]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
KVM: Harden copying of userspace-array against overflow
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 #else
127 /*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163 /*
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
168 */
169 if (WARN_ON_ONCE(!page_count(page)))
170 return false;
171
172 return is_zone_device_page(page);
173 }
174
175 /*
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
180 */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183 struct page *page;
184
185 if (!pfn_valid(pfn))
186 return NULL;
187
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
190 return page;
191
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
194 return page;
195
196 /*
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
199 * usage rules.
200 */
201 if (kvm_is_zone_device_page(page))
202 return page;
203
204 return NULL;
205 }
206
207 /*
208 * Switches to specified vcpu, until a matching vcpu_put()
209 */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212 int cpu = get_cpu();
213
214 __this_cpu_write(kvm_running_vcpu, vcpu);
215 preempt_notifier_register(&vcpu->preempt_notifier);
216 kvm_arch_vcpu_load(vcpu, cpu);
217 put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223 preempt_disable();
224 kvm_arch_vcpu_put(vcpu);
225 preempt_notifier_unregister(&vcpu->preempt_notifier);
226 __this_cpu_write(kvm_running_vcpu, NULL);
227 preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236 /*
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
239 */
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
242
243 /*
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 */
246 return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_kick(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255 if (cpumask_empty(cpus))
256 return false;
257
258 smp_call_function_many(cpus, ack_kick, NULL, wait);
259 return true;
260 }
261
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
264 {
265 int cpu;
266
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
273 /*
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282 */
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, tmp);
287 }
288 }
289
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 unsigned long *vcpu_bitmap)
292 {
293 struct kvm_vcpu *vcpu;
294 struct cpumask *cpus;
295 int i, me;
296 bool called;
297
298 me = get_cpu();
299
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 cpumask_clear(cpus);
302
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
305 if (!vcpu)
306 continue;
307 kvm_make_vcpu_request(vcpu, req, cpus, me);
308 }
309
310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311 put_cpu();
312
313 return called;
314 }
315
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
318 {
319 struct kvm_vcpu *vcpu;
320 struct cpumask *cpus;
321 unsigned long i;
322 bool called;
323 int me;
324
325 me = get_cpu();
326
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 cpumask_clear(cpus);
329
330 kvm_for_each_vcpu(i, vcpu, kvm) {
331 if (vcpu == except)
332 continue;
333 kvm_make_vcpu_request(vcpu, req, cpus, me);
334 }
335
336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337 put_cpu();
338
339 return called;
340 }
341
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348 void kvm_flush_remote_tlbs(struct kvm *kvm)
349 {
350 ++kvm->stat.generic.remote_tlb_flush_requests;
351
352 /*
353 * We want to publish modifications to the page tables before reading
354 * mode. Pairs with a memory barrier in arch-specific code.
355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356 * and smp_mb in walk_shadow_page_lockless_begin/end.
357 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358 *
359 * There is already an smp_mb__after_atomic() before
360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361 * barrier here.
362 */
363 if (!kvm_arch_flush_remote_tlbs(kvm)
364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365 ++kvm->stat.generic.remote_tlb_flush;
366 }
367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
368
369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370 {
371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372 return;
373
374 /*
375 * Fall back to a flushing entire TLBs if the architecture range-based
376 * TLB invalidation is unsupported or can't be performed for whatever
377 * reason.
378 */
379 kvm_flush_remote_tlbs(kvm);
380 }
381
382 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383 const struct kvm_memory_slot *memslot)
384 {
385 /*
386 * All current use cases for flushing the TLBs for a specific memslot
387 * are related to dirty logging, and many do the TLB flush out of
388 * mmu_lock. The interaction between the various operations on memslot
389 * must be serialized by slots_locks to ensure the TLB flush from one
390 * operation is observed by any other operation on the same memslot.
391 */
392 lockdep_assert_held(&kvm->slots_lock);
393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
394 }
395
396 static void kvm_flush_shadow_all(struct kvm *kvm)
397 {
398 kvm_arch_flush_shadow_all(kvm);
399 kvm_arch_guest_memory_reclaimed(kvm);
400 }
401
402 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
403 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404 gfp_t gfp_flags)
405 {
406 gfp_flags |= mc->gfp_zero;
407
408 if (mc->kmem_cache)
409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
410 else
411 return (void *)__get_free_page(gfp_flags);
412 }
413
414 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
415 {
416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
417 void *obj;
418
419 if (mc->nobjs >= min)
420 return 0;
421
422 if (unlikely(!mc->objects)) {
423 if (WARN_ON_ONCE(!capacity))
424 return -EIO;
425
426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
427 if (!mc->objects)
428 return -ENOMEM;
429
430 mc->capacity = capacity;
431 }
432
433 /* It is illegal to request a different capacity across topups. */
434 if (WARN_ON_ONCE(mc->capacity != capacity))
435 return -EIO;
436
437 while (mc->nobjs < mc->capacity) {
438 obj = mmu_memory_cache_alloc_obj(mc, gfp);
439 if (!obj)
440 return mc->nobjs >= min ? 0 : -ENOMEM;
441 mc->objects[mc->nobjs++] = obj;
442 }
443 return 0;
444 }
445
446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
447 {
448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449 }
450
451 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
452 {
453 return mc->nobjs;
454 }
455
456 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
457 {
458 while (mc->nobjs) {
459 if (mc->kmem_cache)
460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
461 else
462 free_page((unsigned long)mc->objects[--mc->nobjs]);
463 }
464
465 kvfree(mc->objects);
466
467 mc->objects = NULL;
468 mc->capacity = 0;
469 }
470
471 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
472 {
473 void *p;
474
475 if (WARN_ON(!mc->nobjs))
476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
477 else
478 p = mc->objects[--mc->nobjs];
479 BUG_ON(!p);
480 return p;
481 }
482 #endif
483
484 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
485 {
486 mutex_init(&vcpu->mutex);
487 vcpu->cpu = -1;
488 vcpu->kvm = kvm;
489 vcpu->vcpu_id = id;
490 vcpu->pid = NULL;
491 #ifndef __KVM_HAVE_ARCH_WQP
492 rcuwait_init(&vcpu->wait);
493 #endif
494 kvm_async_pf_vcpu_init(vcpu);
495
496 kvm_vcpu_set_in_spin_loop(vcpu, false);
497 kvm_vcpu_set_dy_eligible(vcpu, false);
498 vcpu->preempted = false;
499 vcpu->ready = false;
500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
501 vcpu->last_used_slot = NULL;
502
503 /* Fill the stats id string for the vcpu */
504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
505 task_pid_nr(current), id);
506 }
507
508 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
509 {
510 kvm_arch_vcpu_destroy(vcpu);
511 kvm_dirty_ring_free(&vcpu->dirty_ring);
512
513 /*
514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515 * the vcpu->pid pointer, and at destruction time all file descriptors
516 * are already gone.
517 */
518 put_pid(rcu_dereference_protected(vcpu->pid, 1));
519
520 free_page((unsigned long)vcpu->run);
521 kmem_cache_free(kvm_vcpu_cache, vcpu);
522 }
523
524 void kvm_destroy_vcpus(struct kvm *kvm)
525 {
526 unsigned long i;
527 struct kvm_vcpu *vcpu;
528
529 kvm_for_each_vcpu(i, vcpu, kvm) {
530 kvm_vcpu_destroy(vcpu);
531 xa_erase(&kvm->vcpu_array, i);
532 }
533
534 atomic_set(&kvm->online_vcpus, 0);
535 }
536 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
537
538 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
539 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
540 {
541 return container_of(mn, struct kvm, mmu_notifier);
542 }
543
544 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
545
546 typedef void (*on_lock_fn_t)(struct kvm *kvm);
547
548 struct kvm_mmu_notifier_range {
549 /*
550 * 64-bit addresses, as KVM notifiers can operate on host virtual
551 * addresses (unsigned long) and guest physical addresses (64-bit).
552 */
553 u64 start;
554 u64 end;
555 union kvm_mmu_notifier_arg arg;
556 gfn_handler_t handler;
557 on_lock_fn_t on_lock;
558 bool flush_on_ret;
559 bool may_block;
560 };
561
562 /*
563 * The inner-most helper returns a tuple containing the return value from the
564 * arch- and action-specific handler, plus a flag indicating whether or not at
565 * least one memslot was found, i.e. if the handler found guest memory.
566 *
567 * Note, most notifiers are averse to booleans, so even though KVM tracks the
568 * return from arch code as a bool, outer helpers will cast it to an int. :-(
569 */
570 typedef struct kvm_mmu_notifier_return {
571 bool ret;
572 bool found_memslot;
573 } kvm_mn_ret_t;
574
575 /*
576 * Use a dedicated stub instead of NULL to indicate that there is no callback
577 * function/handler. The compiler technically can't guarantee that a real
578 * function will have a non-zero address, and so it will generate code to
579 * check for !NULL, whereas comparing against a stub will be elided at compile
580 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
581 */
582 static void kvm_null_fn(void)
583 {
584
585 }
586 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
587
588 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
589
590 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
591 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
592 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
593 node; \
594 node = interval_tree_iter_next(node, start, last)) \
595
596 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
597 const struct kvm_mmu_notifier_range *range)
598 {
599 struct kvm_mmu_notifier_return r = {
600 .ret = false,
601 .found_memslot = false,
602 };
603 struct kvm_gfn_range gfn_range;
604 struct kvm_memory_slot *slot;
605 struct kvm_memslots *slots;
606 int i, idx;
607
608 if (WARN_ON_ONCE(range->end <= range->start))
609 return r;
610
611 /* A null handler is allowed if and only if on_lock() is provided. */
612 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
613 IS_KVM_NULL_FN(range->handler)))
614 return r;
615
616 idx = srcu_read_lock(&kvm->srcu);
617
618 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
619 struct interval_tree_node *node;
620
621 slots = __kvm_memslots(kvm, i);
622 kvm_for_each_memslot_in_hva_range(node, slots,
623 range->start, range->end - 1) {
624 unsigned long hva_start, hva_end;
625
626 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
627 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
628 hva_end = min_t(unsigned long, range->end,
629 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
630
631 /*
632 * To optimize for the likely case where the address
633 * range is covered by zero or one memslots, don't
634 * bother making these conditional (to avoid writes on
635 * the second or later invocation of the handler).
636 */
637 gfn_range.arg = range->arg;
638 gfn_range.may_block = range->may_block;
639
640 /*
641 * {gfn(page) | page intersects with [hva_start, hva_end)} =
642 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
643 */
644 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
645 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
646 gfn_range.slot = slot;
647
648 if (!r.found_memslot) {
649 r.found_memslot = true;
650 KVM_MMU_LOCK(kvm);
651 if (!IS_KVM_NULL_FN(range->on_lock))
652 range->on_lock(kvm);
653
654 if (IS_KVM_NULL_FN(range->handler))
655 break;
656 }
657 r.ret |= range->handler(kvm, &gfn_range);
658 }
659 }
660
661 if (range->flush_on_ret && r.ret)
662 kvm_flush_remote_tlbs(kvm);
663
664 if (r.found_memslot)
665 KVM_MMU_UNLOCK(kvm);
666
667 srcu_read_unlock(&kvm->srcu, idx);
668
669 return r;
670 }
671
672 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
673 unsigned long start,
674 unsigned long end,
675 union kvm_mmu_notifier_arg arg,
676 gfn_handler_t handler)
677 {
678 struct kvm *kvm = mmu_notifier_to_kvm(mn);
679 const struct kvm_mmu_notifier_range range = {
680 .start = start,
681 .end = end,
682 .arg = arg,
683 .handler = handler,
684 .on_lock = (void *)kvm_null_fn,
685 .flush_on_ret = true,
686 .may_block = false,
687 };
688
689 return __kvm_handle_hva_range(kvm, &range).ret;
690 }
691
692 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
693 unsigned long start,
694 unsigned long end,
695 gfn_handler_t handler)
696 {
697 struct kvm *kvm = mmu_notifier_to_kvm(mn);
698 const struct kvm_mmu_notifier_range range = {
699 .start = start,
700 .end = end,
701 .handler = handler,
702 .on_lock = (void *)kvm_null_fn,
703 .flush_on_ret = false,
704 .may_block = false,
705 };
706
707 return __kvm_handle_hva_range(kvm, &range).ret;
708 }
709
710 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
711 {
712 /*
713 * Skipping invalid memslots is correct if and only change_pte() is
714 * surrounded by invalidate_range_{start,end}(), which is currently
715 * guaranteed by the primary MMU. If that ever changes, KVM needs to
716 * unmap the memslot instead of skipping the memslot to ensure that KVM
717 * doesn't hold references to the old PFN.
718 */
719 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
720
721 if (range->slot->flags & KVM_MEMSLOT_INVALID)
722 return false;
723
724 return kvm_set_spte_gfn(kvm, range);
725 }
726
727 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
728 struct mm_struct *mm,
729 unsigned long address,
730 pte_t pte)
731 {
732 struct kvm *kvm = mmu_notifier_to_kvm(mn);
733 const union kvm_mmu_notifier_arg arg = { .pte = pte };
734
735 trace_kvm_set_spte_hva(address);
736
737 /*
738 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
739 * If mmu_invalidate_in_progress is zero, then no in-progress
740 * invalidations, including this one, found a relevant memslot at
741 * start(); rechecking memslots here is unnecessary. Note, a false
742 * positive (count elevated by a different invalidation) is sub-optimal
743 * but functionally ok.
744 */
745 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
746 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
747 return;
748
749 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
750 }
751
752 void kvm_mmu_invalidate_begin(struct kvm *kvm)
753 {
754 lockdep_assert_held_write(&kvm->mmu_lock);
755 /*
756 * The count increase must become visible at unlock time as no
757 * spte can be established without taking the mmu_lock and
758 * count is also read inside the mmu_lock critical section.
759 */
760 kvm->mmu_invalidate_in_progress++;
761
762 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
763 kvm->mmu_invalidate_range_start = INVALID_GPA;
764 kvm->mmu_invalidate_range_end = INVALID_GPA;
765 }
766 }
767
768 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
769 {
770 lockdep_assert_held_write(&kvm->mmu_lock);
771
772 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
773
774 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
775 kvm->mmu_invalidate_range_start = start;
776 kvm->mmu_invalidate_range_end = end;
777 } else {
778 /*
779 * Fully tracking multiple concurrent ranges has diminishing
780 * returns. Keep things simple and just find the minimal range
781 * which includes the current and new ranges. As there won't be
782 * enough information to subtract a range after its invalidate
783 * completes, any ranges invalidated concurrently will
784 * accumulate and persist until all outstanding invalidates
785 * complete.
786 */
787 kvm->mmu_invalidate_range_start =
788 min(kvm->mmu_invalidate_range_start, start);
789 kvm->mmu_invalidate_range_end =
790 max(kvm->mmu_invalidate_range_end, end);
791 }
792 }
793
794 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
795 {
796 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
797 return kvm_unmap_gfn_range(kvm, range);
798 }
799
800 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
801 const struct mmu_notifier_range *range)
802 {
803 struct kvm *kvm = mmu_notifier_to_kvm(mn);
804 const struct kvm_mmu_notifier_range hva_range = {
805 .start = range->start,
806 .end = range->end,
807 .handler = kvm_mmu_unmap_gfn_range,
808 .on_lock = kvm_mmu_invalidate_begin,
809 .flush_on_ret = true,
810 .may_block = mmu_notifier_range_blockable(range),
811 };
812
813 trace_kvm_unmap_hva_range(range->start, range->end);
814
815 /*
816 * Prevent memslot modification between range_start() and range_end()
817 * so that conditionally locking provides the same result in both
818 * functions. Without that guarantee, the mmu_invalidate_in_progress
819 * adjustments will be imbalanced.
820 *
821 * Pairs with the decrement in range_end().
822 */
823 spin_lock(&kvm->mn_invalidate_lock);
824 kvm->mn_active_invalidate_count++;
825 spin_unlock(&kvm->mn_invalidate_lock);
826
827 /*
828 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
829 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
830 * each cache's lock. There are relatively few caches in existence at
831 * any given time, and the caches themselves can check for hva overlap,
832 * i.e. don't need to rely on memslot overlap checks for performance.
833 * Because this runs without holding mmu_lock, the pfn caches must use
834 * mn_active_invalidate_count (see above) instead of
835 * mmu_invalidate_in_progress.
836 */
837 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
838 hva_range.may_block);
839
840 /*
841 * If one or more memslots were found and thus zapped, notify arch code
842 * that guest memory has been reclaimed. This needs to be done *after*
843 * dropping mmu_lock, as x86's reclaim path is slooooow.
844 */
845 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
846 kvm_arch_guest_memory_reclaimed(kvm);
847
848 return 0;
849 }
850
851 void kvm_mmu_invalidate_end(struct kvm *kvm)
852 {
853 lockdep_assert_held_write(&kvm->mmu_lock);
854
855 /*
856 * This sequence increase will notify the kvm page fault that
857 * the page that is going to be mapped in the spte could have
858 * been freed.
859 */
860 kvm->mmu_invalidate_seq++;
861 smp_wmb();
862 /*
863 * The above sequence increase must be visible before the
864 * below count decrease, which is ensured by the smp_wmb above
865 * in conjunction with the smp_rmb in mmu_invalidate_retry().
866 */
867 kvm->mmu_invalidate_in_progress--;
868 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
869
870 /*
871 * Assert that at least one range was added between start() and end().
872 * Not adding a range isn't fatal, but it is a KVM bug.
873 */
874 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
875 }
876
877 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
878 const struct mmu_notifier_range *range)
879 {
880 struct kvm *kvm = mmu_notifier_to_kvm(mn);
881 const struct kvm_mmu_notifier_range hva_range = {
882 .start = range->start,
883 .end = range->end,
884 .handler = (void *)kvm_null_fn,
885 .on_lock = kvm_mmu_invalidate_end,
886 .flush_on_ret = false,
887 .may_block = mmu_notifier_range_blockable(range),
888 };
889 bool wake;
890
891 __kvm_handle_hva_range(kvm, &hva_range);
892
893 /* Pairs with the increment in range_start(). */
894 spin_lock(&kvm->mn_invalidate_lock);
895 wake = (--kvm->mn_active_invalidate_count == 0);
896 spin_unlock(&kvm->mn_invalidate_lock);
897
898 /*
899 * There can only be one waiter, since the wait happens under
900 * slots_lock.
901 */
902 if (wake)
903 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
904 }
905
906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
907 struct mm_struct *mm,
908 unsigned long start,
909 unsigned long end)
910 {
911 trace_kvm_age_hva(start, end);
912
913 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
914 kvm_age_gfn);
915 }
916
917 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
918 struct mm_struct *mm,
919 unsigned long start,
920 unsigned long end)
921 {
922 trace_kvm_age_hva(start, end);
923
924 /*
925 * Even though we do not flush TLB, this will still adversely
926 * affect performance on pre-Haswell Intel EPT, where there is
927 * no EPT Access Bit to clear so that we have to tear down EPT
928 * tables instead. If we find this unacceptable, we can always
929 * add a parameter to kvm_age_hva so that it effectively doesn't
930 * do anything on clear_young.
931 *
932 * Also note that currently we never issue secondary TLB flushes
933 * from clear_young, leaving this job up to the regular system
934 * cadence. If we find this inaccurate, we might come up with a
935 * more sophisticated heuristic later.
936 */
937 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
938 }
939
940 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
941 struct mm_struct *mm,
942 unsigned long address)
943 {
944 trace_kvm_test_age_hva(address);
945
946 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
947 kvm_test_age_gfn);
948 }
949
950 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
951 struct mm_struct *mm)
952 {
953 struct kvm *kvm = mmu_notifier_to_kvm(mn);
954 int idx;
955
956 idx = srcu_read_lock(&kvm->srcu);
957 kvm_flush_shadow_all(kvm);
958 srcu_read_unlock(&kvm->srcu, idx);
959 }
960
961 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
962 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
963 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
964 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
965 .clear_young = kvm_mmu_notifier_clear_young,
966 .test_young = kvm_mmu_notifier_test_young,
967 .change_pte = kvm_mmu_notifier_change_pte,
968 .release = kvm_mmu_notifier_release,
969 };
970
971 static int kvm_init_mmu_notifier(struct kvm *kvm)
972 {
973 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
974 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
975 }
976
977 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
978
979 static int kvm_init_mmu_notifier(struct kvm *kvm)
980 {
981 return 0;
982 }
983
984 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
985
986 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
987 static int kvm_pm_notifier_call(struct notifier_block *bl,
988 unsigned long state,
989 void *unused)
990 {
991 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
992
993 return kvm_arch_pm_notifier(kvm, state);
994 }
995
996 static void kvm_init_pm_notifier(struct kvm *kvm)
997 {
998 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
999 /* Suspend KVM before we suspend ftrace, RCU, etc. */
1000 kvm->pm_notifier.priority = INT_MAX;
1001 register_pm_notifier(&kvm->pm_notifier);
1002 }
1003
1004 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1005 {
1006 unregister_pm_notifier(&kvm->pm_notifier);
1007 }
1008 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1009 static void kvm_init_pm_notifier(struct kvm *kvm)
1010 {
1011 }
1012
1013 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1014 {
1015 }
1016 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1017
1018 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1019 {
1020 if (!memslot->dirty_bitmap)
1021 return;
1022
1023 kvfree(memslot->dirty_bitmap);
1024 memslot->dirty_bitmap = NULL;
1025 }
1026
1027 /* This does not remove the slot from struct kvm_memslots data structures */
1028 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1029 {
1030 if (slot->flags & KVM_MEM_GUEST_MEMFD)
1031 kvm_gmem_unbind(slot);
1032
1033 kvm_destroy_dirty_bitmap(slot);
1034
1035 kvm_arch_free_memslot(kvm, slot);
1036
1037 kfree(slot);
1038 }
1039
1040 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1041 {
1042 struct hlist_node *idnode;
1043 struct kvm_memory_slot *memslot;
1044 int bkt;
1045
1046 /*
1047 * The same memslot objects live in both active and inactive sets,
1048 * arbitrarily free using index '1' so the second invocation of this
1049 * function isn't operating over a structure with dangling pointers
1050 * (even though this function isn't actually touching them).
