]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
KVM: make halt_poll_ns per-vCPU
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 if (pfn_valid(pfn))
116 return PageReserved(pfn_to_page(pfn));
117
118 return true;
119 }
120
121 /*
122 * Switches to specified vcpu, until a matching vcpu_put()
123 */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 int cpu;
127
128 if (mutex_lock_killable(&vcpu->mutex))
129 return -EINTR;
130 cpu = get_cpu();
131 preempt_notifier_register(&vcpu->preempt_notifier);
132 kvm_arch_vcpu_load(vcpu, cpu);
133 put_cpu();
134 return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 preempt_disable();
140 kvm_arch_vcpu_put(vcpu);
141 preempt_notifier_unregister(&vcpu->preempt_notifier);
142 preempt_enable();
143 mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 int i, cpu, me;
153 cpumask_var_t cpus;
154 bool called = true;
155 struct kvm_vcpu *vcpu;
156
157 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159 me = get_cpu();
160 kvm_for_each_vcpu(i, vcpu, kvm) {
161 kvm_make_request(req, vcpu);
162 cpu = vcpu->cpu;
163
164 /* Set ->requests bit before we read ->mode */
165 smp_mb();
166
167 if (cpus != NULL && cpu != -1 && cpu != me &&
168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 cpumask_set_cpu(cpu, cpus);
170 }
171 if (unlikely(cpus == NULL))
172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 else if (!cpumask_empty(cpus))
174 smp_call_function_many(cpus, ack_flush, NULL, 1);
175 else
176 called = false;
177 put_cpu();
178 free_cpumask_var(cpus);
179 return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 long dirty_count = kvm->tlbs_dirty;
186
187 smp_mb();
188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 ++kvm->stat.remote_tlb_flush;
190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 struct page *page;
213 int r;
214
215 mutex_init(&vcpu->mutex);
216 vcpu->cpu = -1;
217 vcpu->kvm = kvm;
218 vcpu->vcpu_id = id;
219 vcpu->pid = NULL;
220 vcpu->halt_poll_ns = 0;
221 init_waitqueue_head(&vcpu->wq);
222 kvm_async_pf_vcpu_init(vcpu);
223
224 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
225 if (!page) {
226 r = -ENOMEM;
227 goto fail;
228 }
229 vcpu->run = page_address(page);
230
231 kvm_vcpu_set_in_spin_loop(vcpu, false);
232 kvm_vcpu_set_dy_eligible(vcpu, false);
233 vcpu->preempted = false;
234
235 r = kvm_arch_vcpu_init(vcpu);
236 if (r < 0)
237 goto fail_free_run;
238 return 0;
239
240 fail_free_run:
241 free_page((unsigned long)vcpu->run);
242 fail:
243 return r;
244 }
245 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246
247 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
248 {
249 put_pid(vcpu->pid);
250 kvm_arch_vcpu_uninit(vcpu);
251 free_page((unsigned long)vcpu->run);
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254
255 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257 {
258 return container_of(mn, struct kvm, mmu_notifier);
259 }
260
261 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
262 struct mm_struct *mm,
263 unsigned long address)
264 {
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int need_tlb_flush, idx;
267
268 /*
269 * When ->invalidate_page runs, the linux pte has been zapped
270 * already but the page is still allocated until
271 * ->invalidate_page returns. So if we increase the sequence
272 * here the kvm page fault will notice if the spte can't be
273 * established because the page is going to be freed. If
274 * instead the kvm page fault establishes the spte before
275 * ->invalidate_page runs, kvm_unmap_hva will release it
276 * before returning.
277 *
278 * The sequence increase only need to be seen at spin_unlock
279 * time, and not at spin_lock time.
280 *
281 * Increasing the sequence after the spin_unlock would be
282 * unsafe because the kvm page fault could then establish the
283 * pte after kvm_unmap_hva returned, without noticing the page
284 * is going to be freed.
285 */
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
288
289 kvm->mmu_notifier_seq++;
290 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
291 /* we've to flush the tlb before the pages can be freed */
292 if (need_tlb_flush)
293 kvm_flush_remote_tlbs(kvm);
294
295 spin_unlock(&kvm->mmu_lock);
296
297 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
298
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long start,
373 unsigned long end)
374 {
375 struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 int young, idx;
377
378 idx = srcu_read_lock(&kvm->srcu);
379 spin_lock(&kvm->mmu_lock);
380
381 young = kvm_age_hva(kvm, start, end);
382 if (young)
383 kvm_flush_remote_tlbs(kvm);
384
385 spin_unlock(&kvm->mmu_lock);
386 srcu_read_unlock(&kvm->srcu, idx);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow_all(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static struct kvm_memslots *kvm_alloc_memslots(void)
444 {
445 int i;
446 struct kvm_memslots *slots;
447
448 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
449 if (!slots)
450 return NULL;
451
452 /*
453 * Init kvm generation close to the maximum to easily test the
454 * code of handling generation number wrap-around.
455 */
456 slots->generation = -150;
457 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
458 slots->id_to_index[i] = slots->memslots[i].id = i;
459
460 return slots;
461 }
462
463 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
464 {
465 if (!memslot->dirty_bitmap)
466 return;
467
468 kvfree(memslot->dirty_bitmap);
469 memslot->dirty_bitmap = NULL;
470 }
471
472 /*
473 * Free any memory in @free but not in @dont.
474 */
475 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
476 struct kvm_memory_slot *dont)
477 {
478 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
479 kvm_destroy_dirty_bitmap(free);
480
481 kvm_arch_free_memslot(kvm, free, dont);
482
483 free->npages = 0;
484 }
485
486 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
487 {
488 struct kvm_memory_slot *memslot;
489
490 if (!slots)
491 return;
492
493 kvm_for_each_memslot(memslot, slots)
494 kvm_free_memslot(kvm, memslot, NULL);
495
496 kvfree(slots);
497 }
498
499 static struct kvm *kvm_create_vm(unsigned long type)
500 {
501 int r, i;
502 struct kvm *kvm = kvm_arch_alloc_vm();
503
504 if (!kvm)
505 return ERR_PTR(-ENOMEM);
506
507 r = kvm_arch_init_vm(kvm, type);
508 if (r)
509 goto out_err_no_disable;
510
511 r = hardware_enable_all();
512 if (r)
513 goto out_err_no_disable;
514
515 #ifdef CONFIG_HAVE_KVM_IRQFD
516 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
517 #endif
518
519 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
520
521 r = -ENOMEM;
522 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
523 kvm->memslots[i] = kvm_alloc_memslots();
524 if (!kvm->memslots[i])
525 goto out_err_no_srcu;
526 }
527
528 if (init_srcu_struct(&kvm->srcu))
529 goto out_err_no_srcu;
530 if (init_srcu_struct(&kvm->irq_srcu))
531 goto out_err_no_irq_srcu;
532 for (i = 0; i < KVM_NR_BUSES; i++) {
533 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
534 GFP_KERNEL);
535 if (!kvm->buses[i])
536 goto out_err;
537 }
538
539 spin_lock_init(&kvm->mmu_lock);
540 kvm->mm = current->mm;
541 atomic_inc(&kvm->mm->mm_count);
542 kvm_eventfd_init(kvm);
543 mutex_init(&kvm->lock);
544 mutex_init(&kvm->irq_lock);
545 mutex_init(&kvm->slots_lock);
546 atomic_set(&kvm->users_count, 1);
547 INIT_LIST_HEAD(&kvm->devices);
548
549 r = kvm_init_mmu_notifier(kvm);
550 if (r)
551 goto out_err;
552
553 spin_lock(&kvm_lock);
554 list_add(&kvm->vm_list, &vm_list);
555 spin_unlock(&kvm_lock);
556
557 preempt_notifier_inc();
558
559 return kvm;
560
561 out_err:
562 cleanup_srcu_struct(&kvm->irq_srcu);
563 out_err_no_irq_srcu:
564 cleanup_srcu_struct(&kvm->srcu);
565 out_err_no_srcu:
566 hardware_disable_all();
567 out_err_no_disable:
568 for (i = 0; i < KVM_NR_BUSES; i++)
569 kfree(kvm->buses[i]);
570 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
571 kvm_free_memslots(kvm, kvm->memslots[i]);
572 kvm_arch_free_vm(kvm);
573 return ERR_PTR(r);
574 }
575
576 /*
577 * Avoid using vmalloc for a small buffer.
578 * Should not be used when the size is statically known.
579 */
580 void *kvm_kvzalloc(unsigned long size)
581 {
582 if (size > PAGE_SIZE)
583 return vzalloc(size);
584 else
585 return kzalloc(size, GFP_KERNEL);
586 }
587
588 static void kvm_destroy_devices(struct kvm *kvm)
589 {
590 struct list_head *node, *tmp;
591
592 list_for_each_safe(node, tmp, &kvm->devices) {
593 struct kvm_device *dev =
594 list_entry(node, struct kvm_device, vm_node);
595
596 list_del(node);
597 dev->ops->destroy(dev);
598 }
599 }
600
601 static void kvm_destroy_vm(struct kvm *kvm)
602 {
603 int i;
604 struct mm_struct *mm = kvm->mm;
605
606 kvm_arch_sync_events(kvm);
607 spin_lock(&kvm_lock);
608 list_del(&kvm->vm_list);
609 spin_unlock(&kvm_lock);
610 kvm_free_irq_routing(kvm);
611 for (i = 0; i < KVM_NR_BUSES; i++)
612 kvm_io_bus_destroy(kvm->buses[i]);
613 kvm_coalesced_mmio_free(kvm);
614 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
615 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
616 #else
617 kvm_arch_flush_shadow_all(kvm);
618 #endif
619 kvm_arch_destroy_vm(kvm);
620 kvm_destroy_devices(kvm);
621 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
622 kvm_free_memslots(kvm, kvm->memslots[i]);
623 cleanup_srcu_struct(&kvm->irq_srcu);
624 cleanup_srcu_struct(&kvm->srcu);
625 kvm_arch_free_vm(kvm);
626 preempt_notifier_dec();
627 hardware_disable_all();
628 mmdrop(mm);
629 }
630
631 void kvm_get_kvm(struct kvm *kvm)
632 {
633 atomic_inc(&kvm->users_count);
634 }
635 EXPORT_SYMBOL_GPL(kvm_get_kvm);
636
637 void kvm_put_kvm(struct kvm *kvm)
638 {
639 if (atomic_dec_and_test(&kvm->users_count))
640 kvm_destroy_vm(kvm);
641 }
642 EXPORT_SYMBOL_GPL(kvm_put_kvm);
643
644
645 static int kvm_vm_release(struct inode *inode, struct file *filp)
646 {
647 struct kvm *kvm = filp->private_data;
648
649 kvm_irqfd_release(kvm);
650
651 kvm_put_kvm(kvm);
652 return 0;
653 }
654
655 /*
656 * Allocation size is twice as large as the actual dirty bitmap size.
