]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
KVM: Introduce KVM_SET_USER_MEMORY_REGION2
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 #else
127 /*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163 /*
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
168 */
169 if (WARN_ON_ONCE(!page_count(page)))
170 return false;
171
172 return is_zone_device_page(page);
173 }
174
175 /*
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
180 */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183 struct page *page;
184
185 if (!pfn_valid(pfn))
186 return NULL;
187
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
190 return page;
191
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
194 return page;
195
196 /*
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
199 * usage rules.
200 */
201 if (kvm_is_zone_device_page(page))
202 return page;
203
204 return NULL;
205 }
206
207 /*
208 * Switches to specified vcpu, until a matching vcpu_put()
209 */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212 int cpu = get_cpu();
213
214 __this_cpu_write(kvm_running_vcpu, vcpu);
215 preempt_notifier_register(&vcpu->preempt_notifier);
216 kvm_arch_vcpu_load(vcpu, cpu);
217 put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223 preempt_disable();
224 kvm_arch_vcpu_put(vcpu);
225 preempt_notifier_unregister(&vcpu->preempt_notifier);
226 __this_cpu_write(kvm_running_vcpu, NULL);
227 preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236 /*
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
239 */
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
242
243 /*
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 */
246 return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_kick(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255 if (cpumask_empty(cpus))
256 return false;
257
258 smp_call_function_many(cpus, ack_kick, NULL, wait);
259 return true;
260 }
261
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
264 {
265 int cpu;
266
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
273 /*
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282 */
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, tmp);
287 }
288 }
289
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 unsigned long *vcpu_bitmap)
292 {
293 struct kvm_vcpu *vcpu;
294 struct cpumask *cpus;
295 int i, me;
296 bool called;
297
298 me = get_cpu();
299
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 cpumask_clear(cpus);
302
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
305 if (!vcpu)
306 continue;
307 kvm_make_vcpu_request(vcpu, req, cpus, me);
308 }
309
310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311 put_cpu();
312
313 return called;
314 }
315
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
318 {
319 struct kvm_vcpu *vcpu;
320 struct cpumask *cpus;
321 unsigned long i;
322 bool called;
323 int me;
324
325 me = get_cpu();
326
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 cpumask_clear(cpus);
329
330 kvm_for_each_vcpu(i, vcpu, kvm) {
331 if (vcpu == except)
332 continue;
333 kvm_make_vcpu_request(vcpu, req, cpus, me);
334 }
335
336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337 put_cpu();
338
339 return called;
340 }
341
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348 void kvm_flush_remote_tlbs(struct kvm *kvm)
349 {
350 ++kvm->stat.generic.remote_tlb_flush_requests;
351
352 /*
353 * We want to publish modifications to the page tables before reading
354 * mode. Pairs with a memory barrier in arch-specific code.
355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356 * and smp_mb in walk_shadow_page_lockless_begin/end.
357 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358 *
359 * There is already an smp_mb__after_atomic() before
360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361 * barrier here.
362 */
363 if (!kvm_arch_flush_remote_tlbs(kvm)
364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365 ++kvm->stat.generic.remote_tlb_flush;
366 }
367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
368
369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370 {
371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372 return;
373
374 /*
375 * Fall back to a flushing entire TLBs if the architecture range-based
376 * TLB invalidation is unsupported or can't be performed for whatever
377 * reason.
378 */
379 kvm_flush_remote_tlbs(kvm);
380 }
381
382 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383 const struct kvm_memory_slot *memslot)
384 {
385 /*
386 * All current use cases for flushing the TLBs for a specific memslot
387 * are related to dirty logging, and many do the TLB flush out of
388 * mmu_lock. The interaction between the various operations on memslot
389 * must be serialized by slots_locks to ensure the TLB flush from one
390 * operation is observed by any other operation on the same memslot.
391 */
392 lockdep_assert_held(&kvm->slots_lock);
393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
394 }
395
396 static void kvm_flush_shadow_all(struct kvm *kvm)
397 {
398 kvm_arch_flush_shadow_all(kvm);
399 kvm_arch_guest_memory_reclaimed(kvm);
400 }
401
402 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
403 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404 gfp_t gfp_flags)
405 {
406 gfp_flags |= mc->gfp_zero;
407
408 if (mc->kmem_cache)
409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
410 else
411 return (void *)__get_free_page(gfp_flags);
412 }
413
414 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
415 {
416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
417 void *obj;
418
419 if (mc->nobjs >= min)
420 return 0;
421
422 if (unlikely(!mc->objects)) {
423 if (WARN_ON_ONCE(!capacity))
424 return -EIO;
425
426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
427 if (!mc->objects)
428 return -ENOMEM;
429
430 mc->capacity = capacity;
431 }
432
433 /* It is illegal to request a different capacity across topups. */
434 if (WARN_ON_ONCE(mc->capacity != capacity))
435 return -EIO;
436
437 while (mc->nobjs < mc->capacity) {
438 obj = mmu_memory_cache_alloc_obj(mc, gfp);
439 if (!obj)
440 return mc->nobjs >= min ? 0 : -ENOMEM;
441 mc->objects[mc->nobjs++] = obj;
442 }
443 return 0;
444 }
445
446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
447 {
448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449 }
450
451 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
452 {
453 return mc->nobjs;
454 }
455
456 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
457 {
458 while (mc->nobjs) {
459 if (mc->kmem_cache)
460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
461 else
462 free_page((unsigned long)mc->objects[--mc->nobjs]);
463 }
464
465 kvfree(mc->objects);
466
467 mc->objects = NULL;
468 mc->capacity = 0;
469 }
470
471 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
472 {
473 void *p;
474
475 if (WARN_ON(!mc->nobjs))
476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
477 else
478 p = mc->objects[--mc->nobjs];
479 BUG_ON(!p);
480 return p;
481 }
482 #endif
483
484 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
485 {
486 mutex_init(&vcpu->mutex);
487 vcpu->cpu = -1;
488 vcpu->kvm = kvm;
489 vcpu->vcpu_id = id;
490 vcpu->pid = NULL;
491 #ifndef __KVM_HAVE_ARCH_WQP
492 rcuwait_init(&vcpu->wait);
493 #endif
494 kvm_async_pf_vcpu_init(vcpu);
495
496 kvm_vcpu_set_in_spin_loop(vcpu, false);
497 kvm_vcpu_set_dy_eligible(vcpu, false);
498 vcpu->preempted = false;
499 vcpu->ready = false;
500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
501 vcpu->last_used_slot = NULL;
502
503 /* Fill the stats id string for the vcpu */
504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
505 task_pid_nr(current), id);
506 }
507
508 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
509 {
510 kvm_arch_vcpu_destroy(vcpu);
511 kvm_dirty_ring_free(&vcpu->dirty_ring);
512
513 /*
514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515 * the vcpu->pid pointer, and at destruction time all file descriptors
516 * are already gone.
517 */
518 put_pid(rcu_dereference_protected(vcpu->pid, 1));
519
520 free_page((unsigned long)vcpu->run);
521 kmem_cache_free(kvm_vcpu_cache, vcpu);
522 }
523
524 void kvm_destroy_vcpus(struct kvm *kvm)
525 {
526 unsigned long i;
527 struct kvm_vcpu *vcpu;
528
529 kvm_for_each_vcpu(i, vcpu, kvm) {
530 kvm_vcpu_destroy(vcpu);
531 xa_erase(&kvm->vcpu_array, i);
532 }
533
534 atomic_set(&kvm->online_vcpus, 0);
535 }
536 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
537
538 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
539 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
540 {
541 return container_of(mn, struct kvm, mmu_notifier);
542 }
543
544 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
545
546 typedef void (*on_lock_fn_t)(struct kvm *kvm);
547 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
548
549 struct kvm_mmu_notifier_range {
550 /*
551 * 64-bit addresses, as KVM notifiers can operate on host virtual
552 * addresses (unsigned long) and guest physical addresses (64-bit).
553 */
554 u64 start;
555 u64 end;
556 union kvm_mmu_notifier_arg arg;
557 gfn_handler_t handler;
558 on_lock_fn_t on_lock;
559 on_unlock_fn_t on_unlock;
560 bool flush_on_ret;
561 bool may_block;
562 };
563
564 /*
565 * Use a dedicated stub instead of NULL to indicate that there is no callback
566 * function/handler. The compiler technically can't guarantee that a real
567 * function will have a non-zero address, and so it will generate code to
568 * check for !NULL, whereas comparing against a stub will be elided at compile
569 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
570 */
571 static void kvm_null_fn(void)
572 {
573
574 }
575 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
576
577 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
578
579 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
580 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
581 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
582 node; \
583 node = interval_tree_iter_next(node, start, last)) \
584
585 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
586 const struct kvm_mmu_notifier_range *range)
587 {
588 bool ret = false, locked = false;
589 struct kvm_gfn_range gfn_range;
590 struct kvm_memory_slot *slot;
591 struct kvm_memslots *slots;
592 int i, idx;
593
594 if (WARN_ON_ONCE(range->end <= range->start))
595 return 0;
596
597 /* A null handler is allowed if and only if on_lock() is provided. */
598 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
599 IS_KVM_NULL_FN(range->handler)))
600 return 0;
601
602 idx = srcu_read_lock(&kvm->srcu);
603
604 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
605 struct interval_tree_node *node;
606
607 slots = __kvm_memslots(kvm, i);
608 kvm_for_each_memslot_in_hva_range(node, slots,
609 range->start, range->end - 1) {
610 unsigned long hva_start, hva_end;
611
612 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
613 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
614 hva_end = min_t(unsigned long, range->end,
615 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
616
617 /*
618 * To optimize for the likely case where the address
619 * range is covered by zero or one memslots, don't
620 * bother making these conditional (to avoid writes on
621 * the second or later invocation of the handler).
622 */
623 gfn_range.arg = range->arg;
624 gfn_range.may_block = range->may_block;
625
626 /*
627 * {gfn(page) | page intersects with [hva_start, hva_end)} =
628 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
629 */
630 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
631 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
632 gfn_range.slot = slot;
633
634 if (!locked) {
635 locked = true;
636 KVM_MMU_LOCK(kvm);
637 if (!IS_KVM_NULL_FN(range->on_lock))
638 range->on_lock(kvm);
639
640 if (IS_KVM_NULL_FN(range->handler))
641 break;
642 }
643 ret |= range->handler(kvm, &gfn_range);
644 }
645 }
646
647 if (range->flush_on_ret && ret)
648 kvm_flush_remote_tlbs(kvm);
649
650 if (locked) {
651 KVM_MMU_UNLOCK(kvm);
652 if (!IS_KVM_NULL_FN(range->on_unlock))
653 range->on_unlock(kvm);
654 }
655
656 srcu_read_unlock(&kvm->srcu, idx);
657
658 /* The notifiers are averse to booleans. :-( */
659 return (int)ret;
660 }
661
662 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
663 unsigned long start,
664 unsigned long end,
665 union kvm_mmu_notifier_arg arg,
666 gfn_handler_t handler)
667 {
668 struct kvm *kvm = mmu_notifier_to_kvm(mn);
669 const struct kvm_mmu_notifier_range range = {
670 .start = start,
671 .end = end,
672 .arg = arg,
673 .handler = handler,
674 .on_lock = (void *)kvm_null_fn,
675 .on_unlock = (void *)kvm_null_fn,
676 .flush_on_ret = true,
677 .may_block = false,
678 };
679
680 return __kvm_handle_hva_range(kvm, &range);
681 }
682
683 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
684 unsigned long start,
685 unsigned long end,
686 gfn_handler_t handler)
687 {
688 struct kvm *kvm = mmu_notifier_to_kvm(mn);
689 const struct kvm_mmu_notifier_range range = {
690 .start = start,
691 .end = end,
692 .handler = handler,
693 .on_lock = (void *)kvm_null_fn,
694 .on_unlock = (void *)kvm_null_fn,
695 .flush_on_ret = false,
696 .may_block = false,
697 };
698
699 return __kvm_handle_hva_range(kvm, &range);
700 }
701
702 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
703 {
704 /*
705 * Skipping invalid memslots is correct if and only change_pte() is
706 * surrounded by invalidate_range_{start,end}(), which is currently
707 * guaranteed by the primary MMU. If that ever changes, KVM needs to
708 * unmap the memslot instead of skipping the memslot to ensure that KVM
709 * doesn't hold references to the old PFN.
710 */
711 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
712
713 if (range->slot->flags & KVM_MEMSLOT_INVALID)
714 return false;
715
716 return kvm_set_spte_gfn(kvm, range);
717 }
718
719 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
720 struct mm_struct *mm,
721 unsigned long address,
722 pte_t pte)
723 {
724 struct kvm *kvm = mmu_notifier_to_kvm(mn);
725 const union kvm_mmu_notifier_arg arg = { .pte = pte };
726
727 trace_kvm_set_spte_hva(address);
728
729 /*
730 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
731 * If mmu_invalidate_in_progress is zero, then no in-progress
732 * invalidations, including this one, found a relevant memslot at
733 * start(); rechecking memslots here is unnecessary. Note, a false
734 * positive (count elevated by a different invalidation) is sub-optimal
735 * but functionally ok.
736 */
737 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
738 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
739 return;
740
741 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
742 }
743
744 void kvm_mmu_invalidate_begin(struct kvm *kvm)
745 {
746 lockdep_assert_held_write(&kvm->mmu_lock);
747 /*
748 * The count increase must become visible at unlock time as no
749 * spte can be established without taking the mmu_lock and
750 * count is also read inside the mmu_lock critical section.
751 */
752 kvm->mmu_invalidate_in_progress++;
753
754 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
755 kvm->mmu_invalidate_range_start = INVALID_GPA;
756 kvm->mmu_invalidate_range_end = INVALID_GPA;
757 }
758 }
759
760 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
761 {
762 lockdep_assert_held_write(&kvm->mmu_lock);
763
764 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
765
766 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
767 kvm->mmu_invalidate_range_start = start;
768 kvm->mmu_invalidate_range_end = end;
769 } else {
770 /*
771 * Fully tracking multiple concurrent ranges has diminishing
772 * returns. Keep things simple and just find the minimal range
773 * which includes the current and new ranges. As there won't be
774 * enough information to subtract a range after its invalidate
775 * completes, any ranges invalidated concurrently will
776 * accumulate and persist until all outstanding invalidates
777 * complete.
778 */
779 kvm->mmu_invalidate_range_start =
780 min(kvm->mmu_invalidate_range_start, start);
781 kvm->mmu_invalidate_range_end =
782 max(kvm->mmu_invalidate_range_end, end);
783 }
784 }
785
786 static bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
787 {
788 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
789 return kvm_unmap_gfn_range(kvm, range);
790 }
791
792 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
793 const struct mmu_notifier_range *range)
794 {
795 struct kvm *kvm = mmu_notifier_to_kvm(mn);
796 const struct kvm_mmu_notifier_range hva_range = {
797 .start = range->start,
798 .end = range->end,
799 .handler = kvm_mmu_unmap_gfn_range,
800 .on_lock = kvm_mmu_invalidate_begin,
801 .on_unlock = kvm_arch_guest_memory_reclaimed,
802 .flush_on_ret = true,
803 .may_block = mmu_notifier_range_blockable(range),
804 };
805
806 trace_kvm_unmap_hva_range(range->start, range->end);
807
808 /*
809 * Prevent memslot modification between range_start() and range_end()
810 * so that conditionally locking provides the same result in both
811 * functions. Without that guarantee, the mmu_invalidate_in_progress
812 * adjustments will be imbalanced.
813 *
814 * Pairs with the decrement in range_end().
815 */
816 spin_lock(&kvm->mn_invalidate_lock);
817 kvm->mn_active_invalidate_count++;
818 spin_unlock(&kvm->mn_invalidate_lock);
819
820 /*
821 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
822 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
823 * each cache's lock. There are relatively few caches in existence at
824 * any given time, and the caches themselves can check for hva overlap,
825 * i.e. don't need to rely on memslot overlap checks for performance.
826 * Because this runs without holding mmu_lock, the pfn caches must use
827 * mn_active_invalidate_count (see above) instead of
828 * mmu_invalidate_in_progress.
829 */
830 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
831 hva_range.may_block);
832
833 __kvm_handle_hva_range(kvm, &hva_range);
834
835 return 0;
836 }
837
838 void kvm_mmu_invalidate_end(struct kvm *kvm)
839 {
840 lockdep_assert_held_write(&kvm->mmu_lock);
841
842 /*
843 * This sequence increase will notify the kvm page fault that
844 * the page that is going to be mapped in the spte could have
845 * been freed.
846 */
847 kvm->mmu_invalidate_seq++;
848 smp_wmb();
849 /*
850 * The above sequence increase must be visible before the
851 * below count decrease, which is ensured by the smp_wmb above
852 * in conjunction with the smp_rmb in mmu_invalidate_retry().
853 */
854 kvm->mmu_invalidate_in_progress--;
855 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
856
857 /*
858 * Assert that at least one range was added between start() and end().
859 * Not adding a range isn't fatal, but it is a KVM bug.
860 */
861 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
862 }
863
864 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
865 const struct mmu_notifier_range *range)
866 {
867 struct kvm *kvm = mmu_notifier_to_kvm(mn);
868 const struct kvm_mmu_notifier_range hva_range = {
869 .start = range->start,
870 .end = range->end,
871 .handler = (void *)kvm_null_fn,
872 .on_lock = kvm_mmu_invalidate_end,
873 .on_unlock = (void *)kvm_null_fn,
874 .flush_on_ret = false,
875 .may_block = mmu_notifier_range_blockable(range),
876 };
877 bool wake;
878
879 __kvm_handle_hva_range(kvm, &hva_range);
880
881 /* Pairs with the increment in range_start(). */
882 spin_lock(&kvm->mn_invalidate_lock);
883 wake = (--kvm->mn_active_invalidate_count == 0);
884 spin_unlock(&kvm->mn_invalidate_lock);
885
886 /*
887 * There can only be one waiter, since the wait happens under
888 * slots_lock.
889 */
890 if (wake)
891 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
892 }
893
894 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
895 struct mm_struct *mm,
896 unsigned long start,
897 unsigned long end)
898 {
899 trace_kvm_age_hva(start, end);
900
901 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
902 kvm_age_gfn);
903 }
904
905 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
906 struct mm_struct *mm,
907 unsigned long start,
908 unsigned long end)
909 {
910 trace_kvm_age_hva(start, end);
911
912 /*
913 * Even though we do not flush TLB, this will still adversely
914 * affect performance on pre-Haswell Intel EPT, where there is
915 * no EPT Access Bit to clear so that we have to tear down EPT
916 * tables instead. If we find this unacceptable, we can always
917 * add a parameter to kvm_age_hva so that it effectively doesn't
918 * do anything on clear_young.
919 *
920 * Also note that currently we never issue secondary TLB flushes
921 * from clear_young, leaving this job up to the regular system
922 * cadence. If we find this inaccurate, we might come up with a
923 * more sophisticated heuristic later.
924 */
925 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
926 }
927
928 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
929 struct mm_struct *mm,
930 unsigned long address)
931 {
932 trace_kvm_test_age_hva(address);
933
934 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
935 kvm_test_age_gfn);
936 }
937
938 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
939 struct mm_struct *mm)
940 {
941 struct kvm *kvm = mmu_notifier_to_kvm(mn);
942 int idx;
943
944 idx = srcu_read_lock(&kvm->srcu);
945 kvm_flush_shadow_all(kvm);
946 srcu_read_unlock(&kvm->srcu, idx);
947 }
948
949 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
950 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
951 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
952 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
953 .clear_young = kvm_mmu_notifier_clear_young,
954 .test_young = kvm_mmu_notifier_test_young,
955 .change_pte = kvm_mmu_notifier_change_pte,
956 .release = kvm_mmu_notifier_release,
957 };
958
959 static int kvm_init_mmu_notifier(struct kvm *kvm)
960 {
961 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
962 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
963 }
964
965 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
966
967 static int kvm_init_mmu_notifier(struct kvm *kvm)
968 {
969 return 0;
970 }
971
972 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
973
974 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
975 static int kvm_pm_notifier_call(struct notifier_block *bl,
976 unsigned long state,
977 void *unused)
978 {
979 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
980
981 return kvm_arch_pm_notifier(kvm, state);
982 }
983
984 static void kvm_init_pm_notifier(struct kvm *kvm)
985 {
986 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
987 /* Suspend KVM before we suspend ftrace, RCU, etc. */
988 kvm->pm_notifier.priority = INT_MAX;
989 register_pm_notifier(&kvm->pm_notifier);
990 }
991
992 static void kvm_destroy_pm_notifier(struct kvm *kvm)
993 {
994 unregister_pm_notifier(&kvm->pm_notifier);
995 }
996 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
997 static void kvm_init_pm_notifier(struct kvm *kvm)
998 {
999 }
1000
1001 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1002 {
1003 }
1004 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1005
1006 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1007 {
1008 if (!memslot->dirty_bitmap)
1009 return;
1010
1011 kvfree(memslot->dirty_bitmap);
1012 memslot->dirty_bitmap = NULL;
1013 }
1014
1015 /* This does not remove the slot from struct kvm_memslots data structures */
1016 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1017 {
1018 kvm_destroy_dirty_bitmap(slot);
1019
1020 kvm_arch_free_memslot(kvm, slot);
1021
1022 kfree(slot);
1023 }
1024
1025 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1026 {
1027 struct hlist_node *idnode;
1028 struct kvm_memory_slot *memslot;
1029 int bkt;
1030
1031 /*
1032 * The same memslot objects live in both active and inactive sets,
1033 * arbitrarily free using index '1' so the second invocation of this
1034 * function isn't operating over a structure with dangling pointers
1035 * (even though this function isn't actually touching them).
