]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - virt/kvm/kvm_main.c
KVM: Tweak kvm_hva_range and hva_handler_t to allow reusing for gfn ranges
[thirdparty/kernel/stable.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100 * Ordering of locks:
101 *
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103 */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121 unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124 unsigned long arg);
125 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 #else
127 /*
128 * For architectures that don't implement a compat infrastructure,
129 * adopt a double line of defense:
130 * - Prevent a compat task from opening /dev/kvm
131 * - If the open has been done by a 64bit task, and the KVM fd
132 * passed to a compat task, let the ioctls fail.
133 */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139 return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
142 .open = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158 {
159 }
160
161 bool kvm_is_zone_device_page(struct page *page)
162 {
163 /*
164 * The metadata used by is_zone_device_page() to determine whether or
165 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166 * the device has been pinned, e.g. by get_user_pages(). WARN if the
167 * page_count() is zero to help detect bad usage of this helper.
168 */
169 if (WARN_ON_ONCE(!page_count(page)))
170 return false;
171
172 return is_zone_device_page(page);
173 }
174
175 /*
176 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
178 * is likely incomplete, it has been compiled purely through people wanting to
179 * back guest with a certain type of memory and encountering issues.
180 */
181 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182 {
183 struct page *page;
184
185 if (!pfn_valid(pfn))
186 return NULL;
187
188 page = pfn_to_page(pfn);
189 if (!PageReserved(page))
190 return page;
191
192 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193 if (is_zero_pfn(pfn))
194 return page;
195
196 /*
197 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198 * perspective they are "normal" pages, albeit with slightly different
199 * usage rules.
200 */
201 if (kvm_is_zone_device_page(page))
202 return page;
203
204 return NULL;
205 }
206
207 /*
208 * Switches to specified vcpu, until a matching vcpu_put()
209 */
210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212 int cpu = get_cpu();
213
214 __this_cpu_write(kvm_running_vcpu, vcpu);
215 preempt_notifier_register(&vcpu->preempt_notifier);
216 kvm_arch_vcpu_load(vcpu, cpu);
217 put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220
221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223 preempt_disable();
224 kvm_arch_vcpu_put(vcpu);
225 preempt_notifier_unregister(&vcpu->preempt_notifier);
226 __this_cpu_write(kvm_running_vcpu, NULL);
227 preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235
236 /*
237 * We need to wait for the VCPU to reenable interrupts and get out of
238 * READING_SHADOW_PAGE_TABLES mode.
239 */
240 if (req & KVM_REQUEST_WAIT)
241 return mode != OUTSIDE_GUEST_MODE;
242
243 /*
244 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 */
246 return mode == IN_GUEST_MODE;
247 }
248
249 static void ack_kick(void *_completed)
250 {
251 }
252
253 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254 {
255 if (cpumask_empty(cpus))
256 return false;
257
258 smp_call_function_many(cpus, ack_kick, NULL, wait);
259 return true;
260 }
261
262 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263 struct cpumask *tmp, int current_cpu)
264 {
265 int cpu;
266
267 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268 __kvm_make_request(req, vcpu);
269
270 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271 return;
272
273 /*
274 * Note, the vCPU could get migrated to a different pCPU at any point
275 * after kvm_request_needs_ipi(), which could result in sending an IPI
276 * to the previous pCPU. But, that's OK because the purpose of the IPI
277 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279 * after this point is also OK, as the requirement is only that KVM wait
280 * for vCPUs that were reading SPTEs _before_ any changes were
281 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282 */
283 if (kvm_request_needs_ipi(vcpu, req)) {
284 cpu = READ_ONCE(vcpu->cpu);
285 if (cpu != -1 && cpu != current_cpu)
286 __cpumask_set_cpu(cpu, tmp);
287 }
288 }
289
290 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291 unsigned long *vcpu_bitmap)
292 {
293 struct kvm_vcpu *vcpu;
294 struct cpumask *cpus;
295 int i, me;
296 bool called;
297
298 me = get_cpu();
299
300 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 cpumask_clear(cpus);
302
303 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304 vcpu = kvm_get_vcpu(kvm, i);
305 if (!vcpu)
306 continue;
307 kvm_make_vcpu_request(vcpu, req, cpus, me);
308 }
309
310 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311 put_cpu();
312
313 return called;
314 }
315
316 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317 struct kvm_vcpu *except)
318 {
319 struct kvm_vcpu *vcpu;
320 struct cpumask *cpus;
321 unsigned long i;
322 bool called;
323 int me;
324
325 me = get_cpu();
326
327 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 cpumask_clear(cpus);
329
330 kvm_for_each_vcpu(i, vcpu, kvm) {
331 if (vcpu == except)
332 continue;
333 kvm_make_vcpu_request(vcpu, req, cpus, me);
334 }
335
336 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337 put_cpu();
338
339 return called;
340 }
341
342 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343 {
344 return kvm_make_all_cpus_request_except(kvm, req, NULL);
345 }
346 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347
348 void kvm_flush_remote_tlbs(struct kvm *kvm)
349 {
350 ++kvm->stat.generic.remote_tlb_flush_requests;
351
352 /*
353 * We want to publish modifications to the page tables before reading
354 * mode. Pairs with a memory barrier in arch-specific code.
355 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356 * and smp_mb in walk_shadow_page_lockless_begin/end.
357 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358 *
359 * There is already an smp_mb__after_atomic() before
360 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361 * barrier here.
