dropping the
1060 * update in-progress flag and incrementing the generation based on
1061 * the number of address spaces. This provides a unique and easily
1062 * identifiable generation number while the memslots are in flux.
1063 */
1064 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1065
1066 /*
1067 * Generations must be unique even across address spaces. We do not need
1068 * a global counter for that, instead the generation space is evenly split
1069 * across address spaces. For example, with two address spaces, address
1070 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1071 * use generations 1, 3, 5, ...
1072 */
1073 gen += KVM_ADDRESS_SPACE_NUM;
1074
1075 kvm_arch_memslots_updated(kvm, gen);
1076
1077 slots->generation = gen;
1078
1079 return old_memslots;
1080 }
1081
1082 /*
1083 * Note, at a minimum, the current number of used slots must be allocated, even
1084 * when deleting a memslot, as we need a complete duplicate of the memslots for
1085 * use when invalidating a memslot prior to deleting/moving the memslot.
1086 */
1087 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1088 enum kvm_mr_change change)
1089 {
1090 struct kvm_memslots *slots;
1091 size_t old_size, new_size;
1092
1093 old_size = sizeof(struct kvm_memslots) +
1094 (sizeof(struct kvm_memory_slot) * old->used_slots);
1095
1096 if (change == KVM_MR_CREATE)
1097 new_size = old_size + sizeof(struct kvm_memory_slot);
1098 else
1099 new_size = old_size;
1100
1101 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1102 if (likely(slots))
1103 memcpy(slots, old, old_size);
1104
1105 return slots;
1106 }
1107
1108 static int kvm_set_memslot(struct kvm *kvm,
1109 const struct kvm_userspace_memory_region *mem,
1110 struct kvm_memory_slot *old,
1111 struct kvm_memory_slot *new, int as_id,
1112 enum kvm_mr_change change)
1113 {
1114 struct kvm_memory_slot *slot;
1115 struct kvm_memslots *slots;
1116 int r;
1117
1118 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1119 if (!slots)
1120 return -ENOMEM;
1121
1122 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1123 /*
1124 * Note, the INVALID flag needs to be in the appropriate entry
1125 * in the freshly allocated memslots, not in @old or @new.
1126 */
1127 slot = id_to_memslot(slots, old->id);
1128 slot->flags |= KVM_MEMSLOT_INVALID;
1129
1130 /*
1131 * We can re-use the old memslots, the only difference from the
1132 * newly installed memslots is the invalid flag, which will get
1133 * dropped by update_memslots anyway. We'll also revert to the
1134 * old memslots if preparing the new memory region fails.
1135 */
1136 slots = install_new_memslots(kvm, as_id, slots);
1137
1138 /* From this point no new shadow pages pointing to a deleted,
1139 * or moved, memslot will be created.
1140 *
1141 * validation of sp->gfn happens in:
1142 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1143 * - kvm_is_visible_gfn (mmu_check_root)
1144 */
1145 kvm_arch_flush_shadow_memslot(kvm, slot);
1146 }
1147
1148 r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1149 if (r)
1150 goto out_slots;
1151
1152 update_memslots(slots, new, change);
1153 slots = install_new_memslots(kvm, as_id, slots);
1154
1155 kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1156
1157 kvfree(slots);
1158 return 0;
1159
1160 out_slots:
1161 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1162 slots = install_new_memslots(kvm, as_id, slots);
1163 kvfree(slots);
1164 return r;
1165 }
1166
1167 static int kvm_delete_memslot(struct kvm *kvm,
1168 const struct kvm_userspace_memory_region *mem,
1169 struct kvm_memory_slot *old, int as_id)
1170 {
1171 struct kvm_memory_slot new;
1172 int r;
1173
1174 if (!old->npages)
1175 return -EINVAL;
1176
1177 memset(&new, 0, sizeof(new));
1178 new.id = old->id;
1179
1180 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1181 if (r)
1182 return r;
1183
1184 kvm_free_memslot(kvm, old);
1185 return 0;
1186 }
1187
1188 /*
1189 * Allocate some memory and give it an address in the guest physical address
1190 * space.
1191 *
1192 * Discontiguous memory is allowed, mostly for framebuffers.
1193 *
1194 * Must be called holding kvm->slots_lock for write.
1195 */
1196 int __kvm_set_memory_region(struct kvm *kvm,
1197 const struct kvm_userspace_memory_region *mem)
1198 {
1199 struct kvm_memory_slot old, new;
1200 struct kvm_memory_slot *tmp;
1201 enum kvm_mr_change change;
1202 int as_id, id;
1203 int r;
1204
1205 r = check_memory_region_flags(mem);
1206 if (r)
1207 return r;
1208
1209 as_id = mem->slot >> 16;
1210 id = (u16)mem->slot;
1211
1212 /* General sanity checks */
1213 if (mem->memory_size & (PAGE_SIZE - 1))
1214 return -EINVAL;
1215 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1216 return -EINVAL;
1217 /* We can read the guest memory with __xxx_user() later on. */
1218 if ((id < KVM_USER_MEM_SLOTS) &&
1219 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1220 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1221 mem->memory_size)))
1222 return -EINVAL;
1223 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1224 return -EINVAL;
1225 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1226 return -EINVAL;
1227
1228 /*
1229 * Make a full copy of the old memslot, the pointer will become stale
1230 * when the memslots are re-sorted by update_memslots(), and the old
1231 * memslot needs to be referenced after calling update_memslots(), e.g.
1232 * to free its resources and for arch specific behavior.
1233 */
1234 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1235 if (tmp) {
1236 old = *tmp;
1237 tmp = NULL;
1238 } else {
1239 memset(&old, 0, sizeof(old));
1240 old.id = id;
1241 }
1242
1243 if (!mem->memory_size)
1244 return kvm_delete_memslot(kvm, mem, &old, as_id);
1245
1246 new.id = id;
1247 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1248 new.npages = mem->memory_size >> PAGE_SHIFT;
1249 new.flags = mem->flags;
1250 new.userspace_addr = mem->userspace_addr;
1251
1252 if (new.npages > KVM_MEM_MAX_NR_PAGES)
1253 return -EINVAL;
1254
1255 if (!old.npages) {
1256 change = KVM_MR_CREATE;
1257 new.dirty_bitmap = NULL;
1258 memset(&new.arch, 0, sizeof(new.arch));
1259 } else { /* Modify an existing slot. */
1260 if ((new.userspace_addr != old.userspace_addr) ||
1261 (new.npages != old.npages) ||
1262 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1263 return -EINVAL;
1264
1265 if (new.base_gfn != old.base_gfn)
1266 change = KVM_MR_MOVE;
1267 else if (new.flags != old.flags)
1268 change = KVM_MR_FLAGS_ONLY;
1269 else /* Nothing to change. */
1270 return 0;
1271
1272 /* Copy dirty_bitmap and arch from the current memslot. */
1273 new.dirty_bitmap = old.dirty_bitmap;
1274 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1275 }
1276
1277 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1278 /* Check for overlaps */
1279 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1280 if (tmp->id == id)
1281 continue;
1282 if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1283 (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1284 return -EEXIST;
1285 }
1286 }
1287
1288 /* Allocate/free page dirty bitmap as needed */
1289 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1290 new.dirty_bitmap = NULL;
1291 else if (!new.dirty_bitmap) {
1292 r = kvm_alloc_dirty_bitmap(&new);
1293 if (r)
1294 return r;
1295
1296 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1297 bitmap_set(new.dirty_bitmap, 0, new.npages);
1298 }
1299
1300 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1301 if (r)
1302 goto out_bitmap;
1303
1304 if (old.dirty_bitmap && !new.dirty_bitmap)
1305 kvm_destroy_dirty_bitmap(&old);
1306 return 0;
1307
1308 out_bitmap:
1309 if (new.dirty_bitmap && !old.dirty_bitmap)
1310 kvm_destroy_dirty_bitmap(&new);
1311 return r;
1312 }
1313 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1314
1315 int kvm_set_memory_region(struct kvm *kvm,
1316 const struct kvm_userspace_memory_region *mem)
1317 {
1318 int r;
1319
1320 mutex_lock(&kvm->slots_lock);
1321 r = __kvm_set_memory_region(kvm, mem);
1322 mutex_unlock(&kvm->slots_lock);
1323 return r;
1324 }
1325 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1326
1327 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1328 struct kvm_userspace_memory_region *mem)
1329 {
1330 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1331 return -EINVAL;
1332
1333 return kvm_set_memory_region(kvm, mem);
1334 }
1335
1336 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1337 /**
1338 * kvm_get_dirty_log - get a snapshot of dirty pages
1339 * @kvm: pointer to kvm instance
1340 * @log: slot id and address to which we copy the log
1341 * @is_dirty: set to '1' if any dirty pages were found
1342 * @memslot: set to the associated memslot, always valid on success
1343 */
1344 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1345 int *is_dirty, struct kvm_memory_slot **memslot)
1346 {
1347 struct kvm_memslots *slots;
1348 int i, as_id, id;
1349 unsigned long n;
1350 unsigned long any = 0;
1351
1352 *memslot = NULL;
1353 *is_dirty = 0;
1354
1355 as_id = log->slot >> 16;
1356 id = (u16)log->slot;
1357 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1358 return -EINVAL;
1359
1360 slots = __kvm_memslots(kvm, as_id);
1361 *memslot = id_to_memslot(slots, id);
1362 if (!(*memslot) || !(*memslot)->dirty_bitmap)
1363 return -ENOENT;
1364
1365 kvm_arch_sync_dirty_log(kvm, *memslot);
1366
1367 n = kvm_dirty_bitmap_bytes(*memslot);
1368
1369 for (i = 0; !any && i < n/sizeof(long); ++i)
1370 any = (*memslot)->dirty_bitmap[i];
1371
1372 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1373 return -EFAULT;
1374
1375 if (any)
1376 *is_dirty = 1;
1377 return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1380
1381 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1382 /**
1383 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1384 * and reenable dirty page tracking for the corresponding pages.
1385 * @kvm: pointer to kvm instance
1386 * @log: slot id and address to which we copy the log
1387 *
1388 * We need to keep it in mind that VCPU threads can write to the bitmap
1389 * concurrently. So, to avoid losing track of dirty pages we keep the
1390 * following order:
1391 *
1392 * 1. Take a snapshot of the bit and clear it if needed.
1393 * 2. Write protect the corresponding page.
1394 * 3. Copy the snapshot to the userspace.
1395 * 4. Upon return caller flushes TLB's if needed.
1396 *
1397 * Between 2 and 4, the guest may write to the page using the remaining TLB
1398 * entry. This is not a problem because the page is reported dirty using
1399 * the snapshot taken before and step 4 ensures that writes done after
1400 * exiting to userspace will be logged for the next call.
1401 *
1402 */
1403 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1404 {
1405 struct kvm_memslots *slots;
1406 struct kvm_memory_slot *memslot;
1407 int i, as_id, id;
1408 unsigned long n;
1409 unsigned long *dirty_bitmap;
1410 unsigned long *dirty_bitmap_buffer;
1411 bool flush;
1412
1413 as_id = log->slot >> 16;
1414 id = (u16)log->slot;
1415 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1416 return -EINVAL;
1417
1418 slots = __kvm_memslots(kvm, as_id);
1419 memslot = id_to_memslot(slots, id);
1420 if (!memslot || !memslot->dirty_bitmap)
1421 return -ENOENT;
1422
1423 dirty_bitmap = memslot->dirty_bitmap;
1424
1425 kvm_arch_sync_dirty_log(kvm, memslot);
1426
1427 n = kvm_dirty_bitmap_bytes(memslot);
1428 flush = false;
1429 if (kvm->manual_dirty_log_protect) {
1430 /*
1431 * Unlike kvm_get_dirty_log, we always return false in *flush,
1432 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1433 * is some code duplication between this function and
1434 * kvm_get_dirty_log, but hopefully all architecture
1435 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1436 * can be eliminated.
1437 */
1438 dirty_bitmap_buffer = dirty_bitmap;
1439 } else {
1440 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1441 memset(dirty_bitmap_buffer, 0, n);
1442
1443 spin_lock(&kvm->mmu_lock);
1444 for (i = 0; i < n / sizeof(long); i++) {
1445 unsigned long mask;
1446 gfn_t offset;
1447
1448 if (!dirty_bitmap[i])
1449 continue;
1450
1451 flush = true;
1452 mask = xchg(&dirty_bitmap[i], 0);
1453 dirty_bitmap_buffer[i] = mask;
1454
1455 offset = i * BITS_PER_LONG;
1456 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1457 offset, mask);
1458 }
1459 spin_unlock(&kvm->mmu_lock);
1460 }
1461
1462 if (flush)
1463 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1464
1465 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1466 return -EFAULT;
1467 return 0;
1468 }
1469
1470
1471 /**
1472 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1473 * @kvm: kvm instance
1474 * @log: slot id and address to which we copy the log
1475 *
1476 * Steps 1-4 below provide general overview of dirty page logging. See
1477 * kvm_get_dirty_log_protect() function description for additional details.