1051 */
1052 if (!slots->node_idx)
1053 return;
1054
1055 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1056 kvm_free_memslot(kvm, memslot);
1057 }
1058
1059 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1060 {
1061 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1062 case KVM_STATS_TYPE_INSTANT:
1063 return 0444;
1064 case KVM_STATS_TYPE_CUMULATIVE:
1065 case KVM_STATS_TYPE_PEAK:
1066 default:
1067 return 0644;
1068 }
1069 }
1070
1071
1072 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1073 {
1074 int i;
1075 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1076 kvm_vcpu_stats_header.num_desc;
1077
1078 if (IS_ERR(kvm->debugfs_dentry))
1079 return;
1080
1081 debugfs_remove_recursive(kvm->debugfs_dentry);
1082
1083 if (kvm->debugfs_stat_data) {
1084 for (i = 0; i < kvm_debugfs_num_entries; i++)
1085 kfree(kvm->debugfs_stat_data[i]);
1086 kfree(kvm->debugfs_stat_data);
1087 }
1088 }
1089
1090 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1091 {
1092 static DEFINE_MUTEX(kvm_debugfs_lock);
1093 struct dentry *dent;
1094 char dir_name[ITOA_MAX_LEN * 2];
1095 struct kvm_stat_data *stat_data;
1096 const struct _kvm_stats_desc *pdesc;
1097 int i, ret = -ENOMEM;
1098 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1099 kvm_vcpu_stats_header.num_desc;
1100
1101 if (!debugfs_initialized())
1102 return 0;
1103
1104 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1105 mutex_lock(&kvm_debugfs_lock);
1106 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1107 if (dent) {
1108 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1109 dput(dent);
1110 mutex_unlock(&kvm_debugfs_lock);
1111 return 0;
1112 }
1113 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1114 mutex_unlock(&kvm_debugfs_lock);
1115 if (IS_ERR(dent))
1116 return 0;
1117
1118 kvm->debugfs_dentry = dent;
1119 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1120 sizeof(*kvm->debugfs_stat_data),
1121 GFP_KERNEL_ACCOUNT);
1122 if (!kvm->debugfs_stat_data)
1123 goto out_err;
1124
1125 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1126 pdesc = &kvm_vm_stats_desc[i];
1127 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1128 if (!stat_data)
1129 goto out_err;
1130
1131 stat_data->kvm = kvm;
1132 stat_data->desc = pdesc;
1133 stat_data->kind = KVM_STAT_VM;
1134 kvm->debugfs_stat_data[i] = stat_data;
1135 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1136 kvm->debugfs_dentry, stat_data,
1137 &stat_fops_per_vm);
1138 }
1139
1140 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1141 pdesc = &kvm_vcpu_stats_desc[i];
1142 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1143 if (!stat_data)
1144 goto out_err;
1145
1146 stat_data->kvm = kvm;
1147 stat_data->desc = pdesc;
1148 stat_data->kind = KVM_STAT_VCPU;
1149 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1150 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1151 kvm->debugfs_dentry, stat_data,
1152 &stat_fops_per_vm);
1153 }
1154
1155 ret = kvm_arch_create_vm_debugfs(kvm);
1156 if (ret)
1157 goto out_err;
1158
1159 return 0;
1160 out_err:
1161 kvm_destroy_vm_debugfs(kvm);
1162 return ret;
1163 }
1164
1165 /*
1166 * Called after the VM is otherwise initialized, but just before adding it to
1167 * the vm_list.
1168 */
1169 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1170 {
1171 return 0;
1172 }
1173
1174 /*
1175 * Called just after removing the VM from the vm_list, but before doing any
1176 * other destruction.
1177 */
1178 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1179 {
1180 }
1181
1182 /*
1183 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1184 * be setup already, so we can create arch-specific debugfs entries under it.
1185 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1186 * a per-arch destroy interface is not needed.
1187 */
1188 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1189 {
1190 return 0;
1191 }
1192
1193 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1194 {
1195 struct kvm *kvm = kvm_arch_alloc_vm();
1196 struct kvm_memslots *slots;
1197 int r = -ENOMEM;
1198 int i, j;
1199
1200 if (!kvm)
1201 return ERR_PTR(-ENOMEM);
1202
1203 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1204 __module_get(kvm_chardev_ops.owner);
1205
1206 KVM_MMU_LOCK_INIT(kvm);
1207 mmgrab(current->mm);
1208 kvm->mm = current->mm;
1209 kvm_eventfd_init(kvm);
1210 mutex_init(&kvm->lock);
1211 mutex_init(&kvm->irq_lock);
1212 mutex_init(&kvm->slots_lock);
1213 mutex_init(&kvm->slots_arch_lock);
1214 spin_lock_init(&kvm->mn_invalidate_lock);
1215 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1216 xa_init(&kvm->vcpu_array);
1217 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1218 xa_init(&kvm->mem_attr_array);
1219 #endif
1220
1221 INIT_LIST_HEAD(&kvm->gpc_list);
1222 spin_lock_init(&kvm->gpc_lock);
1223
1224 INIT_LIST_HEAD(&kvm->devices);
1225 kvm->max_vcpus = KVM_MAX_VCPUS;
1226
1227 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1228
1229 /*
1230 * Force subsequent debugfs file creations to fail if the VM directory
1231 * is not created (by kvm_create_vm_debugfs()).
1232 */
1233 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1234
1235 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1236 task_pid_nr(current));
1237
1238 if (init_srcu_struct(&kvm->srcu))
1239 goto out_err_no_srcu;
1240 if (init_srcu_struct(&kvm->irq_srcu))
1241 goto out_err_no_irq_srcu;
1242
1243 refcount_set(&kvm->users_count, 1);
1244 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1245 for (j = 0; j < 2; j++) {
1246 slots = &kvm->__memslots[i][j];
1247
1248 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1249 slots->hva_tree = RB_ROOT_CACHED;
1250 slots->gfn_tree = RB_ROOT;
1251 hash_init(slots->id_hash);
1252 slots->node_idx = j;
1253
1254 /* Generations must be different for each address space. */
1255 slots->generation = i;
1256 }
1257
1258 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1259 }
1260
1261 for (i = 0; i < KVM_NR_BUSES; i++) {
1262 rcu_assign_pointer(kvm->buses[i],
1263 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1264 if (!kvm->buses[i])
1265 goto out_err_no_arch_destroy_vm;
1266 }
1267
1268 r = kvm_arch_init_vm(kvm, type);
1269 if (r)
1270 goto out_err_no_arch_destroy_vm;
1271
1272 r = hardware_enable_all();
1273 if (r)
1274 goto out_err_no_disable;
1275
1276 #ifdef CONFIG_HAVE_KVM_IRQFD
1277 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1278 #endif
1279
1280 r = kvm_init_mmu_notifier(kvm);
1281 if (r)
1282 goto out_err_no_mmu_notifier;
1283
1284 r = kvm_coalesced_mmio_init(kvm);
1285 if (r < 0)
1286 goto out_no_coalesced_mmio;
1287
1288 r = kvm_create_vm_debugfs(kvm, fdname);
1289 if (r)
1290 goto out_err_no_debugfs;
1291
1292 r = kvm_arch_post_init_vm(kvm);
1293 if (r)
1294 goto out_err;
1295
1296 mutex_lock(&kvm_lock);
1297 list_add(&kvm->vm_list, &vm_list);
1298 mutex_unlock(&kvm_lock);
1299
1300 preempt_notifier_inc();
1301 kvm_init_pm_notifier(kvm);
1302
1303 return kvm;
1304
1305 out_err:
1306 kvm_destroy_vm_debugfs(kvm);
1307 out_err_no_debugfs:
1308 kvm_coalesced_mmio_free(kvm);
1309 out_no_coalesced_mmio:
1310 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1311 if (kvm->mmu_notifier.ops)
1312 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1313 #endif
1314 out_err_no_mmu_notifier:
1315 hardware_disable_all();
1316 out_err_no_disable:
1317 kvm_arch_destroy_vm(kvm);
1318 out_err_no_arch_destroy_vm:
1319 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1320 for (i = 0; i < KVM_NR_BUSES; i++)
1321 kfree(kvm_get_bus(kvm, i));
1322 cleanup_srcu_struct(&kvm->irq_srcu);
1323 out_err_no_irq_srcu:
1324 cleanup_srcu_struct(&kvm->srcu);
1325 out_err_no_srcu:
1326 kvm_arch_free_vm(kvm);
1327 mmdrop(current->mm);
1328 module_put(kvm_chardev_ops.owner);
1329 return ERR_PTR(r);
1330 }
1331
1332 static void kvm_destroy_devices(struct kvm *kvm)
1333 {
1334 struct kvm_device *dev, *tmp;
1335
1336 /*
1337 * We do not need to take the kvm->lock here, because nobody else
1338 * has a reference to the struct kvm at this point and therefore
1339 * cannot access the devices list anyhow.
1340 */
1341 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1342 list_del(&dev->vm_node);
1343 dev->ops->destroy(dev);
1344 }
1345 }
1346
1347 static void kvm_destroy_vm(struct kvm *kvm)
1348 {
1349 int i;
1350 struct mm_struct *mm = kvm->mm;
1351
1352 kvm_destroy_pm_notifier(kvm);
1353 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1354 kvm_destroy_vm_debugfs(kvm);
1355 kvm_arch_sync_events(kvm);
1356 mutex_lock(&kvm_lock);
1357 list_del(&kvm->vm_list);
1358 mutex_unlock(&kvm_lock);
1359 kvm_arch_pre_destroy_vm(kvm);
1360
1361 kvm_free_irq_routing(kvm);
1362 for (i = 0; i < KVM_NR_BUSES; i++) {
1363 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1364
1365 if (bus)
1366 kvm_io_bus_destroy(bus);
1367 kvm->buses[i] = NULL;
1368 }
1369 kvm_coalesced_mmio_free(kvm);
1370 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1371 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1372 /*
1373 * At this point, pending calls to invalidate_range_start()
1374 * have completed but no more MMU notifiers will run, so
1375 * mn_active_invalidate_count may remain unbalanced.
1376 * No threads can be waiting in kvm_swap_active_memslots() as the
1377 * last reference on KVM has been dropped, but freeing
1378 * memslots would deadlock without this manual intervention.
1379 *
1380 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1381 * notifier between a start() and end(), then there shouldn't be any
1382 * in-progress invalidations.
1383 */
1384 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1385 if (kvm->mn_active_invalidate_count)
1386 kvm->mn_active_invalidate_count = 0;
1387 else
1388 WARN_ON(kvm->mmu_invalidate_in_progress);
1389 #else
1390 kvm_flush_shadow_all(kvm);
1391 #endif
1392 kvm_arch_destroy_vm(kvm);
1393 kvm_destroy_devices(kvm);
1394 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1395 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1396 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1397 }
1398 cleanup_srcu_struct(&kvm->irq_srcu);
1399 cleanup_srcu_struct(&kvm->srcu);
1400 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1401 xa_destroy(&kvm->mem_attr_array);
1402 #endif
1403 kvm_arch_free_vm(kvm);
1404 preempt_notifier_dec();
1405 hardware_disable_all();
1406 mmdrop(mm);
1407 module_put(kvm_chardev_ops.owner);
1408 }
1409
1410 void kvm_get_kvm(struct kvm *kvm)
1411 {
1412 refcount_inc(&kvm->users_count);
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1415
1416 /*
1417 * Make sure the vm is not during destruction, which is a safe version of
1418 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1419 */
1420 bool kvm_get_kvm_safe(struct kvm *kvm)
1421 {
1422 return refcount_inc_not_zero(&kvm->users_count);
1423 }
1424 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1425
1426 void kvm_put_kvm(struct kvm *kvm)
1427 {
1428 if (refcount_dec_and_test(&kvm->users_count))
1429 kvm_destroy_vm(kvm);
1430 }
1431 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1432
1433 /*
1434 * Used to put a reference that was taken on behalf of an object associated
1435 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1436 * of the new file descriptor fails and the reference cannot be transferred to
1437 * its final owner. In such cases, the caller is still actively using @kvm and
1438 * will fail miserably if the refcount unexpectedly hits zero.
1439 */
1440 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1441 {
1442 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1443 }
1444 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1445
1446 static int kvm_vm_release(struct inode *inode, struct file *filp)
1447 {
1448 struct kvm *kvm = filp->private_data;
1449
1450 kvm_irqfd_release(kvm);
1451
1452 kvm_put_kvm(kvm);
1453 return 0;
1454 }
1455
1456 /*
1457 * Allocation size is twice as large as the actual dirty bitmap size.
1458 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1459 */
1460 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1461 {
1462 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1463
1464 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1465 if (!memslot->dirty_bitmap)
1466 return -ENOMEM;
1467
1468 return 0;
1469 }
1470
1471 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1472 {
1473 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1474 int node_idx_inactive = active->node_idx ^ 1;
1475
1476 return &kvm->__memslots[as_id][node_idx_inactive];
1477 }
1478
1479 /*
1480 * Helper to get the address space ID when one of memslot pointers may be NULL.
1481 * This also serves as a sanity that at least one of the pointers is non-NULL,
1482 * and that their address space IDs don't diverge.
1483 */
1484 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1485 struct kvm_memory_slot *b)
1486 {
1487 if (WARN_ON_ONCE(!a && !b))
1488 return 0;
1489
1490 if (!a)
1491 return b->as_id;
1492 if (!b)
1493 return a->as_id;
1494
1495 WARN_ON_ONCE(a->as_id != b->as_id);
1496 return a->as_id;
1497 }
1498
1499 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1500 struct kvm_memory_slot *slot)
1501 {
1502 struct rb_root *gfn_tree = &slots->gfn_tree;
1503 struct rb_node **node, *parent;
1504 int idx = slots->node_idx;
1505
1506 parent = NULL;
1507 for (node = &gfn_tree->rb_node; *node; ) {
1508 struct kvm_memory_slot *tmp;
1509
1510 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1511 parent = *node;
1512 if (slot->base_gfn < tmp->base_gfn)
1513 node = &(*node)->rb_left;
1514 else if (slot->base_gfn > tmp->base_gfn)
1515 node = &(*node)->rb_right;
1516 else
1517 BUG();
1518 }
1519
1520 rb_link_node(&slot->gfn_node[idx], parent, node);
1521 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1522 }
1523
1524 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1525 struct kvm_memory_slot *slot)
1526 {
1527 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1528 }
1529
1530 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1531 struct kvm_memory_slot *old,
1532 struct kvm_memory_slot *new)
1533 {
1534 int idx = slots->node_idx;
1535
1536 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1537
1538 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1539 &slots->gfn_tree);
1540 }
1541
1542 /*
1543 * Replace @old with @new in the inactive memslots.
1544 *
1545 * With NULL @old this simply adds @new.
1546 * With NULL @new this simply removes @old.
1547 *
1548 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1549 * appropriately.
1550 */
1551 static void kvm_replace_memslot(struct kvm *kvm,
1552 struct kvm_memory_slot *old,
1553 struct kvm_memory_slot *new)
1554 {
1555 int as_id = kvm_memslots_get_as_id(old, new);
1556 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1557 int idx = slots->node_idx;
1558
1559 if (old) {
1560 hash_del(&old->id_node[idx]);
1561 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1562
1563 if ((long)old == atomic_long_read(&slots->last_used_slot))
1564 atomic_long_set(&slots->last_used_slot, (long)new);
1565
1566 if (!new) {
1567 kvm_erase_gfn_node(slots, old);
1568 return;
1569 }
1570 }
1571
1572 /*
1573 * Initialize @new's hva range. Do this even when replacing an @old
1574 * slot, kvm_copy_memslot() deliberately does not touch node data.
1575 */
1576 new->hva_node[idx].start = new->userspace_addr;
1577 new->hva_node[idx].last = new->userspace_addr +
1578 (new->npages << PAGE_SHIFT) - 1;
1579
1580 /*
1581 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1582 * hva_node needs to be swapped with remove+insert even though hva can't
1583 * change when replacing an existing slot.
1584 */
1585 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1586 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1587
1588 /*
1589 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1590 * switch the node in the gfn tree instead of removing the old and
1591 * inserting the new as two separate operations. Replacement is a
1592 * single O(1) operation versus two O(log(n)) operations for
1593 * remove+insert.
1594 */
1595 if (old && old->base_gfn == new->base_gfn) {
1596 kvm_replace_gfn_node(slots, old, new);
1597 } else {
1598 if (old)
1599 kvm_erase_gfn_node(slots, old);
1600 kvm_insert_gfn_node(slots, new);
1601 }
1602 }
1603
1604 /*
1605 * Flags that do not access any of the extra space of struct
1606 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1607 * only allows these.
1608 */
1609 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1610 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1611
1612 static int check_memory_region_flags(struct kvm *kvm,
1613 const struct kvm_userspace_memory_region2 *mem)
1614 {
1615 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1616
1617 if (kvm_arch_has_private_mem(kvm))
1618 valid_flags |= KVM_MEM_GUEST_MEMFD;
1619
1620 /* Dirty logging private memory is not currently supported. */
1621 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1622 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1623
1624 #ifdef __KVM_HAVE_READONLY_MEM
1625 valid_flags |= KVM_MEM_READONLY;
1626 #endif
1627
1628 if (mem->flags & ~valid_flags)
1629 return -EINVAL;
1630
1631 return 0;
1632 }
1633
1634 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1635 {
1636 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1637
1638 /* Grab the generation from the activate memslots. */
1639 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1640
1641 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1642 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1643
1644 /*
1645 * Do not store the new memslots while there are invalidations in
1646 * progress, otherwise the locking in invalidate_range_start and
1647 * invalidate_range_end will be unbalanced.
1648 */
1649 spin_lock(&kvm->mn_invalidate_lock);
1650 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1651 while (kvm->mn_active_invalidate_count) {
1652 set_current_state(TASK_UNINTERRUPTIBLE);
1653 spin_unlock(&kvm->mn_invalidate_lock);
1654 schedule();
1655 spin_lock(&kvm->mn_invalidate_lock);
1656 }
1657 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1658 rcu_assign_pointer(kvm->memslots[as_id], slots);
1659 spin_unlock(&kvm->mn_invalidate_lock);
1660
1661 /*
1662 * Acquired in kvm_set_memslot. Must be released before synchronize
1663 * SRCU below in order to avoid deadlock with another thread
1664 * acquiring the slots_arch_lock in an srcu critical section.
1665 */
1666 mutex_unlock(&kvm->slots_arch_lock);
1667
1668 synchronize_srcu_expedited(&kvm->srcu);
1669
1670 /*
1671 * Increment the new memslot generation a second time, dropping the
1672 * update in-progress flag and incrementing the generation based on
1673 * the number of address spaces. This provides a unique and easily
1674 * identifiable generation number while the memslots are in flux.
1675 */
1676 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1677
1678 /*
1679 * Generations must be unique even across address spaces. We do not need
1680 * a global counter for that, instead the generation space is evenly split
1681 * across address spaces. For example, with two address spaces, address
1682 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1683 * use generations 1, 3, 5, ...
1684 */
1685 gen += kvm_arch_nr_memslot_as_ids(kvm);
1686
1687 kvm_arch_memslots_updated(kvm, gen);
1688
1689 slots->generation = gen;
1690 }
1691
1692 static int kvm_prepare_memory_region(struct kvm *kvm,
1693 const struct kvm_memory_slot *old,
1694 struct kvm_memory_slot *new,
1695 enum kvm_mr_change change)
1696 {
1697 int r;
1698
1699 /*
1700 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1701 * will be freed on "commit". If logging is enabled in both old and
1702 * new, reuse the existing bitmap. If logging is enabled only in the
1703 * new and KVM isn't using a ring buffer, allocate and initialize a
1704 * new bitmap.
1705 */
1706 if (change != KVM_MR_DELETE) {
1707 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1708 new->dirty_bitmap = NULL;
1709 else if (old && old->dirty_bitmap)
1710 new->dirty_bitmap = old->dirty_bitmap;
1711 else if (kvm_use_dirty_bitmap(kvm)) {
1712 r = kvm_alloc_dirty_bitmap(new);
1713 if (r)
1714 return r;
1715
1716 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1717 bitmap_set(new->dirty_bitmap, 0, new->npages);
1718 }
1719 }
1720
1721 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1722
1723 /* Free the bitmap on failure if it was allocated above. */
1724 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1725 kvm_destroy_dirty_bitmap(new);
1726
1727 return r;
1728 }
1729
1730 static void kvm_commit_memory_region(struct kvm *kvm,
1731 struct kvm_memory_slot *old,
1732 const struct kvm_memory_slot *new,
1733 enum kvm_mr_change change)
1734 {
1735 int old_flags = old ? old->flags : 0;
1736 int new_flags = new ? new->flags : 0;
1737 /*
1738 * Update the total number of memslot pages before calling the arch
1739 * hook so that architectures can consume the result directly.
1740 */
1741 if (change == KVM_MR_DELETE)
1742 kvm->nr_memslot_pages -= old->npages;
1743 else if (change == KVM_MR_CREATE)
1744 kvm->nr_memslot_pages += new->npages;
1745
1746 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1747 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1748 atomic_set(&kvm->nr_memslots_dirty_logging,
1749 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1750 }
1751
1752 kvm_arch_commit_memory_region(kvm, old, new, change);
1753
1754 switch (change) {
1755 case KVM_MR_CREATE:
1756 /* Nothing more to do. */
1757 break;
1758 case KVM_MR_DELETE:
1759 /* Free the old memslot and all its metadata. */
1760 kvm_free_memslot(kvm, old);
1761 break;
1762 case KVM_MR_MOVE:
1763 case KVM_MR_FLAGS_ONLY:
1764 /*
1765 * Free the dirty bitmap as needed; the below check encompasses
1766 * both the flags and whether a ring buffer is being used)
1767 */
1768 if (old->dirty_bitmap && !new->dirty_bitmap)
1769 kvm_destroy_dirty_bitmap(old);
1770
1771 /*
1772 * The final quirk. Free the detached, old slot, but only its
1773 * memory, not any metadata. Metadata, including arch specific
1774 * data, may be reused by @new.