657 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
658 */
659 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
660 {
661 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
662
663 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
664 if (!memslot->dirty_bitmap)
665 return -ENOMEM;
666
667 return 0;
668 }
669
670 /*
671 * Insert memslot and re-sort memslots based on their GFN,
672 * so binary search could be used to lookup GFN.
673 * Sorting algorithm takes advantage of having initially
674 * sorted array and known changed memslot position.
675 */
676 static void update_memslots(struct kvm_memslots *slots,
677 struct kvm_memory_slot *new)
678 {
679 int id = new->id;
680 int i = slots->id_to_index[id];
681 struct kvm_memory_slot *mslots = slots->memslots;
682
683 WARN_ON(mslots[i].id != id);
684 if (!new->npages) {
685 WARN_ON(!mslots[i].npages);
686 if (mslots[i].npages)
687 slots->used_slots--;
688 } else {
689 if (!mslots[i].npages)
690 slots->used_slots++;
691 }
692
693 while (i < KVM_MEM_SLOTS_NUM - 1 &&
694 new->base_gfn <= mslots[i + 1].base_gfn) {
695 if (!mslots[i + 1].npages)
696 break;
697 mslots[i] = mslots[i + 1];
698 slots->id_to_index[mslots[i].id] = i;
699 i++;
700 }
701
702 /*
703 * The ">=" is needed when creating a slot with base_gfn == 0,
704 * so that it moves before all those with base_gfn == npages == 0.
705 *
706 * On the other hand, if new->npages is zero, the above loop has
707 * already left i pointing to the beginning of the empty part of
708 * mslots, and the ">=" would move the hole backwards in this
709 * case---which is wrong. So skip the loop when deleting a slot.
710 */
711 if (new->npages) {
712 while (i > 0 &&
713 new->base_gfn >= mslots[i - 1].base_gfn) {
714 mslots[i] = mslots[i - 1];
715 slots->id_to_index[mslots[i].id] = i;
716 i--;
717 }
718 } else
719 WARN_ON_ONCE(i != slots->used_slots);
720
721 mslots[i] = *new;
722 slots->id_to_index[mslots[i].id] = i;
723 }
724
725 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
726 {
727 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
728
729 #ifdef __KVM_HAVE_READONLY_MEM
730 valid_flags |= KVM_MEM_READONLY;
731 #endif
732
733 if (mem->flags & ~valid_flags)
734 return -EINVAL;
735
736 return 0;
737 }
738
739 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
740 int as_id, struct kvm_memslots *slots)
741 {
742 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
743
744 /*
745 * Set the low bit in the generation, which disables SPTE caching
746 * until the end of synchronize_srcu_expedited.
747 */
748 WARN_ON(old_memslots->generation & 1);
749 slots->generation = old_memslots->generation + 1;
750
751 rcu_assign_pointer(kvm->memslots[as_id], slots);
752 synchronize_srcu_expedited(&kvm->srcu);
753
754 /*
755 * Increment the new memslot generation a second time. This prevents
756 * vm exits that race with memslot updates from caching a memslot
757 * generation that will (potentially) be valid forever.
758 */
759 slots->generation++;
760
761 kvm_arch_memslots_updated(kvm, slots);
762
763 return old_memslots;
764 }
765
766 /*
767 * Allocate some memory and give it an address in the guest physical address
768 * space.
769 *
770 * Discontiguous memory is allowed, mostly for framebuffers.
771 *
772 * Must be called holding kvm->slots_lock for write.
773 */
774 int __kvm_set_memory_region(struct kvm *kvm,
775 const struct kvm_userspace_memory_region *mem)
776 {
777 int r;
778 gfn_t base_gfn;
779 unsigned long npages;
780 struct kvm_memory_slot *slot;
781 struct kvm_memory_slot old, new;
782 struct kvm_memslots *slots = NULL, *old_memslots;
783 int as_id, id;
784 enum kvm_mr_change change;
785
786 r = check_memory_region_flags(mem);
787 if (r)
788 goto out;
789
790 r = -EINVAL;
791 as_id = mem->slot >> 16;
792 id = (u16)mem->slot;
793
794 /* General sanity checks */
795 if (mem->memory_size & (PAGE_SIZE - 1))
796 goto out;
797 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
798 goto out;
799 /* We can read the guest memory with __xxx_user() later on. */
800 if ((id < KVM_USER_MEM_SLOTS) &&
801 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
802 !access_ok(VERIFY_WRITE,
803 (void __user *)(unsigned long)mem->userspace_addr,
804 mem->memory_size)))
805 goto out;
806 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
807 goto out;
808 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
809 goto out;
810
811 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
812 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
813 npages = mem->memory_size >> PAGE_SHIFT;
814
815 if (npages > KVM_MEM_MAX_NR_PAGES)
816 goto out;
817
818 new = old = *slot;
819
820 new.id = id;
821 new.base_gfn = base_gfn;
822 new.npages = npages;
823 new.flags = mem->flags;
824
825 if (npages) {
826 if (!old.npages)
827 change = KVM_MR_CREATE;
828 else { /* Modify an existing slot. */
829 if ((mem->userspace_addr != old.userspace_addr) ||
830 (npages != old.npages) ||
831 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
832 goto out;
833
834 if (base_gfn != old.base_gfn)
835 change = KVM_MR_MOVE;
836 else if (new.flags != old.flags)
837 change = KVM_MR_FLAGS_ONLY;
838 else { /* Nothing to change. */
839 r = 0;
840 goto out;
841 }
842 }
843 } else {
844 if (!old.npages)
845 goto out;
846
847 change = KVM_MR_DELETE;
848 new.base_gfn = 0;
849 new.flags = 0;
850 }
851
852 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
853 /* Check for overlaps */
854 r = -EEXIST;
855 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
856 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
857 (slot->id == id))
858 continue;
859 if (!((base_gfn + npages <= slot->base_gfn) ||
860 (base_gfn >= slot->base_gfn + slot->npages)))
861 goto out;
862 }
863 }
864
865 /* Free page dirty bitmap if unneeded */
866 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
867 new.dirty_bitmap = NULL;
868
869 r = -ENOMEM;
870 if (change == KVM_MR_CREATE) {
871 new.userspace_addr = mem->userspace_addr;
872
873 if (kvm_arch_create_memslot(kvm, &new, npages))
874 goto out_free;
875 }
876
877 /* Allocate page dirty bitmap if needed */
878 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
879 if (kvm_create_dirty_bitmap(&new) < 0)
880 goto out_free;
881 }
882
883 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
884 if (!slots)
885 goto out_free;
886 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
887
888 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
889 slot = id_to_memslot(slots, id);
890 slot->flags |= KVM_MEMSLOT_INVALID;
891
892 old_memslots = install_new_memslots(kvm, as_id, slots);
893
894 /* slot was deleted or moved, clear iommu mapping */
895 kvm_iommu_unmap_pages(kvm, &old);
896 /* From this point no new shadow pages pointing to a deleted,
897 * or moved, memslot will be created.
898 *
899 * validation of sp->gfn happens in:
900 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
901 * - kvm_is_visible_gfn (mmu_check_roots)
902 */
903 kvm_arch_flush_shadow_memslot(kvm, slot);
904
905 /*
906 * We can re-use the old_memslots from above, the only difference
907 * from the currently installed memslots is the invalid flag. This
908 * will get overwritten by update_memslots anyway.
909 */
910 slots = old_memslots;
911 }
912
913 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
914 if (r)
915 goto out_slots;
916
917 /* actual memory is freed via old in kvm_free_memslot below */
918 if (change == KVM_MR_DELETE) {
919 new.dirty_bitmap = NULL;
920 memset(&new.arch, 0, sizeof(new.arch));
921 }
922
923 update_memslots(slots, &new);
924 old_memslots = install_new_memslots(kvm, as_id, slots);
925
926 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
927
928 kvm_free_memslot(kvm, &old, &new);
929 kvfree(old_memslots);
930
931 /*
932 * IOMMU mapping: New slots need to be mapped. Old slots need to be
933 * un-mapped and re-mapped if their base changes. Since base change
934 * unmapping is handled above with slot deletion, mapping alone is
935 * needed here. Anything else the iommu might care about for existing
936 * slots (size changes, userspace addr changes and read-only flag
937 * changes) is disallowed above, so any other attribute changes getting
938 * here can be skipped.
939 */
940 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
941 r = kvm_iommu_map_pages(kvm, &new);
942 return r;
943 }
944
945 return 0;
946
947 out_slots:
948 kvfree(slots);
949 out_free:
950 kvm_free_memslot(kvm, &new, &old);
951 out:
952 return r;
953 }
954 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
955
956 int kvm_set_memory_region(struct kvm *kvm,
957 const struct kvm_userspace_memory_region *mem)
958 {
959 int r;
960
961 mutex_lock(&kvm->slots_lock);
962 r = __kvm_set_memory_region(kvm, mem);
963 mutex_unlock(&kvm->slots_lock);
964 return r;
965 }
966 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
967
968 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
969 struct kvm_userspace_memory_region *mem)
970 {
971 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
972 return -EINVAL;
973
974 return kvm_set_memory_region(kvm, mem);
975 }
976
977 int kvm_get_dirty_log(struct kvm *kvm,
978 struct kvm_dirty_log *log, int *is_dirty)
979 {
980 struct kvm_memslots *slots;
981 struct kvm_memory_slot *memslot;
982 int r, i, as_id, id;
983 unsigned long n;
984 unsigned long any = 0;
985
986 r = -EINVAL;
987 as_id = log->slot >> 16;
988 id = (u16)log->slot;
989 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
990 goto out;
991
992 slots = __kvm_memslots(kvm, as_id);
993 memslot = id_to_memslot(slots, id);
994 r = -ENOENT;
995 if (!memslot->dirty_bitmap)
996 goto out;
997
998 n = kvm_dirty_bitmap_bytes(memslot);
999
1000 for (i = 0; !any && i < n/sizeof(long); ++i)
1001 any = memslot->dirty_bitmap[i];
1002
1003 r = -EFAULT;
1004 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1005 goto out;
1006
1007 if (any)
1008 *is_dirty = 1;
1009
1010 r = 0;
1011 out:
1012 return r;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1015
1016 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1017 /**
1018 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1019 * are dirty write protect them for next write.
1020 * @kvm: pointer to kvm instance
1021 * @log: slot id and address to which we copy the log
1022 * @is_dirty: flag set if any page is dirty
1023 *
1024 * We need to keep it in mind that VCPU threads can write to the bitmap
1025 * concurrently. So, to avoid losing track of dirty pages we keep the
1026 * following order:
1027 *
1028 * 1. Take a snapshot of the bit and clear it if needed.
1029 * 2. Write protect the corresponding page.
1030 * 3. Copy the snapshot to the userspace.
1031 * 4. Upon return caller flushes TLB's if needed.
1032 *
1033 * Between 2 and 4, the guest may write to the page using the remaining TLB
1034 * entry. This is not a problem because the page is reported dirty using
1035 * the snapshot taken before and step 4 ensures that writes done after
1036 * exiting to userspace will be logged for the next call.