1478 *
1479 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1480 * always flush the TLB (step 4) even if previous step failed and the dirty
1481 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1482 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1483 * writes will be marked dirty for next log read.
1484 *
1485 * 1. Take a snapshot of the bit and clear it if needed.
1486 * 2. Write protect the corresponding page.
1487 * 3. Copy the snapshot to the userspace.
1488 * 4. Flush TLB's if needed.
1489 */
1490 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1491 struct kvm_dirty_log *log)
1492 {
1493 int r;
1494
1495 mutex_lock(&kvm->slots_lock);
1496
1497 r = kvm_get_dirty_log_protect(kvm, log);
1498
1499 mutex_unlock(&kvm->slots_lock);
1500 return r;
1501 }
1502
1503 /**
1504 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1505 * and reenable dirty page tracking for the corresponding pages.
1506 * @kvm: pointer to kvm instance
1507 * @log: slot id and address from which to fetch the bitmap of dirty pages
1508 */
1509 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1510 struct kvm_clear_dirty_log *log)
1511 {
1512 struct kvm_memslots *slots;
1513 struct kvm_memory_slot *memslot;
1514 int as_id, id;
1515 gfn_t offset;
1516 unsigned long i, n;
1517 unsigned long *dirty_bitmap;
1518 unsigned long *dirty_bitmap_buffer;
1519 bool flush;
1520
1521 as_id = log->slot >> 16;
1522 id = (u16)log->slot;
1523 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1524 return -EINVAL;
1525
1526 if (log->first_page & 63)
1527 return -EINVAL;
1528
1529 slots = __kvm_memslots(kvm, as_id);
1530 memslot = id_to_memslot(slots, id);
1531 if (!memslot || !memslot->dirty_bitmap)
1532 return -ENOENT;
1533
1534 dirty_bitmap = memslot->dirty_bitmap;
1535
1536 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1537
1538 if (log->first_page > memslot->npages ||
1539 log->num_pages > memslot->npages - log->first_page ||
1540 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1541 return -EINVAL;
1542
1543 kvm_arch_sync_dirty_log(kvm, memslot);
1544
1545 flush = false;
1546 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1548 return -EFAULT;
1549
1550 spin_lock(&kvm->mmu_lock);
1551 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1552 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1553 i++, offset += BITS_PER_LONG) {
1554 unsigned long mask = *dirty_bitmap_buffer++;
1555 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1556 if (!mask)
1557 continue;
1558
1559 mask &= atomic_long_fetch_andnot(mask, p);
1560
1561 /*
1562 * mask contains the bits that really have been cleared. This
1563 * never includes any bits beyond the length of the memslot (if
1564 * the length is not aligned to 64 pages), therefore it is not
1565 * a problem if userspace sets them in log->dirty_bitmap.
1566 */
1567 if (mask) {
1568 flush = true;
1569 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1570 offset, mask);
1571 }
1572 }
1573 spin_unlock(&kvm->mmu_lock);
1574
1575 if (flush)
1576 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1577
1578 return 0;
1579 }
1580
1581 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1582 struct kvm_clear_dirty_log *log)
1583 {
1584 int r;
1585
1586 mutex_lock(&kvm->slots_lock);
1587
1588 r = kvm_clear_dirty_log_protect(kvm, log);
1589
1590 mutex_unlock(&kvm->slots_lock);
1591 return r;
1592 }
1593 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1594
1595 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1596 {
1597 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1598 }
1599 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1600
1601 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1602 {
1603 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1604 }
1605
1606 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1607 {
1608 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1609
1610 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1611 memslot->flags & KVM_MEMSLOT_INVALID)
1612 return false;
1613
1614 return true;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1617
1618 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1619 {
1620 struct vm_area_struct *vma;
1621 unsigned long addr, size;
1622
1623 size = PAGE_SIZE;
1624
1625 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1626 if (kvm_is_error_hva(addr))
1627 return PAGE_SIZE;
1628
1629 down_read(&current->mm->mmap_sem);
1630 vma = find_vma(current->mm, addr);
1631 if (!vma)
1632 goto out;
1633
1634 size = vma_kernel_pagesize(vma);
1635
1636 out:
1637 up_read(&current->mm->mmap_sem);
1638
1639 return size;
1640 }
1641
1642 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1643 {
1644 return slot->flags & KVM_MEM_READONLY;
1645 }
1646
1647 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1648 gfn_t *nr_pages, bool write)
1649 {
1650 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1651 return KVM_HVA_ERR_BAD;
1652
1653 if (memslot_is_readonly(slot) && write)
1654 return KVM_HVA_ERR_RO_BAD;
1655
1656 if (nr_pages)
1657 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1658
1659 return __gfn_to_hva_memslot(slot, gfn);
1660 }
1661
1662 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1663 gfn_t *nr_pages)
1664 {
1665 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1666 }
1667
1668 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1669 gfn_t gfn)
1670 {
1671 return gfn_to_hva_many(slot, gfn, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1674
1675 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1676 {
1677 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva);
1680
1681 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1682 {
1683 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1686
1687 /*
1688 * Return the hva of a @gfn and the R/W attribute if possible.
1689 *
1690 * @slot: the kvm_memory_slot which contains @gfn
1691 * @gfn: the gfn to be translated
1692 * @writable: used to return the read/write attribute of the @slot if the hva
1693 * is valid and @writable is not NULL
1694 */
1695 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1696 gfn_t gfn, bool *writable)
1697 {
1698 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1699
1700 if (!kvm_is_error_hva(hva) && writable)
1701 *writable = !memslot_is_readonly(slot);
1702
1703 return hva;
1704 }
1705
1706 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1707 {
1708 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1709
1710 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1711 }
1712
1713 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1714 {
1715 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1716
1717 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1718 }
1719
1720 static inline int check_user_page_hwpoison(unsigned long addr)
1721 {
1722 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1723
1724 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1725 return rc == -EHWPOISON;
1726 }
1727
1728 /*
1729 * The fast path to get the writable pfn which will be stored in @pfn,
1730 * true indicates success, otherwise false is returned. It's also the
1731 * only part that runs if we can in atomic context.
1732 */
1733 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1734 bool *writable, kvm_pfn_t *pfn)
1735 {
1736 struct page *page[1];
1737 int npages;
1738
1739 /*
1740 * Fast pin a writable pfn only if it is a write fault request
1741 * or the caller allows to map a writable pfn for a read fault
1742 * request.
1743 */
1744 if (!(write_fault || writable))
1745 return false;
1746
1747 npages = __get_user_pages_fast(addr, 1, 1, page);
1748 if (npages == 1) {
1749 *pfn = page_to_pfn(page[0]);
1750
1751 if (writable)
1752 *writable = true;
1753 return true;
1754 }
1755
1756 return false;
1757 }
1758
1759 /*
1760 * The slow path to get the pfn of the specified host virtual address,
1761 * 1 indicates success, -errno is returned if error is detected.
1762 */
1763 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1764 bool *writable, kvm_pfn_t *pfn)
1765 {
1766 unsigned int flags = FOLL_HWPOISON;
1767 struct page *page;
1768 int npages = 0;
1769
1770 might_sleep();
1771
1772 if (writable)
1773 *writable = write_fault;
1774
1775 if (write_fault)
1776 flags |= FOLL_WRITE;
1777 if (async)
1778 flags |= FOLL_NOWAIT;
1779
1780 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1781 if (npages != 1)
1782 return npages;
1783
1784 /* map read fault as writable if possible */
1785 if (unlikely(!write_fault) && writable) {
1786 struct page *wpage;
1787
1788 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1789 *writable = true;
1790 put_page(page);
1791 page = wpage;
1792 }
1793 }
1794 *pfn = page_to_pfn(page);
1795 return npages;
1796 }
1797
1798 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1799 {
1800 if (unlikely(!(vma->vm_flags & VM_READ)))
1801 return false;
1802
1803 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1804 return false;
1805
1806 return true;
1807 }
1808
1809 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1810 unsigned long addr, bool *async,
1811 bool write_fault, bool *writable,
1812 kvm_pfn_t *p_pfn)
1813 {
1814 unsigned long pfn;
1815 int r;
1816
1817 r = follow_pfn(vma, addr, &pfn);
1818 if (r) {
1819 /*
1820 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1821 * not call the fault handler, so do it here.
1822 */
1823 bool unlocked = false;
1824 r = fixup_user_fault(current, current->mm, addr,
1825 (write_fault ? FAULT_FLAG_WRITE : 0),
1826 &unlocked);
1827 if (unlocked)
1828 return -EAGAIN;
1829 if (r)
1830 return r;
1831
1832 r = follow_pfn(vma, addr, &pfn);
1833 if (r)
1834 return r;
1835
1836 }
1837
1838 if (writable)
1839 *writable = true;
1840
1841 /*
1842 * Get a reference here because callers of *hva_to_pfn* and
1843 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1844 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1845 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1846 * simply do nothing for reserved pfns.
1847 *
1848 * Whoever called remap_pfn_range is also going to call e.g.
1849 * unmap_mapping_range before the underlying pages are freed,
1850 * causing a call to our MMU notifier.
1851 */
1852 kvm_get_pfn(pfn);
1853
1854 *p_pfn = pfn;
1855 return 0;
1856 }
1857
1858 /*
1859 * Pin guest page in memory and return its pfn.
1860 * @addr: host virtual address which maps memory to the guest
1861 * @atomic: whether this function can sleep
1862 * @async: whether this function need to wait IO complete if the
1863 * host page is not in the memory
1864 * @write_fault: whether we should get a writable host page
1865 * @writable: whether it allows to map a writable host page for !@write_fault
1866 *
1867 * The function will map a writable host page for these two cases:
1868 * 1): @write_fault = true
1869 * 2): @write_fault = false && @writable, @writable will tell the caller
1870 * whether the mapping is writable.