1775 */
1776 kfree(old);
1777 break;
1778 default:
1779 BUG();
1780 }
1781 }
1782
1783 /*
1784 * Activate @new, which must be installed in the inactive slots by the caller,
1785 * by swapping the active slots and then propagating @new to @old once @old is
1786 * unreachable and can be safely modified.
1787 *
1788 * With NULL @old this simply adds @new to @active (while swapping the sets).
1789 * With NULL @new this simply removes @old from @active and frees it
1790 * (while also swapping the sets).
1791 */
1792 static void kvm_activate_memslot(struct kvm *kvm,
1793 struct kvm_memory_slot *old,
1794 struct kvm_memory_slot *new)
1795 {
1796 int as_id = kvm_memslots_get_as_id(old, new);
1797
1798 kvm_swap_active_memslots(kvm, as_id);
1799
1800 /* Propagate the new memslot to the now inactive memslots. */
1801 kvm_replace_memslot(kvm, old, new);
1802 }
1803
1804 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1805 const struct kvm_memory_slot *src)
1806 {
1807 dest->base_gfn = src->base_gfn;
1808 dest->npages = src->npages;
1809 dest->dirty_bitmap = src->dirty_bitmap;
1810 dest->arch = src->arch;
1811 dest->userspace_addr = src->userspace_addr;
1812 dest->flags = src->flags;
1813 dest->id = src->id;
1814 dest->as_id = src->as_id;
1815 }
1816
1817 static void kvm_invalidate_memslot(struct kvm *kvm,
1818 struct kvm_memory_slot *old,
1819 struct kvm_memory_slot *invalid_slot)
1820 {
1821 /*
1822 * Mark the current slot INVALID. As with all memslot modifications,
1823 * this must be done on an unreachable slot to avoid modifying the
1824 * current slot in the active tree.
1825 */
1826 kvm_copy_memslot(invalid_slot, old);
1827 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1828 kvm_replace_memslot(kvm, old, invalid_slot);
1829
1830 /*
1831 * Activate the slot that is now marked INVALID, but don't propagate
1832 * the slot to the now inactive slots. The slot is either going to be
1833 * deleted or recreated as a new slot.
1834 */
1835 kvm_swap_active_memslots(kvm, old->as_id);
1836
1837 /*
1838 * From this point no new shadow pages pointing to a deleted, or moved,
1839 * memslot will be created. Validation of sp->gfn happens in:
1840 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1841 * - kvm_is_visible_gfn (mmu_check_root)
1842 */
1843 kvm_arch_flush_shadow_memslot(kvm, old);
1844 kvm_arch_guest_memory_reclaimed(kvm);
1845
1846 /* Was released by kvm_swap_active_memslots(), reacquire. */
1847 mutex_lock(&kvm->slots_arch_lock);
1848
1849 /*
1850 * Copy the arch-specific field of the newly-installed slot back to the
1851 * old slot as the arch data could have changed between releasing
1852 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1853 * above. Writers are required to retrieve memslots *after* acquiring
1854 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1855 */
1856 old->arch = invalid_slot->arch;
1857 }
1858
1859 static void kvm_create_memslot(struct kvm *kvm,
1860 struct kvm_memory_slot *new)
1861 {
1862 /* Add the new memslot to the inactive set and activate. */
1863 kvm_replace_memslot(kvm, NULL, new);
1864 kvm_activate_memslot(kvm, NULL, new);
1865 }
1866
1867 static void kvm_delete_memslot(struct kvm *kvm,
1868 struct kvm_memory_slot *old,
1869 struct kvm_memory_slot *invalid_slot)
1870 {
1871 /*
1872 * Remove the old memslot (in the inactive memslots) by passing NULL as
1873 * the "new" slot, and for the invalid version in the active slots.
1874 */
1875 kvm_replace_memslot(kvm, old, NULL);
1876 kvm_activate_memslot(kvm, invalid_slot, NULL);
1877 }
1878
1879 static void kvm_move_memslot(struct kvm *kvm,
1880 struct kvm_memory_slot *old,
1881 struct kvm_memory_slot *new,
1882 struct kvm_memory_slot *invalid_slot)
1883 {
1884 /*
1885 * Replace the old memslot in the inactive slots, and then swap slots
1886 * and replace the current INVALID with the new as well.
1887 */
1888 kvm_replace_memslot(kvm, old, new);
1889 kvm_activate_memslot(kvm, invalid_slot, new);
1890 }
1891
1892 static void kvm_update_flags_memslot(struct kvm *kvm,
1893 struct kvm_memory_slot *old,
1894 struct kvm_memory_slot *new)
1895 {
1896 /*
1897 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1898 * an intermediate step. Instead, the old memslot is simply replaced
1899 * with a new, updated copy in both memslot sets.
1900 */
1901 kvm_replace_memslot(kvm, old, new);
1902 kvm_activate_memslot(kvm, old, new);
1903 }
1904
1905 static int kvm_set_memslot(struct kvm *kvm,
1906 struct kvm_memory_slot *old,
1907 struct kvm_memory_slot *new,
1908 enum kvm_mr_change change)
1909 {
1910 struct kvm_memory_slot *invalid_slot;
1911 int r;
1912
1913 /*
1914 * Released in kvm_swap_active_memslots().
1915 *
1916 * Must be held from before the current memslots are copied until after
1917 * the new memslots are installed with rcu_assign_pointer, then
1918 * released before the synchronize srcu in kvm_swap_active_memslots().
1919 *
1920 * When modifying memslots outside of the slots_lock, must be held
1921 * before reading the pointer to the current memslots until after all
1922 * changes to those memslots are complete.
1923 *
1924 * These rules ensure that installing new memslots does not lose
1925 * changes made to the previous memslots.
1926 */
1927 mutex_lock(&kvm->slots_arch_lock);
1928
1929 /*
1930 * Invalidate the old slot if it's being deleted or moved. This is
1931 * done prior to actually deleting/moving the memslot to allow vCPUs to
1932 * continue running by ensuring there are no mappings or shadow pages
1933 * for the memslot when it is deleted/moved. Without pre-invalidation
1934 * (and without a lock), a window would exist between effecting the
1935 * delete/move and committing the changes in arch code where KVM or a
1936 * guest could access a non-existent memslot.
1937 *
1938 * Modifications are done on a temporary, unreachable slot. The old
1939 * slot needs to be preserved in case a later step fails and the
1940 * invalidation needs to be reverted.
1941 */
1942 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1943 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1944 if (!invalid_slot) {
1945 mutex_unlock(&kvm->slots_arch_lock);
1946 return -ENOMEM;
1947 }
1948 kvm_invalidate_memslot(kvm, old, invalid_slot);
1949 }
1950
1951 r = kvm_prepare_memory_region(kvm, old, new, change);
1952 if (r) {
1953 /*
1954 * For DELETE/MOVE, revert the above INVALID change. No
1955 * modifications required since the original slot was preserved
1956 * in the inactive slots. Changing the active memslots also
1957 * release slots_arch_lock.
1958 */
1959 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1960 kvm_activate_memslot(kvm, invalid_slot, old);
1961 kfree(invalid_slot);
1962 } else {
1963 mutex_unlock(&kvm->slots_arch_lock);
1964 }
1965 return r;
1966 }
1967
1968 /*
1969 * For DELETE and MOVE, the working slot is now active as the INVALID
1970 * version of the old slot. MOVE is particularly special as it reuses
1971 * the old slot and returns a copy of the old slot (in working_slot).
1972 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1973 * old slot is detached but otherwise preserved.
1974 */
1975 if (change == KVM_MR_CREATE)
1976 kvm_create_memslot(kvm, new);
1977 else if (change == KVM_MR_DELETE)
1978 kvm_delete_memslot(kvm, old, invalid_slot);
1979 else if (change == KVM_MR_MOVE)
1980 kvm_move_memslot(kvm, old, new, invalid_slot);
1981 else if (change == KVM_MR_FLAGS_ONLY)
1982 kvm_update_flags_memslot(kvm, old, new);
1983 else
1984 BUG();
1985
1986 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1987 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1988 kfree(invalid_slot);
1989
1990 /*
1991 * No need to refresh new->arch, changes after dropping slots_arch_lock
1992 * will directly hit the final, active memslot. Architectures are
1993 * responsible for knowing that new->arch may be stale.
1994 */
1995 kvm_commit_memory_region(kvm, old, new, change);
1996
1997 return 0;
1998 }
1999
2000 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
2001 gfn_t start, gfn_t end)
2002 {
2003 struct kvm_memslot_iter iter;
2004
2005 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2006 if (iter.slot->id != id)
2007 return true;
2008 }
2009
2010 return false;
2011 }
2012
2013 /*
2014 * Allocate some memory and give it an address in the guest physical address
2015 * space.
2016 *
2017 * Discontiguous memory is allowed, mostly for framebuffers.
2018 *
2019 * Must be called holding kvm->slots_lock for write.
2020 */
2021 int __kvm_set_memory_region(struct kvm *kvm,
2022 const struct kvm_userspace_memory_region2 *mem)
2023 {
2024 struct kvm_memory_slot *old, *new;
2025 struct kvm_memslots *slots;
2026 enum kvm_mr_change change;
2027 unsigned long npages;
2028 gfn_t base_gfn;
2029 int as_id, id;
2030 int r;
2031
2032 r = check_memory_region_flags(kvm, mem);
2033 if (r)
2034 return r;
2035
2036 as_id = mem->slot >> 16;
2037 id = (u16)mem->slot;
2038
2039 /* General sanity checks */
2040 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2041 (mem->memory_size != (unsigned long)mem->memory_size))
2042 return -EINVAL;
2043 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2044 return -EINVAL;
2045 /* We can read the guest memory with __xxx_user() later on. */
2046 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2047 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2048 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2049 mem->memory_size))
2050 return -EINVAL;
2051 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2052 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2053 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2054 return -EINVAL;
2055 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2056 return -EINVAL;
2057 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2058 return -EINVAL;
2059 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2060 return -EINVAL;
2061
2062 slots = __kvm_memslots(kvm, as_id);
2063
2064 /*
2065 * Note, the old memslot (and the pointer itself!) may be invalidated
2066 * and/or destroyed by kvm_set_memslot().
2067 */
2068 old = id_to_memslot(slots, id);
2069
2070 if (!mem->memory_size) {
2071 if (!old || !old->npages)
2072 return -EINVAL;
2073
2074 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2075 return -EIO;
2076
2077 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2078 }
2079
2080 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2081 npages = (mem->memory_size >> PAGE_SHIFT);
2082
2083 if (!old || !old->npages) {
2084 change = KVM_MR_CREATE;
2085
2086 /*
2087 * To simplify KVM internals, the total number of pages across
2088 * all memslots must fit in an unsigned long.
2089 */
2090 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2091 return -EINVAL;
2092 } else { /* Modify an existing slot. */
2093 /* Private memslots are immutable, they can only be deleted. */
2094 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2095 return -EINVAL;
2096 if ((mem->userspace_addr != old->userspace_addr) ||
2097 (npages != old->npages) ||
2098 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2099 return -EINVAL;
2100
2101 if (base_gfn != old->base_gfn)
2102 change = KVM_MR_MOVE;
2103 else if (mem->flags != old->flags)
2104 change = KVM_MR_FLAGS_ONLY;
2105 else /* Nothing to change. */
2106 return 0;
2107 }
2108
2109 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2110 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2111 return -EEXIST;
2112
2113 /* Allocate a slot that will persist in the memslot. */
2114 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2115 if (!new)
2116 return -ENOMEM;
2117
2118 new->as_id = as_id;
2119 new->id = id;
2120 new->base_gfn = base_gfn;
2121 new->npages = npages;
2122 new->flags = mem->flags;
2123 new->userspace_addr = mem->userspace_addr;
2124 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2125 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2126 if (r)
2127 goto out;
2128 }
2129
2130 r = kvm_set_memslot(kvm, old, new, change);
2131 if (r)
2132 goto out_unbind;
2133
2134 return 0;
2135
2136 out_unbind:
2137 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2138 kvm_gmem_unbind(new);
2139 out:
2140 kfree(new);
2141 return r;
2142 }
2143 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2144
2145 int kvm_set_memory_region(struct kvm *kvm,
2146 const struct kvm_userspace_memory_region2 *mem)
2147 {
2148 int r;
2149
2150 mutex_lock(&kvm->slots_lock);
2151 r = __kvm_set_memory_region(kvm, mem);
2152 mutex_unlock(&kvm->slots_lock);
2153 return r;
2154 }
2155 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2156
2157 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2158 struct kvm_userspace_memory_region2 *mem)
2159 {
2160 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2161 return -EINVAL;
2162
2163 return kvm_set_memory_region(kvm, mem);
2164 }
2165
2166 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2167 /**
2168 * kvm_get_dirty_log - get a snapshot of dirty pages
2169 * @kvm: pointer to kvm instance
2170 * @log: slot id and address to which we copy the log
2171 * @is_dirty: set to '1' if any dirty pages were found
2172 * @memslot: set to the associated memslot, always valid on success
2173 */
2174 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2175 int *is_dirty, struct kvm_memory_slot **memslot)
2176 {
2177 struct kvm_memslots *slots;
2178 int i, as_id, id;
2179 unsigned long n;
2180 unsigned long any = 0;
2181
2182 /* Dirty ring tracking may be exclusive to dirty log tracking */
2183 if (!kvm_use_dirty_bitmap(kvm))
2184 return -ENXIO;
2185
2186 *memslot = NULL;
2187 *is_dirty = 0;
2188
2189 as_id = log->slot >> 16;
2190 id = (u16)log->slot;
2191 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2192 return -EINVAL;
2193
2194 slots = __kvm_memslots(kvm, as_id);
2195 *memslot = id_to_memslot(slots, id);
2196 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2197 return -ENOENT;
2198
2199 kvm_arch_sync_dirty_log(kvm, *memslot);
2200
2201 n = kvm_dirty_bitmap_bytes(*memslot);
2202
2203 for (i = 0; !any && i < n/sizeof(long); ++i)
2204 any = (*memslot)->dirty_bitmap[i];
2205
2206 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2207 return -EFAULT;
2208
2209 if (any)
2210 *is_dirty = 1;
2211 return 0;
2212 }
2213 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2214
2215 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2216 /**
2217 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2218 * and reenable dirty page tracking for the corresponding pages.
2219 * @kvm: pointer to kvm instance
2220 * @log: slot id and address to which we copy the log
2221 *
2222 * We need to keep it in mind that VCPU threads can write to the bitmap
2223 * concurrently. So, to avoid losing track of dirty pages we keep the
2224 * following order:
2225 *
2226 * 1. Take a snapshot of the bit and clear it if needed.
2227 * 2. Write protect the corresponding page.
2228 * 3. Copy the snapshot to the userspace.
2229 * 4. Upon return caller flushes TLB's if needed.
2230 *
2231 * Between 2 and 4, the guest may write to the page using the remaining TLB
2232 * entry. This is not a problem because the page is reported dirty using
2233 * the snapshot taken before and step 4 ensures that writes done after
2234 * exiting to userspace will be logged for the next call.
2235 *
2236 */
2237 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2238 {
2239 struct kvm_memslots *slots;
2240 struct kvm_memory_slot *memslot;
2241 int i, as_id, id;
2242 unsigned long n;
2243 unsigned long *dirty_bitmap;
2244 unsigned long *dirty_bitmap_buffer;
2245 bool flush;
2246
2247 /* Dirty ring tracking may be exclusive to dirty log tracking */
2248 if (!kvm_use_dirty_bitmap(kvm))
2249 return -ENXIO;
2250
2251 as_id = log->slot >> 16;
2252 id = (u16)log->slot;
2253 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2254 return -EINVAL;
2255
2256 slots = __kvm_memslots(kvm, as_id);
2257 memslot = id_to_memslot(slots, id);
2258 if (!memslot || !memslot->dirty_bitmap)
2259 return -ENOENT;
2260
2261 dirty_bitmap = memslot->dirty_bitmap;
2262
2263 kvm_arch_sync_dirty_log(kvm, memslot);
2264
2265 n = kvm_dirty_bitmap_bytes(memslot);
2266 flush = false;
2267 if (kvm->manual_dirty_log_protect) {
2268 /*
2269 * Unlike kvm_get_dirty_log, we always return false in *flush,
2270 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2271 * is some code duplication between this function and
2272 * kvm_get_dirty_log, but hopefully all architecture
2273 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2274 * can be eliminated.
2275 */
2276 dirty_bitmap_buffer = dirty_bitmap;
2277 } else {
2278 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2279 memset(dirty_bitmap_buffer, 0, n);
2280
2281 KVM_MMU_LOCK(kvm);
2282 for (i = 0; i < n / sizeof(long); i++) {
2283 unsigned long mask;
2284 gfn_t offset;
2285
2286 if (!dirty_bitmap[i])
2287 continue;
2288
2289 flush = true;
2290 mask = xchg(&dirty_bitmap[i], 0);
2291 dirty_bitmap_buffer[i] = mask;
2292
2293 offset = i * BITS_PER_LONG;
2294 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2295 offset, mask);
2296 }
2297 KVM_MMU_UNLOCK(kvm);
2298 }
2299
2300 if (flush)
2301 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2302
2303 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2304 return -EFAULT;
2305 return 0;
2306 }
2307
2308
2309 /**
2310 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2311 * @kvm: kvm instance
2312 * @log: slot id and address to which we copy the log
2313 *
2314 * Steps 1-4 below provide general overview of dirty page logging. See
2315 * kvm_get_dirty_log_protect() function description for additional details.
2316 *
2317 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2318 * always flush the TLB (step 4) even if previous step failed and the dirty
2319 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2320 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2321 * writes will be marked dirty for next log read.
2322 *
2323 * 1. Take a snapshot of the bit and clear it if needed.
2324 * 2. Write protect the corresponding page.
2325 * 3. Copy the snapshot to the userspace.
2326 * 4. Flush TLB's if needed.
2327 */
2328 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2329 struct kvm_dirty_log *log)
2330 {
2331 int r;
2332
2333 mutex_lock(&kvm->slots_lock);
2334
2335 r = kvm_get_dirty_log_protect(kvm, log);
2336
2337 mutex_unlock(&kvm->slots_lock);
2338 return r;
2339 }
2340
2341 /**
2342 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2343 * and reenable dirty page tracking for the corresponding pages.
2344 * @kvm: pointer to kvm instance
2345 * @log: slot id and address from which to fetch the bitmap of dirty pages
2346 */
2347 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2348 struct kvm_clear_dirty_log *log)
2349 {
2350 struct kvm_memslots *slots;
2351 struct kvm_memory_slot *memslot;
2352 int as_id, id;
2353 gfn_t offset;
2354 unsigned long i, n;
2355 unsigned long *dirty_bitmap;
2356 unsigned long *dirty_bitmap_buffer;
2357 bool flush;
2358
2359 /* Dirty ring tracking may be exclusive to dirty log tracking */
2360 if (!kvm_use_dirty_bitmap(kvm))
2361 return -ENXIO;
2362
2363 as_id = log->slot >> 16;
2364 id = (u16)log->slot;
2365 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2366 return -EINVAL;
2367
2368 if (log->first_page & 63)
2369 return -EINVAL;
2370
2371 slots = __kvm_memslots(kvm, as_id);
2372 memslot = id_to_memslot(slots, id);
2373 if (!memslot || !memslot->dirty_bitmap)
2374 return -ENOENT;
2375
2376 dirty_bitmap = memslot->dirty_bitmap;
2377
2378 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2379
2380 if (log->first_page > memslot->npages ||
2381 log->num_pages > memslot->npages - log->first_page ||
2382 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2383 return -EINVAL;
2384
2385 kvm_arch_sync_dirty_log(kvm, memslot);
2386
2387 flush = false;
2388 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2389 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2390 return -EFAULT;
2391
2392 KVM_MMU_LOCK(kvm);
2393 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2394 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2395 i++, offset += BITS_PER_LONG) {
2396 unsigned long mask = *dirty_bitmap_buffer++;
2397 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2398 if (!mask)
2399 continue;
2400
2401 mask &= atomic_long_fetch_andnot(mask, p);
2402
2403 /*
2404 * mask contains the bits that really have been cleared. This
2405 * never includes any bits beyond the length of the memslot (if
2406 * the length is not aligned to 64 pages), therefore it is not
2407 * a problem if userspace sets them in log->dirty_bitmap.
2408 */
2409 if (mask) {
2410 flush = true;
2411 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2412 offset, mask);
2413 }
2414 }
2415 KVM_MMU_UNLOCK(kvm);
2416
2417 if (flush)
2418 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2419
2420 return 0;
2421 }
2422
2423 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2424 struct kvm_clear_dirty_log *log)
2425 {
2426 int r;
2427
2428 mutex_lock(&kvm->slots_lock);
2429
2430 r = kvm_clear_dirty_log_protect(kvm, log);
2431
2432 mutex_unlock(&kvm->slots_lock);
2433 return r;
2434 }
2435 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2436
2437 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2438 /*
2439 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2440 * matching @attrs.