1037 *
1038 */
1039 int kvm_get_dirty_log_protect(struct kvm *kvm,
1040 struct kvm_dirty_log *log, bool *is_dirty)
1041 {
1042 struct kvm_memslots *slots;
1043 struct kvm_memory_slot *memslot;
1044 int r, i, as_id, id;
1045 unsigned long n;
1046 unsigned long *dirty_bitmap;
1047 unsigned long *dirty_bitmap_buffer;
1048
1049 r = -EINVAL;
1050 as_id = log->slot >> 16;
1051 id = (u16)log->slot;
1052 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1053 goto out;
1054
1055 slots = __kvm_memslots(kvm, as_id);
1056 memslot = id_to_memslot(slots, id);
1057
1058 dirty_bitmap = memslot->dirty_bitmap;
1059 r = -ENOENT;
1060 if (!dirty_bitmap)
1061 goto out;
1062
1063 n = kvm_dirty_bitmap_bytes(memslot);
1064
1065 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1066 memset(dirty_bitmap_buffer, 0, n);
1067
1068 spin_lock(&kvm->mmu_lock);
1069 *is_dirty = false;
1070 for (i = 0; i < n / sizeof(long); i++) {
1071 unsigned long mask;
1072 gfn_t offset;
1073
1074 if (!dirty_bitmap[i])
1075 continue;
1076
1077 *is_dirty = true;
1078
1079 mask = xchg(&dirty_bitmap[i], 0);
1080 dirty_bitmap_buffer[i] = mask;
1081
1082 if (mask) {
1083 offset = i * BITS_PER_LONG;
1084 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1085 offset, mask);
1086 }
1087 }
1088
1089 spin_unlock(&kvm->mmu_lock);
1090
1091 r = -EFAULT;
1092 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1093 goto out;
1094
1095 r = 0;
1096 out:
1097 return r;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1100 #endif
1101
1102 bool kvm_largepages_enabled(void)
1103 {
1104 return largepages_enabled;
1105 }
1106
1107 void kvm_disable_largepages(void)
1108 {
1109 largepages_enabled = false;
1110 }
1111 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1112
1113 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1114 {
1115 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1116 }
1117 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1118
1119 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1120 {
1121 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1122 }
1123
1124 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1125 {
1126 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1127
1128 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1129 memslot->flags & KVM_MEMSLOT_INVALID)
1130 return 0;
1131
1132 return 1;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1135
1136 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1137 {
1138 struct vm_area_struct *vma;
1139 unsigned long addr, size;
1140
1141 size = PAGE_SIZE;
1142
1143 addr = gfn_to_hva(kvm, gfn);
1144 if (kvm_is_error_hva(addr))
1145 return PAGE_SIZE;
1146
1147 down_read(&current->mm->mmap_sem);
1148 vma = find_vma(current->mm, addr);
1149 if (!vma)
1150 goto out;
1151
1152 size = vma_kernel_pagesize(vma);
1153
1154 out:
1155 up_read(&current->mm->mmap_sem);
1156
1157 return size;
1158 }
1159
1160 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1161 {
1162 return slot->flags & KVM_MEM_READONLY;
1163 }
1164
1165 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1166 gfn_t *nr_pages, bool write)
1167 {
1168 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1169 return KVM_HVA_ERR_BAD;
1170
1171 if (memslot_is_readonly(slot) && write)
1172 return KVM_HVA_ERR_RO_BAD;
1173
1174 if (nr_pages)
1175 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1176
1177 return __gfn_to_hva_memslot(slot, gfn);
1178 }
1179
1180 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1181 gfn_t *nr_pages)
1182 {
1183 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1184 }
1185
1186 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1187 gfn_t gfn)
1188 {
1189 return gfn_to_hva_many(slot, gfn, NULL);
1190 }
1191 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1192
1193 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1194 {
1195 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1196 }
1197 EXPORT_SYMBOL_GPL(gfn_to_hva);
1198
1199 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1200 {
1201 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1204
1205 /*
1206 * If writable is set to false, the hva returned by this function is only
1207 * allowed to be read.
1208 */
1209 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1210 gfn_t gfn, bool *writable)
1211 {
1212 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1213
1214 if (!kvm_is_error_hva(hva) && writable)
1215 *writable = !memslot_is_readonly(slot);
1216
1217 return hva;
1218 }
1219
1220 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1221 {
1222 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1223
1224 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1225 }
1226
1227 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1228 {
1229 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1230
1231 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1232 }
1233
1234 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, int write, struct page **page)
1236 {
1237 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1238
1239 if (write)
1240 flags |= FOLL_WRITE;
1241
1242 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1243 }
1244
1245 static inline int check_user_page_hwpoison(unsigned long addr)
1246 {
1247 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1248
1249 rc = __get_user_pages(current, current->mm, addr, 1,
1250 flags, NULL, NULL, NULL);
1251 return rc == -EHWPOISON;
1252 }
1253
1254 /*
1255 * The atomic path to get the writable pfn which will be stored in @pfn,
1256 * true indicates success, otherwise false is returned.
1257 */
1258 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1259 bool write_fault, bool *writable, pfn_t *pfn)
1260 {
1261 struct page *page[1];
1262 int npages;
1263
1264 if (!(async || atomic))
1265 return false;
1266
1267 /*
1268 * Fast pin a writable pfn only if it is a write fault request
1269 * or the caller allows to map a writable pfn for a read fault
1270 * request.
1271 */
1272 if (!(write_fault || writable))
1273 return false;
1274
1275 npages = __get_user_pages_fast(addr, 1, 1, page);
1276 if (npages == 1) {
1277 *pfn = page_to_pfn(page[0]);
1278
1279 if (writable)
1280 *writable = true;
1281 return true;
1282 }
1283
1284 return false;
1285 }
1286
1287 /*
1288 * The slow path to get the pfn of the specified host virtual address,
1289 * 1 indicates success, -errno is returned if error is detected.
1290 */
1291 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1292 bool *writable, pfn_t *pfn)
1293 {
1294 struct page *page[1];
1295 int npages = 0;
1296
1297 might_sleep();
1298
1299 if (writable)
1300 *writable = write_fault;
1301
1302 if (async) {
1303 down_read(&current->mm->mmap_sem);
1304 npages = get_user_page_nowait(current, current->mm,
1305 addr, write_fault, page);
1306 up_read(&current->mm->mmap_sem);
1307 } else
1308 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1309 write_fault, 0, page,
1310 FOLL_TOUCH|FOLL_HWPOISON);
1311 if (npages != 1)
1312 return npages;
1313
1314 /* map read fault as writable if possible */
1315 if (unlikely(!write_fault) && writable) {
1316 struct page *wpage[1];
1317
1318 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1319 if (npages == 1) {
1320 *writable = true;
1321 put_page(page[0]);
1322 page[0] = wpage[0];
1323 }
1324
1325 npages = 1;
1326 }
1327 *pfn = page_to_pfn(page[0]);
1328 return npages;
1329 }
1330
1331 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1332 {
1333 if (unlikely(!(vma->vm_flags & VM_READ)))
1334 return false;
1335
1336 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1337 return false;
1338
1339 return true;
1340 }
1341
1342 /*
1343 * Pin guest page in memory and return its pfn.
1344 * @addr: host virtual address which maps memory to the guest
1345 * @atomic: whether this function can sleep
1346 * @async: whether this function need to wait IO complete if the
1347 * host page is not in the memory
1348 * @write_fault: whether we should get a writable host page
1349 * @writable: whether it allows to map a writable host page for !@write_fault
1350 *
1351 * The function will map a writable host page for these two cases:
1352 * 1): @write_fault = true
1353 * 2): @write_fault = false && @writable, @writable will tell the caller
1354 * whether the mapping is writable.
1355 */
1356 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1357 bool write_fault, bool *writable)
1358 {
1359 struct vm_area_struct *vma;
1360 pfn_t pfn = 0;
1361 int npages;
1362
1363 /* we can do it either atomically or asynchronously, not both */
1364 BUG_ON(atomic && async);
1365
1366 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1367 return pfn;
1368
1369 if (atomic)
1370 return KVM_PFN_ERR_FAULT;
1371
1372 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1373 if (npages == 1)
1374 return pfn;
1375
1376 down_read(&current->mm->mmap_sem);
1377 if (npages == -EHWPOISON ||
1378 (!async && check_user_page_hwpoison(addr))) {
1379 pfn = KVM_PFN_ERR_HWPOISON;
1380 goto exit;
1381 }
1382
1383 vma = find_vma_intersection(current->mm, addr, addr + 1);
1384
1385 if (vma == NULL)
1386 pfn = KVM_PFN_ERR_FAULT;
1387 else if ((vma->vm_flags & VM_PFNMAP)) {
1388 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1389 vma->vm_pgoff;
1390 BUG_ON(!kvm_is_reserved_pfn(pfn));
1391 } else {
1392 if (async && vma_is_valid(vma, write_fault))
1393 *async = true;
1394 pfn = KVM_PFN_ERR_FAULT;
1395 }
1396 exit:
1397 up_read(&current->mm->mmap_sem);
1398 return pfn;
1399 }
1400
1401 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1402 bool *async, bool write_fault, bool *writable)
1403 {
1404 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1405
1406 if (addr == KVM_HVA_ERR_RO_BAD)
1407 return KVM_PFN_ERR_RO_FAULT;
1408
1409 if (kvm_is_error_hva(addr))
1410 return KVM_PFN_NOSLOT;
1411
1412 /* Do not map writable pfn in the readonly memslot. */
1413 if (writable && memslot_is_readonly(slot)) {
1414 *writable = false;
1415 writable = NULL;
1416 }
1417
1418 return hva_to_pfn(addr, atomic, async, write_fault,
1419 writable);
1420 }
1421 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1422
1423 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1424 bool *writable)
1425 {
1426 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1427 write_fault, writable);
1428 }
1429 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1430
1431 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1432 {
1433 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1434 }
1435 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1436
1437 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1438 {
1439 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1440 }
1441 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1442
1443 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1444 {
1445 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1446 }
1447 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1448
1449 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1450 {
1451 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1454
1455 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1456 {
1457 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1458 }
1459 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1460
1461 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1462 {
1463 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1466
1467 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1468 struct page **pages, int nr_pages)
1469 {
1470 unsigned long addr;
1471 gfn_t entry;
1472
1473 addr = gfn_to_hva_many(slot, gfn, &entry);
1474 if (kvm_is_error_hva(addr))
1475 return -1;
1476
1477 if (entry < nr_pages)
1478 return 0;
1479
1480 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1481 }
1482 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1483
1484 static struct page *kvm_pfn_to_page(pfn_t pfn)
