]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
Merge tag 'block-6.7-2023-12-22' of git://git.kernel.dk/linux
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
124 #else
125 /*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137 return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161 /*
162 * The metadata used by is_zone_device_page() to determine whether or
163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 * the device has been pinned, e.g. by get_user_pages(). WARN if the
165 * page_count() is zero to help detect bad usage of this helper.
166 */
167 if (WARN_ON_ONCE(!page_count(page)))
168 return false;
169
170 return is_zone_device_page(page);
171 }
172
173 /*
174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
176 * is likely incomplete, it has been compiled purely through people wanting to
177 * back guest with a certain type of memory and encountering issues.
178 */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181 struct page *page;
182
183 if (!pfn_valid(pfn))
184 return NULL;
185
186 page = pfn_to_page(pfn);
187 if (!PageReserved(page))
188 return page;
189
190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 if (is_zero_pfn(pfn))
192 return page;
193
194 /*
195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 * perspective they are "normal" pages, albeit with slightly different
197 * usage rules.
198 */
199 if (kvm_is_zone_device_page(page))
200 return page;
201
202 return NULL;
203 }
204
205 /*
206 * Switches to specified vcpu, until a matching vcpu_put()
207 */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210 int cpu = get_cpu();
211
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
215 put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221 preempt_disable();
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
225 preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234 /*
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
237 */
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
240
241 /*
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
243 */
244 return mode == IN_GUEST_MODE;
245 }
246
247 static void ack_kick(void *_completed)
248 {
249 }
250
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253 if (cpumask_empty(cpus))
254 return false;
255
256 smp_call_function_many(cpus, ack_kick, NULL, wait);
257 return true;
258 }
259
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 struct cpumask *tmp, int current_cpu)
262 {
263 int cpu;
264
265 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 __kvm_make_request(req, vcpu);
267
268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269 return;
270
271 /*
272 * Note, the vCPU could get migrated to a different pCPU at any point
273 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 * to the previous pCPU. But, that's OK because the purpose of the IPI
275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 * after this point is also OK, as the requirement is only that KVM wait
278 * for vCPUs that were reading SPTEs _before_ any changes were
279 * finalized. See kvm_vcpu_kick() for more details on handling requests.
280 */
281 if (kvm_request_needs_ipi(vcpu, req)) {
282 cpu = READ_ONCE(vcpu->cpu);
283 if (cpu != -1 && cpu != current_cpu)
284 __cpumask_set_cpu(cpu, tmp);
285 }
286 }
287
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 unsigned long *vcpu_bitmap)
290 {
291 struct kvm_vcpu *vcpu;
292 struct cpumask *cpus;
293 int i, me;
294 bool called;
295
296 me = get_cpu();
297
298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299 cpumask_clear(cpus);
300
301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 vcpu = kvm_get_vcpu(kvm, i);
303 if (!vcpu)
304 continue;
305 kvm_make_vcpu_request(vcpu, req, cpus, me);
306 }
307
308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309 put_cpu();
310
311 return called;
312 }
313
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 struct kvm_vcpu *except)
316 {
317 struct kvm_vcpu *vcpu;
318 struct cpumask *cpus;
319 unsigned long i;
320 bool called;
321 int me;
322
323 me = get_cpu();
324
325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326 cpumask_clear(cpus);
327
328 kvm_for_each_vcpu(i, vcpu, kvm) {
329 if (vcpu == except)
330 continue;
331 kvm_make_vcpu_request(vcpu, req, cpus, me);
332 }
333
334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335 put_cpu();
336
337 return called;
338 }
339
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342 return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348 ++kvm->stat.generic.remote_tlb_flush_requests;
349
350 /*
351 * We want to publish modifications to the page tables before reading
352 * mode. Pairs with a memory barrier in arch-specific code.
353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356 *
357 * There is already an smp_mb__after_atomic() before
358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359 * barrier here.
360 */
361 if (!kvm_arch_flush_remote_tlbs(kvm)
362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 ++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370 return;
371
372 /*
373 * Fall back to a flushing entire TLBs if the architecture range-based
374 * TLB invalidation is unsupported or can't be performed for whatever
375 * reason.
376 */
377 kvm_flush_remote_tlbs(kvm);
378 }
379
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 const struct kvm_memory_slot *memslot)
382 {
383 /*
384 * All current use cases for flushing the TLBs for a specific memslot
385 * are related to dirty logging, and many do the TLB flush out of
386 * mmu_lock. The interaction between the various operations on memslot
387 * must be serialized by slots_locks to ensure the TLB flush from one
388 * operation is observed by any other operation on the same memslot.
389 */
390 lockdep_assert_held(&kvm->slots_lock);
391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396 kvm_arch_flush_shadow_all(kvm);
397 kvm_arch_guest_memory_reclaimed(kvm);
398 }
399
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402 gfp_t gfp_flags)
403 {
404 gfp_flags |= mc->gfp_zero;
405
406 if (mc->kmem_cache)
407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408 else
409 return (void *)__get_free_page(gfp_flags);
410 }
411
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415 void *obj;
416
417 if (mc->nobjs >= min)
418 return 0;
419
420 if (unlikely(!mc->objects)) {
421 if (WARN_ON_ONCE(!capacity))
422 return -EIO;
423
424 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
425 if (!mc->objects)
426 return -ENOMEM;
427
428 mc->capacity = capacity;
429 }
430
431 /* It is illegal to request a different capacity across topups. */
432 if (WARN_ON_ONCE(mc->capacity != capacity))
433 return -EIO;
434
435 while (mc->nobjs < mc->capacity) {
436 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437 if (!obj)
438 return mc->nobjs >= min ? 0 : -ENOMEM;
439 mc->objects[mc->nobjs++] = obj;
440 }
441 return 0;
442 }
443
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451 return mc->nobjs;
452 }
453
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456 while (mc->nobjs) {
457 if (mc->kmem_cache)
458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459 else
460 free_page((unsigned long)mc->objects[--mc->nobjs]);
461 }
462
463 kvfree(mc->objects);
464
465 mc->objects = NULL;
466 mc->capacity = 0;
467 }
468
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471 void *p;
472
473 if (WARN_ON(!mc->nobjs))
474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475 else
476 p = mc->objects[--mc->nobjs];
477 BUG_ON(!p);
478 return p;
479 }
480 #endif
481
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484 mutex_init(&vcpu->mutex);
485 vcpu->cpu = -1;
486 vcpu->kvm = kvm;
487 vcpu->vcpu_id = id;
488 vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490 rcuwait_init(&vcpu->wait);
491 #endif
492 kvm_async_pf_vcpu_init(vcpu);
493
494 kvm_vcpu_set_in_spin_loop(vcpu, false);
495 kvm_vcpu_set_dy_eligible(vcpu, false);
496 vcpu->preempted = false;
497 vcpu->ready = false;
498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 vcpu->last_used_slot = NULL;
500
501 /* Fill the stats id string for the vcpu */
502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 task_pid_nr(current), id);
504 }
505
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508 kvm_arch_vcpu_destroy(vcpu);
509 kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511 /*
512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 * the vcpu->pid pointer, and at destruction time all file descriptors
514 * are already gone.
515 */
516 put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518 free_page((unsigned long)vcpu->run);
519 kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524 unsigned long i;
525 struct kvm_vcpu *vcpu;
526
527 kvm_for_each_vcpu(i, vcpu, kvm) {
528 kvm_vcpu_destroy(vcpu);
529 xa_erase(&kvm->vcpu_array, i);
530 }
531
532 atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539 return container_of(mn, struct kvm, mmu_notifier);
540 }
541
542 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
545 unsigned long end);
546
547 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
548
549 struct kvm_hva_range {
550 unsigned long start;
551 unsigned long end;
552 union kvm_mmu_notifier_arg arg;
553 hva_handler_t handler;
554 on_lock_fn_t on_lock;
555 on_unlock_fn_t on_unlock;
556 bool flush_on_ret;
557 bool may_block;
558 };
559
560 /*
561 * Use a dedicated stub instead of NULL to indicate that there is no callback
562 * function/handler. The compiler technically can't guarantee that a real
563 * function will have a non-zero address, and so it will generate code to
564 * check for !NULL, whereas comparing against a stub will be elided at compile
565 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
566 */
567 static void kvm_null_fn(void)
568 {
569
570 }
571 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
572
573 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
574
575 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
576 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
577 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
578 node; \
579 node = interval_tree_iter_next(node, start, last)) \
580
581 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
582 const struct kvm_hva_range *range)
583 {
584 bool ret = false, locked = false;
585 struct kvm_gfn_range gfn_range;
586 struct kvm_memory_slot *slot;
587 struct kvm_memslots *slots;
588 int i, idx;
589
590 if (WARN_ON_ONCE(range->end <= range->start))
591 return 0;
592
593 /* A null handler is allowed if and only if on_lock() is provided. */
594 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
595 IS_KVM_NULL_FN(range->handler)))
596 return 0;
597
598 idx = srcu_read_lock(&kvm->srcu);
599
600 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
601 struct interval_tree_node *node;
602
603 slots = __kvm_memslots(kvm, i);
604 kvm_for_each_memslot_in_hva_range(node, slots,
605 range->start, range->end - 1) {
606 unsigned long hva_start, hva_end;
607
608 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
609 hva_start = max(range->start, slot->userspace_addr);
610 hva_end = min(range->end, slot->userspace_addr +
611 (slot->npages << PAGE_SHIFT));
612
613 /*
614 * To optimize for the likely case where the address
615 * range is covered by zero or one memslots, don't
616 * bother making these conditional (to avoid writes on
617 * the second or later invocation of the handler).
618 */
619 gfn_range.arg = range->arg;
620 gfn_range.may_block = range->may_block;
621
622 /*
623 * {gfn(page) | page intersects with [hva_start, hva_end)} =
624 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
625 */
626 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
627 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
628 gfn_range.slot = slot;
629
630 if (!locked) {
631 locked = true;
632 KVM_MMU_LOCK(kvm);
633 if (!IS_KVM_NULL_FN(range->on_lock))
634 range->on_lock(kvm, range->start, range->end);
635 if (IS_KVM_NULL_FN(range->handler))
636 break;
637 }
638 ret |= range->handler(kvm, &gfn_range);
639 }
640 }
641
642 if (range->flush_on_ret && ret)
643 kvm_flush_remote_tlbs(kvm);
644
645 if (locked) {
646 KVM_MMU_UNLOCK(kvm);
647 if (!IS_KVM_NULL_FN(range->on_unlock))
648 range->on_unlock(kvm);
649 }
650
651 srcu_read_unlock(&kvm->srcu, idx);
652
653 /* The notifiers are averse to booleans. :-( */
654 return (int)ret;
655 }
656
657 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
658 unsigned long start,
659 unsigned long end,
660 union kvm_mmu_notifier_arg arg,
661 hva_handler_t handler)
662 {
663 struct kvm *kvm = mmu_notifier_to_kvm(mn);
664 const struct kvm_hva_range range = {
665 .start = start,
666 .end = end,
667 .arg = arg,
668 .handler = handler,
669 .on_lock = (void *)kvm_null_fn,
670 .on_unlock = (void *)kvm_null_fn,
671 .flush_on_ret = true,
672 .may_block = false,
673 };
674
675 return __kvm_handle_hva_range(kvm, &range);
676 }
677
678 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
679 unsigned long start,
680 unsigned long end,
681 hva_handler_t handler)
682 {
683 struct kvm *kvm = mmu_notifier_to_kvm(mn);
684 const struct kvm_hva_range range = {
685 .start = start,
686 .end = end,
687 .handler = handler,
688 .on_lock = (void *)kvm_null_fn,
689 .on_unlock = (void *)kvm_null_fn,
690 .flush_on_ret = false,
691 .may_block = false,
692 };
693
694 return __kvm_handle_hva_range(kvm, &range);
695 }
696
697 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
698 {
699 /*
700 * Skipping invalid memslots is correct if and only change_pte() is
701 * surrounded by invalidate_range_{start,end}(), which is currently
702 * guaranteed by the primary MMU. If that ever changes, KVM needs to
703 * unmap the memslot instead of skipping the memslot to ensure that KVM
704 * doesn't hold references to the old PFN.
705 */
706 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707
708 if (range->slot->flags & KVM_MEMSLOT_INVALID)
709 return false;
710
711 return kvm_set_spte_gfn(kvm, range);
712 }
713
714 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
715 struct mm_struct *mm,
716 unsigned long address,
717 pte_t pte)
718 {
719 struct kvm *kvm = mmu_notifier_to_kvm(mn);
720 const union kvm_mmu_notifier_arg arg = { .pte = pte };
721
722 trace_kvm_set_spte_hva(address);
723
724 /*
725 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
726 * If mmu_invalidate_in_progress is zero, then no in-progress
727 * invalidations, including this one, found a relevant memslot at
728 * start(); rechecking memslots here is unnecessary. Note, a false
729 * positive (count elevated by a different invalidation) is sub-optimal
730 * but functionally ok.
731 */
732 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
733 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
734 return;
735
736 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
737 }
738
739 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
740 unsigned long end)
741 {
742 /*
743 * The count increase must become visible at unlock time as no
744 * spte can be established without taking the mmu_lock and
745 * count is also read inside the mmu_lock critical section.
746 */
747 kvm->mmu_invalidate_in_progress++;
748 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
749 kvm->mmu_invalidate_range_start = start;
750 kvm->mmu_invalidate_range_end = end;
751 } else {
752 /*
753 * Fully tracking multiple concurrent ranges has diminishing
754 * returns. Keep things simple and just find the minimal range
755 * which includes the current and new ranges. As there won't be
756 * enough information to subtract a range after its invalidate
757 * completes, any ranges invalidated concurrently will
758 * accumulate and persist until all outstanding invalidates
759 * complete.
760 */
761 kvm->mmu_invalidate_range_start =
762 min(kvm->mmu_invalidate_range_start, start);
763 kvm->mmu_invalidate_range_end =
764 max(kvm->mmu_invalidate_range_end, end);
765 }
766 }
767
768 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
769 const struct mmu_notifier_range *range)
770 {
771 struct kvm *kvm = mmu_notifier_to_kvm(mn);
772 const struct kvm_hva_range hva_range = {
773 .start = range->start,
774 .end = range->end,
775 .handler = kvm_unmap_gfn_range,
776 .on_lock = kvm_mmu_invalidate_begin,
777 .on_unlock = kvm_arch_guest_memory_reclaimed,
778 .flush_on_ret = true,
779 .may_block = mmu_notifier_range_blockable(range),
780 };
781
782 trace_kvm_unmap_hva_range(range->start, range->end);
783
784 /*
785 * Prevent memslot modification between range_start() and range_end()
786 * so that conditionally locking provides the same result in both
787 * functions. Without that guarantee, the mmu_invalidate_in_progress
788 * adjustments will be imbalanced.
789 *
790 * Pairs with the decrement in range_end().
791 */
792 spin_lock(&kvm->mn_invalidate_lock);
793 kvm->mn_active_invalidate_count++;
794 spin_unlock(&kvm->mn_invalidate_lock);
795
796 /*
797 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
798 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
799 * each cache's lock. There are relatively few caches in existence at
800 * any given time, and the caches themselves can check for hva overlap,
801 * i.e. don't need to rely on memslot overlap checks for performance.
802 * Because this runs without holding mmu_lock, the pfn caches must use
803 * mn_active_invalidate_count (see above) instead of
804 * mmu_invalidate_in_progress.
805 */
806 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
807 hva_range.may_block);
808
809 __kvm_handle_hva_range(kvm, &hva_range);
810
811 return 0;
812 }
813
814 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
815 unsigned long end)
816 {
817 /*
818 * This sequence increase will notify the kvm page fault that
819 * the page that is going to be mapped in the spte could have
820 * been freed.
821 */
822 kvm->mmu_invalidate_seq++;
823 smp_wmb();
824 /*
825 * The above sequence increase must be visible before the
826 * below count decrease, which is ensured by the smp_wmb above
827 * in conjunction with the smp_rmb in mmu_invalidate_retry().
828 */
829 kvm->mmu_invalidate_in_progress--;
830 }
831
832 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
833 const struct mmu_notifier_range *range)
834 {
835 struct kvm *kvm = mmu_notifier_to_kvm(mn);
836 const struct kvm_hva_range hva_range = {
837 .start = range->start,
838 .end = range->end,
839 .handler = (void *)kvm_null_fn,
840 .on_lock = kvm_mmu_invalidate_end,
841 .on_unlock = (void *)kvm_null_fn,
842 .flush_on_ret = false,
843 .may_block = mmu_notifier_range_blockable(range),
844 };
845 bool wake;
846
847 __kvm_handle_hva_range(kvm, &hva_range);
848
849 /* Pairs with the increment in range_start(). */
850 spin_lock(&kvm->mn_invalidate_lock);
851 wake = (--kvm->mn_active_invalidate_count == 0);
852 spin_unlock(&kvm->mn_invalidate_lock);
853
854 /*
855 * There can only be one waiter, since the wait happens under
856 * slots_lock.
857 */
858 if (wake)
859 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
860
861 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
862 }
863
864 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
865 struct mm_struct *mm,
866 unsigned long start,
867 unsigned long end)
868 {
869 trace_kvm_age_hva(start, end);
870
871 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
872 kvm_age_gfn);
873 }
874
875 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
876 struct mm_struct *mm,
877 unsigned long start,
878 unsigned long end)
879 {
880 trace_kvm_age_hva(start, end);
881
882 /*
883 * Even though we do not flush TLB, this will still adversely
884 * affect performance on pre-Haswell Intel EPT, where there is
885 * no EPT Access Bit to clear so that we have to tear down EPT
886 * tables instead. If we find this unacceptable, we can always
887 * add a parameter to kvm_age_hva so that it effectively doesn't
888 * do anything on clear_young.
889 *
890 * Also note that currently we never issue secondary TLB flushes
891 * from clear_young, leaving this job up to the regular system
892 * cadence. If we find this inaccurate, we might come up with a
893 * more sophisticated heuristic later.
894 */
895 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
896 }
897
898 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
899 struct mm_struct *mm,
900 unsigned long address)
901 {
902 trace_kvm_test_age_hva(address);
903
904 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
905 kvm_test_age_gfn);
906 }
907
908 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
909 struct mm_struct *mm)
910 {
911 struct kvm *kvm = mmu_notifier_to_kvm(mn);
912 int idx;
913
914 idx = srcu_read_lock(&kvm->srcu);
915 kvm_flush_shadow_all(kvm);
916 srcu_read_unlock(&kvm->srcu, idx);
917 }
918
919 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
920 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
921 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
922 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
923 .clear_young = kvm_mmu_notifier_clear_young,
924 .test_young = kvm_mmu_notifier_test_young,
925 .change_pte = kvm_mmu_notifier_change_pte,
926 .release = kvm_mmu_notifier_release,
927 };
928
929 static int kvm_init_mmu_notifier(struct kvm *kvm)
930 {
931 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
932 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
933 }
934
935 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
936
937 static int kvm_init_mmu_notifier(struct kvm *kvm)
938 {
939 return 0;
940 }
941
942 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
943
944 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
945 static int kvm_pm_notifier_call(struct notifier_block *bl,
946 unsigned long state,
947 void *unused)
948 {
949 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
950
951 return kvm_arch_pm_notifier(kvm, state);
952 }
953
954 static void kvm_init_pm_notifier(struct kvm *kvm)
955 {
956 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
957 /* Suspend KVM before we suspend ftrace, RCU, etc. */
958 kvm->pm_notifier.priority = INT_MAX;
959 register_pm_notifier(&kvm->pm_notifier);
960 }
961
962 static void kvm_destroy_pm_notifier(struct kvm *kvm)
963 {
964 unregister_pm_notifier(&kvm->pm_notifier);
965 }
966 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
967 static void kvm_init_pm_notifier(struct kvm *kvm)
968 {
969 }
970
971 static void kvm_destroy_pm_notifier(struct kvm *kvm)
972 {
973 }
974 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
975
976 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
977 {
978 if (!memslot->dirty_bitmap)
979 return;
980
981 kvfree(memslot->dirty_bitmap);
982 memslot->dirty_bitmap = NULL;
983 }
984
985 /* This does not remove the slot from struct kvm_memslots data structures */
986 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
987 {
988 kvm_destroy_dirty_bitmap(slot);
989
990 kvm_arch_free_memslot(kvm, slot);
991
992 kfree(slot);
993 }
994
995 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
996 {
997 struct hlist_node *idnode;
998 struct kvm_memory_slot *memslot;
999 int bkt;
1000
1001 /*
1002 * The same memslot objects live in both active and inactive sets,
1003 * arbitrarily free using index '1' so the second invocation of this
1004 * function isn't operating over a structure with dangling pointers
1005 * (even though this function isn't actually touching them).