1036 */
1037 if (!slots->node_idx)
1038 return;
1039
1040 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1041 kvm_free_memslot(kvm, memslot);
1042 }
1043
1044 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1045 {
1046 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1047 case KVM_STATS_TYPE_INSTANT:
1048 return 0444;
1049 case KVM_STATS_TYPE_CUMULATIVE:
1050 case KVM_STATS_TYPE_PEAK:
1051 default:
1052 return 0644;
1053 }
1054 }
1055
1056
1057 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1058 {
1059 int i;
1060 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1061 kvm_vcpu_stats_header.num_desc;
1062
1063 if (IS_ERR(kvm->debugfs_dentry))
1064 return;
1065
1066 debugfs_remove_recursive(kvm->debugfs_dentry);
1067
1068 if (kvm->debugfs_stat_data) {
1069 for (i = 0; i < kvm_debugfs_num_entries; i++)
1070 kfree(kvm->debugfs_stat_data[i]);
1071 kfree(kvm->debugfs_stat_data);
1072 }
1073 }
1074
1075 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1076 {
1077 static DEFINE_MUTEX(kvm_debugfs_lock);
1078 struct dentry *dent;
1079 char dir_name[ITOA_MAX_LEN * 2];
1080 struct kvm_stat_data *stat_data;
1081 const struct _kvm_stats_desc *pdesc;
1082 int i, ret = -ENOMEM;
1083 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1084 kvm_vcpu_stats_header.num_desc;
1085
1086 if (!debugfs_initialized())
1087 return 0;
1088
1089 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1090 mutex_lock(&kvm_debugfs_lock);
1091 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1092 if (dent) {
1093 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1094 dput(dent);
1095 mutex_unlock(&kvm_debugfs_lock);
1096 return 0;
1097 }
1098 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1099 mutex_unlock(&kvm_debugfs_lock);
1100 if (IS_ERR(dent))
1101 return 0;
1102
1103 kvm->debugfs_dentry = dent;
1104 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1105 sizeof(*kvm->debugfs_stat_data),
1106 GFP_KERNEL_ACCOUNT);
1107 if (!kvm->debugfs_stat_data)
1108 goto out_err;
1109
1110 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1111 pdesc = &kvm_vm_stats_desc[i];
1112 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1113 if (!stat_data)
1114 goto out_err;
1115
1116 stat_data->kvm = kvm;
1117 stat_data->desc = pdesc;
1118 stat_data->kind = KVM_STAT_VM;
1119 kvm->debugfs_stat_data[i] = stat_data;
1120 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1121 kvm->debugfs_dentry, stat_data,
1122 &stat_fops_per_vm);
1123 }
1124
1125 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1126 pdesc = &kvm_vcpu_stats_desc[i];
1127 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1128 if (!stat_data)
1129 goto out_err;
1130
1131 stat_data->kvm = kvm;
1132 stat_data->desc = pdesc;
1133 stat_data->kind = KVM_STAT_VCPU;
1134 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1135 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1136 kvm->debugfs_dentry, stat_data,
1137 &stat_fops_per_vm);
1138 }
1139
1140 ret = kvm_arch_create_vm_debugfs(kvm);
1141 if (ret)
1142 goto out_err;
1143
1144 return 0;
1145 out_err:
1146 kvm_destroy_vm_debugfs(kvm);
1147 return ret;
1148 }
1149
1150 /*
1151 * Called after the VM is otherwise initialized, but just before adding it to
1152 * the vm_list.
1153 */
1154 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1155 {
1156 return 0;
1157 }
1158
1159 /*
1160 * Called just after removing the VM from the vm_list, but before doing any
1161 * other destruction.
1162 */
1163 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1164 {
1165 }
1166
1167 /*
1168 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1169 * be setup already, so we can create arch-specific debugfs entries under it.
1170 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1171 * a per-arch destroy interface is not needed.
1172 */
1173 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1174 {
1175 return 0;
1176 }
1177
1178 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1179 {
1180 struct kvm *kvm = kvm_arch_alloc_vm();
1181 struct kvm_memslots *slots;
1182 int r = -ENOMEM;
1183 int i, j;
1184
1185 if (!kvm)
1186 return ERR_PTR(-ENOMEM);
1187
1188 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1189 __module_get(kvm_chardev_ops.owner);
1190
1191 KVM_MMU_LOCK_INIT(kvm);
1192 mmgrab(current->mm);
1193 kvm->mm = current->mm;
1194 kvm_eventfd_init(kvm);
1195 mutex_init(&kvm->lock);
1196 mutex_init(&kvm->irq_lock);
1197 mutex_init(&kvm->slots_lock);
1198 mutex_init(&kvm->slots_arch_lock);
1199 spin_lock_init(&kvm->mn_invalidate_lock);
1200 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1201 xa_init(&kvm->vcpu_array);
1202
1203 INIT_LIST_HEAD(&kvm->gpc_list);
1204 spin_lock_init(&kvm->gpc_lock);
1205
1206 INIT_LIST_HEAD(&kvm->devices);
1207 kvm->max_vcpus = KVM_MAX_VCPUS;
1208
1209 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1210
1211 /*
1212 * Force subsequent debugfs file creations to fail if the VM directory
1213 * is not created (by kvm_create_vm_debugfs()).
1214 */
1215 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1216
1217 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1218 task_pid_nr(current));
1219
1220 if (init_srcu_struct(&kvm->srcu))
1221 goto out_err_no_srcu;
1222 if (init_srcu_struct(&kvm->irq_srcu))
1223 goto out_err_no_irq_srcu;
1224
1225 refcount_set(&kvm->users_count, 1);
1226 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1227 for (j = 0; j < 2; j++) {
1228 slots = &kvm->__memslots[i][j];
1229
1230 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1231 slots->hva_tree = RB_ROOT_CACHED;
1232 slots->gfn_tree = RB_ROOT;
1233 hash_init(slots->id_hash);
1234 slots->node_idx = j;
1235
1236 /* Generations must be different for each address space. */
1237 slots->generation = i;
1238 }
1239
1240 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1241 }
1242
1243 for (i = 0; i < KVM_NR_BUSES; i++) {
1244 rcu_assign_pointer(kvm->buses[i],
1245 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1246 if (!kvm->buses[i])
1247 goto out_err_no_arch_destroy_vm;
1248 }
1249
1250 r = kvm_arch_init_vm(kvm, type);
1251 if (r)
1252 goto out_err_no_arch_destroy_vm;
1253
1254 r = hardware_enable_all();
1255 if (r)
1256 goto out_err_no_disable;
1257
1258 #ifdef CONFIG_HAVE_KVM_IRQFD
1259 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1260 #endif
1261
1262 r = kvm_init_mmu_notifier(kvm);
1263 if (r)
1264 goto out_err_no_mmu_notifier;
1265
1266 r = kvm_coalesced_mmio_init(kvm);
1267 if (r < 0)
1268 goto out_no_coalesced_mmio;
1269
1270 r = kvm_create_vm_debugfs(kvm, fdname);
1271 if (r)
1272 goto out_err_no_debugfs;
1273
1274 r = kvm_arch_post_init_vm(kvm);
1275 if (r)
1276 goto out_err;
1277
1278 mutex_lock(&kvm_lock);
1279 list_add(&kvm->vm_list, &vm_list);
1280 mutex_unlock(&kvm_lock);
1281
1282 preempt_notifier_inc();
1283 kvm_init_pm_notifier(kvm);
1284
1285 return kvm;
1286
1287 out_err:
1288 kvm_destroy_vm_debugfs(kvm);
1289 out_err_no_debugfs:
1290 kvm_coalesced_mmio_free(kvm);
1291 out_no_coalesced_mmio:
1292 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1293 if (kvm->mmu_notifier.ops)
1294 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1295 #endif
1296 out_err_no_mmu_notifier:
1297 hardware_disable_all();
1298 out_err_no_disable:
1299 kvm_arch_destroy_vm(kvm);
1300 out_err_no_arch_destroy_vm:
1301 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1302 for (i = 0; i < KVM_NR_BUSES; i++)
1303 kfree(kvm_get_bus(kvm, i));
1304 cleanup_srcu_struct(&kvm->irq_srcu);
1305 out_err_no_irq_srcu:
1306 cleanup_srcu_struct(&kvm->srcu);
1307 out_err_no_srcu:
1308 kvm_arch_free_vm(kvm);
1309 mmdrop(current->mm);
1310 module_put(kvm_chardev_ops.owner);
1311 return ERR_PTR(r);
1312 }
1313
1314 static void kvm_destroy_devices(struct kvm *kvm)
1315 {
1316 struct kvm_device *dev, *tmp;
1317
1318 /*
1319 * We do not need to take the kvm->lock here, because nobody else
1320 * has a reference to the struct kvm at this point and therefore
1321 * cannot access the devices list anyhow.
1322 */
1323 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1324 list_del(&dev->vm_node);
1325 dev->ops->destroy(dev);
1326 }
1327 }
1328
1329 static void kvm_destroy_vm(struct kvm *kvm)
1330 {
1331 int i;
1332 struct mm_struct *mm = kvm->mm;
1333
1334 kvm_destroy_pm_notifier(kvm);
1335 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1336 kvm_destroy_vm_debugfs(kvm);
1337 kvm_arch_sync_events(kvm);
1338 mutex_lock(&kvm_lock);
1339 list_del(&kvm->vm_list);
1340 mutex_unlock(&kvm_lock);
1341 kvm_arch_pre_destroy_vm(kvm);
1342
1343 kvm_free_irq_routing(kvm);
1344 for (i = 0; i < KVM_NR_BUSES; i++) {
1345 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1346
1347 if (bus)
1348 kvm_io_bus_destroy(bus);
1349 kvm->buses[i] = NULL;
1350 }
1351 kvm_coalesced_mmio_free(kvm);
1352 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1353 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1354 /*
1355 * At this point, pending calls to invalidate_range_start()
1356 * have completed but no more MMU notifiers will run, so
1357 * mn_active_invalidate_count may remain unbalanced.
1358 * No threads can be waiting in kvm_swap_active_memslots() as the
1359 * last reference on KVM has been dropped, but freeing
1360 * memslots would deadlock without this manual intervention.
1361 *
1362 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1363 * notifier between a start() and end(), then there shouldn't be any
1364 * in-progress invalidations.
1365 */
1366 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1367 if (kvm->mn_active_invalidate_count)
1368 kvm->mn_active_invalidate_count = 0;
1369 else
1370 WARN_ON(kvm->mmu_invalidate_in_progress);
1371 #else
1372 kvm_flush_shadow_all(kvm);
1373 #endif
1374 kvm_arch_destroy_vm(kvm);
1375 kvm_destroy_devices(kvm);
1376 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1377 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1378 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1379 }
1380 cleanup_srcu_struct(&kvm->irq_srcu);
1381 cleanup_srcu_struct(&kvm->srcu);
1382 kvm_arch_free_vm(kvm);
1383 preempt_notifier_dec();
1384 hardware_disable_all();
1385 mmdrop(mm);
1386 module_put(kvm_chardev_ops.owner);
1387 }
1388
1389 void kvm_get_kvm(struct kvm *kvm)
1390 {
1391 refcount_inc(&kvm->users_count);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1394
1395 /*
1396 * Make sure the vm is not during destruction, which is a safe version of
1397 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1398 */
1399 bool kvm_get_kvm_safe(struct kvm *kvm)
1400 {
1401 return refcount_inc_not_zero(&kvm->users_count);
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1404
1405 void kvm_put_kvm(struct kvm *kvm)
1406 {
1407 if (refcount_dec_and_test(&kvm->users_count))
1408 kvm_destroy_vm(kvm);
1409 }
1410 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1411
1412 /*
1413 * Used to put a reference that was taken on behalf of an object associated
1414 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1415 * of the new file descriptor fails and the reference cannot be transferred to
1416 * its final owner. In such cases, the caller is still actively using @kvm and
1417 * will fail miserably if the refcount unexpectedly hits zero.
1418 */
1419 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1420 {
1421 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1424
1425 static int kvm_vm_release(struct inode *inode, struct file *filp)
1426 {
1427 struct kvm *kvm = filp->private_data;
1428
1429 kvm_irqfd_release(kvm);
1430
1431 kvm_put_kvm(kvm);
1432 return 0;
1433 }
1434
1435 /*
1436 * Allocation size is twice as large as the actual dirty bitmap size.
1437 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1438 */
1439 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1440 {
1441 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1442
1443 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1444 if (!memslot->dirty_bitmap)
1445 return -ENOMEM;
1446
1447 return 0;
1448 }
1449
1450 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1451 {
1452 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1453 int node_idx_inactive = active->node_idx ^ 1;
1454
1455 return &kvm->__memslots[as_id][node_idx_inactive];
1456 }
1457
1458 /*
1459 * Helper to get the address space ID when one of memslot pointers may be NULL.
1460 * This also serves as a sanity that at least one of the pointers is non-NULL,
1461 * and that their address space IDs don't diverge.
1462 */
1463 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1464 struct kvm_memory_slot *b)
1465 {
1466 if (WARN_ON_ONCE(!a && !b))
1467 return 0;
1468
1469 if (!a)
1470 return b->as_id;
1471 if (!b)
1472 return a->as_id;
1473
1474 WARN_ON_ONCE(a->as_id != b->as_id);
1475 return a->as_id;
1476 }
1477
1478 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1479 struct kvm_memory_slot *slot)
1480 {
1481 struct rb_root *gfn_tree = &slots->gfn_tree;
1482 struct rb_node **node, *parent;
1483 int idx = slots->node_idx;
1484
1485 parent = NULL;
1486 for (node = &gfn_tree->rb_node; *node; ) {
1487 struct kvm_memory_slot *tmp;
1488
1489 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1490 parent = *node;
1491 if (slot->base_gfn < tmp->base_gfn)
1492 node = &(*node)->rb_left;
1493 else if (slot->base_gfn > tmp->base_gfn)
1494 node = &(*node)->rb_right;
1495 else
1496 BUG();
1497 }
1498
1499 rb_link_node(&slot->gfn_node[idx], parent, node);
1500 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1501 }
1502
1503 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1504 struct kvm_memory_slot *slot)
1505 {
1506 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1507 }
1508
1509 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1510 struct kvm_memory_slot *old,
1511 struct kvm_memory_slot *new)
1512 {
1513 int idx = slots->node_idx;
1514
1515 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1516
1517 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1518 &slots->gfn_tree);
1519 }
1520
1521 /*
1522 * Replace @old with @new in the inactive memslots.
1523 *
1524 * With NULL @old this simply adds @new.
1525 * With NULL @new this simply removes @old.
1526 *
1527 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1528 * appropriately.
1529 */
1530 static void kvm_replace_memslot(struct kvm *kvm,
1531 struct kvm_memory_slot *old,
1532 struct kvm_memory_slot *new)
1533 {
1534 int as_id = kvm_memslots_get_as_id(old, new);
1535 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1536 int idx = slots->node_idx;
1537
1538 if (old) {
1539 hash_del(&old->id_node[idx]);
1540 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1541
1542 if ((long)old == atomic_long_read(&slots->last_used_slot))
1543 atomic_long_set(&slots->last_used_slot, (long)new);
1544
1545 if (!new) {
1546 kvm_erase_gfn_node(slots, old);
1547 return;
1548 }
1549 }
1550
1551 /*
1552 * Initialize @new's hva range. Do this even when replacing an @old
1553 * slot, kvm_copy_memslot() deliberately does not touch node data.
1554 */
1555 new->hva_node[idx].start = new->userspace_addr;
1556 new->hva_node[idx].last = new->userspace_addr +
1557 (new->npages << PAGE_SHIFT) - 1;
1558
1559 /*
1560 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1561 * hva_node needs to be swapped with remove+insert even though hva can't
1562 * change when replacing an existing slot.
1563 */
1564 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1565 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1566
1567 /*
1568 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1569 * switch the node in the gfn tree instead of removing the old and
1570 * inserting the new as two separate operations. Replacement is a
1571 * single O(1) operation versus two O(log(n)) operations for
1572 * remove+insert.
1573 */
1574 if (old && old->base_gfn == new->base_gfn) {
1575 kvm_replace_gfn_node(slots, old, new);
1576 } else {
1577 if (old)
1578 kvm_erase_gfn_node(slots, old);
1579 kvm_insert_gfn_node(slots, new);
1580 }
1581 }
1582
1583 /*
1584 * Flags that do not access any of the extra space of struct
1585 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1586 * only allows these.
1587 */
1588 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1589 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1590
1591 static int check_memory_region_flags(const struct kvm_userspace_memory_region2 *mem)
1592 {
1593 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1594
1595 #ifdef __KVM_HAVE_READONLY_MEM
1596 valid_flags |= KVM_MEM_READONLY;
1597 #endif
1598
1599 if (mem->flags & ~valid_flags)
1600 return -EINVAL;
1601
1602 return 0;
1603 }
1604
1605 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1606 {
1607 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1608
1609 /* Grab the generation from the activate memslots. */
1610 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1611
1612 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1613 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1614
1615 /*
1616 * Do not store the new memslots while there are invalidations in
1617 * progress, otherwise the locking in invalidate_range_start and
1618 * invalidate_range_end will be unbalanced.
1619 */
1620 spin_lock(&kvm->mn_invalidate_lock);
1621 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1622 while (kvm->mn_active_invalidate_count) {
1623 set_current_state(TASK_UNINTERRUPTIBLE);
1624 spin_unlock(&kvm->mn_invalidate_lock);
1625 schedule();
1626 spin_lock(&kvm->mn_invalidate_lock);
1627 }
1628 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1629 rcu_assign_pointer(kvm->memslots[as_id], slots);
1630 spin_unlock(&kvm->mn_invalidate_lock);
1631
1632 /*
1633 * Acquired in kvm_set_memslot. Must be released before synchronize
1634 * SRCU below in order to avoid deadlock with another thread
1635 * acquiring the slots_arch_lock in an srcu critical section.
1636 */
1637 mutex_unlock(&kvm->slots_arch_lock);
1638
1639 synchronize_srcu_expedited(&kvm->srcu);
1640
1641 /*
1642 * Increment the new memslot generation a second time, dropping the
1643 * update in-progress flag and incrementing the generation based on
1644 * the number of address spaces. This provides a unique and easily
1645 * identifiable generation number while the memslots are in flux.
1646 */
1647 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1648
1649 /*
1650 * Generations must be unique even across address spaces. We do not need
1651 * a global counter for that, instead the generation space is evenly split
1652 * across address spaces. For example, with two address spaces, address
1653 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1654 * use generations 1, 3, 5, ...
1655 */
1656 gen += KVM_ADDRESS_SPACE_NUM;
1657
1658 kvm_arch_memslots_updated(kvm, gen);
1659
1660 slots->generation = gen;
1661 }
1662
1663 static int kvm_prepare_memory_region(struct kvm *kvm,
1664 const struct kvm_memory_slot *old,
1665 struct kvm_memory_slot *new,
1666 enum kvm_mr_change change)
1667 {
1668 int r;
1669
1670 /*
1671 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1672 * will be freed on "commit". If logging is enabled in both old and
1673 * new, reuse the existing bitmap. If logging is enabled only in the
1674 * new and KVM isn't using a ring buffer, allocate and initialize a
1675 * new bitmap.
1676 */
1677 if (change != KVM_MR_DELETE) {
1678 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1679 new->dirty_bitmap = NULL;
1680 else if (old && old->dirty_bitmap)
1681 new->dirty_bitmap = old->dirty_bitmap;
1682 else if (kvm_use_dirty_bitmap(kvm)) {
1683 r = kvm_alloc_dirty_bitmap(new);
1684 if (r)
1685 return r;
1686
1687 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1688 bitmap_set(new->dirty_bitmap, 0, new->npages);
1689 }
1690 }
1691
1692 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1693
1694 /* Free the bitmap on failure if it was allocated above. */
1695 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1696 kvm_destroy_dirty_bitmap(new);
1697
1698 return r;
1699 }
1700
1701 static void kvm_commit_memory_region(struct kvm *kvm,
1702 struct kvm_memory_slot *old,
1703 const struct kvm_memory_slot *new,
1704 enum kvm_mr_change change)
1705 {
1706 int old_flags = old ? old->flags : 0;
1707 int new_flags = new ? new->flags : 0;
1708 /*
1709 * Update the total number of memslot pages before calling the arch
1710 * hook so that architectures can consume the result directly.