2441 */
2442 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2443 unsigned long attrs)
2444 {
2445 XA_STATE(xas, &kvm->mem_attr_array, start);
2446 unsigned long index;
2447 bool has_attrs;
2448 void *entry;
2449
2450 rcu_read_lock();
2451
2452 if (!attrs) {
2453 has_attrs = !xas_find(&xas, end - 1);
2454 goto out;
2455 }
2456
2457 has_attrs = true;
2458 for (index = start; index < end; index++) {
2459 do {
2460 entry = xas_next(&xas);
2461 } while (xas_retry(&xas, entry));
2462
2463 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2464 has_attrs = false;
2465 break;
2466 }
2467 }
2468
2469 out:
2470 rcu_read_unlock();
2471 return has_attrs;
2472 }
2473
2474 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2475 {
2476 if (!kvm || kvm_arch_has_private_mem(kvm))
2477 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2478
2479 return 0;
2480 }
2481
2482 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2483 struct kvm_mmu_notifier_range *range)
2484 {
2485 struct kvm_gfn_range gfn_range;
2486 struct kvm_memory_slot *slot;
2487 struct kvm_memslots *slots;
2488 struct kvm_memslot_iter iter;
2489 bool found_memslot = false;
2490 bool ret = false;
2491 int i;
2492
2493 gfn_range.arg = range->arg;
2494 gfn_range.may_block = range->may_block;
2495
2496 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2497 slots = __kvm_memslots(kvm, i);
2498
2499 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2500 slot = iter.slot;
2501 gfn_range.slot = slot;
2502
2503 gfn_range.start = max(range->start, slot->base_gfn);
2504 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2505 if (gfn_range.start >= gfn_range.end)
2506 continue;
2507
2508 if (!found_memslot) {
2509 found_memslot = true;
2510 KVM_MMU_LOCK(kvm);
2511 if (!IS_KVM_NULL_FN(range->on_lock))
2512 range->on_lock(kvm);
2513 }
2514
2515 ret |= range->handler(kvm, &gfn_range);
2516 }
2517 }
2518
2519 if (range->flush_on_ret && ret)
2520 kvm_flush_remote_tlbs(kvm);
2521
2522 if (found_memslot)
2523 KVM_MMU_UNLOCK(kvm);
2524 }
2525
2526 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2527 struct kvm_gfn_range *range)
2528 {
2529 /*
2530 * Unconditionally add the range to the invalidation set, regardless of
2531 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2532 * if KVM supports RWX attributes in the future and the attributes are
2533 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2534 * adding the range allows KVM to require that MMU invalidations add at
2535 * least one range between begin() and end(), e.g. allows KVM to detect
2536 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2537 * but it's not obvious that allowing new mappings while the attributes
2538 * are in flux is desirable or worth the complexity.
2539 */
2540 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2541
2542 return kvm_arch_pre_set_memory_attributes(kvm, range);
2543 }
2544
2545 /* Set @attributes for the gfn range [@start, @end). */
2546 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2547 unsigned long attributes)
2548 {
2549 struct kvm_mmu_notifier_range pre_set_range = {
2550 .start = start,
2551 .end = end,
2552 .handler = kvm_pre_set_memory_attributes,
2553 .on_lock = kvm_mmu_invalidate_begin,
2554 .flush_on_ret = true,
2555 .may_block = true,
2556 };
2557 struct kvm_mmu_notifier_range post_set_range = {
2558 .start = start,
2559 .end = end,
2560 .arg.attributes = attributes,
2561 .handler = kvm_arch_post_set_memory_attributes,
2562 .on_lock = kvm_mmu_invalidate_end,
2563 .may_block = true,
2564 };
2565 unsigned long i;
2566 void *entry;
2567 int r = 0;
2568
2569 entry = attributes ? xa_mk_value(attributes) : NULL;
2570
2571 mutex_lock(&kvm->slots_lock);
2572
2573 /* Nothing to do if the entire range as the desired attributes. */
2574 if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2575 goto out_unlock;
2576
2577 /*
2578 * Reserve memory ahead of time to avoid having to deal with failures
2579 * partway through setting the new attributes.
2580 */
2581 for (i = start; i < end; i++) {
2582 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2583 if (r)
2584 goto out_unlock;
2585 }
2586
2587 kvm_handle_gfn_range(kvm, &pre_set_range);
2588
2589 for (i = start; i < end; i++) {
2590 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2591 GFP_KERNEL_ACCOUNT));
2592 KVM_BUG_ON(r, kvm);
2593 }
2594
2595 kvm_handle_gfn_range(kvm, &post_set_range);
2596
2597 out_unlock:
2598 mutex_unlock(&kvm->slots_lock);
2599
2600 return r;
2601 }
2602 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2603 struct kvm_memory_attributes *attrs)
2604 {
2605 gfn_t start, end;
2606
2607 /* flags is currently not used. */
2608 if (attrs->flags)
2609 return -EINVAL;
2610 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2611 return -EINVAL;
2612 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2613 return -EINVAL;
2614 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2615 return -EINVAL;
2616
2617 start = attrs->address >> PAGE_SHIFT;
2618 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2619
2620 /*
2621 * xarray tracks data using "unsigned long", and as a result so does
2622 * KVM. For simplicity, supports generic attributes only on 64-bit
2623 * architectures.
2624 */
2625 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2626
2627 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2628 }
2629 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2630
2631 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2632 {
2633 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2634 }
2635 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2636
2637 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2638 {
2639 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2640 u64 gen = slots->generation;
2641 struct kvm_memory_slot *slot;
2642
2643 /*
2644 * This also protects against using a memslot from a different address space,
2645 * since different address spaces have different generation numbers.
2646 */
2647 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2648 vcpu->last_used_slot = NULL;
2649 vcpu->last_used_slot_gen = gen;
2650 }
2651
2652 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2653 if (slot)
2654 return slot;
2655
2656 /*
2657 * Fall back to searching all memslots. We purposely use
2658 * search_memslots() instead of __gfn_to_memslot() to avoid
2659 * thrashing the VM-wide last_used_slot in kvm_memslots.
2660 */
2661 slot = search_memslots(slots, gfn, false);
2662 if (slot) {
2663 vcpu->last_used_slot = slot;
2664 return slot;
2665 }
2666
2667 return NULL;
2668 }
2669
2670 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2671 {
2672 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2673
2674 return kvm_is_visible_memslot(memslot);
2675 }
2676 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2677
2678 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2679 {
2680 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2681
2682 return kvm_is_visible_memslot(memslot);
2683 }
2684 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2685
2686 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2687 {
2688 struct vm_area_struct *vma;
2689 unsigned long addr, size;
2690
2691 size = PAGE_SIZE;
2692
2693 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2694 if (kvm_is_error_hva(addr))
2695 return PAGE_SIZE;
2696
2697 mmap_read_lock(current->mm);
2698 vma = find_vma(current->mm, addr);
2699 if (!vma)
2700 goto out;
2701
2702 size = vma_kernel_pagesize(vma);
2703
2704 out:
2705 mmap_read_unlock(current->mm);
2706
2707 return size;
2708 }
2709
2710 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2711 {
2712 return slot->flags & KVM_MEM_READONLY;
2713 }
2714
2715 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2716 gfn_t *nr_pages, bool write)
2717 {
2718 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2719 return KVM_HVA_ERR_BAD;
2720
2721 if (memslot_is_readonly(slot) && write)
2722 return KVM_HVA_ERR_RO_BAD;
2723
2724 if (nr_pages)
2725 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2726
2727 return __gfn_to_hva_memslot(slot, gfn);
2728 }
2729
2730 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2731 gfn_t *nr_pages)
2732 {
2733 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2734 }
2735
2736 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2737 gfn_t gfn)
2738 {
2739 return gfn_to_hva_many(slot, gfn, NULL);
2740 }
2741 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2742
2743 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2744 {
2745 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2746 }
2747 EXPORT_SYMBOL_GPL(gfn_to_hva);
2748
2749 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2750 {
2751 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2754
2755 /*
2756 * Return the hva of a @gfn and the R/W attribute if possible.
2757 *
2758 * @slot: the kvm_memory_slot which contains @gfn
2759 * @gfn: the gfn to be translated
2760 * @writable: used to return the read/write attribute of the @slot if the hva
2761 * is valid and @writable is not NULL
2762 */
2763 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2764 gfn_t gfn, bool *writable)
2765 {
2766 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2767
2768 if (!kvm_is_error_hva(hva) && writable)
2769 *writable = !memslot_is_readonly(slot);
2770
2771 return hva;
2772 }
2773
2774 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2775 {
2776 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2777
2778 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2779 }
2780
2781 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2782 {
2783 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2784
2785 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2786 }
2787
2788 static inline int check_user_page_hwpoison(unsigned long addr)
2789 {
2790 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2791
2792 rc = get_user_pages(addr, 1, flags, NULL);
2793 return rc == -EHWPOISON;
2794 }
2795
2796 /*
2797 * The fast path to get the writable pfn which will be stored in @pfn,
2798 * true indicates success, otherwise false is returned. It's also the
2799 * only part that runs if we can in atomic context.
2800 */
2801 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2802 bool *writable, kvm_pfn_t *pfn)
2803 {
2804 struct page *page[1];
2805
2806 /*
2807 * Fast pin a writable pfn only if it is a write fault request
2808 * or the caller allows to map a writable pfn for a read fault
2809 * request.
2810 */
2811 if (!(write_fault || writable))
2812 return false;
2813
2814 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2815 *pfn = page_to_pfn(page[0]);
2816
2817 if (writable)
2818 *writable = true;
2819 return true;
2820 }
2821
2822 return false;
2823 }
2824
2825 /*
2826 * The slow path to get the pfn of the specified host virtual address,
2827 * 1 indicates success, -errno is returned if error is detected.
2828 */
2829 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2830 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2831 {
2832 /*
2833 * When a VCPU accesses a page that is not mapped into the secondary
2834 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2835 * make progress. We always want to honor NUMA hinting faults in that
2836 * case, because GUP usage corresponds to memory accesses from the VCPU.
2837 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2838 * mapped into the secondary MMU and gets accessed by a VCPU.
2839 *
2840 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2841 * implicitly honor NUMA hinting faults and don't need this flag.
2842 */
2843 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2844 struct page *page;
2845 int npages;
2846
2847 might_sleep();
2848
2849 if (writable)
2850 *writable = write_fault;
2851
2852 if (write_fault)
2853 flags |= FOLL_WRITE;
2854 if (async)
2855 flags |= FOLL_NOWAIT;
2856 if (interruptible)
2857 flags |= FOLL_INTERRUPTIBLE;
2858
2859 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2860 if (npages != 1)
2861 return npages;
2862
2863 /* map read fault as writable if possible */
2864 if (unlikely(!write_fault) && writable) {
2865 struct page *wpage;
2866
2867 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2868 *writable = true;
2869 put_page(page);
2870 page = wpage;
2871 }
2872 }
2873 *pfn = page_to_pfn(page);
2874 return npages;
2875 }
2876
2877 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2878 {
2879 if (unlikely(!(vma->vm_flags & VM_READ)))
2880 return false;
2881
2882 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2883 return false;
2884
2885 return true;
2886 }
2887
2888 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2889 {
2890 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2891
2892 if (!page)
2893 return 1;
2894
2895 return get_page_unless_zero(page);
2896 }
2897
2898 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2899 unsigned long addr, bool write_fault,
2900 bool *writable, kvm_pfn_t *p_pfn)
2901 {
2902 kvm_pfn_t pfn;
2903 pte_t *ptep;
2904 pte_t pte;
2905 spinlock_t *ptl;
2906 int r;
2907
2908 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2909 if (r) {
2910 /*
2911 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2912 * not call the fault handler, so do it here.
2913 */
2914 bool unlocked = false;
2915 r = fixup_user_fault(current->mm, addr,
2916 (write_fault ? FAULT_FLAG_WRITE : 0),
2917 &unlocked);
2918 if (unlocked)
2919 return -EAGAIN;
2920 if (r)
2921 return r;
2922
2923 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2924 if (r)
2925 return r;
2926 }
2927
2928 pte = ptep_get(ptep);
2929
2930 if (write_fault && !pte_write(pte)) {
2931 pfn = KVM_PFN_ERR_RO_FAULT;
2932 goto out;
2933 }
2934
2935 if (writable)
2936 *writable = pte_write(pte);
2937 pfn = pte_pfn(pte);
2938
2939 /*
2940 * Get a reference here because callers of *hva_to_pfn* and
2941 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2942 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2943 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2944 * simply do nothing for reserved pfns.
2945 *
2946 * Whoever called remap_pfn_range is also going to call e.g.
2947 * unmap_mapping_range before the underlying pages are freed,
2948 * causing a call to our MMU notifier.
2949 *
2950 * Certain IO or PFNMAP mappings can be backed with valid
2951 * struct pages, but be allocated without refcounting e.g.,
2952 * tail pages of non-compound higher order allocations, which
2953 * would then underflow the refcount when the caller does the
2954 * required put_page. Don't allow those pages here.
2955 */
2956 if (!kvm_try_get_pfn(pfn))
2957 r = -EFAULT;
2958
2959 out:
2960 pte_unmap_unlock(ptep, ptl);
2961 *p_pfn = pfn;
2962
2963 return r;
2964 }
2965
2966 /*
2967 * Pin guest page in memory and return its pfn.
2968 * @addr: host virtual address which maps memory to the guest
2969 * @atomic: whether this function can sleep
2970 * @interruptible: whether the process can be interrupted by non-fatal signals
2971 * @async: whether this function need to wait IO complete if the
2972 * host page is not in the memory
2973 * @write_fault: whether we should get a writable host page
2974 * @writable: whether it allows to map a writable host page for !@write_fault
2975 *
2976 * The function will map a writable host page for these two cases:
2977 * 1): @write_fault = true
2978 * 2): @write_fault = false && @writable, @writable will tell the caller
2979 * whether the mapping is writable.
2980 */
2981 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2982 bool *async, bool write_fault, bool *writable)
2983 {
2984 struct vm_area_struct *vma;
2985 kvm_pfn_t pfn;
2986 int npages, r;
2987
2988 /* we can do it either atomically or asynchronously, not both */
2989 BUG_ON(atomic && async);
2990
2991 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2992 return pfn;
2993
2994 if (atomic)
2995 return KVM_PFN_ERR_FAULT;
2996
2997 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2998 writable, &pfn);
2999 if (npages == 1)
3000 return pfn;
3001 if (npages == -EINTR)
3002 return KVM_PFN_ERR_SIGPENDING;
3003
3004 mmap_read_lock(current->mm);
3005 if (npages == -EHWPOISON ||
3006 (!async && check_user_page_hwpoison(addr))) {
3007 pfn = KVM_PFN_ERR_HWPOISON;
3008 goto exit;
3009 }
3010
3011 retry:
3012 vma = vma_lookup(current->mm, addr);
3013
3014 if (vma == NULL)
3015 pfn = KVM_PFN_ERR_FAULT;
3016 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3017 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3018 if (r == -EAGAIN)
3019 goto retry;
3020 if (r < 0)
3021 pfn = KVM_PFN_ERR_FAULT;
3022 } else {
3023 if (async && vma_is_valid(vma, write_fault))
3024 *async = true;
3025 pfn = KVM_PFN_ERR_FAULT;
3026 }
3027 exit:
3028 mmap_read_unlock(current->mm);
3029 return pfn;
3030 }
3031
3032 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3033 bool atomic, bool interruptible, bool *async,
3034 bool write_fault, bool *writable, hva_t *hva)
3035 {
3036 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3037
3038 if (hva)
3039 *hva = addr;
3040
3041 if (addr == KVM_HVA_ERR_RO_BAD) {
3042 if (writable)
3043 *writable = false;
3044 return KVM_PFN_ERR_RO_FAULT;
3045 }
3046
3047 if (kvm_is_error_hva(addr)) {
3048 if (writable)
3049 *writable = false;
3050 return KVM_PFN_NOSLOT;
3051 }
3052
3053 /* Do not map writable pfn in the readonly memslot. */
3054 if (writable && memslot_is_readonly(slot)) {
3055 *writable = false;
3056 writable = NULL;
3057 }
3058
3059 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3060 writable);
3061 }
3062 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3063
3064 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3065 bool *writable)
3066 {
3067 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3068 NULL, write_fault, writable, NULL);
3069 }
3070 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3071
3072 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3073 {
3074 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3075 NULL, NULL);
3076 }
3077 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3078
3079 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3080 {
3081 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3082 NULL, NULL);
3083 }
3084 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3085
3086 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3087 {
3088 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3089 }
3090 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3091
3092 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3093 {
3094 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3095 }
3096 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3097
3098 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3099 {
3100 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3103
3104 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3105 struct page **pages, int nr_pages)
3106 {
3107 unsigned long addr;
3108 gfn_t entry = 0;
3109
3110 addr = gfn_to_hva_many(slot, gfn, &entry);
3111 if (kvm_is_error_hva(addr))
3112 return -1;
3113
3114 if (entry < nr_pages)
3115 return 0;
3116
3117 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3118 }
3119 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3120
3121 /*
3122 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3123 * backed by 'struct page'. A valid example is if the backing memslot is
3124 * controlled by KVM. Note, if the returned page is valid, it's refcount has
3125 * been elevated by gfn_to_pfn().
3126 */
3127 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3128 {
3129 struct page *page;
3130 kvm_pfn_t pfn;
3131
3132 pfn = gfn_to_pfn(kvm, gfn);
3133
3134 if (is_error_noslot_pfn(pfn))
3135 return KVM_ERR_PTR_BAD_PAGE;
3136
3137 page = kvm_pfn_to_refcounted_page(pfn);
3138 if (!page)
3139 return KVM_ERR_PTR_BAD_PAGE;
3140
3141 return page;
3142 }
3143 EXPORT_SYMBOL_GPL(gfn_to_page);
3144
3145 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3146 {
3147 if (dirty)
3148 kvm_release_pfn_dirty(pfn);
3149 else
3150 kvm_release_pfn_clean(pfn);
3151 }
3152
3153 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3154 {
3155 kvm_pfn_t pfn;
3156 void *hva = NULL;
3157 struct page *page = KVM_UNMAPPED_PAGE;
3158
3159 if (!map)
3160 return -EINVAL;
3161
3162 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3163 if (is_error_noslot_pfn(pfn))
3164 return -EINVAL;
3165
3166 if (pfn_valid(pfn)) {
3167 page = pfn_to_page(pfn);
3168 hva = kmap(page);
3169 #ifdef CONFIG_HAS_IOMEM
3170 } else {
3171 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3172 #endif
3173 }
3174
3175 if (!hva)
3176 return -EFAULT;
3177
3178 map->page = page;
3179 map->hva = hva;
3180 map->pfn = pfn;
3181 map->gfn = gfn;
3182
3183 return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3186
3187 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3188 {
3189 if (!map)
3190 return;
3191
3192 if (!map->hva)
3193 return;
3194
3195 if (map->page != KVM_UNMAPPED_PAGE)
3196 kunmap(map->page);
3197 #ifdef CONFIG_HAS_IOMEM
3198 else
3199 memunmap(map->hva);
3200 #endif
3201
3202 if (dirty)
3203 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3204
3205 kvm_release_pfn(map->pfn, dirty);
3206
3207 map->hva = NULL;
3208 map->page = NULL;
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3211
3212 static bool kvm_is_ad_tracked_page(struct page *page)
3213 {
3214 /*
3215 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3216 * touched (e.g. set dirty) except by its owner".
3217 */
3218 return !PageReserved(page);
3219 }
3220
3221 static void kvm_set_page_dirty(struct page *page)
3222 {
3223 if (kvm_is_ad_tracked_page(page))
3224 SetPageDirty(page);
3225 }
3226
3227 static void kvm_set_page_accessed(struct page *page)
3228 {
3229 if (kvm_is_ad_tracked_page(page))
3230 mark_page_accessed(page);
3231 }
3232
3233 void kvm_release_page_clean(struct page *page)
3234 {
3235 WARN_ON(is_error_page(page));
3236
3237 kvm_set_page_accessed(page);
3238 put_page(page);
3239 }
3240 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3241
3242 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3243 {
3244 struct page *page;
3245
3246 if (is_error_noslot_pfn(pfn))
3247 return;
3248
3249 page = kvm_pfn_to_refcounted_page(pfn);
3250 if (!page)
3251 return;
3252
3253 kvm_release_page_clean(page);
3254 }
3255 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3256
3257 void kvm_release_page_dirty(struct page *page)
3258 {
3259 WARN_ON(is_error_page(page));
3260
3261 kvm_set_page_dirty(page);
3262 kvm_release_page_clean(page);
3263 }
3264 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3265
3266 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3267 {
3268 struct page *page;
3269
3270 if (is_error_noslot_pfn(pfn))
3271 return;
3272
3273 page = kvm_pfn_to_refcounted_page(pfn);
3274 if (!page)
3275 return;
3276
3277 kvm_release_page_dirty(page);
3278 }
3279 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3280
3281 /*
3282 * Note, checking for an error/noslot pfn is the caller's responsibility when
3283 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3284 * "set" helpers are not to be used when the pfn might point at garbage.