1006 */
1007 if (!slots->node_idx)
1008 return;
1009
1010 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1011 kvm_free_memslot(kvm, memslot);
1012 }
1013
1014 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1015 {
1016 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1017 case KVM_STATS_TYPE_INSTANT:
1018 return 0444;
1019 case KVM_STATS_TYPE_CUMULATIVE:
1020 case KVM_STATS_TYPE_PEAK:
1021 default:
1022 return 0644;
1023 }
1024 }
1025
1026
1027 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1028 {
1029 int i;
1030 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1031 kvm_vcpu_stats_header.num_desc;
1032
1033 if (IS_ERR(kvm->debugfs_dentry))
1034 return;
1035
1036 debugfs_remove_recursive(kvm->debugfs_dentry);
1037
1038 if (kvm->debugfs_stat_data) {
1039 for (i = 0; i < kvm_debugfs_num_entries; i++)
1040 kfree(kvm->debugfs_stat_data[i]);
1041 kfree(kvm->debugfs_stat_data);
1042 }
1043 }
1044
1045 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1046 {
1047 static DEFINE_MUTEX(kvm_debugfs_lock);
1048 struct dentry *dent;
1049 char dir_name[ITOA_MAX_LEN * 2];
1050 struct kvm_stat_data *stat_data;
1051 const struct _kvm_stats_desc *pdesc;
1052 int i, ret = -ENOMEM;
1053 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1054 kvm_vcpu_stats_header.num_desc;
1055
1056 if (!debugfs_initialized())
1057 return 0;
1058
1059 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1060 mutex_lock(&kvm_debugfs_lock);
1061 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1062 if (dent) {
1063 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1064 dput(dent);
1065 mutex_unlock(&kvm_debugfs_lock);
1066 return 0;
1067 }
1068 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1069 mutex_unlock(&kvm_debugfs_lock);
1070 if (IS_ERR(dent))
1071 return 0;
1072
1073 kvm->debugfs_dentry = dent;
1074 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1075 sizeof(*kvm->debugfs_stat_data),
1076 GFP_KERNEL_ACCOUNT);
1077 if (!kvm->debugfs_stat_data)
1078 goto out_err;
1079
1080 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1081 pdesc = &kvm_vm_stats_desc[i];
1082 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1083 if (!stat_data)
1084 goto out_err;
1085
1086 stat_data->kvm = kvm;
1087 stat_data->desc = pdesc;
1088 stat_data->kind = KVM_STAT_VM;
1089 kvm->debugfs_stat_data[i] = stat_data;
1090 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1091 kvm->debugfs_dentry, stat_data,
1092 &stat_fops_per_vm);
1093 }
1094
1095 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1096 pdesc = &kvm_vcpu_stats_desc[i];
1097 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1098 if (!stat_data)
1099 goto out_err;
1100
1101 stat_data->kvm = kvm;
1102 stat_data->desc = pdesc;
1103 stat_data->kind = KVM_STAT_VCPU;
1104 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1105 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1106 kvm->debugfs_dentry, stat_data,
1107 &stat_fops_per_vm);
1108 }
1109
1110 ret = kvm_arch_create_vm_debugfs(kvm);
1111 if (ret)
1112 goto out_err;
1113
1114 return 0;
1115 out_err:
1116 kvm_destroy_vm_debugfs(kvm);
1117 return ret;
1118 }
1119
1120 /*
1121 * Called after the VM is otherwise initialized, but just before adding it to
1122 * the vm_list.
1123 */
1124 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1125 {
1126 return 0;
1127 }
1128
1129 /*
1130 * Called just after removing the VM from the vm_list, but before doing any
1131 * other destruction.
1132 */
1133 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1134 {
1135 }
1136
1137 /*
1138 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1139 * be setup already, so we can create arch-specific debugfs entries under it.
1140 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1141 * a per-arch destroy interface is not needed.
1142 */
1143 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1144 {
1145 return 0;
1146 }
1147
1148 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1149 {
1150 struct kvm *kvm = kvm_arch_alloc_vm();
1151 struct kvm_memslots *slots;
1152 int r = -ENOMEM;
1153 int i, j;
1154
1155 if (!kvm)
1156 return ERR_PTR(-ENOMEM);
1157
1158 KVM_MMU_LOCK_INIT(kvm);
1159 mmgrab(current->mm);
1160 kvm->mm = current->mm;
1161 kvm_eventfd_init(kvm);
1162 mutex_init(&kvm->lock);
1163 mutex_init(&kvm->irq_lock);
1164 mutex_init(&kvm->slots_lock);
1165 mutex_init(&kvm->slots_arch_lock);
1166 spin_lock_init(&kvm->mn_invalidate_lock);
1167 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1168 xa_init(&kvm->vcpu_array);
1169
1170 INIT_LIST_HEAD(&kvm->gpc_list);
1171 spin_lock_init(&kvm->gpc_lock);
1172
1173 INIT_LIST_HEAD(&kvm->devices);
1174 kvm->max_vcpus = KVM_MAX_VCPUS;
1175
1176 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1177
1178 /*
1179 * Force subsequent debugfs file creations to fail if the VM directory
1180 * is not created (by kvm_create_vm_debugfs()).
1181 */
1182 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1183
1184 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1185 task_pid_nr(current));
1186
1187 if (init_srcu_struct(&kvm->srcu))
1188 goto out_err_no_srcu;
1189 if (init_srcu_struct(&kvm->irq_srcu))
1190 goto out_err_no_irq_srcu;
1191
1192 refcount_set(&kvm->users_count, 1);
1193 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1194 for (j = 0; j < 2; j++) {
1195 slots = &kvm->__memslots[i][j];
1196
1197 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1198 slots->hva_tree = RB_ROOT_CACHED;
1199 slots->gfn_tree = RB_ROOT;
1200 hash_init(slots->id_hash);
1201 slots->node_idx = j;
1202
1203 /* Generations must be different for each address space. */
1204 slots->generation = i;
1205 }
1206
1207 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1208 }
1209
1210 for (i = 0; i < KVM_NR_BUSES; i++) {
1211 rcu_assign_pointer(kvm->buses[i],
1212 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1213 if (!kvm->buses[i])
1214 goto out_err_no_arch_destroy_vm;
1215 }
1216
1217 r = kvm_arch_init_vm(kvm, type);
1218 if (r)
1219 goto out_err_no_arch_destroy_vm;
1220
1221 r = hardware_enable_all();
1222 if (r)
1223 goto out_err_no_disable;
1224
1225 #ifdef CONFIG_HAVE_KVM_IRQFD
1226 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1227 #endif
1228
1229 r = kvm_init_mmu_notifier(kvm);
1230 if (r)
1231 goto out_err_no_mmu_notifier;
1232
1233 r = kvm_coalesced_mmio_init(kvm);
1234 if (r < 0)
1235 goto out_no_coalesced_mmio;
1236
1237 r = kvm_create_vm_debugfs(kvm, fdname);
1238 if (r)
1239 goto out_err_no_debugfs;
1240
1241 r = kvm_arch_post_init_vm(kvm);
1242 if (r)
1243 goto out_err;
1244
1245 mutex_lock(&kvm_lock);
1246 list_add(&kvm->vm_list, &vm_list);
1247 mutex_unlock(&kvm_lock);
1248
1249 preempt_notifier_inc();
1250 kvm_init_pm_notifier(kvm);
1251
1252 return kvm;
1253
1254 out_err:
1255 kvm_destroy_vm_debugfs(kvm);
1256 out_err_no_debugfs:
1257 kvm_coalesced_mmio_free(kvm);
1258 out_no_coalesced_mmio:
1259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1260 if (kvm->mmu_notifier.ops)
1261 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1262 #endif
1263 out_err_no_mmu_notifier:
1264 hardware_disable_all();
1265 out_err_no_disable:
1266 kvm_arch_destroy_vm(kvm);
1267 out_err_no_arch_destroy_vm:
1268 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1269 for (i = 0; i < KVM_NR_BUSES; i++)
1270 kfree(kvm_get_bus(kvm, i));
1271 cleanup_srcu_struct(&kvm->irq_srcu);
1272 out_err_no_irq_srcu:
1273 cleanup_srcu_struct(&kvm->srcu);
1274 out_err_no_srcu:
1275 kvm_arch_free_vm(kvm);
1276 mmdrop(current->mm);
1277 return ERR_PTR(r);
1278 }
1279
1280 static void kvm_destroy_devices(struct kvm *kvm)
1281 {
1282 struct kvm_device *dev, *tmp;
1283
1284 /*
1285 * We do not need to take the kvm->lock here, because nobody else
1286 * has a reference to the struct kvm at this point and therefore
1287 * cannot access the devices list anyhow.
1288 */
1289 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1290 list_del(&dev->vm_node);
1291 dev->ops->destroy(dev);
1292 }
1293 }
1294
1295 static void kvm_destroy_vm(struct kvm *kvm)
1296 {
1297 int i;
1298 struct mm_struct *mm = kvm->mm;
1299
1300 kvm_destroy_pm_notifier(kvm);
1301 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1302 kvm_destroy_vm_debugfs(kvm);
1303 kvm_arch_sync_events(kvm);
1304 mutex_lock(&kvm_lock);
1305 list_del(&kvm->vm_list);
1306 mutex_unlock(&kvm_lock);
1307 kvm_arch_pre_destroy_vm(kvm);
1308
1309 kvm_free_irq_routing(kvm);
1310 for (i = 0; i < KVM_NR_BUSES; i++) {
1311 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1312
1313 if (bus)
1314 kvm_io_bus_destroy(bus);
1315 kvm->buses[i] = NULL;
1316 }
1317 kvm_coalesced_mmio_free(kvm);
1318 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1319 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1320 /*
1321 * At this point, pending calls to invalidate_range_start()
1322 * have completed but no more MMU notifiers will run, so
1323 * mn_active_invalidate_count may remain unbalanced.
1324 * No threads can be waiting in kvm_swap_active_memslots() as the
1325 * last reference on KVM has been dropped, but freeing
1326 * memslots would deadlock without this manual intervention.
1327 */
1328 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1329 kvm->mn_active_invalidate_count = 0;
1330 #else
1331 kvm_flush_shadow_all(kvm);
1332 #endif
1333 kvm_arch_destroy_vm(kvm);
1334 kvm_destroy_devices(kvm);
1335 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1336 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1337 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1338 }
1339 cleanup_srcu_struct(&kvm->irq_srcu);
1340 cleanup_srcu_struct(&kvm->srcu);
1341 kvm_arch_free_vm(kvm);
1342 preempt_notifier_dec();
1343 hardware_disable_all();
1344 mmdrop(mm);
1345 }
1346
1347 void kvm_get_kvm(struct kvm *kvm)
1348 {
1349 refcount_inc(&kvm->users_count);
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1352
1353 /*
1354 * Make sure the vm is not during destruction, which is a safe version of
1355 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1356 */
1357 bool kvm_get_kvm_safe(struct kvm *kvm)
1358 {
1359 return refcount_inc_not_zero(&kvm->users_count);
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1362
1363 void kvm_put_kvm(struct kvm *kvm)
1364 {
1365 if (refcount_dec_and_test(&kvm->users_count))
1366 kvm_destroy_vm(kvm);
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1369
1370 /*
1371 * Used to put a reference that was taken on behalf of an object associated
1372 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1373 * of the new file descriptor fails and the reference cannot be transferred to
1374 * its final owner. In such cases, the caller is still actively using @kvm and
1375 * will fail miserably if the refcount unexpectedly hits zero.
1376 */
1377 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1378 {
1379 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1380 }
1381 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1382
1383 static int kvm_vm_release(struct inode *inode, struct file *filp)
1384 {
1385 struct kvm *kvm = filp->private_data;
1386
1387 kvm_irqfd_release(kvm);
1388
1389 kvm_put_kvm(kvm);
1390 return 0;
1391 }
1392
1393 /*
1394 * Allocation size is twice as large as the actual dirty bitmap size.
1395 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1396 */
1397 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1398 {
1399 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1400
1401 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1402 if (!memslot->dirty_bitmap)
1403 return -ENOMEM;
1404
1405 return 0;
1406 }
1407
1408 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1409 {
1410 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1411 int node_idx_inactive = active->node_idx ^ 1;
1412
1413 return &kvm->__memslots[as_id][node_idx_inactive];
1414 }
1415
1416 /*
1417 * Helper to get the address space ID when one of memslot pointers may be NULL.
1418 * This also serves as a sanity that at least one of the pointers is non-NULL,
1419 * and that their address space IDs don't diverge.
1420 */
1421 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1422 struct kvm_memory_slot *b)
1423 {
1424 if (WARN_ON_ONCE(!a && !b))
1425 return 0;
1426
1427 if (!a)
1428 return b->as_id;
1429 if (!b)
1430 return a->as_id;
1431
1432 WARN_ON_ONCE(a->as_id != b->as_id);
1433 return a->as_id;
1434 }
1435
1436 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1437 struct kvm_memory_slot *slot)
1438 {
1439 struct rb_root *gfn_tree = &slots->gfn_tree;
1440 struct rb_node **node, *parent;
1441 int idx = slots->node_idx;
1442
1443 parent = NULL;
1444 for (node = &gfn_tree->rb_node; *node; ) {
1445 struct kvm_memory_slot *tmp;
1446
1447 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1448 parent = *node;
1449 if (slot->base_gfn < tmp->base_gfn)
1450 node = &(*node)->rb_left;
1451 else if (slot->base_gfn > tmp->base_gfn)
1452 node = &(*node)->rb_right;
1453 else
1454 BUG();
1455 }
1456
1457 rb_link_node(&slot->gfn_node[idx], parent, node);
1458 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1459 }
1460
1461 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1462 struct kvm_memory_slot *slot)
1463 {
1464 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1465 }
1466
1467 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1468 struct kvm_memory_slot *old,
1469 struct kvm_memory_slot *new)
1470 {
1471 int idx = slots->node_idx;
1472
1473 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1474
1475 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1476 &slots->gfn_tree);
1477 }
1478
1479 /*
1480 * Replace @old with @new in the inactive memslots.
1481 *
1482 * With NULL @old this simply adds @new.
1483 * With NULL @new this simply removes @old.
1484 *
1485 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1486 * appropriately.
1487 */
1488 static void kvm_replace_memslot(struct kvm *kvm,
1489 struct kvm_memory_slot *old,
1490 struct kvm_memory_slot *new)
1491 {
1492 int as_id = kvm_memslots_get_as_id(old, new);
1493 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1494 int idx = slots->node_idx;
1495
1496 if (old) {
1497 hash_del(&old->id_node[idx]);
1498 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1499
1500 if ((long)old == atomic_long_read(&slots->last_used_slot))
1501 atomic_long_set(&slots->last_used_slot, (long)new);
1502
1503 if (!new) {
1504 kvm_erase_gfn_node(slots, old);
1505 return;
1506 }
1507 }
1508
1509 /*
1510 * Initialize @new's hva range. Do this even when replacing an @old
1511 * slot, kvm_copy_memslot() deliberately does not touch node data.
1512 */
1513 new->hva_node[idx].start = new->userspace_addr;
1514 new->hva_node[idx].last = new->userspace_addr +
1515 (new->npages << PAGE_SHIFT) - 1;
1516
1517 /*
1518 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1519 * hva_node needs to be swapped with remove+insert even though hva can't
1520 * change when replacing an existing slot.
1521 */
1522 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1523 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1524
1525 /*
1526 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1527 * switch the node in the gfn tree instead of removing the old and
1528 * inserting the new as two separate operations. Replacement is a
1529 * single O(1) operation versus two O(log(n)) operations for
1530 * remove+insert.
1531 */
1532 if (old && old->base_gfn == new->base_gfn) {
1533 kvm_replace_gfn_node(slots, old, new);
1534 } else {
1535 if (old)
1536 kvm_erase_gfn_node(slots, old);
1537 kvm_insert_gfn_node(slots, new);
1538 }
1539 }
1540
1541 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1542 {
1543 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1544
1545 #ifdef __KVM_HAVE_READONLY_MEM
1546 valid_flags |= KVM_MEM_READONLY;
1547 #endif
1548
1549 if (mem->flags & ~valid_flags)
1550 return -EINVAL;
1551
1552 return 0;
1553 }
1554
1555 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1556 {
1557 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1558
1559 /* Grab the generation from the activate memslots. */
1560 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1561
1562 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1563 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1564
1565 /*
1566 * Do not store the new memslots while there are invalidations in
1567 * progress, otherwise the locking in invalidate_range_start and
1568 * invalidate_range_end will be unbalanced.
1569 */
1570 spin_lock(&kvm->mn_invalidate_lock);
1571 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1572 while (kvm->mn_active_invalidate_count) {
1573 set_current_state(TASK_UNINTERRUPTIBLE);
1574 spin_unlock(&kvm->mn_invalidate_lock);
1575 schedule();
1576 spin_lock(&kvm->mn_invalidate_lock);
1577 }
1578 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1579 rcu_assign_pointer(kvm->memslots[as_id], slots);
1580 spin_unlock(&kvm->mn_invalidate_lock);
1581
1582 /*
1583 * Acquired in kvm_set_memslot. Must be released before synchronize
1584 * SRCU below in order to avoid deadlock with another thread
1585 * acquiring the slots_arch_lock in an srcu critical section.
1586 */
1587 mutex_unlock(&kvm->slots_arch_lock);
1588
1589 synchronize_srcu_expedited(&kvm->srcu);
1590
1591 /*
1592 * Increment the new memslot generation a second time, dropping the
1593 * update in-progress flag and incrementing the generation based on
1594 * the number of address spaces. This provides a unique and easily
1595 * identifiable generation number while the memslots are in flux.
1596 */
1597 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1598
1599 /*
1600 * Generations must be unique even across address spaces. We do not need
1601 * a global counter for that, instead the generation space is evenly split
1602 * across address spaces. For example, with two address spaces, address
1603 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1604 * use generations 1, 3, 5, ...
1605 */
1606 gen += KVM_ADDRESS_SPACE_NUM;
1607
1608 kvm_arch_memslots_updated(kvm, gen);
1609
1610 slots->generation = gen;
1611 }
1612
1613 static int kvm_prepare_memory_region(struct kvm *kvm,
1614 const struct kvm_memory_slot *old,
1615 struct kvm_memory_slot *new,
1616 enum kvm_mr_change change)
1617 {
1618 int r;
1619
1620 /*
1621 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1622 * will be freed on "commit". If logging is enabled in both old and
1623 * new, reuse the existing bitmap. If logging is enabled only in the
1624 * new and KVM isn't using a ring buffer, allocate and initialize a
1625 * new bitmap.
1626 */
1627 if (change != KVM_MR_DELETE) {
1628 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1629 new->dirty_bitmap = NULL;
1630 else if (old && old->dirty_bitmap)
1631 new->dirty_bitmap = old->dirty_bitmap;
1632 else if (kvm_use_dirty_bitmap(kvm)) {
1633 r = kvm_alloc_dirty_bitmap(new);
1634 if (r)
1635 return r;
1636
1637 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1638 bitmap_set(new->dirty_bitmap, 0, new->npages);
1639 }
1640 }
1641
1642 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1643
1644 /* Free the bitmap on failure if it was allocated above. */
1645 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1646 kvm_destroy_dirty_bitmap(new);
1647
1648 return r;
1649 }
1650
1651 static void kvm_commit_memory_region(struct kvm *kvm,
1652 struct kvm_memory_slot *old,
1653 const struct kvm_memory_slot *new,
1654 enum kvm_mr_change change)
1655 {
1656 int old_flags = old ? old->flags : 0;
1657 int new_flags = new ? new->flags : 0;
1658 /*
1659 * Update the total number of memslot pages before calling the arch
1660 * hook so that architectures can consume the result directly.
1661 */
1662 if (change == KVM_MR_DELETE)
1663 kvm->nr_memslot_pages -= old->npages;
1664 else if (change == KVM_MR_CREATE)
1665 kvm->nr_memslot_pages += new->npages;
1666
1667 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1668 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1669 atomic_set(&kvm->nr_memslots_dirty_logging,
1670 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1671 }
1672
1673 kvm_arch_commit_memory_region(kvm, old, new, change);
1674
1675 switch (change) {
1676 case KVM_MR_CREATE:
1677 /* Nothing more to do. */
1678 break;
1679 case KVM_MR_DELETE:
1680 /* Free the old memslot and all its metadata. */
1681 kvm_free_memslot(kvm, old);
1682 break;
1683 case KVM_MR_MOVE:
1684 case KVM_MR_FLAGS_ONLY:
1685 /*
1686 * Free the dirty bitmap as needed; the below check encompasses
1687 * both the flags and whether a ring buffer is being used)
1688 */
1689 if (old->dirty_bitmap && !new->dirty_bitmap)
1690 kvm_destroy_dirty_bitmap(old);
1691
1692 /*
1693 * The final quirk. Free the detached, old slot, but only its
1694 * memory, not any metadata. Metadata, including arch specific
1695 * data, may be reused by @new.