362 */
363 if (!kvm_arch_flush_remote_tlbs(kvm)
364 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365 ++kvm->stat.generic.remote_tlb_flush;
366 }
367 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
368
369 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370 {
371 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372 return;
373
374 /*
375 * Fall back to a flushing entire TLBs if the architecture range-based
376 * TLB invalidation is unsupported or can't be performed for whatever
377 * reason.
378 */
379 kvm_flush_remote_tlbs(kvm);
380 }
381
382 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383 const struct kvm_memory_slot *memslot)
384 {
385 /*
386 * All current use cases for flushing the TLBs for a specific memslot
387 * are related to dirty logging, and many do the TLB flush out of
388 * mmu_lock. The interaction between the various operations on memslot
389 * must be serialized by slots_locks to ensure the TLB flush from one
390 * operation is observed by any other operation on the same memslot.
391 */
392 lockdep_assert_held(&kvm->slots_lock);
393 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
394 }
395
396 static void kvm_flush_shadow_all(struct kvm *kvm)
397 {
398 kvm_arch_flush_shadow_all(kvm);
399 kvm_arch_guest_memory_reclaimed(kvm);
400 }
401
402 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
403 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404 gfp_t gfp_flags)
405 {
406 gfp_flags |= mc->gfp_zero;
407
408 if (mc->kmem_cache)
409 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
410 else
411 return (void *)__get_free_page(gfp_flags);
412 }
413
414 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
415 {
416 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
417 void *obj;
418
419 if (mc->nobjs >= min)
420 return 0;
421
422 if (unlikely(!mc->objects)) {
423 if (WARN_ON_ONCE(!capacity))
424 return -EIO;
425
426 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
427 if (!mc->objects)
428 return -ENOMEM;
429
430 mc->capacity = capacity;
431 }
432
433 /* It is illegal to request a different capacity across topups. */
434 if (WARN_ON_ONCE(mc->capacity != capacity))
435 return -EIO;
436
437 while (mc->nobjs < mc->capacity) {
438 obj = mmu_memory_cache_alloc_obj(mc, gfp);
439 if (!obj)
440 return mc->nobjs >= min ? 0 : -ENOMEM;
441 mc->objects[mc->nobjs++] = obj;
442 }
443 return 0;
444 }
445
446 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
447 {
448 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449 }
450
451 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
452 {
453 return mc->nobjs;
454 }
455
456 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
457 {
458 while (mc->nobjs) {
459 if (mc->kmem_cache)
460 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
461 else
462 free_page((unsigned long)mc->objects[--mc->nobjs]);
463 }
464
465 kvfree(mc->objects);
466
467 mc->objects = NULL;
468 mc->capacity = 0;
469 }
470
471 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
472 {
473 void *p;
474
475 if (WARN_ON(!mc->nobjs))
476 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
477 else
478 p = mc->objects[--mc->nobjs];
479 BUG_ON(!p);
480 return p;
481 }
482 #endif
483
484 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
485 {
486 mutex_init(&vcpu->mutex);
487 vcpu->cpu = -1;
488 vcpu->kvm = kvm;
489 vcpu->vcpu_id = id;
490 vcpu->pid = NULL;
491 #ifndef __KVM_HAVE_ARCH_WQP
492 rcuwait_init(&vcpu->wait);
493 #endif
494 kvm_async_pf_vcpu_init(vcpu);
495
496 kvm_vcpu_set_in_spin_loop(vcpu, false);
497 kvm_vcpu_set_dy_eligible(vcpu, false);
498 vcpu->preempted = false;
499 vcpu->ready = false;
500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
501 vcpu->last_used_slot = NULL;
502
503 /* Fill the stats id string for the vcpu */
504 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
505 task_pid_nr(current), id);
506 }
507
508 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
509 {
510 kvm_arch_vcpu_destroy(vcpu);
511 kvm_dirty_ring_free(&vcpu->dirty_ring);
512
513 /*
514 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515 * the vcpu->pid pointer, and at destruction time all file descriptors
516 * are already gone.
517 */
518 put_pid(rcu_dereference_protected(vcpu->pid, 1));
519
520 free_page((unsigned long)vcpu->run);
521 kmem_cache_free(kvm_vcpu_cache, vcpu);
522 }
523
524 void kvm_destroy_vcpus(struct kvm *kvm)
525 {
526 unsigned long i;
527 struct kvm_vcpu *vcpu;
528
529 kvm_for_each_vcpu(i, vcpu, kvm) {
530 kvm_vcpu_destroy(vcpu);
531 xa_erase(&kvm->vcpu_array, i);
532 }
533
534 atomic_set(&kvm->online_vcpus, 0);
535 }
536 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
537
538 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
539 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
540 {
541 return container_of(mn, struct kvm, mmu_notifier);
542 }
543
544 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
545
546 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
547 unsigned long end);
548
549 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
550
551 struct kvm_mmu_notifier_range {
552 /*
553 * 64-bit addresses, as KVM notifiers can operate on host virtual
554 * addresses (unsigned long) and guest physical addresses (64-bit).