3285 */
3286 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3287 {
3288 if (WARN_ON(is_error_noslot_pfn(pfn)))
3289 return;
3290
3291 if (pfn_valid(pfn))
3292 kvm_set_page_dirty(pfn_to_page(pfn));
3293 }
3294 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3295
3296 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3297 {
3298 if (WARN_ON(is_error_noslot_pfn(pfn)))
3299 return;
3300
3301 if (pfn_valid(pfn))
3302 kvm_set_page_accessed(pfn_to_page(pfn));
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3305
3306 static int next_segment(unsigned long len, int offset)
3307 {
3308 if (len > PAGE_SIZE - offset)
3309 return PAGE_SIZE - offset;
3310 else
3311 return len;
3312 }
3313
3314 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3315 void *data, int offset, int len)
3316 {
3317 int r;
3318 unsigned long addr;
3319
3320 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3321 if (kvm_is_error_hva(addr))
3322 return -EFAULT;
3323 r = __copy_from_user(data, (void __user *)addr + offset, len);
3324 if (r)
3325 return -EFAULT;
3326 return 0;
3327 }
3328
3329 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3330 int len)
3331 {
3332 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3333
3334 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3335 }
3336 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3337
3338 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3339 int offset, int len)
3340 {
3341 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3342
3343 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3344 }
3345 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3346
3347 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3348 {
3349 gfn_t gfn = gpa >> PAGE_SHIFT;
3350 int seg;
3351 int offset = offset_in_page(gpa);
3352 int ret;
3353
3354 while ((seg = next_segment(len, offset)) != 0) {
3355 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3356 if (ret < 0)
3357 return ret;
3358 offset = 0;
3359 len -= seg;
3360 data += seg;
3361 ++gfn;
3362 }
3363 return 0;
3364 }
3365 EXPORT_SYMBOL_GPL(kvm_read_guest);
3366
3367 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3368 {
3369 gfn_t gfn = gpa >> PAGE_SHIFT;
3370 int seg;
3371 int offset = offset_in_page(gpa);
3372 int ret;
3373
3374 while ((seg = next_segment(len, offset)) != 0) {
3375 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3376 if (ret < 0)
3377 return ret;
3378 offset = 0;
3379 len -= seg;
3380 data += seg;
3381 ++gfn;
3382 }
3383 return 0;
3384 }
3385 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3386
3387 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3388 void *data, int offset, unsigned long len)
3389 {
3390 int r;
3391 unsigned long addr;
3392
3393 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3394 if (kvm_is_error_hva(addr))
3395 return -EFAULT;
3396 pagefault_disable();
3397 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3398 pagefault_enable();
3399 if (r)
3400 return -EFAULT;
3401 return 0;
3402 }
3403
3404 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3405 void *data, unsigned long len)
3406 {
3407 gfn_t gfn = gpa >> PAGE_SHIFT;
3408 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3409 int offset = offset_in_page(gpa);
3410
3411 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3412 }
3413 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3414
3415 static int __kvm_write_guest_page(struct kvm *kvm,
3416 struct kvm_memory_slot *memslot, gfn_t gfn,
3417 const void *data, int offset, int len)
3418 {
3419 int r;
3420 unsigned long addr;
3421
3422 addr = gfn_to_hva_memslot(memslot, gfn);
3423 if (kvm_is_error_hva(addr))
3424 return -EFAULT;
3425 r = __copy_to_user((void __user *)addr + offset, data, len);
3426 if (r)
3427 return -EFAULT;
3428 mark_page_dirty_in_slot(kvm, memslot, gfn);
3429 return 0;
3430 }
3431
3432 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3433 const void *data, int offset, int len)
3434 {
3435 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3436
3437 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3438 }
3439 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3440
3441 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3442 const void *data, int offset, int len)
3443 {
3444 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3445
3446 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3447 }
3448 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3449
3450 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3451 unsigned long len)
3452 {
3453 gfn_t gfn = gpa >> PAGE_SHIFT;
3454 int seg;
3455 int offset = offset_in_page(gpa);
3456 int ret;
3457
3458 while ((seg = next_segment(len, offset)) != 0) {
3459 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3460 if (ret < 0)
3461 return ret;
3462 offset = 0;
3463 len -= seg;
3464 data += seg;
3465 ++gfn;
3466 }
3467 return 0;
3468 }
3469 EXPORT_SYMBOL_GPL(kvm_write_guest);
3470
3471 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3472 unsigned long len)
3473 {
3474 gfn_t gfn = gpa >> PAGE_SHIFT;
3475 int seg;
3476 int offset = offset_in_page(gpa);
3477 int ret;
3478
3479 while ((seg = next_segment(len, offset)) != 0) {
3480 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3481 if (ret < 0)
3482 return ret;
3483 offset = 0;
3484 len -= seg;
3485 data += seg;
3486 ++gfn;
3487 }
3488 return 0;
3489 }
3490 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3491
3492 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3493 struct gfn_to_hva_cache *ghc,
3494 gpa_t gpa, unsigned long len)
3495 {
3496 int offset = offset_in_page(gpa);
3497 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3498 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3499 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3500 gfn_t nr_pages_avail;
3501
3502 /* Update ghc->generation before performing any error checks. */
3503 ghc->generation = slots->generation;
3504
3505 if (start_gfn > end_gfn) {
3506 ghc->hva = KVM_HVA_ERR_BAD;
3507 return -EINVAL;
3508 }
3509
3510 /*
3511 * If the requested region crosses two memslots, we still
3512 * verify that the entire region is valid here.
3513 */
3514 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3515 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3516 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3517 &nr_pages_avail);
3518 if (kvm_is_error_hva(ghc->hva))
3519 return -EFAULT;
3520 }
3521
3522 /* Use the slow path for cross page reads and writes. */
3523 if (nr_pages_needed == 1)
3524 ghc->hva += offset;
3525 else
3526 ghc->memslot = NULL;
3527
3528 ghc->gpa = gpa;
3529 ghc->len = len;
3530 return 0;
3531 }
3532
3533 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3534 gpa_t gpa, unsigned long len)
3535 {
3536 struct kvm_memslots *slots = kvm_memslots(kvm);
3537 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3538 }
3539 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3540
3541 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3542 void *data, unsigned int offset,
3543 unsigned long len)
3544 {
3545 struct kvm_memslots *slots = kvm_memslots(kvm);
3546 int r;
3547 gpa_t gpa = ghc->gpa + offset;
3548
3549 if (WARN_ON_ONCE(len + offset > ghc->len))
3550 return -EINVAL;
3551
3552 if (slots->generation != ghc->generation) {
3553 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3554 return -EFAULT;
3555 }
3556
3557 if (kvm_is_error_hva(ghc->hva))
3558 return -EFAULT;
3559
3560 if (unlikely(!ghc->memslot))
3561 return kvm_write_guest(kvm, gpa, data, len);
3562
3563 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3564 if (r)
3565 return -EFAULT;
3566 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3567
3568 return 0;
3569 }
3570 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3571
3572 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3573 void *data, unsigned long len)
3574 {
3575 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3576 }
3577 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3578
3579 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3580 void *data, unsigned int offset,
3581 unsigned long len)
3582 {
3583 struct kvm_memslots *slots = kvm_memslots(kvm);
3584 int r;
3585 gpa_t gpa = ghc->gpa + offset;
3586
3587 if (WARN_ON_ONCE(len + offset > ghc->len))
3588 return -EINVAL;
3589
3590 if (slots->generation != ghc->generation) {
3591 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3592 return -EFAULT;
3593 }
3594
3595 if (kvm_is_error_hva(ghc->hva))
3596 return -EFAULT;
3597
3598 if (unlikely(!ghc->memslot))
3599 return kvm_read_guest(kvm, gpa, data, len);
3600
3601 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3602 if (r)
3603 return -EFAULT;
3604
3605 return 0;
3606 }
3607 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3608
3609 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3610 void *data, unsigned long len)
3611 {
3612 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3613 }
3614 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3615
3616 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3617 {
3618 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3619 gfn_t gfn = gpa >> PAGE_SHIFT;
3620 int seg;
3621 int offset = offset_in_page(gpa);
3622 int ret;
3623
3624 while ((seg = next_segment(len, offset)) != 0) {
3625 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3626 if (ret < 0)
3627 return ret;
3628 offset = 0;
3629 len -= seg;
3630 ++gfn;
3631 }
3632 return 0;
3633 }
3634 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3635
3636 void mark_page_dirty_in_slot(struct kvm *kvm,
3637 const struct kvm_memory_slot *memslot,
3638 gfn_t gfn)
3639 {
3640 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3641
3642 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3643 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3644 return;
3645
3646 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3647 #endif
3648
3649 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3650 unsigned long rel_gfn = gfn - memslot->base_gfn;
3651 u32 slot = (memslot->as_id << 16) | memslot->id;
3652
3653 if (kvm->dirty_ring_size && vcpu)
3654 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3655 else if (memslot->dirty_bitmap)
3656 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3657 }
3658 }
3659 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3660
3661 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3662 {
3663 struct kvm_memory_slot *memslot;
3664
3665 memslot = gfn_to_memslot(kvm, gfn);
3666 mark_page_dirty_in_slot(kvm, memslot, gfn);
3667 }
3668 EXPORT_SYMBOL_GPL(mark_page_dirty);
3669
3670 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3671 {
3672 struct kvm_memory_slot *memslot;
3673
3674 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3675 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3676 }
3677 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3678
3679 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3680 {
3681 if (!vcpu->sigset_active)
3682 return;
3683
3684 /*
3685 * This does a lockless modification of ->real_blocked, which is fine
3686 * because, only current can change ->real_blocked and all readers of
3687 * ->real_blocked don't care as long ->real_blocked is always a subset
3688 * of ->blocked.
3689 */
3690 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3691 }
3692
3693 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3694 {
3695 if (!vcpu->sigset_active)
3696 return;
3697
3698 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3699 sigemptyset(&current->real_blocked);
3700 }
3701
3702 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3703 {
3704 unsigned int old, val, grow, grow_start;
3705
3706 old = val = vcpu->halt_poll_ns;
3707 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3708 grow = READ_ONCE(halt_poll_ns_grow);
3709 if (!grow)
3710 goto out;
3711
3712 val *= grow;
3713 if (val < grow_start)
3714 val = grow_start;
3715
3716 vcpu->halt_poll_ns = val;
3717 out:
3718 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3719 }
3720
3721 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3722 {
3723 unsigned int old, val, shrink, grow_start;
3724
3725 old = val = vcpu->halt_poll_ns;
3726 shrink = READ_ONCE(halt_poll_ns_shrink);
3727 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3728 if (shrink == 0)
3729 val = 0;
3730 else
3731 val /= shrink;
3732
3733 if (val < grow_start)
3734 val = 0;
3735
3736 vcpu->halt_poll_ns = val;
3737 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3738 }
3739
3740 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3741 {
3742 int ret = -EINTR;
3743 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3744
3745 if (kvm_arch_vcpu_runnable(vcpu))
3746 goto out;
3747 if (kvm_cpu_has_pending_timer(vcpu))
3748 goto out;
3749 if (signal_pending(current))
3750 goto out;
3751 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3752 goto out;
3753
3754 ret = 0;
3755 out:
3756 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3757 return ret;
3758 }
3759
3760 /*
3761 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3762 * pending. This is mostly used when halting a vCPU, but may also be used
3763 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3764 */
3765 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3766 {
3767 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3768 bool waited = false;
3769
3770 vcpu->stat.generic.blocking = 1;
3771
3772 preempt_disable();
3773 kvm_arch_vcpu_blocking(vcpu);
3774 prepare_to_rcuwait(wait);
3775 preempt_enable();
3776
3777 for (;;) {
3778 set_current_state(TASK_INTERRUPTIBLE);
3779
3780 if (kvm_vcpu_check_block(vcpu) < 0)
3781 break;
3782
3783 waited = true;
3784 schedule();
3785 }
3786
3787 preempt_disable();
3788 finish_rcuwait(wait);
3789 kvm_arch_vcpu_unblocking(vcpu);
3790 preempt_enable();
3791
3792 vcpu->stat.generic.blocking = 0;
3793
3794 return waited;
3795 }
3796
3797 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3798 ktime_t end, bool success)
3799 {
3800 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3801 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3802
3803 ++vcpu->stat.generic.halt_attempted_poll;
3804
3805 if (success) {
3806 ++vcpu->stat.generic.halt_successful_poll;
3807
3808 if (!vcpu_valid_wakeup(vcpu))
3809 ++vcpu->stat.generic.halt_poll_invalid;
3810
3811 stats->halt_poll_success_ns += poll_ns;
3812 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3813 } else {
3814 stats->halt_poll_fail_ns += poll_ns;
3815 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3816 }
3817 }
3818
3819 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3820 {
3821 struct kvm *kvm = vcpu->kvm;
3822
3823 if (kvm->override_halt_poll_ns) {
3824 /*
3825 * Ensure kvm->max_halt_poll_ns is not read before
3826 * kvm->override_halt_poll_ns.
3827 *
3828 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3829 */
3830 smp_rmb();
3831 return READ_ONCE(kvm->max_halt_poll_ns);
3832 }
3833
3834 return READ_ONCE(halt_poll_ns);
3835 }
3836
3837 /*
3838 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3839 * polling is enabled, busy wait for a short time before blocking to avoid the
3840 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3841 * is halted.
3842 */
3843 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3844 {
3845 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3846 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3847 ktime_t start, cur, poll_end;
3848 bool waited = false;
3849 bool do_halt_poll;
3850 u64 halt_ns;
3851
3852 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3853 vcpu->halt_poll_ns = max_halt_poll_ns;
3854
3855 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3856
3857 start = cur = poll_end = ktime_get();
3858 if (do_halt_poll) {
3859 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3860
3861 do {
3862 if (kvm_vcpu_check_block(vcpu) < 0)
3863 goto out;
3864 cpu_relax();
3865 poll_end = cur = ktime_get();
3866 } while (kvm_vcpu_can_poll(cur, stop));
3867 }
3868
3869 waited = kvm_vcpu_block(vcpu);
3870
3871 cur = ktime_get();
3872 if (waited) {
3873 vcpu->stat.generic.halt_wait_ns +=
3874 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3875 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3876 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3877 }
3878 out:
3879 /* The total time the vCPU was "halted", including polling time. */
3880 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3881
3882 /*
3883 * Note, halt-polling is considered successful so long as the vCPU was
3884 * never actually scheduled out, i.e. even if the wake event arrived
3885 * after of the halt-polling loop itself, but before the full wait.
3886 */
3887 if (do_halt_poll)
3888 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3889
3890 if (halt_poll_allowed) {
3891 /* Recompute the max halt poll time in case it changed. */
3892 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3893
3894 if (!vcpu_valid_wakeup(vcpu)) {
3895 shrink_halt_poll_ns(vcpu);
3896 } else if (max_halt_poll_ns) {
3897 if (halt_ns <= vcpu->halt_poll_ns)
3898 ;
3899 /* we had a long block, shrink polling */
3900 else if (vcpu->halt_poll_ns &&
3901 halt_ns > max_halt_poll_ns)
3902 shrink_halt_poll_ns(vcpu);
3903 /* we had a short halt and our poll time is too small */
3904 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3905 halt_ns < max_halt_poll_ns)
3906 grow_halt_poll_ns(vcpu);
3907 } else {
3908 vcpu->halt_poll_ns = 0;
3909 }
3910 }
3911
3912 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3913 }
3914 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3915
3916 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3917 {
3918 if (__kvm_vcpu_wake_up(vcpu)) {
3919 WRITE_ONCE(vcpu->ready, true);
3920 ++vcpu->stat.generic.halt_wakeup;
3921 return true;
3922 }
3923
3924 return false;
3925 }
3926 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3927
3928 #ifndef CONFIG_S390
3929 /*
3930 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3931 */
3932 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3933 {
3934 int me, cpu;
3935
3936 if (kvm_vcpu_wake_up(vcpu))
3937 return;
3938
3939 me = get_cpu();
3940 /*
3941 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3942 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3943 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3944 * within the vCPU thread itself.
3945 */
3946 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3947 if (vcpu->mode == IN_GUEST_MODE)
3948 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3949 goto out;
3950 }
3951
3952 /*
3953 * Note, the vCPU could get migrated to a different pCPU at any point
3954 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3955 * IPI to the previous pCPU. But, that's ok because the purpose of the
3956 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3957 * vCPU also requires it to leave IN_GUEST_MODE.
3958 */
3959 if (kvm_arch_vcpu_should_kick(vcpu)) {
3960 cpu = READ_ONCE(vcpu->cpu);
3961 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3962 smp_send_reschedule(cpu);
3963 }
3964 out:
3965 put_cpu();
3966 }
3967 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3968 #endif /* !CONFIG_S390 */
3969
3970 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3971 {
3972 struct pid *pid;
3973 struct task_struct *task = NULL;
3974 int ret = 0;
3975
3976 rcu_read_lock();
3977 pid = rcu_dereference(target->pid);
3978 if (pid)
3979 task = get_pid_task(pid, PIDTYPE_PID);
3980 rcu_read_unlock();
3981 if (!task)
3982 return ret;
3983 ret = yield_to(task, 1);
3984 put_task_struct(task);
3985
3986 return ret;
3987 }
3988 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3989
3990 /*
3991 * Helper that checks whether a VCPU is eligible for directed yield.
3992 * Most eligible candidate to yield is decided by following heuristics:
3993 *
3994 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3995 * (preempted lock holder), indicated by @in_spin_loop.
3996 * Set at the beginning and cleared at the end of interception/PLE handler.
3997 *
3998 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3999 * chance last time (mostly it has become eligible now since we have probably
4000 * yielded to lockholder in last iteration. This is done by toggling
4001 * @dy_eligible each time a VCPU checked for eligibility.)
4002 *
4003 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4004 * to preempted lock-holder could result in wrong VCPU selection and CPU
4005 * burning. Giving priority for a potential lock-holder increases lock
4006 * progress.
4007 *
4008 * Since algorithm is based on heuristics, accessing another VCPU data without
4009 * locking does not harm. It may result in trying to yield to same VCPU, fail
4010 * and continue with next VCPU and so on.
4011 */
4012 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4013 {
4014 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4015 bool eligible;
4016
4017 eligible = !vcpu->spin_loop.in_spin_loop ||
4018 vcpu->spin_loop.dy_eligible;
4019
4020 if (vcpu->spin_loop.in_spin_loop)
4021 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4022
4023 return eligible;
4024 #else
4025 return true;
4026 #endif
4027 }
4028
4029 /*
4030 * Unlike kvm_arch_vcpu_runnable, this function is called outside
4031 * a vcpu_load/vcpu_put pair. However, for most architectures
4032 * kvm_arch_vcpu_runnable does not require vcpu_load.
4033 */
4034 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4035 {
4036 return kvm_arch_vcpu_runnable(vcpu);
4037 }
4038
4039 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4040 {
4041 if (kvm_arch_dy_runnable(vcpu))
4042 return true;
4043
4044 #ifdef CONFIG_KVM_ASYNC_PF
4045 if (!list_empty_careful(&vcpu->async_pf.done))
4046 return true;
4047 #endif
4048
4049 return false;
4050 }
4051
4052 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4053 {
4054 return false;
4055 }
4056
4057 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4058 {
4059 struct kvm *kvm = me->kvm;
4060 struct kvm_vcpu *vcpu;
4061 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4062 unsigned long i;
4063 int yielded = 0;
4064 int try = 3;
4065 int pass;
4066
4067 kvm_vcpu_set_in_spin_loop(me, true);
4068 /*
4069 * We boost the priority of a VCPU that is runnable but not
4070 * currently running, because it got preempted by something
4071 * else and called schedule in __vcpu_run. Hopefully that
4072 * VCPU is holding the lock that we need and will release it.
4073 * We approximate round-robin by starting at the last boosted VCPU.
4074 */
4075 for (pass = 0; pass < 2 && !yielded && try; pass++) {
4076 kvm_for_each_vcpu(i, vcpu, kvm) {
4077 if (!pass && i <= last_boosted_vcpu) {
4078 i = last_boosted_vcpu;
4079 continue;
4080 } else if (pass && i > last_boosted_vcpu)
4081 break;
4082 if (!READ_ONCE(vcpu->ready))
4083 continue;
4084 if (vcpu == me)
4085 continue;
4086 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4087 continue;
4088 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4089 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4090 !kvm_arch_vcpu_in_kernel(vcpu))
4091 continue;
4092 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4093 continue;
4094
4095 yielded = kvm_vcpu_yield_to(vcpu);
4096 if (yielded > 0) {
4097 kvm->last_boosted_vcpu = i;
4098 break;
4099 } else if (yielded < 0) {
4100 try--;
4101 if (!try)
4102 break;
4103 }
4104 }
4105 }
4106 kvm_vcpu_set_in_spin_loop(me, false);
4107
4108 /* Ensure vcpu is not eligible during next spinloop */
4109 kvm_vcpu_set_dy_eligible(me, false);
4110 }
4111 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4112
4113 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4114 {
4115 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4116 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4117 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4118 kvm->dirty_ring_size / PAGE_SIZE);
4119 #else
4120 return false;
4121 #endif
4122 }
4123
4124 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4125 {
4126 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4127 struct page *page;
4128
4129 if (vmf->pgoff == 0)
4130 page = virt_to_page(vcpu->run);
4131 #ifdef CONFIG_X86
4132 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4133 page = virt_to_page(vcpu->arch.pio_data);
4134 #endif
4135 #ifdef CONFIG_KVM_MMIO
4136 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4137 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4138 #endif
4139 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4140 page = kvm_dirty_ring_get_page(
4141 &vcpu->dirty_ring,
4142 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4143 else
4144 return kvm_arch_vcpu_fault(vcpu, vmf);
4145 get_page(page);
4146 vmf->page = page;
4147 return 0;
4148 }
4149
4150 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4151 .fault = kvm_vcpu_fault,
4152 };
4153
4154 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4155 {
4156 struct kvm_vcpu *vcpu = file->private_data;
4157 unsigned long pages = vma_pages(vma);
4158
4159 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4160 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4161 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4162 return -EINVAL;
4163
4164 vma->vm_ops = &kvm_vcpu_vm_ops;
4165 return 0;
4166 }
4167
4168 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4169 {
4170 struct kvm_vcpu *vcpu = filp->private_data;
4171
4172 kvm_put_kvm(vcpu->kvm);
4173 return 0;
4174 }
4175
4176 static const struct file_operations kvm_vcpu_fops = {
4177 .release = kvm_vcpu_release,
4178 .unlocked_ioctl = kvm_vcpu_ioctl,
4179 .mmap = kvm_vcpu_mmap,
4180 .llseek = noop_llseek,
4181 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4182 };
4183
4184 /*
4185 * Allocates an inode for the vcpu.
4186 */
4187 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4188 {
4189 char name[8 + 1 + ITOA_MAX_LEN + 1];
4190
4191 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4192 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4193 }
4194
4195 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4196 static int vcpu_get_pid(void *data, u64 *val)
4197 {
4198 struct kvm_vcpu *vcpu = data;
4199
4200 rcu_read_lock();
4201 *val = pid_nr(rcu_dereference(vcpu->pid));
4202 rcu_read_unlock();
4203 return 0;
4204 }
4205
4206 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4207
4208 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4209 {
4210 struct dentry *debugfs_dentry;
4211 char dir_name[ITOA_MAX_LEN * 2];
4212
4213 if (!debugfs_initialized())
4214 return;
4215
4216 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4217 debugfs_dentry = debugfs_create_dir(dir_name,
4218 vcpu->kvm->debugfs_dentry);
4219 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4220 &vcpu_get_pid_fops);
4221
4222 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4223 }
4224 #endif
4225
4226 /*
4227 * Creates some virtual cpus. Good luck creating more than one.