1696 */
1697 kfree(old);
1698 break;
1699 default:
1700 BUG();
1701 }
1702 }
1703
1704 /*
1705 * Activate @new, which must be installed in the inactive slots by the caller,
1706 * by swapping the active slots and then propagating @new to @old once @old is
1707 * unreachable and can be safely modified.
1708 *
1709 * With NULL @old this simply adds @new to @active (while swapping the sets).
1710 * With NULL @new this simply removes @old from @active and frees it
1711 * (while also swapping the sets).
1712 */
1713 static void kvm_activate_memslot(struct kvm *kvm,
1714 struct kvm_memory_slot *old,
1715 struct kvm_memory_slot *new)
1716 {
1717 int as_id = kvm_memslots_get_as_id(old, new);
1718
1719 kvm_swap_active_memslots(kvm, as_id);
1720
1721 /* Propagate the new memslot to the now inactive memslots. */
1722 kvm_replace_memslot(kvm, old, new);
1723 }
1724
1725 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1726 const struct kvm_memory_slot *src)
1727 {
1728 dest->base_gfn = src->base_gfn;
1729 dest->npages = src->npages;
1730 dest->dirty_bitmap = src->dirty_bitmap;
1731 dest->arch = src->arch;
1732 dest->userspace_addr = src->userspace_addr;
1733 dest->flags = src->flags;
1734 dest->id = src->id;
1735 dest->as_id = src->as_id;
1736 }
1737
1738 static void kvm_invalidate_memslot(struct kvm *kvm,
1739 struct kvm_memory_slot *old,
1740 struct kvm_memory_slot *invalid_slot)
1741 {
1742 /*
1743 * Mark the current slot INVALID. As with all memslot modifications,
1744 * this must be done on an unreachable slot to avoid modifying the
1745 * current slot in the active tree.
1746 */
1747 kvm_copy_memslot(invalid_slot, old);
1748 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1749 kvm_replace_memslot(kvm, old, invalid_slot);
1750
1751 /*
1752 * Activate the slot that is now marked INVALID, but don't propagate
1753 * the slot to the now inactive slots. The slot is either going to be
1754 * deleted or recreated as a new slot.
1755 */
1756 kvm_swap_active_memslots(kvm, old->as_id);
1757
1758 /*
1759 * From this point no new shadow pages pointing to a deleted, or moved,
1760 * memslot will be created. Validation of sp->gfn happens in:
1761 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1762 * - kvm_is_visible_gfn (mmu_check_root)
1763 */
1764 kvm_arch_flush_shadow_memslot(kvm, old);
1765 kvm_arch_guest_memory_reclaimed(kvm);
1766
1767 /* Was released by kvm_swap_active_memslots(), reacquire. */
1768 mutex_lock(&kvm->slots_arch_lock);
1769
1770 /*
1771 * Copy the arch-specific field of the newly-installed slot back to the
1772 * old slot as the arch data could have changed between releasing
1773 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1774 * above. Writers are required to retrieve memslots *after* acquiring
1775 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1776 */
1777 old->arch = invalid_slot->arch;
1778 }
1779
1780 static void kvm_create_memslot(struct kvm *kvm,
1781 struct kvm_memory_slot *new)
1782 {
1783 /* Add the new memslot to the inactive set and activate. */
1784 kvm_replace_memslot(kvm, NULL, new);
1785 kvm_activate_memslot(kvm, NULL, new);
1786 }
1787
1788 static void kvm_delete_memslot(struct kvm *kvm,
1789 struct kvm_memory_slot *old,
1790 struct kvm_memory_slot *invalid_slot)
1791 {
1792 /*
1793 * Remove the old memslot (in the inactive memslots) by passing NULL as
1794 * the "new" slot, and for the invalid version in the active slots.
1795 */
1796 kvm_replace_memslot(kvm, old, NULL);
1797 kvm_activate_memslot(kvm, invalid_slot, NULL);
1798 }
1799
1800 static void kvm_move_memslot(struct kvm *kvm,
1801 struct kvm_memory_slot *old,
1802 struct kvm_memory_slot *new,
1803 struct kvm_memory_slot *invalid_slot)
1804 {
1805 /*
1806 * Replace the old memslot in the inactive slots, and then swap slots
1807 * and replace the current INVALID with the new as well.
1808 */
1809 kvm_replace_memslot(kvm, old, new);
1810 kvm_activate_memslot(kvm, invalid_slot, new);
1811 }
1812
1813 static void kvm_update_flags_memslot(struct kvm *kvm,
1814 struct kvm_memory_slot *old,
1815 struct kvm_memory_slot *new)
1816 {
1817 /*
1818 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1819 * an intermediate step. Instead, the old memslot is simply replaced
1820 * with a new, updated copy in both memslot sets.
1821 */
1822 kvm_replace_memslot(kvm, old, new);
1823 kvm_activate_memslot(kvm, old, new);
1824 }
1825
1826 static int kvm_set_memslot(struct kvm *kvm,
1827 struct kvm_memory_slot *old,
1828 struct kvm_memory_slot *new,
1829 enum kvm_mr_change change)
1830 {
1831 struct kvm_memory_slot *invalid_slot;
1832 int r;
1833
1834 /*
1835 * Released in kvm_swap_active_memslots().
1836 *
1837 * Must be held from before the current memslots are copied until after
1838 * the new memslots are installed with rcu_assign_pointer, then
1839 * released before the synchronize srcu in kvm_swap_active_memslots().
1840 *
1841 * When modifying memslots outside of the slots_lock, must be held
1842 * before reading the pointer to the current memslots until after all
1843 * changes to those memslots are complete.
1844 *
1845 * These rules ensure that installing new memslots does not lose
1846 * changes made to the previous memslots.
1847 */
1848 mutex_lock(&kvm->slots_arch_lock);
1849
1850 /*
1851 * Invalidate the old slot if it's being deleted or moved. This is
1852 * done prior to actually deleting/moving the memslot to allow vCPUs to
1853 * continue running by ensuring there are no mappings or shadow pages
1854 * for the memslot when it is deleted/moved. Without pre-invalidation
1855 * (and without a lock), a window would exist between effecting the
1856 * delete/move and committing the changes in arch code where KVM or a
1857 * guest could access a non-existent memslot.
1858 *
1859 * Modifications are done on a temporary, unreachable slot. The old
1860 * slot needs to be preserved in case a later step fails and the
1861 * invalidation needs to be reverted.
1862 */
1863 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1864 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1865 if (!invalid_slot) {
1866 mutex_unlock(&kvm->slots_arch_lock);
1867 return -ENOMEM;
1868 }
1869 kvm_invalidate_memslot(kvm, old, invalid_slot);
1870 }
1871
1872 r = kvm_prepare_memory_region(kvm, old, new, change);
1873 if (r) {
1874 /*
1875 * For DELETE/MOVE, revert the above INVALID change. No
1876 * modifications required since the original slot was preserved
1877 * in the inactive slots. Changing the active memslots also
1878 * release slots_arch_lock.
1879 */
1880 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1881 kvm_activate_memslot(kvm, invalid_slot, old);
1882 kfree(invalid_slot);
1883 } else {
1884 mutex_unlock(&kvm->slots_arch_lock);
1885 }
1886 return r;
1887 }
1888
1889 /*
1890 * For DELETE and MOVE, the working slot is now active as the INVALID
1891 * version of the old slot. MOVE is particularly special as it reuses
1892 * the old slot and returns a copy of the old slot (in working_slot).
1893 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1894 * old slot is detached but otherwise preserved.
1895 */
1896 if (change == KVM_MR_CREATE)
1897 kvm_create_memslot(kvm, new);
1898 else if (change == KVM_MR_DELETE)
1899 kvm_delete_memslot(kvm, old, invalid_slot);
1900 else if (change == KVM_MR_MOVE)
1901 kvm_move_memslot(kvm, old, new, invalid_slot);
1902 else if (change == KVM_MR_FLAGS_ONLY)
1903 kvm_update_flags_memslot(kvm, old, new);
1904 else
1905 BUG();
1906
1907 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1908 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1909 kfree(invalid_slot);
1910
1911 /*
1912 * No need to refresh new->arch, changes after dropping slots_arch_lock
1913 * will directly hit the final, active memslot. Architectures are
1914 * responsible for knowing that new->arch may be stale.
1915 */
1916 kvm_commit_memory_region(kvm, old, new, change);
1917
1918 return 0;
1919 }
1920
1921 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1922 gfn_t start, gfn_t end)
1923 {
1924 struct kvm_memslot_iter iter;
1925
1926 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1927 if (iter.slot->id != id)
1928 return true;
1929 }
1930
1931 return false;
1932 }
1933
1934 /*
1935 * Allocate some memory and give it an address in the guest physical address
1936 * space.
1937 *
1938 * Discontiguous memory is allowed, mostly for framebuffers.
1939 *
1940 * Must be called holding kvm->slots_lock for write.
1941 */
1942 int __kvm_set_memory_region(struct kvm *kvm,
1943 const struct kvm_userspace_memory_region *mem)
1944 {
1945 struct kvm_memory_slot *old, *new;
1946 struct kvm_memslots *slots;
1947 enum kvm_mr_change change;
1948 unsigned long npages;
1949 gfn_t base_gfn;
1950 int as_id, id;
1951 int r;
1952
1953 r = check_memory_region_flags(mem);
1954 if (r)
1955 return r;
1956
1957 as_id = mem->slot >> 16;
1958 id = (u16)mem->slot;
1959
1960 /* General sanity checks */
1961 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1962 (mem->memory_size != (unsigned long)mem->memory_size))
1963 return -EINVAL;
1964 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1965 return -EINVAL;
1966 /* We can read the guest memory with __xxx_user() later on. */
1967 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1968 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1969 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1970 mem->memory_size))
1971 return -EINVAL;
1972 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1973 return -EINVAL;
1974 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1975 return -EINVAL;
1976 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1977 return -EINVAL;
1978
1979 slots = __kvm_memslots(kvm, as_id);
1980
1981 /*
1982 * Note, the old memslot (and the pointer itself!) may be invalidated
1983 * and/or destroyed by kvm_set_memslot().
1984 */
1985 old = id_to_memslot(slots, id);
1986
1987 if (!mem->memory_size) {
1988 if (!old || !old->npages)
1989 return -EINVAL;
1990
1991 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1992 return -EIO;
1993
1994 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1995 }
1996
1997 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1998 npages = (mem->memory_size >> PAGE_SHIFT);
1999
2000 if (!old || !old->npages) {
2001 change = KVM_MR_CREATE;
2002
2003 /*
2004 * To simplify KVM internals, the total number of pages across
2005 * all memslots must fit in an unsigned long.
2006 */
2007 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2008 return -EINVAL;
2009 } else { /* Modify an existing slot. */
2010 if ((mem->userspace_addr != old->userspace_addr) ||
2011 (npages != old->npages) ||
2012 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2013 return -EINVAL;
2014
2015 if (base_gfn != old->base_gfn)
2016 change = KVM_MR_MOVE;
2017 else if (mem->flags != old->flags)
2018 change = KVM_MR_FLAGS_ONLY;
2019 else /* Nothing to change. */
2020 return 0;
2021 }
2022
2023 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2024 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2025 return -EEXIST;
2026
2027 /* Allocate a slot that will persist in the memslot. */
2028 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2029 if (!new)
2030 return -ENOMEM;
2031
2032 new->as_id = as_id;
2033 new->id = id;
2034 new->base_gfn = base_gfn;
2035 new->npages = npages;
2036 new->flags = mem->flags;
2037 new->userspace_addr = mem->userspace_addr;
2038
2039 r = kvm_set_memslot(kvm, old, new, change);
2040 if (r)
2041 kfree(new);
2042 return r;
2043 }
2044 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2045
2046 int kvm_set_memory_region(struct kvm *kvm,
2047 const struct kvm_userspace_memory_region *mem)
2048 {
2049 int r;
2050
2051 mutex_lock(&kvm->slots_lock);
2052 r = __kvm_set_memory_region(kvm, mem);
2053 mutex_unlock(&kvm->slots_lock);
2054 return r;
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2057
2058 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2059 struct kvm_userspace_memory_region *mem)
2060 {
2061 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2062 return -EINVAL;
2063
2064 return kvm_set_memory_region(kvm, mem);
2065 }
2066
2067 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2068 /**
2069 * kvm_get_dirty_log - get a snapshot of dirty pages
2070 * @kvm: pointer to kvm instance
2071 * @log: slot id and address to which we copy the log
2072 * @is_dirty: set to '1' if any dirty pages were found
2073 * @memslot: set to the associated memslot, always valid on success
2074 */
2075 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2076 int *is_dirty, struct kvm_memory_slot **memslot)
2077 {
2078 struct kvm_memslots *slots;
2079 int i, as_id, id;
2080 unsigned long n;
2081 unsigned long any = 0;
2082
2083 /* Dirty ring tracking may be exclusive to dirty log tracking */
2084 if (!kvm_use_dirty_bitmap(kvm))
2085 return -ENXIO;
2086
2087 *memslot = NULL;
2088 *is_dirty = 0;
2089
2090 as_id = log->slot >> 16;
2091 id = (u16)log->slot;
2092 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2093 return -EINVAL;
2094
2095 slots = __kvm_memslots(kvm, as_id);
2096 *memslot = id_to_memslot(slots, id);
2097 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2098 return -ENOENT;
2099
2100 kvm_arch_sync_dirty_log(kvm, *memslot);
2101
2102 n = kvm_dirty_bitmap_bytes(*memslot);
2103
2104 for (i = 0; !any && i < n/sizeof(long); ++i)
2105 any = (*memslot)->dirty_bitmap[i];
2106
2107 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2108 return -EFAULT;
2109
2110 if (any)
2111 *is_dirty = 1;
2112 return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2115
2116 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2117 /**
2118 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2119 * and reenable dirty page tracking for the corresponding pages.
2120 * @kvm: pointer to kvm instance
2121 * @log: slot id and address to which we copy the log
2122 *
2123 * We need to keep it in mind that VCPU threads can write to the bitmap
2124 * concurrently. So, to avoid losing track of dirty pages we keep the
2125 * following order:
2126 *
2127 * 1. Take a snapshot of the bit and clear it if needed.
2128 * 2. Write protect the corresponding page.
2129 * 3. Copy the snapshot to the userspace.
2130 * 4. Upon return caller flushes TLB's if needed.
2131 *
2132 * Between 2 and 4, the guest may write to the page using the remaining TLB
2133 * entry. This is not a problem because the page is reported dirty using
2134 * the snapshot taken before and step 4 ensures that writes done after
2135 * exiting to userspace will be logged for the next call.
2136 *
2137 */
2138 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2139 {
2140 struct kvm_memslots *slots;
2141 struct kvm_memory_slot *memslot;
2142 int i, as_id, id;
2143 unsigned long n;
2144 unsigned long *dirty_bitmap;
2145 unsigned long *dirty_bitmap_buffer;
2146 bool flush;
2147
2148 /* Dirty ring tracking may be exclusive to dirty log tracking */
2149 if (!kvm_use_dirty_bitmap(kvm))
2150 return -ENXIO;
2151
2152 as_id = log->slot >> 16;
2153 id = (u16)log->slot;
2154 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2155 return -EINVAL;
2156
2157 slots = __kvm_memslots(kvm, as_id);
2158 memslot = id_to_memslot(slots, id);
2159 if (!memslot || !memslot->dirty_bitmap)
2160 return -ENOENT;
2161
2162 dirty_bitmap = memslot->dirty_bitmap;
2163
2164 kvm_arch_sync_dirty_log(kvm, memslot);
2165
2166 n = kvm_dirty_bitmap_bytes(memslot);
2167 flush = false;
2168 if (kvm->manual_dirty_log_protect) {
2169 /*
2170 * Unlike kvm_get_dirty_log, we always return false in *flush,
2171 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2172 * is some code duplication between this function and
2173 * kvm_get_dirty_log, but hopefully all architecture
2174 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2175 * can be eliminated.
2176 */
2177 dirty_bitmap_buffer = dirty_bitmap;
2178 } else {
2179 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2180 memset(dirty_bitmap_buffer, 0, n);
2181
2182 KVM_MMU_LOCK(kvm);
2183 for (i = 0; i < n / sizeof(long); i++) {
2184 unsigned long mask;
2185 gfn_t offset;
2186
2187 if (!dirty_bitmap[i])
2188 continue;
2189
2190 flush = true;
2191 mask = xchg(&dirty_bitmap[i], 0);
2192 dirty_bitmap_buffer[i] = mask;
2193
2194 offset = i * BITS_PER_LONG;
2195 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2196 offset, mask);
2197 }
2198 KVM_MMU_UNLOCK(kvm);
2199 }
2200
2201 if (flush)
2202 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2203
2204 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2205 return -EFAULT;
2206 return 0;
2207 }
2208
2209
2210 /**
2211 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2212 * @kvm: kvm instance
2213 * @log: slot id and address to which we copy the log
2214 *
2215 * Steps 1-4 below provide general overview of dirty page logging. See
2216 * kvm_get_dirty_log_protect() function description for additional details.
2217 *
2218 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2219 * always flush the TLB (step 4) even if previous step failed and the dirty
2220 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2221 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2222 * writes will be marked dirty for next log read.
2223 *
2224 * 1. Take a snapshot of the bit and clear it if needed.
2225 * 2. Write protect the corresponding page.
2226 * 3. Copy the snapshot to the userspace.
2227 * 4. Flush TLB's if needed.
2228 */
2229 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2230 struct kvm_dirty_log *log)
2231 {
2232 int r;
2233
2234 mutex_lock(&kvm->slots_lock);
2235
2236 r = kvm_get_dirty_log_protect(kvm, log);
2237
2238 mutex_unlock(&kvm->slots_lock);
2239 return r;
2240 }
2241
2242 /**
2243 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2244 * and reenable dirty page tracking for the corresponding pages.
2245 * @kvm: pointer to kvm instance
2246 * @log: slot id and address from which to fetch the bitmap of dirty pages
2247 */
2248 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2249 struct kvm_clear_dirty_log *log)
2250 {
2251 struct kvm_memslots *slots;
2252 struct kvm_memory_slot *memslot;
2253 int as_id, id;
2254 gfn_t offset;
2255 unsigned long i, n;
2256 unsigned long *dirty_bitmap;
2257 unsigned long *dirty_bitmap_buffer;
2258 bool flush;
2259
2260 /* Dirty ring tracking may be exclusive to dirty log tracking */
2261 if (!kvm_use_dirty_bitmap(kvm))
2262 return -ENXIO;
2263
2264 as_id = log->slot >> 16;
2265 id = (u16)log->slot;
2266 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2267 return -EINVAL;
2268
2269 if (log->first_page & 63)
2270 return -EINVAL;
2271
2272 slots = __kvm_memslots(kvm, as_id);
2273 memslot = id_to_memslot(slots, id);
2274 if (!memslot || !memslot->dirty_bitmap)
2275 return -ENOENT;
2276
2277 dirty_bitmap = memslot->dirty_bitmap;
2278
2279 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2280
2281 if (log->first_page > memslot->npages ||
2282 log->num_pages > memslot->npages - log->first_page ||
2283 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2284 return -EINVAL;
2285
2286 kvm_arch_sync_dirty_log(kvm, memslot);
2287
2288 flush = false;
2289 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2290 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2291 return -EFAULT;
2292
2293 KVM_MMU_LOCK(kvm);
2294 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2295 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2296 i++, offset += BITS_PER_LONG) {
2297 unsigned long mask = *dirty_bitmap_buffer++;
2298 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2299 if (!mask)
2300 continue;
2301
2302 mask &= atomic_long_fetch_andnot(mask, p);
2303
2304 /*
2305 * mask contains the bits that really have been cleared. This
2306 * never includes any bits beyond the length of the memslot (if
2307 * the length is not aligned to 64 pages), therefore it is not
2308 * a problem if userspace sets them in log->dirty_bitmap.
2309 */
2310 if (mask) {
2311 flush = true;
2312 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2313 offset, mask);
2314 }
2315 }
2316 KVM_MMU_UNLOCK(kvm);
2317
2318 if (flush)
2319 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2320
2321 return 0;
2322 }
2323
2324 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2325 struct kvm_clear_dirty_log *log)
2326 {
2327 int r;
2328
2329 mutex_lock(&kvm->slots_lock);
2330
2331 r = kvm_clear_dirty_log_protect(kvm, log);
2332
2333 mutex_unlock(&kvm->slots_lock);
2334 return r;
2335 }
2336 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2337
2338 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2339 {
2340 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2341 }
2342 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2343
2344 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2345 {
2346 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2347 u64 gen = slots->generation;
2348 struct kvm_memory_slot *slot;
2349
2350 /*
2351 * This also protects against using a memslot from a different address space,
2352 * since different address spaces have different generation numbers.