555 */
556 u64 start;
557 u64 end;
558 union kvm_mmu_notifier_arg arg;
559 gfn_handler_t handler;
560 on_lock_fn_t on_lock;
561 on_unlock_fn_t on_unlock;
562 bool flush_on_ret;
563 bool may_block;
564 };
565
566 /*
567 * Use a dedicated stub instead of NULL to indicate that there is no callback
568 * function/handler. The compiler technically can't guarantee that a real
569 * function will have a non-zero address, and so it will generate code to
570 * check for !NULL, whereas comparing against a stub will be elided at compile
571 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
572 */
573 static void kvm_null_fn(void)
574 {
575
576 }
577 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
578
579 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
580
581 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
582 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
583 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
584 node; \
585 node = interval_tree_iter_next(node, start, last)) \
586
587 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
588 const struct kvm_mmu_notifier_range *range)
589 {
590 bool ret = false, locked = false;
591 struct kvm_gfn_range gfn_range;
592 struct kvm_memory_slot *slot;
593 struct kvm_memslots *slots;
594 int i, idx;
595
596 if (WARN_ON_ONCE(range->end <= range->start))
597 return 0;
598
599 /* A null handler is allowed if and only if on_lock() is provided. */
600 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
601 IS_KVM_NULL_FN(range->handler)))
602 return 0;
603
604 idx = srcu_read_lock(&kvm->srcu);
605
606 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
607 struct interval_tree_node *node;
608
609 slots = __kvm_memslots(kvm, i);
610 kvm_for_each_memslot_in_hva_range(node, slots,
611 range->start, range->end - 1) {
612 unsigned long hva_start, hva_end;
613
614 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
615 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
616 hva_end = min_t(unsigned long, range->end,
617 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
618
619 /*
620 * To optimize for the likely case where the address
621 * range is covered by zero or one memslots, don't
622 * bother making these conditional (to avoid writes on
623 * the second or later invocation of the handler).
624 */
625 gfn_range.arg = range->arg;
626 gfn_range.may_block = range->may_block;
627
628 /*
629 * {gfn(page) | page intersects with [hva_start, hva_end)} =
630 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
631 */
632 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
633 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
634 gfn_range.slot = slot;
635
636 if (!locked) {
637 locked = true;
638 KVM_MMU_LOCK(kvm);
639 if (!IS_KVM_NULL_FN(range->on_lock))
640 range->on_lock(kvm, range->start, range->end);
641 if (IS_KVM_NULL_FN(range->handler))
642 break;
643 }
644 ret |= range->handler(kvm, &gfn_range);
645 }
646 }
647
648 if (range->flush_on_ret && ret)
649 kvm_flush_remote_tlbs(kvm);
650
651 if (locked) {
652 KVM_MMU_UNLOCK(kvm);
653 if (!IS_KVM_NULL_FN(range->on_unlock))
654 range->on_unlock(kvm);
655 }
656
657 srcu_read_unlock(&kvm->srcu, idx);
658
659 /* The notifiers are averse to booleans. :-( */
660 return (int)ret;
661 }
662
663 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
664 unsigned long start,
665 unsigned long end,
666 union kvm_mmu_notifier_arg arg,
667 gfn_handler_t handler)
668 {
669 struct kvm *kvm = mmu_notifier_to_kvm(mn);
670 const struct kvm_mmu_notifier_range range = {
671 .start = start,
672 .end = end,
673 .arg = arg,
674 .handler = handler,
675 .on_lock = (void *)kvm_null_fn,
676 .on_unlock = (void *)kvm_null_fn,
677 .flush_on_ret = true,
678 .may_block = false,
679 };
680
681 return __kvm_handle_hva_range(kvm, &range);
682 }
683
684 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
685 unsigned long start,
686 unsigned long end,
687 gfn_handler_t handler)
688 {
689 struct kvm *kvm = mmu_notifier_to_kvm(mn);
690 const struct kvm_mmu_notifier_range range = {
691 .start = start,
692 .end = end,
693 .handler = handler,
694 .on_lock = (void *)kvm_null_fn,
695 .on_unlock = (void *)kvm_null_fn,
696 .flush_on_ret = false,
697 .may_block = false,
698 };
699
700 return __kvm_handle_hva_range(kvm, &range);
701 }
702
703 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
704 {
705 /*
706 * Skipping invalid memslots is correct if and only change_pte() is
707 * surrounded by invalidate_range_{start,end}(), which is currently
708 * guaranteed by the primary MMU. If that ever changes, KVM needs to
709 * unmap the memslot instead of skipping the memslot to ensure that KVM
710 * doesn't hold references to the old PFN.
711 */
712 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
713
714 if (range->slot->flags & KVM_MEMSLOT_INVALID)
715 return false;
716
717 return kvm_set_spte_gfn(kvm, range);
718 }
719
720 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
721 struct mm_struct *mm,
722 unsigned long address,
723 pte_t pte)
724 {
725 struct kvm *kvm = mmu_notifier_to_kvm(mn);
726 const union kvm_mmu_notifier_arg arg = { .pte = pte };
727
728 trace_kvm_set_spte_hva(address);
729
730 /*
731 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
732 * If mmu_invalidate_in_progress is zero, then no in-progress
733 * invalidations, including this one, found a relevant memslot at
734 * start(); rechecking memslots here is unnecessary. Note, a false
735 * positive (count elevated by a different invalidation) is sub-optimal
736 * but functionally ok.
737 */
738 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
739 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
740 return;
741
742 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
743 }
744
745 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
746 unsigned long end)
747 {
748 /*
749 * The count increase must become visible at unlock time as no
750 * spte can be established without taking the mmu_lock and
751 * count is also read inside the mmu_lock critical section.