1485 {
1486 if (is_error_noslot_pfn(pfn))
1487 return KVM_ERR_PTR_BAD_PAGE;
1488
1489 if (kvm_is_reserved_pfn(pfn)) {
1490 WARN_ON(1);
1491 return KVM_ERR_PTR_BAD_PAGE;
1492 }
1493
1494 return pfn_to_page(pfn);
1495 }
1496
1497 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1498 {
1499 pfn_t pfn;
1500
1501 pfn = gfn_to_pfn(kvm, gfn);
1502
1503 return kvm_pfn_to_page(pfn);
1504 }
1505 EXPORT_SYMBOL_GPL(gfn_to_page);
1506
1507 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1508 {
1509 pfn_t pfn;
1510
1511 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1512
1513 return kvm_pfn_to_page(pfn);
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1516
1517 void kvm_release_page_clean(struct page *page)
1518 {
1519 WARN_ON(is_error_page(page));
1520
1521 kvm_release_pfn_clean(page_to_pfn(page));
1522 }
1523 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1524
1525 void kvm_release_pfn_clean(pfn_t pfn)
1526 {
1527 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1528 put_page(pfn_to_page(pfn));
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1531
1532 void kvm_release_page_dirty(struct page *page)
1533 {
1534 WARN_ON(is_error_page(page));
1535
1536 kvm_release_pfn_dirty(page_to_pfn(page));
1537 }
1538 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1539
1540 static void kvm_release_pfn_dirty(pfn_t pfn)
1541 {
1542 kvm_set_pfn_dirty(pfn);
1543 kvm_release_pfn_clean(pfn);
1544 }
1545
1546 void kvm_set_pfn_dirty(pfn_t pfn)
1547 {
1548 if (!kvm_is_reserved_pfn(pfn)) {
1549 struct page *page = pfn_to_page(pfn);
1550
1551 if (!PageReserved(page))
1552 SetPageDirty(page);
1553 }
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1556
1557 void kvm_set_pfn_accessed(pfn_t pfn)
1558 {
1559 if (!kvm_is_reserved_pfn(pfn))
1560 mark_page_accessed(pfn_to_page(pfn));
1561 }
1562 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1563
1564 void kvm_get_pfn(pfn_t pfn)
1565 {
1566 if (!kvm_is_reserved_pfn(pfn))
1567 get_page(pfn_to_page(pfn));
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1570
1571 static int next_segment(unsigned long len, int offset)
1572 {
1573 if (len > PAGE_SIZE - offset)
1574 return PAGE_SIZE - offset;
1575 else
1576 return len;
1577 }
1578
1579 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1580 void *data, int offset, int len)
1581 {
1582 int r;
1583 unsigned long addr;
1584
1585 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1586 if (kvm_is_error_hva(addr))
1587 return -EFAULT;
1588 r = __copy_from_user(data, (void __user *)addr + offset, len);
1589 if (r)
1590 return -EFAULT;
1591 return 0;
1592 }
1593
1594 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1595 int len)
1596 {
1597 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1598
1599 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1600 }
1601 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1602
1603 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1604 int offset, int len)
1605 {
1606 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1607
1608 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1611
1612 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1613 {
1614 gfn_t gfn = gpa >> PAGE_SHIFT;
1615 int seg;
1616 int offset = offset_in_page(gpa);
1617 int ret;
1618
1619 while ((seg = next_segment(len, offset)) != 0) {
1620 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1621 if (ret < 0)
1622 return ret;
1623 offset = 0;
1624 len -= seg;
1625 data += seg;
1626 ++gfn;
1627 }
1628 return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(kvm_read_guest);
1631
1632 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1633 {
1634 gfn_t gfn = gpa >> PAGE_SHIFT;
1635 int seg;
1636 int offset = offset_in_page(gpa);
1637 int ret;
1638
1639 while ((seg = next_segment(len, offset)) != 0) {
1640 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1641 if (ret < 0)
1642 return ret;
1643 offset = 0;
1644 len -= seg;
1645 data += seg;
1646 ++gfn;
1647 }
1648 return 0;
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1651
1652 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1653 void *data, int offset, unsigned long len)
1654 {
1655 int r;
1656 unsigned long addr;
1657
1658 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1659 if (kvm_is_error_hva(addr))
1660 return -EFAULT;
1661 pagefault_disable();
1662 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1663 pagefault_enable();
1664 if (r)
1665 return -EFAULT;
1666 return 0;
1667 }
1668
1669 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1670 unsigned long len)
1671 {
1672 gfn_t gfn = gpa >> PAGE_SHIFT;
1673 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1674 int offset = offset_in_page(gpa);
1675
1676 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1677 }
1678 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1679
1680 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1681 void *data, unsigned long len)
1682 {
1683 gfn_t gfn = gpa >> PAGE_SHIFT;
1684 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1685 int offset = offset_in_page(gpa);
1686
1687 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1690
1691 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1692 const void *data, int offset, int len)
1693 {
1694 int r;
1695 unsigned long addr;
1696
1697 addr = gfn_to_hva_memslot(memslot, gfn);
1698 if (kvm_is_error_hva(addr))
1699 return -EFAULT;
1700 r = __copy_to_user((void __user *)addr + offset, data, len);
1701 if (r)
1702 return -EFAULT;
1703 mark_page_dirty_in_slot(memslot, gfn);
1704 return 0;
1705 }
1706
1707 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1708 const void *data, int offset, int len)
1709 {
1710 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1711
1712 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1715
1716 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1717 const void *data, int offset, int len)
1718 {
1719 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1720
1721 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1724
1725 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1726 unsigned long len)
1727 {
1728 gfn_t gfn = gpa >> PAGE_SHIFT;
1729 int seg;
1730 int offset = offset_in_page(gpa);
1731 int ret;
1732
1733 while ((seg = next_segment(len, offset)) != 0) {
1734 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1735 if (ret < 0)
1736 return ret;
1737 offset = 0;
1738 len -= seg;
1739 data += seg;
1740 ++gfn;
1741 }
1742 return 0;
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_write_guest);
1745
1746 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1747 unsigned long len)
1748 {
1749 gfn_t gfn = gpa >> PAGE_SHIFT;
1750 int seg;
1751 int offset = offset_in_page(gpa);
1752 int ret;
1753
1754 while ((seg = next_segment(len, offset)) != 0) {
1755 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1756 if (ret < 0)
1757 return ret;
1758 offset = 0;
1759 len -= seg;
1760 data += seg;
1761 ++gfn;
1762 }
1763 return 0;
1764 }
1765 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1766
1767 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1768 gpa_t gpa, unsigned long len)
1769 {
1770 struct kvm_memslots *slots = kvm_memslots(kvm);
1771 int offset = offset_in_page(gpa);
1772 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1773 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1774 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1775 gfn_t nr_pages_avail;
1776
1777 ghc->gpa = gpa;
1778 ghc->generation = slots->generation;
1779 ghc->len = len;
1780 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1781 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1782 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1783 ghc->hva += offset;
1784 } else {
1785 /*
1786 * If the requested region crosses two memslots, we still
1787 * verify that the entire region is valid here.
1788 */
1789 while (start_gfn <= end_gfn) {
1790 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1791 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1792 &nr_pages_avail);
1793 if (kvm_is_error_hva(ghc->hva))
1794 return -EFAULT;
1795 start_gfn += nr_pages_avail;
1796 }
1797 /* Use the slow path for cross page reads and writes. */
1798 ghc->memslot = NULL;
1799 }
1800 return 0;
1801 }
1802 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1803
1804 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1805 void *data, unsigned long len)
1806 {
1807 struct kvm_memslots *slots = kvm_memslots(kvm);
1808 int r;
1809
1810 BUG_ON(len > ghc->len);
1811
1812 if (slots->generation != ghc->generation)
1813 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1814
1815 if (unlikely(!ghc->memslot))
1816 return kvm_write_guest(kvm, ghc->gpa, data, len);
1817
1818 if (kvm_is_error_hva(ghc->hva))
1819 return -EFAULT;
1820
1821 r = __copy_to_user((void __user *)ghc->hva, data, len);
1822 if (r)
1823 return -EFAULT;
1824 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1825
1826 return 0;
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1829
1830 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1831 void *data, unsigned long len)
1832 {
1833 struct kvm_memslots *slots = kvm_memslots(kvm);
1834 int r;
1835
1836 BUG_ON(len > ghc->len);
1837
1838 if (slots->generation != ghc->generation)
1839 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1840
1841 if (unlikely(!ghc->memslot))
1842 return kvm_read_guest(kvm, ghc->gpa, data, len);
1843
1844 if (kvm_is_error_hva(ghc->hva))
1845 return -EFAULT;
1846
1847 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1848 if (r)
1849 return -EFAULT;
1850
1851 return 0;
1852 }
1853 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1854
1855 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1856 {
1857 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1858
1859 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1862
1863 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1864 {
1865 gfn_t gfn = gpa >> PAGE_SHIFT;
1866 int seg;
1867 int offset = offset_in_page(gpa);
1868 int ret;
1869
1870 while ((seg = next_segment(len, offset)) != 0) {
1871 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1872 if (ret < 0)
1873 return ret;
1874 offset = 0;
1875 len -= seg;
1876 ++gfn;
1877 }
1878 return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1881
1882 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1883 gfn_t gfn)
1884 {
1885 if (memslot && memslot->dirty_bitmap) {
1886 unsigned long rel_gfn = gfn - memslot->base_gfn;
1887
1888 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1889 }
1890 }
1891
1892 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1893 {
1894 struct kvm_memory_slot *memslot;
1895
1896 memslot = gfn_to_memslot(kvm, gfn);
1897 mark_page_dirty_in_slot(memslot, gfn);
1898 }
1899 EXPORT_SYMBOL_GPL(mark_page_dirty);
1900
1901 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1902 {
1903 struct kvm_memory_slot *memslot;
1904
1905 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1906 mark_page_dirty_in_slot(memslot, gfn);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1909
1910 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1911 {
1912 if (kvm_arch_vcpu_runnable(vcpu)) {
1913 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1914 return -EINTR;
1915 }
1916 if (kvm_cpu_has_pending_timer(vcpu))
1917 return -EINTR;
1918 if (signal_pending(current))
1919 return -EINTR;
1920
1921 return 0;
1922 }
1923
1924 /*
1925 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1926 */
1927 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1928 {
1929 ktime_t start, cur;
1930 DEFINE_WAIT(wait);
1931 bool waited = false;
1932
1933 start = cur = ktime_get();
1934 if (vcpu->halt_poll_ns) {
1935 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
1936
1937 do {
1938 /*
1939 * This sets KVM_REQ_UNHALT if an interrupt
1940 * arrives.