1711 */
1712 if (change == KVM_MR_DELETE)
1713 kvm->nr_memslot_pages -= old->npages;
1714 else if (change == KVM_MR_CREATE)
1715 kvm->nr_memslot_pages += new->npages;
1716
1717 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1718 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1719 atomic_set(&kvm->nr_memslots_dirty_logging,
1720 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1721 }
1722
1723 kvm_arch_commit_memory_region(kvm, old, new, change);
1724
1725 switch (change) {
1726 case KVM_MR_CREATE:
1727 /* Nothing more to do. */
1728 break;
1729 case KVM_MR_DELETE:
1730 /* Free the old memslot and all its metadata. */
1731 kvm_free_memslot(kvm, old);
1732 break;
1733 case KVM_MR_MOVE:
1734 case KVM_MR_FLAGS_ONLY:
1735 /*
1736 * Free the dirty bitmap as needed; the below check encompasses
1737 * both the flags and whether a ring buffer is being used)
1738 */
1739 if (old->dirty_bitmap && !new->dirty_bitmap)
1740 kvm_destroy_dirty_bitmap(old);
1741
1742 /*
1743 * The final quirk. Free the detached, old slot, but only its
1744 * memory, not any metadata. Metadata, including arch specific
1745 * data, may be reused by @new.
1746 */
1747 kfree(old);
1748 break;
1749 default:
1750 BUG();
1751 }
1752 }
1753
1754 /*
1755 * Activate @new, which must be installed in the inactive slots by the caller,
1756 * by swapping the active slots and then propagating @new to @old once @old is
1757 * unreachable and can be safely modified.
1758 *
1759 * With NULL @old this simply adds @new to @active (while swapping the sets).
1760 * With NULL @new this simply removes @old from @active and frees it
1761 * (while also swapping the sets).
1762 */
1763 static void kvm_activate_memslot(struct kvm *kvm,
1764 struct kvm_memory_slot *old,
1765 struct kvm_memory_slot *new)
1766 {
1767 int as_id = kvm_memslots_get_as_id(old, new);
1768
1769 kvm_swap_active_memslots(kvm, as_id);
1770
1771 /* Propagate the new memslot to the now inactive memslots. */
1772 kvm_replace_memslot(kvm, old, new);
1773 }
1774
1775 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1776 const struct kvm_memory_slot *src)
1777 {
1778 dest->base_gfn = src->base_gfn;
1779 dest->npages = src->npages;
1780 dest->dirty_bitmap = src->dirty_bitmap;
1781 dest->arch = src->arch;
1782 dest->userspace_addr = src->userspace_addr;
1783 dest->flags = src->flags;
1784 dest->id = src->id;
1785 dest->as_id = src->as_id;
1786 }
1787
1788 static void kvm_invalidate_memslot(struct kvm *kvm,
1789 struct kvm_memory_slot *old,
1790 struct kvm_memory_slot *invalid_slot)
1791 {
1792 /*
1793 * Mark the current slot INVALID. As with all memslot modifications,
1794 * this must be done on an unreachable slot to avoid modifying the
1795 * current slot in the active tree.
1796 */
1797 kvm_copy_memslot(invalid_slot, old);
1798 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1799 kvm_replace_memslot(kvm, old, invalid_slot);
1800
1801 /*
1802 * Activate the slot that is now marked INVALID, but don't propagate
1803 * the slot to the now inactive slots. The slot is either going to be
1804 * deleted or recreated as a new slot.
1805 */
1806 kvm_swap_active_memslots(kvm, old->as_id);
1807
1808 /*
1809 * From this point no new shadow pages pointing to a deleted, or moved,
1810 * memslot will be created. Validation of sp->gfn happens in:
1811 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1812 * - kvm_is_visible_gfn (mmu_check_root)
1813 */
1814 kvm_arch_flush_shadow_memslot(kvm, old);
1815 kvm_arch_guest_memory_reclaimed(kvm);
1816
1817 /* Was released by kvm_swap_active_memslots(), reacquire. */
1818 mutex_lock(&kvm->slots_arch_lock);
1819
1820 /*
1821 * Copy the arch-specific field of the newly-installed slot back to the
1822 * old slot as the arch data could have changed between releasing
1823 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1824 * above. Writers are required to retrieve memslots *after* acquiring
1825 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1826 */
1827 old->arch = invalid_slot->arch;
1828 }
1829
1830 static void kvm_create_memslot(struct kvm *kvm,
1831 struct kvm_memory_slot *new)
1832 {
1833 /* Add the new memslot to the inactive set and activate. */
1834 kvm_replace_memslot(kvm, NULL, new);
1835 kvm_activate_memslot(kvm, NULL, new);
1836 }
1837
1838 static void kvm_delete_memslot(struct kvm *kvm,
1839 struct kvm_memory_slot *old,
1840 struct kvm_memory_slot *invalid_slot)
1841 {
1842 /*
1843 * Remove the old memslot (in the inactive memslots) by passing NULL as
1844 * the "new" slot, and for the invalid version in the active slots.
1845 */
1846 kvm_replace_memslot(kvm, old, NULL);
1847 kvm_activate_memslot(kvm, invalid_slot, NULL);
1848 }
1849
1850 static void kvm_move_memslot(struct kvm *kvm,
1851 struct kvm_memory_slot *old,
1852 struct kvm_memory_slot *new,
1853 struct kvm_memory_slot *invalid_slot)
1854 {
1855 /*
1856 * Replace the old memslot in the inactive slots, and then swap slots
1857 * and replace the current INVALID with the new as well.
1858 */
1859 kvm_replace_memslot(kvm, old, new);
1860 kvm_activate_memslot(kvm, invalid_slot, new);
1861 }
1862
1863 static void kvm_update_flags_memslot(struct kvm *kvm,
1864 struct kvm_memory_slot *old,
1865 struct kvm_memory_slot *new)
1866 {
1867 /*
1868 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1869 * an intermediate step. Instead, the old memslot is simply replaced
1870 * with a new, updated copy in both memslot sets.
1871 */
1872 kvm_replace_memslot(kvm, old, new);
1873 kvm_activate_memslot(kvm, old, new);
1874 }
1875
1876 static int kvm_set_memslot(struct kvm *kvm,
1877 struct kvm_memory_slot *old,
1878 struct kvm_memory_slot *new,
1879 enum kvm_mr_change change)
1880 {
1881 struct kvm_memory_slot *invalid_slot;
1882 int r;
1883
1884 /*
1885 * Released in kvm_swap_active_memslots().
1886 *
1887 * Must be held from before the current memslots are copied until after
1888 * the new memslots are installed with rcu_assign_pointer, then
1889 * released before the synchronize srcu in kvm_swap_active_memslots().
1890 *
1891 * When modifying memslots outside of the slots_lock, must be held
1892 * before reading the pointer to the current memslots until after all
1893 * changes to those memslots are complete.
1894 *
1895 * These rules ensure that installing new memslots does not lose
1896 * changes made to the previous memslots.
1897 */
1898 mutex_lock(&kvm->slots_arch_lock);
1899
1900 /*
1901 * Invalidate the old slot if it's being deleted or moved. This is
1902 * done prior to actually deleting/moving the memslot to allow vCPUs to
1903 * continue running by ensuring there are no mappings or shadow pages
1904 * for the memslot when it is deleted/moved. Without pre-invalidation
1905 * (and without a lock), a window would exist between effecting the
1906 * delete/move and committing the changes in arch code where KVM or a
1907 * guest could access a non-existent memslot.
1908 *
1909 * Modifications are done on a temporary, unreachable slot. The old
1910 * slot needs to be preserved in case a later step fails and the
1911 * invalidation needs to be reverted.
1912 */
1913 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1914 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1915 if (!invalid_slot) {
1916 mutex_unlock(&kvm->slots_arch_lock);
1917 return -ENOMEM;
1918 }
1919 kvm_invalidate_memslot(kvm, old, invalid_slot);
1920 }
1921
1922 r = kvm_prepare_memory_region(kvm, old, new, change);
1923 if (r) {
1924 /*
1925 * For DELETE/MOVE, revert the above INVALID change. No
1926 * modifications required since the original slot was preserved
1927 * in the inactive slots. Changing the active memslots also
1928 * release slots_arch_lock.
1929 */
1930 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1931 kvm_activate_memslot(kvm, invalid_slot, old);
1932 kfree(invalid_slot);
1933 } else {
1934 mutex_unlock(&kvm->slots_arch_lock);
1935 }
1936 return r;
1937 }
1938
1939 /*
1940 * For DELETE and MOVE, the working slot is now active as the INVALID
1941 * version of the old slot. MOVE is particularly special as it reuses
1942 * the old slot and returns a copy of the old slot (in working_slot).
1943 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1944 * old slot is detached but otherwise preserved.
1945 */
1946 if (change == KVM_MR_CREATE)
1947 kvm_create_memslot(kvm, new);
1948 else if (change == KVM_MR_DELETE)
1949 kvm_delete_memslot(kvm, old, invalid_slot);
1950 else if (change == KVM_MR_MOVE)
1951 kvm_move_memslot(kvm, old, new, invalid_slot);
1952 else if (change == KVM_MR_FLAGS_ONLY)
1953 kvm_update_flags_memslot(kvm, old, new);
1954 else
1955 BUG();
1956
1957 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1958 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1959 kfree(invalid_slot);
1960
1961 /*
1962 * No need to refresh new->arch, changes after dropping slots_arch_lock
1963 * will directly hit the final, active memslot. Architectures are
1964 * responsible for knowing that new->arch may be stale.
1965 */
1966 kvm_commit_memory_region(kvm, old, new, change);
1967
1968 return 0;
1969 }
1970
1971 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1972 gfn_t start, gfn_t end)
1973 {
1974 struct kvm_memslot_iter iter;
1975
1976 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1977 if (iter.slot->id != id)
1978 return true;
1979 }
1980
1981 return false;
1982 }
1983
1984 /*
1985 * Allocate some memory and give it an address in the guest physical address
1986 * space.
1987 *
1988 * Discontiguous memory is allowed, mostly for framebuffers.
1989 *
1990 * Must be called holding kvm->slots_lock for write.
1991 */
1992 int __kvm_set_memory_region(struct kvm *kvm,
1993 const struct kvm_userspace_memory_region2 *mem)
1994 {
1995 struct kvm_memory_slot *old, *new;
1996 struct kvm_memslots *slots;
1997 enum kvm_mr_change change;
1998 unsigned long npages;
1999 gfn_t base_gfn;
2000 int as_id, id;
2001 int r;
2002
2003 r = check_memory_region_flags(mem);
2004 if (r)
2005 return r;
2006
2007 as_id = mem->slot >> 16;
2008 id = (u16)mem->slot;
2009
2010 /* General sanity checks */
2011 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2012 (mem->memory_size != (unsigned long)mem->memory_size))
2013 return -EINVAL;
2014 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2015 return -EINVAL;
2016 /* We can read the guest memory with __xxx_user() later on. */
2017 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2018 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2019 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2020 mem->memory_size))
2021 return -EINVAL;
2022 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
2023 return -EINVAL;
2024 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2025 return -EINVAL;
2026 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2027 return -EINVAL;
2028
2029 slots = __kvm_memslots(kvm, as_id);
2030
2031 /*
2032 * Note, the old memslot (and the pointer itself!) may be invalidated
2033 * and/or destroyed by kvm_set_memslot().
2034 */
2035 old = id_to_memslot(slots, id);
2036
2037 if (!mem->memory_size) {
2038 if (!old || !old->npages)
2039 return -EINVAL;
2040
2041 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2042 return -EIO;
2043
2044 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2045 }
2046
2047 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2048 npages = (mem->memory_size >> PAGE_SHIFT);
2049
2050 if (!old || !old->npages) {
2051 change = KVM_MR_CREATE;
2052
2053 /*
2054 * To simplify KVM internals, the total number of pages across
2055 * all memslots must fit in an unsigned long.
2056 */
2057 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2058 return -EINVAL;
2059 } else { /* Modify an existing slot. */
2060 if ((mem->userspace_addr != old->userspace_addr) ||
2061 (npages != old->npages) ||
2062 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2063 return -EINVAL;
2064
2065 if (base_gfn != old->base_gfn)
2066 change = KVM_MR_MOVE;
2067 else if (mem->flags != old->flags)
2068 change = KVM_MR_FLAGS_ONLY;
2069 else /* Nothing to change. */
2070 return 0;
2071 }
2072
2073 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2074 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2075 return -EEXIST;
2076
2077 /* Allocate a slot that will persist in the memslot. */
2078 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2079 if (!new)
2080 return -ENOMEM;
2081
2082 new->as_id = as_id;
2083 new->id = id;
2084 new->base_gfn = base_gfn;
2085 new->npages = npages;
2086 new->flags = mem->flags;
2087 new->userspace_addr = mem->userspace_addr;
2088
2089 r = kvm_set_memslot(kvm, old, new, change);
2090 if (r)
2091 kfree(new);
2092 return r;
2093 }
2094 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2095
2096 int kvm_set_memory_region(struct kvm *kvm,
2097 const struct kvm_userspace_memory_region2 *mem)
2098 {
2099 int r;
2100
2101 mutex_lock(&kvm->slots_lock);
2102 r = __kvm_set_memory_region(kvm, mem);
2103 mutex_unlock(&kvm->slots_lock);
2104 return r;
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2107
2108 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2109 struct kvm_userspace_memory_region2 *mem)
2110 {
2111 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2112 return -EINVAL;
2113
2114 return kvm_set_memory_region(kvm, mem);
2115 }
2116
2117 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2118 /**
2119 * kvm_get_dirty_log - get a snapshot of dirty pages
2120 * @kvm: pointer to kvm instance
2121 * @log: slot id and address to which we copy the log
2122 * @is_dirty: set to '1' if any dirty pages were found
2123 * @memslot: set to the associated memslot, always valid on success
2124 */
2125 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2126 int *is_dirty, struct kvm_memory_slot **memslot)
2127 {
2128 struct kvm_memslots *slots;
2129 int i, as_id, id;
2130 unsigned long n;
2131 unsigned long any = 0;
2132
2133 /* Dirty ring tracking may be exclusive to dirty log tracking */
2134 if (!kvm_use_dirty_bitmap(kvm))
2135 return -ENXIO;
2136
2137 *memslot = NULL;
2138 *is_dirty = 0;
2139
2140 as_id = log->slot >> 16;
2141 id = (u16)log->slot;
2142 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2143 return -EINVAL;
2144
2145 slots = __kvm_memslots(kvm, as_id);
2146 *memslot = id_to_memslot(slots, id);
2147 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2148 return -ENOENT;
2149
2150 kvm_arch_sync_dirty_log(kvm, *memslot);
2151
2152 n = kvm_dirty_bitmap_bytes(*memslot);
2153
2154 for (i = 0; !any && i < n/sizeof(long); ++i)
2155 any = (*memslot)->dirty_bitmap[i];
2156
2157 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2158 return -EFAULT;
2159
2160 if (any)
2161 *is_dirty = 1;
2162 return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2165
2166 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2167 /**
2168 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2169 * and reenable dirty page tracking for the corresponding pages.
2170 * @kvm: pointer to kvm instance
2171 * @log: slot id and address to which we copy the log
2172 *
2173 * We need to keep it in mind that VCPU threads can write to the bitmap
2174 * concurrently. So, to avoid losing track of dirty pages we keep the
2175 * following order:
2176 *
2177 * 1. Take a snapshot of the bit and clear it if needed.
2178 * 2. Write protect the corresponding page.
2179 * 3. Copy the snapshot to the userspace.
2180 * 4. Upon return caller flushes TLB's if needed.
2181 *
2182 * Between 2 and 4, the guest may write to the page using the remaining TLB
2183 * entry. This is not a problem because the page is reported dirty using
2184 * the snapshot taken before and step 4 ensures that writes done after
2185 * exiting to userspace will be logged for the next call.
2186 *
2187 */
2188 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2189 {
2190 struct kvm_memslots *slots;
2191 struct kvm_memory_slot *memslot;
2192 int i, as_id, id;
2193 unsigned long n;
2194 unsigned long *dirty_bitmap;
2195 unsigned long *dirty_bitmap_buffer;
2196 bool flush;
2197
2198 /* Dirty ring tracking may be exclusive to dirty log tracking */
2199 if (!kvm_use_dirty_bitmap(kvm))
2200 return -ENXIO;
2201
2202 as_id = log->slot >> 16;
2203 id = (u16)log->slot;
2204 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2205 return -EINVAL;
2206
2207 slots = __kvm_memslots(kvm, as_id);
2208 memslot = id_to_memslot(slots, id);
2209 if (!memslot || !memslot->dirty_bitmap)
2210 return -ENOENT;
2211
2212 dirty_bitmap = memslot->dirty_bitmap;
2213
2214 kvm_arch_sync_dirty_log(kvm, memslot);
2215
2216 n = kvm_dirty_bitmap_bytes(memslot);
2217 flush = false;
2218 if (kvm->manual_dirty_log_protect) {
2219 /*
2220 * Unlike kvm_get_dirty_log, we always return false in *flush,
2221 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2222 * is some code duplication between this function and
2223 * kvm_get_dirty_log, but hopefully all architecture
2224 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2225 * can be eliminated.
2226 */
2227 dirty_bitmap_buffer = dirty_bitmap;
2228 } else {
2229 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2230 memset(dirty_bitmap_buffer, 0, n);
2231
2232 KVM_MMU_LOCK(kvm);
2233 for (i = 0; i < n / sizeof(long); i++) {
2234 unsigned long mask;
2235 gfn_t offset;
2236
2237 if (!dirty_bitmap[i])
2238 continue;
2239
2240 flush = true;
2241 mask = xchg(&dirty_bitmap[i], 0);
2242 dirty_bitmap_buffer[i] = mask;
2243
2244 offset = i * BITS_PER_LONG;
2245 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2246 offset, mask);
2247 }
2248 KVM_MMU_UNLOCK(kvm);
2249 }
2250
2251 if (flush)
2252 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2253
2254 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2255 return -EFAULT;
2256 return 0;
2257 }
2258
2259
2260 /**
2261 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2262 * @kvm: kvm instance
2263 * @log: slot id and address to which we copy the log
2264 *
2265 * Steps 1-4 below provide general overview of dirty page logging. See
2266 * kvm_get_dirty_log_protect() function description for additional details.
2267 *
2268 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2269 * always flush the TLB (step 4) even if previous step failed and the dirty
2270 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2271 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2272 * writes will be marked dirty for next log read.
2273 *
2274 * 1. Take a snapshot of the bit and clear it if needed.
2275 * 2. Write protect the corresponding page.
2276 * 3. Copy the snapshot to the userspace.
2277 * 4. Flush TLB's if needed.
2278 */
2279 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2280 struct kvm_dirty_log *log)
2281 {
2282 int r;
2283
2284 mutex_lock(&kvm->slots_lock);
2285
2286 r = kvm_get_dirty_log_protect(kvm, log);
2287
2288 mutex_unlock(&kvm->slots_lock);
2289 return r;
2290 }
2291
2292 /**
2293 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2294 * and reenable dirty page tracking for the corresponding pages.
2295 * @kvm: pointer to kvm instance
2296 * @log: slot id and address from which to fetch the bitmap of dirty pages
2297 */
2298 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2299 struct kvm_clear_dirty_log *log)
2300 {
2301 struct kvm_memslots *slots;
2302 struct kvm_memory_slot *memslot;
2303 int as_id, id;
2304 gfn_t offset;
2305 unsigned long i, n;
2306 unsigned long *dirty_bitmap;
2307 unsigned long *dirty_bitmap_buffer;
2308 bool flush;
2309
2310 /* Dirty ring tracking may be exclusive to dirty log tracking */
2311 if (!kvm_use_dirty_bitmap(kvm))
2312 return -ENXIO;
2313
2314 as_id = log->slot >> 16;
2315 id = (u16)log->slot;
2316 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2317 return -EINVAL;
2318
2319 if (log->first_page & 63)
2320 return -EINVAL;
2321
2322 slots = __kvm_memslots(kvm, as_id);
2323 memslot = id_to_memslot(slots, id);
2324 if (!memslot || !memslot->dirty_bitmap)
2325 return -ENOENT;
2326
2327 dirty_bitmap = memslot->dirty_bitmap;
2328
2329 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2330
2331 if (log->first_page > memslot->npages ||
2332 log->num_pages > memslot->npages - log->first_page ||
2333 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2334 return -EINVAL;
2335
2336 kvm_arch_sync_dirty_log(kvm, memslot);
2337
2338 flush = false;
2339 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2340 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2341 return -EFAULT;
2342
2343 KVM_MMU_LOCK(kvm);
2344 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2345 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2346 i++, offset += BITS_PER_LONG) {
2347 unsigned long mask = *dirty_bitmap_buffer++;
2348 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2349 if (!mask)
2350 continue;
2351
2352 mask &= atomic_long_fetch_andnot(mask, p);
2353
2354 /*
2355 * mask contains the bits that really have been cleared. This
2356 * never includes any bits beyond the length of the memslot (if
2357 * the length is not aligned to 64 pages), therefore it is not
2358 * a problem if userspace sets them in log->dirty_bitmap.