752 */
753 kvm->mmu_invalidate_in_progress++;
754 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
755 kvm->mmu_invalidate_range_start = start;
756 kvm->mmu_invalidate_range_end = end;
757 } else {
758 /*
759 * Fully tracking multiple concurrent ranges has diminishing
760 * returns. Keep things simple and just find the minimal range
761 * which includes the current and new ranges. As there won't be
762 * enough information to subtract a range after its invalidate
763 * completes, any ranges invalidated concurrently will
764 * accumulate and persist until all outstanding invalidates
765 * complete.
766 */
767 kvm->mmu_invalidate_range_start =
768 min(kvm->mmu_invalidate_range_start, start);
769 kvm->mmu_invalidate_range_end =
770 max(kvm->mmu_invalidate_range_end, end);
771 }
772 }
773
774 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
775 const struct mmu_notifier_range *range)
776 {
777 struct kvm *kvm = mmu_notifier_to_kvm(mn);
778 const struct kvm_mmu_notifier_range hva_range = {
779 .start = range->start,
780 .end = range->end,
781 .handler = kvm_unmap_gfn_range,
782 .on_lock = kvm_mmu_invalidate_begin,
783 .on_unlock = kvm_arch_guest_memory_reclaimed,
784 .flush_on_ret = true,
785 .may_block = mmu_notifier_range_blockable(range),
786 };
787
788 trace_kvm_unmap_hva_range(range->start, range->end);
789
790 /*
791 * Prevent memslot modification between range_start() and range_end()
792 * so that conditionally locking provides the same result in both
793 * functions. Without that guarantee, the mmu_invalidate_in_progress
794 * adjustments will be imbalanced.
795 *
796 * Pairs with the decrement in range_end().
797 */
798 spin_lock(&kvm->mn_invalidate_lock);
799 kvm->mn_active_invalidate_count++;
800 spin_unlock(&kvm->mn_invalidate_lock);
801
802 /*
803 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
804 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
805 * each cache's lock. There are relatively few caches in existence at
806 * any given time, and the caches themselves can check for hva overlap,
807 * i.e. don't need to rely on memslot overlap checks for performance.
808 * Because this runs without holding mmu_lock, the pfn caches must use
809 * mn_active_invalidate_count (see above) instead of
810 * mmu_invalidate_in_progress.
811 */
812 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
813 hva_range.may_block);
814
815 __kvm_handle_hva_range(kvm, &hva_range);
816
817 return 0;
818 }
819
820 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
821 unsigned long end)
822 {
823 /*
824 * This sequence increase will notify the kvm page fault that
825 * the page that is going to be mapped in the spte could have
826 * been freed.
827 */
828 kvm->mmu_invalidate_seq++;
829 smp_wmb();
830 /*
831 * The above sequence increase must be visible before the
832 * below count decrease, which is ensured by the smp_wmb above
833 * in conjunction with the smp_rmb in mmu_invalidate_retry().
834 */
835 kvm->mmu_invalidate_in_progress--;
836 }
837
838 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
839 const struct mmu_notifier_range *range)
840 {
841 struct kvm *kvm = mmu_notifier_to_kvm(mn);
842 const struct kvm_mmu_notifier_range hva_range = {
843 .start = range->start,
844 .end = range->end,
845 .handler = (void *)kvm_null_fn,
846 .on_lock = kvm_mmu_invalidate_end,
847 .on_unlock = (void *)kvm_null_fn,
848 .flush_on_ret = false,
849 .may_block = mmu_notifier_range_blockable(range),
850 };
851 bool wake;
852
853 __kvm_handle_hva_range(kvm, &hva_range);
854
855 /* Pairs with the increment in range_start(). */
856 spin_lock(&kvm->mn_invalidate_lock);
857 wake = (--kvm->mn_active_invalidate_count == 0);
858 spin_unlock(&kvm->mn_invalidate_lock);
859
860 /*
861 * There can only be one waiter, since the wait happens under
862 * slots_lock.
863 */
864 if (wake)
865 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
866
867 BUG_ON(kvm->mmu_invalidate_in_progress < 0);
868 }
869
870 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
871 struct mm_struct *mm,
872 unsigned long start,
873 unsigned long end)
874 {
875 trace_kvm_age_hva(start, end);
876
877 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
878 kvm_age_gfn);
879 }
880
881 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
882 struct mm_struct *mm,
883 unsigned long start,
884 unsigned long end)
885 {
886 trace_kvm_age_hva(start, end);
887
888 /*
889 * Even though we do not flush TLB, this will still adversely
890 * affect performance on pre-Haswell Intel EPT, where there is
891 * no EPT Access Bit to clear so that we have to tear down EPT
892 * tables instead. If we find this unacceptable, we can always
893 * add a parameter to kvm_age_hva so that it effectively doesn't
894 * do anything on clear_young.
895 *
896 * Also note that currently we never issue secondary TLB flushes
897 * from clear_young, leaving this job up to the regular system
898 * cadence. If we find this inaccurate, we might come up with a
899 * more sophisticated heuristic later.