2353 */
2354 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2355 vcpu->last_used_slot = NULL;
2356 vcpu->last_used_slot_gen = gen;
2357 }
2358
2359 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2360 if (slot)
2361 return slot;
2362
2363 /*
2364 * Fall back to searching all memslots. We purposely use
2365 * search_memslots() instead of __gfn_to_memslot() to avoid
2366 * thrashing the VM-wide last_used_slot in kvm_memslots.
2367 */
2368 slot = search_memslots(slots, gfn, false);
2369 if (slot) {
2370 vcpu->last_used_slot = slot;
2371 return slot;
2372 }
2373
2374 return NULL;
2375 }
2376
2377 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2378 {
2379 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2380
2381 return kvm_is_visible_memslot(memslot);
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2384
2385 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2386 {
2387 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2388
2389 return kvm_is_visible_memslot(memslot);
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2392
2393 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2394 {
2395 struct vm_area_struct *vma;
2396 unsigned long addr, size;
2397
2398 size = PAGE_SIZE;
2399
2400 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2401 if (kvm_is_error_hva(addr))
2402 return PAGE_SIZE;
2403
2404 mmap_read_lock(current->mm);
2405 vma = find_vma(current->mm, addr);
2406 if (!vma)
2407 goto out;
2408
2409 size = vma_kernel_pagesize(vma);
2410
2411 out:
2412 mmap_read_unlock(current->mm);
2413
2414 return size;
2415 }
2416
2417 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2418 {
2419 return slot->flags & KVM_MEM_READONLY;
2420 }
2421
2422 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2423 gfn_t *nr_pages, bool write)
2424 {
2425 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2426 return KVM_HVA_ERR_BAD;
2427
2428 if (memslot_is_readonly(slot) && write)
2429 return KVM_HVA_ERR_RO_BAD;
2430
2431 if (nr_pages)
2432 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2433
2434 return __gfn_to_hva_memslot(slot, gfn);
2435 }
2436
2437 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2438 gfn_t *nr_pages)
2439 {
2440 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2441 }
2442
2443 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2444 gfn_t gfn)
2445 {
2446 return gfn_to_hva_many(slot, gfn, NULL);
2447 }
2448 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2449
2450 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2451 {
2452 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2453 }
2454 EXPORT_SYMBOL_GPL(gfn_to_hva);
2455
2456 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2457 {
2458 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2459 }
2460 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2461
2462 /*
2463 * Return the hva of a @gfn and the R/W attribute if possible.
2464 *
2465 * @slot: the kvm_memory_slot which contains @gfn
2466 * @gfn: the gfn to be translated
2467 * @writable: used to return the read/write attribute of the @slot if the hva
2468 * is valid and @writable is not NULL
2469 */
2470 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2471 gfn_t gfn, bool *writable)
2472 {
2473 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2474
2475 if (!kvm_is_error_hva(hva) && writable)
2476 *writable = !memslot_is_readonly(slot);
2477
2478 return hva;
2479 }
2480
2481 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2482 {
2483 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2484
2485 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2486 }
2487
2488 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2489 {
2490 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2491
2492 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2493 }
2494
2495 static inline int check_user_page_hwpoison(unsigned long addr)
2496 {
2497 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2498
2499 rc = get_user_pages(addr, 1, flags, NULL);
2500 return rc == -EHWPOISON;
2501 }
2502
2503 /*
2504 * The fast path to get the writable pfn which will be stored in @pfn,
2505 * true indicates success, otherwise false is returned. It's also the
2506 * only part that runs if we can in atomic context.
2507 */
2508 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2509 bool *writable, kvm_pfn_t *pfn)
2510 {
2511 struct page *page[1];
2512
2513 /*
2514 * Fast pin a writable pfn only if it is a write fault request
2515 * or the caller allows to map a writable pfn for a read fault
2516 * request.
2517 */
2518 if (!(write_fault || writable))
2519 return false;
2520
2521 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2522 *pfn = page_to_pfn(page[0]);
2523
2524 if (writable)
2525 *writable = true;
2526 return true;
2527 }
2528
2529 return false;
2530 }
2531
2532 /*
2533 * The slow path to get the pfn of the specified host virtual address,
2534 * 1 indicates success, -errno is returned if error is detected.
2535 */
2536 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2537 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2538 {
2539 /*
2540 * When a VCPU accesses a page that is not mapped into the secondary
2541 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2542 * make progress. We always want to honor NUMA hinting faults in that
2543 * case, because GUP usage corresponds to memory accesses from the VCPU.
2544 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2545 * mapped into the secondary MMU and gets accessed by a VCPU.
2546 *
2547 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2548 * implicitly honor NUMA hinting faults and don't need this flag.
2549 */
2550 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2551 struct page *page;
2552 int npages;
2553
2554 might_sleep();
2555
2556 if (writable)
2557 *writable = write_fault;
2558
2559 if (write_fault)
2560 flags |= FOLL_WRITE;
2561 if (async)
2562 flags |= FOLL_NOWAIT;
2563 if (interruptible)
2564 flags |= FOLL_INTERRUPTIBLE;
2565
2566 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2567 if (npages != 1)
2568 return npages;
2569
2570 /* map read fault as writable if possible */
2571 if (unlikely(!write_fault) && writable) {
2572 struct page *wpage;
2573
2574 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2575 *writable = true;
2576 put_page(page);
2577 page = wpage;
2578 }
2579 }
2580 *pfn = page_to_pfn(page);
2581 return npages;
2582 }
2583
2584 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2585 {
2586 if (unlikely(!(vma->vm_flags & VM_READ)))
2587 return false;
2588
2589 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2590 return false;
2591
2592 return true;
2593 }
2594
2595 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2596 {
2597 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2598
2599 if (!page)
2600 return 1;
2601
2602 return get_page_unless_zero(page);
2603 }
2604
2605 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2606 unsigned long addr, bool write_fault,
2607 bool *writable, kvm_pfn_t *p_pfn)
2608 {
2609 kvm_pfn_t pfn;
2610 pte_t *ptep;
2611 pte_t pte;
2612 spinlock_t *ptl;
2613 int r;
2614
2615 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2616 if (r) {
2617 /*
2618 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2619 * not call the fault handler, so do it here.
2620 */
2621 bool unlocked = false;
2622 r = fixup_user_fault(current->mm, addr,
2623 (write_fault ? FAULT_FLAG_WRITE : 0),
2624 &unlocked);
2625 if (unlocked)
2626 return -EAGAIN;
2627 if (r)
2628 return r;
2629
2630 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2631 if (r)
2632 return r;
2633 }
2634
2635 pte = ptep_get(ptep);
2636
2637 if (write_fault && !pte_write(pte)) {
2638 pfn = KVM_PFN_ERR_RO_FAULT;
2639 goto out;
2640 }
2641
2642 if (writable)
2643 *writable = pte_write(pte);
2644 pfn = pte_pfn(pte);
2645
2646 /*
2647 * Get a reference here because callers of *hva_to_pfn* and
2648 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2649 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2650 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2651 * simply do nothing for reserved pfns.
2652 *
2653 * Whoever called remap_pfn_range is also going to call e.g.
2654 * unmap_mapping_range before the underlying pages are freed,
2655 * causing a call to our MMU notifier.
2656 *
2657 * Certain IO or PFNMAP mappings can be backed with valid
2658 * struct pages, but be allocated without refcounting e.g.,
2659 * tail pages of non-compound higher order allocations, which
2660 * would then underflow the refcount when the caller does the
2661 * required put_page. Don't allow those pages here.
2662 */
2663 if (!kvm_try_get_pfn(pfn))
2664 r = -EFAULT;
2665
2666 out:
2667 pte_unmap_unlock(ptep, ptl);
2668 *p_pfn = pfn;
2669
2670 return r;
2671 }
2672
2673 /*
2674 * Pin guest page in memory and return its pfn.
2675 * @addr: host virtual address which maps memory to the guest
2676 * @atomic: whether this function can sleep
2677 * @interruptible: whether the process can be interrupted by non-fatal signals
2678 * @async: whether this function need to wait IO complete if the
2679 * host page is not in the memory
2680 * @write_fault: whether we should get a writable host page
2681 * @writable: whether it allows to map a writable host page for !@write_fault
2682 *
2683 * The function will map a writable host page for these two cases:
2684 * 1): @write_fault = true
2685 * 2): @write_fault = false && @writable, @writable will tell the caller
2686 * whether the mapping is writable.
2687 */
2688 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2689 bool *async, bool write_fault, bool *writable)
2690 {
2691 struct vm_area_struct *vma;
2692 kvm_pfn_t pfn;
2693 int npages, r;
2694
2695 /* we can do it either atomically or asynchronously, not both */
2696 BUG_ON(atomic && async);
2697
2698 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2699 return pfn;
2700
2701 if (atomic)
2702 return KVM_PFN_ERR_FAULT;
2703
2704 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2705 writable, &pfn);
2706 if (npages == 1)
2707 return pfn;
2708 if (npages == -EINTR)
2709 return KVM_PFN_ERR_SIGPENDING;
2710
2711 mmap_read_lock(current->mm);
2712 if (npages == -EHWPOISON ||
2713 (!async && check_user_page_hwpoison(addr))) {
2714 pfn = KVM_PFN_ERR_HWPOISON;
2715 goto exit;
2716 }
2717
2718 retry:
2719 vma = vma_lookup(current->mm, addr);
2720
2721 if (vma == NULL)
2722 pfn = KVM_PFN_ERR_FAULT;
2723 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2724 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2725 if (r == -EAGAIN)
2726 goto retry;
2727 if (r < 0)
2728 pfn = KVM_PFN_ERR_FAULT;
2729 } else {
2730 if (async && vma_is_valid(vma, write_fault))
2731 *async = true;
2732 pfn = KVM_PFN_ERR_FAULT;
2733 }
2734 exit:
2735 mmap_read_unlock(current->mm);
2736 return pfn;
2737 }
2738
2739 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2740 bool atomic, bool interruptible, bool *async,
2741 bool write_fault, bool *writable, hva_t *hva)
2742 {
2743 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2744
2745 if (hva)
2746 *hva = addr;
2747
2748 if (addr == KVM_HVA_ERR_RO_BAD) {
2749 if (writable)
2750 *writable = false;
2751 return KVM_PFN_ERR_RO_FAULT;
2752 }
2753
2754 if (kvm_is_error_hva(addr)) {
2755 if (writable)
2756 *writable = false;
2757 return KVM_PFN_NOSLOT;
2758 }
2759
2760 /* Do not map writable pfn in the readonly memslot. */
2761 if (writable && memslot_is_readonly(slot)) {
2762 *writable = false;
2763 writable = NULL;
2764 }
2765
2766 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2767 writable);
2768 }
2769 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2770
2771 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2772 bool *writable)
2773 {
2774 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2775 NULL, write_fault, writable, NULL);
2776 }
2777 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2778
2779 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2780 {
2781 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2782 NULL, NULL);
2783 }
2784 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2785
2786 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2787 {
2788 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2789 NULL, NULL);
2790 }
2791 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2792
2793 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2794 {
2795 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2798
2799 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2800 {
2801 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2802 }
2803 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2804
2805 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2806 {
2807 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2808 }
2809 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2810
2811 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2812 struct page **pages, int nr_pages)
2813 {
2814 unsigned long addr;
2815 gfn_t entry = 0;
2816
2817 addr = gfn_to_hva_many(slot, gfn, &entry);
2818 if (kvm_is_error_hva(addr))
2819 return -1;
2820
2821 if (entry < nr_pages)
2822 return 0;
2823
2824 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2825 }
2826 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2827
2828 /*
2829 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2830 * backed by 'struct page'. A valid example is if the backing memslot is
2831 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2832 * been elevated by gfn_to_pfn().
2833 */
2834 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2835 {
2836 struct page *page;
2837 kvm_pfn_t pfn;
2838
2839 pfn = gfn_to_pfn(kvm, gfn);
2840
2841 if (is_error_noslot_pfn(pfn))
2842 return KVM_ERR_PTR_BAD_PAGE;
2843
2844 page = kvm_pfn_to_refcounted_page(pfn);
2845 if (!page)
2846 return KVM_ERR_PTR_BAD_PAGE;
2847
2848 return page;
2849 }
2850 EXPORT_SYMBOL_GPL(gfn_to_page);
2851
2852 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2853 {
2854 if (dirty)
2855 kvm_release_pfn_dirty(pfn);
2856 else
2857 kvm_release_pfn_clean(pfn);
2858 }
2859
2860 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2861 {
2862 kvm_pfn_t pfn;
2863 void *hva = NULL;
2864 struct page *page = KVM_UNMAPPED_PAGE;
2865
2866 if (!map)
2867 return -EINVAL;
2868
2869 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2870 if (is_error_noslot_pfn(pfn))
2871 return -EINVAL;
2872
2873 if (pfn_valid(pfn)) {
2874 page = pfn_to_page(pfn);
2875 hva = kmap(page);
2876 #ifdef CONFIG_HAS_IOMEM
2877 } else {
2878 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2879 #endif
2880 }
2881
2882 if (!hva)
2883 return -EFAULT;
2884
2885 map->page = page;
2886 map->hva = hva;
2887 map->pfn = pfn;
2888 map->gfn = gfn;
2889
2890 return 0;
2891 }
2892 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2893
2894 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2895 {
2896 if (!map)
2897 return;
2898
2899 if (!map->hva)
2900 return;
2901
2902 if (map->page != KVM_UNMAPPED_PAGE)
2903 kunmap(map->page);
2904 #ifdef CONFIG_HAS_IOMEM
2905 else
2906 memunmap(map->hva);
2907 #endif
2908
2909 if (dirty)
2910 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2911
2912 kvm_release_pfn(map->pfn, dirty);
2913
2914 map->hva = NULL;
2915 map->page = NULL;
2916 }
2917 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2918
2919 static bool kvm_is_ad_tracked_page(struct page *page)
2920 {
2921 /*
2922 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2923 * touched (e.g. set dirty) except by its owner".
2924 */
2925 return !PageReserved(page);
2926 }
2927
2928 static void kvm_set_page_dirty(struct page *page)
2929 {
2930 if (kvm_is_ad_tracked_page(page))
2931 SetPageDirty(page);
2932 }
2933
2934 static void kvm_set_page_accessed(struct page *page)
2935 {
2936 if (kvm_is_ad_tracked_page(page))
2937 mark_page_accessed(page);
2938 }
2939
2940 void kvm_release_page_clean(struct page *page)
2941 {
2942 WARN_ON(is_error_page(page));
2943
2944 kvm_set_page_accessed(page);
2945 put_page(page);
2946 }
2947 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2948
2949 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2950 {
2951 struct page *page;
2952
2953 if (is_error_noslot_pfn(pfn))
2954 return;
2955
2956 page = kvm_pfn_to_refcounted_page(pfn);
2957 if (!page)
2958 return;
2959
2960 kvm_release_page_clean(page);
2961 }
2962 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2963
2964 void kvm_release_page_dirty(struct page *page)
2965 {
2966 WARN_ON(is_error_page(page));
2967
2968 kvm_set_page_dirty(page);
2969 kvm_release_page_clean(page);
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2972
2973 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2974 {
2975 struct page *page;
2976
2977 if (is_error_noslot_pfn(pfn))
2978 return;
2979
2980 page = kvm_pfn_to_refcounted_page(pfn);
2981 if (!page)
2982 return;
2983
2984 kvm_release_page_dirty(page);
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2987
2988 /*
2989 * Note, checking for an error/noslot pfn is the caller's responsibility when
2990 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
2991 * "set" helpers are not to be used when the pfn might point at garbage.
2992 */
2993 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2994 {
2995 if (WARN_ON(is_error_noslot_pfn(pfn)))
2996 return;
2997
2998 if (pfn_valid(pfn))
2999 kvm_set_page_dirty(pfn_to_page(pfn));
3000 }
3001 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3002
3003 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3004 {
3005 if (WARN_ON(is_error_noslot_pfn(pfn)))
3006 return;
3007
3008 if (pfn_valid(pfn))
3009 kvm_set_page_accessed(pfn_to_page(pfn));
3010 }
3011 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3012
3013 static int next_segment(unsigned long len, int offset)
3014 {
3015 if (len > PAGE_SIZE - offset)
3016 return PAGE_SIZE - offset;
3017 else
3018 return len;
3019 }
3020
3021 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3022 void *data, int offset, int len)
3023 {
3024 int r;
3025 unsigned long addr;
3026
3027 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3028 if (kvm_is_error_hva(addr))
3029 return -EFAULT;
3030 r = __copy_from_user(data, (void __user *)addr + offset, len);
3031 if (r)
3032 return -EFAULT;
3033 return 0;
3034 }
3035
3036 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3037 int len)
3038 {
3039 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3040
3041 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3042 }
3043 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3044
3045 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3046 int offset, int len)
3047 {
3048 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3049
3050 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3051 }
3052 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3053
3054 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3055 {
3056 gfn_t gfn = gpa >> PAGE_SHIFT;
3057 int seg;
3058 int offset = offset_in_page(gpa);
3059 int ret;
3060
3061 while ((seg = next_segment(len, offset)) != 0) {
3062 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3063 if (ret < 0)
3064 return ret;
3065 offset = 0;
3066 len -= seg;
3067 data += seg;
3068 ++gfn;
3069 }
3070 return 0;
3071 }
3072 EXPORT_SYMBOL_GPL(kvm_read_guest);
3073
3074 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3075 {
3076 gfn_t gfn = gpa >> PAGE_SHIFT;
3077 int seg;
3078 int offset = offset_in_page(gpa);
3079 int ret;
3080
3081 while ((seg = next_segment(len, offset)) != 0) {
3082 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3083 if (ret < 0)
3084 return ret;
3085 offset = 0;
3086 len -= seg;
3087 data += seg;
3088 ++gfn;
3089 }
3090 return 0;
3091 }
3092 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3093
3094 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3095 void *data, int offset, unsigned long len)
3096 {
3097 int r;
3098 unsigned long addr;
3099
3100 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3101 if (kvm_is_error_hva(addr))
3102 return -EFAULT;
3103 pagefault_disable();
3104 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3105 pagefault_enable();
3106 if (r)
3107 return -EFAULT;
3108 return 0;
3109 }
3110
3111 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3112 void *data, unsigned long len)
3113 {
3114 gfn_t gfn = gpa >> PAGE_SHIFT;
3115 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3116 int offset = offset_in_page(gpa);
3117
3118 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3119 }
3120 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3121
3122 static int __kvm_write_guest_page(struct kvm *kvm,
3123 struct kvm_memory_slot *memslot, gfn_t gfn,
3124 const void *data, int offset, int len)
3125 {
3126 int r;
3127 unsigned long addr;
3128
3129 addr = gfn_to_hva_memslot(memslot, gfn);
3130 if (kvm_is_error_hva(addr))
3131 return -EFAULT;
3132 r = __copy_to_user((void __user *)addr + offset, data, len);
3133 if (r)
3134 return -EFAULT;
3135 mark_page_dirty_in_slot(kvm, memslot, gfn);
3136 return 0;
3137 }
3138
3139 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3140 const void *data, int offset, int len)
3141 {
3142 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3143
3144 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3145 }
3146 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3147
3148 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3149 const void *data, int offset, int len)
3150 {
3151 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3152
3153 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3154 }
3155 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3156
3157 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3158 unsigned long len)
3159 {
3160 gfn_t gfn = gpa >> PAGE_SHIFT;
3161 int seg;
3162 int offset = offset_in_page(gpa);
3163 int ret;
3164
3165 while ((seg = next_segment(len, offset)) != 0) {
3166 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3167 if (ret < 0)
3168 return ret;
3169 offset = 0;
3170 len -= seg;
3171 data += seg;
3172 ++gfn;
3173 }
3174 return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(kvm_write_guest);
3177
3178 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3179 unsigned long len)
3180 {
3181 gfn_t gfn = gpa >> PAGE_SHIFT;
3182 int seg;
3183 int offset = offset_in_page(gpa);
3184 int ret;
3185
3186 while ((seg = next_segment(len, offset)) != 0) {
3187 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3188 if (ret < 0)
3189 return ret;
3190 offset = 0;
3191 len -= seg;
3192 data += seg;
3193 ++gfn;
3194 }
3195 return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3198
3199 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3200 struct gfn_to_hva_cache *ghc,
3201 gpa_t gpa, unsigned long len)
3202 {
3203 int offset = offset_in_page(gpa);
3204 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3205 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3206 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3207 gfn_t nr_pages_avail;
3208
3209 /* Update ghc->generation before performing any error checks. */
3210 ghc->generation = slots->generation;
3211
3212 if (start_gfn > end_gfn) {
3213 ghc->hva = KVM_HVA_ERR_BAD;
3214 return -EINVAL;
3215 }
3216
3217 /*
3218 * If the requested region crosses two memslots, we still
3219 * verify that the entire region is valid here.