2359 */
2360 if (mask) {
2361 flush = true;
2362 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2363 offset, mask);
2364 }
2365 }
2366 KVM_MMU_UNLOCK(kvm);
2367
2368 if (flush)
2369 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2370
2371 return 0;
2372 }
2373
2374 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2375 struct kvm_clear_dirty_log *log)
2376 {
2377 int r;
2378
2379 mutex_lock(&kvm->slots_lock);
2380
2381 r = kvm_clear_dirty_log_protect(kvm, log);
2382
2383 mutex_unlock(&kvm->slots_lock);
2384 return r;
2385 }
2386 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2387
2388 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2389 {
2390 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2391 }
2392 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2393
2394 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2395 {
2396 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2397 u64 gen = slots->generation;
2398 struct kvm_memory_slot *slot;
2399
2400 /*
2401 * This also protects against using a memslot from a different address space,
2402 * since different address spaces have different generation numbers.
2403 */
2404 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2405 vcpu->last_used_slot = NULL;
2406 vcpu->last_used_slot_gen = gen;
2407 }
2408
2409 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2410 if (slot)
2411 return slot;
2412
2413 /*
2414 * Fall back to searching all memslots. We purposely use
2415 * search_memslots() instead of __gfn_to_memslot() to avoid
2416 * thrashing the VM-wide last_used_slot in kvm_memslots.
2417 */
2418 slot = search_memslots(slots, gfn, false);
2419 if (slot) {
2420 vcpu->last_used_slot = slot;
2421 return slot;
2422 }
2423
2424 return NULL;
2425 }
2426
2427 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2428 {
2429 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2430
2431 return kvm_is_visible_memslot(memslot);
2432 }
2433 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2434
2435 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2436 {
2437 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2438
2439 return kvm_is_visible_memslot(memslot);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2442
2443 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2444 {
2445 struct vm_area_struct *vma;
2446 unsigned long addr, size;
2447
2448 size = PAGE_SIZE;
2449
2450 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2451 if (kvm_is_error_hva(addr))
2452 return PAGE_SIZE;
2453
2454 mmap_read_lock(current->mm);
2455 vma = find_vma(current->mm, addr);
2456 if (!vma)
2457 goto out;
2458
2459 size = vma_kernel_pagesize(vma);
2460
2461 out:
2462 mmap_read_unlock(current->mm);
2463
2464 return size;
2465 }
2466
2467 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2468 {
2469 return slot->flags & KVM_MEM_READONLY;
2470 }
2471
2472 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2473 gfn_t *nr_pages, bool write)
2474 {
2475 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2476 return KVM_HVA_ERR_BAD;
2477
2478 if (memslot_is_readonly(slot) && write)
2479 return KVM_HVA_ERR_RO_BAD;
2480
2481 if (nr_pages)
2482 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2483
2484 return __gfn_to_hva_memslot(slot, gfn);
2485 }
2486
2487 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2488 gfn_t *nr_pages)
2489 {
2490 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2491 }
2492
2493 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2494 gfn_t gfn)
2495 {
2496 return gfn_to_hva_many(slot, gfn, NULL);
2497 }
2498 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2499
2500 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2501 {
2502 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2503 }
2504 EXPORT_SYMBOL_GPL(gfn_to_hva);
2505
2506 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2507 {
2508 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2511
2512 /*
2513 * Return the hva of a @gfn and the R/W attribute if possible.
2514 *
2515 * @slot: the kvm_memory_slot which contains @gfn
2516 * @gfn: the gfn to be translated
2517 * @writable: used to return the read/write attribute of the @slot if the hva
2518 * is valid and @writable is not NULL
2519 */
2520 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2521 gfn_t gfn, bool *writable)
2522 {
2523 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2524
2525 if (!kvm_is_error_hva(hva) && writable)
2526 *writable = !memslot_is_readonly(slot);
2527
2528 return hva;
2529 }
2530
2531 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2532 {
2533 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2534
2535 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2536 }
2537
2538 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2539 {
2540 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2541
2542 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2543 }
2544
2545 static inline int check_user_page_hwpoison(unsigned long addr)
2546 {
2547 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2548
2549 rc = get_user_pages(addr, 1, flags, NULL);
2550 return rc == -EHWPOISON;
2551 }
2552
2553 /*
2554 * The fast path to get the writable pfn which will be stored in @pfn,
2555 * true indicates success, otherwise false is returned. It's also the
2556 * only part that runs if we can in atomic context.
2557 */
2558 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2559 bool *writable, kvm_pfn_t *pfn)
2560 {
2561 struct page *page[1];
2562
2563 /*
2564 * Fast pin a writable pfn only if it is a write fault request
2565 * or the caller allows to map a writable pfn for a read fault
2566 * request.
2567 */
2568 if (!(write_fault || writable))
2569 return false;
2570
2571 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2572 *pfn = page_to_pfn(page[0]);
2573
2574 if (writable)
2575 *writable = true;
2576 return true;
2577 }
2578
2579 return false;
2580 }
2581
2582 /*
2583 * The slow path to get the pfn of the specified host virtual address,
2584 * 1 indicates success, -errno is returned if error is detected.
2585 */
2586 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2587 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2588 {
2589 /*
2590 * When a VCPU accesses a page that is not mapped into the secondary
2591 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2592 * make progress. We always want to honor NUMA hinting faults in that
2593 * case, because GUP usage corresponds to memory accesses from the VCPU.
2594 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2595 * mapped into the secondary MMU and gets accessed by a VCPU.
2596 *
2597 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2598 * implicitly honor NUMA hinting faults and don't need this flag.
2599 */
2600 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2601 struct page *page;
2602 int npages;
2603
2604 might_sleep();
2605
2606 if (writable)
2607 *writable = write_fault;
2608
2609 if (write_fault)
2610 flags |= FOLL_WRITE;
2611 if (async)
2612 flags |= FOLL_NOWAIT;
2613 if (interruptible)
2614 flags |= FOLL_INTERRUPTIBLE;
2615
2616 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2617 if (npages != 1)
2618 return npages;
2619
2620 /* map read fault as writable if possible */
2621 if (unlikely(!write_fault) && writable) {
2622 struct page *wpage;
2623
2624 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2625 *writable = true;
2626 put_page(page);
2627 page = wpage;
2628 }
2629 }
2630 *pfn = page_to_pfn(page);
2631 return npages;
2632 }
2633
2634 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2635 {
2636 if (unlikely(!(vma->vm_flags & VM_READ)))
2637 return false;
2638
2639 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2640 return false;
2641
2642 return true;
2643 }
2644
2645 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2646 {
2647 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2648
2649 if (!page)
2650 return 1;
2651
2652 return get_page_unless_zero(page);
2653 }
2654
2655 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2656 unsigned long addr, bool write_fault,
2657 bool *writable, kvm_pfn_t *p_pfn)
2658 {
2659 kvm_pfn_t pfn;
2660 pte_t *ptep;
2661 pte_t pte;
2662 spinlock_t *ptl;
2663 int r;
2664
2665 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2666 if (r) {
2667 /*
2668 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2669 * not call the fault handler, so do it here.
2670 */
2671 bool unlocked = false;
2672 r = fixup_user_fault(current->mm, addr,
2673 (write_fault ? FAULT_FLAG_WRITE : 0),
2674 &unlocked);
2675 if (unlocked)
2676 return -EAGAIN;
2677 if (r)
2678 return r;
2679
2680 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2681 if (r)
2682 return r;
2683 }
2684
2685 pte = ptep_get(ptep);
2686
2687 if (write_fault && !pte_write(pte)) {
2688 pfn = KVM_PFN_ERR_RO_FAULT;
2689 goto out;
2690 }
2691
2692 if (writable)
2693 *writable = pte_write(pte);
2694 pfn = pte_pfn(pte);
2695
2696 /*
2697 * Get a reference here because callers of *hva_to_pfn* and
2698 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2699 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2700 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2701 * simply do nothing for reserved pfns.
2702 *
2703 * Whoever called remap_pfn_range is also going to call e.g.
2704 * unmap_mapping_range before the underlying pages are freed,
2705 * causing a call to our MMU notifier.
2706 *
2707 * Certain IO or PFNMAP mappings can be backed with valid
2708 * struct pages, but be allocated without refcounting e.g.,
2709 * tail pages of non-compound higher order allocations, which
2710 * would then underflow the refcount when the caller does the
2711 * required put_page. Don't allow those pages here.
2712 */
2713 if (!kvm_try_get_pfn(pfn))
2714 r = -EFAULT;
2715
2716 out:
2717 pte_unmap_unlock(ptep, ptl);
2718 *p_pfn = pfn;
2719
2720 return r;
2721 }
2722
2723 /*
2724 * Pin guest page in memory and return its pfn.
2725 * @addr: host virtual address which maps memory to the guest
2726 * @atomic: whether this function can sleep
2727 * @interruptible: whether the process can be interrupted by non-fatal signals
2728 * @async: whether this function need to wait IO complete if the
2729 * host page is not in the memory
2730 * @write_fault: whether we should get a writable host page
2731 * @writable: whether it allows to map a writable host page for !@write_fault
2732 *
2733 * The function will map a writable host page for these two cases:
2734 * 1): @write_fault = true
2735 * 2): @write_fault = false && @writable, @writable will tell the caller
2736 * whether the mapping is writable.
2737 */
2738 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2739 bool *async, bool write_fault, bool *writable)
2740 {
2741 struct vm_area_struct *vma;
2742 kvm_pfn_t pfn;
2743 int npages, r;
2744
2745 /* we can do it either atomically or asynchronously, not both */
2746 BUG_ON(atomic && async);
2747
2748 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2749 return pfn;
2750
2751 if (atomic)
2752 return KVM_PFN_ERR_FAULT;
2753
2754 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2755 writable, &pfn);
2756 if (npages == 1)
2757 return pfn;
2758 if (npages == -EINTR)
2759 return KVM_PFN_ERR_SIGPENDING;
2760
2761 mmap_read_lock(current->mm);
2762 if (npages == -EHWPOISON ||
2763 (!async && check_user_page_hwpoison(addr))) {
2764 pfn = KVM_PFN_ERR_HWPOISON;
2765 goto exit;
2766 }
2767
2768 retry:
2769 vma = vma_lookup(current->mm, addr);
2770
2771 if (vma == NULL)
2772 pfn = KVM_PFN_ERR_FAULT;
2773 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2774 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2775 if (r == -EAGAIN)
2776 goto retry;
2777 if (r < 0)
2778 pfn = KVM_PFN_ERR_FAULT;
2779 } else {
2780 if (async && vma_is_valid(vma, write_fault))
2781 *async = true;
2782 pfn = KVM_PFN_ERR_FAULT;
2783 }
2784 exit:
2785 mmap_read_unlock(current->mm);
2786 return pfn;
2787 }
2788
2789 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2790 bool atomic, bool interruptible, bool *async,
2791 bool write_fault, bool *writable, hva_t *hva)
2792 {
2793 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2794
2795 if (hva)
2796 *hva = addr;
2797
2798 if (addr == KVM_HVA_ERR_RO_BAD) {
2799 if (writable)
2800 *writable = false;
2801 return KVM_PFN_ERR_RO_FAULT;
2802 }
2803
2804 if (kvm_is_error_hva(addr)) {
2805 if (writable)
2806 *writable = false;
2807 return KVM_PFN_NOSLOT;
2808 }
2809
2810 /* Do not map writable pfn in the readonly memslot. */
2811 if (writable && memslot_is_readonly(slot)) {
2812 *writable = false;
2813 writable = NULL;
2814 }
2815
2816 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2817 writable);
2818 }
2819 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2820
2821 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2822 bool *writable)
2823 {
2824 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2825 NULL, write_fault, writable, NULL);
2826 }
2827 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2828
2829 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2830 {
2831 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2832 NULL, NULL);
2833 }
2834 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2835
2836 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2837 {
2838 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2839 NULL, NULL);
2840 }
2841 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2842
2843 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2844 {
2845 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2846 }
2847 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2848
2849 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2850 {
2851 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2852 }
2853 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2854
2855 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2856 {
2857 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2860
2861 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2862 struct page **pages, int nr_pages)
2863 {
2864 unsigned long addr;
2865 gfn_t entry = 0;
2866
2867 addr = gfn_to_hva_many(slot, gfn, &entry);
2868 if (kvm_is_error_hva(addr))
2869 return -1;
2870
2871 if (entry < nr_pages)
2872 return 0;
2873
2874 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2875 }
2876 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2877
2878 /*
2879 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2880 * backed by 'struct page'. A valid example is if the backing memslot is
2881 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2882 * been elevated by gfn_to_pfn().
2883 */
2884 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2885 {
2886 struct page *page;
2887 kvm_pfn_t pfn;
2888
2889 pfn = gfn_to_pfn(kvm, gfn);
2890
2891 if (is_error_noslot_pfn(pfn))
2892 return KVM_ERR_PTR_BAD_PAGE;
2893
2894 page = kvm_pfn_to_refcounted_page(pfn);
2895 if (!page)
2896 return KVM_ERR_PTR_BAD_PAGE;
2897
2898 return page;
2899 }
2900 EXPORT_SYMBOL_GPL(gfn_to_page);
2901
2902 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2903 {
2904 if (dirty)
2905 kvm_release_pfn_dirty(pfn);
2906 else
2907 kvm_release_pfn_clean(pfn);
2908 }
2909
2910 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2911 {
2912 kvm_pfn_t pfn;
2913 void *hva = NULL;
2914 struct page *page = KVM_UNMAPPED_PAGE;
2915
2916 if (!map)
2917 return -EINVAL;
2918
2919 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2920 if (is_error_noslot_pfn(pfn))
2921 return -EINVAL;
2922
2923 if (pfn_valid(pfn)) {
2924 page = pfn_to_page(pfn);
2925 hva = kmap(page);
2926 #ifdef CONFIG_HAS_IOMEM
2927 } else {
2928 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2929 #endif
2930 }
2931
2932 if (!hva)
2933 return -EFAULT;
2934
2935 map->page = page;
2936 map->hva = hva;
2937 map->pfn = pfn;
2938 map->gfn = gfn;
2939
2940 return 0;
2941 }
2942 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2943
2944 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2945 {
2946 if (!map)
2947 return;
2948
2949 if (!map->hva)
2950 return;
2951
2952 if (map->page != KVM_UNMAPPED_PAGE)
2953 kunmap(map->page);
2954 #ifdef CONFIG_HAS_IOMEM
2955 else
2956 memunmap(map->hva);
2957 #endif
2958
2959 if (dirty)
2960 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2961
2962 kvm_release_pfn(map->pfn, dirty);
2963
2964 map->hva = NULL;
2965 map->page = NULL;
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2968
2969 static bool kvm_is_ad_tracked_page(struct page *page)
2970 {
2971 /*
2972 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2973 * touched (e.g. set dirty) except by its owner".
2974 */
2975 return !PageReserved(page);
2976 }
2977
2978 static void kvm_set_page_dirty(struct page *page)
2979 {
2980 if (kvm_is_ad_tracked_page(page))
2981 SetPageDirty(page);
2982 }
2983
2984 static void kvm_set_page_accessed(struct page *page)
2985 {
2986 if (kvm_is_ad_tracked_page(page))
2987 mark_page_accessed(page);
2988 }
2989
2990 void kvm_release_page_clean(struct page *page)
2991 {
2992 WARN_ON(is_error_page(page));
2993
2994 kvm_set_page_accessed(page);
2995 put_page(page);
2996 }
2997 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2998
2999 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3000 {
3001 struct page *page;
3002
3003 if (is_error_noslot_pfn(pfn))
3004 return;
3005
3006 page = kvm_pfn_to_refcounted_page(pfn);
3007 if (!page)
3008 return;
3009
3010 kvm_release_page_clean(page);
3011 }
3012 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3013
3014 void kvm_release_page_dirty(struct page *page)
3015 {
3016 WARN_ON(is_error_page(page));
3017
3018 kvm_set_page_dirty(page);
3019 kvm_release_page_clean(page);
3020 }
3021 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3022
3023 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3024 {
3025 struct page *page;
3026
3027 if (is_error_noslot_pfn(pfn))
3028 return;
3029
3030 page = kvm_pfn_to_refcounted_page(pfn);
3031 if (!page)
3032 return;
3033
3034 kvm_release_page_dirty(page);
3035 }
3036 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3037
3038 /*
3039 * Note, checking for an error/noslot pfn is the caller's responsibility when
3040 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3041 * "set" helpers are not to be used when the pfn might point at garbage.
3042 */
3043 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3044 {
3045 if (WARN_ON(is_error_noslot_pfn(pfn)))
3046 return;
3047
3048 if (pfn_valid(pfn))
3049 kvm_set_page_dirty(pfn_to_page(pfn));
3050 }
3051 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3052
3053 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3054 {
3055 if (WARN_ON(is_error_noslot_pfn(pfn)))
3056 return;
3057
3058 if (pfn_valid(pfn))
3059 kvm_set_page_accessed(pfn_to_page(pfn));
3060 }
3061 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3062
3063 static int next_segment(unsigned long len, int offset)
3064 {
3065 if (len > PAGE_SIZE - offset)
3066 return PAGE_SIZE - offset;
3067 else
3068 return len;
3069 }
3070
3071 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3072 void *data, int offset, int len)
3073 {
3074 int r;
3075 unsigned long addr;
3076
3077 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3078 if (kvm_is_error_hva(addr))
3079 return -EFAULT;
3080 r = __copy_from_user(data, (void __user *)addr + offset, len);
3081 if (r)
3082 return -EFAULT;
3083 return 0;
3084 }
3085
3086 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3087 int len)
3088 {
3089 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3090
3091 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3092 }
3093 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3094
3095 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3096 int offset, int len)
3097 {
3098 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3099
3100 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3103
3104 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3105 {
3106 gfn_t gfn = gpa >> PAGE_SHIFT;
3107 int seg;
3108 int offset = offset_in_page(gpa);
3109 int ret;
3110
3111 while ((seg = next_segment(len, offset)) != 0) {
3112 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3113 if (ret < 0)
3114 return ret;
3115 offset = 0;
3116 len -= seg;
3117 data += seg;
3118 ++gfn;
3119 }
3120 return 0;
3121 }
3122 EXPORT_SYMBOL_GPL(kvm_read_guest);
3123
3124 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3125 {
3126 gfn_t gfn = gpa >> PAGE_SHIFT;
3127 int seg;
3128 int offset = offset_in_page(gpa);
3129 int ret;
3130
3131 while ((seg = next_segment(len, offset)) != 0) {
3132 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3133 if (ret < 0)
3134 return ret;
3135 offset = 0;
3136 len -= seg;
3137 data += seg;
3138 ++gfn;
3139 }
3140 return 0;
3141 }
3142 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3143
3144 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3145 void *data, int offset, unsigned long len)
3146 {
3147 int r;
3148 unsigned long addr;
3149
3150 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3151 if (kvm_is_error_hva(addr))
3152 return -EFAULT;
3153 pagefault_disable();
3154 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3155 pagefault_enable();
3156 if (r)
3157 return -EFAULT;
3158 return 0;
3159 }
3160
3161 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3162 void *data, unsigned long len)
3163 {
3164 gfn_t gfn = gpa >> PAGE_SHIFT;
3165 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3166 int offset = offset_in_page(gpa);
3167
3168 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3169 }
3170 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3171
3172 static int __kvm_write_guest_page(struct kvm *kvm,
3173 struct kvm_memory_slot *memslot, gfn_t gfn,
3174 const void *data, int offset, int len)
3175 {
3176 int r;
3177 unsigned long addr;
3178
3179 addr = gfn_to_hva_memslot(memslot, gfn);
3180 if (kvm_is_error_hva(addr))
3181 return -EFAULT;
3182 r = __copy_to_user((void __user *)addr + offset, data, len);
3183 if (r)
3184 return -EFAULT;
3185 mark_page_dirty_in_slot(kvm, memslot, gfn);
3186 return 0;
3187 }
3188
3189 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3190 const void *data, int offset, int len)
3191 {
3192 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3193
3194 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3195 }
3196 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3197
3198 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3199 const void *data, int offset, int len)
3200 {
3201 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3202
3203 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3204 }
3205 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3206
3207 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3208 unsigned long len)
3209 {
3210 gfn_t gfn = gpa >> PAGE_SHIFT;
3211 int seg;
3212 int offset = offset_in_page(gpa);
3213 int ret;
3214
3215 while ((seg = next_segment(len, offset)) != 0) {
3216 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3217 if (ret < 0)
3218 return ret;
3219 offset = 0;
3220 len -= seg;
3221 data += seg;
3222 ++gfn;
3223 }
3224 return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(kvm_write_guest);
3227
3228 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3229 unsigned long len)
3230 {
3231 gfn_t gfn = gpa >> PAGE_SHIFT;
3232 int seg;
3233 int offset = offset_in_page(gpa);
3234 int ret;
3235
3236 while ((seg = next_segment(len, offset)) != 0) {
3237 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3238 if (ret < 0)
3239 return ret;
3240 offset = 0;
3241 len -= seg;
3242 data += seg;
3243 ++gfn;
3244 }
3245 return 0;
3246 }
3247 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3248
3249 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3250 struct gfn_to_hva_cache *ghc,
3251 gpa_t gpa, unsigned long len)
3252 {
3253 int offset = offset_in_page(gpa);
3254 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3255 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3256 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3257 gfn_t nr_pages_avail;
3258
3259 /* Update ghc->generation before performing any error checks. */
3260 ghc->generation = slots->generation;
3261
3262 if (start_gfn > end_gfn) {
3263 ghc->hva = KVM_HVA_ERR_BAD;
3264 return -EINVAL;
3265 }
3266
3267 /*
3268 * If the requested region crosses two memslots, we still
3269 * verify that the entire region is valid here.