900 */
901 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
902 }
903
904 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
905 struct mm_struct *mm,
906 unsigned long address)
907 {
908 trace_kvm_test_age_hva(address);
909
910 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
911 kvm_test_age_gfn);
912 }
913
914 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
915 struct mm_struct *mm)
916 {
917 struct kvm *kvm = mmu_notifier_to_kvm(mn);
918 int idx;
919
920 idx = srcu_read_lock(&kvm->srcu);
921 kvm_flush_shadow_all(kvm);
922 srcu_read_unlock(&kvm->srcu, idx);
923 }
924
925 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
926 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
927 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
928 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
929 .clear_young = kvm_mmu_notifier_clear_young,
930 .test_young = kvm_mmu_notifier_test_young,
931 .change_pte = kvm_mmu_notifier_change_pte,
932 .release = kvm_mmu_notifier_release,
933 };
934
935 static int kvm_init_mmu_notifier(struct kvm *kvm)
936 {
937 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
938 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
939 }
940
941 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
942
943 static int kvm_init_mmu_notifier(struct kvm *kvm)
944 {
945 return 0;
946 }
947
948 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
949
950 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
951 static int kvm_pm_notifier_call(struct notifier_block *bl,
952 unsigned long state,
953 void *unused)
954 {
955 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
956
957 return kvm_arch_pm_notifier(kvm, state);
958 }
959
960 static void kvm_init_pm_notifier(struct kvm *kvm)
961 {
962 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
963 /* Suspend KVM before we suspend ftrace, RCU, etc. */
964 kvm->pm_notifier.priority = INT_MAX;
965 register_pm_notifier(&kvm->pm_notifier);
966 }
967
968 static void kvm_destroy_pm_notifier(struct kvm *kvm)
969 {
970 unregister_pm_notifier(&kvm->pm_notifier);
971 }
972 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
973 static void kvm_init_pm_notifier(struct kvm *kvm)
974 {
975 }
976
977 static void kvm_destroy_pm_notifier(struct kvm *kvm)
978 {
979 }
980 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
981
982 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
983 {
984 if (!memslot->dirty_bitmap)
985 return;
986
987 kvfree(memslot->dirty_bitmap);
988 memslot->dirty_bitmap = NULL;
989 }
990
991 /* This does not remove the slot from struct kvm_memslots data structures */
992 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
993 {
994 kvm_destroy_dirty_bitmap(slot);
995
996 kvm_arch_free_memslot(kvm, slot);
997
998 kfree(slot);
999 }
1000
1001 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1002 {
1003 struct hlist_node *idnode;
1004 struct kvm_memory_slot *memslot;
1005 int bkt;
1006
1007 /*
1008 * The same memslot objects live in both active and inactive sets,
1009 * arbitrarily free using index '1' so the second invocation of this
1010 * function isn't operating over a structure with dangling pointers
1011 * (even though this function isn't actually touching them).
1012 */
1013 if (!slots->node_idx)
1014 return;
1015
1016 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1017 kvm_free_memslot(kvm, memslot);
1018 }
1019
1020 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1021 {
1022 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1023 case KVM_STATS_TYPE_INSTANT:
1024 return 0444;
1025 case KVM_STATS_TYPE_CUMULATIVE:
1026 case KVM_STATS_TYPE_PEAK:
1027 default:
1028 return 0644;
1029 }
1030 }
1031
1032
1033 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1034 {
1035 int i;
1036 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1037 kvm_vcpu_stats_header.num_desc;
1038
1039 if (IS_ERR(kvm->debugfs_dentry))
1040 return;
1041
1042 debugfs_remove_recursive(kvm->debugfs_dentry);
1043
1044 if (kvm->debugfs_stat_data) {
1045 for (i = 0; i < kvm_debugfs_num_entries; i++)
1046 kfree(kvm->debugfs_stat_data[i]);
1047 kfree(kvm->debugfs_stat_data);
1048 }
1049 }
1050
1051 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1052 {
1053 static DEFINE_MUTEX(kvm_debugfs_lock);
1054 struct dentry *dent;
1055 char dir_name[ITOA_MAX_LEN * 2];
1056 struct kvm_stat_data *stat_data;
1057 const struct _kvm_stats_desc *pdesc;
1058 int i, ret = -ENOMEM;
1059 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1060 kvm_vcpu_stats_header.num_desc;
1061
1062 if (!debugfs_initialized())
1063 return 0;
1064
1065 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1066 mutex_lock(&kvm_debugfs_lock);
1067 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1068 if (dent) {
1069 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1070 dput(dent);
1071 mutex_unlock(&kvm_debugfs_lock);
1072 return 0;
1073 }
1074 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1075 mutex_unlock(&kvm_debugfs_lock);
1076 if (IS_ERR(dent))
1077 return 0;
1078
1079 kvm->debugfs_dentry = dent;
1080 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1081 sizeof(*kvm->debugfs_stat_data),
1082 GFP_KERNEL_ACCOUNT);
1083 if (!kvm->debugfs_stat_data)
1084 goto out_err;
1085
1086 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1087 pdesc = &kvm_vm_stats_desc[i];
1088 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1089 if (!stat_data)
1090 goto out_err;
1091
1092 stat_data->kvm = kvm;
1093 stat_data->desc = pdesc;
1094 stat_data->kind = KVM_STAT_VM;
1095 kvm->debugfs_stat_data[i] = stat_data;
1096 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1097 kvm->debugfs_dentry, stat_data,
1098 &stat_fops_per_vm);
1099 }
1100
1101 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1102 pdesc = &kvm_vcpu_stats_desc[i];
1103 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1104 if (!stat_data)
1105 goto out_err;
1106
1107 stat_data->kvm = kvm;
1108 stat_data->desc = pdesc;
1109 stat_data->kind = KVM_STAT_VCPU;
1110 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1111 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1112 kvm->debugfs_dentry, stat_data,
1113 &stat_fops_per_vm);
1114 }
1115
1116 ret = kvm_arch_create_vm_debugfs(kvm);
1117 if (ret)
1118 goto out_err;
1119
1120 return 0;
1121 out_err:
1122 kvm_destroy_vm_debugfs(kvm);
1123 return ret;
1124 }
1125
1126 /*
1127 * Called after the VM is otherwise initialized, but just before adding it to
1128 * the vm_list.