1871 */
1872 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1873 bool write_fault, bool *writable)
1874 {
1875 struct vm_area_struct *vma;
1876 kvm_pfn_t pfn = 0;
1877 int npages, r;
1878
1879 /* we can do it either atomically or asynchronously, not both */
1880 BUG_ON(atomic && async);
1881
1882 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1883 return pfn;
1884
1885 if (atomic)
1886 return KVM_PFN_ERR_FAULT;
1887
1888 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1889 if (npages == 1)
1890 return pfn;
1891
1892 down_read(&current->mm->mmap_sem);
1893 if (npages == -EHWPOISON ||
1894 (!async && check_user_page_hwpoison(addr))) {
1895 pfn = KVM_PFN_ERR_HWPOISON;
1896 goto exit;
1897 }
1898
1899 retry:
1900 vma = find_vma_intersection(current->mm, addr, addr + 1);
1901
1902 if (vma == NULL)
1903 pfn = KVM_PFN_ERR_FAULT;
1904 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1905 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1906 if (r == -EAGAIN)
1907 goto retry;
1908 if (r < 0)
1909 pfn = KVM_PFN_ERR_FAULT;
1910 } else {
1911 if (async && vma_is_valid(vma, write_fault))
1912 *async = true;
1913 pfn = KVM_PFN_ERR_FAULT;
1914 }
1915 exit:
1916 up_read(&current->mm->mmap_sem);
1917 return pfn;
1918 }
1919
1920 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1921 bool atomic, bool *async, bool write_fault,
1922 bool *writable)
1923 {
1924 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1925
1926 if (addr == KVM_HVA_ERR_RO_BAD) {
1927 if (writable)
1928 *writable = false;
1929 return KVM_PFN_ERR_RO_FAULT;
1930 }
1931
1932 if (kvm_is_error_hva(addr)) {
1933 if (writable)
1934 *writable = false;
1935 return KVM_PFN_NOSLOT;
1936 }
1937
1938 /* Do not map writable pfn in the readonly memslot. */
1939 if (writable && memslot_is_readonly(slot)) {
1940 *writable = false;
1941 writable = NULL;
1942 }
1943
1944 return hva_to_pfn(addr, atomic, async, write_fault,
1945 writable);
1946 }
1947 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1948
1949 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1950 bool *writable)
1951 {
1952 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1953 write_fault, writable);
1954 }
1955 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1956
1957 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1958 {
1959 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1960 }
1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1962
1963 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1964 {
1965 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1968
1969 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1970 {
1971 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1974
1975 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1976 {
1977 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1978 }
1979 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1980
1981 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1982 {
1983 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1984 }
1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1986
1987 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1988 struct page **pages, int nr_pages)
1989 {
1990 unsigned long addr;
1991 gfn_t entry = 0;
1992
1993 addr = gfn_to_hva_many(slot, gfn, &entry);
1994 if (kvm_is_error_hva(addr))
1995 return -1;
1996
1997 if (entry < nr_pages)
1998 return 0;
1999
2000 return __get_user_pages_fast(addr, nr_pages, 1, pages);
2001 }
2002 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2003
2004 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2005 {
2006 if (is_error_noslot_pfn(pfn))
2007 return KVM_ERR_PTR_BAD_PAGE;
2008
2009 if (kvm_is_reserved_pfn(pfn)) {
2010 WARN_ON(1);
2011 return KVM_ERR_PTR_BAD_PAGE;
2012 }
2013
2014 return pfn_to_page(pfn);
2015 }
2016
2017 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2018 {
2019 kvm_pfn_t pfn;
2020
2021 pfn = gfn_to_pfn(kvm, gfn);
2022
2023 return kvm_pfn_to_page(pfn);
2024 }
2025 EXPORT_SYMBOL_GPL(gfn_to_page);
2026
2027 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2028 {
2029 if (pfn == 0)
2030 return;
2031
2032 if (cache)
2033 cache->pfn = cache->gfn = 0;
2034
2035 if (dirty)
2036 kvm_release_pfn_dirty(pfn);
2037 else
2038 kvm_release_pfn_clean(pfn);
2039 }
2040
2041 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2042 struct gfn_to_pfn_cache *cache, u64 gen)
2043 {
2044 kvm_release_pfn(cache->pfn, cache->dirty, cache);
2045
2046 cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2047 cache->gfn = gfn;
2048 cache->dirty = false;
2049 cache->generation = gen;
2050 }
2051
2052 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2053 struct kvm_host_map *map,
2054 struct gfn_to_pfn_cache *cache,
2055 bool atomic)
2056 {
2057 kvm_pfn_t pfn;
2058 void *hva = NULL;
2059 struct page *page = KVM_UNMAPPED_PAGE;
2060 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2061 u64 gen = slots->generation;
2062
2063 if (!map)
2064 return -EINVAL;
2065
2066 if (cache) {
2067 if (!cache->pfn || cache->gfn != gfn ||
2068 cache->generation != gen) {
2069 if (atomic)
2070 return -EAGAIN;
2071 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2072 }
2073 pfn = cache->pfn;
2074 } else {
2075 if (atomic)
2076 return -EAGAIN;
2077 pfn = gfn_to_pfn_memslot(slot, gfn);
2078 }
2079 if (is_error_noslot_pfn(pfn))
2080 return -EINVAL;
2081
2082 if (pfn_valid(pfn)) {
2083 page = pfn_to_page(pfn);
2084 if (atomic)
2085 hva = kmap_atomic(page);
2086 else
2087 hva = kmap(page);
2088 #ifdef CONFIG_HAS_IOMEM
2089 } else if (!atomic) {
2090 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2091 } else {
2092 return -EINVAL;
2093 #endif
2094 }
2095
2096 if (!hva)
2097 return -EFAULT;
2098
2099 map->page = page;
2100 map->hva = hva;
2101 map->pfn = pfn;
2102 map->gfn = gfn;
2103
2104 return 0;
2105 }
2106
2107 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2108 struct gfn_to_pfn_cache *cache, bool atomic)
2109 {
2110 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2111 cache, atomic);
2112 }
2113 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2114
2115 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2116 {
2117 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2118 NULL, false);
2119 }
2120 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2121
2122 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2123 struct kvm_host_map *map,
2124 struct gfn_to_pfn_cache *cache,
2125 bool dirty, bool atomic)
2126 {
2127 if (!map)
2128 return;
2129
2130 if (!map->hva)
2131 return;
2132
2133 if (map->page != KVM_UNMAPPED_PAGE) {
2134 if (atomic)
2135 kunmap_atomic(map->hva);
2136 else
2137 kunmap(map->page);
2138 }
2139 #ifdef CONFIG_HAS_IOMEM
2140 else if (!atomic)
2141 memunmap(map->hva);
2142 else
2143 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2144 #endif
2145
2146 if (dirty)
2147 mark_page_dirty_in_slot(memslot, map->gfn);
2148
2149 if (cache)
2150 cache->dirty |= dirty;
2151 else
2152 kvm_release_pfn(map->pfn, dirty, NULL);
2153
2154 map->hva = NULL;
2155 map->page = NULL;
2156 }
2157
2158 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2159 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2160 {
2161 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2162 cache, dirty, atomic);
2163 return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2166
2167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2168 {
2169 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2170 dirty, false);
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2173
2174 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2175 {
2176 kvm_pfn_t pfn;
2177
2178 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2179
2180 return kvm_pfn_to_page(pfn);
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2183
2184 void kvm_release_page_clean(struct page *page)
2185 {
2186 WARN_ON(is_error_page(page));
2187
2188 kvm_release_pfn_clean(page_to_pfn(page));
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2191
2192 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2193 {
2194 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2195 put_page(pfn_to_page(pfn));
2196 }
2197 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2198
2199 void kvm_release_page_dirty(struct page *page)
2200 {
2201 WARN_ON(is_error_page(page));
2202
2203 kvm_release_pfn_dirty(page_to_pfn(page));
2204 }
2205 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2206
2207 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2208 {
2209 kvm_set_pfn_dirty(pfn);
2210 kvm_release_pfn_clean(pfn);
2211 }
2212 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2213
2214 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2215 {
2216 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2217 SetPageDirty(pfn_to_page(pfn));
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2220
2221 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2222 {
2223 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2224 mark_page_accessed(pfn_to_page(pfn));
2225 }
2226 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2227
2228 void kvm_get_pfn(kvm_pfn_t pfn)
2229 {
2230 if (!kvm_is_reserved_pfn(pfn))
2231 get_page(pfn_to_page(pfn));
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2234
2235 static int next_segment(unsigned long len, int offset)
2236 {
2237 if (len > PAGE_SIZE - offset)
2238 return PAGE_SIZE - offset;
2239 else
2240 return len;
2241 }
2242
2243 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2244 void *data, int offset, int len)
2245 {
2246 int r;
2247 unsigned long addr;
2248
2249 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2250 if (kvm_is_error_hva(addr))
2251 return -EFAULT;
2252 r = __copy_from_user(data, (void __user *)addr + offset, len);
2253 if (r)
2254 return -EFAULT;
2255 return 0;
2256 }
2257
2258 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2259 int len)
2260 {
2261 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2262
2263 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2266
2267 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2268 int offset, int len)
2269 {
2270 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2271
2272 return __kvm_read_guest_page(slot, gfn, data, offset, len);
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2275
2276 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2277 {
2278 gfn_t gfn = gpa >> PAGE_SHIFT;
2279 int seg;
2280 int offset = offset_in_page(gpa);
2281 int ret;
2282
2283 while ((seg = next_segment(len, offset)) != 0) {
2284 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2285 if (ret < 0)
2286 return ret;
2287 offset = 0;
2288 len -= seg;
2289 data += seg;
2290 ++gfn;
2291 }
2292 return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(kvm_read_guest);
2295
2296 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2297 {
2298 gfn_t gfn = gpa >> PAGE_SHIFT;
2299 int seg;
2300 int offset = offset_in_page(gpa);
2301 int ret;
2302
2303 while ((seg = next_segment(len, offset)) != 0) {
2304 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2305 if (ret < 0)
2306 return ret;
2307 offset = 0;
2308 len -= seg;
2309 data += seg;
2310 ++gfn;
2311 }
2312 return 0;
2313 }
2314 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2315
2316 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2317 void *data, int offset, unsigned long len)
2318 {
2319 int r;
2320 unsigned long addr;
2321
2322 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323 if (kvm_is_error_hva(addr))
2324 return -EFAULT;
2325 pagefault_disable();
2326 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2327 pagefault_enable();
2328 if (r)
2329 return -EFAULT;
2330 return 0;
2331 }
2332
2333 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2334 void *data, unsigned long len)
2335 {
2336 gfn_t gfn = gpa >> PAGE_SHIFT;
2337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2338 int offset = offset_in_page(gpa);
2339
2340 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2341 }
2342 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2343
2344 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2345 const void *data, int offset, int len)
2346 {
2347 int r;
2348 unsigned long addr;
2349
2350 addr = gfn_to_hva_memslot(memslot, gfn);
2351 if (kvm_is_error_hva(addr))
2352 return -EFAULT;
2353 r = __copy_to_user((void __user *)addr + offset, data, len);
2354 if (r)
2355 return -EFAULT;
2356 mark_page_dirty_in_slot(memslot, gfn);
2357 return 0;
2358 }
2359
2360 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2361 const void *data, int offset, int len)
2362 {
2363 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2364
2365 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2366 }
2367 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2368
2369 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2370 const void *data, int offset, int len)
2371 {
2372 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2373
2374 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2377
2378 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2379 unsigned long len)
2380 {
2381 gfn_t gfn = gpa >> PAGE_SHIFT;
2382 int seg;
2383 int offset = offset_in_page(gpa);
2384 int ret;
2385
2386 while ((seg = next_segment(len, offset)) != 0) {
2387 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2388 if (ret < 0)
2389 return ret;
2390 offset = 0;
2391 len -= seg;
2392 data += seg;
2393 ++gfn;
2394 }
2395 return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_write_guest);
2398
2399 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2400 unsigned long len)
2401 {
2402 gfn_t gfn = gpa >> PAGE_SHIFT;
2403 int seg;
2404 int offset = offset_in_page(gpa);
2405 int ret;
2406
2407 while ((seg = next_segment(len, offset)) != 0) {
2408 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2409 if (ret < 0)
2410 return ret;
2411 offset = 0;
2412 len -= seg;
2413 data += seg;
2414 ++gfn;
2415 }
2416 return 0;
2417 }
2418 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2419
2420 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2421 struct gfn_to_hva_cache *ghc,
2422 gpa_t gpa, unsigned long len)
2423 {
2424 int offset = offset_in_page(gpa);
2425 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2426 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2427 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2428 gfn_t nr_pages_avail;
2429
2430 /* Update ghc->generation before performing any error checks. */
2431 ghc->generation = slots->generation;
2432
2433 if (start_gfn > end_gfn) {
2434 ghc->hva = KVM_HVA_ERR_BAD;
2435 return -EINVAL;
2436 }
2437
2438 /*
2439 * If the requested region crosses two memslots, we still
2440 * verify that the entire region is valid here.
2441 */
2442 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2443 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2444 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2445 &nr_pages_avail);
2446 if (kvm_is_error_hva(ghc->hva))
2447 return -EFAULT;
2448 }
2449
2450 /* Use the slow path for cross page reads and writes. */
2451 if (nr_pages_needed == 1)
2452 ghc->hva += offset;
2453 else
2454 ghc->memslot = NULL;
2455
2456 ghc->gpa = gpa;
2457 ghc->len = len;
2458 return 0;
2459 }
2460
2461 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2462 gpa_t gpa, unsigned long len)
2463 {
2464 struct kvm_memslots *slots = kvm_memslots(kvm);
2465 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2468
2469 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2470 void *data, unsigned int offset,
2471 unsigned long len)
2472 {
2473 struct kvm_memslots *slots = kvm_memslots(kvm);
2474 int r;
2475 gpa_t gpa = ghc->gpa + offset;
2476
2477 BUG_ON(len + offset > ghc->len);
2478
2479 if (slots->generation != ghc->generation) {
2480 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2481 return -EFAULT;
2482 }
2483
2484 if (kvm_is_error_hva(ghc->hva))
2485 return -EFAULT;
2486
2487 if (unlikely(!ghc->memslot))
2488 return kvm_write_guest(kvm, gpa, data, len);
2489
2490 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2491 if (r)
2492 return -EFAULT;
2493 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2494
2495 return 0;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2498
2499 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2500 void *data, unsigned long len)
2501 {
2502 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2503 }
2504 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2505
2506 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2507 void *data, unsigned long len)
2508 {
2509 struct kvm_memslots *slots = kvm_memslots(kvm);
2510 int r;
2511
2512 BUG_ON(len > ghc->len);
2513
2514 if (slots->generation != ghc->generation) {
2515 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2516 return -EFAULT;
2517 }
2518
2519 if (kvm_is_error_hva(ghc->hva))
2520 return -EFAULT;
2521
2522 if (unlikely(!ghc->memslot))
2523 return kvm_read_guest(kvm, ghc->gpa, data, len);
2524
2525 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2526 if (r)
2527 return -EFAULT;
2528
2529 return 0;
2530 }
2531 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2532
2533 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2534 {
2535 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2536
2537 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2538 }
2539 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2540
2541 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2542 {
2543 gfn_t gfn = gpa >> PAGE_SHIFT;
2544 int seg;
2545 int offset = offset_in_page(gpa);
2546 int ret;
2547
2548 while ((seg = next_segment(len, offset)) != 0) {
2549 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2550 if (ret < 0)
2551 return ret;
2552 offset = 0;
2553 len -= seg;
2554 ++gfn;
2555 }
2556 return 0;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2559
2560 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2561 gfn_t gfn)
2562 {
2563 if (memslot && memslot->dirty_bitmap) {
2564 unsigned long rel_gfn = gfn - memslot->base_gfn;
2565
2566 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2567 }
2568 }
2569
2570 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2571 {
2572 struct kvm_memory_slot *memslot;
2573
2574 memslot = gfn_to_memslot(kvm, gfn);
2575 mark_page_dirty_in_slot(memslot, gfn);
2576 }
2577 EXPORT_SYMBOL_GPL(mark_page_dirty);
2578
2579 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2580 {
2581 struct kvm_memory_slot *memslot;
2582
2583 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2584 mark_page_dirty_in_slot(memslot, gfn);
2585 }
2586 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2587
2588 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2589 {
2590 if (!vcpu->sigset_active)
2591 return;
2592
2593 /*
2594 * This does a lockless modification of ->real_blocked, which is fine
2595 * because, only current can change ->real_blocked and all readers of
2596 * ->real_blocked don't care as long ->real_blocked is always a subset
2597 * of ->blocked.