3220 */
3221 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3222 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3223 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3224 &nr_pages_avail);
3225 if (kvm_is_error_hva(ghc->hva))
3226 return -EFAULT;
3227 }
3228
3229 /* Use the slow path for cross page reads and writes. */
3230 if (nr_pages_needed == 1)
3231 ghc->hva += offset;
3232 else
3233 ghc->memslot = NULL;
3234
3235 ghc->gpa = gpa;
3236 ghc->len = len;
3237 return 0;
3238 }
3239
3240 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3241 gpa_t gpa, unsigned long len)
3242 {
3243 struct kvm_memslots *slots = kvm_memslots(kvm);
3244 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3245 }
3246 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3247
3248 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3249 void *data, unsigned int offset,
3250 unsigned long len)
3251 {
3252 struct kvm_memslots *slots = kvm_memslots(kvm);
3253 int r;
3254 gpa_t gpa = ghc->gpa + offset;
3255
3256 if (WARN_ON_ONCE(len + offset > ghc->len))
3257 return -EINVAL;
3258
3259 if (slots->generation != ghc->generation) {
3260 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3261 return -EFAULT;
3262 }
3263
3264 if (kvm_is_error_hva(ghc->hva))
3265 return -EFAULT;
3266
3267 if (unlikely(!ghc->memslot))
3268 return kvm_write_guest(kvm, gpa, data, len);
3269
3270 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3271 if (r)
3272 return -EFAULT;
3273 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3274
3275 return 0;
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3278
3279 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3280 void *data, unsigned long len)
3281 {
3282 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3283 }
3284 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3285
3286 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287 void *data, unsigned int offset,
3288 unsigned long len)
3289 {
3290 struct kvm_memslots *slots = kvm_memslots(kvm);
3291 int r;
3292 gpa_t gpa = ghc->gpa + offset;
3293
3294 if (WARN_ON_ONCE(len + offset > ghc->len))
3295 return -EINVAL;
3296
3297 if (slots->generation != ghc->generation) {
3298 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3299 return -EFAULT;
3300 }
3301
3302 if (kvm_is_error_hva(ghc->hva))
3303 return -EFAULT;
3304
3305 if (unlikely(!ghc->memslot))
3306 return kvm_read_guest(kvm, gpa, data, len);
3307
3308 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3309 if (r)
3310 return -EFAULT;
3311
3312 return 0;
3313 }
3314 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3315
3316 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3317 void *data, unsigned long len)
3318 {
3319 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3322
3323 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3324 {
3325 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3326 gfn_t gfn = gpa >> PAGE_SHIFT;
3327 int seg;
3328 int offset = offset_in_page(gpa);
3329 int ret;
3330
3331 while ((seg = next_segment(len, offset)) != 0) {
3332 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3333 if (ret < 0)
3334 return ret;
3335 offset = 0;
3336 len -= seg;
3337 ++gfn;
3338 }
3339 return 0;
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3342
3343 void mark_page_dirty_in_slot(struct kvm *kvm,
3344 const struct kvm_memory_slot *memslot,
3345 gfn_t gfn)
3346 {
3347 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3348
3349 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3350 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3351 return;
3352
3353 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3354 #endif
3355
3356 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3357 unsigned long rel_gfn = gfn - memslot->base_gfn;
3358 u32 slot = (memslot->as_id << 16) | memslot->id;
3359
3360 if (kvm->dirty_ring_size && vcpu)
3361 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3362 else if (memslot->dirty_bitmap)
3363 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3364 }
3365 }
3366 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3367
3368 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3369 {
3370 struct kvm_memory_slot *memslot;
3371
3372 memslot = gfn_to_memslot(kvm, gfn);
3373 mark_page_dirty_in_slot(kvm, memslot, gfn);
3374 }
3375 EXPORT_SYMBOL_GPL(mark_page_dirty);
3376
3377 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3378 {
3379 struct kvm_memory_slot *memslot;
3380
3381 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3382 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3385
3386 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3387 {
3388 if (!vcpu->sigset_active)
3389 return;
3390
3391 /*
3392 * This does a lockless modification of ->real_blocked, which is fine
3393 * because, only current can change ->real_blocked and all readers of
3394 * ->real_blocked don't care as long ->real_blocked is always a subset
3395 * of ->blocked.
3396 */
3397 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3398 }
3399
3400 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3401 {
3402 if (!vcpu->sigset_active)
3403 return;
3404
3405 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3406 sigemptyset(&current->real_blocked);
3407 }
3408
3409 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3410 {
3411 unsigned int old, val, grow, grow_start;
3412
3413 old = val = vcpu->halt_poll_ns;
3414 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3415 grow = READ_ONCE(halt_poll_ns_grow);
3416 if (!grow)
3417 goto out;
3418
3419 val *= grow;
3420 if (val < grow_start)
3421 val = grow_start;
3422
3423 vcpu->halt_poll_ns = val;
3424 out:
3425 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3426 }
3427
3428 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3429 {
3430 unsigned int old, val, shrink, grow_start;
3431
3432 old = val = vcpu->halt_poll_ns;
3433 shrink = READ_ONCE(halt_poll_ns_shrink);
3434 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3435 if (shrink == 0)
3436 val = 0;
3437 else
3438 val /= shrink;
3439
3440 if (val < grow_start)
3441 val = 0;
3442
3443 vcpu->halt_poll_ns = val;
3444 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3445 }
3446
3447 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3448 {
3449 int ret = -EINTR;
3450 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3451
3452 if (kvm_arch_vcpu_runnable(vcpu))
3453 goto out;
3454 if (kvm_cpu_has_pending_timer(vcpu))
3455 goto out;
3456 if (signal_pending(current))
3457 goto out;
3458 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3459 goto out;
3460
3461 ret = 0;
3462 out:
3463 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3464 return ret;
3465 }
3466
3467 /*
3468 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3469 * pending. This is mostly used when halting a vCPU, but may also be used
3470 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3471 */
3472 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3473 {
3474 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3475 bool waited = false;
3476
3477 vcpu->stat.generic.blocking = 1;
3478
3479 preempt_disable();
3480 kvm_arch_vcpu_blocking(vcpu);
3481 prepare_to_rcuwait(wait);
3482 preempt_enable();
3483
3484 for (;;) {
3485 set_current_state(TASK_INTERRUPTIBLE);
3486
3487 if (kvm_vcpu_check_block(vcpu) < 0)
3488 break;
3489
3490 waited = true;
3491 schedule();
3492 }
3493
3494 preempt_disable();
3495 finish_rcuwait(wait);
3496 kvm_arch_vcpu_unblocking(vcpu);
3497 preempt_enable();
3498
3499 vcpu->stat.generic.blocking = 0;
3500
3501 return waited;
3502 }
3503
3504 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3505 ktime_t end, bool success)
3506 {
3507 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3508 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3509
3510 ++vcpu->stat.generic.halt_attempted_poll;
3511
3512 if (success) {
3513 ++vcpu->stat.generic.halt_successful_poll;
3514
3515 if (!vcpu_valid_wakeup(vcpu))
3516 ++vcpu->stat.generic.halt_poll_invalid;
3517
3518 stats->halt_poll_success_ns += poll_ns;
3519 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3520 } else {
3521 stats->halt_poll_fail_ns += poll_ns;
3522 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3523 }
3524 }
3525
3526 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3527 {
3528 struct kvm *kvm = vcpu->kvm;
3529
3530 if (kvm->override_halt_poll_ns) {
3531 /*
3532 * Ensure kvm->max_halt_poll_ns is not read before
3533 * kvm->override_halt_poll_ns.
3534 *
3535 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3536 */
3537 smp_rmb();
3538 return READ_ONCE(kvm->max_halt_poll_ns);
3539 }
3540
3541 return READ_ONCE(halt_poll_ns);
3542 }
3543
3544 /*
3545 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3546 * polling is enabled, busy wait for a short time before blocking to avoid the
3547 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3548 * is halted.
3549 */
3550 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3551 {
3552 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3553 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3554 ktime_t start, cur, poll_end;
3555 bool waited = false;
3556 bool do_halt_poll;
3557 u64 halt_ns;
3558
3559 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3560 vcpu->halt_poll_ns = max_halt_poll_ns;
3561
3562 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3563
3564 start = cur = poll_end = ktime_get();
3565 if (do_halt_poll) {
3566 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3567
3568 do {
3569 if (kvm_vcpu_check_block(vcpu) < 0)
3570 goto out;
3571 cpu_relax();
3572 poll_end = cur = ktime_get();
3573 } while (kvm_vcpu_can_poll(cur, stop));
3574 }
3575
3576 waited = kvm_vcpu_block(vcpu);
3577
3578 cur = ktime_get();
3579 if (waited) {
3580 vcpu->stat.generic.halt_wait_ns +=
3581 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3582 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3583 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3584 }
3585 out:
3586 /* The total time the vCPU was "halted", including polling time. */
3587 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3588
3589 /*
3590 * Note, halt-polling is considered successful so long as the vCPU was
3591 * never actually scheduled out, i.e. even if the wake event arrived
3592 * after of the halt-polling loop itself, but before the full wait.
3593 */
3594 if (do_halt_poll)
3595 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3596
3597 if (halt_poll_allowed) {
3598 /* Recompute the max halt poll time in case it changed. */
3599 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3600
3601 if (!vcpu_valid_wakeup(vcpu)) {
3602 shrink_halt_poll_ns(vcpu);
3603 } else if (max_halt_poll_ns) {
3604 if (halt_ns <= vcpu->halt_poll_ns)
3605 ;
3606 /* we had a long block, shrink polling */
3607 else if (vcpu->halt_poll_ns &&
3608 halt_ns > max_halt_poll_ns)
3609 shrink_halt_poll_ns(vcpu);
3610 /* we had a short halt and our poll time is too small */
3611 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3612 halt_ns < max_halt_poll_ns)
3613 grow_halt_poll_ns(vcpu);
3614 } else {
3615 vcpu->halt_poll_ns = 0;
3616 }
3617 }
3618
3619 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3622
3623 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3624 {
3625 if (__kvm_vcpu_wake_up(vcpu)) {
3626 WRITE_ONCE(vcpu->ready, true);
3627 ++vcpu->stat.generic.halt_wakeup;
3628 return true;
3629 }
3630
3631 return false;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3634
3635 #ifndef CONFIG_S390
3636 /*
3637 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3638 */
3639 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3640 {
3641 int me, cpu;
3642
3643 if (kvm_vcpu_wake_up(vcpu))
3644 return;
3645
3646 me = get_cpu();
3647 /*
3648 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3649 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3650 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3651 * within the vCPU thread itself.
3652 */
3653 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3654 if (vcpu->mode == IN_GUEST_MODE)
3655 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3656 goto out;
3657 }
3658
3659 /*
3660 * Note, the vCPU could get migrated to a different pCPU at any point
3661 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3662 * IPI to the previous pCPU. But, that's ok because the purpose of the
3663 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3664 * vCPU also requires it to leave IN_GUEST_MODE.
3665 */
3666 if (kvm_arch_vcpu_should_kick(vcpu)) {
3667 cpu = READ_ONCE(vcpu->cpu);
3668 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3669 smp_send_reschedule(cpu);
3670 }
3671 out:
3672 put_cpu();
3673 }
3674 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3675 #endif /* !CONFIG_S390 */
3676
3677 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3678 {
3679 struct pid *pid;
3680 struct task_struct *task = NULL;
3681 int ret = 0;
3682
3683 rcu_read_lock();
3684 pid = rcu_dereference(target->pid);
3685 if (pid)
3686 task = get_pid_task(pid, PIDTYPE_PID);
3687 rcu_read_unlock();
3688 if (!task)
3689 return ret;
3690 ret = yield_to(task, 1);
3691 put_task_struct(task);
3692
3693 return ret;
3694 }
3695 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3696
3697 /*
3698 * Helper that checks whether a VCPU is eligible for directed yield.
3699 * Most eligible candidate to yield is decided by following heuristics:
3700 *
3701 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3702 * (preempted lock holder), indicated by @in_spin_loop.
3703 * Set at the beginning and cleared at the end of interception/PLE handler.
3704 *
3705 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3706 * chance last time (mostly it has become eligible now since we have probably
3707 * yielded to lockholder in last iteration. This is done by toggling
3708 * @dy_eligible each time a VCPU checked for eligibility.)
3709 *
3710 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3711 * to preempted lock-holder could result in wrong VCPU selection and CPU
3712 * burning. Giving priority for a potential lock-holder increases lock
3713 * progress.
3714 *
3715 * Since algorithm is based on heuristics, accessing another VCPU data without
3716 * locking does not harm. It may result in trying to yield to same VCPU, fail
3717 * and continue with next VCPU and so on.
3718 */
3719 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3720 {
3721 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3722 bool eligible;
3723
3724 eligible = !vcpu->spin_loop.in_spin_loop ||
3725 vcpu->spin_loop.dy_eligible;
3726
3727 if (vcpu->spin_loop.in_spin_loop)
3728 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3729
3730 return eligible;
3731 #else
3732 return true;
3733 #endif
3734 }
3735
3736 /*
3737 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3738 * a vcpu_load/vcpu_put pair. However, for most architectures
3739 * kvm_arch_vcpu_runnable does not require vcpu_load.
3740 */
3741 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3742 {
3743 return kvm_arch_vcpu_runnable(vcpu);
3744 }
3745
3746 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3747 {
3748 if (kvm_arch_dy_runnable(vcpu))
3749 return true;
3750
3751 #ifdef CONFIG_KVM_ASYNC_PF
3752 if (!list_empty_careful(&vcpu->async_pf.done))
3753 return true;
3754 #endif
3755
3756 return false;
3757 }
3758
3759 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3760 {
3761 return false;
3762 }
3763
3764 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3765 {
3766 struct kvm *kvm = me->kvm;
3767 struct kvm_vcpu *vcpu;
3768 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3769 unsigned long i;
3770 int yielded = 0;
3771 int try = 3;
3772 int pass;
3773
3774 kvm_vcpu_set_in_spin_loop(me, true);
3775 /*
3776 * We boost the priority of a VCPU that is runnable but not
3777 * currently running, because it got preempted by something
3778 * else and called schedule in __vcpu_run. Hopefully that
3779 * VCPU is holding the lock that we need and will release it.
3780 * We approximate round-robin by starting at the last boosted VCPU.
3781 */
3782 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3783 kvm_for_each_vcpu(i, vcpu, kvm) {
3784 if (!pass && i <= last_boosted_vcpu) {
3785 i = last_boosted_vcpu;
3786 continue;
3787 } else if (pass && i > last_boosted_vcpu)
3788 break;
3789 if (!READ_ONCE(vcpu->ready))
3790 continue;
3791 if (vcpu == me)
3792 continue;
3793 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3794 continue;
3795 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3796 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3797 !kvm_arch_vcpu_in_kernel(vcpu))
3798 continue;
3799 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3800 continue;
3801
3802 yielded = kvm_vcpu_yield_to(vcpu);
3803 if (yielded > 0) {
3804 kvm->last_boosted_vcpu = i;
3805 break;
3806 } else if (yielded < 0) {
3807 try--;
3808 if (!try)
3809 break;
3810 }
3811 }
3812 }
3813 kvm_vcpu_set_in_spin_loop(me, false);
3814
3815 /* Ensure vcpu is not eligible during next spinloop */
3816 kvm_vcpu_set_dy_eligible(me, false);
3817 }
3818 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3819
3820 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3821 {
3822 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3823 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3824 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3825 kvm->dirty_ring_size / PAGE_SIZE);
3826 #else
3827 return false;
3828 #endif
3829 }
3830
3831 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3832 {
3833 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3834 struct page *page;
3835
3836 if (vmf->pgoff == 0)
3837 page = virt_to_page(vcpu->run);
3838 #ifdef CONFIG_X86
3839 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3840 page = virt_to_page(vcpu->arch.pio_data);
3841 #endif
3842 #ifdef CONFIG_KVM_MMIO
3843 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3844 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3845 #endif
3846 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3847 page = kvm_dirty_ring_get_page(
3848 &vcpu->dirty_ring,
3849 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3850 else
3851 return kvm_arch_vcpu_fault(vcpu, vmf);
3852 get_page(page);
3853 vmf->page = page;
3854 return 0;
3855 }
3856
3857 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3858 .fault = kvm_vcpu_fault,
3859 };
3860
3861 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3862 {
3863 struct kvm_vcpu *vcpu = file->private_data;
3864 unsigned long pages = vma_pages(vma);
3865
3866 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3867 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3868 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3869 return -EINVAL;
3870
3871 vma->vm_ops = &kvm_vcpu_vm_ops;
3872 return 0;
3873 }
3874
3875 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3876 {
3877 struct kvm_vcpu *vcpu = filp->private_data;
3878
3879 kvm_put_kvm(vcpu->kvm);
3880 return 0;
3881 }
3882
3883 static struct file_operations kvm_vcpu_fops = {
3884 .release = kvm_vcpu_release,
3885 .unlocked_ioctl = kvm_vcpu_ioctl,
3886 .mmap = kvm_vcpu_mmap,
3887 .llseek = noop_llseek,
3888 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3889 };
3890
3891 /*
3892 * Allocates an inode for the vcpu.
3893 */
3894 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3895 {
3896 char name[8 + 1 + ITOA_MAX_LEN + 1];
3897
3898 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3899 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3900 }
3901
3902 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3903 static int vcpu_get_pid(void *data, u64 *val)
3904 {
3905 struct kvm_vcpu *vcpu = data;
3906
3907 rcu_read_lock();
3908 *val = pid_nr(rcu_dereference(vcpu->pid));
3909 rcu_read_unlock();
3910 return 0;
3911 }
3912
3913 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3914
3915 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3916 {
3917 struct dentry *debugfs_dentry;
3918 char dir_name[ITOA_MAX_LEN * 2];
3919
3920 if (!debugfs_initialized())
3921 return;
3922
3923 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3924 debugfs_dentry = debugfs_create_dir(dir_name,
3925 vcpu->kvm->debugfs_dentry);
3926 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3927 &vcpu_get_pid_fops);
3928
3929 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3930 }
3931 #endif
3932
3933 /*
3934 * Creates some virtual cpus. Good luck creating more than one.
3935 */
3936 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3937 {
3938 int r;
3939 struct kvm_vcpu *vcpu;
3940 struct page *page;
3941
3942 if (id >= KVM_MAX_VCPU_IDS)
3943 return -EINVAL;
3944
3945 mutex_lock(&kvm->lock);
3946 if (kvm->created_vcpus >= kvm->max_vcpus) {
3947 mutex_unlock(&kvm->lock);
3948 return -EINVAL;
3949 }
3950
3951 r = kvm_arch_vcpu_precreate(kvm, id);
3952 if (r) {
3953 mutex_unlock(&kvm->lock);
3954 return r;
3955 }
3956
3957 kvm->created_vcpus++;
3958 mutex_unlock(&kvm->lock);
3959
3960 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3961 if (!vcpu) {
3962 r = -ENOMEM;
3963 goto vcpu_decrement;
3964 }
3965
3966 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3967 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3968 if (!page) {
3969 r = -ENOMEM;
3970 goto vcpu_free;
3971 }
3972 vcpu->run = page_address(page);
3973
3974 kvm_vcpu_init(vcpu, kvm, id);
3975
3976 r = kvm_arch_vcpu_create(vcpu);
3977 if (r)
3978 goto vcpu_free_run_page;
3979
3980 if (kvm->dirty_ring_size) {
3981 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3982 id, kvm->dirty_ring_size);
3983 if (r)
3984 goto arch_vcpu_destroy;
3985 }
3986
3987 mutex_lock(&kvm->lock);
3988
3989 #ifdef CONFIG_LOCKDEP
3990 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3991 mutex_lock(&vcpu->mutex);
3992 mutex_unlock(&vcpu->mutex);
3993 #endif
3994
3995 if (kvm_get_vcpu_by_id(kvm, id)) {
3996 r = -EEXIST;
3997 goto unlock_vcpu_destroy;
3998 }
3999
4000 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4001 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4002 if (r)
4003 goto unlock_vcpu_destroy;
4004
4005 /* Now it's all set up, let userspace reach it */
4006 kvm_get_kvm(kvm);
4007 r = create_vcpu_fd(vcpu);
4008 if (r < 0)
4009 goto kvm_put_xa_release;
4010
4011 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4012 r = -EINVAL;
4013 goto kvm_put_xa_release;
4014 }
4015
4016 /*
4017 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4018 * pointer before kvm->online_vcpu's incremented value.