1129 */
1130 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1131 {
1132 return 0;
1133 }
1134
1135 /*
1136 * Called just after removing the VM from the vm_list, but before doing any
1137 * other destruction.
1138 */
1139 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1140 {
1141 }
1142
1143 /*
1144 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1145 * be setup already, so we can create arch-specific debugfs entries under it.
1146 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1147 * a per-arch destroy interface is not needed.
1148 */
1149 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1150 {
1151 return 0;
1152 }
1153
1154 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1155 {
1156 struct kvm *kvm = kvm_arch_alloc_vm();
1157 struct kvm_memslots *slots;
1158 int r = -ENOMEM;
1159 int i, j;
1160
1161 if (!kvm)
1162 return ERR_PTR(-ENOMEM);
1163
1164 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1165 __module_get(kvm_chardev_ops.owner);
1166
1167 KVM_MMU_LOCK_INIT(kvm);
1168 mmgrab(current->mm);
1169 kvm->mm = current->mm;
1170 kvm_eventfd_init(kvm);
1171 mutex_init(&kvm->lock);
1172 mutex_init(&kvm->irq_lock);
1173 mutex_init(&kvm->slots_lock);
1174 mutex_init(&kvm->slots_arch_lock);
1175 spin_lock_init(&kvm->mn_invalidate_lock);
1176 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1177 xa_init(&kvm->vcpu_array);
1178
1179 INIT_LIST_HEAD(&kvm->gpc_list);
1180 spin_lock_init(&kvm->gpc_lock);
1181
1182 INIT_LIST_HEAD(&kvm->devices);
1183 kvm->max_vcpus = KVM_MAX_VCPUS;
1184
1185 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1186
1187 /*
1188 * Force subsequent debugfs file creations to fail if the VM directory
1189 * is not created (by kvm_create_vm_debugfs()).
1190 */
1191 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1192
1193 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1194 task_pid_nr(current));
1195
1196 if (init_srcu_struct(&kvm->srcu))
1197 goto out_err_no_srcu;
1198 if (init_srcu_struct(&kvm->irq_srcu))
1199 goto out_err_no_irq_srcu;
1200
1201 refcount_set(&kvm->users_count, 1);
1202 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1203 for (j = 0; j < 2; j++) {
1204 slots = &kvm->__memslots[i][j];
1205
1206 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1207 slots->hva_tree = RB_ROOT_CACHED;
1208 slots->gfn_tree = RB_ROOT;
1209 hash_init(slots->id_hash);
1210 slots->node_idx = j;
1211
1212 /* Generations must be different for each address space. */
1213 slots->generation = i;
1214 }
1215
1216 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1217 }
1218
1219 for (i = 0; i < KVM_NR_BUSES; i++) {
1220 rcu_assign_pointer(kvm->buses[i],
1221 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1222 if (!kvm->buses[i])
1223 goto out_err_no_arch_destroy_vm;
1224 }
1225
1226 r = kvm_arch_init_vm(kvm, type);
1227 if (r)
1228 goto out_err_no_arch_destroy_vm;
1229
1230 r = hardware_enable_all();
1231 if (r)
1232 goto out_err_no_disable;
1233
1234 #ifdef CONFIG_HAVE_KVM_IRQFD
1235 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1236 #endif
1237
1238 r = kvm_init_mmu_notifier(kvm);
1239 if (r)
1240 goto out_err_no_mmu_notifier;
1241
1242 r = kvm_coalesced_mmio_init(kvm);
1243 if (r < 0)
1244 goto out_no_coalesced_mmio;
1245
1246 r = kvm_create_vm_debugfs(kvm, fdname);
1247 if (r)
1248 goto out_err_no_debugfs;
1249
1250 r = kvm_arch_post_init_vm(kvm);
1251 if (r)
1252 goto out_err;
1253
1254 mutex_lock(&kvm_lock);
1255 list_add(&kvm->vm_list, &vm_list);
1256 mutex_unlock(&kvm_lock);
1257
1258 preempt_notifier_inc();
1259 kvm_init_pm_notifier(kvm);
1260
1261 return kvm;
1262
1263 out_err:
1264 kvm_destroy_vm_debugfs(kvm);
1265 out_err_no_debugfs:
1266 kvm_coalesced_mmio_free(kvm);
1267 out_no_coalesced_mmio:
1268 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1269 if (kvm->mmu_notifier.ops)
1270 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1271 #endif
1272 out_err_no_mmu_notifier:
1273 hardware_disable_all();
1274 out_err_no_disable:
1275 kvm_arch_destroy_vm(kvm);
1276 out_err_no_arch_destroy_vm:
1277 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1278 for (i = 0; i < KVM_NR_BUSES; i++)
1279 kfree(kvm_get_bus(kvm, i));
1280 cleanup_srcu_struct(&kvm->irq_srcu);
1281 out_err_no_irq_srcu:
1282 cleanup_srcu_struct(&kvm->srcu);
1283 out_err_no_srcu:
1284 kvm_arch_free_vm(kvm);
1285 mmdrop(current->mm);
1286 module_put(kvm_chardev_ops.owner);
1287 return ERR_PTR(r);
1288 }
1289
1290 static void kvm_destroy_devices(struct kvm *kvm)
1291 {
1292 struct kvm_device *dev, *tmp;
1293
1294 /*
1295 * We do not need to take the kvm->lock here, because nobody else
1296 * has a reference to the struct kvm at this point and therefore
1297 * cannot access the devices list anyhow.