2598 */
2599 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2600 }
2601
2602 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2603 {
2604 if (!vcpu->sigset_active)
2605 return;
2606
2607 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2608 sigemptyset(&current->real_blocked);
2609 }
2610
2611 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2612 {
2613 unsigned int old, val, grow, grow_start;
2614
2615 old = val = vcpu->halt_poll_ns;
2616 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2617 grow = READ_ONCE(halt_poll_ns_grow);
2618 if (!grow)
2619 goto out;
2620
2621 val *= grow;
2622 if (val < grow_start)
2623 val = grow_start;
2624
2625 if (val > halt_poll_ns)
2626 val = halt_poll_ns;
2627
2628 vcpu->halt_poll_ns = val;
2629 out:
2630 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2631 }
2632
2633 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2634 {
2635 unsigned int old, val, shrink;
2636
2637 old = val = vcpu->halt_poll_ns;
2638 shrink = READ_ONCE(halt_poll_ns_shrink);
2639 if (shrink == 0)
2640 val = 0;
2641 else
2642 val /= shrink;
2643
2644 vcpu->halt_poll_ns = val;
2645 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2646 }
2647
2648 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2649 {
2650 int ret = -EINTR;
2651 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2652
2653 if (kvm_arch_vcpu_runnable(vcpu)) {
2654 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2655 goto out;
2656 }
2657 if (kvm_cpu_has_pending_timer(vcpu))
2658 goto out;
2659 if (signal_pending(current))
2660 goto out;
2661
2662 ret = 0;
2663 out:
2664 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2665 return ret;
2666 }
2667
2668 /*
2669 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2670 */
2671 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2672 {
2673 ktime_t start, cur;
2674 DECLARE_SWAITQUEUE(wait);
2675 bool waited = false;
2676 u64 block_ns;
2677
2678 kvm_arch_vcpu_blocking(vcpu);
2679
2680 start = cur = ktime_get();
2681 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2682 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2683
2684 ++vcpu->stat.halt_attempted_poll;
2685 do {
2686 /*
2687 * This sets KVM_REQ_UNHALT if an interrupt
2688 * arrives.
2689 */
2690 if (kvm_vcpu_check_block(vcpu) < 0) {
2691 ++vcpu->stat.halt_successful_poll;
2692 if (!vcpu_valid_wakeup(vcpu))
2693 ++vcpu->stat.halt_poll_invalid;
2694 goto out;
2695 }
2696 cur = ktime_get();
2697 } while (single_task_running() && ktime_before(cur, stop));
2698 }
2699
2700 for (;;) {
2701 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2702
2703 if (kvm_vcpu_check_block(vcpu) < 0)
2704 break;
2705
2706 waited = true;
2707 schedule();
2708 }
2709
2710 finish_swait(&vcpu->wq, &wait);
2711 cur = ktime_get();
2712 out:
2713 kvm_arch_vcpu_unblocking(vcpu);
2714 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2715
2716 if (!kvm_arch_no_poll(vcpu)) {
2717 if (!vcpu_valid_wakeup(vcpu)) {
2718 shrink_halt_poll_ns(vcpu);
2719 } else if (halt_poll_ns) {
2720 if (block_ns <= vcpu->halt_poll_ns)
2721 ;
2722 /* we had a long block, shrink polling */
2723 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2724 shrink_halt_poll_ns(vcpu);
2725 /* we had a short halt and our poll time is too small */
2726 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2727 block_ns < halt_poll_ns)
2728 grow_halt_poll_ns(vcpu);
2729 } else {
2730 vcpu->halt_poll_ns = 0;
2731 }
2732 }
2733
2734 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2735 kvm_arch_vcpu_block_finish(vcpu);
2736 }
2737 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2738
2739 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2740 {
2741 struct swait_queue_head *wqp;
2742
2743 wqp = kvm_arch_vcpu_wq(vcpu);
2744 if (swq_has_sleeper(wqp)) {
2745 swake_up_one(wqp);
2746 WRITE_ONCE(vcpu->ready, true);
2747 ++vcpu->stat.halt_wakeup;
2748 return true;
2749 }
2750
2751 return false;
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2754
2755 #ifndef CONFIG_S390
2756 /*
2757 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2758 */
2759 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2760 {
2761 int me;
2762 int cpu = vcpu->cpu;
2763
2764 if (kvm_vcpu_wake_up(vcpu))
2765 return;
2766
2767 me = get_cpu();
2768 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2769 if (kvm_arch_vcpu_should_kick(vcpu))
2770 smp_send_reschedule(cpu);
2771 put_cpu();
2772 }
2773 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2774 #endif /* !CONFIG_S390 */
2775
2776 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2777 {
2778 struct pid *pid;
2779 struct task_struct *task = NULL;
2780 int ret = 0;
2781
2782 rcu_read_lock();
2783 pid = rcu_dereference(target->pid);
2784 if (pid)
2785 task = get_pid_task(pid, PIDTYPE_PID);
2786 rcu_read_unlock();
2787 if (!task)
2788 return ret;
2789 ret = yield_to(task, 1);
2790 put_task_struct(task);
2791
2792 return ret;
2793 }
2794 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2795
2796 /*
2797 * Helper that checks whether a VCPU is eligible for directed yield.
2798 * Most eligible candidate to yield is decided by following heuristics:
2799 *
2800 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2801 * (preempted lock holder), indicated by @in_spin_loop.
2802 * Set at the beiginning and cleared at the end of interception/PLE handler.
2803 *
2804 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2805 * chance last time (mostly it has become eligible now since we have probably
2806 * yielded to lockholder in last iteration. This is done by toggling
2807 * @dy_eligible each time a VCPU checked for eligibility.)
2808 *
2809 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2810 * to preempted lock-holder could result in wrong VCPU selection and CPU
2811 * burning. Giving priority for a potential lock-holder increases lock
2812 * progress.
2813 *
2814 * Since algorithm is based on heuristics, accessing another VCPU data without
2815 * locking does not harm. It may result in trying to yield to same VCPU, fail
2816 * and continue with next VCPU and so on.
2817 */
2818 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2819 {
2820 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2821 bool eligible;
2822
2823 eligible = !vcpu->spin_loop.in_spin_loop ||
2824 vcpu->spin_loop.dy_eligible;
2825
2826 if (vcpu->spin_loop.in_spin_loop)
2827 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2828
2829 return eligible;
2830 #else
2831 return true;
2832 #endif
2833 }
2834
2835 /*
2836 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2837 * a vcpu_load/vcpu_put pair. However, for most architectures
2838 * kvm_arch_vcpu_runnable does not require vcpu_load.
2839 */
2840 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2841 {
2842 return kvm_arch_vcpu_runnable(vcpu);
2843 }
2844
2845 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2846 {
2847 if (kvm_arch_dy_runnable(vcpu))
2848 return true;
2849
2850 #ifdef CONFIG_KVM_ASYNC_PF
2851 if (!list_empty_careful(&vcpu->async_pf.done))
2852 return true;
2853 #endif
2854
2855 return false;
2856 }
2857
2858 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2859 {
2860 struct kvm *kvm = me->kvm;
2861 struct kvm_vcpu *vcpu;
2862 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2863 int yielded = 0;
2864 int try = 3;
2865 int pass;
2866 int i;
2867
2868 kvm_vcpu_set_in_spin_loop(me, true);
2869 /*
2870 * We boost the priority of a VCPU that is runnable but not
2871 * currently running, because it got preempted by something
2872 * else and called schedule in __vcpu_run. Hopefully that
2873 * VCPU is holding the lock that we need and will release it.
2874 * We approximate round-robin by starting at the last boosted VCPU.
2875 */
2876 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2877 kvm_for_each_vcpu(i, vcpu, kvm) {
2878 if (!pass && i <= last_boosted_vcpu) {
2879 i = last_boosted_vcpu;
2880 continue;
2881 } else if (pass && i > last_boosted_vcpu)
2882 break;
2883 if (!READ_ONCE(vcpu->ready))
2884 continue;
2885 if (vcpu == me)
2886 continue;
2887 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2888 continue;
2889 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2890 !kvm_arch_vcpu_in_kernel(vcpu))
2891 continue;
2892 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2893 continue;
2894
2895 yielded = kvm_vcpu_yield_to(vcpu);
2896 if (yielded > 0) {
2897 kvm->last_boosted_vcpu = i;
2898 break;
2899 } else if (yielded < 0) {
2900 try--;
2901 if (!try)
2902 break;
2903 }
2904 }
2905 }
2906 kvm_vcpu_set_in_spin_loop(me, false);
2907
2908 /* Ensure vcpu is not eligible during next spinloop */
2909 kvm_vcpu_set_dy_eligible(me, false);
2910 }
2911 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2912
2913 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2914 {
2915 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2916 struct page *page;
2917
2918 if (vmf->pgoff == 0)
2919 page = virt_to_page(vcpu->run);
2920 #ifdef CONFIG_X86
2921 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2922 page = virt_to_page(vcpu->arch.pio_data);
2923 #endif
2924 #ifdef CONFIG_KVM_MMIO
2925 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2926 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2927 #endif
2928 else
2929 return kvm_arch_vcpu_fault(vcpu, vmf);
2930 get_page(page);
2931 vmf->page = page;
2932 return 0;
2933 }
2934
2935 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2936 .fault = kvm_vcpu_fault,
2937 };
2938
2939 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2940 {
2941 vma->vm_ops = &kvm_vcpu_vm_ops;
2942 return 0;
2943 }
2944
2945 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2946 {
2947 struct kvm_vcpu *vcpu = filp->private_data;
2948
2949 debugfs_remove_recursive(vcpu->debugfs_dentry);
2950 kvm_put_kvm(vcpu->kvm);
2951 return 0;
2952 }
2953
2954 static struct file_operations kvm_vcpu_fops = {
2955 .release = kvm_vcpu_release,
2956 .unlocked_ioctl = kvm_vcpu_ioctl,
2957 .mmap = kvm_vcpu_mmap,
2958 .llseek = noop_llseek,
2959 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2960 };
2961
2962 /*
2963 * Allocates an inode for the vcpu.
2964 */
2965 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2966 {
2967 char name[8 + 1 + ITOA_MAX_LEN + 1];
2968
2969 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2970 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2971 }
2972
2973 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2974 {
2975 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2976 char dir_name[ITOA_MAX_LEN * 2];
2977
2978 if (!debugfs_initialized())
2979 return;
2980
2981 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2982 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2983 vcpu->kvm->debugfs_dentry);
2984
2985 kvm_arch_create_vcpu_debugfs(vcpu);
2986 #endif
2987 }
2988
2989 /*
2990 * Creates some virtual cpus. Good luck creating more than one.
2991 */
2992 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2993 {
2994 int r;
2995 struct kvm_vcpu *vcpu;
2996 struct page *page;
2997
2998 if (id >= KVM_MAX_VCPU_ID)
2999 return -EINVAL;
3000
3001 mutex_lock(&kvm->lock);
3002 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3003 mutex_unlock(&kvm->lock);
3004 return -EINVAL;
3005 }
3006
3007 kvm->created_vcpus++;
3008 mutex_unlock(&kvm->lock);
3009
3010 r = kvm_arch_vcpu_precreate(kvm, id);
3011 if (r)
3012 goto vcpu_decrement;
3013
3014 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3015 if (!vcpu) {
3016 r = -ENOMEM;
3017 goto vcpu_decrement;
3018 }
3019
3020 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3021 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3022 if (!page) {
3023 r = -ENOMEM;
3024 goto vcpu_free;
3025 }
3026 vcpu->run = page_address(page);
3027
3028 kvm_vcpu_init(vcpu, kvm, id);
3029
3030 r = kvm_arch_vcpu_create(vcpu);
3031 if (r)
3032 goto vcpu_free_run_page;
3033
3034 kvm_create_vcpu_debugfs(vcpu);
3035
3036 mutex_lock(&kvm->lock);
3037 if (kvm_get_vcpu_by_id(kvm, id)) {
3038 r = -EEXIST;
3039 goto unlock_vcpu_destroy;
3040 }
3041
3042 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3043 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3044
3045 /* Now it's all set up, let userspace reach it */
3046 kvm_get_kvm(kvm);
3047 r = create_vcpu_fd(vcpu);
3048 if (r < 0) {
3049 kvm_put_kvm_no_destroy(kvm);
3050 goto unlock_vcpu_destroy;
3051 }
3052
3053 kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3054
3055 /*
3056 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
3057 * before kvm->online_vcpu's incremented value.