1941 */
1942 if (kvm_vcpu_check_block(vcpu) < 0) {
1943 ++vcpu->stat.halt_successful_poll;
1944 goto out;
1945 }
1946 cur = ktime_get();
1947 } while (single_task_running() && ktime_before(cur, stop));
1948 }
1949
1950 for (;;) {
1951 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1952
1953 if (kvm_vcpu_check_block(vcpu) < 0)
1954 break;
1955
1956 waited = true;
1957 schedule();
1958 }
1959
1960 finish_wait(&vcpu->wq, &wait);
1961 cur = ktime_get();
1962
1963 out:
1964 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1965 }
1966 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1967
1968 #ifndef CONFIG_S390
1969 /*
1970 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1971 */
1972 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1973 {
1974 int me;
1975 int cpu = vcpu->cpu;
1976 wait_queue_head_t *wqp;
1977
1978 wqp = kvm_arch_vcpu_wq(vcpu);
1979 if (waitqueue_active(wqp)) {
1980 wake_up_interruptible(wqp);
1981 ++vcpu->stat.halt_wakeup;
1982 }
1983
1984 me = get_cpu();
1985 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1986 if (kvm_arch_vcpu_should_kick(vcpu))
1987 smp_send_reschedule(cpu);
1988 put_cpu();
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1991 #endif /* !CONFIG_S390 */
1992
1993 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1994 {
1995 struct pid *pid;
1996 struct task_struct *task = NULL;
1997 int ret = 0;
1998
1999 rcu_read_lock();
2000 pid = rcu_dereference(target->pid);
2001 if (pid)
2002 task = get_pid_task(pid, PIDTYPE_PID);
2003 rcu_read_unlock();
2004 if (!task)
2005 return ret;
2006 ret = yield_to(task, 1);
2007 put_task_struct(task);
2008
2009 return ret;
2010 }
2011 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2012
2013 /*
2014 * Helper that checks whether a VCPU is eligible for directed yield.
2015 * Most eligible candidate to yield is decided by following heuristics:
2016 *
2017 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2018 * (preempted lock holder), indicated by @in_spin_loop.
2019 * Set at the beiginning and cleared at the end of interception/PLE handler.
2020 *
2021 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2022 * chance last time (mostly it has become eligible now since we have probably
2023 * yielded to lockholder in last iteration. This is done by toggling
2024 * @dy_eligible each time a VCPU checked for eligibility.)
2025 *
2026 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2027 * to preempted lock-holder could result in wrong VCPU selection and CPU
2028 * burning. Giving priority for a potential lock-holder increases lock
2029 * progress.
2030 *
2031 * Since algorithm is based on heuristics, accessing another VCPU data without
2032 * locking does not harm. It may result in trying to yield to same VCPU, fail
2033 * and continue with next VCPU and so on.
2034 */
2035 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2036 {
2037 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2038 bool eligible;
2039
2040 eligible = !vcpu->spin_loop.in_spin_loop ||
2041 vcpu->spin_loop.dy_eligible;
2042
2043 if (vcpu->spin_loop.in_spin_loop)
2044 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2045
2046 return eligible;
2047 #else
2048 return true;
2049 #endif
2050 }
2051
2052 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2053 {
2054 struct kvm *kvm = me->kvm;
2055 struct kvm_vcpu *vcpu;
2056 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2057 int yielded = 0;
2058 int try = 3;
2059 int pass;
2060 int i;
2061
2062 kvm_vcpu_set_in_spin_loop(me, true);
2063 /*
2064 * We boost the priority of a VCPU that is runnable but not
2065 * currently running, because it got preempted by something
2066 * else and called schedule in __vcpu_run. Hopefully that
2067 * VCPU is holding the lock that we need and will release it.
2068 * We approximate round-robin by starting at the last boosted VCPU.
2069 */
2070 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2071 kvm_for_each_vcpu(i, vcpu, kvm) {
2072 if (!pass && i <= last_boosted_vcpu) {
2073 i = last_boosted_vcpu;
2074 continue;
2075 } else if (pass && i > last_boosted_vcpu)
2076 break;
2077 if (!ACCESS_ONCE(vcpu->preempted))
2078 continue;
2079 if (vcpu == me)
2080 continue;
2081 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2082 continue;
2083 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2084 continue;
2085
2086 yielded = kvm_vcpu_yield_to(vcpu);
2087 if (yielded > 0) {
2088 kvm->last_boosted_vcpu = i;
2089 break;
2090 } else if (yielded < 0) {
2091 try--;
2092 if (!try)
2093 break;
2094 }
2095 }
2096 }
2097 kvm_vcpu_set_in_spin_loop(me, false);
2098
2099 /* Ensure vcpu is not eligible during next spinloop */
2100 kvm_vcpu_set_dy_eligible(me, false);
2101 }
2102 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2103
2104 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2105 {
2106 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2107 struct page *page;
2108
2109 if (vmf->pgoff == 0)
2110 page = virt_to_page(vcpu->run);
2111 #ifdef CONFIG_X86
2112 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2113 page = virt_to_page(vcpu->arch.pio_data);
2114 #endif
2115 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2116 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2117 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2118 #endif
2119 else
2120 return kvm_arch_vcpu_fault(vcpu, vmf);
2121 get_page(page);
2122 vmf->page = page;
2123 return 0;
2124 }
2125
2126 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2127 .fault = kvm_vcpu_fault,
2128 };
2129
2130 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2131 {
2132 vma->vm_ops = &kvm_vcpu_vm_ops;
2133 return 0;
2134 }
2135
2136 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2137 {
2138 struct kvm_vcpu *vcpu = filp->private_data;
2139
2140 kvm_put_kvm(vcpu->kvm);
2141 return 0;
2142 }
2143
2144 static struct file_operations kvm_vcpu_fops = {
2145 .release = kvm_vcpu_release,
2146 .unlocked_ioctl = kvm_vcpu_ioctl,
2147 #ifdef CONFIG_KVM_COMPAT
2148 .compat_ioctl = kvm_vcpu_compat_ioctl,
2149 #endif
2150 .mmap = kvm_vcpu_mmap,
2151 .llseek = noop_llseek,
2152 };
2153
2154 /*
2155 * Allocates an inode for the vcpu.
2156 */
2157 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2158 {
2159 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2160 }
2161
2162 /*
2163 * Creates some virtual cpus. Good luck creating more than one.
2164 */
2165 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2166 {
2167 int r;
2168 struct kvm_vcpu *vcpu, *v;
2169
2170 if (id >= KVM_MAX_VCPUS)
2171 return -EINVAL;
2172
2173 vcpu = kvm_arch_vcpu_create(kvm, id);
2174 if (IS_ERR(vcpu))
2175 return PTR_ERR(vcpu);
2176
2177 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2178
2179 r = kvm_arch_vcpu_setup(vcpu);
2180 if (r)
2181 goto vcpu_destroy;
2182
2183 mutex_lock(&kvm->lock);
2184 if (!kvm_vcpu_compatible(vcpu)) {
2185 r = -EINVAL;
2186 goto unlock_vcpu_destroy;
2187 }
2188 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2189 r = -EINVAL;
2190 goto unlock_vcpu_destroy;
2191 }
2192
2193 kvm_for_each_vcpu(r, v, kvm)
2194 if (v->vcpu_id == id) {
2195 r = -EEXIST;
2196 goto unlock_vcpu_destroy;
2197 }
2198
2199 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2200
2201 /* Now it's all set up, let userspace reach it */
2202 kvm_get_kvm(kvm);
2203 r = create_vcpu_fd(vcpu);
2204 if (r < 0) {
2205 kvm_put_kvm(kvm);
2206 goto unlock_vcpu_destroy;
2207 }
2208
2209 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2210
2211 /*
2212 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2213 * before kvm->online_vcpu's incremented value.
2214 */
2215 smp_wmb();
2216 atomic_inc(&kvm->online_vcpus);
2217
2218 mutex_unlock(&kvm->lock);
2219 kvm_arch_vcpu_postcreate(vcpu);
2220 return r;
2221
2222 unlock_vcpu_destroy:
2223 mutex_unlock(&kvm->lock);
2224 vcpu_destroy:
2225 kvm_arch_vcpu_destroy(vcpu);
2226 return r;
2227 }
2228
2229 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2230 {
2231 if (sigset) {
2232 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2233 vcpu->sigset_active = 1;
2234 vcpu->sigset = *sigset;
2235 } else
2236 vcpu->sigset_active = 0;
2237 return 0;
2238 }
2239
2240 static long kvm_vcpu_ioctl(struct file *filp,
2241 unsigned int ioctl, unsigned long arg)
2242 {
2243 struct kvm_vcpu *vcpu = filp->private_data;
2244 void __user *argp = (void __user *)arg;
2245 int r;
2246 struct kvm_fpu *fpu = NULL;
2247 struct kvm_sregs *kvm_sregs = NULL;
2248
2249 if (vcpu->kvm->mm != current->mm)
2250 return -EIO;
2251
2252 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2253 return -EINVAL;
2254
2255 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2256 /*
2257 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2258 * so vcpu_load() would break it.