1298 */
1299 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1300 list_del(&dev->vm_node);
1301 dev->ops->destroy(dev);
1302 }
1303 }
1304
1305 static void kvm_destroy_vm(struct kvm *kvm)
1306 {
1307 int i;
1308 struct mm_struct *mm = kvm->mm;
1309
1310 kvm_destroy_pm_notifier(kvm);
1311 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1312 kvm_destroy_vm_debugfs(kvm);
1313 kvm_arch_sync_events(kvm);
1314 mutex_lock(&kvm_lock);
1315 list_del(&kvm->vm_list);
1316 mutex_unlock(&kvm_lock);
1317 kvm_arch_pre_destroy_vm(kvm);
1318
1319 kvm_free_irq_routing(kvm);
1320 for (i = 0; i < KVM_NR_BUSES; i++) {
1321 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1322
1323 if (bus)
1324 kvm_io_bus_destroy(bus);
1325 kvm->buses[i] = NULL;
1326 }
1327 kvm_coalesced_mmio_free(kvm);
1328 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1329 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1330 /*
1331 * At this point, pending calls to invalidate_range_start()
1332 * have completed but no more MMU notifiers will run, so
1333 * mn_active_invalidate_count may remain unbalanced.
1334 * No threads can be waiting in kvm_swap_active_memslots() as the
1335 * last reference on KVM has been dropped, but freeing
1336 * memslots would deadlock without this manual intervention.
1337 */
1338 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1339 kvm->mn_active_invalidate_count = 0;
1340 #else
1341 kvm_flush_shadow_all(kvm);
1342 #endif
1343 kvm_arch_destroy_vm(kvm);
1344 kvm_destroy_devices(kvm);
1345 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1346 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1347 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1348 }
1349 cleanup_srcu_struct(&kvm->irq_srcu);
1350 cleanup_srcu_struct(&kvm->srcu);
1351 kvm_arch_free_vm(kvm);
1352 preempt_notifier_dec();
1353 hardware_disable_all();
1354 mmdrop(mm);
1355 module_put(kvm_chardev_ops.owner);
1356 }
1357
1358 void kvm_get_kvm(struct kvm *kvm)
1359 {
1360 refcount_inc(&kvm->users_count);
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1363
1364 /*
1365 * Make sure the vm is not during destruction, which is a safe version of
1366 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1367 */
1368 bool kvm_get_kvm_safe(struct kvm *kvm)
1369 {
1370 return refcount_inc_not_zero(&kvm->users_count);
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1373
1374 void kvm_put_kvm(struct kvm *kvm)
1375 {
1376 if (refcount_dec_and_test(&kvm->users_count))
1377 kvm_destroy_vm(kvm);
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1380
1381 /*
1382 * Used to put a reference that was taken on behalf of an object associated
1383 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1384 * of the new file descriptor fails and the reference cannot be transferred to
1385 * its final owner. In such cases, the caller is still actively using @kvm and
1386 * will fail miserably if the refcount unexpectedly hits zero.
1387 */
1388 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1389 {
1390 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1393
1394 static int kvm_vm_release(struct inode *inode, struct file *filp)
1395 {
1396 struct kvm *kvm = filp->private_data;
1397
1398 kvm_irqfd_release(kvm);
1399
1400 kvm_put_kvm(kvm);
1401 return 0;
1402 }
1403
1404 /*
1405 * Allocation size is twice as large as the actual dirty bitmap size.
1406 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1407 */
1408 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1409 {
1410 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1411
1412 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1413 if (!memslot->dirty_bitmap)
1414 return -ENOMEM;
1415
1416 return 0;
1417 }
1418
1419 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1420 {
1421 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1422 int node_idx_inactive = active->node_idx ^ 1;
1423
1424 return &kvm->__memslots[as_id][node_idx_inactive];
1425 }
1426
1427 /*
1428 * Helper to get the address space ID when one of memslot pointers may be NULL.
1429 * This also serves as a sanity that at least one of the pointers is non-NULL,
1430 * and that their address space IDs don't diverge.
1431 */
1432 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1433 struct kvm_memory_slot *b)
1434 {
1435 if (WARN_ON_ONCE(!a && !b))
1436 return 0;
1437
1438 if (!a)
1439 return b->as_id;
1440 if (!b)
1441 return a->as_id;
1442
1443 WARN_ON_ONCE(a->as_id != b->as_id);
1444 return a->as_id;
1445 }
1446
1447 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1448 struct kvm_memory_slot *slot)
1449 {
1450 struct rb_root *gfn_tree = &slots->gfn_tree;
1451 struct rb_node **node, *parent;
1452 int idx = slots->node_idx;
1453
1454 parent = NULL;
1455 for (node = &gfn_tree->rb_node; *node; ) {
1456 struct kvm_memory_slot *tmp;
1457
1458 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1459 parent = *node;
1460 if (slot->base_gfn < tmp->base_gfn)
1461 node = &(*node)->rb_left;
1462 else if (slot->base_gfn > tmp->base_gfn)
1463 node = &(*node)->rb_right;
1464 else
1465 BUG();
1466 }
1467
1468 rb_link_node(&slot->gfn_node[idx], parent, node);
1469 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1470 }
1471
1472 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1473 struct kvm_memory_slot *slot)
1474 {
1475 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1476 }
1477
1478 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1479 struct kvm_memory_slot *old,
1480 struct kvm_memory_slot *new)
1481 {
1482 int idx = slots->node_idx;
1483
1484 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1485
1486 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1487 &slots->gfn_tree);
1488 }
1489
1490 /*
1491 * Replace @old with @new in the inactive memslots.