3270 */
3271 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3272 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3273 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3274 &nr_pages_avail);
3275 if (kvm_is_error_hva(ghc->hva))
3276 return -EFAULT;
3277 }
3278
3279 /* Use the slow path for cross page reads and writes. */
3280 if (nr_pages_needed == 1)
3281 ghc->hva += offset;
3282 else
3283 ghc->memslot = NULL;
3284
3285 ghc->gpa = gpa;
3286 ghc->len = len;
3287 return 0;
3288 }
3289
3290 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3291 gpa_t gpa, unsigned long len)
3292 {
3293 struct kvm_memslots *slots = kvm_memslots(kvm);
3294 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3297
3298 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3299 void *data, unsigned int offset,
3300 unsigned long len)
3301 {
3302 struct kvm_memslots *slots = kvm_memslots(kvm);
3303 int r;
3304 gpa_t gpa = ghc->gpa + offset;
3305
3306 if (WARN_ON_ONCE(len + offset > ghc->len))
3307 return -EINVAL;
3308
3309 if (slots->generation != ghc->generation) {
3310 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3311 return -EFAULT;
3312 }
3313
3314 if (kvm_is_error_hva(ghc->hva))
3315 return -EFAULT;
3316
3317 if (unlikely(!ghc->memslot))
3318 return kvm_write_guest(kvm, gpa, data, len);
3319
3320 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3321 if (r)
3322 return -EFAULT;
3323 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3324
3325 return 0;
3326 }
3327 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3328
3329 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3330 void *data, unsigned long len)
3331 {
3332 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3333 }
3334 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3335
3336 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3337 void *data, unsigned int offset,
3338 unsigned long len)
3339 {
3340 struct kvm_memslots *slots = kvm_memslots(kvm);
3341 int r;
3342 gpa_t gpa = ghc->gpa + offset;
3343
3344 if (WARN_ON_ONCE(len + offset > ghc->len))
3345 return -EINVAL;
3346
3347 if (slots->generation != ghc->generation) {
3348 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3349 return -EFAULT;
3350 }
3351
3352 if (kvm_is_error_hva(ghc->hva))
3353 return -EFAULT;
3354
3355 if (unlikely(!ghc->memslot))
3356 return kvm_read_guest(kvm, gpa, data, len);
3357
3358 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3359 if (r)
3360 return -EFAULT;
3361
3362 return 0;
3363 }
3364 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3365
3366 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3367 void *data, unsigned long len)
3368 {
3369 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3370 }
3371 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3372
3373 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3374 {
3375 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3376 gfn_t gfn = gpa >> PAGE_SHIFT;
3377 int seg;
3378 int offset = offset_in_page(gpa);
3379 int ret;
3380
3381 while ((seg = next_segment(len, offset)) != 0) {
3382 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3383 if (ret < 0)
3384 return ret;
3385 offset = 0;
3386 len -= seg;
3387 ++gfn;
3388 }
3389 return 0;
3390 }
3391 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3392
3393 void mark_page_dirty_in_slot(struct kvm *kvm,
3394 const struct kvm_memory_slot *memslot,
3395 gfn_t gfn)
3396 {
3397 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3398
3399 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3400 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3401 return;
3402
3403 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3404 #endif
3405
3406 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3407 unsigned long rel_gfn = gfn - memslot->base_gfn;
3408 u32 slot = (memslot->as_id << 16) | memslot->id;
3409
3410 if (kvm->dirty_ring_size && vcpu)
3411 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3412 else if (memslot->dirty_bitmap)
3413 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3414 }
3415 }
3416 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3417
3418 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3419 {
3420 struct kvm_memory_slot *memslot;
3421
3422 memslot = gfn_to_memslot(kvm, gfn);
3423 mark_page_dirty_in_slot(kvm, memslot, gfn);
3424 }
3425 EXPORT_SYMBOL_GPL(mark_page_dirty);
3426
3427 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3428 {
3429 struct kvm_memory_slot *memslot;
3430
3431 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3432 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3433 }
3434 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3435
3436 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3437 {
3438 if (!vcpu->sigset_active)
3439 return;
3440
3441 /*
3442 * This does a lockless modification of ->real_blocked, which is fine
3443 * because, only current can change ->real_blocked and all readers of
3444 * ->real_blocked don't care as long ->real_blocked is always a subset
3445 * of ->blocked.
3446 */
3447 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3448 }
3449
3450 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3451 {
3452 if (!vcpu->sigset_active)
3453 return;
3454
3455 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3456 sigemptyset(&current->real_blocked);
3457 }
3458
3459 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3460 {
3461 unsigned int old, val, grow, grow_start;
3462
3463 old = val = vcpu->halt_poll_ns;
3464 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3465 grow = READ_ONCE(halt_poll_ns_grow);
3466 if (!grow)
3467 goto out;
3468
3469 val *= grow;
3470 if (val < grow_start)
3471 val = grow_start;
3472
3473 vcpu->halt_poll_ns = val;
3474 out:
3475 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3476 }
3477
3478 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3479 {
3480 unsigned int old, val, shrink, grow_start;
3481
3482 old = val = vcpu->halt_poll_ns;
3483 shrink = READ_ONCE(halt_poll_ns_shrink);
3484 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3485 if (shrink == 0)
3486 val = 0;
3487 else
3488 val /= shrink;
3489
3490 if (val < grow_start)
3491 val = 0;
3492
3493 vcpu->halt_poll_ns = val;
3494 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3495 }
3496
3497 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3498 {
3499 int ret = -EINTR;
3500 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3501
3502 if (kvm_arch_vcpu_runnable(vcpu))
3503 goto out;
3504 if (kvm_cpu_has_pending_timer(vcpu))
3505 goto out;
3506 if (signal_pending(current))
3507 goto out;
3508 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3509 goto out;
3510
3511 ret = 0;
3512 out:
3513 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3514 return ret;
3515 }
3516
3517 /*
3518 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3519 * pending. This is mostly used when halting a vCPU, but may also be used
3520 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3521 */
3522 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3523 {
3524 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3525 bool waited = false;
3526
3527 vcpu->stat.generic.blocking = 1;
3528
3529 preempt_disable();
3530 kvm_arch_vcpu_blocking(vcpu);
3531 prepare_to_rcuwait(wait);
3532 preempt_enable();
3533
3534 for (;;) {
3535 set_current_state(TASK_INTERRUPTIBLE);
3536
3537 if (kvm_vcpu_check_block(vcpu) < 0)
3538 break;
3539
3540 waited = true;
3541 schedule();
3542 }
3543
3544 preempt_disable();
3545 finish_rcuwait(wait);
3546 kvm_arch_vcpu_unblocking(vcpu);
3547 preempt_enable();
3548
3549 vcpu->stat.generic.blocking = 0;
3550
3551 return waited;
3552 }
3553
3554 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3555 ktime_t end, bool success)
3556 {
3557 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3558 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3559
3560 ++vcpu->stat.generic.halt_attempted_poll;
3561
3562 if (success) {
3563 ++vcpu->stat.generic.halt_successful_poll;
3564
3565 if (!vcpu_valid_wakeup(vcpu))
3566 ++vcpu->stat.generic.halt_poll_invalid;
3567
3568 stats->halt_poll_success_ns += poll_ns;
3569 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3570 } else {
3571 stats->halt_poll_fail_ns += poll_ns;
3572 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3573 }
3574 }
3575
3576 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3577 {
3578 struct kvm *kvm = vcpu->kvm;
3579
3580 if (kvm->override_halt_poll_ns) {
3581 /*
3582 * Ensure kvm->max_halt_poll_ns is not read before
3583 * kvm->override_halt_poll_ns.
3584 *
3585 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3586 */
3587 smp_rmb();
3588 return READ_ONCE(kvm->max_halt_poll_ns);
3589 }
3590
3591 return READ_ONCE(halt_poll_ns);
3592 }
3593
3594 /*
3595 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3596 * polling is enabled, busy wait for a short time before blocking to avoid the
3597 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3598 * is halted.
3599 */
3600 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3601 {
3602 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3603 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3604 ktime_t start, cur, poll_end;
3605 bool waited = false;
3606 bool do_halt_poll;
3607 u64 halt_ns;
3608
3609 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3610 vcpu->halt_poll_ns = max_halt_poll_ns;
3611
3612 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3613
3614 start = cur = poll_end = ktime_get();
3615 if (do_halt_poll) {
3616 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3617
3618 do {
3619 if (kvm_vcpu_check_block(vcpu) < 0)
3620 goto out;
3621 cpu_relax();
3622 poll_end = cur = ktime_get();
3623 } while (kvm_vcpu_can_poll(cur, stop));
3624 }
3625
3626 waited = kvm_vcpu_block(vcpu);
3627
3628 cur = ktime_get();
3629 if (waited) {
3630 vcpu->stat.generic.halt_wait_ns +=
3631 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3632 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3633 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3634 }
3635 out:
3636 /* The total time the vCPU was "halted", including polling time. */
3637 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3638
3639 /*
3640 * Note, halt-polling is considered successful so long as the vCPU was
3641 * never actually scheduled out, i.e. even if the wake event arrived
3642 * after of the halt-polling loop itself, but before the full wait.
3643 */
3644 if (do_halt_poll)
3645 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3646
3647 if (halt_poll_allowed) {
3648 /* Recompute the max halt poll time in case it changed. */
3649 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3650
3651 if (!vcpu_valid_wakeup(vcpu)) {
3652 shrink_halt_poll_ns(vcpu);
3653 } else if (max_halt_poll_ns) {
3654 if (halt_ns <= vcpu->halt_poll_ns)
3655 ;
3656 /* we had a long block, shrink polling */
3657 else if (vcpu->halt_poll_ns &&
3658 halt_ns > max_halt_poll_ns)
3659 shrink_halt_poll_ns(vcpu);
3660 /* we had a short halt and our poll time is too small */
3661 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3662 halt_ns < max_halt_poll_ns)
3663 grow_halt_poll_ns(vcpu);
3664 } else {
3665 vcpu->halt_poll_ns = 0;
3666 }
3667 }
3668
3669 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3670 }
3671 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3672
3673 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3674 {
3675 if (__kvm_vcpu_wake_up(vcpu)) {
3676 WRITE_ONCE(vcpu->ready, true);
3677 ++vcpu->stat.generic.halt_wakeup;
3678 return true;
3679 }
3680
3681 return false;
3682 }
3683 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3684
3685 #ifndef CONFIG_S390
3686 /*
3687 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3688 */
3689 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3690 {
3691 int me, cpu;
3692
3693 if (kvm_vcpu_wake_up(vcpu))
3694 return;
3695
3696 me = get_cpu();
3697 /*
3698 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3699 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3700 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3701 * within the vCPU thread itself.
3702 */
3703 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3704 if (vcpu->mode == IN_GUEST_MODE)
3705 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3706 goto out;
3707 }
3708
3709 /*
3710 * Note, the vCPU could get migrated to a different pCPU at any point
3711 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3712 * IPI to the previous pCPU. But, that's ok because the purpose of the
3713 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3714 * vCPU also requires it to leave IN_GUEST_MODE.
3715 */
3716 if (kvm_arch_vcpu_should_kick(vcpu)) {
3717 cpu = READ_ONCE(vcpu->cpu);
3718 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3719 smp_send_reschedule(cpu);
3720 }
3721 out:
3722 put_cpu();
3723 }
3724 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3725 #endif /* !CONFIG_S390 */
3726
3727 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3728 {
3729 struct pid *pid;
3730 struct task_struct *task = NULL;
3731 int ret = 0;
3732
3733 rcu_read_lock();
3734 pid = rcu_dereference(target->pid);
3735 if (pid)
3736 task = get_pid_task(pid, PIDTYPE_PID);
3737 rcu_read_unlock();
3738 if (!task)
3739 return ret;
3740 ret = yield_to(task, 1);
3741 put_task_struct(task);
3742
3743 return ret;
3744 }
3745 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3746
3747 /*
3748 * Helper that checks whether a VCPU is eligible for directed yield.
3749 * Most eligible candidate to yield is decided by following heuristics:
3750 *
3751 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3752 * (preempted lock holder), indicated by @in_spin_loop.
3753 * Set at the beginning and cleared at the end of interception/PLE handler.
3754 *
3755 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3756 * chance last time (mostly it has become eligible now since we have probably
3757 * yielded to lockholder in last iteration. This is done by toggling
3758 * @dy_eligible each time a VCPU checked for eligibility.)
3759 *
3760 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3761 * to preempted lock-holder could result in wrong VCPU selection and CPU
3762 * burning. Giving priority for a potential lock-holder increases lock
3763 * progress.
3764 *
3765 * Since algorithm is based on heuristics, accessing another VCPU data without
3766 * locking does not harm. It may result in trying to yield to same VCPU, fail
3767 * and continue with next VCPU and so on.
3768 */
3769 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3770 {
3771 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3772 bool eligible;
3773
3774 eligible = !vcpu->spin_loop.in_spin_loop ||
3775 vcpu->spin_loop.dy_eligible;
3776
3777 if (vcpu->spin_loop.in_spin_loop)
3778 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3779
3780 return eligible;
3781 #else
3782 return true;
3783 #endif
3784 }
3785
3786 /*
3787 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3788 * a vcpu_load/vcpu_put pair. However, for most architectures
3789 * kvm_arch_vcpu_runnable does not require vcpu_load.
3790 */
3791 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3792 {
3793 return kvm_arch_vcpu_runnable(vcpu);
3794 }
3795
3796 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3797 {
3798 if (kvm_arch_dy_runnable(vcpu))
3799 return true;
3800
3801 #ifdef CONFIG_KVM_ASYNC_PF
3802 if (!list_empty_careful(&vcpu->async_pf.done))
3803 return true;
3804 #endif
3805
3806 return false;
3807 }
3808
3809 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3810 {
3811 return false;
3812 }
3813
3814 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3815 {
3816 struct kvm *kvm = me->kvm;
3817 struct kvm_vcpu *vcpu;
3818 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3819 unsigned long i;
3820 int yielded = 0;
3821 int try = 3;
3822 int pass;
3823
3824 kvm_vcpu_set_in_spin_loop(me, true);
3825 /*
3826 * We boost the priority of a VCPU that is runnable but not
3827 * currently running, because it got preempted by something
3828 * else and called schedule in __vcpu_run. Hopefully that
3829 * VCPU is holding the lock that we need and will release it.
3830 * We approximate round-robin by starting at the last boosted VCPU.
3831 */
3832 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3833 kvm_for_each_vcpu(i, vcpu, kvm) {
3834 if (!pass && i <= last_boosted_vcpu) {
3835 i = last_boosted_vcpu;
3836 continue;
3837 } else if (pass && i > last_boosted_vcpu)
3838 break;
3839 if (!READ_ONCE(vcpu->ready))
3840 continue;
3841 if (vcpu == me)
3842 continue;
3843 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3844 continue;
3845 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3846 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3847 !kvm_arch_vcpu_in_kernel(vcpu))
3848 continue;
3849 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3850 continue;
3851
3852 yielded = kvm_vcpu_yield_to(vcpu);
3853 if (yielded > 0) {
3854 kvm->last_boosted_vcpu = i;
3855 break;
3856 } else if (yielded < 0) {
3857 try--;
3858 if (!try)
3859 break;
3860 }
3861 }
3862 }
3863 kvm_vcpu_set_in_spin_loop(me, false);
3864
3865 /* Ensure vcpu is not eligible during next spinloop */
3866 kvm_vcpu_set_dy_eligible(me, false);
3867 }
3868 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3869
3870 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3871 {
3872 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3873 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3874 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3875 kvm->dirty_ring_size / PAGE_SIZE);
3876 #else
3877 return false;
3878 #endif
3879 }
3880
3881 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3882 {
3883 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3884 struct page *page;
3885
3886 if (vmf->pgoff == 0)
3887 page = virt_to_page(vcpu->run);
3888 #ifdef CONFIG_X86
3889 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3890 page = virt_to_page(vcpu->arch.pio_data);
3891 #endif
3892 #ifdef CONFIG_KVM_MMIO
3893 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3894 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3895 #endif
3896 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3897 page = kvm_dirty_ring_get_page(
3898 &vcpu->dirty_ring,
3899 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3900 else
3901 return kvm_arch_vcpu_fault(vcpu, vmf);
3902 get_page(page);
3903 vmf->page = page;
3904 return 0;
3905 }
3906
3907 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3908 .fault = kvm_vcpu_fault,
3909 };
3910
3911 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3912 {
3913 struct kvm_vcpu *vcpu = file->private_data;
3914 unsigned long pages = vma_pages(vma);
3915
3916 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3917 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3918 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3919 return -EINVAL;
3920
3921 vma->vm_ops = &kvm_vcpu_vm_ops;
3922 return 0;
3923 }
3924
3925 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3926 {
3927 struct kvm_vcpu *vcpu = filp->private_data;
3928
3929 kvm_put_kvm(vcpu->kvm);
3930 return 0;
3931 }
3932
3933 static const struct file_operations kvm_vcpu_fops = {
3934 .release = kvm_vcpu_release,
3935 .unlocked_ioctl = kvm_vcpu_ioctl,
3936 .mmap = kvm_vcpu_mmap,
3937 .llseek = noop_llseek,
3938 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3939 };
3940
3941 /*
3942 * Allocates an inode for the vcpu.
3943 */
3944 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3945 {
3946 char name[8 + 1 + ITOA_MAX_LEN + 1];
3947
3948 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3949 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3950 }
3951
3952 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3953 static int vcpu_get_pid(void *data, u64 *val)
3954 {
3955 struct kvm_vcpu *vcpu = data;
3956
3957 rcu_read_lock();
3958 *val = pid_nr(rcu_dereference(vcpu->pid));
3959 rcu_read_unlock();
3960 return 0;
3961 }
3962
3963 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3964
3965 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3966 {
3967 struct dentry *debugfs_dentry;
3968 char dir_name[ITOA_MAX_LEN * 2];
3969
3970 if (!debugfs_initialized())
3971 return;
3972
3973 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3974 debugfs_dentry = debugfs_create_dir(dir_name,
3975 vcpu->kvm->debugfs_dentry);
3976 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3977 &vcpu_get_pid_fops);
3978
3979 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3980 }
3981 #endif
3982
3983 /*
3984 * Creates some virtual cpus. Good luck creating more than one.
3985 */
3986 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3987 {
3988 int r;
3989 struct kvm_vcpu *vcpu;
3990 struct page *page;
3991
3992 if (id >= KVM_MAX_VCPU_IDS)
3993 return -EINVAL;
3994
3995 mutex_lock(&kvm->lock);
3996 if (kvm->created_vcpus >= kvm->max_vcpus) {
3997 mutex_unlock(&kvm->lock);
3998 return -EINVAL;
3999 }
4000
4001 r = kvm_arch_vcpu_precreate(kvm, id);
4002 if (r) {
4003 mutex_unlock(&kvm->lock);
4004 return r;
4005 }
4006
4007 kvm->created_vcpus++;
4008 mutex_unlock(&kvm->lock);
4009
4010 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4011 if (!vcpu) {
4012 r = -ENOMEM;
4013 goto vcpu_decrement;
4014 }
4015
4016 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4017 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4018 if (!page) {
4019 r = -ENOMEM;
4020 goto vcpu_free;
4021 }
4022 vcpu->run = page_address(page);
4023
4024 kvm_vcpu_init(vcpu, kvm, id);
4025
4026 r = kvm_arch_vcpu_create(vcpu);
4027 if (r)
4028 goto vcpu_free_run_page;
4029
4030 if (kvm->dirty_ring_size) {
4031 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4032 id, kvm->dirty_ring_size);
4033 if (r)
4034 goto arch_vcpu_destroy;
4035 }
4036
4037 mutex_lock(&kvm->lock);
4038
4039 #ifdef CONFIG_LOCKDEP
4040 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4041 mutex_lock(&vcpu->mutex);
4042 mutex_unlock(&vcpu->mutex);
4043 #endif
4044
4045 if (kvm_get_vcpu_by_id(kvm, id)) {
4046 r = -EEXIST;
4047 goto unlock_vcpu_destroy;
4048 }
4049
4050 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4051 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4052 if (r)
4053 goto unlock_vcpu_destroy;
4054
4055 /* Now it's all set up, let userspace reach it */
4056 kvm_get_kvm(kvm);
4057 r = create_vcpu_fd(vcpu);
4058 if (r < 0)
4059 goto kvm_put_xa_release;
4060
4061 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4062 r = -EINVAL;
4063 goto kvm_put_xa_release;
4064 }
4065
4066 /*
4067 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4068 * pointer before kvm->online_vcpu's incremented value.