3058 */
3059 smp_wmb();
3060 atomic_inc(&kvm->online_vcpus);
3061
3062 mutex_unlock(&kvm->lock);
3063 kvm_arch_vcpu_postcreate(vcpu);
3064 return r;
3065
3066 unlock_vcpu_destroy:
3067 mutex_unlock(&kvm->lock);
3068 debugfs_remove_recursive(vcpu->debugfs_dentry);
3069 kvm_arch_vcpu_destroy(vcpu);
3070 vcpu_free_run_page:
3071 free_page((unsigned long)vcpu->run);
3072 vcpu_free:
3073 kmem_cache_free(kvm_vcpu_cache, vcpu);
3074 vcpu_decrement:
3075 mutex_lock(&kvm->lock);
3076 kvm->created_vcpus--;
3077 mutex_unlock(&kvm->lock);
3078 return r;
3079 }
3080
3081 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3082 {
3083 if (sigset) {
3084 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3085 vcpu->sigset_active = 1;
3086 vcpu->sigset = *sigset;
3087 } else
3088 vcpu->sigset_active = 0;
3089 return 0;
3090 }
3091
3092 static long kvm_vcpu_ioctl(struct file *filp,
3093 unsigned int ioctl, unsigned long arg)
3094 {
3095 struct kvm_vcpu *vcpu = filp->private_data;
3096 void __user *argp = (void __user *)arg;
3097 int r;
3098 struct kvm_fpu *fpu = NULL;
3099 struct kvm_sregs *kvm_sregs = NULL;
3100
3101 if (vcpu->kvm->mm != current->mm)
3102 return -EIO;
3103
3104 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3105 return -EINVAL;
3106
3107 /*
3108 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3109 * execution; mutex_lock() would break them.
3110 */
3111 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3112 if (r != -ENOIOCTLCMD)
3113 return r;
3114
3115 if (mutex_lock_killable(&vcpu->mutex))
3116 return -EINTR;
3117 switch (ioctl) {
3118 case KVM_RUN: {
3119 struct pid *oldpid;
3120 r = -EINVAL;
3121 if (arg)
3122 goto out;
3123 oldpid = rcu_access_pointer(vcpu->pid);
3124 if (unlikely(oldpid != task_pid(current))) {
3125 /* The thread running this VCPU changed. */
3126 struct pid *newpid;
3127
3128 r = kvm_arch_vcpu_run_pid_change(vcpu);
3129 if (r)
3130 break;
3131
3132 newpid = get_task_pid(current, PIDTYPE_PID);
3133 rcu_assign_pointer(vcpu->pid, newpid);
3134 if (oldpid)
3135 synchronize_rcu();
3136 put_pid(oldpid);
3137 }
3138 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
3139 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3140 break;
3141 }
3142 case KVM_GET_REGS: {
3143 struct kvm_regs *kvm_regs;
3144
3145 r = -ENOMEM;
3146 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3147 if (!kvm_regs)
3148 goto out;
3149 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3150 if (r)
3151 goto out_free1;
3152 r = -EFAULT;
3153 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3154 goto out_free1;
3155 r = 0;
3156 out_free1:
3157 kfree(kvm_regs);
3158 break;
3159 }
3160 case KVM_SET_REGS: {
3161 struct kvm_regs *kvm_regs;
3162
3163 r = -ENOMEM;
3164 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3165 if (IS_ERR(kvm_regs)) {
3166 r = PTR_ERR(kvm_regs);
3167 goto out;
3168 }
3169 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3170 kfree(kvm_regs);
3171 break;
3172 }
3173 case KVM_GET_SREGS: {
3174 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3175 GFP_KERNEL_ACCOUNT);
3176 r = -ENOMEM;
3177 if (!kvm_sregs)
3178 goto out;
3179 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3180 if (r)
3181 goto out;
3182 r = -EFAULT;
3183 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3184 goto out;
3185 r = 0;
3186 break;
3187 }
3188 case KVM_SET_SREGS: {
3189 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3190 if (IS_ERR(kvm_sregs)) {
3191 r = PTR_ERR(kvm_sregs);
3192 kvm_sregs = NULL;
3193 goto out;
3194 }
3195 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3196 break;
3197 }
3198 case KVM_GET_MP_STATE: {
3199 struct kvm_mp_state mp_state;
3200
3201 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3202 if (r)
3203 goto out;
3204 r = -EFAULT;
3205 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3206 goto out;
3207 r = 0;
3208 break;
3209 }
3210 case KVM_SET_MP_STATE: {
3211 struct kvm_mp_state mp_state;
3212
3213 r = -EFAULT;
3214 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3215 goto out;
3216 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3217 break;
3218 }
3219 case KVM_TRANSLATE: {
3220 struct kvm_translation tr;
3221
3222 r = -EFAULT;
3223 if (copy_from_user(&tr, argp, sizeof(tr)))
3224 goto out;
3225 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3226 if (r)
3227 goto out;
3228 r = -EFAULT;
3229 if (copy_to_user(argp, &tr, sizeof(tr)))
3230 goto out;
3231 r = 0;
3232 break;
3233 }
3234 case KVM_SET_GUEST_DEBUG: {
3235 struct kvm_guest_debug dbg;
3236
3237 r = -EFAULT;
3238 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3239 goto out;
3240 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3241 break;
3242 }
3243 case KVM_SET_SIGNAL_MASK: {
3244 struct kvm_signal_mask __user *sigmask_arg = argp;
3245 struct kvm_signal_mask kvm_sigmask;
3246 sigset_t sigset, *p;
3247
3248 p = NULL;
3249 if (argp) {
3250 r = -EFAULT;
3251 if (copy_from_user(&kvm_sigmask, argp,
3252 sizeof(kvm_sigmask)))
3253 goto out;
3254 r = -EINVAL;
3255 if (kvm_sigmask.len != sizeof(sigset))
3256 goto out;
3257 r = -EFAULT;
3258 if (copy_from_user(&sigset, sigmask_arg->sigset,
3259 sizeof(sigset)))
3260 goto out;
3261 p = &sigset;
3262 }
3263 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3264 break;
3265 }
3266 case KVM_GET_FPU: {
3267 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3268 r = -ENOMEM;
3269 if (!fpu)
3270 goto out;
3271 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3272 if (r)
3273 goto out;
3274 r = -EFAULT;
3275 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3276 goto out;
3277 r = 0;
3278 break;
3279 }
3280 case KVM_SET_FPU: {
3281 fpu = memdup_user(argp, sizeof(*fpu));
3282 if (IS_ERR(fpu)) {
3283 r = PTR_ERR(fpu);
3284 fpu = NULL;
3285 goto out;
3286 }
3287 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3288 break;
3289 }
3290 default:
3291 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3292 }
3293 out:
3294 mutex_unlock(&vcpu->mutex);
3295 kfree(fpu);
3296 kfree(kvm_sregs);
3297 return r;
3298 }
3299
3300 #ifdef CONFIG_KVM_COMPAT
3301 static long kvm_vcpu_compat_ioctl(struct file *filp,
3302 unsigned int ioctl, unsigned long arg)
3303 {
3304 struct kvm_vcpu *vcpu = filp->private_data;
3305 void __user *argp = compat_ptr(arg);
3306 int r;
3307
3308 if (vcpu->kvm->mm != current->mm)
3309 return -EIO;
3310
3311 switch (ioctl) {
3312 case KVM_SET_SIGNAL_MASK: {
3313 struct kvm_signal_mask __user *sigmask_arg = argp;
3314 struct kvm_signal_mask kvm_sigmask;
3315 sigset_t sigset;
3316
3317 if (argp) {
3318 r = -EFAULT;
3319 if (copy_from_user(&kvm_sigmask, argp,
3320 sizeof(kvm_sigmask)))
3321 goto out;
3322 r = -EINVAL;
3323 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3324 goto out;
3325 r = -EFAULT;
3326 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3327 goto out;
3328 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3329 } else
3330 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3331 break;
3332 }
3333 default:
3334 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3335 }
3336
3337 out:
3338 return r;
3339 }
3340 #endif
3341
3342 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3343 {
3344 struct kvm_device *dev = filp->private_data;
3345
3346 if (dev->ops->mmap)
3347 return dev->ops->mmap(dev, vma);
3348
3349 return -ENODEV;
3350 }
3351
3352 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3353 int (*accessor)(struct kvm_device *dev,
3354 struct kvm_device_attr *attr),
3355 unsigned long arg)
3356 {
3357 struct kvm_device_attr attr;
3358
3359 if (!accessor)
3360 return -EPERM;
3361
3362 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3363 return -EFAULT;
3364
3365 return accessor(dev, &attr);
3366 }
3367
3368 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3369 unsigned long arg)
3370 {
3371 struct kvm_device *dev = filp->private_data;
3372
3373 if (dev->kvm->mm != current->mm)
3374 return -EIO;
3375
3376 switch (ioctl) {
3377 case KVM_SET_DEVICE_ATTR:
3378 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3379 case KVM_GET_DEVICE_ATTR:
3380 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3381 case KVM_HAS_DEVICE_ATTR:
3382 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3383 default:
3384 if (dev->ops->ioctl)
3385 return dev->ops->ioctl(dev, ioctl, arg);
3386
3387 return -ENOTTY;
3388 }
3389 }
3390
3391 static int kvm_device_release(struct inode *inode, struct file *filp)
3392 {
3393 struct kvm_device *dev = filp->private_data;
3394 struct kvm *kvm = dev->kvm;
3395
3396 if (dev->ops->release) {
3397 mutex_lock(&kvm->lock);
3398 list_del(&dev->vm_node);
3399 dev->ops->release(dev);
3400 mutex_unlock(&kvm->lock);
3401 }
3402
3403 kvm_put_kvm(kvm);
3404 return 0;
3405 }
3406
3407 static const struct file_operations kvm_device_fops = {
3408 .unlocked_ioctl = kvm_device_ioctl,
3409 .release = kvm_device_release,
3410 KVM_COMPAT(kvm_device_ioctl),
3411 .mmap = kvm_device_mmap,
3412 };
3413
3414 struct kvm_device *kvm_device_from_filp(struct file *filp)
3415 {
3416 if (filp->f_op != &kvm_device_fops)
3417 return NULL;
3418
3419 return filp->private_data;
3420 }
3421
3422 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3423 #ifdef CONFIG_KVM_MPIC
3424 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3425 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3426 #endif
3427 };
3428
3429 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3430 {
3431 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3432 return -ENOSPC;
3433
3434 if (kvm_device_ops_table[type] != NULL)
3435 return -EEXIST;
3436
3437 kvm_device_ops_table[type] = ops;
3438 return 0;
3439 }
3440
3441 void kvm_unregister_device_ops(u32 type)
3442 {
3443 if (kvm_device_ops_table[type] != NULL)
3444 kvm_device_ops_table[type] = NULL;
3445 }
3446
3447 static int kvm_ioctl_create_device(struct kvm *kvm,
3448 struct kvm_create_device *cd)
3449 {
3450 const struct kvm_device_ops *ops = NULL;
3451 struct kvm_device *dev;
3452 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3453 int type;
3454 int ret;
3455
3456 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3457 return -ENODEV;
3458
3459 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3460 ops = kvm_device_ops_table[type];
3461 if (ops == NULL)
3462 return -ENODEV;
3463
3464 if (test)
3465 return 0;
3466
3467 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3468 if (!dev)
3469 return -ENOMEM;
3470
3471 dev->ops = ops;
3472 dev->kvm = kvm;
3473
3474 mutex_lock(&kvm->lock);
3475 ret = ops->create(dev, type);
3476 if (ret < 0) {
3477 mutex_unlock(&kvm->lock);
3478 kfree(dev);
3479 return ret;
3480 }
3481 list_add(&dev->vm_node, &kvm->devices);
3482 mutex_unlock(&kvm->lock);
3483
3484 if (ops->init)
3485 ops->init(dev);
3486
3487 kvm_get_kvm(kvm);
3488 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3489 if (ret < 0) {
3490 kvm_put_kvm_no_destroy(kvm);
3491 mutex_lock(&kvm->lock);
3492 list_del(&dev->vm_node);
3493 mutex_unlock(&kvm->lock);
3494 ops->destroy(dev);
3495 return ret;
3496 }
3497
3498 cd->fd = ret;
3499 return 0;
3500 }
3501
3502 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3503 {
3504 switch (arg) {
3505 case KVM_CAP_USER_MEMORY:
3506 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3507 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3508 case KVM_CAP_INTERNAL_ERROR_DATA:
3509 #ifdef CONFIG_HAVE_KVM_MSI
3510 case KVM_CAP_SIGNAL_MSI:
3511 #endif
3512 #ifdef CONFIG_HAVE_KVM_IRQFD
3513 case KVM_CAP_IRQFD:
3514 case KVM_CAP_IRQFD_RESAMPLE:
3515 #endif
3516 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3517 case KVM_CAP_CHECK_EXTENSION_VM:
3518 case KVM_CAP_ENABLE_CAP_VM:
3519 return 1;
3520 #ifdef CONFIG_KVM_MMIO
3521 case KVM_CAP_COALESCED_MMIO:
3522 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3523 case KVM_CAP_COALESCED_PIO:
3524 return 1;
3525 #endif