4019 */
4020 smp_wmb();
4021 atomic_inc(&kvm->online_vcpus);
4022
4023 mutex_unlock(&kvm->lock);
4024 kvm_arch_vcpu_postcreate(vcpu);
4025 kvm_create_vcpu_debugfs(vcpu);
4026 return r;
4027
4028 kvm_put_xa_release:
4029 kvm_put_kvm_no_destroy(kvm);
4030 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4031 unlock_vcpu_destroy:
4032 mutex_unlock(&kvm->lock);
4033 kvm_dirty_ring_free(&vcpu->dirty_ring);
4034 arch_vcpu_destroy:
4035 kvm_arch_vcpu_destroy(vcpu);
4036 vcpu_free_run_page:
4037 free_page((unsigned long)vcpu->run);
4038 vcpu_free:
4039 kmem_cache_free(kvm_vcpu_cache, vcpu);
4040 vcpu_decrement:
4041 mutex_lock(&kvm->lock);
4042 kvm->created_vcpus--;
4043 mutex_unlock(&kvm->lock);
4044 return r;
4045 }
4046
4047 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4048 {
4049 if (sigset) {
4050 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4051 vcpu->sigset_active = 1;
4052 vcpu->sigset = *sigset;
4053 } else
4054 vcpu->sigset_active = 0;
4055 return 0;
4056 }
4057
4058 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4059 size_t size, loff_t *offset)
4060 {
4061 struct kvm_vcpu *vcpu = file->private_data;
4062
4063 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4064 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4065 sizeof(vcpu->stat), user_buffer, size, offset);
4066 }
4067
4068 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4069 {
4070 struct kvm_vcpu *vcpu = file->private_data;
4071
4072 kvm_put_kvm(vcpu->kvm);
4073 return 0;
4074 }
4075
4076 static const struct file_operations kvm_vcpu_stats_fops = {
4077 .owner = THIS_MODULE,
4078 .read = kvm_vcpu_stats_read,
4079 .release = kvm_vcpu_stats_release,
4080 .llseek = noop_llseek,
4081 };
4082
4083 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4084 {
4085 int fd;
4086 struct file *file;
4087 char name[15 + ITOA_MAX_LEN + 1];
4088
4089 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4090
4091 fd = get_unused_fd_flags(O_CLOEXEC);
4092 if (fd < 0)
4093 return fd;
4094
4095 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4096 if (IS_ERR(file)) {
4097 put_unused_fd(fd);
4098 return PTR_ERR(file);
4099 }
4100
4101 kvm_get_kvm(vcpu->kvm);
4102
4103 file->f_mode |= FMODE_PREAD;
4104 fd_install(fd, file);
4105
4106 return fd;
4107 }
4108
4109 static long kvm_vcpu_ioctl(struct file *filp,
4110 unsigned int ioctl, unsigned long arg)
4111 {
4112 struct kvm_vcpu *vcpu = filp->private_data;
4113 void __user *argp = (void __user *)arg;
4114 int r;
4115 struct kvm_fpu *fpu = NULL;
4116 struct kvm_sregs *kvm_sregs = NULL;
4117
4118 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4119 return -EIO;
4120
4121 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4122 return -EINVAL;
4123
4124 /*
4125 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4126 * execution; mutex_lock() would break them.
4127 */
4128 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4129 if (r != -ENOIOCTLCMD)
4130 return r;
4131
4132 if (mutex_lock_killable(&vcpu->mutex))
4133 return -EINTR;
4134 switch (ioctl) {
4135 case KVM_RUN: {
4136 struct pid *oldpid;
4137 r = -EINVAL;
4138 if (arg)
4139 goto out;
4140 oldpid = rcu_access_pointer(vcpu->pid);
4141 if (unlikely(oldpid != task_pid(current))) {
4142 /* The thread running this VCPU changed. */
4143 struct pid *newpid;
4144
4145 r = kvm_arch_vcpu_run_pid_change(vcpu);
4146 if (r)
4147 break;
4148
4149 newpid = get_task_pid(current, PIDTYPE_PID);
4150 rcu_assign_pointer(vcpu->pid, newpid);
4151 if (oldpid)
4152 synchronize_rcu();
4153 put_pid(oldpid);
4154 }
4155 r = kvm_arch_vcpu_ioctl_run(vcpu);
4156 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4157 break;
4158 }
4159 case KVM_GET_REGS: {
4160 struct kvm_regs *kvm_regs;
4161
4162 r = -ENOMEM;
4163 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4164 if (!kvm_regs)
4165 goto out;
4166 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4167 if (r)
4168 goto out_free1;
4169 r = -EFAULT;
4170 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4171 goto out_free1;
4172 r = 0;
4173 out_free1:
4174 kfree(kvm_regs);
4175 break;
4176 }
4177 case KVM_SET_REGS: {
4178 struct kvm_regs *kvm_regs;
4179
4180 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4181 if (IS_ERR(kvm_regs)) {
4182 r = PTR_ERR(kvm_regs);
4183 goto out;
4184 }
4185 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4186 kfree(kvm_regs);
4187 break;
4188 }
4189 case KVM_GET_SREGS: {
4190 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4191 GFP_KERNEL_ACCOUNT);
4192 r = -ENOMEM;
4193 if (!kvm_sregs)
4194 goto out;
4195 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4196 if (r)
4197 goto out;
4198 r = -EFAULT;
4199 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4200 goto out;
4201 r = 0;
4202 break;
4203 }
4204 case KVM_SET_SREGS: {
4205 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4206 if (IS_ERR(kvm_sregs)) {
4207 r = PTR_ERR(kvm_sregs);
4208 kvm_sregs = NULL;
4209 goto out;
4210 }
4211 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4212 break;
4213 }
4214 case KVM_GET_MP_STATE: {
4215 struct kvm_mp_state mp_state;
4216
4217 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4218 if (r)
4219 goto out;
4220 r = -EFAULT;
4221 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4222 goto out;
4223 r = 0;
4224 break;
4225 }
4226 case KVM_SET_MP_STATE: {
4227 struct kvm_mp_state mp_state;
4228
4229 r = -EFAULT;
4230 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4231 goto out;
4232 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4233 break;
4234 }
4235 case KVM_TRANSLATE: {
4236 struct kvm_translation tr;
4237
4238 r = -EFAULT;
4239 if (copy_from_user(&tr, argp, sizeof(tr)))
4240 goto out;
4241 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4242 if (r)
4243 goto out;
4244 r = -EFAULT;
4245 if (copy_to_user(argp, &tr, sizeof(tr)))
4246 goto out;
4247 r = 0;
4248 break;
4249 }
4250 case KVM_SET_GUEST_DEBUG: {
4251 struct kvm_guest_debug dbg;
4252
4253 r = -EFAULT;
4254 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4255 goto out;
4256 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4257 break;
4258 }
4259 case KVM_SET_SIGNAL_MASK: {
4260 struct kvm_signal_mask __user *sigmask_arg = argp;
4261 struct kvm_signal_mask kvm_sigmask;
4262 sigset_t sigset, *p;
4263
4264 p = NULL;
4265 if (argp) {
4266 r = -EFAULT;
4267 if (copy_from_user(&kvm_sigmask, argp,
4268 sizeof(kvm_sigmask)))
4269 goto out;
4270 r = -EINVAL;
4271 if (kvm_sigmask.len != sizeof(sigset))
4272 goto out;
4273 r = -EFAULT;
4274 if (copy_from_user(&sigset, sigmask_arg->sigset,
4275 sizeof(sigset)))
4276 goto out;
4277 p = &sigset;
4278 }
4279 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4280 break;
4281 }
4282 case KVM_GET_FPU: {
4283 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4284 r = -ENOMEM;
4285 if (!fpu)
4286 goto out;
4287 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4288 if (r)
4289 goto out;
4290 r = -EFAULT;
4291 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4292 goto out;
4293 r = 0;
4294 break;
4295 }
4296 case KVM_SET_FPU: {
4297 fpu = memdup_user(argp, sizeof(*fpu));
4298 if (IS_ERR(fpu)) {
4299 r = PTR_ERR(fpu);
4300 fpu = NULL;
4301 goto out;
4302 }
4303 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4304 break;
4305 }
4306 case KVM_GET_STATS_FD: {
4307 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4308 break;
4309 }
4310 default:
4311 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4312 }
4313 out:
4314 mutex_unlock(&vcpu->mutex);
4315 kfree(fpu);
4316 kfree(kvm_sregs);
4317 return r;
4318 }
4319
4320 #ifdef CONFIG_KVM_COMPAT
4321 static long kvm_vcpu_compat_ioctl(struct file *filp,
4322 unsigned int ioctl, unsigned long arg)
4323 {
4324 struct kvm_vcpu *vcpu = filp->private_data;
4325 void __user *argp = compat_ptr(arg);
4326 int r;
4327
4328 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4329 return -EIO;
4330
4331 switch (ioctl) {
4332 case KVM_SET_SIGNAL_MASK: {
4333 struct kvm_signal_mask __user *sigmask_arg = argp;
4334 struct kvm_signal_mask kvm_sigmask;
4335 sigset_t sigset;
4336
4337 if (argp) {
4338 r = -EFAULT;
4339 if (copy_from_user(&kvm_sigmask, argp,
4340 sizeof(kvm_sigmask)))
4341 goto out;
4342 r = -EINVAL;
4343 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4344 goto out;
4345 r = -EFAULT;
4346 if (get_compat_sigset(&sigset,
4347 (compat_sigset_t __user *)sigmask_arg->sigset))
4348 goto out;
4349 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4350 } else
4351 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4352 break;
4353 }
4354 default:
4355 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4356 }
4357
4358 out:
4359 return r;
4360 }
4361 #endif
4362
4363 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4364 {
4365 struct kvm_device *dev = filp->private_data;
4366
4367 if (dev->ops->mmap)
4368 return dev->ops->mmap(dev, vma);
4369
4370 return -ENODEV;
4371 }
4372
4373 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4374 int (*accessor)(struct kvm_device *dev,
4375 struct kvm_device_attr *attr),
4376 unsigned long arg)
4377 {
4378 struct kvm_device_attr attr;
4379
4380 if (!accessor)
4381 return -EPERM;
4382
4383 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4384 return -EFAULT;
4385
4386 return accessor(dev, &attr);
4387 }
4388
4389 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4390 unsigned long arg)
4391 {
4392 struct kvm_device *dev = filp->private_data;
4393
4394 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4395 return -EIO;
4396
4397 switch (ioctl) {
4398 case KVM_SET_DEVICE_ATTR:
4399 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4400 case KVM_GET_DEVICE_ATTR:
4401 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4402 case KVM_HAS_DEVICE_ATTR:
4403 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4404 default:
4405 if (dev->ops->ioctl)
4406 return dev->ops->ioctl(dev, ioctl, arg);
4407
4408 return -ENOTTY;
4409 }
4410 }
4411
4412 static int kvm_device_release(struct inode *inode, struct file *filp)
4413 {
4414 struct kvm_device *dev = filp->private_data;
4415 struct kvm *kvm = dev->kvm;
4416
4417 if (dev->ops->release) {
4418 mutex_lock(&kvm->lock);
4419 list_del(&dev->vm_node);
4420 dev->ops->release(dev);
4421 mutex_unlock(&kvm->lock);
4422 }
4423
4424 kvm_put_kvm(kvm);
4425 return 0;
4426 }
4427
4428 static struct file_operations kvm_device_fops = {
4429 .unlocked_ioctl = kvm_device_ioctl,
4430 .release = kvm_device_release,
4431 KVM_COMPAT(kvm_device_ioctl),
4432 .mmap = kvm_device_mmap,
4433 };
4434
4435 struct kvm_device *kvm_device_from_filp(struct file *filp)
4436 {
4437 if (filp->f_op != &kvm_device_fops)
4438 return NULL;
4439
4440 return filp->private_data;
4441 }
4442
4443 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4444 #ifdef CONFIG_KVM_MPIC
4445 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4446 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4447 #endif
4448 };
4449
4450 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4451 {
4452 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4453 return -ENOSPC;
4454
4455 if (kvm_device_ops_table[type] != NULL)
4456 return -EEXIST;
4457
4458 kvm_device_ops_table[type] = ops;
4459 return 0;
4460 }
4461
4462 void kvm_unregister_device_ops(u32 type)
4463 {
4464 if (kvm_device_ops_table[type] != NULL)
4465 kvm_device_ops_table[type] = NULL;
4466 }
4467
4468 static int kvm_ioctl_create_device(struct kvm *kvm,
4469 struct kvm_create_device *cd)
4470 {
4471 const struct kvm_device_ops *ops;
4472 struct kvm_device *dev;
4473 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4474 int type;
4475 int ret;
4476
4477 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4478 return -ENODEV;
4479
4480 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4481 ops = kvm_device_ops_table[type];
4482 if (ops == NULL)
4483 return -ENODEV;
4484
4485 if (test)
4486 return 0;
4487
4488 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4489 if (!dev)
4490 return -ENOMEM;
4491
4492 dev->ops = ops;
4493 dev->kvm = kvm;
4494
4495 mutex_lock(&kvm->lock);
4496 ret = ops->create(dev, type);
4497 if (ret < 0) {
4498 mutex_unlock(&kvm->lock);
4499 kfree(dev);
4500 return ret;
4501 }
4502 list_add(&dev->vm_node, &kvm->devices);
4503 mutex_unlock(&kvm->lock);
4504
4505 if (ops->init)
4506 ops->init(dev);
4507
4508 kvm_get_kvm(kvm);
4509 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4510 if (ret < 0) {
4511 kvm_put_kvm_no_destroy(kvm);
4512 mutex_lock(&kvm->lock);
4513 list_del(&dev->vm_node);
4514 if (ops->release)
4515 ops->release(dev);
4516 mutex_unlock(&kvm->lock);
4517 if (ops->destroy)
4518 ops->destroy(dev);
4519 return ret;
4520 }
4521
4522 cd->fd = ret;
4523 return 0;
4524 }
4525
4526 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4527 {
4528 switch (arg) {
4529 case KVM_CAP_USER_MEMORY:
4530 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4531 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4532 case KVM_CAP_INTERNAL_ERROR_DATA:
4533 #ifdef CONFIG_HAVE_KVM_MSI
4534 case KVM_CAP_SIGNAL_MSI:
4535 #endif
4536 #ifdef CONFIG_HAVE_KVM_IRQFD
4537 case KVM_CAP_IRQFD:
4538 #endif
4539 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4540 case KVM_CAP_CHECK_EXTENSION_VM:
4541 case KVM_CAP_ENABLE_CAP_VM:
4542 case KVM_CAP_HALT_POLL:
4543 return 1;
4544 #ifdef CONFIG_KVM_MMIO
4545 case KVM_CAP_COALESCED_MMIO:
4546 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4547 case KVM_CAP_COALESCED_PIO:
4548 return 1;
4549 #endif
4550 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4551 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4552 return KVM_DIRTY_LOG_MANUAL_CAPS;
4553 #endif
4554 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4555 case KVM_CAP_IRQ_ROUTING:
4556 return KVM_MAX_IRQ_ROUTES;
4557 #endif
4558 #if KVM_ADDRESS_SPACE_NUM > 1
4559 case KVM_CAP_MULTI_ADDRESS_SPACE:
4560 return KVM_ADDRESS_SPACE_NUM;
4561 #endif
4562 case KVM_CAP_NR_MEMSLOTS:
4563 return KVM_USER_MEM_SLOTS;
4564 case KVM_CAP_DIRTY_LOG_RING:
4565 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4566 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4567 #else
4568 return 0;
4569 #endif
4570 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4571 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4572 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4573 #else
4574 return 0;
4575 #endif
4576 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4577 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4578 #endif
4579 case KVM_CAP_BINARY_STATS_FD:
4580 case KVM_CAP_SYSTEM_EVENT_DATA:
4581 return 1;
4582 default:
4583 break;
4584 }
4585 return kvm_vm_ioctl_check_extension(kvm, arg);
4586 }
4587
4588 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4589 {
4590 int r;
4591
4592 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4593 return -EINVAL;
4594
4595 /* the size should be power of 2 */
4596 if (!size || (size & (size - 1)))
4597 return -EINVAL;
4598
4599 /* Should be bigger to keep the reserved entries, or a page */
4600 if (size < kvm_dirty_ring_get_rsvd_entries() *
4601 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4602 return -EINVAL;
4603
4604 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4605 sizeof(struct kvm_dirty_gfn))
4606 return -E2BIG;
4607
4608 /* We only allow it to set once */
4609 if (kvm->dirty_ring_size)
4610 return -EINVAL;
4611
4612 mutex_lock(&kvm->lock);
4613
4614 if (kvm->created_vcpus) {
4615 /* We don't allow to change this value after vcpu created */
4616 r = -EINVAL;
4617 } else {
4618 kvm->dirty_ring_size = size;
4619 r = 0;
4620 }
4621
4622 mutex_unlock(&kvm->lock);
4623 return r;
4624 }
4625
4626 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4627 {
4628 unsigned long i;
4629 struct kvm_vcpu *vcpu;
4630 int cleared = 0;
4631
4632 if (!kvm->dirty_ring_size)
4633 return -EINVAL;
4634
4635 mutex_lock(&kvm->slots_lock);
4636
4637 kvm_for_each_vcpu(i, vcpu, kvm)
4638 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4639
4640 mutex_unlock(&kvm->slots_lock);
4641
4642 if (cleared)
4643 kvm_flush_remote_tlbs(kvm);
4644
4645 return cleared;
4646 }
4647
4648 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4649 struct kvm_enable_cap *cap)
4650 {
4651 return -EINVAL;
4652 }
4653
4654 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4655 {
4656 int i;
4657
4658 lockdep_assert_held(&kvm->slots_lock);
4659
4660 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4661 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4662 return false;
4663 }
4664
4665 return true;
4666 }
4667 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4668
4669 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4670 struct kvm_enable_cap *cap)
4671 {
4672 switch (cap->cap) {
4673 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4674 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4675 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4676
4677 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4678 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4679
4680 if (cap->flags || (cap->args[0] & ~allowed_options))
4681 return -EINVAL;
4682 kvm->manual_dirty_log_protect = cap->args[0];
4683 return 0;
4684 }
4685 #endif
4686 case KVM_CAP_HALT_POLL: {
4687 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4688 return -EINVAL;
4689
4690 kvm->max_halt_poll_ns = cap->args[0];
4691
4692 /*
4693 * Ensure kvm->override_halt_poll_ns does not become visible
4694 * before kvm->max_halt_poll_ns.
4695 *
4696 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4697 */
4698 smp_wmb();
4699 kvm->override_halt_poll_ns = true;
4700
4701 return 0;
4702 }
4703 case KVM_CAP_DIRTY_LOG_RING:
4704 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4705 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4706 return -EINVAL;
4707
4708 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4709 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4710 int r = -EINVAL;
4711
4712 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4713 !kvm->dirty_ring_size || cap->flags)
4714 return r;
4715
4716 mutex_lock(&kvm->slots_lock);
4717
4718 /*
4719 * For simplicity, allow enabling ring+bitmap if and only if
4720 * there are no memslots, e.g. to ensure all memslots allocate
4721 * a bitmap after the capability is enabled.