4069 */
4070 smp_wmb();
4071 atomic_inc(&kvm->online_vcpus);
4072
4073 mutex_unlock(&kvm->lock);
4074 kvm_arch_vcpu_postcreate(vcpu);
4075 kvm_create_vcpu_debugfs(vcpu);
4076 return r;
4077
4078 kvm_put_xa_release:
4079 kvm_put_kvm_no_destroy(kvm);
4080 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4081 unlock_vcpu_destroy:
4082 mutex_unlock(&kvm->lock);
4083 kvm_dirty_ring_free(&vcpu->dirty_ring);
4084 arch_vcpu_destroy:
4085 kvm_arch_vcpu_destroy(vcpu);
4086 vcpu_free_run_page:
4087 free_page((unsigned long)vcpu->run);
4088 vcpu_free:
4089 kmem_cache_free(kvm_vcpu_cache, vcpu);
4090 vcpu_decrement:
4091 mutex_lock(&kvm->lock);
4092 kvm->created_vcpus--;
4093 mutex_unlock(&kvm->lock);
4094 return r;
4095 }
4096
4097 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4098 {
4099 if (sigset) {
4100 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4101 vcpu->sigset_active = 1;
4102 vcpu->sigset = *sigset;
4103 } else
4104 vcpu->sigset_active = 0;
4105 return 0;
4106 }
4107
4108 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4109 size_t size, loff_t *offset)
4110 {
4111 struct kvm_vcpu *vcpu = file->private_data;
4112
4113 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4114 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4115 sizeof(vcpu->stat), user_buffer, size, offset);
4116 }
4117
4118 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4119 {
4120 struct kvm_vcpu *vcpu = file->private_data;
4121
4122 kvm_put_kvm(vcpu->kvm);
4123 return 0;
4124 }
4125
4126 static const struct file_operations kvm_vcpu_stats_fops = {
4127 .read = kvm_vcpu_stats_read,
4128 .release = kvm_vcpu_stats_release,
4129 .llseek = noop_llseek,
4130 };
4131
4132 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4133 {
4134 int fd;
4135 struct file *file;
4136 char name[15 + ITOA_MAX_LEN + 1];
4137
4138 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4139
4140 fd = get_unused_fd_flags(O_CLOEXEC);
4141 if (fd < 0)
4142 return fd;
4143
4144 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4145 if (IS_ERR(file)) {
4146 put_unused_fd(fd);
4147 return PTR_ERR(file);
4148 }
4149
4150 kvm_get_kvm(vcpu->kvm);
4151
4152 file->f_mode |= FMODE_PREAD;
4153 fd_install(fd, file);
4154
4155 return fd;
4156 }
4157
4158 static long kvm_vcpu_ioctl(struct file *filp,
4159 unsigned int ioctl, unsigned long arg)
4160 {
4161 struct kvm_vcpu *vcpu = filp->private_data;
4162 void __user *argp = (void __user *)arg;
4163 int r;
4164 struct kvm_fpu *fpu = NULL;
4165 struct kvm_sregs *kvm_sregs = NULL;
4166
4167 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4168 return -EIO;
4169
4170 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4171 return -EINVAL;
4172
4173 /*
4174 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4175 * execution; mutex_lock() would break them.
4176 */
4177 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4178 if (r != -ENOIOCTLCMD)
4179 return r;
4180
4181 if (mutex_lock_killable(&vcpu->mutex))
4182 return -EINTR;
4183 switch (ioctl) {
4184 case KVM_RUN: {
4185 struct pid *oldpid;
4186 r = -EINVAL;
4187 if (arg)
4188 goto out;
4189 oldpid = rcu_access_pointer(vcpu->pid);
4190 if (unlikely(oldpid != task_pid(current))) {
4191 /* The thread running this VCPU changed. */
4192 struct pid *newpid;
4193
4194 r = kvm_arch_vcpu_run_pid_change(vcpu);
4195 if (r)
4196 break;
4197
4198 newpid = get_task_pid(current, PIDTYPE_PID);
4199 rcu_assign_pointer(vcpu->pid, newpid);
4200 if (oldpid)
4201 synchronize_rcu();
4202 put_pid(oldpid);
4203 }
4204 r = kvm_arch_vcpu_ioctl_run(vcpu);
4205 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4206 break;
4207 }
4208 case KVM_GET_REGS: {
4209 struct kvm_regs *kvm_regs;
4210
4211 r = -ENOMEM;
4212 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4213 if (!kvm_regs)
4214 goto out;
4215 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4216 if (r)
4217 goto out_free1;
4218 r = -EFAULT;
4219 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4220 goto out_free1;
4221 r = 0;
4222 out_free1:
4223 kfree(kvm_regs);
4224 break;
4225 }
4226 case KVM_SET_REGS: {
4227 struct kvm_regs *kvm_regs;
4228
4229 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4230 if (IS_ERR(kvm_regs)) {
4231 r = PTR_ERR(kvm_regs);
4232 goto out;
4233 }
4234 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4235 kfree(kvm_regs);
4236 break;
4237 }
4238 case KVM_GET_SREGS: {
4239 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4240 GFP_KERNEL_ACCOUNT);
4241 r = -ENOMEM;
4242 if (!kvm_sregs)
4243 goto out;
4244 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4245 if (r)
4246 goto out;
4247 r = -EFAULT;
4248 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4249 goto out;
4250 r = 0;
4251 break;
4252 }
4253 case KVM_SET_SREGS: {
4254 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4255 if (IS_ERR(kvm_sregs)) {
4256 r = PTR_ERR(kvm_sregs);
4257 kvm_sregs = NULL;
4258 goto out;
4259 }
4260 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4261 break;
4262 }
4263 case KVM_GET_MP_STATE: {
4264 struct kvm_mp_state mp_state;
4265
4266 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4267 if (r)
4268 goto out;
4269 r = -EFAULT;
4270 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4271 goto out;
4272 r = 0;
4273 break;
4274 }
4275 case KVM_SET_MP_STATE: {
4276 struct kvm_mp_state mp_state;
4277
4278 r = -EFAULT;
4279 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4280 goto out;
4281 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4282 break;
4283 }
4284 case KVM_TRANSLATE: {
4285 struct kvm_translation tr;
4286
4287 r = -EFAULT;
4288 if (copy_from_user(&tr, argp, sizeof(tr)))
4289 goto out;
4290 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4291 if (r)
4292 goto out;
4293 r = -EFAULT;
4294 if (copy_to_user(argp, &tr, sizeof(tr)))
4295 goto out;
4296 r = 0;
4297 break;
4298 }
4299 case KVM_SET_GUEST_DEBUG: {
4300 struct kvm_guest_debug dbg;
4301
4302 r = -EFAULT;
4303 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4304 goto out;
4305 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4306 break;
4307 }
4308 case KVM_SET_SIGNAL_MASK: {
4309 struct kvm_signal_mask __user *sigmask_arg = argp;
4310 struct kvm_signal_mask kvm_sigmask;
4311 sigset_t sigset, *p;
4312
4313 p = NULL;
4314 if (argp) {
4315 r = -EFAULT;
4316 if (copy_from_user(&kvm_sigmask, argp,
4317 sizeof(kvm_sigmask)))
4318 goto out;
4319 r = -EINVAL;
4320 if (kvm_sigmask.len != sizeof(sigset))
4321 goto out;
4322 r = -EFAULT;
4323 if (copy_from_user(&sigset, sigmask_arg->sigset,
4324 sizeof(sigset)))
4325 goto out;
4326 p = &sigset;
4327 }
4328 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4329 break;
4330 }
4331 case KVM_GET_FPU: {
4332 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4333 r = -ENOMEM;
4334 if (!fpu)
4335 goto out;
4336 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4337 if (r)
4338 goto out;
4339 r = -EFAULT;
4340 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4341 goto out;
4342 r = 0;
4343 break;
4344 }
4345 case KVM_SET_FPU: {
4346 fpu = memdup_user(argp, sizeof(*fpu));
4347 if (IS_ERR(fpu)) {
4348 r = PTR_ERR(fpu);
4349 fpu = NULL;
4350 goto out;
4351 }
4352 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4353 break;
4354 }
4355 case KVM_GET_STATS_FD: {
4356 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4357 break;
4358 }
4359 default:
4360 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4361 }
4362 out:
4363 mutex_unlock(&vcpu->mutex);
4364 kfree(fpu);
4365 kfree(kvm_sregs);
4366 return r;
4367 }
4368
4369 #ifdef CONFIG_KVM_COMPAT
4370 static long kvm_vcpu_compat_ioctl(struct file *filp,
4371 unsigned int ioctl, unsigned long arg)
4372 {
4373 struct kvm_vcpu *vcpu = filp->private_data;
4374 void __user *argp = compat_ptr(arg);
4375 int r;
4376
4377 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4378 return -EIO;
4379
4380 switch (ioctl) {
4381 case KVM_SET_SIGNAL_MASK: {
4382 struct kvm_signal_mask __user *sigmask_arg = argp;
4383 struct kvm_signal_mask kvm_sigmask;
4384 sigset_t sigset;
4385
4386 if (argp) {
4387 r = -EFAULT;
4388 if (copy_from_user(&kvm_sigmask, argp,
4389 sizeof(kvm_sigmask)))
4390 goto out;
4391 r = -EINVAL;
4392 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4393 goto out;
4394 r = -EFAULT;
4395 if (get_compat_sigset(&sigset,
4396 (compat_sigset_t __user *)sigmask_arg->sigset))
4397 goto out;
4398 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4399 } else
4400 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4401 break;
4402 }
4403 default:
4404 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4405 }
4406
4407 out:
4408 return r;
4409 }
4410 #endif
4411
4412 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4413 {
4414 struct kvm_device *dev = filp->private_data;
4415
4416 if (dev->ops->mmap)
4417 return dev->ops->mmap(dev, vma);
4418
4419 return -ENODEV;
4420 }
4421
4422 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4423 int (*accessor)(struct kvm_device *dev,
4424 struct kvm_device_attr *attr),
4425 unsigned long arg)
4426 {
4427 struct kvm_device_attr attr;
4428
4429 if (!accessor)
4430 return -EPERM;
4431
4432 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4433 return -EFAULT;
4434
4435 return accessor(dev, &attr);
4436 }
4437
4438 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4439 unsigned long arg)
4440 {
4441 struct kvm_device *dev = filp->private_data;
4442
4443 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4444 return -EIO;
4445
4446 switch (ioctl) {
4447 case KVM_SET_DEVICE_ATTR:
4448 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4449 case KVM_GET_DEVICE_ATTR:
4450 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4451 case KVM_HAS_DEVICE_ATTR:
4452 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4453 default:
4454 if (dev->ops->ioctl)
4455 return dev->ops->ioctl(dev, ioctl, arg);
4456
4457 return -ENOTTY;
4458 }
4459 }
4460
4461 static int kvm_device_release(struct inode *inode, struct file *filp)
4462 {
4463 struct kvm_device *dev = filp->private_data;
4464 struct kvm *kvm = dev->kvm;
4465
4466 if (dev->ops->release) {
4467 mutex_lock(&kvm->lock);
4468 list_del(&dev->vm_node);
4469 dev->ops->release(dev);
4470 mutex_unlock(&kvm->lock);
4471 }
4472
4473 kvm_put_kvm(kvm);
4474 return 0;
4475 }
4476
4477 static const struct file_operations kvm_device_fops = {
4478 .unlocked_ioctl = kvm_device_ioctl,
4479 .release = kvm_device_release,
4480 KVM_COMPAT(kvm_device_ioctl),
4481 .mmap = kvm_device_mmap,
4482 };
4483
4484 struct kvm_device *kvm_device_from_filp(struct file *filp)
4485 {
4486 if (filp->f_op != &kvm_device_fops)
4487 return NULL;
4488
4489 return filp->private_data;
4490 }
4491
4492 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4493 #ifdef CONFIG_KVM_MPIC
4494 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4495 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4496 #endif
4497 };
4498
4499 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4500 {
4501 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4502 return -ENOSPC;
4503
4504 if (kvm_device_ops_table[type] != NULL)
4505 return -EEXIST;
4506
4507 kvm_device_ops_table[type] = ops;
4508 return 0;
4509 }
4510
4511 void kvm_unregister_device_ops(u32 type)
4512 {
4513 if (kvm_device_ops_table[type] != NULL)
4514 kvm_device_ops_table[type] = NULL;
4515 }
4516
4517 static int kvm_ioctl_create_device(struct kvm *kvm,
4518 struct kvm_create_device *cd)
4519 {
4520 const struct kvm_device_ops *ops;
4521 struct kvm_device *dev;
4522 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4523 int type;
4524 int ret;
4525
4526 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4527 return -ENODEV;
4528
4529 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4530 ops = kvm_device_ops_table[type];
4531 if (ops == NULL)
4532 return -ENODEV;
4533
4534 if (test)
4535 return 0;
4536
4537 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4538 if (!dev)
4539 return -ENOMEM;
4540
4541 dev->ops = ops;
4542 dev->kvm = kvm;
4543
4544 mutex_lock(&kvm->lock);
4545 ret = ops->create(dev, type);
4546 if (ret < 0) {
4547 mutex_unlock(&kvm->lock);
4548 kfree(dev);
4549 return ret;
4550 }
4551 list_add(&dev->vm_node, &kvm->devices);
4552 mutex_unlock(&kvm->lock);
4553
4554 if (ops->init)
4555 ops->init(dev);
4556
4557 kvm_get_kvm(kvm);
4558 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4559 if (ret < 0) {
4560 kvm_put_kvm_no_destroy(kvm);
4561 mutex_lock(&kvm->lock);
4562 list_del(&dev->vm_node);
4563 if (ops->release)
4564 ops->release(dev);
4565 mutex_unlock(&kvm->lock);
4566 if (ops->destroy)
4567 ops->destroy(dev);
4568 return ret;
4569 }
4570
4571 cd->fd = ret;
4572 return 0;
4573 }
4574
4575 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4576 {
4577 switch (arg) {
4578 case KVM_CAP_USER_MEMORY:
4579 case KVM_CAP_USER_MEMORY2:
4580 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4581 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4582 case KVM_CAP_INTERNAL_ERROR_DATA:
4583 #ifdef CONFIG_HAVE_KVM_MSI
4584 case KVM_CAP_SIGNAL_MSI:
4585 #endif
4586 #ifdef CONFIG_HAVE_KVM_IRQFD
4587 case KVM_CAP_IRQFD:
4588 #endif
4589 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4590 case KVM_CAP_CHECK_EXTENSION_VM:
4591 case KVM_CAP_ENABLE_CAP_VM:
4592 case KVM_CAP_HALT_POLL:
4593 return 1;
4594 #ifdef CONFIG_KVM_MMIO
4595 case KVM_CAP_COALESCED_MMIO:
4596 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4597 case KVM_CAP_COALESCED_PIO:
4598 return 1;
4599 #endif
4600 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4601 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4602 return KVM_DIRTY_LOG_MANUAL_CAPS;
4603 #endif
4604 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4605 case KVM_CAP_IRQ_ROUTING:
4606 return KVM_MAX_IRQ_ROUTES;
4607 #endif
4608 #if KVM_ADDRESS_SPACE_NUM > 1
4609 case KVM_CAP_MULTI_ADDRESS_SPACE:
4610 return KVM_ADDRESS_SPACE_NUM;
4611 #endif
4612 case KVM_CAP_NR_MEMSLOTS:
4613 return KVM_USER_MEM_SLOTS;
4614 case KVM_CAP_DIRTY_LOG_RING:
4615 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4616 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4617 #else
4618 return 0;
4619 #endif
4620 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4621 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4622 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4623 #else
4624 return 0;
4625 #endif
4626 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4627 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4628 #endif
4629 case KVM_CAP_BINARY_STATS_FD:
4630 case KVM_CAP_SYSTEM_EVENT_DATA:
4631 return 1;
4632 default:
4633 break;
4634 }
4635 return kvm_vm_ioctl_check_extension(kvm, arg);
4636 }
4637
4638 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4639 {
4640 int r;
4641
4642 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4643 return -EINVAL;
4644
4645 /* the size should be power of 2 */
4646 if (!size || (size & (size - 1)))
4647 return -EINVAL;
4648
4649 /* Should be bigger to keep the reserved entries, or a page */
4650 if (size < kvm_dirty_ring_get_rsvd_entries() *
4651 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4652 return -EINVAL;
4653
4654 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4655 sizeof(struct kvm_dirty_gfn))
4656 return -E2BIG;
4657
4658 /* We only allow it to set once */
4659 if (kvm->dirty_ring_size)
4660 return -EINVAL;
4661
4662 mutex_lock(&kvm->lock);
4663
4664 if (kvm->created_vcpus) {
4665 /* We don't allow to change this value after vcpu created */
4666 r = -EINVAL;
4667 } else {
4668 kvm->dirty_ring_size = size;
4669 r = 0;
4670 }
4671
4672 mutex_unlock(&kvm->lock);
4673 return r;
4674 }
4675
4676 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4677 {
4678 unsigned long i;
4679 struct kvm_vcpu *vcpu;
4680 int cleared = 0;
4681
4682 if (!kvm->dirty_ring_size)
4683 return -EINVAL;
4684
4685 mutex_lock(&kvm->slots_lock);
4686
4687 kvm_for_each_vcpu(i, vcpu, kvm)
4688 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4689
4690 mutex_unlock(&kvm->slots_lock);
4691
4692 if (cleared)
4693 kvm_flush_remote_tlbs(kvm);
4694
4695 return cleared;
4696 }
4697
4698 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4699 struct kvm_enable_cap *cap)
4700 {
4701 return -EINVAL;
4702 }
4703
4704 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4705 {
4706 int i;
4707
4708 lockdep_assert_held(&kvm->slots_lock);
4709
4710 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4711 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4712 return false;
4713 }
4714
4715 return true;
4716 }
4717 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4718
4719 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4720 struct kvm_enable_cap *cap)
4721 {
4722 switch (cap->cap) {
4723 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4724 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4725 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4726
4727 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4728 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4729
4730 if (cap->flags || (cap->args[0] & ~allowed_options))
4731 return -EINVAL;
4732 kvm->manual_dirty_log_protect = cap->args[0];
4733 return 0;
4734 }
4735 #endif
4736 case KVM_CAP_HALT_POLL: {
4737 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4738 return -EINVAL;
4739
4740 kvm->max_halt_poll_ns = cap->args[0];
4741
4742 /*
4743 * Ensure kvm->override_halt_poll_ns does not become visible
4744 * before kvm->max_halt_poll_ns.
4745 *
4746 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4747 */
4748 smp_wmb();
4749 kvm->override_halt_poll_ns = true;
4750
4751 return 0;
4752 }
4753 case KVM_CAP_DIRTY_LOG_RING:
4754 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4755 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4756 return -EINVAL;
4757
4758 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4759 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4760 int r = -EINVAL;
4761
4762 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4763 !kvm->dirty_ring_size || cap->flags)
4764 return r;
4765
4766 mutex_lock(&kvm->slots_lock);
4767
4768 /*
4769 * For simplicity, allow enabling ring+bitmap if and only if
4770 * there are no memslots, e.g. to ensure all memslots allocate
4771 * a bitmap after the capability is enabled.
4772 */
4773 if (kvm_are_all_memslots_empty(kvm)) {
4774 kvm->dirty_ring_with_bitmap = true;
4775 r = 0;
4776 }
4777
4778 mutex_unlock(&kvm->slots_lock);
4779
4780 return r;
4781 }
4782 default:
4783 return kvm_vm_ioctl_enable_cap(kvm, cap);
4784 }
4785 }
4786
4787 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4788 size_t size, loff_t *offset)
4789 {
4790 struct kvm *kvm = file->private_data;
4791
4792 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4793 &kvm_vm_stats_desc[0], &kvm->stat,
4794 sizeof(kvm->stat), user_buffer, size, offset);
4795 }
4796
4797 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4798 {
4799 struct kvm *kvm = file->private_data;
4800
4801 kvm_put_kvm(kvm);
4802 return 0;
4803 }
4804
4805 static const struct file_operations kvm_vm_stats_fops = {
4806 .read = kvm_vm_stats_read,
4807 .release = kvm_vm_stats_release,
4808 .llseek = noop_llseek,
4809 };
4810
4811 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4812 {
4813 int fd;
4814 struct file *file;
4815
4816 fd = get_unused_fd_flags(O_CLOEXEC);
4817 if (fd < 0)
4818 return fd;
4819
4820 file = anon_inode_getfile("kvm-vm-stats",
4821 &kvm_vm_stats_fops, kvm, O_RDONLY);
4822 if (IS_ERR(file)) {
4823 put_unused_fd(fd);
4824 return PTR_ERR(file);
4825 }
4826
4827 kvm_get_kvm(kvm);
4828
4829 file->f_mode |= FMODE_PREAD;
4830 fd_install(fd, file);
4831
4832 return fd;
4833 }
4834
4835 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
4836 do { \
4837 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
4838 offsetof(struct kvm_userspace_memory_region2, field)); \
4839 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
4840 sizeof_field(struct kvm_userspace_memory_region2, field)); \
4841 } while (0)
4842
4843 static long kvm_vm_ioctl(struct file *filp,
4844 unsigned int ioctl, unsigned long arg)
4845 {
4846 struct kvm *kvm = filp->private_data;
4847 void __user *argp = (void __user *)arg;
4848 int r;
4849
4850 if (kvm->mm != current->mm || kvm->vm_dead)
4851 return -EIO;
4852 switch (ioctl) {
4853 case KVM_CREATE_VCPU:
4854 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4855 break;
4856 case KVM_ENABLE_CAP: {
4857 struct kvm_enable_cap cap;
4858
4859 r = -EFAULT;
4860 if (copy_from_user(&cap, argp, sizeof(cap)))
4861 goto out;
4862 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4863 break;
4864 }
4865 case KVM_SET_USER_MEMORY_REGION2:
4866 case KVM_SET_USER_MEMORY_REGION: {
4867 struct kvm_userspace_memory_region2 mem;
4868 unsigned long size;
4869
4870 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
4871 /*
4872 * Fields beyond struct kvm_userspace_memory_region shouldn't be
4873 * accessed, but avoid leaking kernel memory in case of a bug.