3526 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3527 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3528 return KVM_DIRTY_LOG_MANUAL_CAPS;
3529 #endif
3530 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3531 case KVM_CAP_IRQ_ROUTING:
3532 return KVM_MAX_IRQ_ROUTES;
3533 #endif
3534 #if KVM_ADDRESS_SPACE_NUM > 1
3535 case KVM_CAP_MULTI_ADDRESS_SPACE:
3536 return KVM_ADDRESS_SPACE_NUM;
3537 #endif
3538 case KVM_CAP_NR_MEMSLOTS:
3539 return KVM_USER_MEM_SLOTS;
3540 default:
3541 break;
3542 }
3543 return kvm_vm_ioctl_check_extension(kvm, arg);
3544 }
3545
3546 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3547 struct kvm_enable_cap *cap)
3548 {
3549 return -EINVAL;
3550 }
3551
3552 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3553 struct kvm_enable_cap *cap)
3554 {
3555 switch (cap->cap) {
3556 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3557 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3558 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3559
3560 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3561 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3562
3563 if (cap->flags || (cap->args[0] & ~allowed_options))
3564 return -EINVAL;
3565 kvm->manual_dirty_log_protect = cap->args[0];
3566 return 0;
3567 }
3568 #endif
3569 default:
3570 return kvm_vm_ioctl_enable_cap(kvm, cap);
3571 }
3572 }
3573
3574 static long kvm_vm_ioctl(struct file *filp,
3575 unsigned int ioctl, unsigned long arg)
3576 {
3577 struct kvm *kvm = filp->private_data;
3578 void __user *argp = (void __user *)arg;
3579 int r;
3580
3581 if (kvm->mm != current->mm)
3582 return -EIO;
3583 switch (ioctl) {
3584 case KVM_CREATE_VCPU:
3585 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3586 break;
3587 case KVM_ENABLE_CAP: {
3588 struct kvm_enable_cap cap;
3589
3590 r = -EFAULT;
3591 if (copy_from_user(&cap, argp, sizeof(cap)))
3592 goto out;
3593 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3594 break;
3595 }
3596 case KVM_SET_USER_MEMORY_REGION: {
3597 struct kvm_userspace_memory_region kvm_userspace_mem;
3598
3599 r = -EFAULT;
3600 if (copy_from_user(&kvm_userspace_mem, argp,
3601 sizeof(kvm_userspace_mem)))
3602 goto out;
3603
3604 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3605 break;
3606 }
3607 case KVM_GET_DIRTY_LOG: {
3608 struct kvm_dirty_log log;
3609
3610 r = -EFAULT;
3611 if (copy_from_user(&log, argp, sizeof(log)))
3612 goto out;
3613 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3614 break;
3615 }
3616 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3617 case KVM_CLEAR_DIRTY_LOG: {
3618 struct kvm_clear_dirty_log log;
3619
3620 r = -EFAULT;
3621 if (copy_from_user(&log, argp, sizeof(log)))
3622 goto out;
3623 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3624 break;
3625 }
3626 #endif
3627 #ifdef CONFIG_KVM_MMIO
3628 case KVM_REGISTER_COALESCED_MMIO: {
3629 struct kvm_coalesced_mmio_zone zone;
3630
3631 r = -EFAULT;
3632 if (copy_from_user(&zone, argp, sizeof(zone)))
3633 goto out;
3634 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3635 break;
3636 }
3637 case KVM_UNREGISTER_COALESCED_MMIO: {
3638 struct kvm_coalesced_mmio_zone zone;
3639
3640 r = -EFAULT;
3641 if (copy_from_user(&zone, argp, sizeof(zone)))
3642 goto out;
3643 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3644 break;
3645 }
3646 #endif
3647 case KVM_IRQFD: {
3648 struct kvm_irqfd data;
3649
3650 r = -EFAULT;
3651 if (copy_from_user(&data, argp, sizeof(data)))
3652 goto out;
3653 r = kvm_irqfd(kvm, &data);
3654 break;
3655 }
3656 case KVM_IOEVENTFD: {
3657 struct kvm_ioeventfd data;
3658
3659 r = -EFAULT;
3660 if (copy_from_user(&data, argp, sizeof(data)))
3661 goto out;
3662 r = kvm_ioeventfd(kvm, &data);
3663 break;
3664 }
3665 #ifdef CONFIG_HAVE_KVM_MSI
3666 case KVM_SIGNAL_MSI: {
3667 struct kvm_msi msi;
3668
3669 r = -EFAULT;
3670 if (copy_from_user(&msi, argp, sizeof(msi)))
3671 goto out;
3672 r = kvm_send_userspace_msi(kvm, &msi);
3673 break;
3674 }
3675 #endif
3676 #ifdef __KVM_HAVE_IRQ_LINE
3677 case KVM_IRQ_LINE_STATUS:
3678 case KVM_IRQ_LINE: {
3679 struct kvm_irq_level irq_event;
3680
3681 r = -EFAULT;
3682 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3683 goto out;
3684
3685 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3686 ioctl == KVM_IRQ_LINE_STATUS);
3687 if (r)
3688 goto out;
3689
3690 r = -EFAULT;
3691 if (ioctl == KVM_IRQ_LINE_STATUS) {
3692 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3693 goto out;
3694 }
3695
3696 r = 0;
3697 break;
3698 }
3699 #endif
3700 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3701 case KVM_SET_GSI_ROUTING: {
3702 struct kvm_irq_routing routing;
3703 struct kvm_irq_routing __user *urouting;
3704 struct kvm_irq_routing_entry *entries = NULL;
3705
3706 r = -EFAULT;
3707 if (copy_from_user(&routing, argp, sizeof(routing)))
3708 goto out;
3709 r = -EINVAL;
3710 if (!kvm_arch_can_set_irq_routing(kvm))
3711 goto out;
3712 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3713 goto out;
3714 if (routing.flags)
3715 goto out;
3716 if (routing.nr) {
3717 r = -ENOMEM;
3718 entries = vmalloc(array_size(sizeof(*entries),
3719 routing.nr));
3720 if (!entries)
3721 goto out;
3722 r = -EFAULT;
3723 urouting = argp;
3724 if (copy_from_user(entries, urouting->entries,
3725 routing.nr * sizeof(*entries)))
3726 goto out_free_irq_routing;
3727 }
3728 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3729 routing.flags);
3730 out_free_irq_routing:
3731 vfree(entries);
3732 break;
3733 }
3734 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3735 case KVM_CREATE_DEVICE: {
3736 struct kvm_create_device cd;
3737
3738 r = -EFAULT;
3739 if (copy_from_user(&cd, argp, sizeof(cd)))
3740 goto out;
3741
3742 r = kvm_ioctl_create_device(kvm, &cd);
3743 if (r)
3744 goto out;
3745
3746 r = -EFAULT;
3747 if (copy_to_user(argp, &cd, sizeof(cd)))
3748 goto out;
3749
3750 r = 0;
3751 break;
3752 }
3753 case KVM_CHECK_EXTENSION:
3754 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3755 break;
3756 default:
3757 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3758 }
3759 out:
3760 return r;
3761 }
3762
3763 #ifdef CONFIG_KVM_COMPAT
3764 struct compat_kvm_dirty_log {
3765 __u32 slot;
3766 __u32 padding1;
3767 union {
3768 compat_uptr_t dirty_bitmap; /* one bit per page */
3769 __u64 padding2;
3770 };
3771 };
3772
3773 static long kvm_vm_compat_ioctl(struct file *filp,
3774 unsigned int ioctl, unsigned long arg)
3775 {
3776 struct kvm *kvm = filp->private_data;
3777 int r;
3778
3779 if (kvm->mm != current->mm)
3780 return -EIO;
3781 switch (ioctl) {
3782 case KVM_GET_DIRTY_LOG: {
3783 struct compat_kvm_dirty_log compat_log;
3784 struct kvm_dirty_log log;
3785
3786 if (copy_from_user(&compat_log, (void __user *)arg,
3787 sizeof(compat_log)))
3788 return -EFAULT;
3789 log.slot = compat_log.slot;
3790 log.padding1 = compat_log.padding1;
3791 log.padding2 = compat_log.padding2;
3792 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3793
3794 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3795 break;
3796 }
3797 default:
3798 r = kvm_vm_ioctl(filp, ioctl, arg);
3799 }
3800 return r;
3801 }
3802 #endif
3803
3804 static struct file_operations kvm_vm_fops = {
3805 .release = kvm_vm_release,
3806 .unlocked_ioctl = kvm_vm_ioctl,
3807 .llseek = noop_llseek,
3808 KVM_COMPAT(kvm_vm_compat_ioctl),
3809 };
3810
3811 static int kvm_dev_ioctl_create_vm(unsigned long type)
3812 {
3813 int r;
3814 struct kvm *kvm;
3815 struct file *file;
3816
3817 kvm = kvm_create_vm(type);
3818 if (IS_ERR(kvm))
3819 return PTR_ERR(kvm);
3820 #ifdef CONFIG_KVM_MMIO
3821 r = kvm_coalesced_mmio_init(kvm);
3822 if (r < 0)
3823 goto put_kvm;
3824 #endif
3825 r = get_unused_fd_flags(O_CLOEXEC);
3826 if (r < 0)
3827 goto put_kvm;
3828
3829 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3830 if (IS_ERR(file)) {
3831 put_unused_fd(r);
3832 r = PTR_ERR(file);
3833 goto put_kvm;
3834 }
3835
3836 /*
3837 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3838 * already set, with ->release() being kvm_vm_release(). In error
3839 * cases it will be called by the final fput(file) and will take
3840 * care of doing kvm_put_kvm(kvm).
3841 */
3842 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3843 put_unused_fd(r);
3844 fput(file);
3845 return -ENOMEM;
3846 }
3847 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3848
3849 fd_install(r, file);
3850 return r;
3851
3852 put_kvm:
3853 kvm_put_kvm(kvm);
3854 return r;
3855 }
3856
3857 static long kvm_dev_ioctl(struct file *filp,
3858 unsigned int ioctl, unsigned long arg)
3859 {
3860 long r = -EINVAL;
3861
3862 switch (ioctl) {
3863 case KVM_GET_API_VERSION:
3864 if (arg)
3865 goto out;
3866 r = KVM_API_VERSION;
3867 break;
3868 case KVM_CREATE_VM:
3869 r = kvm_dev_ioctl_create_vm(arg);
3870 break;
3871 case KVM_CHECK_EXTENSION:
3872 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3873 break;
3874 case KVM_GET_VCPU_MMAP_SIZE:
3875 if (arg)
3876 goto out;
3877 r = PAGE_SIZE; /* struct kvm_run */
3878 #ifdef CONFIG_X86
3879 r += PAGE_SIZE; /* pio data page */
3880 #endif
3881 #ifdef CONFIG_KVM_MMIO
3882 r += PAGE_SIZE; /* coalesced mmio ring page */
3883 #endif
3884 break;
3885 case KVM_TRACE_ENABLE:
3886 case KVM_TRACE_PAUSE:
3887 case KVM_TRACE_DISABLE:
3888 r = -EOPNOTSUPP;
3889 break;
3890 default:
3891 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3892 }
3893 out:
3894 return r;
3895 }
3896
3897 static struct file_operations kvm_chardev_ops = {
3898 .unlocked_ioctl = kvm_dev_ioctl,
3899 .llseek = noop_llseek,
3900 KVM_COMPAT(kvm_dev_ioctl),
3901 };
3902
3903 static struct miscdevice kvm_dev = {
3904 KVM_MINOR,
3905 "kvm",
3906 &kvm_chardev_ops,
3907 };
3908
3909 static void hardware_enable_nolock(void *junk)
3910 {
3911 int cpu = raw_smp_processor_id();
3912 int r;
3913
3914 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3915 return;
3916
3917 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3918
3919 r = kvm_arch_hardware_enable();
3920
3921 if (r) {
3922 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3923 atomic_inc(&hardware_enable_failed);
3924 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3925 }
3926 }
3927
3928 static int kvm_starting_cpu(unsigned int cpu)
3929 {
3930 raw_spin_lock(&kvm_count_lock);
3931 if (kvm_usage_count)
3932 hardware_enable_nolock(NULL);
3933 raw_spin_unlock(&kvm_count_lock);
3934 return 0;
3935 }
3936
3937 static void hardware_disable_nolock(void *junk)
3938 {
3939 int cpu = raw_smp_processor_id();
3940
3941 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3942 return;
3943 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3944 kvm_arch_hardware_disable();
3945 }
3946
3947 static int kvm_dying_cpu(unsigned int cpu)
3948 {
3949 raw_spin_lock(&kvm_count_lock);
3950 if (kvm_usage_count)
3951 hardware_disable_nolock(NULL);
3952 raw_spin_unlock(&kvm_count_lock);
3953 return 0;
3954 }
3955
3956 static void hardware_disable_all_nolock(void)
3957 {
3958 BUG_ON(!kvm_usage_count);
3959
3960 kvm_usage_count--;
3961 if (!kvm_usage_count)
3962 on_each_cpu(hardware_disable_nolock, NULL, 1);
3963 }
3964
3965 static void hardware_disable_all(void)
3966 {
3967 raw_spin_lock(&kvm_count_lock);
3968 hardware_disable_all_nolock();
3969 raw_spin_unlock(&kvm_count_lock);
3970 }
3971
3972 static int hardware_enable_all(void)
3973 {
3974 int r = 0;
3975
3976 raw_spin_lock(&kvm_count_lock);
3977
3978 kvm_usage_count++;
3979 if (kvm_usage_count == 1) {
3980 atomic_set(&hardware_enable_failed, 0);
3981 on_each_cpu(hardware_enable_nolock, NULL, 1);
3982
3983 if (atomic_read(&hardware_enable_failed)) {
3984 hardware_disable_all_nolock();
3985 r = -EBUSY;
3986 }
3987 }
3988
3989 raw_spin_unlock(&kvm_count_lock);
3990
3991 return r;
3992 }
3993
3994 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3995 void *v)
3996 {
3997 /*
3998 * Some (well, at least mine) BIOSes hang on reboot if
3999 * in vmx root mode.