4228 */
4229 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4230 {
4231 int r;
4232 struct kvm_vcpu *vcpu;
4233 struct page *page;
4234
4235 if (id >= KVM_MAX_VCPU_IDS)
4236 return -EINVAL;
4237
4238 mutex_lock(&kvm->lock);
4239 if (kvm->created_vcpus >= kvm->max_vcpus) {
4240 mutex_unlock(&kvm->lock);
4241 return -EINVAL;
4242 }
4243
4244 r = kvm_arch_vcpu_precreate(kvm, id);
4245 if (r) {
4246 mutex_unlock(&kvm->lock);
4247 return r;
4248 }
4249
4250 kvm->created_vcpus++;
4251 mutex_unlock(&kvm->lock);
4252
4253 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4254 if (!vcpu) {
4255 r = -ENOMEM;
4256 goto vcpu_decrement;
4257 }
4258
4259 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4260 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4261 if (!page) {
4262 r = -ENOMEM;
4263 goto vcpu_free;
4264 }
4265 vcpu->run = page_address(page);
4266
4267 kvm_vcpu_init(vcpu, kvm, id);
4268
4269 r = kvm_arch_vcpu_create(vcpu);
4270 if (r)
4271 goto vcpu_free_run_page;
4272
4273 if (kvm->dirty_ring_size) {
4274 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4275 id, kvm->dirty_ring_size);
4276 if (r)
4277 goto arch_vcpu_destroy;
4278 }
4279
4280 mutex_lock(&kvm->lock);
4281
4282 #ifdef CONFIG_LOCKDEP
4283 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4284 mutex_lock(&vcpu->mutex);
4285 mutex_unlock(&vcpu->mutex);
4286 #endif
4287
4288 if (kvm_get_vcpu_by_id(kvm, id)) {
4289 r = -EEXIST;
4290 goto unlock_vcpu_destroy;
4291 }
4292
4293 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4294 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4295 if (r)
4296 goto unlock_vcpu_destroy;
4297
4298 /* Now it's all set up, let userspace reach it */
4299 kvm_get_kvm(kvm);
4300 r = create_vcpu_fd(vcpu);
4301 if (r < 0)
4302 goto kvm_put_xa_release;
4303
4304 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4305 r = -EINVAL;
4306 goto kvm_put_xa_release;
4307 }
4308
4309 /*
4310 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4311 * pointer before kvm->online_vcpu's incremented value.
4312 */
4313 smp_wmb();
4314 atomic_inc(&kvm->online_vcpus);
4315
4316 mutex_unlock(&kvm->lock);
4317 kvm_arch_vcpu_postcreate(vcpu);
4318 kvm_create_vcpu_debugfs(vcpu);
4319 return r;
4320
4321 kvm_put_xa_release:
4322 kvm_put_kvm_no_destroy(kvm);
4323 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4324 unlock_vcpu_destroy:
4325 mutex_unlock(&kvm->lock);
4326 kvm_dirty_ring_free(&vcpu->dirty_ring);
4327 arch_vcpu_destroy:
4328 kvm_arch_vcpu_destroy(vcpu);
4329 vcpu_free_run_page:
4330 free_page((unsigned long)vcpu->run);
4331 vcpu_free:
4332 kmem_cache_free(kvm_vcpu_cache, vcpu);
4333 vcpu_decrement:
4334 mutex_lock(&kvm->lock);
4335 kvm->created_vcpus--;
4336 mutex_unlock(&kvm->lock);
4337 return r;
4338 }
4339
4340 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4341 {
4342 if (sigset) {
4343 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4344 vcpu->sigset_active = 1;
4345 vcpu->sigset = *sigset;
4346 } else
4347 vcpu->sigset_active = 0;
4348 return 0;
4349 }
4350
4351 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4352 size_t size, loff_t *offset)
4353 {
4354 struct kvm_vcpu *vcpu = file->private_data;
4355
4356 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4357 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4358 sizeof(vcpu->stat), user_buffer, size, offset);
4359 }
4360
4361 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4362 {
4363 struct kvm_vcpu *vcpu = file->private_data;
4364
4365 kvm_put_kvm(vcpu->kvm);
4366 return 0;
4367 }
4368
4369 static const struct file_operations kvm_vcpu_stats_fops = {
4370 .read = kvm_vcpu_stats_read,
4371 .release = kvm_vcpu_stats_release,
4372 .llseek = noop_llseek,
4373 };
4374
4375 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4376 {
4377 int fd;
4378 struct file *file;
4379 char name[15 + ITOA_MAX_LEN + 1];
4380
4381 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4382
4383 fd = get_unused_fd_flags(O_CLOEXEC);
4384 if (fd < 0)
4385 return fd;
4386
4387 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4388 if (IS_ERR(file)) {
4389 put_unused_fd(fd);
4390 return PTR_ERR(file);
4391 }
4392
4393 kvm_get_kvm(vcpu->kvm);
4394
4395 file->f_mode |= FMODE_PREAD;
4396 fd_install(fd, file);
4397
4398 return fd;
4399 }
4400
4401 static long kvm_vcpu_ioctl(struct file *filp,
4402 unsigned int ioctl, unsigned long arg)
4403 {
4404 struct kvm_vcpu *vcpu = filp->private_data;
4405 void __user *argp = (void __user *)arg;
4406 int r;
4407 struct kvm_fpu *fpu = NULL;
4408 struct kvm_sregs *kvm_sregs = NULL;
4409
4410 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4411 return -EIO;
4412
4413 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4414 return -EINVAL;
4415
4416 /*
4417 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4418 * execution; mutex_lock() would break them.
4419 */
4420 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4421 if (r != -ENOIOCTLCMD)
4422 return r;
4423
4424 if (mutex_lock_killable(&vcpu->mutex))
4425 return -EINTR;
4426 switch (ioctl) {
4427 case KVM_RUN: {
4428 struct pid *oldpid;
4429 r = -EINVAL;
4430 if (arg)
4431 goto out;
4432 oldpid = rcu_access_pointer(vcpu->pid);
4433 if (unlikely(oldpid != task_pid(current))) {
4434 /* The thread running this VCPU changed. */
4435 struct pid *newpid;
4436
4437 r = kvm_arch_vcpu_run_pid_change(vcpu);
4438 if (r)
4439 break;
4440
4441 newpid = get_task_pid(current, PIDTYPE_PID);
4442 rcu_assign_pointer(vcpu->pid, newpid);
4443 if (oldpid)
4444 synchronize_rcu();
4445 put_pid(oldpid);
4446 }
4447 r = kvm_arch_vcpu_ioctl_run(vcpu);
4448 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4449 break;
4450 }
4451 case KVM_GET_REGS: {
4452 struct kvm_regs *kvm_regs;
4453
4454 r = -ENOMEM;
4455 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4456 if (!kvm_regs)
4457 goto out;
4458 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4459 if (r)
4460 goto out_free1;
4461 r = -EFAULT;
4462 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4463 goto out_free1;
4464 r = 0;
4465 out_free1:
4466 kfree(kvm_regs);
4467 break;
4468 }
4469 case KVM_SET_REGS: {
4470 struct kvm_regs *kvm_regs;
4471
4472 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4473 if (IS_ERR(kvm_regs)) {
4474 r = PTR_ERR(kvm_regs);
4475 goto out;
4476 }
4477 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4478 kfree(kvm_regs);
4479 break;
4480 }
4481 case KVM_GET_SREGS: {
4482 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4483 GFP_KERNEL_ACCOUNT);
4484 r = -ENOMEM;
4485 if (!kvm_sregs)
4486 goto out;
4487 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4488 if (r)
4489 goto out;
4490 r = -EFAULT;
4491 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4492 goto out;
4493 r = 0;
4494 break;
4495 }
4496 case KVM_SET_SREGS: {
4497 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4498 if (IS_ERR(kvm_sregs)) {
4499 r = PTR_ERR(kvm_sregs);
4500 kvm_sregs = NULL;
4501 goto out;
4502 }
4503 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4504 break;
4505 }
4506 case KVM_GET_MP_STATE: {
4507 struct kvm_mp_state mp_state;
4508
4509 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4510 if (r)
4511 goto out;
4512 r = -EFAULT;
4513 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4514 goto out;
4515 r = 0;
4516 break;
4517 }
4518 case KVM_SET_MP_STATE: {
4519 struct kvm_mp_state mp_state;
4520
4521 r = -EFAULT;
4522 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4523 goto out;
4524 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4525 break;
4526 }
4527 case KVM_TRANSLATE: {
4528 struct kvm_translation tr;
4529
4530 r = -EFAULT;
4531 if (copy_from_user(&tr, argp, sizeof(tr)))
4532 goto out;
4533 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4534 if (r)
4535 goto out;
4536 r = -EFAULT;
4537 if (copy_to_user(argp, &tr, sizeof(tr)))
4538 goto out;
4539 r = 0;
4540 break;
4541 }
4542 case KVM_SET_GUEST_DEBUG: {
4543 struct kvm_guest_debug dbg;
4544
4545 r = -EFAULT;
4546 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4547 goto out;
4548 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4549 break;
4550 }
4551 case KVM_SET_SIGNAL_MASK: {
4552 struct kvm_signal_mask __user *sigmask_arg = argp;
4553 struct kvm_signal_mask kvm_sigmask;
4554 sigset_t sigset, *p;
4555
4556 p = NULL;
4557 if (argp) {
4558 r = -EFAULT;
4559 if (copy_from_user(&kvm_sigmask, argp,
4560 sizeof(kvm_sigmask)))
4561 goto out;
4562 r = -EINVAL;
4563 if (kvm_sigmask.len != sizeof(sigset))
4564 goto out;
4565 r = -EFAULT;
4566 if (copy_from_user(&sigset, sigmask_arg->sigset,
4567 sizeof(sigset)))
4568 goto out;
4569 p = &sigset;
4570 }
4571 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4572 break;
4573 }
4574 case KVM_GET_FPU: {
4575 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4576 r = -ENOMEM;
4577 if (!fpu)
4578 goto out;
4579 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4580 if (r)
4581 goto out;
4582 r = -EFAULT;
4583 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4584 goto out;
4585 r = 0;
4586 break;
4587 }
4588 case KVM_SET_FPU: {
4589 fpu = memdup_user(argp, sizeof(*fpu));
4590 if (IS_ERR(fpu)) {
4591 r = PTR_ERR(fpu);
4592 fpu = NULL;
4593 goto out;
4594 }
4595 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4596 break;
4597 }
4598 case KVM_GET_STATS_FD: {
4599 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4600 break;
4601 }
4602 default:
4603 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4604 }
4605 out:
4606 mutex_unlock(&vcpu->mutex);
4607 kfree(fpu);
4608 kfree(kvm_sregs);
4609 return r;
4610 }
4611
4612 #ifdef CONFIG_KVM_COMPAT
4613 static long kvm_vcpu_compat_ioctl(struct file *filp,
4614 unsigned int ioctl, unsigned long arg)
4615 {
4616 struct kvm_vcpu *vcpu = filp->private_data;
4617 void __user *argp = compat_ptr(arg);
4618 int r;
4619
4620 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4621 return -EIO;
4622
4623 switch (ioctl) {
4624 case KVM_SET_SIGNAL_MASK: {
4625 struct kvm_signal_mask __user *sigmask_arg = argp;
4626 struct kvm_signal_mask kvm_sigmask;
4627 sigset_t sigset;
4628
4629 if (argp) {
4630 r = -EFAULT;
4631 if (copy_from_user(&kvm_sigmask, argp,
4632 sizeof(kvm_sigmask)))
4633 goto out;
4634 r = -EINVAL;
4635 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4636 goto out;
4637 r = -EFAULT;
4638 if (get_compat_sigset(&sigset,
4639 (compat_sigset_t __user *)sigmask_arg->sigset))
4640 goto out;
4641 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4642 } else
4643 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4644 break;
4645 }
4646 default:
4647 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4648 }
4649
4650 out:
4651 return r;
4652 }
4653 #endif
4654
4655 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4656 {
4657 struct kvm_device *dev = filp->private_data;
4658
4659 if (dev->ops->mmap)
4660 return dev->ops->mmap(dev, vma);
4661
4662 return -ENODEV;
4663 }
4664
4665 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4666 int (*accessor)(struct kvm_device *dev,
4667 struct kvm_device_attr *attr),
4668 unsigned long arg)
4669 {
4670 struct kvm_device_attr attr;
4671
4672 if (!accessor)
4673 return -EPERM;
4674
4675 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4676 return -EFAULT;
4677
4678 return accessor(dev, &attr);
4679 }
4680
4681 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4682 unsigned long arg)
4683 {
4684 struct kvm_device *dev = filp->private_data;
4685
4686 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4687 return -EIO;
4688
4689 switch (ioctl) {
4690 case KVM_SET_DEVICE_ATTR:
4691 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4692 case KVM_GET_DEVICE_ATTR:
4693 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4694 case KVM_HAS_DEVICE_ATTR:
4695 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4696 default:
4697 if (dev->ops->ioctl)
4698 return dev->ops->ioctl(dev, ioctl, arg);
4699
4700 return -ENOTTY;
4701 }
4702 }
4703
4704 static int kvm_device_release(struct inode *inode, struct file *filp)
4705 {
4706 struct kvm_device *dev = filp->private_data;
4707 struct kvm *kvm = dev->kvm;
4708
4709 if (dev->ops->release) {
4710 mutex_lock(&kvm->lock);
4711 list_del(&dev->vm_node);
4712 dev->ops->release(dev);
4713 mutex_unlock(&kvm->lock);
4714 }
4715
4716 kvm_put_kvm(kvm);
4717 return 0;
4718 }
4719
4720 static const struct file_operations kvm_device_fops = {
4721 .unlocked_ioctl = kvm_device_ioctl,
4722 .release = kvm_device_release,
4723 KVM_COMPAT(kvm_device_ioctl),
4724 .mmap = kvm_device_mmap,
4725 };
4726
4727 struct kvm_device *kvm_device_from_filp(struct file *filp)
4728 {
4729 if (filp->f_op != &kvm_device_fops)
4730 return NULL;
4731
4732 return filp->private_data;
4733 }
4734
4735 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4736 #ifdef CONFIG_KVM_MPIC
4737 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4738 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4739 #endif
4740 };
4741
4742 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4743 {
4744 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4745 return -ENOSPC;
4746
4747 if (kvm_device_ops_table[type] != NULL)
4748 return -EEXIST;
4749
4750 kvm_device_ops_table[type] = ops;
4751 return 0;
4752 }
4753
4754 void kvm_unregister_device_ops(u32 type)
4755 {
4756 if (kvm_device_ops_table[type] != NULL)
4757 kvm_device_ops_table[type] = NULL;
4758 }
4759
4760 static int kvm_ioctl_create_device(struct kvm *kvm,
4761 struct kvm_create_device *cd)
4762 {
4763 const struct kvm_device_ops *ops;
4764 struct kvm_device *dev;
4765 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4766 int type;
4767 int ret;
4768
4769 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4770 return -ENODEV;
4771
4772 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4773 ops = kvm_device_ops_table[type];
4774 if (ops == NULL)
4775 return -ENODEV;
4776
4777 if (test)
4778 return 0;
4779
4780 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4781 if (!dev)
4782 return -ENOMEM;
4783
4784 dev->ops = ops;
4785 dev->kvm = kvm;
4786
4787 mutex_lock(&kvm->lock);
4788 ret = ops->create(dev, type);
4789 if (ret < 0) {
4790 mutex_unlock(&kvm->lock);
4791 kfree(dev);
4792 return ret;
4793 }
4794 list_add(&dev->vm_node, &kvm->devices);
4795 mutex_unlock(&kvm->lock);
4796
4797 if (ops->init)
4798 ops->init(dev);
4799
4800 kvm_get_kvm(kvm);
4801 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4802 if (ret < 0) {
4803 kvm_put_kvm_no_destroy(kvm);
4804 mutex_lock(&kvm->lock);
4805 list_del(&dev->vm_node);
4806 if (ops->release)
4807 ops->release(dev);
4808 mutex_unlock(&kvm->lock);
4809 if (ops->destroy)
4810 ops->destroy(dev);
4811 return ret;
4812 }
4813
4814 cd->fd = ret;
4815 return 0;
4816 }
4817
4818 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4819 {
4820 switch (arg) {
4821 case KVM_CAP_USER_MEMORY:
4822 case KVM_CAP_USER_MEMORY2:
4823 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4824 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4825 case KVM_CAP_INTERNAL_ERROR_DATA:
4826 #ifdef CONFIG_HAVE_KVM_MSI
4827 case KVM_CAP_SIGNAL_MSI:
4828 #endif
4829 #ifdef CONFIG_HAVE_KVM_IRQFD
4830 case KVM_CAP_IRQFD:
4831 #endif
4832 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4833 case KVM_CAP_CHECK_EXTENSION_VM:
4834 case KVM_CAP_ENABLE_CAP_VM:
4835 case KVM_CAP_HALT_POLL:
4836 return 1;
4837 #ifdef CONFIG_KVM_MMIO
4838 case KVM_CAP_COALESCED_MMIO:
4839 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4840 case KVM_CAP_COALESCED_PIO:
4841 return 1;
4842 #endif
4843 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4844 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4845 return KVM_DIRTY_LOG_MANUAL_CAPS;
4846 #endif
4847 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4848 case KVM_CAP_IRQ_ROUTING:
4849 return KVM_MAX_IRQ_ROUTES;
4850 #endif
4851 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4852 case KVM_CAP_MULTI_ADDRESS_SPACE:
4853 if (kvm)
4854 return kvm_arch_nr_memslot_as_ids(kvm);
4855 return KVM_MAX_NR_ADDRESS_SPACES;
4856 #endif
4857 case KVM_CAP_NR_MEMSLOTS:
4858 return KVM_USER_MEM_SLOTS;
4859 case KVM_CAP_DIRTY_LOG_RING:
4860 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4861 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4862 #else
4863 return 0;
4864 #endif
4865 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4866 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4867 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4868 #else
4869 return 0;
4870 #endif
4871 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4872 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4873 #endif
4874 case KVM_CAP_BINARY_STATS_FD:
4875 case KVM_CAP_SYSTEM_EVENT_DATA:
4876 case KVM_CAP_DEVICE_CTRL:
4877 return 1;
4878 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4879 case KVM_CAP_MEMORY_ATTRIBUTES:
4880 return kvm_supported_mem_attributes(kvm);
4881 #endif
4882 #ifdef CONFIG_KVM_PRIVATE_MEM
4883 case KVM_CAP_GUEST_MEMFD:
4884 return !kvm || kvm_arch_has_private_mem(kvm);
4885 #endif
4886 default:
4887 break;
4888 }
4889 return kvm_vm_ioctl_check_extension(kvm, arg);
4890 }
4891
4892 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4893 {
4894 int r;
4895
4896 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4897 return -EINVAL;
4898
4899 /* the size should be power of 2 */
4900 if (!size || (size & (size - 1)))
4901 return -EINVAL;
4902
4903 /* Should be bigger to keep the reserved entries, or a page */
4904 if (size < kvm_dirty_ring_get_rsvd_entries() *
4905 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4906 return -EINVAL;
4907
4908 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4909 sizeof(struct kvm_dirty_gfn))
4910 return -E2BIG;
4911
4912 /* We only allow it to set once */
4913 if (kvm->dirty_ring_size)
4914 return -EINVAL;
4915
4916 mutex_lock(&kvm->lock);
4917
4918 if (kvm->created_vcpus) {
4919 /* We don't allow to change this value after vcpu created */
4920 r = -EINVAL;
4921 } else {
4922 kvm->dirty_ring_size = size;
4923 r = 0;
4924 }
4925
4926 mutex_unlock(&kvm->lock);
4927 return r;
4928 }
4929
4930 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4931 {
4932 unsigned long i;
4933 struct kvm_vcpu *vcpu;
4934 int cleared = 0;
4935
4936 if (!kvm->dirty_ring_size)
4937 return -EINVAL;
4938
4939 mutex_lock(&kvm->slots_lock);
4940
4941 kvm_for_each_vcpu(i, vcpu, kvm)
4942 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4943
4944 mutex_unlock(&kvm->slots_lock);
4945
4946 if (cleared)
4947 kvm_flush_remote_tlbs(kvm);
4948
4949 return cleared;
4950 }
4951
4952 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4953 struct kvm_enable_cap *cap)
4954 {
4955 return -EINVAL;
4956 }
4957
4958 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4959 {
4960 int i;
4961
4962 lockdep_assert_held(&kvm->slots_lock);
4963
4964 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4965 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4966 return false;
4967 }
4968
4969 return true;
4970 }
4971 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4972
4973 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4974 struct kvm_enable_cap *cap)
4975 {
4976 switch (cap->cap) {
4977 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4978 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4979 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4980
4981 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4982 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4983
4984 if (cap->flags || (cap->args[0] & ~allowed_options))
4985 return -EINVAL;
4986 kvm->manual_dirty_log_protect = cap->args[0];
4987 return 0;
4988 }
4989 #endif
4990 case KVM_CAP_HALT_POLL: {
4991 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4992 return -EINVAL;
4993
4994 kvm->max_halt_poll_ns = cap->args[0];
4995
4996 /*
4997 * Ensure kvm->override_halt_poll_ns does not become visible
4998 * before kvm->max_halt_poll_ns.
4999 *
5000 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5001 */
5002 smp_wmb();
5003 kvm->override_halt_poll_ns = true;
5004
5005 return 0;
5006 }
5007 case KVM_CAP_DIRTY_LOG_RING:
5008 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5009 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5010 return -EINVAL;
5011
5012 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5013 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5014 int r = -EINVAL;
5015
5016 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5017 !kvm->dirty_ring_size || cap->flags)
5018 return r;
5019
5020 mutex_lock(&kvm->slots_lock);
5021
5022 /*
5023 * For simplicity, allow enabling ring+bitmap if and only if
5024 * there are no memslots, e.g. to ensure all memslots allocate
5025 * a bitmap after the capability is enabled.