4722 */
4723 if (kvm_are_all_memslots_empty(kvm)) {
4724 kvm->dirty_ring_with_bitmap = true;
4725 r = 0;
4726 }
4727
4728 mutex_unlock(&kvm->slots_lock);
4729
4730 return r;
4731 }
4732 default:
4733 return kvm_vm_ioctl_enable_cap(kvm, cap);
4734 }
4735 }
4736
4737 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4738 size_t size, loff_t *offset)
4739 {
4740 struct kvm *kvm = file->private_data;
4741
4742 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4743 &kvm_vm_stats_desc[0], &kvm->stat,
4744 sizeof(kvm->stat), user_buffer, size, offset);
4745 }
4746
4747 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4748 {
4749 struct kvm *kvm = file->private_data;
4750
4751 kvm_put_kvm(kvm);
4752 return 0;
4753 }
4754
4755 static const struct file_operations kvm_vm_stats_fops = {
4756 .owner = THIS_MODULE,
4757 .read = kvm_vm_stats_read,
4758 .release = kvm_vm_stats_release,
4759 .llseek = noop_llseek,
4760 };
4761
4762 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4763 {
4764 int fd;
4765 struct file *file;
4766
4767 fd = get_unused_fd_flags(O_CLOEXEC);
4768 if (fd < 0)
4769 return fd;
4770
4771 file = anon_inode_getfile("kvm-vm-stats",
4772 &kvm_vm_stats_fops, kvm, O_RDONLY);
4773 if (IS_ERR(file)) {
4774 put_unused_fd(fd);
4775 return PTR_ERR(file);
4776 }
4777
4778 kvm_get_kvm(kvm);
4779
4780 file->f_mode |= FMODE_PREAD;
4781 fd_install(fd, file);
4782
4783 return fd;
4784 }
4785
4786 static long kvm_vm_ioctl(struct file *filp,
4787 unsigned int ioctl, unsigned long arg)
4788 {
4789 struct kvm *kvm = filp->private_data;
4790 void __user *argp = (void __user *)arg;
4791 int r;
4792
4793 if (kvm->mm != current->mm || kvm->vm_dead)
4794 return -EIO;
4795 switch (ioctl) {
4796 case KVM_CREATE_VCPU:
4797 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4798 break;
4799 case KVM_ENABLE_CAP: {
4800 struct kvm_enable_cap cap;
4801
4802 r = -EFAULT;
4803 if (copy_from_user(&cap, argp, sizeof(cap)))
4804 goto out;
4805 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4806 break;
4807 }
4808 case KVM_SET_USER_MEMORY_REGION: {
4809 struct kvm_userspace_memory_region kvm_userspace_mem;
4810
4811 r = -EFAULT;
4812 if (copy_from_user(&kvm_userspace_mem, argp,
4813 sizeof(kvm_userspace_mem)))
4814 goto out;
4815
4816 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4817 break;
4818 }
4819 case KVM_GET_DIRTY_LOG: {
4820 struct kvm_dirty_log log;
4821
4822 r = -EFAULT;
4823 if (copy_from_user(&log, argp, sizeof(log)))
4824 goto out;
4825 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4826 break;
4827 }
4828 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4829 case KVM_CLEAR_DIRTY_LOG: {
4830 struct kvm_clear_dirty_log log;
4831
4832 r = -EFAULT;
4833 if (copy_from_user(&log, argp, sizeof(log)))
4834 goto out;
4835 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4836 break;
4837 }
4838 #endif
4839 #ifdef CONFIG_KVM_MMIO
4840 case KVM_REGISTER_COALESCED_MMIO: {
4841 struct kvm_coalesced_mmio_zone zone;
4842
4843 r = -EFAULT;
4844 if (copy_from_user(&zone, argp, sizeof(zone)))
4845 goto out;
4846 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4847 break;
4848 }
4849 case KVM_UNREGISTER_COALESCED_MMIO: {
4850 struct kvm_coalesced_mmio_zone zone;
4851
4852 r = -EFAULT;
4853 if (copy_from_user(&zone, argp, sizeof(zone)))
4854 goto out;
4855 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4856 break;
4857 }
4858 #endif
4859 case KVM_IRQFD: {
4860 struct kvm_irqfd data;
4861
4862 r = -EFAULT;
4863 if (copy_from_user(&data, argp, sizeof(data)))
4864 goto out;
4865 r = kvm_irqfd(kvm, &data);
4866 break;
4867 }
4868 case KVM_IOEVENTFD: {
4869 struct kvm_ioeventfd data;
4870
4871 r = -EFAULT;
4872 if (copy_from_user(&data, argp, sizeof(data)))
4873 goto out;
4874 r = kvm_ioeventfd(kvm, &data);
4875 break;
4876 }
4877 #ifdef CONFIG_HAVE_KVM_MSI
4878 case KVM_SIGNAL_MSI: {
4879 struct kvm_msi msi;
4880
4881 r = -EFAULT;
4882 if (copy_from_user(&msi, argp, sizeof(msi)))
4883 goto out;
4884 r = kvm_send_userspace_msi(kvm, &msi);
4885 break;
4886 }
4887 #endif
4888 #ifdef __KVM_HAVE_IRQ_LINE
4889 case KVM_IRQ_LINE_STATUS:
4890 case KVM_IRQ_LINE: {
4891 struct kvm_irq_level irq_event;
4892
4893 r = -EFAULT;
4894 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4895 goto out;
4896
4897 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4898 ioctl == KVM_IRQ_LINE_STATUS);
4899 if (r)
4900 goto out;
4901
4902 r = -EFAULT;
4903 if (ioctl == KVM_IRQ_LINE_STATUS) {
4904 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4905 goto out;
4906 }
4907
4908 r = 0;
4909 break;
4910 }
4911 #endif
4912 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4913 case KVM_SET_GSI_ROUTING: {
4914 struct kvm_irq_routing routing;
4915 struct kvm_irq_routing __user *urouting;
4916 struct kvm_irq_routing_entry *entries = NULL;
4917
4918 r = -EFAULT;
4919 if (copy_from_user(&routing, argp, sizeof(routing)))
4920 goto out;
4921 r = -EINVAL;
4922 if (!kvm_arch_can_set_irq_routing(kvm))
4923 goto out;
4924 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4925 goto out;
4926 if (routing.flags)
4927 goto out;
4928 if (routing.nr) {
4929 urouting = argp;
4930 entries = vmemdup_user(urouting->entries,
4931 array_size(sizeof(*entries),
4932 routing.nr));
4933 if (IS_ERR(entries)) {
4934 r = PTR_ERR(entries);
4935 goto out;
4936 }
4937 }
4938 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4939 routing.flags);
4940 kvfree(entries);
4941 break;
4942 }
4943 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4944 case KVM_CREATE_DEVICE: {
4945 struct kvm_create_device cd;
4946
4947 r = -EFAULT;
4948 if (copy_from_user(&cd, argp, sizeof(cd)))
4949 goto out;
4950
4951 r = kvm_ioctl_create_device(kvm, &cd);
4952 if (r)
4953 goto out;
4954
4955 r = -EFAULT;
4956 if (copy_to_user(argp, &cd, sizeof(cd)))
4957 goto out;
4958
4959 r = 0;
4960 break;
4961 }
4962 case KVM_CHECK_EXTENSION:
4963 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4964 break;
4965 case KVM_RESET_DIRTY_RINGS:
4966 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4967 break;
4968 case KVM_GET_STATS_FD:
4969 r = kvm_vm_ioctl_get_stats_fd(kvm);
4970 break;
4971 default:
4972 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4973 }
4974 out:
4975 return r;
4976 }
4977
4978 #ifdef CONFIG_KVM_COMPAT
4979 struct compat_kvm_dirty_log {
4980 __u32 slot;
4981 __u32 padding1;
4982 union {
4983 compat_uptr_t dirty_bitmap; /* one bit per page */
4984 __u64 padding2;
4985 };
4986 };
4987
4988 struct compat_kvm_clear_dirty_log {
4989 __u32 slot;
4990 __u32 num_pages;
4991 __u64 first_page;
4992 union {
4993 compat_uptr_t dirty_bitmap; /* one bit per page */
4994 __u64 padding2;
4995 };
4996 };
4997
4998 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4999 unsigned long arg)
5000 {
5001 return -ENOTTY;
5002 }
5003
5004 static long kvm_vm_compat_ioctl(struct file *filp,
5005 unsigned int ioctl, unsigned long arg)
5006 {
5007 struct kvm *kvm = filp->private_data;
5008 int r;
5009
5010 if (kvm->mm != current->mm || kvm->vm_dead)
5011 return -EIO;
5012
5013 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5014 if (r != -ENOTTY)
5015 return r;
5016
5017 switch (ioctl) {
5018 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5019 case KVM_CLEAR_DIRTY_LOG: {
5020 struct compat_kvm_clear_dirty_log compat_log;
5021 struct kvm_clear_dirty_log log;
5022
5023 if (copy_from_user(&compat_log, (void __user *)arg,
5024 sizeof(compat_log)))
5025 return -EFAULT;
5026 log.slot = compat_log.slot;
5027 log.num_pages = compat_log.num_pages;
5028 log.first_page = compat_log.first_page;
5029 log.padding2 = compat_log.padding2;
5030 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5031
5032 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5033 break;
5034 }
5035 #endif
5036 case KVM_GET_DIRTY_LOG: {
5037 struct compat_kvm_dirty_log compat_log;
5038 struct kvm_dirty_log log;
5039
5040 if (copy_from_user(&compat_log, (void __user *)arg,
5041 sizeof(compat_log)))
5042 return -EFAULT;
5043 log.slot = compat_log.slot;
5044 log.padding1 = compat_log.padding1;
5045 log.padding2 = compat_log.padding2;
5046 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5047
5048 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5049 break;
5050 }
5051 default:
5052 r = kvm_vm_ioctl(filp, ioctl, arg);
5053 }
5054 return r;
5055 }
5056 #endif
5057
5058 static struct file_operations kvm_vm_fops = {
5059 .release = kvm_vm_release,
5060 .unlocked_ioctl = kvm_vm_ioctl,
5061 .llseek = noop_llseek,
5062 KVM_COMPAT(kvm_vm_compat_ioctl),
5063 };
5064
5065 bool file_is_kvm(struct file *file)
5066 {
5067 return file && file->f_op == &kvm_vm_fops;
5068 }
5069 EXPORT_SYMBOL_GPL(file_is_kvm);
5070
5071 static int kvm_dev_ioctl_create_vm(unsigned long type)
5072 {
5073 char fdname[ITOA_MAX_LEN + 1];
5074 int r, fd;
5075 struct kvm *kvm;
5076 struct file *file;
5077
5078 fd = get_unused_fd_flags(O_CLOEXEC);
5079 if (fd < 0)
5080 return fd;
5081
5082 snprintf(fdname, sizeof(fdname), "%d", fd);
5083
5084 kvm = kvm_create_vm(type, fdname);
5085 if (IS_ERR(kvm)) {
5086 r = PTR_ERR(kvm);
5087 goto put_fd;
5088 }
5089
5090 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5091 if (IS_ERR(file)) {
5092 r = PTR_ERR(file);
5093 goto put_kvm;
5094 }
5095
5096 /*
5097 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5098 * already set, with ->release() being kvm_vm_release(). In error
5099 * cases it will be called by the final fput(file) and will take
5100 * care of doing kvm_put_kvm(kvm).
5101 */
5102 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5103
5104 fd_install(fd, file);
5105 return fd;
5106
5107 put_kvm:
5108 kvm_put_kvm(kvm);
5109 put_fd:
5110 put_unused_fd(fd);
5111 return r;
5112 }
5113
5114 static long kvm_dev_ioctl(struct file *filp,
5115 unsigned int ioctl, unsigned long arg)
5116 {
5117 int r = -EINVAL;
5118
5119 switch (ioctl) {
5120 case KVM_GET_API_VERSION:
5121 if (arg)
5122 goto out;
5123 r = KVM_API_VERSION;
5124 break;
5125 case KVM_CREATE_VM:
5126 r = kvm_dev_ioctl_create_vm(arg);
5127 break;
5128 case KVM_CHECK_EXTENSION:
5129 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5130 break;
5131 case KVM_GET_VCPU_MMAP_SIZE:
5132 if (arg)
5133 goto out;
5134 r = PAGE_SIZE; /* struct kvm_run */
5135 #ifdef CONFIG_X86
5136 r += PAGE_SIZE; /* pio data page */
5137 #endif
5138 #ifdef CONFIG_KVM_MMIO
5139 r += PAGE_SIZE; /* coalesced mmio ring page */
5140 #endif
5141 break;
5142 case KVM_TRACE_ENABLE:
5143 case KVM_TRACE_PAUSE:
5144 case KVM_TRACE_DISABLE:
5145 r = -EOPNOTSUPP;
5146 break;
5147 default:
5148 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5149 }
5150 out:
5151 return r;
5152 }
5153
5154 static struct file_operations kvm_chardev_ops = {
5155 .unlocked_ioctl = kvm_dev_ioctl,
5156 .llseek = noop_llseek,
5157 KVM_COMPAT(kvm_dev_ioctl),
5158 };
5159
5160 static struct miscdevice kvm_dev = {
5161 KVM_MINOR,
5162 "kvm",
5163 &kvm_chardev_ops,
5164 };
5165
5166 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5167 __visible bool kvm_rebooting;
5168 EXPORT_SYMBOL_GPL(kvm_rebooting);
5169
5170 static DEFINE_PER_CPU(bool, hardware_enabled);
5171 static int kvm_usage_count;
5172
5173 static int __hardware_enable_nolock(void)
5174 {
5175 if (__this_cpu_read(hardware_enabled))
5176 return 0;
5177
5178 if (kvm_arch_hardware_enable()) {
5179 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5180 raw_smp_processor_id());
5181 return -EIO;
5182 }
5183
5184 __this_cpu_write(hardware_enabled, true);
5185 return 0;
5186 }
5187
5188 static void hardware_enable_nolock(void *failed)
5189 {
5190 if (__hardware_enable_nolock())
5191 atomic_inc(failed);
5192 }
5193
5194 static int kvm_online_cpu(unsigned int cpu)
5195 {
5196 int ret = 0;
5197
5198 /*
5199 * Abort the CPU online process if hardware virtualization cannot
5200 * be enabled. Otherwise running VMs would encounter unrecoverable
5201 * errors when scheduled to this CPU.
5202 */
5203 mutex_lock(&kvm_lock);
5204 if (kvm_usage_count)
5205 ret = __hardware_enable_nolock();
5206 mutex_unlock(&kvm_lock);
5207 return ret;
5208 }
5209
5210 static void hardware_disable_nolock(void *junk)
5211 {
5212 /*
5213 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5214 * hardware, not just CPUs that successfully enabled hardware!
5215 */
5216 if (!__this_cpu_read(hardware_enabled))
5217 return;
5218
5219 kvm_arch_hardware_disable();
5220
5221 __this_cpu_write(hardware_enabled, false);
5222 }
5223
5224 static int kvm_offline_cpu(unsigned int cpu)
5225 {
5226 mutex_lock(&kvm_lock);
5227 if (kvm_usage_count)
5228 hardware_disable_nolock(NULL);
5229 mutex_unlock(&kvm_lock);
5230 return 0;
5231 }
5232
5233 static void hardware_disable_all_nolock(void)
5234 {
5235 BUG_ON(!kvm_usage_count);
5236
5237 kvm_usage_count--;
5238 if (!kvm_usage_count)
5239 on_each_cpu(hardware_disable_nolock, NULL, 1);
5240 }
5241
5242 static void hardware_disable_all(void)
5243 {
5244 cpus_read_lock();
5245 mutex_lock(&kvm_lock);
5246 hardware_disable_all_nolock();
5247 mutex_unlock(&kvm_lock);
5248 cpus_read_unlock();
5249 }
5250
5251 static int hardware_enable_all(void)
5252 {
5253 atomic_t failed = ATOMIC_INIT(0);
5254 int r;
5255
5256 /*
5257 * Do not enable hardware virtualization if the system is going down.
5258 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5259 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5260 * after kvm_reboot() is called. Note, this relies on system_state
5261 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5262 * hook instead of registering a dedicated reboot notifier (the latter
5263 * runs before system_state is updated).
5264 */
5265 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5266 system_state == SYSTEM_RESTART)
5267 return -EBUSY;
5268
5269 /*
5270 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5271 * is called, and so on_each_cpu() between them includes the CPU that
5272 * is being onlined. As a result, hardware_enable_nolock() may get
5273 * invoked before kvm_online_cpu(), which also enables hardware if the
5274 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5275 * enable hardware multiple times.
5276 */
5277 cpus_read_lock();
5278 mutex_lock(&kvm_lock);
5279
5280 r = 0;
5281
5282 kvm_usage_count++;
5283 if (kvm_usage_count == 1) {
5284 on_each_cpu(hardware_enable_nolock, &failed, 1);
5285
5286 if (atomic_read(&failed)) {
5287 hardware_disable_all_nolock();
5288 r = -EBUSY;
5289 }
5290 }
5291
5292 mutex_unlock(&kvm_lock);
5293 cpus_read_unlock();
5294
5295 return r;
5296 }
5297
5298 static void kvm_shutdown(void)
5299 {
5300 /*
5301 * Disable hardware virtualization and set kvm_rebooting to indicate
5302 * that KVM has asynchronously disabled hardware virtualization, i.e.
5303 * that relevant errors and exceptions aren't entirely unexpected.
5304 * Some flavors of hardware virtualization need to be disabled before
5305 * transferring control to firmware (to perform shutdown/reboot), e.g.
5306 * on x86, virtualization can block INIT interrupts, which are used by
5307 * firmware to pull APs back under firmware control. Note, this path
5308 * is used for both shutdown and reboot scenarios, i.e. neither name is
5309 * 100% comprehensive.
5310 */
5311 pr_info("kvm: exiting hardware virtualization\n");
5312 kvm_rebooting = true;
5313 on_each_cpu(hardware_disable_nolock, NULL, 1);
5314 }
5315
5316 static int kvm_suspend(void)
5317 {
5318 /*
5319 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5320 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5321 * is stable. Assert that kvm_lock is not held to ensure the system
5322 * isn't suspended while KVM is enabling hardware. Hardware enabling
5323 * can be preempted, but the task cannot be frozen until it has dropped
5324 * all locks (userspace tasks are frozen via a fake signal).
5325 */
5326 lockdep_assert_not_held(&kvm_lock);
5327 lockdep_assert_irqs_disabled();
5328
5329 if (kvm_usage_count)
5330 hardware_disable_nolock(NULL);
5331 return 0;
5332 }
5333
5334 static void kvm_resume(void)
5335 {
5336 lockdep_assert_not_held(&kvm_lock);
5337 lockdep_assert_irqs_disabled();
5338
5339 if (kvm_usage_count)
5340 WARN_ON_ONCE(__hardware_enable_nolock());
5341 }
5342
5343 static struct syscore_ops kvm_syscore_ops = {
5344 .suspend = kvm_suspend,
5345 .resume = kvm_resume,
5346 .shutdown = kvm_shutdown,
5347 };
5348 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5349 static int hardware_enable_all(void)
5350 {
5351 return 0;
5352 }
5353
5354 static void hardware_disable_all(void)
5355 {
5356
5357 }
5358 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5359
5360 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5361 {
5362 if (dev->ops->destructor)
5363 dev->ops->destructor(dev);
5364 }
5365
5366 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5367 {
5368 int i;
5369
5370 for (i = 0; i < bus->dev_count; i++) {
5371 struct kvm_io_device *pos = bus->range[i].dev;
5372
5373 kvm_iodevice_destructor(pos);
5374 }
5375 kfree(bus);
5376 }
5377
5378 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5379 const struct kvm_io_range *r2)
5380 {
5381 gpa_t addr1 = r1->addr;
5382 gpa_t addr2 = r2->addr;
5383
5384 if (addr1 < addr2)
5385 return -1;
5386
5387 /* If r2->len == 0, match the exact address. If r2->len != 0,
5388 * accept any overlapping write. Any order is acceptable for
5389 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5390 * we process all of them.
5391 */
5392 if (r2->len) {
5393 addr1 += r1->len;
5394 addr2 += r2->len;
5395 }
5396
5397 if (addr1 > addr2)
5398 return 1;
5399
5400 return 0;
5401 }
5402
5403 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5404 {
5405 return kvm_io_bus_cmp(p1, p2);
5406 }
5407
5408 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5409 gpa_t addr, int len)
5410 {
5411 struct kvm_io_range *range, key;
5412 int off;
5413
5414 key = (struct kvm_io_range) {
5415 .addr = addr,
5416 .len = len,
5417 };
5418
5419 range = bsearch(&key, bus->range, bus->dev_count,
5420 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5421 if (range == NULL)
5422 return -ENOENT;
5423
5424 off = range - bus->range;
5425
5426 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5427 off--;
5428
5429 return off;
5430 }
5431
5432 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5433 struct kvm_io_range *range, const void *val)
5434 {
5435 int idx;
5436
5437 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5438 if (idx < 0)
5439 return -EOPNOTSUPP;
5440
5441 while (idx < bus->dev_count &&
5442 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5443 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5444 range->len, val))
5445 return idx;
5446 idx++;
5447 }
5448
5449 return -EOPNOTSUPP;
5450 }
5451
5452 /* kvm_io_bus_write - called under kvm->slots_lock */
5453 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5454 int len, const void *val)
5455 {
5456 struct kvm_io_bus *bus;
5457 struct kvm_io_range range;
5458 int r;
5459
5460 range = (struct kvm_io_range) {
5461 .addr = addr,
5462 .len = len,
5463 };
5464
5465 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5466 if (!bus)
5467 return -ENOMEM;
5468 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5469 return r < 0 ? r : 0;
5470 }
5471 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5472
5473 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5474 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5475 gpa_t addr, int len, const void *val, long cookie)
5476 {
5477 struct kvm_io_bus *bus;
5478 struct kvm_io_range range;
5479
5480 range = (struct kvm_io_range) {
5481 .addr = addr,
5482 .len = len,
5483 };
5484
5485 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5486 if (!bus)
5487 return -ENOMEM;
5488
5489 /* First try the device referenced by cookie. */
5490 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5491 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5492 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5493 val))
5494 return cookie;
5495
5496 /*
5497 * cookie contained garbage; fall back to search and return the
5498 * correct cookie value.