2259 */
2260 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2261 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2262 #endif
2263
2264
2265 r = vcpu_load(vcpu);
2266 if (r)
2267 return r;
2268 switch (ioctl) {
2269 case KVM_RUN:
2270 r = -EINVAL;
2271 if (arg)
2272 goto out;
2273 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2274 /* The thread running this VCPU changed. */
2275 struct pid *oldpid = vcpu->pid;
2276 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2277
2278 rcu_assign_pointer(vcpu->pid, newpid);
2279 if (oldpid)
2280 synchronize_rcu();
2281 put_pid(oldpid);
2282 }
2283 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2284 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2285 break;
2286 case KVM_GET_REGS: {
2287 struct kvm_regs *kvm_regs;
2288
2289 r = -ENOMEM;
2290 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2291 if (!kvm_regs)
2292 goto out;
2293 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2294 if (r)
2295 goto out_free1;
2296 r = -EFAULT;
2297 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2298 goto out_free1;
2299 r = 0;
2300 out_free1:
2301 kfree(kvm_regs);
2302 break;
2303 }
2304 case KVM_SET_REGS: {
2305 struct kvm_regs *kvm_regs;
2306
2307 r = -ENOMEM;
2308 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2309 if (IS_ERR(kvm_regs)) {
2310 r = PTR_ERR(kvm_regs);
2311 goto out;
2312 }
2313 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2314 kfree(kvm_regs);
2315 break;
2316 }
2317 case KVM_GET_SREGS: {
2318 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2319 r = -ENOMEM;
2320 if (!kvm_sregs)
2321 goto out;
2322 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2323 if (r)
2324 goto out;
2325 r = -EFAULT;
2326 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2327 goto out;
2328 r = 0;
2329 break;
2330 }
2331 case KVM_SET_SREGS: {
2332 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2333 if (IS_ERR(kvm_sregs)) {
2334 r = PTR_ERR(kvm_sregs);
2335 kvm_sregs = NULL;
2336 goto out;
2337 }
2338 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2339 break;
2340 }
2341 case KVM_GET_MP_STATE: {
2342 struct kvm_mp_state mp_state;
2343
2344 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2345 if (r)
2346 goto out;
2347 r = -EFAULT;
2348 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2349 goto out;
2350 r = 0;
2351 break;
2352 }
2353 case KVM_SET_MP_STATE: {
2354 struct kvm_mp_state mp_state;
2355
2356 r = -EFAULT;
2357 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2358 goto out;
2359 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2360 break;
2361 }
2362 case KVM_TRANSLATE: {
2363 struct kvm_translation tr;
2364
2365 r = -EFAULT;
2366 if (copy_from_user(&tr, argp, sizeof(tr)))
2367 goto out;
2368 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2369 if (r)
2370 goto out;
2371 r = -EFAULT;
2372 if (copy_to_user(argp, &tr, sizeof(tr)))
2373 goto out;
2374 r = 0;
2375 break;
2376 }
2377 case KVM_SET_GUEST_DEBUG: {
2378 struct kvm_guest_debug dbg;
2379
2380 r = -EFAULT;
2381 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2382 goto out;
2383 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2384 break;
2385 }
2386 case KVM_SET_SIGNAL_MASK: {
2387 struct kvm_signal_mask __user *sigmask_arg = argp;
2388 struct kvm_signal_mask kvm_sigmask;
2389 sigset_t sigset, *p;
2390
2391 p = NULL;
2392 if (argp) {
2393 r = -EFAULT;
2394 if (copy_from_user(&kvm_sigmask, argp,
2395 sizeof(kvm_sigmask)))
2396 goto out;
2397 r = -EINVAL;
2398 if (kvm_sigmask.len != sizeof(sigset))
2399 goto out;
2400 r = -EFAULT;
2401 if (copy_from_user(&sigset, sigmask_arg->sigset,
2402 sizeof(sigset)))
2403 goto out;
2404 p = &sigset;
2405 }
2406 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2407 break;
2408 }
2409 case KVM_GET_FPU: {
2410 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2411 r = -ENOMEM;
2412 if (!fpu)
2413 goto out;
2414 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2415 if (r)
2416 goto out;
2417 r = -EFAULT;
2418 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2419 goto out;
2420 r = 0;
2421 break;
2422 }
2423 case KVM_SET_FPU: {
2424 fpu = memdup_user(argp, sizeof(*fpu));
2425 if (IS_ERR(fpu)) {
2426 r = PTR_ERR(fpu);
2427 fpu = NULL;
2428 goto out;
2429 }
2430 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2431 break;
2432 }
2433 default:
2434 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2435 }
2436 out:
2437 vcpu_put(vcpu);
2438 kfree(fpu);
2439 kfree(kvm_sregs);
2440 return r;
2441 }
2442
2443 #ifdef CONFIG_KVM_COMPAT
2444 static long kvm_vcpu_compat_ioctl(struct file *filp,
2445 unsigned int ioctl, unsigned long arg)
2446 {
2447 struct kvm_vcpu *vcpu = filp->private_data;
2448 void __user *argp = compat_ptr(arg);
2449 int r;
2450
2451 if (vcpu->kvm->mm != current->mm)
2452 return -EIO;
2453
2454 switch (ioctl) {
2455 case KVM_SET_SIGNAL_MASK: {
2456 struct kvm_signal_mask __user *sigmask_arg = argp;
2457 struct kvm_signal_mask kvm_sigmask;
2458 compat_sigset_t csigset;
2459 sigset_t sigset;
2460
2461 if (argp) {
2462 r = -EFAULT;
2463 if (copy_from_user(&kvm_sigmask, argp,
2464 sizeof(kvm_sigmask)))
2465 goto out;
2466 r = -EINVAL;
2467 if (kvm_sigmask.len != sizeof(csigset))
2468 goto out;
2469 r = -EFAULT;
2470 if (copy_from_user(&csigset, sigmask_arg->sigset,
2471 sizeof(csigset)))
2472 goto out;
2473 sigset_from_compat(&sigset, &csigset);
2474 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2475 } else
2476 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2477 break;
2478 }
2479 default:
2480 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2481 }
2482
2483 out:
2484 return r;
2485 }
2486 #endif
2487
2488 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2489 int (*accessor)(struct kvm_device *dev,
2490 struct kvm_device_attr *attr),
2491 unsigned long arg)
2492 {
2493 struct kvm_device_attr attr;
2494
2495 if (!accessor)
2496 return -EPERM;
2497
2498 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2499 return -EFAULT;
2500
2501 return accessor(dev, &attr);
2502 }
2503
2504 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2505 unsigned long arg)
2506 {
2507 struct kvm_device *dev = filp->private_data;
2508
2509 switch (ioctl) {
2510 case KVM_SET_DEVICE_ATTR:
2511 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2512 case KVM_GET_DEVICE_ATTR:
2513 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2514 case KVM_HAS_DEVICE_ATTR:
2515 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2516 default:
2517 if (dev->ops->ioctl)
2518 return dev->ops->ioctl(dev, ioctl, arg);
2519
2520 return -ENOTTY;
2521 }
2522 }
2523
2524 static int kvm_device_release(struct inode *inode, struct file *filp)
2525 {
2526 struct kvm_device *dev = filp->private_data;
2527 struct kvm *kvm = dev->kvm;
2528
2529 kvm_put_kvm(kvm);
2530 return 0;
2531 }
2532
2533 static const struct file_operations kvm_device_fops = {
2534 .unlocked_ioctl = kvm_device_ioctl,
2535 #ifdef CONFIG_KVM_COMPAT
2536 .compat_ioctl = kvm_device_ioctl,
2537 #endif
2538 .release = kvm_device_release,
2539 };
2540
2541 struct kvm_device *kvm_device_from_filp(struct file *filp)
2542 {
2543 if (filp->f_op != &kvm_device_fops)
2544 return NULL;
2545
2546 return filp->private_data;
2547 }
2548
2549 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2550 #ifdef CONFIG_KVM_MPIC
2551 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2552 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2553 #endif
2554
2555 #ifdef CONFIG_KVM_XICS
2556 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2557 #endif
2558 };
2559
2560 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2561 {
2562 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2563 return -ENOSPC;
2564
2565 if (kvm_device_ops_table[type] != NULL)
2566 return -EEXIST;
2567
2568 kvm_device_ops_table[type] = ops;
2569 return 0;
2570 }
2571
2572 void kvm_unregister_device_ops(u32 type)
2573 {
2574 if (kvm_device_ops_table[type] != NULL)
2575 kvm_device_ops_table[type] = NULL;
2576 }
2577
2578 static int kvm_ioctl_create_device(struct kvm *kvm,
2579 struct kvm_create_device *cd)
2580 {
2581 struct kvm_device_ops *ops = NULL;
2582 struct kvm_device *dev;
2583 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2584 int ret;
2585
2586 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2587 return -ENODEV;
2588
2589 ops = kvm_device_ops_table[cd->type];
2590 if (ops == NULL)
2591 return -ENODEV;
2592
2593 if (test)
2594 return 0;
2595
2596 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2597 if (!dev)
2598 return -ENOMEM;
2599
2600 dev->ops = ops;
2601 dev->kvm = kvm;
2602
2603 ret = ops->create(dev, cd->type);
2604 if (ret < 0) {
2605 kfree(dev);
2606 return ret;
2607 }
2608
2609 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2610 if (ret < 0) {
2611 ops->destroy(dev);
2612 return ret;
2613 }
2614
2615 list_add(&dev->vm_node, &kvm->devices);
2616 kvm_get_kvm(kvm);
2617 cd->fd = ret;
2618 return 0;
2619 }
2620
2621 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2622 {
2623 switch (arg) {
2624 case KVM_CAP_USER_MEMORY:
2625 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2626 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2627 case KVM_CAP_INTERNAL_ERROR_DATA:
2628 #ifdef CONFIG_HAVE_KVM_MSI
2629 case KVM_CAP_SIGNAL_MSI:
2630 #endif
2631 #ifdef CONFIG_HAVE_KVM_IRQFD
2632 case KVM_CAP_IRQFD:
2633 case KVM_CAP_IRQFD_RESAMPLE:
2634 #endif
2635 case KVM_CAP_CHECK_EXTENSION_VM:
2636 return 1;
2637 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2638 case KVM_CAP_IRQ_ROUTING:
2639 return KVM_MAX_IRQ_ROUTES;
2640 #endif
2641 #if KVM_ADDRESS_SPACE_NUM > 1
2642 case KVM_CAP_MULTI_ADDRESS_SPACE:
2643 return KVM_ADDRESS_SPACE_NUM;
2644 #endif
2645 default:
2646 break;
2647 }
2648 return kvm_vm_ioctl_check_extension(kvm, arg);
2649 }
2650
2651 static long kvm_vm_ioctl(struct file *filp,
2652 unsigned int ioctl, unsigned long arg)
2653 {
2654 struct kvm *kvm = filp->private_data;
2655 void __user *argp = (void __user *)arg;
2656 int r;
2657
2658 if (kvm->mm != current->mm)
2659 return -EIO;
2660 switch (ioctl) {
2661 case KVM_CREATE_VCPU:
2662 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2663 break;
2664 case KVM_SET_USER_MEMORY_REGION: {
2665 struct kvm_userspace_memory_region kvm_userspace_mem;
2666
2667 r = -EFAULT;
2668 if (copy_from_user(&kvm_userspace_mem, argp,
2669 sizeof(kvm_userspace_mem)))
2670 goto out;
2671
2672 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2673 break;
2674 }
2675 case KVM_GET_DIRTY_LOG: {
2676 struct kvm_dirty_log log;
2677
2678 r = -EFAULT;
2679 if (copy_from_user(&log, argp, sizeof(log)))
2680 goto out;
2681 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2682 break;
2683 }
2684 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2685 case KVM_REGISTER_COALESCED_MMIO: {
2686 struct kvm_coalesced_mmio_zone zone;
2687
2688 r = -EFAULT;
2689 if (copy_from_user(&zone, argp, sizeof(zone)))
2690 goto out;
2691 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2692 break;
2693 }
2694 case KVM_UNREGISTER_COALESCED_MMIO: {
2695 struct kvm_coalesced_mmio_zone zone;
2696
2697 r = -EFAULT;
2698 if (copy_from_user(&zone, argp, sizeof(zone)))
2699 goto out;
2700 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2701 break;
2702 }
2703 #endif
2704 case KVM_IRQFD: {
2705 struct kvm_irqfd data;
2706
2707 r = -EFAULT;
2708 if (copy_from_user(&data, argp, sizeof(data)))
2709 goto out;
2710 r = kvm_irqfd(kvm, &data);
2711 break;
2712 }
2713 case KVM_IOEVENTFD: {