4874 */
4875 memset(&mem, 0, sizeof(mem));
4876 size = sizeof(struct kvm_userspace_memory_region);
4877 } else {
4878 size = sizeof(struct kvm_userspace_memory_region2);
4879 }
4880
4881 /* Ensure the common parts of the two structs are identical. */
4882 SANITY_CHECK_MEM_REGION_FIELD(slot);
4883 SANITY_CHECK_MEM_REGION_FIELD(flags);
4884 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
4885 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
4886 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
4887
4888 r = -EFAULT;
4889 if (copy_from_user(&mem, argp, size))
4890 goto out;
4891
4892 r = -EINVAL;
4893 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
4894 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
4895 goto out;
4896
4897 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
4898 break;
4899 }
4900 case KVM_GET_DIRTY_LOG: {
4901 struct kvm_dirty_log log;
4902
4903 r = -EFAULT;
4904 if (copy_from_user(&log, argp, sizeof(log)))
4905 goto out;
4906 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4907 break;
4908 }
4909 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4910 case KVM_CLEAR_DIRTY_LOG: {
4911 struct kvm_clear_dirty_log log;
4912
4913 r = -EFAULT;
4914 if (copy_from_user(&log, argp, sizeof(log)))
4915 goto out;
4916 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4917 break;
4918 }
4919 #endif
4920 #ifdef CONFIG_KVM_MMIO
4921 case KVM_REGISTER_COALESCED_MMIO: {
4922 struct kvm_coalesced_mmio_zone zone;
4923
4924 r = -EFAULT;
4925 if (copy_from_user(&zone, argp, sizeof(zone)))
4926 goto out;
4927 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4928 break;
4929 }
4930 case KVM_UNREGISTER_COALESCED_MMIO: {
4931 struct kvm_coalesced_mmio_zone zone;
4932
4933 r = -EFAULT;
4934 if (copy_from_user(&zone, argp, sizeof(zone)))
4935 goto out;
4936 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4937 break;
4938 }
4939 #endif
4940 case KVM_IRQFD: {
4941 struct kvm_irqfd data;
4942
4943 r = -EFAULT;
4944 if (copy_from_user(&data, argp, sizeof(data)))
4945 goto out;
4946 r = kvm_irqfd(kvm, &data);
4947 break;
4948 }
4949 case KVM_IOEVENTFD: {
4950 struct kvm_ioeventfd data;
4951
4952 r = -EFAULT;
4953 if (copy_from_user(&data, argp, sizeof(data)))
4954 goto out;
4955 r = kvm_ioeventfd(kvm, &data);
4956 break;
4957 }
4958 #ifdef CONFIG_HAVE_KVM_MSI
4959 case KVM_SIGNAL_MSI: {
4960 struct kvm_msi msi;
4961
4962 r = -EFAULT;
4963 if (copy_from_user(&msi, argp, sizeof(msi)))
4964 goto out;
4965 r = kvm_send_userspace_msi(kvm, &msi);
4966 break;
4967 }
4968 #endif
4969 #ifdef __KVM_HAVE_IRQ_LINE
4970 case KVM_IRQ_LINE_STATUS:
4971 case KVM_IRQ_LINE: {
4972 struct kvm_irq_level irq_event;
4973
4974 r = -EFAULT;
4975 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4976 goto out;
4977
4978 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4979 ioctl == KVM_IRQ_LINE_STATUS);
4980 if (r)
4981 goto out;
4982
4983 r = -EFAULT;
4984 if (ioctl == KVM_IRQ_LINE_STATUS) {
4985 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4986 goto out;
4987 }
4988
4989 r = 0;
4990 break;
4991 }
4992 #endif
4993 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4994 case KVM_SET_GSI_ROUTING: {
4995 struct kvm_irq_routing routing;
4996 struct kvm_irq_routing __user *urouting;
4997 struct kvm_irq_routing_entry *entries = NULL;
4998
4999 r = -EFAULT;
5000 if (copy_from_user(&routing, argp, sizeof(routing)))
5001 goto out;
5002 r = -EINVAL;
5003 if (!kvm_arch_can_set_irq_routing(kvm))
5004 goto out;
5005 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5006 goto out;
5007 if (routing.flags)
5008 goto out;
5009 if (routing.nr) {
5010 urouting = argp;
5011 entries = vmemdup_user(urouting->entries,
5012 array_size(sizeof(*entries),
5013 routing.nr));
5014 if (IS_ERR(entries)) {
5015 r = PTR_ERR(entries);
5016 goto out;
5017 }
5018 }
5019 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5020 routing.flags);
5021 kvfree(entries);
5022 break;
5023 }
5024 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5025 case KVM_CREATE_DEVICE: {
5026 struct kvm_create_device cd;
5027
5028 r = -EFAULT;
5029 if (copy_from_user(&cd, argp, sizeof(cd)))
5030 goto out;
5031
5032 r = kvm_ioctl_create_device(kvm, &cd);
5033 if (r)
5034 goto out;
5035
5036 r = -EFAULT;
5037 if (copy_to_user(argp, &cd, sizeof(cd)))
5038 goto out;
5039
5040 r = 0;
5041 break;
5042 }
5043 case KVM_CHECK_EXTENSION:
5044 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5045 break;
5046 case KVM_RESET_DIRTY_RINGS:
5047 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5048 break;
5049 case KVM_GET_STATS_FD:
5050 r = kvm_vm_ioctl_get_stats_fd(kvm);
5051 break;
5052 default:
5053 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5054 }
5055 out:
5056 return r;
5057 }
5058
5059 #ifdef CONFIG_KVM_COMPAT
5060 struct compat_kvm_dirty_log {
5061 __u32 slot;
5062 __u32 padding1;
5063 union {
5064 compat_uptr_t dirty_bitmap; /* one bit per page */
5065 __u64 padding2;
5066 };
5067 };
5068
5069 struct compat_kvm_clear_dirty_log {
5070 __u32 slot;
5071 __u32 num_pages;
5072 __u64 first_page;
5073 union {
5074 compat_uptr_t dirty_bitmap; /* one bit per page */
5075 __u64 padding2;
5076 };
5077 };
5078
5079 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5080 unsigned long arg)
5081 {
5082 return -ENOTTY;
5083 }
5084
5085 static long kvm_vm_compat_ioctl(struct file *filp,
5086 unsigned int ioctl, unsigned long arg)
5087 {
5088 struct kvm *kvm = filp->private_data;
5089 int r;
5090
5091 if (kvm->mm != current->mm || kvm->vm_dead)
5092 return -EIO;
5093
5094 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5095 if (r != -ENOTTY)
5096 return r;
5097
5098 switch (ioctl) {
5099 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5100 case KVM_CLEAR_DIRTY_LOG: {
5101 struct compat_kvm_clear_dirty_log compat_log;
5102 struct kvm_clear_dirty_log log;
5103
5104 if (copy_from_user(&compat_log, (void __user *)arg,
5105 sizeof(compat_log)))
5106 return -EFAULT;
5107 log.slot = compat_log.slot;
5108 log.num_pages = compat_log.num_pages;
5109 log.first_page = compat_log.first_page;
5110 log.padding2 = compat_log.padding2;
5111 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5112
5113 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5114 break;
5115 }
5116 #endif
5117 case KVM_GET_DIRTY_LOG: {
5118 struct compat_kvm_dirty_log compat_log;
5119 struct kvm_dirty_log log;
5120
5121 if (copy_from_user(&compat_log, (void __user *)arg,
5122 sizeof(compat_log)))
5123 return -EFAULT;
5124 log.slot = compat_log.slot;
5125 log.padding1 = compat_log.padding1;
5126 log.padding2 = compat_log.padding2;
5127 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5128
5129 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5130 break;
5131 }
5132 default:
5133 r = kvm_vm_ioctl(filp, ioctl, arg);
5134 }
5135 return r;
5136 }
5137 #endif
5138
5139 static const struct file_operations kvm_vm_fops = {
5140 .release = kvm_vm_release,
5141 .unlocked_ioctl = kvm_vm_ioctl,
5142 .llseek = noop_llseek,
5143 KVM_COMPAT(kvm_vm_compat_ioctl),
5144 };
5145
5146 bool file_is_kvm(struct file *file)
5147 {
5148 return file && file->f_op == &kvm_vm_fops;
5149 }
5150 EXPORT_SYMBOL_GPL(file_is_kvm);
5151
5152 static int kvm_dev_ioctl_create_vm(unsigned long type)
5153 {
5154 char fdname[ITOA_MAX_LEN + 1];
5155 int r, fd;
5156 struct kvm *kvm;
5157 struct file *file;
5158
5159 fd = get_unused_fd_flags(O_CLOEXEC);
5160 if (fd < 0)
5161 return fd;
5162
5163 snprintf(fdname, sizeof(fdname), "%d", fd);
5164
5165 kvm = kvm_create_vm(type, fdname);
5166 if (IS_ERR(kvm)) {
5167 r = PTR_ERR(kvm);
5168 goto put_fd;
5169 }
5170
5171 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5172 if (IS_ERR(file)) {
5173 r = PTR_ERR(file);
5174 goto put_kvm;
5175 }
5176
5177 /*
5178 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5179 * already set, with ->release() being kvm_vm_release(). In error
5180 * cases it will be called by the final fput(file) and will take
5181 * care of doing kvm_put_kvm(kvm).
5182 */
5183 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5184
5185 fd_install(fd, file);
5186 return fd;
5187
5188 put_kvm:
5189 kvm_put_kvm(kvm);
5190 put_fd:
5191 put_unused_fd(fd);
5192 return r;
5193 }
5194
5195 static long kvm_dev_ioctl(struct file *filp,
5196 unsigned int ioctl, unsigned long arg)
5197 {
5198 int r = -EINVAL;
5199
5200 switch (ioctl) {
5201 case KVM_GET_API_VERSION:
5202 if (arg)
5203 goto out;
5204 r = KVM_API_VERSION;
5205 break;
5206 case KVM_CREATE_VM:
5207 r = kvm_dev_ioctl_create_vm(arg);
5208 break;
5209 case KVM_CHECK_EXTENSION:
5210 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5211 break;
5212 case KVM_GET_VCPU_MMAP_SIZE:
5213 if (arg)
5214 goto out;
5215 r = PAGE_SIZE; /* struct kvm_run */
5216 #ifdef CONFIG_X86
5217 r += PAGE_SIZE; /* pio data page */
5218 #endif
5219 #ifdef CONFIG_KVM_MMIO
5220 r += PAGE_SIZE; /* coalesced mmio ring page */
5221 #endif
5222 break;
5223 case KVM_TRACE_ENABLE:
5224 case KVM_TRACE_PAUSE:
5225 case KVM_TRACE_DISABLE:
5226 r = -EOPNOTSUPP;
5227 break;
5228 default:
5229 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5230 }
5231 out:
5232 return r;
5233 }
5234
5235 static struct file_operations kvm_chardev_ops = {
5236 .unlocked_ioctl = kvm_dev_ioctl,
5237 .llseek = noop_llseek,
5238 KVM_COMPAT(kvm_dev_ioctl),
5239 };
5240
5241 static struct miscdevice kvm_dev = {
5242 KVM_MINOR,
5243 "kvm",
5244 &kvm_chardev_ops,
5245 };
5246
5247 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5248 __visible bool kvm_rebooting;
5249 EXPORT_SYMBOL_GPL(kvm_rebooting);
5250
5251 static DEFINE_PER_CPU(bool, hardware_enabled);
5252 static int kvm_usage_count;
5253
5254 static int __hardware_enable_nolock(void)
5255 {
5256 if (__this_cpu_read(hardware_enabled))
5257 return 0;
5258
5259 if (kvm_arch_hardware_enable()) {
5260 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5261 raw_smp_processor_id());
5262 return -EIO;
5263 }
5264
5265 __this_cpu_write(hardware_enabled, true);
5266 return 0;
5267 }
5268
5269 static void hardware_enable_nolock(void *failed)
5270 {
5271 if (__hardware_enable_nolock())
5272 atomic_inc(failed);
5273 }
5274
5275 static int kvm_online_cpu(unsigned int cpu)
5276 {
5277 int ret = 0;
5278
5279 /*
5280 * Abort the CPU online process if hardware virtualization cannot
5281 * be enabled. Otherwise running VMs would encounter unrecoverable
5282 * errors when scheduled to this CPU.
5283 */
5284 mutex_lock(&kvm_lock);
5285 if (kvm_usage_count)
5286 ret = __hardware_enable_nolock();
5287 mutex_unlock(&kvm_lock);
5288 return ret;
5289 }
5290
5291 static void hardware_disable_nolock(void *junk)
5292 {
5293 /*
5294 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5295 * hardware, not just CPUs that successfully enabled hardware!
5296 */
5297 if (!__this_cpu_read(hardware_enabled))
5298 return;
5299
5300 kvm_arch_hardware_disable();
5301
5302 __this_cpu_write(hardware_enabled, false);
5303 }
5304
5305 static int kvm_offline_cpu(unsigned int cpu)
5306 {
5307 mutex_lock(&kvm_lock);
5308 if (kvm_usage_count)
5309 hardware_disable_nolock(NULL);
5310 mutex_unlock(&kvm_lock);
5311 return 0;
5312 }
5313
5314 static void hardware_disable_all_nolock(void)
5315 {
5316 BUG_ON(!kvm_usage_count);
5317
5318 kvm_usage_count--;
5319 if (!kvm_usage_count)
5320 on_each_cpu(hardware_disable_nolock, NULL, 1);
5321 }
5322
5323 static void hardware_disable_all(void)
5324 {
5325 cpus_read_lock();
5326 mutex_lock(&kvm_lock);
5327 hardware_disable_all_nolock();
5328 mutex_unlock(&kvm_lock);
5329 cpus_read_unlock();
5330 }
5331
5332 static int hardware_enable_all(void)
5333 {
5334 atomic_t failed = ATOMIC_INIT(0);
5335 int r;
5336
5337 /*
5338 * Do not enable hardware virtualization if the system is going down.
5339 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5340 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5341 * after kvm_reboot() is called. Note, this relies on system_state
5342 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5343 * hook instead of registering a dedicated reboot notifier (the latter
5344 * runs before system_state is updated).
5345 */
5346 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5347 system_state == SYSTEM_RESTART)
5348 return -EBUSY;
5349
5350 /*
5351 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5352 * is called, and so on_each_cpu() between them includes the CPU that
5353 * is being onlined. As a result, hardware_enable_nolock() may get
5354 * invoked before kvm_online_cpu(), which also enables hardware if the
5355 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5356 * enable hardware multiple times.
5357 */
5358 cpus_read_lock();
5359 mutex_lock(&kvm_lock);
5360
5361 r = 0;
5362
5363 kvm_usage_count++;
5364 if (kvm_usage_count == 1) {
5365 on_each_cpu(hardware_enable_nolock, &failed, 1);
5366
5367 if (atomic_read(&failed)) {
5368 hardware_disable_all_nolock();
5369 r = -EBUSY;
5370 }
5371 }
5372
5373 mutex_unlock(&kvm_lock);
5374 cpus_read_unlock();
5375
5376 return r;
5377 }
5378
5379 static void kvm_shutdown(void)
5380 {
5381 /*
5382 * Disable hardware virtualization and set kvm_rebooting to indicate
5383 * that KVM has asynchronously disabled hardware virtualization, i.e.
5384 * that relevant errors and exceptions aren't entirely unexpected.
5385 * Some flavors of hardware virtualization need to be disabled before
5386 * transferring control to firmware (to perform shutdown/reboot), e.g.
5387 * on x86, virtualization can block INIT interrupts, which are used by
5388 * firmware to pull APs back under firmware control. Note, this path
5389 * is used for both shutdown and reboot scenarios, i.e. neither name is
5390 * 100% comprehensive.
5391 */
5392 pr_info("kvm: exiting hardware virtualization\n");
5393 kvm_rebooting = true;
5394 on_each_cpu(hardware_disable_nolock, NULL, 1);
5395 }
5396
5397 static int kvm_suspend(void)
5398 {
5399 /*
5400 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5401 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5402 * is stable. Assert that kvm_lock is not held to ensure the system
5403 * isn't suspended while KVM is enabling hardware. Hardware enabling
5404 * can be preempted, but the task cannot be frozen until it has dropped
5405 * all locks (userspace tasks are frozen via a fake signal).
5406 */
5407 lockdep_assert_not_held(&kvm_lock);
5408 lockdep_assert_irqs_disabled();
5409
5410 if (kvm_usage_count)
5411 hardware_disable_nolock(NULL);
5412 return 0;
5413 }
5414
5415 static void kvm_resume(void)
5416 {
5417 lockdep_assert_not_held(&kvm_lock);
5418 lockdep_assert_irqs_disabled();
5419
5420 if (kvm_usage_count)
5421 WARN_ON_ONCE(__hardware_enable_nolock());
5422 }
5423
5424 static struct syscore_ops kvm_syscore_ops = {
5425 .suspend = kvm_suspend,
5426 .resume = kvm_resume,
5427 .shutdown = kvm_shutdown,
5428 };
5429 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5430 static int hardware_enable_all(void)
5431 {
5432 return 0;
5433 }
5434
5435 static void hardware_disable_all(void)
5436 {
5437
5438 }
5439 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5440
5441 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5442 {
5443 if (dev->ops->destructor)
5444 dev->ops->destructor(dev);
5445 }
5446
5447 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5448 {
5449 int i;
5450
5451 for (i = 0; i < bus->dev_count; i++) {
5452 struct kvm_io_device *pos = bus->range[i].dev;
5453
5454 kvm_iodevice_destructor(pos);
5455 }
5456 kfree(bus);
5457 }
5458
5459 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5460 const struct kvm_io_range *r2)
5461 {
5462 gpa_t addr1 = r1->addr;
5463 gpa_t addr2 = r2->addr;
5464
5465 if (addr1 < addr2)
5466 return -1;
5467
5468 /* If r2->len == 0, match the exact address. If r2->len != 0,
5469 * accept any overlapping write. Any order is acceptable for
5470 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5471 * we process all of them.
5472 */
5473 if (r2->len) {
5474 addr1 += r1->len;
5475 addr2 += r2->len;
5476 }
5477
5478 if (addr1 > addr2)
5479 return 1;
5480
5481 return 0;
5482 }
5483
5484 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5485 {
5486 return kvm_io_bus_cmp(p1, p2);
5487 }
5488
5489 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5490 gpa_t addr, int len)
5491 {
5492 struct kvm_io_range *range, key;
5493 int off;
5494
5495 key = (struct kvm_io_range) {
5496 .addr = addr,
5497 .len = len,
5498 };
5499
5500 range = bsearch(&key, bus->range, bus->dev_count,
5501 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5502 if (range == NULL)
5503 return -ENOENT;
5504
5505 off = range - bus->range;
5506
5507 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5508 off--;
5509
5510 return off;
5511 }
5512
5513 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5514 struct kvm_io_range *range, const void *val)
5515 {
5516 int idx;
5517
5518 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5519 if (idx < 0)
5520 return -EOPNOTSUPP;
5521
5522 while (idx < bus->dev_count &&
5523 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5524 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5525 range->len, val))
5526 return idx;
5527 idx++;
5528 }
5529
5530 return -EOPNOTSUPP;
5531 }
5532
5533 /* kvm_io_bus_write - called under kvm->slots_lock */
5534 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5535 int len, const void *val)
5536 {
5537 struct kvm_io_bus *bus;
5538 struct kvm_io_range range;
5539 int r;
5540
5541 range = (struct kvm_io_range) {
5542 .addr = addr,
5543 .len = len,
5544 };
5545
5546 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5547 if (!bus)
5548 return -ENOMEM;
5549 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5550 return r < 0 ? r : 0;
5551 }
5552 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5553
5554 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5555 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5556 gpa_t addr, int len, const void *val, long cookie)
5557 {
5558 struct kvm_io_bus *bus;
5559 struct kvm_io_range range;
5560
5561 range = (struct kvm_io_range) {
5562 .addr = addr,
5563 .len = len,
5564 };
5565
5566 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5567 if (!bus)
5568 return -ENOMEM;
5569
5570 /* First try the device referenced by cookie. */
5571 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5572 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5573 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5574 val))
5575 return cookie;
5576
5577 /*
5578 * cookie contained garbage; fall back to search and return the
5579 * correct cookie value.