4000 *
4001 * And Intel TXT required VMX off for all cpu when system shutdown.
4002 */
4003 pr_info("kvm: exiting hardware virtualization\n");
4004 kvm_rebooting = true;
4005 on_each_cpu(hardware_disable_nolock, NULL, 1);
4006 return NOTIFY_OK;
4007 }
4008
4009 static struct notifier_block kvm_reboot_notifier = {
4010 .notifier_call = kvm_reboot,
4011 .priority = 0,
4012 };
4013
4014 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4015 {
4016 int i;
4017
4018 for (i = 0; i < bus->dev_count; i++) {
4019 struct kvm_io_device *pos = bus->range[i].dev;
4020
4021 kvm_iodevice_destructor(pos);
4022 }
4023 kfree(bus);
4024 }
4025
4026 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4027 const struct kvm_io_range *r2)
4028 {
4029 gpa_t addr1 = r1->addr;
4030 gpa_t addr2 = r2->addr;
4031
4032 if (addr1 < addr2)
4033 return -1;
4034
4035 /* If r2->len == 0, match the exact address. If r2->len != 0,
4036 * accept any overlapping write. Any order is acceptable for
4037 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4038 * we process all of them.
4039 */
4040 if (r2->len) {
4041 addr1 += r1->len;
4042 addr2 += r2->len;
4043 }
4044
4045 if (addr1 > addr2)
4046 return 1;
4047
4048 return 0;
4049 }
4050
4051 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4052 {
4053 return kvm_io_bus_cmp(p1, p2);
4054 }
4055
4056 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4057 gpa_t addr, int len)
4058 {
4059 struct kvm_io_range *range, key;
4060 int off;
4061
4062 key = (struct kvm_io_range) {
4063 .addr = addr,
4064 .len = len,
4065 };
4066
4067 range = bsearch(&key, bus->range, bus->dev_count,
4068 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4069 if (range == NULL)
4070 return -ENOENT;
4071
4072 off = range - bus->range;
4073
4074 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4075 off--;
4076
4077 return off;
4078 }
4079
4080 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4081 struct kvm_io_range *range, const void *val)
4082 {
4083 int idx;
4084
4085 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4086 if (idx < 0)
4087 return -EOPNOTSUPP;
4088
4089 while (idx < bus->dev_count &&
4090 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4091 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4092 range->len, val))
4093 return idx;
4094 idx++;
4095 }
4096
4097 return -EOPNOTSUPP;
4098 }
4099
4100 /* kvm_io_bus_write - called under kvm->slots_lock */
4101 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4102 int len, const void *val)
4103 {
4104 struct kvm_io_bus *bus;
4105 struct kvm_io_range range;
4106 int r;
4107
4108 range = (struct kvm_io_range) {
4109 .addr = addr,
4110 .len = len,
4111 };
4112
4113 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4114 if (!bus)
4115 return -ENOMEM;
4116 r = __kvm_io_bus_write(vcpu, bus, &range, val);
4117 return r < 0 ? r : 0;
4118 }
4119 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4120
4121 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4122 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4123 gpa_t addr, int len, const void *val, long cookie)
4124 {
4125 struct kvm_io_bus *bus;
4126 struct kvm_io_range range;
4127
4128 range = (struct kvm_io_range) {
4129 .addr = addr,
4130 .len = len,
4131 };
4132
4133 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4134 if (!bus)
4135 return -ENOMEM;
4136
4137 /* First try the device referenced by cookie. */
4138 if ((cookie >= 0) && (cookie < bus->dev_count) &&
4139 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4140 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4141 val))
4142 return cookie;
4143
4144 /*
4145 * cookie contained garbage; fall back to search and return the
4146 * correct cookie value.
4147 */
4148 return __kvm_io_bus_write(vcpu, bus, &range, val);
4149 }
4150
4151 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4152 struct kvm_io_range *range, void *val)
4153 {
4154 int idx;
4155
4156 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4157 if (idx < 0)
4158 return -EOPNOTSUPP;
4159
4160 while (idx < bus->dev_count &&
4161 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4162 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4163 range->len, val))
4164 return idx;
4165 idx++;
4166 }
4167
4168 return -EOPNOTSUPP;
4169 }
4170
4171 /* kvm_io_bus_read - called under kvm->slots_lock */
4172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4173 int len, void *val)
4174 {
4175 struct kvm_io_bus *bus;
4176 struct kvm_io_range range;
4177 int r;
4178
4179 range = (struct kvm_io_range) {
4180 .addr = addr,
4181 .len = len,
4182 };
4183
4184 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4185 if (!bus)
4186 return -ENOMEM;
4187 r = __kvm_io_bus_read(vcpu, bus, &range, val);
4188 return r < 0 ? r : 0;
4189 }
4190
4191 /* Caller must hold slots_lock. */
4192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4193 int len, struct kvm_io_device *dev)
4194 {
4195 int i;
4196 struct kvm_io_bus *new_bus, *bus;
4197 struct kvm_io_range range;
4198
4199 bus = kvm_get_bus(kvm, bus_idx);
4200 if (!bus)
4201 return -ENOMEM;
4202
4203 /* exclude ioeventfd which is limited by maximum fd */
4204 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4205 return -ENOSPC;
4206
4207 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4208 GFP_KERNEL_ACCOUNT);
4209 if (!new_bus)
4210 return -ENOMEM;
4211
4212 range = (struct kvm_io_range) {
4213 .addr = addr,
4214 .len = len,
4215 .dev = dev,
4216 };
4217
4218 for (i = 0; i < bus->dev_count; i++)
4219 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4220 break;
4221
4222 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4223 new_bus->dev_count++;
4224 new_bus->range[i] = range;
4225 memcpy(new_bus->range + i + 1, bus->range + i,
4226 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4227 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4228 synchronize_srcu_expedited(&kvm->srcu);
4229 kfree(bus);
4230
4231 return 0;
4232 }
4233
4234 /* Caller must hold slots_lock. */
4235 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4236 struct kvm_io_device *dev)
4237 {
4238 int i;
4239 struct kvm_io_bus *new_bus, *bus;
4240
4241 bus = kvm_get_bus(kvm, bus_idx);
4242 if (!bus)
4243 return;
4244
4245 for (i = 0; i < bus->dev_count; i++)
4246 if (bus->range[i].dev == dev) {
4247 break;
4248 }
4249
4250 if (i == bus->dev_count)
4251 return;
4252
4253 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4254 GFP_KERNEL_ACCOUNT);
4255 if (!new_bus) {
4256 pr_err("kvm: failed to shrink bus, removing it completely\n");
4257 goto broken;
4258 }
4259
4260 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4261 new_bus->dev_count--;
4262 memcpy(new_bus->range + i, bus->range + i + 1,
4263 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4264
4265 broken:
4266 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4267 synchronize_srcu_expedited(&kvm->srcu);
4268 kfree(bus);
4269 return;
4270 }
4271
4272 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4273 gpa_t addr)
4274 {
4275 struct kvm_io_bus *bus;
4276 int dev_idx, srcu_idx;
4277 struct kvm_io_device *iodev = NULL;
4278
4279 srcu_idx = srcu_read_lock(&kvm->srcu);
4280
4281 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4282 if (!bus)
4283 goto out_unlock;
4284
4285 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4286 if (dev_idx < 0)
4287 goto out_unlock;
4288
4289 iodev = bus->range[dev_idx].dev;
4290
4291 out_unlock:
4292 srcu_read_unlock(&kvm->srcu, srcu_idx);
4293
4294 return iodev;
4295 }
4296 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4297
4298 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4299 int (*get)(void *, u64 *), int (*set)(void *, u64),
4300 const char *fmt)
4301 {
4302 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4303 inode->i_private;
4304
4305 /* The debugfs files are a reference to the kvm struct which
4306 * is still valid when kvm_destroy_vm is called.
4307 * To avoid the race between open and the removal of the debugfs
4308 * directory we test against the users count.