2714 struct kvm_ioeventfd data;
2715
2716 r = -EFAULT;
2717 if (copy_from_user(&data, argp, sizeof(data)))
2718 goto out;
2719 r = kvm_ioeventfd(kvm, &data);
2720 break;
2721 }
2722 #ifdef CONFIG_HAVE_KVM_MSI
2723 case KVM_SIGNAL_MSI: {
2724 struct kvm_msi msi;
2725
2726 r = -EFAULT;
2727 if (copy_from_user(&msi, argp, sizeof(msi)))
2728 goto out;
2729 r = kvm_send_userspace_msi(kvm, &msi);
2730 break;
2731 }
2732 #endif
2733 #ifdef __KVM_HAVE_IRQ_LINE
2734 case KVM_IRQ_LINE_STATUS:
2735 case KVM_IRQ_LINE: {
2736 struct kvm_irq_level irq_event;
2737
2738 r = -EFAULT;
2739 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2740 goto out;
2741
2742 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2743 ioctl == KVM_IRQ_LINE_STATUS);
2744 if (r)
2745 goto out;
2746
2747 r = -EFAULT;
2748 if (ioctl == KVM_IRQ_LINE_STATUS) {
2749 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2750 goto out;
2751 }
2752
2753 r = 0;
2754 break;
2755 }
2756 #endif
2757 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2758 case KVM_SET_GSI_ROUTING: {
2759 struct kvm_irq_routing routing;
2760 struct kvm_irq_routing __user *urouting;
2761 struct kvm_irq_routing_entry *entries;
2762
2763 r = -EFAULT;
2764 if (copy_from_user(&routing, argp, sizeof(routing)))
2765 goto out;
2766 r = -EINVAL;
2767 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2768 goto out;
2769 if (routing.flags)
2770 goto out;
2771 r = -ENOMEM;
2772 entries = vmalloc(routing.nr * sizeof(*entries));
2773 if (!entries)
2774 goto out;
2775 r = -EFAULT;
2776 urouting = argp;
2777 if (copy_from_user(entries, urouting->entries,
2778 routing.nr * sizeof(*entries)))
2779 goto out_free_irq_routing;
2780 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2781 routing.flags);
2782 out_free_irq_routing:
2783 vfree(entries);
2784 break;
2785 }
2786 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2787 case KVM_CREATE_DEVICE: {
2788 struct kvm_create_device cd;
2789
2790 r = -EFAULT;
2791 if (copy_from_user(&cd, argp, sizeof(cd)))
2792 goto out;
2793
2794 r = kvm_ioctl_create_device(kvm, &cd);
2795 if (r)
2796 goto out;
2797
2798 r = -EFAULT;
2799 if (copy_to_user(argp, &cd, sizeof(cd)))
2800 goto out;
2801
2802 r = 0;
2803 break;
2804 }
2805 case KVM_CHECK_EXTENSION:
2806 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2807 break;
2808 default:
2809 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2810 }
2811 out:
2812 return r;
2813 }
2814
2815 #ifdef CONFIG_KVM_COMPAT
2816 struct compat_kvm_dirty_log {
2817 __u32 slot;
2818 __u32 padding1;
2819 union {
2820 compat_uptr_t dirty_bitmap; /* one bit per page */
2821 __u64 padding2;
2822 };
2823 };
2824
2825 static long kvm_vm_compat_ioctl(struct file *filp,
2826 unsigned int ioctl, unsigned long arg)
2827 {
2828 struct kvm *kvm = filp->private_data;
2829 int r;
2830
2831 if (kvm->mm != current->mm)
2832 return -EIO;
2833 switch (ioctl) {
2834 case KVM_GET_DIRTY_LOG: {
2835 struct compat_kvm_dirty_log compat_log;
2836 struct kvm_dirty_log log;
2837
2838 r = -EFAULT;
2839 if (copy_from_user(&compat_log, (void __user *)arg,
2840 sizeof(compat_log)))
2841 goto out;
2842 log.slot = compat_log.slot;
2843 log.padding1 = compat_log.padding1;
2844 log.padding2 = compat_log.padding2;
2845 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2846
2847 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2848 break;
2849 }
2850 default:
2851 r = kvm_vm_ioctl(filp, ioctl, arg);
2852 }
2853
2854 out:
2855 return r;
2856 }
2857 #endif
2858
2859 static struct file_operations kvm_vm_fops = {
2860 .release = kvm_vm_release,
2861 .unlocked_ioctl = kvm_vm_ioctl,
2862 #ifdef CONFIG_KVM_COMPAT
2863 .compat_ioctl = kvm_vm_compat_ioctl,
2864 #endif
2865 .llseek = noop_llseek,
2866 };
2867
2868 static int kvm_dev_ioctl_create_vm(unsigned long type)
2869 {
2870 int r;
2871 struct kvm *kvm;
2872
2873 kvm = kvm_create_vm(type);
2874 if (IS_ERR(kvm))
2875 return PTR_ERR(kvm);
2876 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2877 r = kvm_coalesced_mmio_init(kvm);
2878 if (r < 0) {
2879 kvm_put_kvm(kvm);
2880 return r;
2881 }
2882 #endif
2883 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2884 if (r < 0)
2885 kvm_put_kvm(kvm);
2886
2887 return r;
2888 }
2889
2890 static long kvm_dev_ioctl(struct file *filp,
2891 unsigned int ioctl, unsigned long arg)
2892 {
2893 long r = -EINVAL;
2894
2895 switch (ioctl) {
2896 case KVM_GET_API_VERSION:
2897 if (arg)
2898 goto out;
2899 r = KVM_API_VERSION;
2900 break;
2901 case KVM_CREATE_VM:
2902 r = kvm_dev_ioctl_create_vm(arg);
2903 break;
2904 case KVM_CHECK_EXTENSION:
2905 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2906 break;
2907 case KVM_GET_VCPU_MMAP_SIZE:
2908 if (arg)
2909 goto out;
2910 r = PAGE_SIZE; /* struct kvm_run */
2911 #ifdef CONFIG_X86
2912 r += PAGE_SIZE; /* pio data page */
2913 #endif
2914 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2915 r += PAGE_SIZE; /* coalesced mmio ring page */
2916 #endif
2917 break;
2918 case KVM_TRACE_ENABLE:
2919 case KVM_TRACE_PAUSE:
2920 case KVM_TRACE_DISABLE:
2921 r = -EOPNOTSUPP;
2922 break;
2923 default:
2924 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2925 }
2926 out:
2927 return r;
2928 }
2929
2930 static struct file_operations kvm_chardev_ops = {
2931 .unlocked_ioctl = kvm_dev_ioctl,
2932 .compat_ioctl = kvm_dev_ioctl,
2933 .llseek = noop_llseek,
2934 };
2935
2936 static struct miscdevice kvm_dev = {
2937 KVM_MINOR,
2938 "kvm",
2939 &kvm_chardev_ops,
2940 };
2941
2942 static void hardware_enable_nolock(void *junk)
2943 {
2944 int cpu = raw_smp_processor_id();
2945 int r;
2946
2947 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2948 return;
2949
2950 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2951
2952 r = kvm_arch_hardware_enable();
2953
2954 if (r) {
2955 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2956 atomic_inc(&hardware_enable_failed);
2957 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2958 }
2959 }
2960
2961 static void hardware_enable(void)
2962 {
2963 raw_spin_lock(&kvm_count_lock);
2964 if (kvm_usage_count)
2965 hardware_enable_nolock(NULL);
2966 raw_spin_unlock(&kvm_count_lock);
2967 }
2968
2969 static void hardware_disable_nolock(void *junk)
2970 {
2971 int cpu = raw_smp_processor_id();
2972
2973 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2974 return;
2975 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2976 kvm_arch_hardware_disable();
2977 }
2978
2979 static void hardware_disable(void)
2980 {
2981 raw_spin_lock(&kvm_count_lock);
2982 if (kvm_usage_count)
2983 hardware_disable_nolock(NULL);
2984 raw_spin_unlock(&kvm_count_lock);
2985 }
2986
2987 static void hardware_disable_all_nolock(void)
2988 {
2989 BUG_ON(!kvm_usage_count);
2990
2991 kvm_usage_count--;
2992 if (!kvm_usage_count)
2993 on_each_cpu(hardware_disable_nolock, NULL, 1);
2994 }
2995
2996 static void hardware_disable_all(void)
2997 {
2998 raw_spin_lock(&kvm_count_lock);
2999 hardware_disable_all_nolock();
3000 raw_spin_unlock(&kvm_count_lock);
3001 }
3002
3003 static int hardware_enable_all(void)
3004 {
3005 int r = 0;
3006
3007 raw_spin_lock(&kvm_count_lock);
3008
3009 kvm_usage_count++;
3010 if (kvm_usage_count == 1) {
3011 atomic_set(&hardware_enable_failed, 0);
3012 on_each_cpu(hardware_enable_nolock, NULL, 1);
3013
3014 if (atomic_read(&hardware_enable_failed)) {
3015 hardware_disable_all_nolock();
3016 r = -EBUSY;
3017 }
3018 }
3019
3020 raw_spin_unlock(&kvm_count_lock);
3021
3022 return r;
3023 }
3024
3025 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3026 void *v)
3027 {
3028 val &= ~CPU_TASKS_FROZEN;
3029 switch (val) {
3030 case CPU_DYING:
3031 hardware_disable();
3032 break;
3033 case CPU_STARTING:
3034 hardware_enable();
3035 break;
3036 }
3037 return NOTIFY_OK;
3038 }
3039
3040 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3041 void *v)
3042 {
3043 /*
3044 * Some (well, at least mine) BIOSes hang on reboot if
3045 * in vmx root mode.
3046 *
3047 * And Intel TXT required VMX off for all cpu when system shutdown.
3048 */
3049 pr_info("kvm: exiting hardware virtualization\n");
3050 kvm_rebooting = true;
3051 on_each_cpu(hardware_disable_nolock, NULL, 1);
3052 return NOTIFY_OK;
3053 }
3054
3055 static struct notifier_block kvm_reboot_notifier = {
3056 .notifier_call = kvm_reboot,
3057 .priority = 0,
3058 };
3059
3060 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3061 {
3062 int i;
3063
3064 for (i = 0; i < bus->dev_count; i++) {
3065 struct kvm_io_device *pos = bus->range[i].dev;
3066
3067 kvm_iodevice_destructor(pos);
3068 }
3069 kfree(bus);
3070 }
3071
3072 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3073 const struct kvm_io_range *r2)
3074 {
3075 if (r1->addr < r2->addr)
3076 return -1;
3077 if (r1->addr + r1->len > r2->addr + r2->len)
3078 return 1;
3079 return 0;
3080 }
3081
3082 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3083 {
3084 return kvm_io_bus_cmp(p1, p2);
3085 }
3086
3087 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3088 gpa_t addr, int len)
3089 {
3090 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3091 .addr = addr,
3092 .len = len,
3093 .dev = dev,
3094 };
3095
3096 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3097 kvm_io_bus_sort_cmp, NULL);
3098
3099 return 0;
3100 }
3101
3102 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3103 gpa_t addr, int len)
3104 {
3105 struct kvm_io_range *range, key;
3106 int off;
3107
3108 key = (struct kvm_io_range) {
3109 .addr = addr,
3110 .len = len,
3111 };
3112
3113 range = bsearch(&key, bus->range, bus->dev_count,
3114 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3115 if (range == NULL)
3116 return -ENOENT;
3117
3118 off = range - bus->range;
3119
3120 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3121 off--;
3122
3123 return off;
3124 }
3125
3126 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3127 struct kvm_io_range *range, const void *val)
3128 {
3129 int idx;
3130
3131 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3132 if (idx < 0)
3133 return -EOPNOTSUPP;
3134
3135 while (idx < bus->dev_count &&
3136 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3137 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3138 range->len, val))
3139 return idx;
3140 idx++;
3141 }
3142
3143 return -EOPNOTSUPP;
3144 }
3145
3146 /* kvm_io_bus_write - called under kvm->slots_lock */
3147 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3148 int len, const void *val)
3149 {
3150 struct kvm_io_bus *bus;
3151 struct kvm_io_range range;
3152 int r;
3153
3154 range = (struct kvm_io_range) {
3155 .addr = addr,
3156 .len = len,
3157 };
3158
3159 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3160 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3161 return r < 0 ? r : 0;
3162 }
3163
3164 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3165 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3166 gpa_t addr, int len, const void *val, long cookie)
3167 {
3168 struct kvm_io_bus *bus;
3169 struct kvm_io_range range;
3170
3171 range = (struct kvm_io_range) {
3172 .addr = addr,
3173 .len = len,
3174 };
3175
3176 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3177
3178 /* First try the device referenced by cookie. */
3179 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3180 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3181 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3182 val))
3183 return cookie;
3184
3185 /*
3186 * cookie contained garbage; fall back to search and return the
3187 * correct cookie value.