5499 */
5500 return __kvm_io_bus_write(vcpu, bus, &range, val);
5501 }
5502
5503 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5504 struct kvm_io_range *range, void *val)
5505 {
5506 int idx;
5507
5508 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5509 if (idx < 0)
5510 return -EOPNOTSUPP;
5511
5512 while (idx < bus->dev_count &&
5513 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5514 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5515 range->len, val))
5516 return idx;
5517 idx++;
5518 }
5519
5520 return -EOPNOTSUPP;
5521 }
5522
5523 /* kvm_io_bus_read - called under kvm->slots_lock */
5524 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5525 int len, void *val)
5526 {
5527 struct kvm_io_bus *bus;
5528 struct kvm_io_range range;
5529 int r;
5530
5531 range = (struct kvm_io_range) {
5532 .addr = addr,
5533 .len = len,
5534 };
5535
5536 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5537 if (!bus)
5538 return -ENOMEM;
5539 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5540 return r < 0 ? r : 0;
5541 }
5542
5543 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5544 int len, struct kvm_io_device *dev)
5545 {
5546 int i;
5547 struct kvm_io_bus *new_bus, *bus;
5548 struct kvm_io_range range;
5549
5550 lockdep_assert_held(&kvm->slots_lock);
5551
5552 bus = kvm_get_bus(kvm, bus_idx);
5553 if (!bus)
5554 return -ENOMEM;
5555
5556 /* exclude ioeventfd which is limited by maximum fd */
5557 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5558 return -ENOSPC;
5559
5560 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5561 GFP_KERNEL_ACCOUNT);
5562 if (!new_bus)
5563 return -ENOMEM;
5564
5565 range = (struct kvm_io_range) {
5566 .addr = addr,
5567 .len = len,
5568 .dev = dev,
5569 };
5570
5571 for (i = 0; i < bus->dev_count; i++)
5572 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5573 break;
5574
5575 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5576 new_bus->dev_count++;
5577 new_bus->range[i] = range;
5578 memcpy(new_bus->range + i + 1, bus->range + i,
5579 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5580 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5581 synchronize_srcu_expedited(&kvm->srcu);
5582 kfree(bus);
5583
5584 return 0;
5585 }
5586
5587 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5588 struct kvm_io_device *dev)
5589 {
5590 int i;
5591 struct kvm_io_bus *new_bus, *bus;
5592
5593 lockdep_assert_held(&kvm->slots_lock);
5594
5595 bus = kvm_get_bus(kvm, bus_idx);
5596 if (!bus)
5597 return 0;
5598
5599 for (i = 0; i < bus->dev_count; i++) {
5600 if (bus->range[i].dev == dev) {
5601 break;
5602 }
5603 }
5604
5605 if (i == bus->dev_count)
5606 return 0;
5607
5608 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5609 GFP_KERNEL_ACCOUNT);
5610 if (new_bus) {
5611 memcpy(new_bus, bus, struct_size(bus, range, i));
5612 new_bus->dev_count--;
5613 memcpy(new_bus->range + i, bus->range + i + 1,
5614 flex_array_size(new_bus, range, new_bus->dev_count - i));
5615 }
5616
5617 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5618 synchronize_srcu_expedited(&kvm->srcu);
5619
5620 /*
5621 * If NULL bus is installed, destroy the old bus, including all the
5622 * attached devices. Otherwise, destroy the caller's device only.
5623 */
5624 if (!new_bus) {
5625 pr_err("kvm: failed to shrink bus, removing it completely\n");
5626 kvm_io_bus_destroy(bus);
5627 return -ENOMEM;
5628 }
5629
5630 kvm_iodevice_destructor(dev);
5631 kfree(bus);
5632 return 0;
5633 }
5634
5635 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5636 gpa_t addr)
5637 {
5638 struct kvm_io_bus *bus;
5639 int dev_idx, srcu_idx;
5640 struct kvm_io_device *iodev = NULL;
5641
5642 srcu_idx = srcu_read_lock(&kvm->srcu);
5643
5644 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5645 if (!bus)
5646 goto out_unlock;
5647
5648 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5649 if (dev_idx < 0)
5650 goto out_unlock;
5651
5652 iodev = bus->range[dev_idx].dev;
5653
5654 out_unlock:
5655 srcu_read_unlock(&kvm->srcu, srcu_idx);
5656
5657 return iodev;
5658 }
5659 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5660
5661 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5662 int (*get)(void *, u64 *), int (*set)(void *, u64),
5663 const char *fmt)
5664 {
5665 int ret;
5666 struct kvm_stat_data *stat_data = inode->i_private;
5667
5668 /*
5669 * The debugfs files are a reference to the kvm struct which
5670 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5671 * avoids the race between open and the removal of the debugfs directory.
5672 */
5673 if (!kvm_get_kvm_safe(stat_data->kvm))
5674 return -ENOENT;
5675
5676 ret = simple_attr_open(inode, file, get,
5677 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5678 ? set : NULL, fmt);
5679 if (ret)
5680 kvm_put_kvm(stat_data->kvm);
5681
5682 return ret;
5683 }
5684
5685 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5686 {
5687 struct kvm_stat_data *stat_data = inode->i_private;
5688
5689 simple_attr_release(inode, file);
5690 kvm_put_kvm(stat_data->kvm);
5691
5692 return 0;
5693 }
5694
5695 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5696 {
5697 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5698
5699 return 0;
5700 }
5701
5702 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5703 {
5704 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5705
5706 return 0;
5707 }
5708
5709 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5710 {
5711 unsigned long i;
5712 struct kvm_vcpu *vcpu;
5713
5714 *val = 0;
5715
5716 kvm_for_each_vcpu(i, vcpu, kvm)
5717 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5718
5719 return 0;
5720 }
5721
5722 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5723 {
5724 unsigned long i;
5725 struct kvm_vcpu *vcpu;
5726
5727 kvm_for_each_vcpu(i, vcpu, kvm)
5728 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5729
5730 return 0;
5731 }
5732
5733 static int kvm_stat_data_get(void *data, u64 *val)
5734 {
5735 int r = -EFAULT;
5736 struct kvm_stat_data *stat_data = data;
5737
5738 switch (stat_data->kind) {
5739 case KVM_STAT_VM:
5740 r = kvm_get_stat_per_vm(stat_data->kvm,
5741 stat_data->desc->desc.offset, val);
5742 break;
5743 case KVM_STAT_VCPU:
5744 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5745 stat_data->desc->desc.offset, val);
5746 break;
5747 }
5748
5749 return r;
5750 }
5751
5752 static int kvm_stat_data_clear(void *data, u64 val)
5753 {
5754 int r = -EFAULT;
5755 struct kvm_stat_data *stat_data = data;
5756
5757 if (val)
5758 return -EINVAL;
5759
5760 switch (stat_data->kind) {
5761 case KVM_STAT_VM:
5762 r = kvm_clear_stat_per_vm(stat_data->kvm,
5763 stat_data->desc->desc.offset);
5764 break;
5765 case KVM_STAT_VCPU:
5766 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5767 stat_data->desc->desc.offset);
5768 break;
5769 }
5770
5771 return r;
5772 }
5773
5774 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5775 {
5776 __simple_attr_check_format("%llu\n", 0ull);
5777 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5778 kvm_stat_data_clear, "%llu\n");
5779 }
5780
5781 static const struct file_operations stat_fops_per_vm = {
5782 .owner = THIS_MODULE,
5783 .open = kvm_stat_data_open,
5784 .release = kvm_debugfs_release,
5785 .read = simple_attr_read,
5786 .write = simple_attr_write,
5787 .llseek = no_llseek,
5788 };
5789
5790 static int vm_stat_get(void *_offset, u64 *val)
5791 {
5792 unsigned offset = (long)_offset;
5793 struct kvm *kvm;
5794 u64 tmp_val;
5795
5796 *val = 0;
5797 mutex_lock(&kvm_lock);
5798 list_for_each_entry(kvm, &vm_list, vm_list) {
5799 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5800 *val += tmp_val;
5801 }
5802 mutex_unlock(&kvm_lock);
5803 return 0;
5804 }
5805
5806 static int vm_stat_clear(void *_offset, u64 val)
5807 {
5808 unsigned offset = (long)_offset;
5809 struct kvm *kvm;
5810
5811 if (val)
5812 return -EINVAL;
5813
5814 mutex_lock(&kvm_lock);
5815 list_for_each_entry(kvm, &vm_list, vm_list) {
5816 kvm_clear_stat_per_vm(kvm, offset);
5817 }
5818 mutex_unlock(&kvm_lock);
5819
5820 return 0;
5821 }
5822
5823 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5824 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5825
5826 static int vcpu_stat_get(void *_offset, u64 *val)
5827 {
5828 unsigned offset = (long)_offset;
5829 struct kvm *kvm;
5830 u64 tmp_val;
5831
5832 *val = 0;
5833 mutex_lock(&kvm_lock);
5834 list_for_each_entry(kvm, &vm_list, vm_list) {
5835 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5836 *val += tmp_val;
5837 }
5838 mutex_unlock(&kvm_lock);
5839 return 0;
5840 }
5841
5842 static int vcpu_stat_clear(void *_offset, u64 val)
5843 {
5844 unsigned offset = (long)_offset;
5845 struct kvm *kvm;
5846
5847 if (val)
5848 return -EINVAL;
5849
5850 mutex_lock(&kvm_lock);
5851 list_for_each_entry(kvm, &vm_list, vm_list) {
5852 kvm_clear_stat_per_vcpu(kvm, offset);
5853 }
5854 mutex_unlock(&kvm_lock);
5855
5856 return 0;
5857 }
5858
5859 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5860 "%llu\n");
5861 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5862
5863 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5864 {
5865 struct kobj_uevent_env *env;
5866 unsigned long long created, active;
5867
5868 if (!kvm_dev.this_device || !kvm)
5869 return;
5870
5871 mutex_lock(&kvm_lock);
5872 if (type == KVM_EVENT_CREATE_VM) {
5873 kvm_createvm_count++;
5874 kvm_active_vms++;
5875 } else if (type == KVM_EVENT_DESTROY_VM) {
5876 kvm_active_vms--;
5877 }
5878 created = kvm_createvm_count;
5879 active = kvm_active_vms;
5880 mutex_unlock(&kvm_lock);
5881
5882 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5883 if (!env)
5884 return;
5885
5886 add_uevent_var(env, "CREATED=%llu", created);
5887 add_uevent_var(env, "COUNT=%llu", active);
5888
5889 if (type == KVM_EVENT_CREATE_VM) {
5890 add_uevent_var(env, "EVENT=create");
5891 kvm->userspace_pid = task_pid_nr(current);
5892 } else if (type == KVM_EVENT_DESTROY_VM) {
5893 add_uevent_var(env, "EVENT=destroy");
5894 }
5895 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5896
5897 if (!IS_ERR(kvm->debugfs_dentry)) {
5898 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5899
5900 if (p) {
5901 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5902 if (!IS_ERR(tmp))
5903 add_uevent_var(env, "STATS_PATH=%s", tmp);
5904 kfree(p);
5905 }
5906 }
5907 /* no need for checks, since we are adding at most only 5 keys */
5908 env->envp[env->envp_idx++] = NULL;
5909 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5910 kfree(env);
5911 }
5912
5913 static void kvm_init_debug(void)
5914 {
5915 const struct file_operations *fops;
5916 const struct _kvm_stats_desc *pdesc;
5917 int i;
5918
5919 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5920
5921 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5922 pdesc = &kvm_vm_stats_desc[i];
5923 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5924 fops = &vm_stat_fops;
5925 else
5926 fops = &vm_stat_readonly_fops;
5927 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5928 kvm_debugfs_dir,
5929 (void *)(long)pdesc->desc.offset, fops);
5930 }
5931
5932 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5933 pdesc = &kvm_vcpu_stats_desc[i];
5934 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5935 fops = &vcpu_stat_fops;
5936 else
5937 fops = &vcpu_stat_readonly_fops;
5938 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5939 kvm_debugfs_dir,
5940 (void *)(long)pdesc->desc.offset, fops);
5941 }
5942 }
5943
5944 static inline
5945 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5946 {
5947 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5948 }
5949
5950 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5951 {
5952 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5953
5954 WRITE_ONCE(vcpu->preempted, false);
5955 WRITE_ONCE(vcpu->ready, false);
5956
5957 __this_cpu_write(kvm_running_vcpu, vcpu);
5958 kvm_arch_sched_in(vcpu, cpu);
5959 kvm_arch_vcpu_load(vcpu, cpu);
5960 }
5961
5962 static void kvm_sched_out(struct preempt_notifier *pn,
5963 struct task_struct *next)
5964 {
5965 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5966
5967 if (current->on_rq) {
5968 WRITE_ONCE(vcpu->preempted, true);
5969 WRITE_ONCE(vcpu->ready, true);
5970 }
5971 kvm_arch_vcpu_put(vcpu);
5972 __this_cpu_write(kvm_running_vcpu, NULL);
5973 }
5974
5975 /**
5976 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5977 *
5978 * We can disable preemption locally around accessing the per-CPU variable,
5979 * and use the resolved vcpu pointer after enabling preemption again,
5980 * because even if the current thread is migrated to another CPU, reading
5981 * the per-CPU value later will give us the same value as we update the
5982 * per-CPU variable in the preempt notifier handlers.
5983 */
5984 struct kvm_vcpu *kvm_get_running_vcpu(void)
5985 {
5986 struct kvm_vcpu *vcpu;
5987
5988 preempt_disable();
5989 vcpu = __this_cpu_read(kvm_running_vcpu);
5990 preempt_enable();
5991
5992 return vcpu;
5993 }
5994 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5995
5996 /**
5997 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5998 */
5999 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6000 {
6001 return &kvm_running_vcpu;
6002 }
6003
6004 #ifdef CONFIG_GUEST_PERF_EVENTS
6005 static unsigned int kvm_guest_state(void)
6006 {
6007 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6008 unsigned int state;
6009
6010 if (!kvm_arch_pmi_in_guest(vcpu))
6011 return 0;
6012
6013 state = PERF_GUEST_ACTIVE;
6014 if (!kvm_arch_vcpu_in_kernel(vcpu))
6015 state |= PERF_GUEST_USER;
6016
6017 return state;
6018 }
6019
6020 static unsigned long kvm_guest_get_ip(void)
6021 {
6022 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6023
6024 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6025 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6026 return 0;
6027
6028 return kvm_arch_vcpu_get_ip(vcpu);
6029 }
6030
6031 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6032 .state = kvm_guest_state,
6033 .get_ip = kvm_guest_get_ip,
6034 .handle_intel_pt_intr = NULL,
6035 };
6036
6037 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6038 {
6039 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6040 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6041 }
6042 void kvm_unregister_perf_callbacks(void)
6043 {
6044 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6045 }
6046 #endif
6047
6048 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6049 {
6050 int r;
6051 int cpu;
6052
6053 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6054 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6055 kvm_online_cpu, kvm_offline_cpu);
6056 if (r)
6057 return r;
6058
6059 register_syscore_ops(&kvm_syscore_ops);
6060 #endif
6061
6062 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6063 if (!vcpu_align)
6064 vcpu_align = __alignof__(struct kvm_vcpu);
6065 kvm_vcpu_cache =
6066 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6067 SLAB_ACCOUNT,
6068 offsetof(struct kvm_vcpu, arch),
6069 offsetofend(struct kvm_vcpu, stats_id)
6070 - offsetof(struct kvm_vcpu, arch),
6071 NULL);
6072 if (!kvm_vcpu_cache) {
6073 r = -ENOMEM;
6074 goto err_vcpu_cache;
6075 }
6076
6077 for_each_possible_cpu(cpu) {
6078 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6079 GFP_KERNEL, cpu_to_node(cpu))) {
6080 r = -ENOMEM;
6081 goto err_cpu_kick_mask;
6082 }
6083 }
6084
6085 r = kvm_irqfd_init();
6086 if (r)
6087 goto err_irqfd;
6088
6089 r = kvm_async_pf_init();
6090 if (r)
6091 goto err_async_pf;
6092
6093 kvm_chardev_ops.owner = module;
6094 kvm_vm_fops.owner = module;
6095 kvm_vcpu_fops.owner = module;
6096 kvm_device_fops.owner = module;
6097
6098 kvm_preempt_ops.sched_in = kvm_sched_in;
6099 kvm_preempt_ops.sched_out = kvm_sched_out;
6100
6101 kvm_init_debug();
6102
6103 r = kvm_vfio_ops_init();
6104 if (WARN_ON_ONCE(r))
6105 goto err_vfio;
6106
6107 /*
6108 * Registration _must_ be the very last thing done, as this exposes
6109 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6110 */
6111 r = misc_register(&kvm_dev);
6112 if (r) {
6113 pr_err("kvm: misc device register failed\n");
6114 goto err_register;
6115 }
6116
6117 return 0;
6118
6119 err_register:
6120 kvm_vfio_ops_exit();
6121 err_vfio:
6122 kvm_async_pf_deinit();
6123 err_async_pf:
6124 kvm_irqfd_exit();
6125 err_irqfd:
6126 err_cpu_kick_mask:
6127 for_each_possible_cpu(cpu)
6128 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6129 kmem_cache_destroy(kvm_vcpu_cache);
6130 err_vcpu_cache:
6131 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6132 unregister_syscore_ops(&kvm_syscore_ops);
6133 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6134 #endif
6135 return r;
6136 }
6137 EXPORT_SYMBOL_GPL(kvm_init);
6138
6139 void kvm_exit(void)
6140 {
6141 int cpu;
6142
6143 /*
6144 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6145 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6146 * to KVM while the module is being stopped.
6147 */
6148 misc_deregister(&kvm_dev);
6149
6150 debugfs_remove_recursive(kvm_debugfs_dir);
6151 for_each_possible_cpu(cpu)
6152 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6153 kmem_cache_destroy(kvm_vcpu_cache);
6154 kvm_vfio_ops_exit();
6155 kvm_async_pf_deinit();
6156 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6157 unregister_syscore_ops(&kvm_syscore_ops);
6158 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6159 #endif
6160 kvm_irqfd_exit();
6161 }
6162 EXPORT_SYMBOL_GPL(kvm_exit);
6163
6164 struct kvm_vm_worker_thread_context {
6165 struct kvm *kvm;
6166 struct task_struct *parent;
6167 struct completion init_done;
6168 kvm_vm_thread_fn_t thread_fn;
6169 uintptr_t data;
6170 int err;
6171 };
6172
6173 static int kvm_vm_worker_thread(void *context)
6174 {
6175 /*
6176 * The init_context is allocated on the stack of the parent thread, so
6177 * we have to locally copy anything that is needed beyond initialization
6178 */
6179 struct kvm_vm_worker_thread_context *init_context = context;
6180 struct task_struct *parent;
6181 struct kvm *kvm = init_context->kvm;
6182 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6183 uintptr_t data = init_context->data;
6184 int err;
6185
6186 err = kthread_park(current);
6187 /* kthread_park(current) is never supposed to return an error */
6188 WARN_ON(err != 0);
6189 if (err)
6190 goto init_complete;
6191
6192 err = cgroup_attach_task_all(init_context->parent, current);
6193 if (err) {
6194 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6195 __func__, err);
6196 goto init_complete;
6197 }
6198
6199 set_user_nice(current, task_nice(init_context->parent));
6200
6201 init_complete:
6202 init_context->err = err;
6203 complete(&init_context->init_done);
6204 init_context = NULL;
6205
6206 if (err)
6207 goto out;
6208
6209 /* Wait to be woken up by the spawner before proceeding. */
6210 kthread_parkme();
6211
6212 if (!kthread_should_stop())
6213 err = thread_fn(kvm, data);
6214
6215 out:
6216 /*
6217 * Move kthread back to its original cgroup to prevent it lingering in
6218 * the cgroup of the VM process, after the latter finishes its
6219 * execution.
6220 *
6221 * kthread_stop() waits on the 'exited' completion condition which is
6222 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6223 * kthread is removed from the cgroup in the cgroup_exit() which is
6224 * called after the exit_mm(). This causes the kthread_stop() to return
6225 * before the kthread actually quits the cgroup.
6226 */
6227 rcu_read_lock();
6228 parent = rcu_dereference(current->real_parent);
6229 get_task_struct(parent);
6230 rcu_read_unlock();
6231 cgroup_attach_task_all(parent, current);
6232 put_task_struct(parent);
6233
6234 return err;
6235 }
6236
6237 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6238 uintptr_t data, const char *name,
6239 struct task_struct **thread_ptr)
6240 {
6241 struct kvm_vm_worker_thread_context init_context = {};
6242 struct task_struct *thread;
6243
6244 *thread_ptr = NULL;
6245 init_context.kvm = kvm;
6246 init_context.parent = current;
6247 init_context.thread_fn = thread_fn;
6248 init_context.data = data;
6249 init_completion(&init_context.init_done);
6250
6251 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6252 "%s-%d", name, task_pid_nr(current));
6253 if (IS_ERR(thread))
6254 return PTR_ERR(thread);
6255
6256 /* kthread_run is never supposed to return NULL */
6257 WARN_ON(thread == NULL);
6258
6259 wait_for_completion(&init_context.init_done);
6260
6261 if (!init_context.err)
6262 *thread_ptr = thread;
6263
6264 return init_context.err;
6265 }