4309 */
4310 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4311 return -ENOENT;
4312
4313 if (simple_attr_open(inode, file, get,
4314 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4315 ? set : NULL,
4316 fmt)) {
4317 kvm_put_kvm(stat_data->kvm);
4318 return -ENOMEM;
4319 }
4320
4321 return 0;
4322 }
4323
4324 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4325 {
4326 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4327 inode->i_private;
4328
4329 simple_attr_release(inode, file);
4330 kvm_put_kvm(stat_data->kvm);
4331
4332 return 0;
4333 }
4334
4335 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4336 {
4337 *val = *(ulong *)((void *)kvm + offset);
4338
4339 return 0;
4340 }
4341
4342 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4343 {
4344 *(ulong *)((void *)kvm + offset) = 0;
4345
4346 return 0;
4347 }
4348
4349 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4350 {
4351 int i;
4352 struct kvm_vcpu *vcpu;
4353
4354 *val = 0;
4355
4356 kvm_for_each_vcpu(i, vcpu, kvm)
4357 *val += *(u64 *)((void *)vcpu + offset);
4358
4359 return 0;
4360 }
4361
4362 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4363 {
4364 int i;
4365 struct kvm_vcpu *vcpu;
4366
4367 kvm_for_each_vcpu(i, vcpu, kvm)
4368 *(u64 *)((void *)vcpu + offset) = 0;
4369
4370 return 0;
4371 }
4372
4373 static int kvm_stat_data_get(void *data, u64 *val)
4374 {
4375 int r = -EFAULT;
4376 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4377
4378 switch (stat_data->dbgfs_item->kind) {
4379 case KVM_STAT_VM:
4380 r = kvm_get_stat_per_vm(stat_data->kvm,
4381 stat_data->dbgfs_item->offset, val);
4382 break;
4383 case KVM_STAT_VCPU:
4384 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4385 stat_data->dbgfs_item->offset, val);
4386 break;
4387 }
4388
4389 return r;
4390 }
4391
4392 static int kvm_stat_data_clear(void *data, u64 val)
4393 {
4394 int r = -EFAULT;
4395 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4396
4397 if (val)
4398 return -EINVAL;
4399
4400 switch (stat_data->dbgfs_item->kind) {
4401 case KVM_STAT_VM:
4402 r = kvm_clear_stat_per_vm(stat_data->kvm,
4403 stat_data->dbgfs_item->offset);
4404 break;
4405 case KVM_STAT_VCPU:
4406 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4407 stat_data->dbgfs_item->offset);
4408 break;
4409 }
4410
4411 return r;
4412 }
4413
4414 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4415 {
4416 __simple_attr_check_format("%llu\n", 0ull);
4417 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4418 kvm_stat_data_clear, "%llu\n");
4419 }
4420
4421 static const struct file_operations stat_fops_per_vm = {
4422 .owner = THIS_MODULE,
4423 .open = kvm_stat_data_open,
4424 .release = kvm_debugfs_release,
4425 .read = simple_attr_read,
4426 .write = simple_attr_write,
4427 .llseek = no_llseek,
4428 };
4429
4430 static int vm_stat_get(void *_offset, u64 *val)
4431 {
4432 unsigned offset = (long)_offset;
4433 struct kvm *kvm;
4434 u64 tmp_val;
4435
4436 *val = 0;
4437 mutex_lock(&kvm_lock);
4438 list_for_each_entry(kvm, &vm_list, vm_list) {
4439 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4440 *val += tmp_val;
4441 }
4442 mutex_unlock(&kvm_lock);
4443 return 0;
4444 }
4445
4446 static int vm_stat_clear(void *_offset, u64 val)
4447 {
4448 unsigned offset = (long)_offset;
4449 struct kvm *kvm;
4450
4451 if (val)
4452 return -EINVAL;
4453
4454 mutex_lock(&kvm_lock);
4455 list_for_each_entry(kvm, &vm_list, vm_list) {
4456 kvm_clear_stat_per_vm(kvm, offset);
4457 }
4458 mutex_unlock(&kvm_lock);
4459
4460 return 0;
4461 }
4462
4463 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4464
4465 static int vcpu_stat_get(void *_offset, u64 *val)
4466 {
4467 unsigned offset = (long)_offset;
4468 struct kvm *kvm;
4469 u64 tmp_val;
4470
4471 *val = 0;
4472 mutex_lock(&kvm_lock);
4473 list_for_each_entry(kvm, &vm_list, vm_list) {
4474 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4475 *val += tmp_val;
4476 }
4477 mutex_unlock(&kvm_lock);
4478 return 0;
4479 }
4480
4481 static int vcpu_stat_clear(void *_offset, u64 val)
4482 {
4483 unsigned offset = (long)_offset;
4484 struct kvm *kvm;
4485
4486 if (val)
4487 return -EINVAL;
4488
4489 mutex_lock(&kvm_lock);
4490 list_for_each_entry(kvm, &vm_list, vm_list) {
4491 kvm_clear_stat_per_vcpu(kvm, offset);
4492 }
4493 mutex_unlock(&kvm_lock);
4494
4495 return 0;
4496 }
4497
4498 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4499 "%llu\n");
4500
4501 static const struct file_operations *stat_fops[] = {
4502 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4503 [KVM_STAT_VM] = &vm_stat_fops,
4504 };
4505
4506 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4507 {
4508 struct kobj_uevent_env *env;
4509 unsigned long long created, active;
4510
4511 if (!kvm_dev.this_device || !kvm)
4512 return;
4513
4514 mutex_lock(&kvm_lock);
4515 if (type == KVM_EVENT_CREATE_VM) {
4516 kvm_createvm_count++;
4517 kvm_active_vms++;
4518 } else if (type == KVM_EVENT_DESTROY_VM) {
4519 kvm_active_vms--;
4520 }
4521 created = kvm_createvm_count;
4522 active = kvm_active_vms;
4523 mutex_unlock(&kvm_lock);
4524
4525 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4526 if (!env)
4527 return;
4528
4529 add_uevent_var(env, "CREATED=%llu", created);
4530 add_uevent_var(env, "COUNT=%llu", active);
4531
4532 if (type == KVM_EVENT_CREATE_VM) {
4533 add_uevent_var(env, "EVENT=create");
4534 kvm->userspace_pid = task_pid_nr(current);
4535 } else if (type == KVM_EVENT_DESTROY_VM) {
4536 add_uevent_var(env, "EVENT=destroy");
4537 }
4538 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4539
4540 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4541 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4542
4543 if (p) {
4544 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4545 if (!IS_ERR(tmp))
4546 add_uevent_var(env, "STATS_PATH=%s", tmp);
4547 kfree(p);
4548 }
4549 }
4550 /* no need for checks, since we are adding at most only 5 keys */
4551 env->envp[env->envp_idx++] = NULL;
4552 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4553 kfree(env);
4554 }
4555
4556 static void kvm_init_debug(void)
4557 {
4558 struct kvm_stats_debugfs_item *p;
4559
4560 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4561
4562 kvm_debugfs_num_entries = 0;
4563 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4564 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4565 kvm_debugfs_dir, (void *)(long)p->offset,
4566 stat_fops[p->kind]);
4567 }
4568 }
4569
4570 static int kvm_suspend(void)
4571 {
4572 if (kvm_usage_count)
4573 hardware_disable_nolock(NULL);
4574 return 0;
4575 }
4576
4577 static void kvm_resume(void)
4578 {
4579 if (kvm_usage_count) {
4580 #ifdef CONFIG_LOCKDEP
4581 WARN_ON(lockdep_is_held(&kvm_count_lock));
4582 #endif
4583 hardware_enable_nolock(NULL);
4584 }
4585 }
4586
4587 static struct syscore_ops kvm_syscore_ops = {
4588 .suspend = kvm_suspend,
4589 .resume = kvm_resume,
4590 };
4591
4592 static inline
4593 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4594 {
4595 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4596 }
4597
4598 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4599 {
4600 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4601
4602 WRITE_ONCE(vcpu->preempted, false);
4603 WRITE_ONCE(vcpu->ready, false);
4604
4605 __this_cpu_write(kvm_running_vcpu, vcpu);
4606 kvm_arch_sched_in(vcpu, cpu);
4607 kvm_arch_vcpu_load(vcpu, cpu);
4608 }
4609
4610 static void kvm_sched_out(struct preempt_notifier *pn,
4611 struct task_struct *next)
4612 {
4613 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4614
4615 if (current->state == TASK_RUNNING) {
4616 WRITE_ONCE(vcpu->preempted, true);
4617 WRITE_ONCE(vcpu->ready, true);
4618 }
4619 kvm_arch_vcpu_put(vcpu);
4620 __this_cpu_write(kvm_running_vcpu, NULL);
4621 }
4622
4623 /**
4624 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4625 *
4626 * We can disable preemption locally around accessing the per-CPU variable,
4627 * and use the resolved vcpu pointer after enabling preemption again,
4628 * because even if the current thread is migrated to another CPU, reading
4629 * the per-CPU value later will give us the same value as we update the
4630 * per-CPU variable in the preempt notifier handlers.
4631 */
4632 struct kvm_vcpu *kvm_get_running_vcpu(void)
4633 {
4634 struct kvm_vcpu *vcpu;
4635
4636 preempt_disable();
4637 vcpu = __this_cpu_read(kvm_running_vcpu);
4638 preempt_enable();
4639
4640 return vcpu;
4641 }
4642
4643 /**
4644 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4645 */
4646 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4647 {
4648 return &kvm_running_vcpu;
4649 }
4650
4651 struct kvm_cpu_compat_check {
4652 void *opaque;
4653 int *ret;
4654 };
4655
4656 static void check_processor_compat(void *data)
4657 {
4658 struct kvm_cpu_compat_check *c = data;
4659
4660 *c->ret = kvm_arch_check_processor_compat(c->opaque);
4661 }
4662
4663 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4664 struct module *module)
4665 {
4666 struct kvm_cpu_compat_check c;
4667 int r;
4668 int cpu;
4669
4670 r = kvm_arch_init(opaque);
4671 if (r)
4672 goto out_fail;
4673
4674 /*
4675 * kvm_arch_init makes sure there's at most one caller
4676 * for architectures that support multiple implementations,
4677 * like intel and amd on x86.
4678 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4679 * conflicts in case kvm is already setup for another implementation.
4680 */
4681 r = kvm_irqfd_init();
4682 if (r)
4683 goto out_irqfd;
4684
4685 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4686 r = -ENOMEM;
4687 goto out_free_0;
4688 }
4689
4690 r = kvm_arch_hardware_setup(opaque);
4691 if (r < 0)
4692 goto out_free_1;
4693
4694 c.ret = &r;
4695 c.opaque = opaque;
4696 for_each_online_cpu(cpu) {
4697 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4698 if (r < 0)
4699 goto out_free_2;
4700 }
4701
4702 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4703 kvm_starting_cpu, kvm_dying_cpu);
4704 if (r)
4705 goto out_free_2;
4706 register_reboot_notifier(&kvm_reboot_notifier);
4707
4708 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4709 if (!vcpu_align)
4710 vcpu_align = __alignof__(struct kvm_vcpu);
4711 kvm_vcpu_cache =
4712 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4713 SLAB_ACCOUNT,
4714 offsetof(struct kvm_vcpu, arch),
4715 sizeof_field(struct kvm_vcpu, arch),
4716 NULL);
4717 if (!kvm_vcpu_cache) {
4718 r = -ENOMEM;
4719 goto out_free_3;
4720 }
4721
4722 r = kvm_async_pf_init();
4723 if (r)
4724 goto out_free;
4725
4726 kvm_chardev_ops.owner = module;
4727 kvm_vm_fops.owner = module;
4728 kvm_vcpu_fops.owner = module;
4729
4730 r = misc_register(&kvm_dev);
4731 if (r) {
4732 pr_err("kvm: misc device register failed\n");
4733 goto out_unreg;
4734 }
4735
4736 register_syscore_ops(&kvm_syscore_ops);
4737
4738 kvm_preempt_ops.sched_in = kvm_sched_in;
4739 kvm_preempt_ops.sched_out = kvm_sched_out;
4740
4741 kvm_init_debug();
4742
4743 r = kvm_vfio_ops_init();
4744 WARN_ON(r);
4745
4746 return 0;
4747
4748 out_unreg:
4749 kvm_async_pf_deinit();
4750 out_free:
4751 kmem_cache_destroy(kvm_vcpu_cache);
4752 out_free_3:
4753 unregister_reboot_notifier(&kvm_reboot_notifier);
4754 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4755 out_free_2:
4756 kvm_arch_hardware_unsetup();
4757 out_free_1:
4758 free_cpumask_var(cpus_hardware_enabled);
4759 out_free_0:
4760 kvm_irqfd_exit();
4761 out_irqfd:
4762 kvm_arch_exit();
4763 out_fail:
4764 return r;
4765 }
4766 EXPORT_SYMBOL_GPL(kvm_init);
4767
4768 void kvm_exit(void)
4769 {
4770 debugfs_remove_recursive(kvm_debugfs_dir);
4771 misc_deregister(&kvm_dev);
4772 kmem_cache_destroy(kvm_vcpu_cache);
4773 kvm_async_pf_deinit();
4774 unregister_syscore_ops(&kvm_syscore_ops);
4775 unregister_reboot_notifier(&kvm_reboot_notifier);
4776 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4777 on_each_cpu(hardware_disable_nolock, NULL, 1);
4778 kvm_arch_hardware_unsetup();
4779 kvm_arch_exit();
4780 kvm_irqfd_exit();
4781 free_cpumask_var(cpus_hardware_enabled);
4782 kvm_vfio_ops_exit();
4783 }
4784 EXPORT_SYMBOL_GPL(kvm_exit);
4785
4786 struct kvm_vm_worker_thread_context {
4787 struct kvm *kvm;
4788 struct task_struct *parent;
4789 struct completion init_done;
4790 kvm_vm_thread_fn_t thread_fn;
4791 uintptr_t data;
4792 int err;
4793 };
4794
4795 static int kvm_vm_worker_thread(void *context)
4796 {
4797 /*
4798 * The init_context is allocated on the stack of the parent thread, so
4799 * we have to locally copy anything that is needed beyond initialization
4800 */
4801 struct kvm_vm_worker_thread_context *init_context = context;
4802 struct kvm *kvm = init_context->kvm;
4803 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4804 uintptr_t data = init_context->data;
4805 int err;
4806
4807 err = kthread_park(current);
4808 /* kthread_park(current) is never supposed to return an error */
4809 WARN_ON(err != 0);
4810 if (err)
4811 goto init_complete;
4812
4813 err = cgroup_attach_task_all(init_context->parent, current);
4814 if (err) {
4815 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4816 __func__, err);
4817 goto init_complete;
4818 }
4819
4820 set_user_nice(current, task_nice(init_context->parent));
4821
4822 init_complete:
4823 init_context->err = err;
4824 complete(&init_context->init_done);
4825 init_context = NULL;
4826
4827 if (err)
4828 return err;
4829
4830 /* Wait to be woken up by the spawner before proceeding. */
4831 kthread_parkme();
4832
4833 if (!kthread_should_stop())
4834 err = thread_fn(kvm, data);
4835
4836 return err;
4837 }
4838
4839 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4840 uintptr_t data, const char *name,
4841 struct task_struct **thread_ptr)
4842 {
4843 struct kvm_vm_worker_thread_context init_context = {};
4844 struct task_struct *thread;
4845
4846 *thread_ptr = NULL;
4847 init_context.kvm = kvm;
4848 init_context.parent = current;
4849 init_context.thread_fn = thread_fn;
4850 init_context.data = data;
4851 init_completion(&init_context.init_done);
4852
4853 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4854 "%s-%d", name, task_pid_nr(current));
4855 if (IS_ERR(thread))
4856 return PTR_ERR(thread);
4857
4858 /* kthread_run is never supposed to return NULL */
4859 WARN_ON(thread == NULL);
4860
4861 wait_for_completion(&init_context.init_done);
4862
4863 if (!init_context.err)
4864 *thread_ptr = thread;
4865
4866 return init_context.err;
4867 }