3188 */
3189 return __kvm_io_bus_write(vcpu, bus, &range, val);
3190 }
3191
3192 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3193 struct kvm_io_range *range, void *val)
3194 {
3195 int idx;
3196
3197 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3198 if (idx < 0)
3199 return -EOPNOTSUPP;
3200
3201 while (idx < bus->dev_count &&
3202 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3203 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3204 range->len, val))
3205 return idx;
3206 idx++;
3207 }
3208
3209 return -EOPNOTSUPP;
3210 }
3211 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3212
3213 /* kvm_io_bus_read - called under kvm->slots_lock */
3214 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3215 int len, void *val)
3216 {
3217 struct kvm_io_bus *bus;
3218 struct kvm_io_range range;
3219 int r;
3220
3221 range = (struct kvm_io_range) {
3222 .addr = addr,
3223 .len = len,
3224 };
3225
3226 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3227 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3228 return r < 0 ? r : 0;
3229 }
3230
3231
3232 /* Caller must hold slots_lock. */
3233 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3234 int len, struct kvm_io_device *dev)
3235 {
3236 struct kvm_io_bus *new_bus, *bus;
3237
3238 bus = kvm->buses[bus_idx];
3239 /* exclude ioeventfd which is limited by maximum fd */
3240 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3241 return -ENOSPC;
3242
3243 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3244 sizeof(struct kvm_io_range)), GFP_KERNEL);
3245 if (!new_bus)
3246 return -ENOMEM;
3247 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3248 sizeof(struct kvm_io_range)));
3249 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3250 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3251 synchronize_srcu_expedited(&kvm->srcu);
3252 kfree(bus);
3253
3254 return 0;
3255 }
3256
3257 /* Caller must hold slots_lock. */
3258 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3259 struct kvm_io_device *dev)
3260 {
3261 int i, r;
3262 struct kvm_io_bus *new_bus, *bus;
3263
3264 bus = kvm->buses[bus_idx];
3265 r = -ENOENT;
3266 for (i = 0; i < bus->dev_count; i++)
3267 if (bus->range[i].dev == dev) {
3268 r = 0;
3269 break;
3270 }
3271
3272 if (r)
3273 return r;
3274
3275 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3276 sizeof(struct kvm_io_range)), GFP_KERNEL);
3277 if (!new_bus)
3278 return -ENOMEM;
3279
3280 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3281 new_bus->dev_count--;
3282 memcpy(new_bus->range + i, bus->range + i + 1,
3283 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3284
3285 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3286 synchronize_srcu_expedited(&kvm->srcu);
3287 kfree(bus);
3288 return r;
3289 }
3290
3291 static struct notifier_block kvm_cpu_notifier = {
3292 .notifier_call = kvm_cpu_hotplug,
3293 };
3294
3295 static int vm_stat_get(void *_offset, u64 *val)
3296 {
3297 unsigned offset = (long)_offset;
3298 struct kvm *kvm;
3299
3300 *val = 0;
3301 spin_lock(&kvm_lock);
3302 list_for_each_entry(kvm, &vm_list, vm_list)
3303 *val += *(u32 *)((void *)kvm + offset);
3304 spin_unlock(&kvm_lock);
3305 return 0;
3306 }
3307
3308 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3309
3310 static int vcpu_stat_get(void *_offset, u64 *val)
3311 {
3312 unsigned offset = (long)_offset;
3313 struct kvm *kvm;
3314 struct kvm_vcpu *vcpu;
3315 int i;
3316
3317 *val = 0;
3318 spin_lock(&kvm_lock);
3319 list_for_each_entry(kvm, &vm_list, vm_list)
3320 kvm_for_each_vcpu(i, vcpu, kvm)
3321 *val += *(u32 *)((void *)vcpu + offset);
3322
3323 spin_unlock(&kvm_lock);
3324 return 0;
3325 }
3326
3327 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3328
3329 static const struct file_operations *stat_fops[] = {
3330 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3331 [KVM_STAT_VM] = &vm_stat_fops,
3332 };
3333
3334 static int kvm_init_debug(void)
3335 {
3336 int r = -EEXIST;
3337 struct kvm_stats_debugfs_item *p;
3338
3339 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3340 if (kvm_debugfs_dir == NULL)
3341 goto out;
3342
3343 for (p = debugfs_entries; p->name; ++p) {
3344 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3345 (void *)(long)p->offset,
3346 stat_fops[p->kind]);
3347 if (p->dentry == NULL)
3348 goto out_dir;
3349 }
3350
3351 return 0;
3352
3353 out_dir:
3354 debugfs_remove_recursive(kvm_debugfs_dir);
3355 out:
3356 return r;
3357 }
3358
3359 static void kvm_exit_debug(void)
3360 {
3361 struct kvm_stats_debugfs_item *p;
3362
3363 for (p = debugfs_entries; p->name; ++p)
3364 debugfs_remove(p->dentry);
3365 debugfs_remove(kvm_debugfs_dir);
3366 }
3367
3368 static int kvm_suspend(void)
3369 {
3370 if (kvm_usage_count)
3371 hardware_disable_nolock(NULL);
3372 return 0;
3373 }
3374
3375 static void kvm_resume(void)
3376 {
3377 if (kvm_usage_count) {
3378 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3379 hardware_enable_nolock(NULL);
3380 }
3381 }
3382
3383 static struct syscore_ops kvm_syscore_ops = {
3384 .suspend = kvm_suspend,
3385 .resume = kvm_resume,
3386 };
3387
3388 static inline
3389 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3390 {
3391 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3392 }
3393
3394 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3395 {
3396 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3397
3398 if (vcpu->preempted)
3399 vcpu->preempted = false;
3400
3401 kvm_arch_sched_in(vcpu, cpu);
3402
3403 kvm_arch_vcpu_load(vcpu, cpu);
3404 }
3405
3406 static void kvm_sched_out(struct preempt_notifier *pn,
3407 struct task_struct *next)
3408 {
3409 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3410
3411 if (current->state == TASK_RUNNING)
3412 vcpu->preempted = true;
3413 kvm_arch_vcpu_put(vcpu);
3414 }
3415
3416 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3417 struct module *module)
3418 {
3419 int r;
3420 int cpu;
3421
3422 r = kvm_arch_init(opaque);
3423 if (r)
3424 goto out_fail;
3425
3426 /*
3427 * kvm_arch_init makes sure there's at most one caller
3428 * for architectures that support multiple implementations,
3429 * like intel and amd on x86.
3430 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3431 * conflicts in case kvm is already setup for another implementation.
3432 */
3433 r = kvm_irqfd_init();
3434 if (r)
3435 goto out_irqfd;
3436
3437 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3438 r = -ENOMEM;
3439 goto out_free_0;
3440 }
3441
3442 r = kvm_arch_hardware_setup();
3443 if (r < 0)
3444 goto out_free_0a;
3445
3446 for_each_online_cpu(cpu) {
3447 smp_call_function_single(cpu,
3448 kvm_arch_check_processor_compat,
3449 &r, 1);
3450 if (r < 0)
3451 goto out_free_1;
3452 }
3453
3454 r = register_cpu_notifier(&kvm_cpu_notifier);
3455 if (r)
3456 goto out_free_2;
3457 register_reboot_notifier(&kvm_reboot_notifier);
3458
3459 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3460 if (!vcpu_align)
3461 vcpu_align = __alignof__(struct kvm_vcpu);
3462 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3463 0, NULL);
3464 if (!kvm_vcpu_cache) {
3465 r = -ENOMEM;
3466 goto out_free_3;
3467 }
3468
3469 r = kvm_async_pf_init();
3470 if (r)
3471 goto out_free;
3472
3473 kvm_chardev_ops.owner = module;
3474 kvm_vm_fops.owner = module;
3475 kvm_vcpu_fops.owner = module;
3476
3477 r = misc_register(&kvm_dev);
3478 if (r) {
3479 pr_err("kvm: misc device register failed\n");
3480 goto out_unreg;
3481 }
3482
3483 register_syscore_ops(&kvm_syscore_ops);
3484
3485 kvm_preempt_ops.sched_in = kvm_sched_in;
3486 kvm_preempt_ops.sched_out = kvm_sched_out;
3487
3488 r = kvm_init_debug();
3489 if (r) {
3490 pr_err("kvm: create debugfs files failed\n");
3491 goto out_undebugfs;
3492 }
3493
3494 r = kvm_vfio_ops_init();
3495 WARN_ON(r);
3496
3497 return 0;
3498
3499 out_undebugfs:
3500 unregister_syscore_ops(&kvm_syscore_ops);
3501 misc_deregister(&kvm_dev);
3502 out_unreg:
3503 kvm_async_pf_deinit();
3504 out_free:
3505 kmem_cache_destroy(kvm_vcpu_cache);
3506 out_free_3:
3507 unregister_reboot_notifier(&kvm_reboot_notifier);
3508 unregister_cpu_notifier(&kvm_cpu_notifier);
3509 out_free_2:
3510 out_free_1:
3511 kvm_arch_hardware_unsetup();
3512 out_free_0a:
3513 free_cpumask_var(cpus_hardware_enabled);
3514 out_free_0:
3515 kvm_irqfd_exit();
3516 out_irqfd:
3517 kvm_arch_exit();
3518 out_fail:
3519 return r;
3520 }
3521 EXPORT_SYMBOL_GPL(kvm_init);
3522
3523 void kvm_exit(void)
3524 {
3525 kvm_exit_debug();
3526 misc_deregister(&kvm_dev);
3527 kmem_cache_destroy(kvm_vcpu_cache);
3528 kvm_async_pf_deinit();
3529 unregister_syscore_ops(&kvm_syscore_ops);
3530 unregister_reboot_notifier(&kvm_reboot_notifier);
3531 unregister_cpu_notifier(&kvm_cpu_notifier);
3532 on_each_cpu(hardware_disable_nolock, NULL, 1);
3533 kvm_arch_hardware_unsetup();
3534 kvm_arch_exit();
3535 kvm_irqfd_exit();
3536 free_cpumask_var(cpus_hardware_enabled);
3537 kvm_vfio_ops_exit();
3538 }
3539 EXPORT_SYMBOL_GPL(kvm_exit);