5026 */
5027 if (kvm_are_all_memslots_empty(kvm)) {
5028 kvm->dirty_ring_with_bitmap = true;
5029 r = 0;
5030 }
5031
5032 mutex_unlock(&kvm->slots_lock);
5033
5034 return r;
5035 }
5036 default:
5037 return kvm_vm_ioctl_enable_cap(kvm, cap);
5038 }
5039 }
5040
5041 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5042 size_t size, loff_t *offset)
5043 {
5044 struct kvm *kvm = file->private_data;
5045
5046 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5047 &kvm_vm_stats_desc[0], &kvm->stat,
5048 sizeof(kvm->stat), user_buffer, size, offset);
5049 }
5050
5051 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5052 {
5053 struct kvm *kvm = file->private_data;
5054
5055 kvm_put_kvm(kvm);
5056 return 0;
5057 }
5058
5059 static const struct file_operations kvm_vm_stats_fops = {
5060 .read = kvm_vm_stats_read,
5061 .release = kvm_vm_stats_release,
5062 .llseek = noop_llseek,
5063 };
5064
5065 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5066 {
5067 int fd;
5068 struct file *file;
5069
5070 fd = get_unused_fd_flags(O_CLOEXEC);
5071 if (fd < 0)
5072 return fd;
5073
5074 file = anon_inode_getfile("kvm-vm-stats",
5075 &kvm_vm_stats_fops, kvm, O_RDONLY);
5076 if (IS_ERR(file)) {
5077 put_unused_fd(fd);
5078 return PTR_ERR(file);
5079 }
5080
5081 kvm_get_kvm(kvm);
5082
5083 file->f_mode |= FMODE_PREAD;
5084 fd_install(fd, file);
5085
5086 return fd;
5087 }
5088
5089 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5090 do { \
5091 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5092 offsetof(struct kvm_userspace_memory_region2, field)); \
5093 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5094 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5095 } while (0)
5096
5097 static long kvm_vm_ioctl(struct file *filp,
5098 unsigned int ioctl, unsigned long arg)
5099 {
5100 struct kvm *kvm = filp->private_data;
5101 void __user *argp = (void __user *)arg;
5102 int r;
5103
5104 if (kvm->mm != current->mm || kvm->vm_dead)
5105 return -EIO;
5106 switch (ioctl) {
5107 case KVM_CREATE_VCPU:
5108 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5109 break;
5110 case KVM_ENABLE_CAP: {
5111 struct kvm_enable_cap cap;
5112
5113 r = -EFAULT;
5114 if (copy_from_user(&cap, argp, sizeof(cap)))
5115 goto out;
5116 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5117 break;
5118 }
5119 case KVM_SET_USER_MEMORY_REGION2:
5120 case KVM_SET_USER_MEMORY_REGION: {
5121 struct kvm_userspace_memory_region2 mem;
5122 unsigned long size;
5123
5124 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5125 /*
5126 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5127 * accessed, but avoid leaking kernel memory in case of a bug.
5128 */
5129 memset(&mem, 0, sizeof(mem));
5130 size = sizeof(struct kvm_userspace_memory_region);
5131 } else {
5132 size = sizeof(struct kvm_userspace_memory_region2);
5133 }
5134
5135 /* Ensure the common parts of the two structs are identical. */
5136 SANITY_CHECK_MEM_REGION_FIELD(slot);
5137 SANITY_CHECK_MEM_REGION_FIELD(flags);
5138 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5139 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5140 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5141
5142 r = -EFAULT;
5143 if (copy_from_user(&mem, argp, size))
5144 goto out;
5145
5146 r = -EINVAL;
5147 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5148 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5149 goto out;
5150
5151 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5152 break;
5153 }
5154 case KVM_GET_DIRTY_LOG: {
5155 struct kvm_dirty_log log;
5156
5157 r = -EFAULT;
5158 if (copy_from_user(&log, argp, sizeof(log)))
5159 goto out;
5160 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5161 break;
5162 }
5163 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5164 case KVM_CLEAR_DIRTY_LOG: {
5165 struct kvm_clear_dirty_log log;
5166
5167 r = -EFAULT;
5168 if (copy_from_user(&log, argp, sizeof(log)))
5169 goto out;
5170 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5171 break;
5172 }
5173 #endif
5174 #ifdef CONFIG_KVM_MMIO
5175 case KVM_REGISTER_COALESCED_MMIO: {
5176 struct kvm_coalesced_mmio_zone zone;
5177
5178 r = -EFAULT;
5179 if (copy_from_user(&zone, argp, sizeof(zone)))
5180 goto out;
5181 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5182 break;
5183 }
5184 case KVM_UNREGISTER_COALESCED_MMIO: {
5185 struct kvm_coalesced_mmio_zone zone;
5186
5187 r = -EFAULT;
5188 if (copy_from_user(&zone, argp, sizeof(zone)))
5189 goto out;
5190 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5191 break;
5192 }
5193 #endif
5194 case KVM_IRQFD: {
5195 struct kvm_irqfd data;
5196
5197 r = -EFAULT;
5198 if (copy_from_user(&data, argp, sizeof(data)))
5199 goto out;
5200 r = kvm_irqfd(kvm, &data);
5201 break;
5202 }
5203 case KVM_IOEVENTFD: {
5204 struct kvm_ioeventfd data;
5205
5206 r = -EFAULT;
5207 if (copy_from_user(&data, argp, sizeof(data)))
5208 goto out;
5209 r = kvm_ioeventfd(kvm, &data);
5210 break;
5211 }
5212 #ifdef CONFIG_HAVE_KVM_MSI
5213 case KVM_SIGNAL_MSI: {
5214 struct kvm_msi msi;
5215
5216 r = -EFAULT;
5217 if (copy_from_user(&msi, argp, sizeof(msi)))
5218 goto out;
5219 r = kvm_send_userspace_msi(kvm, &msi);
5220 break;
5221 }
5222 #endif
5223 #ifdef __KVM_HAVE_IRQ_LINE
5224 case KVM_IRQ_LINE_STATUS:
5225 case KVM_IRQ_LINE: {
5226 struct kvm_irq_level irq_event;
5227
5228 r = -EFAULT;
5229 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5230 goto out;
5231
5232 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5233 ioctl == KVM_IRQ_LINE_STATUS);
5234 if (r)
5235 goto out;
5236
5237 r = -EFAULT;
5238 if (ioctl == KVM_IRQ_LINE_STATUS) {
5239 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5240 goto out;
5241 }
5242
5243 r = 0;
5244 break;
5245 }
5246 #endif
5247 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5248 case KVM_SET_GSI_ROUTING: {
5249 struct kvm_irq_routing routing;
5250 struct kvm_irq_routing __user *urouting;
5251 struct kvm_irq_routing_entry *entries = NULL;
5252
5253 r = -EFAULT;
5254 if (copy_from_user(&routing, argp, sizeof(routing)))
5255 goto out;
5256 r = -EINVAL;
5257 if (!kvm_arch_can_set_irq_routing(kvm))
5258 goto out;
5259 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5260 goto out;
5261 if (routing.flags)
5262 goto out;
5263 if (routing.nr) {
5264 urouting = argp;
5265 entries = vmemdup_array_user(urouting->entries,
5266 routing.nr, sizeof(*entries));
5267 if (IS_ERR(entries)) {
5268 r = PTR_ERR(entries);
5269 goto out;
5270 }
5271 }
5272 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5273 routing.flags);
5274 kvfree(entries);
5275 break;
5276 }
5277 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5278 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5279 case KVM_SET_MEMORY_ATTRIBUTES: {
5280 struct kvm_memory_attributes attrs;
5281
5282 r = -EFAULT;
5283 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5284 goto out;
5285
5286 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5287 break;
5288 }
5289 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5290 case KVM_CREATE_DEVICE: {
5291 struct kvm_create_device cd;
5292
5293 r = -EFAULT;
5294 if (copy_from_user(&cd, argp, sizeof(cd)))
5295 goto out;
5296
5297 r = kvm_ioctl_create_device(kvm, &cd);
5298 if (r)
5299 goto out;
5300
5301 r = -EFAULT;
5302 if (copy_to_user(argp, &cd, sizeof(cd)))
5303 goto out;
5304
5305 r = 0;
5306 break;
5307 }
5308 case KVM_CHECK_EXTENSION:
5309 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5310 break;
5311 case KVM_RESET_DIRTY_RINGS:
5312 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5313 break;
5314 case KVM_GET_STATS_FD:
5315 r = kvm_vm_ioctl_get_stats_fd(kvm);
5316 break;
5317 #ifdef CONFIG_KVM_PRIVATE_MEM
5318 case KVM_CREATE_GUEST_MEMFD: {
5319 struct kvm_create_guest_memfd guest_memfd;
5320
5321 r = -EFAULT;
5322 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5323 goto out;
5324
5325 r = kvm_gmem_create(kvm, &guest_memfd);
5326 break;
5327 }
5328 #endif
5329 default:
5330 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5331 }
5332 out:
5333 return r;
5334 }
5335
5336 #ifdef CONFIG_KVM_COMPAT
5337 struct compat_kvm_dirty_log {
5338 __u32 slot;
5339 __u32 padding1;
5340 union {
5341 compat_uptr_t dirty_bitmap; /* one bit per page */
5342 __u64 padding2;
5343 };
5344 };
5345
5346 struct compat_kvm_clear_dirty_log {
5347 __u32 slot;
5348 __u32 num_pages;
5349 __u64 first_page;
5350 union {
5351 compat_uptr_t dirty_bitmap; /* one bit per page */
5352 __u64 padding2;
5353 };
5354 };
5355
5356 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5357 unsigned long arg)
5358 {
5359 return -ENOTTY;
5360 }
5361
5362 static long kvm_vm_compat_ioctl(struct file *filp,
5363 unsigned int ioctl, unsigned long arg)
5364 {
5365 struct kvm *kvm = filp->private_data;
5366 int r;
5367
5368 if (kvm->mm != current->mm || kvm->vm_dead)
5369 return -EIO;
5370
5371 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5372 if (r != -ENOTTY)
5373 return r;
5374
5375 switch (ioctl) {
5376 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5377 case KVM_CLEAR_DIRTY_LOG: {
5378 struct compat_kvm_clear_dirty_log compat_log;
5379 struct kvm_clear_dirty_log log;
5380
5381 if (copy_from_user(&compat_log, (void __user *)arg,
5382 sizeof(compat_log)))
5383 return -EFAULT;
5384 log.slot = compat_log.slot;
5385 log.num_pages = compat_log.num_pages;
5386 log.first_page = compat_log.first_page;
5387 log.padding2 = compat_log.padding2;
5388 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5389
5390 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5391 break;
5392 }
5393 #endif
5394 case KVM_GET_DIRTY_LOG: {
5395 struct compat_kvm_dirty_log compat_log;
5396 struct kvm_dirty_log log;
5397
5398 if (copy_from_user(&compat_log, (void __user *)arg,
5399 sizeof(compat_log)))
5400 return -EFAULT;
5401 log.slot = compat_log.slot;
5402 log.padding1 = compat_log.padding1;
5403 log.padding2 = compat_log.padding2;
5404 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5405
5406 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5407 break;
5408 }
5409 default:
5410 r = kvm_vm_ioctl(filp, ioctl, arg);
5411 }
5412 return r;
5413 }
5414 #endif
5415
5416 static const struct file_operations kvm_vm_fops = {
5417 .release = kvm_vm_release,
5418 .unlocked_ioctl = kvm_vm_ioctl,
5419 .llseek = noop_llseek,
5420 KVM_COMPAT(kvm_vm_compat_ioctl),
5421 };
5422
5423 bool file_is_kvm(struct file *file)
5424 {
5425 return file && file->f_op == &kvm_vm_fops;
5426 }
5427 EXPORT_SYMBOL_GPL(file_is_kvm);
5428
5429 static int kvm_dev_ioctl_create_vm(unsigned long type)
5430 {
5431 char fdname[ITOA_MAX_LEN + 1];
5432 int r, fd;
5433 struct kvm *kvm;
5434 struct file *file;
5435
5436 fd = get_unused_fd_flags(O_CLOEXEC);
5437 if (fd < 0)
5438 return fd;
5439
5440 snprintf(fdname, sizeof(fdname), "%d", fd);
5441
5442 kvm = kvm_create_vm(type, fdname);
5443 if (IS_ERR(kvm)) {
5444 r = PTR_ERR(kvm);
5445 goto put_fd;
5446 }
5447
5448 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5449 if (IS_ERR(file)) {
5450 r = PTR_ERR(file);
5451 goto put_kvm;
5452 }
5453
5454 /*
5455 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5456 * already set, with ->release() being kvm_vm_release(). In error
5457 * cases it will be called by the final fput(file) and will take
5458 * care of doing kvm_put_kvm(kvm).
5459 */
5460 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5461
5462 fd_install(fd, file);
5463 return fd;
5464
5465 put_kvm:
5466 kvm_put_kvm(kvm);
5467 put_fd:
5468 put_unused_fd(fd);
5469 return r;
5470 }
5471
5472 static long kvm_dev_ioctl(struct file *filp,
5473 unsigned int ioctl, unsigned long arg)
5474 {
5475 int r = -EINVAL;
5476
5477 switch (ioctl) {
5478 case KVM_GET_API_VERSION:
5479 if (arg)
5480 goto out;
5481 r = KVM_API_VERSION;
5482 break;
5483 case KVM_CREATE_VM:
5484 r = kvm_dev_ioctl_create_vm(arg);
5485 break;
5486 case KVM_CHECK_EXTENSION:
5487 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5488 break;
5489 case KVM_GET_VCPU_MMAP_SIZE:
5490 if (arg)
5491 goto out;
5492 r = PAGE_SIZE; /* struct kvm_run */
5493 #ifdef CONFIG_X86
5494 r += PAGE_SIZE; /* pio data page */
5495 #endif
5496 #ifdef CONFIG_KVM_MMIO
5497 r += PAGE_SIZE; /* coalesced mmio ring page */
5498 #endif
5499 break;
5500 case KVM_TRACE_ENABLE:
5501 case KVM_TRACE_PAUSE:
5502 case KVM_TRACE_DISABLE:
5503 r = -EOPNOTSUPP;
5504 break;
5505 default:
5506 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5507 }
5508 out:
5509 return r;
5510 }
5511
5512 static struct file_operations kvm_chardev_ops = {
5513 .unlocked_ioctl = kvm_dev_ioctl,
5514 .llseek = noop_llseek,
5515 KVM_COMPAT(kvm_dev_ioctl),
5516 };
5517
5518 static struct miscdevice kvm_dev = {
5519 KVM_MINOR,
5520 "kvm",
5521 &kvm_chardev_ops,
5522 };
5523
5524 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5525 __visible bool kvm_rebooting;
5526 EXPORT_SYMBOL_GPL(kvm_rebooting);
5527
5528 static DEFINE_PER_CPU(bool, hardware_enabled);
5529 static int kvm_usage_count;
5530
5531 static int __hardware_enable_nolock(void)
5532 {
5533 if (__this_cpu_read(hardware_enabled))
5534 return 0;
5535
5536 if (kvm_arch_hardware_enable()) {
5537 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5538 raw_smp_processor_id());
5539 return -EIO;
5540 }
5541
5542 __this_cpu_write(hardware_enabled, true);
5543 return 0;
5544 }
5545
5546 static void hardware_enable_nolock(void *failed)
5547 {
5548 if (__hardware_enable_nolock())
5549 atomic_inc(failed);
5550 }
5551
5552 static int kvm_online_cpu(unsigned int cpu)
5553 {
5554 int ret = 0;
5555
5556 /*
5557 * Abort the CPU online process if hardware virtualization cannot
5558 * be enabled. Otherwise running VMs would encounter unrecoverable
5559 * errors when scheduled to this CPU.
5560 */
5561 mutex_lock(&kvm_lock);
5562 if (kvm_usage_count)
5563 ret = __hardware_enable_nolock();
5564 mutex_unlock(&kvm_lock);
5565 return ret;
5566 }
5567
5568 static void hardware_disable_nolock(void *junk)
5569 {
5570 /*
5571 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5572 * hardware, not just CPUs that successfully enabled hardware!
5573 */
5574 if (!__this_cpu_read(hardware_enabled))
5575 return;
5576
5577 kvm_arch_hardware_disable();
5578
5579 __this_cpu_write(hardware_enabled, false);
5580 }
5581
5582 static int kvm_offline_cpu(unsigned int cpu)
5583 {
5584 mutex_lock(&kvm_lock);
5585 if (kvm_usage_count)
5586 hardware_disable_nolock(NULL);
5587 mutex_unlock(&kvm_lock);
5588 return 0;
5589 }
5590
5591 static void hardware_disable_all_nolock(void)
5592 {
5593 BUG_ON(!kvm_usage_count);
5594
5595 kvm_usage_count--;
5596 if (!kvm_usage_count)
5597 on_each_cpu(hardware_disable_nolock, NULL, 1);
5598 }
5599
5600 static void hardware_disable_all(void)
5601 {
5602 cpus_read_lock();
5603 mutex_lock(&kvm_lock);
5604 hardware_disable_all_nolock();
5605 mutex_unlock(&kvm_lock);
5606 cpus_read_unlock();
5607 }
5608
5609 static int hardware_enable_all(void)
5610 {
5611 atomic_t failed = ATOMIC_INIT(0);
5612 int r;
5613
5614 /*
5615 * Do not enable hardware virtualization if the system is going down.
5616 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5617 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5618 * after kvm_reboot() is called. Note, this relies on system_state
5619 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5620 * hook instead of registering a dedicated reboot notifier (the latter
5621 * runs before system_state is updated).
5622 */
5623 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5624 system_state == SYSTEM_RESTART)
5625 return -EBUSY;
5626
5627 /*
5628 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5629 * is called, and so on_each_cpu() between them includes the CPU that
5630 * is being onlined. As a result, hardware_enable_nolock() may get
5631 * invoked before kvm_online_cpu(), which also enables hardware if the
5632 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5633 * enable hardware multiple times.
5634 */
5635 cpus_read_lock();
5636 mutex_lock(&kvm_lock);
5637
5638 r = 0;
5639
5640 kvm_usage_count++;
5641 if (kvm_usage_count == 1) {
5642 on_each_cpu(hardware_enable_nolock, &failed, 1);
5643
5644 if (atomic_read(&failed)) {
5645 hardware_disable_all_nolock();
5646 r = -EBUSY;
5647 }
5648 }
5649
5650 mutex_unlock(&kvm_lock);
5651 cpus_read_unlock();
5652
5653 return r;
5654 }
5655
5656 static void kvm_shutdown(void)
5657 {
5658 /*
5659 * Disable hardware virtualization and set kvm_rebooting to indicate
5660 * that KVM has asynchronously disabled hardware virtualization, i.e.
5661 * that relevant errors and exceptions aren't entirely unexpected.
5662 * Some flavors of hardware virtualization need to be disabled before
5663 * transferring control to firmware (to perform shutdown/reboot), e.g.
5664 * on x86, virtualization can block INIT interrupts, which are used by
5665 * firmware to pull APs back under firmware control. Note, this path
5666 * is used for both shutdown and reboot scenarios, i.e. neither name is
5667 * 100% comprehensive.
5668 */
5669 pr_info("kvm: exiting hardware virtualization\n");
5670 kvm_rebooting = true;
5671 on_each_cpu(hardware_disable_nolock, NULL, 1);
5672 }
5673
5674 static int kvm_suspend(void)
5675 {
5676 /*
5677 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5678 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5679 * is stable. Assert that kvm_lock is not held to ensure the system
5680 * isn't suspended while KVM is enabling hardware. Hardware enabling
5681 * can be preempted, but the task cannot be frozen until it has dropped
5682 * all locks (userspace tasks are frozen via a fake signal).
5683 */
5684 lockdep_assert_not_held(&kvm_lock);
5685 lockdep_assert_irqs_disabled();
5686
5687 if (kvm_usage_count)
5688 hardware_disable_nolock(NULL);
5689 return 0;
5690 }
5691
5692 static void kvm_resume(void)
5693 {
5694 lockdep_assert_not_held(&kvm_lock);
5695 lockdep_assert_irqs_disabled();
5696
5697 if (kvm_usage_count)
5698 WARN_ON_ONCE(__hardware_enable_nolock());
5699 }
5700
5701 static struct syscore_ops kvm_syscore_ops = {
5702 .suspend = kvm_suspend,
5703 .resume = kvm_resume,
5704 .shutdown = kvm_shutdown,
5705 };
5706 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5707 static int hardware_enable_all(void)
5708 {
5709 return 0;
5710 }
5711
5712 static void hardware_disable_all(void)
5713 {
5714
5715 }
5716 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5717
5718 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5719 {
5720 if (dev->ops->destructor)
5721 dev->ops->destructor(dev);
5722 }
5723
5724 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5725 {
5726 int i;
5727
5728 for (i = 0; i < bus->dev_count; i++) {
5729 struct kvm_io_device *pos = bus->range[i].dev;
5730
5731 kvm_iodevice_destructor(pos);
5732 }
5733 kfree(bus);
5734 }
5735
5736 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5737 const struct kvm_io_range *r2)
5738 {
5739 gpa_t addr1 = r1->addr;
5740 gpa_t addr2 = r2->addr;
5741
5742 if (addr1 < addr2)
5743 return -1;
5744
5745 /* If r2->len == 0, match the exact address. If r2->len != 0,
5746 * accept any overlapping write. Any order is acceptable for
5747 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5748 * we process all of them.
5749 */
5750 if (r2->len) {
5751 addr1 += r1->len;
5752 addr2 += r2->len;
5753 }
5754
5755 if (addr1 > addr2)
5756 return 1;
5757
5758 return 0;
5759 }
5760
5761 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5762 {
5763 return kvm_io_bus_cmp(p1, p2);
5764 }
5765
5766 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5767 gpa_t addr, int len)
5768 {
5769 struct kvm_io_range *range, key;
5770 int off;
5771
5772 key = (struct kvm_io_range) {
5773 .addr = addr,
5774 .len = len,
5775 };
5776
5777 range = bsearch(&key, bus->range, bus->dev_count,
5778 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5779 if (range == NULL)
5780 return -ENOENT;
5781
5782 off = range - bus->range;
5783
5784 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5785 off--;
5786
5787 return off;
5788 }
5789
5790 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5791 struct kvm_io_range *range, const void *val)
5792 {
5793 int idx;
5794
5795 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5796 if (idx < 0)
5797 return -EOPNOTSUPP;
5798
5799 while (idx < bus->dev_count &&
5800 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5801 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5802 range->len, val))
5803 return idx;
5804 idx++;
5805 }
5806
5807 return -EOPNOTSUPP;
5808 }
5809
5810 /* kvm_io_bus_write - called under kvm->slots_lock */
5811 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5812 int len, const void *val)
5813 {
5814 struct kvm_io_bus *bus;
5815 struct kvm_io_range range;
5816 int r;
5817
5818 range = (struct kvm_io_range) {
5819 .addr = addr,
5820 .len = len,
5821 };
5822
5823 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5824 if (!bus)
5825 return -ENOMEM;
5826 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5827 return r < 0 ? r : 0;
5828 }
5829 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5830
5831 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5832 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5833 gpa_t addr, int len, const void *val, long cookie)
5834 {
5835 struct kvm_io_bus *bus;
5836 struct kvm_io_range range;
5837
5838 range = (struct kvm_io_range) {
5839 .addr = addr,
5840 .len = len,
5841 };
5842
5843 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5844 if (!bus)
5845 return -ENOMEM;
5846
5847 /* First try the device referenced by cookie. */
5848 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5849 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5850 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5851 val))
5852 return cookie;
5853
5854 /*
5855 * cookie contained garbage; fall back to search and return the
5856 * correct cookie value.