5580 */
5581 return __kvm_io_bus_write(vcpu, bus, &range, val);
5582 }
5583
5584 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5585 struct kvm_io_range *range, void *val)
5586 {
5587 int idx;
5588
5589 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5590 if (idx < 0)
5591 return -EOPNOTSUPP;
5592
5593 while (idx < bus->dev_count &&
5594 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5595 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5596 range->len, val))
5597 return idx;
5598 idx++;
5599 }
5600
5601 return -EOPNOTSUPP;
5602 }
5603
5604 /* kvm_io_bus_read - called under kvm->slots_lock */
5605 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5606 int len, void *val)
5607 {
5608 struct kvm_io_bus *bus;
5609 struct kvm_io_range range;
5610 int r;
5611
5612 range = (struct kvm_io_range) {
5613 .addr = addr,
5614 .len = len,
5615 };
5616
5617 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5618 if (!bus)
5619 return -ENOMEM;
5620 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5621 return r < 0 ? r : 0;
5622 }
5623
5624 /* Caller must hold slots_lock. */
5625 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5626 int len, struct kvm_io_device *dev)
5627 {
5628 int i;
5629 struct kvm_io_bus *new_bus, *bus;
5630 struct kvm_io_range range;
5631
5632 bus = kvm_get_bus(kvm, bus_idx);
5633 if (!bus)
5634 return -ENOMEM;
5635
5636 /* exclude ioeventfd which is limited by maximum fd */
5637 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5638 return -ENOSPC;
5639
5640 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5641 GFP_KERNEL_ACCOUNT);
5642 if (!new_bus)
5643 return -ENOMEM;
5644
5645 range = (struct kvm_io_range) {
5646 .addr = addr,
5647 .len = len,
5648 .dev = dev,
5649 };
5650
5651 for (i = 0; i < bus->dev_count; i++)
5652 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5653 break;
5654
5655 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5656 new_bus->dev_count++;
5657 new_bus->range[i] = range;
5658 memcpy(new_bus->range + i + 1, bus->range + i,
5659 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5660 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5661 synchronize_srcu_expedited(&kvm->srcu);
5662 kfree(bus);
5663
5664 return 0;
5665 }
5666
5667 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5668 struct kvm_io_device *dev)
5669 {
5670 int i;
5671 struct kvm_io_bus *new_bus, *bus;
5672
5673 lockdep_assert_held(&kvm->slots_lock);
5674
5675 bus = kvm_get_bus(kvm, bus_idx);
5676 if (!bus)
5677 return 0;
5678
5679 for (i = 0; i < bus->dev_count; i++) {
5680 if (bus->range[i].dev == dev) {
5681 break;
5682 }
5683 }
5684
5685 if (i == bus->dev_count)
5686 return 0;
5687
5688 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5689 GFP_KERNEL_ACCOUNT);
5690 if (new_bus) {
5691 memcpy(new_bus, bus, struct_size(bus, range, i));
5692 new_bus->dev_count--;
5693 memcpy(new_bus->range + i, bus->range + i + 1,
5694 flex_array_size(new_bus, range, new_bus->dev_count - i));
5695 }
5696
5697 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5698 synchronize_srcu_expedited(&kvm->srcu);
5699
5700 /*
5701 * If NULL bus is installed, destroy the old bus, including all the
5702 * attached devices. Otherwise, destroy the caller's device only.
5703 */
5704 if (!new_bus) {
5705 pr_err("kvm: failed to shrink bus, removing it completely\n");
5706 kvm_io_bus_destroy(bus);
5707 return -ENOMEM;
5708 }
5709
5710 kvm_iodevice_destructor(dev);
5711 kfree(bus);
5712 return 0;
5713 }
5714
5715 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5716 gpa_t addr)
5717 {
5718 struct kvm_io_bus *bus;
5719 int dev_idx, srcu_idx;
5720 struct kvm_io_device *iodev = NULL;
5721
5722 srcu_idx = srcu_read_lock(&kvm->srcu);
5723
5724 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5725 if (!bus)
5726 goto out_unlock;
5727
5728 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5729 if (dev_idx < 0)
5730 goto out_unlock;
5731
5732 iodev = bus->range[dev_idx].dev;
5733
5734 out_unlock:
5735 srcu_read_unlock(&kvm->srcu, srcu_idx);
5736
5737 return iodev;
5738 }
5739 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5740
5741 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5742 int (*get)(void *, u64 *), int (*set)(void *, u64),
5743 const char *fmt)
5744 {
5745 int ret;
5746 struct kvm_stat_data *stat_data = inode->i_private;
5747
5748 /*
5749 * The debugfs files are a reference to the kvm struct which
5750 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5751 * avoids the race between open and the removal of the debugfs directory.
5752 */
5753 if (!kvm_get_kvm_safe(stat_data->kvm))
5754 return -ENOENT;
5755
5756 ret = simple_attr_open(inode, file, get,
5757 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5758 ? set : NULL, fmt);
5759 if (ret)
5760 kvm_put_kvm(stat_data->kvm);
5761
5762 return ret;
5763 }
5764
5765 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5766 {
5767 struct kvm_stat_data *stat_data = inode->i_private;
5768
5769 simple_attr_release(inode, file);
5770 kvm_put_kvm(stat_data->kvm);
5771
5772 return 0;
5773 }
5774
5775 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5776 {
5777 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5778
5779 return 0;
5780 }
5781
5782 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5783 {
5784 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5785
5786 return 0;
5787 }
5788
5789 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5790 {
5791 unsigned long i;
5792 struct kvm_vcpu *vcpu;
5793
5794 *val = 0;
5795
5796 kvm_for_each_vcpu(i, vcpu, kvm)
5797 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5798
5799 return 0;
5800 }
5801
5802 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5803 {
5804 unsigned long i;
5805 struct kvm_vcpu *vcpu;
5806
5807 kvm_for_each_vcpu(i, vcpu, kvm)
5808 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5809
5810 return 0;
5811 }
5812
5813 static int kvm_stat_data_get(void *data, u64 *val)
5814 {
5815 int r = -EFAULT;
5816 struct kvm_stat_data *stat_data = data;
5817
5818 switch (stat_data->kind) {
5819 case KVM_STAT_VM:
5820 r = kvm_get_stat_per_vm(stat_data->kvm,
5821 stat_data->desc->desc.offset, val);
5822 break;
5823 case KVM_STAT_VCPU:
5824 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5825 stat_data->desc->desc.offset, val);
5826 break;
5827 }
5828
5829 return r;
5830 }
5831
5832 static int kvm_stat_data_clear(void *data, u64 val)
5833 {
5834 int r = -EFAULT;
5835 struct kvm_stat_data *stat_data = data;
5836
5837 if (val)
5838 return -EINVAL;
5839
5840 switch (stat_data->kind) {
5841 case KVM_STAT_VM:
5842 r = kvm_clear_stat_per_vm(stat_data->kvm,
5843 stat_data->desc->desc.offset);
5844 break;
5845 case KVM_STAT_VCPU:
5846 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5847 stat_data->desc->desc.offset);
5848 break;
5849 }
5850
5851 return r;
5852 }
5853
5854 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5855 {
5856 __simple_attr_check_format("%llu\n", 0ull);
5857 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5858 kvm_stat_data_clear, "%llu\n");
5859 }
5860
5861 static const struct file_operations stat_fops_per_vm = {
5862 .owner = THIS_MODULE,
5863 .open = kvm_stat_data_open,
5864 .release = kvm_debugfs_release,
5865 .read = simple_attr_read,
5866 .write = simple_attr_write,
5867 .llseek = no_llseek,
5868 };
5869
5870 static int vm_stat_get(void *_offset, u64 *val)
5871 {
5872 unsigned offset = (long)_offset;
5873 struct kvm *kvm;
5874 u64 tmp_val;
5875
5876 *val = 0;
5877 mutex_lock(&kvm_lock);
5878 list_for_each_entry(kvm, &vm_list, vm_list) {
5879 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5880 *val += tmp_val;
5881 }
5882 mutex_unlock(&kvm_lock);
5883 return 0;
5884 }
5885
5886 static int vm_stat_clear(void *_offset, u64 val)
5887 {
5888 unsigned offset = (long)_offset;
5889 struct kvm *kvm;
5890
5891 if (val)
5892 return -EINVAL;
5893
5894 mutex_lock(&kvm_lock);
5895 list_for_each_entry(kvm, &vm_list, vm_list) {
5896 kvm_clear_stat_per_vm(kvm, offset);
5897 }
5898 mutex_unlock(&kvm_lock);
5899
5900 return 0;
5901 }
5902
5903 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5904 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5905
5906 static int vcpu_stat_get(void *_offset, u64 *val)
5907 {
5908 unsigned offset = (long)_offset;
5909 struct kvm *kvm;
5910 u64 tmp_val;
5911
5912 *val = 0;
5913 mutex_lock(&kvm_lock);
5914 list_for_each_entry(kvm, &vm_list, vm_list) {
5915 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5916 *val += tmp_val;
5917 }
5918 mutex_unlock(&kvm_lock);
5919 return 0;
5920 }
5921
5922 static int vcpu_stat_clear(void *_offset, u64 val)
5923 {
5924 unsigned offset = (long)_offset;
5925 struct kvm *kvm;
5926
5927 if (val)
5928 return -EINVAL;
5929
5930 mutex_lock(&kvm_lock);
5931 list_for_each_entry(kvm, &vm_list, vm_list) {
5932 kvm_clear_stat_per_vcpu(kvm, offset);
5933 }
5934 mutex_unlock(&kvm_lock);
5935
5936 return 0;
5937 }
5938
5939 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5940 "%llu\n");
5941 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5942
5943 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5944 {
5945 struct kobj_uevent_env *env;
5946 unsigned long long created, active;
5947
5948 if (!kvm_dev.this_device || !kvm)
5949 return;
5950
5951 mutex_lock(&kvm_lock);
5952 if (type == KVM_EVENT_CREATE_VM) {
5953 kvm_createvm_count++;
5954 kvm_active_vms++;
5955 } else if (type == KVM_EVENT_DESTROY_VM) {
5956 kvm_active_vms--;
5957 }
5958 created = kvm_createvm_count;
5959 active = kvm_active_vms;
5960 mutex_unlock(&kvm_lock);
5961
5962 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5963 if (!env)
5964 return;
5965
5966 add_uevent_var(env, "CREATED=%llu", created);
5967 add_uevent_var(env, "COUNT=%llu", active);
5968
5969 if (type == KVM_EVENT_CREATE_VM) {
5970 add_uevent_var(env, "EVENT=create");
5971 kvm->userspace_pid = task_pid_nr(current);
5972 } else if (type == KVM_EVENT_DESTROY_VM) {
5973 add_uevent_var(env, "EVENT=destroy");
5974 }
5975 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5976
5977 if (!IS_ERR(kvm->debugfs_dentry)) {
5978 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5979
5980 if (p) {
5981 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5982 if (!IS_ERR(tmp))
5983 add_uevent_var(env, "STATS_PATH=%s", tmp);
5984 kfree(p);
5985 }
5986 }
5987 /* no need for checks, since we are adding at most only 5 keys */
5988 env->envp[env->envp_idx++] = NULL;
5989 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5990 kfree(env);
5991 }
5992
5993 static void kvm_init_debug(void)
5994 {
5995 const struct file_operations *fops;
5996 const struct _kvm_stats_desc *pdesc;
5997 int i;
5998
5999 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6000
6001 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6002 pdesc = &kvm_vm_stats_desc[i];
6003 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6004 fops = &vm_stat_fops;
6005 else
6006 fops = &vm_stat_readonly_fops;
6007 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6008 kvm_debugfs_dir,
6009 (void *)(long)pdesc->desc.offset, fops);
6010 }
6011
6012 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6013 pdesc = &kvm_vcpu_stats_desc[i];
6014 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6015 fops = &vcpu_stat_fops;
6016 else
6017 fops = &vcpu_stat_readonly_fops;
6018 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6019 kvm_debugfs_dir,
6020 (void *)(long)pdesc->desc.offset, fops);
6021 }
6022 }
6023
6024 static inline
6025 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6026 {
6027 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6028 }
6029
6030 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6031 {
6032 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6033
6034 WRITE_ONCE(vcpu->preempted, false);
6035 WRITE_ONCE(vcpu->ready, false);
6036
6037 __this_cpu_write(kvm_running_vcpu, vcpu);
6038 kvm_arch_sched_in(vcpu, cpu);
6039 kvm_arch_vcpu_load(vcpu, cpu);
6040 }
6041
6042 static void kvm_sched_out(struct preempt_notifier *pn,
6043 struct task_struct *next)
6044 {
6045 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6046
6047 if (current->on_rq) {
6048 WRITE_ONCE(vcpu->preempted, true);
6049 WRITE_ONCE(vcpu->ready, true);
6050 }
6051 kvm_arch_vcpu_put(vcpu);
6052 __this_cpu_write(kvm_running_vcpu, NULL);
6053 }
6054
6055 /**
6056 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6057 *
6058 * We can disable preemption locally around accessing the per-CPU variable,
6059 * and use the resolved vcpu pointer after enabling preemption again,
6060 * because even if the current thread is migrated to another CPU, reading
6061 * the per-CPU value later will give us the same value as we update the
6062 * per-CPU variable in the preempt notifier handlers.
6063 */
6064 struct kvm_vcpu *kvm_get_running_vcpu(void)
6065 {
6066 struct kvm_vcpu *vcpu;
6067
6068 preempt_disable();
6069 vcpu = __this_cpu_read(kvm_running_vcpu);
6070 preempt_enable();
6071
6072 return vcpu;
6073 }
6074 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6075
6076 /**
6077 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6078 */
6079 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6080 {
6081 return &kvm_running_vcpu;
6082 }
6083
6084 #ifdef CONFIG_GUEST_PERF_EVENTS
6085 static unsigned int kvm_guest_state(void)
6086 {
6087 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6088 unsigned int state;
6089
6090 if (!kvm_arch_pmi_in_guest(vcpu))
6091 return 0;
6092
6093 state = PERF_GUEST_ACTIVE;
6094 if (!kvm_arch_vcpu_in_kernel(vcpu))
6095 state |= PERF_GUEST_USER;
6096
6097 return state;
6098 }
6099
6100 static unsigned long kvm_guest_get_ip(void)
6101 {
6102 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6103
6104 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6105 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6106 return 0;
6107
6108 return kvm_arch_vcpu_get_ip(vcpu);
6109 }
6110
6111 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6112 .state = kvm_guest_state,
6113 .get_ip = kvm_guest_get_ip,
6114 .handle_intel_pt_intr = NULL,
6115 };
6116
6117 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6118 {
6119 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6120 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6121 }
6122 void kvm_unregister_perf_callbacks(void)
6123 {
6124 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6125 }
6126 #endif
6127
6128 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6129 {
6130 int r;
6131 int cpu;
6132
6133 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6134 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6135 kvm_online_cpu, kvm_offline_cpu);
6136 if (r)
6137 return r;
6138
6139 register_syscore_ops(&kvm_syscore_ops);
6140 #endif
6141
6142 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6143 if (!vcpu_align)
6144 vcpu_align = __alignof__(struct kvm_vcpu);
6145 kvm_vcpu_cache =
6146 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6147 SLAB_ACCOUNT,
6148 offsetof(struct kvm_vcpu, arch),
6149 offsetofend(struct kvm_vcpu, stats_id)
6150 - offsetof(struct kvm_vcpu, arch),
6151 NULL);
6152 if (!kvm_vcpu_cache) {
6153 r = -ENOMEM;
6154 goto err_vcpu_cache;
6155 }
6156
6157 for_each_possible_cpu(cpu) {
6158 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6159 GFP_KERNEL, cpu_to_node(cpu))) {
6160 r = -ENOMEM;
6161 goto err_cpu_kick_mask;
6162 }
6163 }
6164
6165 r = kvm_irqfd_init();
6166 if (r)
6167 goto err_irqfd;
6168
6169 r = kvm_async_pf_init();
6170 if (r)
6171 goto err_async_pf;
6172
6173 kvm_chardev_ops.owner = module;
6174
6175 kvm_preempt_ops.sched_in = kvm_sched_in;
6176 kvm_preempt_ops.sched_out = kvm_sched_out;
6177
6178 kvm_init_debug();
6179
6180 r = kvm_vfio_ops_init();
6181 if (WARN_ON_ONCE(r))
6182 goto err_vfio;
6183
6184 /*
6185 * Registration _must_ be the very last thing done, as this exposes
6186 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6187 */
6188 r = misc_register(&kvm_dev);
6189 if (r) {
6190 pr_err("kvm: misc device register failed\n");
6191 goto err_register;
6192 }
6193
6194 return 0;
6195
6196 err_register:
6197 kvm_vfio_ops_exit();
6198 err_vfio:
6199 kvm_async_pf_deinit();
6200 err_async_pf:
6201 kvm_irqfd_exit();
6202 err_irqfd:
6203 err_cpu_kick_mask:
6204 for_each_possible_cpu(cpu)
6205 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6206 kmem_cache_destroy(kvm_vcpu_cache);
6207 err_vcpu_cache:
6208 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6209 unregister_syscore_ops(&kvm_syscore_ops);
6210 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6211 #endif
6212 return r;
6213 }
6214 EXPORT_SYMBOL_GPL(kvm_init);
6215
6216 void kvm_exit(void)
6217 {
6218 int cpu;
6219
6220 /*
6221 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6222 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6223 * to KVM while the module is being stopped.
6224 */
6225 misc_deregister(&kvm_dev);
6226
6227 debugfs_remove_recursive(kvm_debugfs_dir);
6228 for_each_possible_cpu(cpu)
6229 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6230 kmem_cache_destroy(kvm_vcpu_cache);
6231 kvm_vfio_ops_exit();
6232 kvm_async_pf_deinit();
6233 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6234 unregister_syscore_ops(&kvm_syscore_ops);
6235 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6236 #endif
6237 kvm_irqfd_exit();
6238 }
6239 EXPORT_SYMBOL_GPL(kvm_exit);
6240
6241 struct kvm_vm_worker_thread_context {
6242 struct kvm *kvm;
6243 struct task_struct *parent;
6244 struct completion init_done;
6245 kvm_vm_thread_fn_t thread_fn;
6246 uintptr_t data;
6247 int err;
6248 };
6249
6250 static int kvm_vm_worker_thread(void *context)
6251 {
6252 /*
6253 * The init_context is allocated on the stack of the parent thread, so
6254 * we have to locally copy anything that is needed beyond initialization
6255 */
6256 struct kvm_vm_worker_thread_context *init_context = context;
6257 struct task_struct *parent;
6258 struct kvm *kvm = init_context->kvm;
6259 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6260 uintptr_t data = init_context->data;
6261 int err;
6262
6263 err = kthread_park(current);
6264 /* kthread_park(current) is never supposed to return an error */
6265 WARN_ON(err != 0);
6266 if (err)
6267 goto init_complete;
6268
6269 err = cgroup_attach_task_all(init_context->parent, current);
6270 if (err) {
6271 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6272 __func__, err);
6273 goto init_complete;
6274 }
6275
6276 set_user_nice(current, task_nice(init_context->parent));
6277
6278 init_complete:
6279 init_context->err = err;
6280 complete(&init_context->init_done);
6281 init_context = NULL;
6282
6283 if (err)
6284 goto out;
6285
6286 /* Wait to be woken up by the spawner before proceeding. */
6287 kthread_parkme();
6288
6289 if (!kthread_should_stop())
6290 err = thread_fn(kvm, data);
6291
6292 out:
6293 /*
6294 * Move kthread back to its original cgroup to prevent it lingering in
6295 * the cgroup of the VM process, after the latter finishes its
6296 * execution.
6297 *
6298 * kthread_stop() waits on the 'exited' completion condition which is
6299 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6300 * kthread is removed from the cgroup in the cgroup_exit() which is
6301 * called after the exit_mm(). This causes the kthread_stop() to return
6302 * before the kthread actually quits the cgroup.
6303 */
6304 rcu_read_lock();
6305 parent = rcu_dereference(current->real_parent);
6306 get_task_struct(parent);
6307 rcu_read_unlock();
6308 cgroup_attach_task_all(parent, current);
6309 put_task_struct(parent);
6310
6311 return err;
6312 }
6313
6314 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6315 uintptr_t data, const char *name,
6316 struct task_struct **thread_ptr)
6317 {
6318 struct kvm_vm_worker_thread_context init_context = {};
6319 struct task_struct *thread;
6320
6321 *thread_ptr = NULL;
6322 init_context.kvm = kvm;
6323 init_context.parent = current;
6324 init_context.thread_fn = thread_fn;
6325 init_context.data = data;
6326 init_completion(&init_context.init_done);
6327
6328 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6329 "%s-%d", name, task_pid_nr(current));
6330 if (IS_ERR(thread))
6331 return PTR_ERR(thread);
6332
6333 /* kthread_run is never supposed to return NULL */
6334 WARN_ON(thread == NULL);
6335
6336 wait_for_completion(&init_context.init_done);
6337
6338 if (!init_context.err)
6339 *thread_ptr = thread;
6340
6341 return init_context.err;
6342 }