5857 */
5858 return __kvm_io_bus_write(vcpu, bus, &range, val);
5859 }
5860
5861 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5862 struct kvm_io_range *range, void *val)
5863 {
5864 int idx;
5865
5866 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5867 if (idx < 0)
5868 return -EOPNOTSUPP;
5869
5870 while (idx < bus->dev_count &&
5871 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5872 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5873 range->len, val))
5874 return idx;
5875 idx++;
5876 }
5877
5878 return -EOPNOTSUPP;
5879 }
5880
5881 /* kvm_io_bus_read - called under kvm->slots_lock */
5882 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5883 int len, void *val)
5884 {
5885 struct kvm_io_bus *bus;
5886 struct kvm_io_range range;
5887 int r;
5888
5889 range = (struct kvm_io_range) {
5890 .addr = addr,
5891 .len = len,
5892 };
5893
5894 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5895 if (!bus)
5896 return -ENOMEM;
5897 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5898 return r < 0 ? r : 0;
5899 }
5900
5901 /* Caller must hold slots_lock. */
5902 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5903 int len, struct kvm_io_device *dev)
5904 {
5905 int i;
5906 struct kvm_io_bus *new_bus, *bus;
5907 struct kvm_io_range range;
5908
5909 bus = kvm_get_bus(kvm, bus_idx);
5910 if (!bus)
5911 return -ENOMEM;
5912
5913 /* exclude ioeventfd which is limited by maximum fd */
5914 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5915 return -ENOSPC;
5916
5917 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5918 GFP_KERNEL_ACCOUNT);
5919 if (!new_bus)
5920 return -ENOMEM;
5921
5922 range = (struct kvm_io_range) {
5923 .addr = addr,
5924 .len = len,
5925 .dev = dev,
5926 };
5927
5928 for (i = 0; i < bus->dev_count; i++)
5929 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5930 break;
5931
5932 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5933 new_bus->dev_count++;
5934 new_bus->range[i] = range;
5935 memcpy(new_bus->range + i + 1, bus->range + i,
5936 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5937 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5938 synchronize_srcu_expedited(&kvm->srcu);
5939 kfree(bus);
5940
5941 return 0;
5942 }
5943
5944 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5945 struct kvm_io_device *dev)
5946 {
5947 int i;
5948 struct kvm_io_bus *new_bus, *bus;
5949
5950 lockdep_assert_held(&kvm->slots_lock);
5951
5952 bus = kvm_get_bus(kvm, bus_idx);
5953 if (!bus)
5954 return 0;
5955
5956 for (i = 0; i < bus->dev_count; i++) {
5957 if (bus->range[i].dev == dev) {
5958 break;
5959 }
5960 }
5961
5962 if (i == bus->dev_count)
5963 return 0;
5964
5965 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5966 GFP_KERNEL_ACCOUNT);
5967 if (new_bus) {
5968 memcpy(new_bus, bus, struct_size(bus, range, i));
5969 new_bus->dev_count--;
5970 memcpy(new_bus->range + i, bus->range + i + 1,
5971 flex_array_size(new_bus, range, new_bus->dev_count - i));
5972 }
5973
5974 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5975 synchronize_srcu_expedited(&kvm->srcu);
5976
5977 /*
5978 * If NULL bus is installed, destroy the old bus, including all the
5979 * attached devices. Otherwise, destroy the caller's device only.
5980 */
5981 if (!new_bus) {
5982 pr_err("kvm: failed to shrink bus, removing it completely\n");
5983 kvm_io_bus_destroy(bus);
5984 return -ENOMEM;
5985 }
5986
5987 kvm_iodevice_destructor(dev);
5988 kfree(bus);
5989 return 0;
5990 }
5991
5992 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5993 gpa_t addr)
5994 {
5995 struct kvm_io_bus *bus;
5996 int dev_idx, srcu_idx;
5997 struct kvm_io_device *iodev = NULL;
5998
5999 srcu_idx = srcu_read_lock(&kvm->srcu);
6000
6001 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6002 if (!bus)
6003 goto out_unlock;
6004
6005 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6006 if (dev_idx < 0)
6007 goto out_unlock;
6008
6009 iodev = bus->range[dev_idx].dev;
6010
6011 out_unlock:
6012 srcu_read_unlock(&kvm->srcu, srcu_idx);
6013
6014 return iodev;
6015 }
6016 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6017
6018 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6019 int (*get)(void *, u64 *), int (*set)(void *, u64),
6020 const char *fmt)
6021 {
6022 int ret;
6023 struct kvm_stat_data *stat_data = inode->i_private;
6024
6025 /*
6026 * The debugfs files are a reference to the kvm struct which
6027 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6028 * avoids the race between open and the removal of the debugfs directory.
6029 */
6030 if (!kvm_get_kvm_safe(stat_data->kvm))
6031 return -ENOENT;
6032
6033 ret = simple_attr_open(inode, file, get,
6034 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6035 ? set : NULL, fmt);
6036 if (ret)
6037 kvm_put_kvm(stat_data->kvm);
6038
6039 return ret;
6040 }
6041
6042 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6043 {
6044 struct kvm_stat_data *stat_data = inode->i_private;
6045
6046 simple_attr_release(inode, file);
6047 kvm_put_kvm(stat_data->kvm);
6048
6049 return 0;
6050 }
6051
6052 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6053 {
6054 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6055
6056 return 0;
6057 }
6058
6059 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6060 {
6061 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6062
6063 return 0;
6064 }
6065
6066 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6067 {
6068 unsigned long i;
6069 struct kvm_vcpu *vcpu;
6070
6071 *val = 0;
6072
6073 kvm_for_each_vcpu(i, vcpu, kvm)
6074 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6075
6076 return 0;
6077 }
6078
6079 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6080 {
6081 unsigned long i;
6082 struct kvm_vcpu *vcpu;
6083
6084 kvm_for_each_vcpu(i, vcpu, kvm)
6085 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6086
6087 return 0;
6088 }
6089
6090 static int kvm_stat_data_get(void *data, u64 *val)
6091 {
6092 int r = -EFAULT;
6093 struct kvm_stat_data *stat_data = data;
6094
6095 switch (stat_data->kind) {
6096 case KVM_STAT_VM:
6097 r = kvm_get_stat_per_vm(stat_data->kvm,
6098 stat_data->desc->desc.offset, val);
6099 break;
6100 case KVM_STAT_VCPU:
6101 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6102 stat_data->desc->desc.offset, val);
6103 break;
6104 }
6105
6106 return r;
6107 }
6108
6109 static int kvm_stat_data_clear(void *data, u64 val)
6110 {
6111 int r = -EFAULT;
6112 struct kvm_stat_data *stat_data = data;
6113
6114 if (val)
6115 return -EINVAL;
6116
6117 switch (stat_data->kind) {
6118 case KVM_STAT_VM:
6119 r = kvm_clear_stat_per_vm(stat_data->kvm,
6120 stat_data->desc->desc.offset);
6121 break;
6122 case KVM_STAT_VCPU:
6123 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6124 stat_data->desc->desc.offset);
6125 break;
6126 }
6127
6128 return r;
6129 }
6130
6131 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6132 {
6133 __simple_attr_check_format("%llu\n", 0ull);
6134 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6135 kvm_stat_data_clear, "%llu\n");
6136 }
6137
6138 static const struct file_operations stat_fops_per_vm = {
6139 .owner = THIS_MODULE,
6140 .open = kvm_stat_data_open,
6141 .release = kvm_debugfs_release,
6142 .read = simple_attr_read,
6143 .write = simple_attr_write,
6144 .llseek = no_llseek,
6145 };
6146
6147 static int vm_stat_get(void *_offset, u64 *val)
6148 {
6149 unsigned offset = (long)_offset;
6150 struct kvm *kvm;
6151 u64 tmp_val;
6152
6153 *val = 0;
6154 mutex_lock(&kvm_lock);
6155 list_for_each_entry(kvm, &vm_list, vm_list) {
6156 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6157 *val += tmp_val;
6158 }
6159 mutex_unlock(&kvm_lock);
6160 return 0;
6161 }
6162
6163 static int vm_stat_clear(void *_offset, u64 val)
6164 {
6165 unsigned offset = (long)_offset;
6166 struct kvm *kvm;
6167
6168 if (val)
6169 return -EINVAL;
6170
6171 mutex_lock(&kvm_lock);
6172 list_for_each_entry(kvm, &vm_list, vm_list) {
6173 kvm_clear_stat_per_vm(kvm, offset);
6174 }
6175 mutex_unlock(&kvm_lock);
6176
6177 return 0;
6178 }
6179
6180 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6181 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6182
6183 static int vcpu_stat_get(void *_offset, u64 *val)
6184 {
6185 unsigned offset = (long)_offset;
6186 struct kvm *kvm;
6187 u64 tmp_val;
6188
6189 *val = 0;
6190 mutex_lock(&kvm_lock);
6191 list_for_each_entry(kvm, &vm_list, vm_list) {
6192 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6193 *val += tmp_val;
6194 }
6195 mutex_unlock(&kvm_lock);
6196 return 0;
6197 }
6198
6199 static int vcpu_stat_clear(void *_offset, u64 val)
6200 {
6201 unsigned offset = (long)_offset;
6202 struct kvm *kvm;
6203
6204 if (val)
6205 return -EINVAL;
6206
6207 mutex_lock(&kvm_lock);
6208 list_for_each_entry(kvm, &vm_list, vm_list) {
6209 kvm_clear_stat_per_vcpu(kvm, offset);
6210 }
6211 mutex_unlock(&kvm_lock);
6212
6213 return 0;
6214 }
6215
6216 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6217 "%llu\n");
6218 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6219
6220 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6221 {
6222 struct kobj_uevent_env *env;
6223 unsigned long long created, active;
6224
6225 if (!kvm_dev.this_device || !kvm)
6226 return;
6227
6228 mutex_lock(&kvm_lock);
6229 if (type == KVM_EVENT_CREATE_VM) {
6230 kvm_createvm_count++;
6231 kvm_active_vms++;
6232 } else if (type == KVM_EVENT_DESTROY_VM) {
6233 kvm_active_vms--;
6234 }
6235 created = kvm_createvm_count;
6236 active = kvm_active_vms;
6237 mutex_unlock(&kvm_lock);
6238
6239 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6240 if (!env)
6241 return;
6242
6243 add_uevent_var(env, "CREATED=%llu", created);
6244 add_uevent_var(env, "COUNT=%llu", active);
6245
6246 if (type == KVM_EVENT_CREATE_VM) {
6247 add_uevent_var(env, "EVENT=create");
6248 kvm->userspace_pid = task_pid_nr(current);
6249 } else if (type == KVM_EVENT_DESTROY_VM) {
6250 add_uevent_var(env, "EVENT=destroy");
6251 }
6252 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6253
6254 if (!IS_ERR(kvm->debugfs_dentry)) {
6255 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6256
6257 if (p) {
6258 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6259 if (!IS_ERR(tmp))
6260 add_uevent_var(env, "STATS_PATH=%s", tmp);
6261 kfree(p);
6262 }
6263 }
6264 /* no need for checks, since we are adding at most only 5 keys */
6265 env->envp[env->envp_idx++] = NULL;
6266 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6267 kfree(env);
6268 }
6269
6270 static void kvm_init_debug(void)
6271 {
6272 const struct file_operations *fops;
6273 const struct _kvm_stats_desc *pdesc;
6274 int i;
6275
6276 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6277
6278 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6279 pdesc = &kvm_vm_stats_desc[i];
6280 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6281 fops = &vm_stat_fops;
6282 else
6283 fops = &vm_stat_readonly_fops;
6284 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6285 kvm_debugfs_dir,
6286 (void *)(long)pdesc->desc.offset, fops);
6287 }
6288
6289 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6290 pdesc = &kvm_vcpu_stats_desc[i];
6291 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6292 fops = &vcpu_stat_fops;
6293 else
6294 fops = &vcpu_stat_readonly_fops;
6295 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6296 kvm_debugfs_dir,
6297 (void *)(long)pdesc->desc.offset, fops);
6298 }
6299 }
6300
6301 static inline
6302 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6303 {
6304 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6305 }
6306
6307 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6308 {
6309 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6310
6311 WRITE_ONCE(vcpu->preempted, false);
6312 WRITE_ONCE(vcpu->ready, false);
6313
6314 __this_cpu_write(kvm_running_vcpu, vcpu);
6315 kvm_arch_sched_in(vcpu, cpu);
6316 kvm_arch_vcpu_load(vcpu, cpu);
6317 }
6318
6319 static void kvm_sched_out(struct preempt_notifier *pn,
6320 struct task_struct *next)
6321 {
6322 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6323
6324 if (current->on_rq) {
6325 WRITE_ONCE(vcpu->preempted, true);
6326 WRITE_ONCE(vcpu->ready, true);
6327 }
6328 kvm_arch_vcpu_put(vcpu);
6329 __this_cpu_write(kvm_running_vcpu, NULL);
6330 }
6331
6332 /**
6333 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6334 *
6335 * We can disable preemption locally around accessing the per-CPU variable,
6336 * and use the resolved vcpu pointer after enabling preemption again,
6337 * because even if the current thread is migrated to another CPU, reading
6338 * the per-CPU value later will give us the same value as we update the
6339 * per-CPU variable in the preempt notifier handlers.
6340 */
6341 struct kvm_vcpu *kvm_get_running_vcpu(void)
6342 {
6343 struct kvm_vcpu *vcpu;
6344
6345 preempt_disable();
6346 vcpu = __this_cpu_read(kvm_running_vcpu);
6347 preempt_enable();
6348
6349 return vcpu;
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6352
6353 /**
6354 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6355 */
6356 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6357 {
6358 return &kvm_running_vcpu;
6359 }
6360
6361 #ifdef CONFIG_GUEST_PERF_EVENTS
6362 static unsigned int kvm_guest_state(void)
6363 {
6364 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6365 unsigned int state;
6366
6367 if (!kvm_arch_pmi_in_guest(vcpu))
6368 return 0;
6369
6370 state = PERF_GUEST_ACTIVE;
6371 if (!kvm_arch_vcpu_in_kernel(vcpu))
6372 state |= PERF_GUEST_USER;
6373
6374 return state;
6375 }
6376
6377 static unsigned long kvm_guest_get_ip(void)
6378 {
6379 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6380
6381 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6382 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6383 return 0;
6384
6385 return kvm_arch_vcpu_get_ip(vcpu);
6386 }
6387
6388 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6389 .state = kvm_guest_state,
6390 .get_ip = kvm_guest_get_ip,
6391 .handle_intel_pt_intr = NULL,
6392 };
6393
6394 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6395 {
6396 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6397 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6398 }
6399 void kvm_unregister_perf_callbacks(void)
6400 {
6401 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6402 }
6403 #endif
6404
6405 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6406 {
6407 int r;
6408 int cpu;
6409
6410 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6411 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6412 kvm_online_cpu, kvm_offline_cpu);
6413 if (r)
6414 return r;
6415
6416 register_syscore_ops(&kvm_syscore_ops);
6417 #endif
6418
6419 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6420 if (!vcpu_align)
6421 vcpu_align = __alignof__(struct kvm_vcpu);
6422 kvm_vcpu_cache =
6423 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6424 SLAB_ACCOUNT,
6425 offsetof(struct kvm_vcpu, arch),
6426 offsetofend(struct kvm_vcpu, stats_id)
6427 - offsetof(struct kvm_vcpu, arch),
6428 NULL);
6429 if (!kvm_vcpu_cache) {
6430 r = -ENOMEM;
6431 goto err_vcpu_cache;
6432 }
6433
6434 for_each_possible_cpu(cpu) {
6435 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6436 GFP_KERNEL, cpu_to_node(cpu))) {
6437 r = -ENOMEM;
6438 goto err_cpu_kick_mask;
6439 }
6440 }
6441
6442 r = kvm_irqfd_init();
6443 if (r)
6444 goto err_irqfd;
6445
6446 r = kvm_async_pf_init();
6447 if (r)
6448 goto err_async_pf;
6449
6450 kvm_chardev_ops.owner = module;
6451
6452 kvm_preempt_ops.sched_in = kvm_sched_in;
6453 kvm_preempt_ops.sched_out = kvm_sched_out;
6454
6455 kvm_init_debug();
6456
6457 r = kvm_vfio_ops_init();
6458 if (WARN_ON_ONCE(r))
6459 goto err_vfio;
6460
6461 kvm_gmem_init(module);
6462
6463 /*
6464 * Registration _must_ be the very last thing done, as this exposes
6465 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6466 */
6467 r = misc_register(&kvm_dev);
6468 if (r) {
6469 pr_err("kvm: misc device register failed\n");
6470 goto err_register;
6471 }
6472
6473 return 0;
6474
6475 err_register:
6476 kvm_vfio_ops_exit();
6477 err_vfio:
6478 kvm_async_pf_deinit();
6479 err_async_pf:
6480 kvm_irqfd_exit();
6481 err_irqfd:
6482 err_cpu_kick_mask:
6483 for_each_possible_cpu(cpu)
6484 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6485 kmem_cache_destroy(kvm_vcpu_cache);
6486 err_vcpu_cache:
6487 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6488 unregister_syscore_ops(&kvm_syscore_ops);
6489 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6490 #endif
6491 return r;
6492 }
6493 EXPORT_SYMBOL_GPL(kvm_init);
6494
6495 void kvm_exit(void)
6496 {
6497 int cpu;
6498
6499 /*
6500 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6501 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6502 * to KVM while the module is being stopped.
6503 */
6504 misc_deregister(&kvm_dev);
6505
6506 debugfs_remove_recursive(kvm_debugfs_dir);
6507 for_each_possible_cpu(cpu)
6508 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6509 kmem_cache_destroy(kvm_vcpu_cache);
6510 kvm_vfio_ops_exit();
6511 kvm_async_pf_deinit();
6512 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6513 unregister_syscore_ops(&kvm_syscore_ops);
6514 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6515 #endif
6516 kvm_irqfd_exit();
6517 }
6518 EXPORT_SYMBOL_GPL(kvm_exit);
6519
6520 struct kvm_vm_worker_thread_context {
6521 struct kvm *kvm;
6522 struct task_struct *parent;
6523 struct completion init_done;
6524 kvm_vm_thread_fn_t thread_fn;
6525 uintptr_t data;
6526 int err;
6527 };
6528
6529 static int kvm_vm_worker_thread(void *context)
6530 {
6531 /*
6532 * The init_context is allocated on the stack of the parent thread, so
6533 * we have to locally copy anything that is needed beyond initialization
6534 */
6535 struct kvm_vm_worker_thread_context *init_context = context;
6536 struct task_struct *parent;
6537 struct kvm *kvm = init_context->kvm;
6538 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6539 uintptr_t data = init_context->data;
6540 int err;
6541
6542 err = kthread_park(current);
6543 /* kthread_park(current) is never supposed to return an error */
6544 WARN_ON(err != 0);
6545 if (err)
6546 goto init_complete;
6547
6548 err = cgroup_attach_task_all(init_context->parent, current);
6549 if (err) {
6550 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6551 __func__, err);
6552 goto init_complete;
6553 }
6554
6555 set_user_nice(current, task_nice(init_context->parent));
6556
6557 init_complete:
6558 init_context->err = err;
6559 complete(&init_context->init_done);
6560 init_context = NULL;
6561
6562 if (err)
6563 goto out;
6564
6565 /* Wait to be woken up by the spawner before proceeding. */
6566 kthread_parkme();
6567
6568 if (!kthread_should_stop())
6569 err = thread_fn(kvm, data);
6570
6571 out:
6572 /*
6573 * Move kthread back to its original cgroup to prevent it lingering in
6574 * the cgroup of the VM process, after the latter finishes its
6575 * execution.
6576 *
6577 * kthread_stop() waits on the 'exited' completion condition which is
6578 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6579 * kthread is removed from the cgroup in the cgroup_exit() which is
6580 * called after the exit_mm(). This causes the kthread_stop() to return
6581 * before the kthread actually quits the cgroup.
6582 */
6583 rcu_read_lock();
6584 parent = rcu_dereference(current->real_parent);
6585 get_task_struct(parent);
6586 rcu_read_unlock();
6587 cgroup_attach_task_all(parent, current);
6588 put_task_struct(parent);
6589
6590 return err;
6591 }
6592
6593 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6594 uintptr_t data, const char *name,
6595 struct task_struct **thread_ptr)
6596 {
6597 struct kvm_vm_worker_thread_context init_context = {};
6598 struct task_struct *thread;
6599
6600 *thread_ptr = NULL;
6601 init_context.kvm = kvm;
6602 init_context.parent = current;
6603 init_context.thread_fn = thread_fn;
6604 init_context.data = data;
6605 init_completion(&init_context.init_done);
6606
6607 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6608 "%s-%d", name, task_pid_nr(current));
6609 if (IS_ERR(thread))
6610 return PTR_ERR(thread);
6611
6612 /* kthread_run is never supposed to return NULL */
6613 WARN_ON(thread == NULL);
6614
6615 wait_for_completion(&init_context.init_done);
6616
6617 if (!init_context.err)
6618 *thread_ptr = thread;
6619
6620 return init_context.err;
6621 }