1492 *
1493 * With NULL @old this simply adds @new.
1494 * With NULL @new this simply removes @old.
1495 *
1496 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1497 * appropriately.
1498 */
1499 static void kvm_replace_memslot(struct kvm *kvm,
1500 struct kvm_memory_slot *old,
1501 struct kvm_memory_slot *new)
1502 {
1503 int as_id = kvm_memslots_get_as_id(old, new);
1504 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1505 int idx = slots->node_idx;
1506
1507 if (old) {
1508 hash_del(&old->id_node[idx]);
1509 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1510
1511 if ((long)old == atomic_long_read(&slots->last_used_slot))
1512 atomic_long_set(&slots->last_used_slot, (long)new);
1513
1514 if (!new) {
1515 kvm_erase_gfn_node(slots, old);
1516 return;
1517 }
1518 }
1519
1520 /*
1521 * Initialize @new's hva range. Do this even when replacing an @old
1522 * slot, kvm_copy_memslot() deliberately does not touch node data.
1523 */
1524 new->hva_node[idx].start = new->userspace_addr;
1525 new->hva_node[idx].last = new->userspace_addr +
1526 (new->npages << PAGE_SHIFT) - 1;
1527
1528 /*
1529 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1530 * hva_node needs to be swapped with remove+insert even though hva can't
1531 * change when replacing an existing slot.
1532 */
1533 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1534 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1535
1536 /*
1537 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1538 * switch the node in the gfn tree instead of removing the old and
1539 * inserting the new as two separate operations. Replacement is a
1540 * single O(1) operation versus two O(log(n)) operations for
1541 * remove+insert.
1542 */
1543 if (old && old->base_gfn == new->base_gfn) {
1544 kvm_replace_gfn_node(slots, old, new);
1545 } else {
1546 if (old)
1547 kvm_erase_gfn_node(slots, old);
1548 kvm_insert_gfn_node(slots, new);
1549 }
1550 }
1551
1552 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1553 {
1554 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1555
1556 #ifdef __KVM_HAVE_READONLY_MEM
1557 valid_flags |= KVM_MEM_READONLY;
1558 #endif
1559
1560 if (mem->flags & ~valid_flags)
1561 return -EINVAL;
1562
1563 return 0;
1564 }
1565
1566 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1567 {
1568 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1569
1570 /* Grab the generation from the activate memslots. */
1571 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1572
1573 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1574 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1575
1576 /*
1577 * Do not store the new memslots while there are invalidations in
1578 * progress, otherwise the locking in invalidate_range_start and
1579 * invalidate_range_end will be unbalanced.
1580 */
1581 spin_lock(&kvm->mn_invalidate_lock);
1582 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1583 while (kvm->mn_active_invalidate_count) {
1584 set_current_state(TASK_UNINTERRUPTIBLE);
1585 spin_unlock(&kvm->mn_invalidate_lock);
1586 schedule();
1587 spin_lock(&kvm->mn_invalidate_lock);
1588 }
1589 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1590 rcu_assign_pointer(kvm->memslots[as_id], slots);
1591 spin_unlock(&kvm->mn_invalidate_lock);
1592
1593 /*
1594 * Acquired in kvm_set_memslot. Must be released before synchronize
1595 * SRCU below in order to avoid deadlock with another thread
1596 * acquiring the slots_arch_lock in an srcu critical section.
1597 */
1598 mutex_unlock(&kvm->slots_arch_lock);
1599
1600 synchronize_srcu_expedited(&kvm->srcu);
1601
1602 /*
1603 * Increment the new memslot generation a second time, dropping the
1604 * update in-progress flag and incrementing the generation based on
1605 * the number of address spaces. This provides a unique and easily
1606 * identifiable generation number while the memslots are in flux.
1607 */
1608 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1609
1610 /*
1611 * Generations must be unique even across address spaces. We do not need
1612 * a global counter for that, instead the generation space is evenly split
1613 * across address spaces. For example, with two address spaces, address
1614 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1615 * use generations 1, 3, 5, ...
1616 */
1617 gen += KVM_ADDRESS_SPACE_NUM;
1618
1619 kvm_arch_memslots_updated(kvm, gen);
1620
1621 slots->generation = gen;
1622 }
1623
1624 static int kvm_prepare_memory_region(struct kvm *kvm,
1625 const struct kvm_memory_slot *old,
1626 struct kvm_memory_slot *new,
1627 enum kvm_mr_change change)
1628 {
1629 int r;
1630
1631 /*
1632 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1633 * will be freed on "commit". If logging is enabled in both old and
1634 * new, reuse the existing bitmap. If logging is enabled only in the
1635 * new and KVM isn't using a ring buffer, allocate and initialize a
1636 * new bitmap.
1637 */
1638 if (change != KVM_MR_DELETE) {
1639 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1640 new->dirty_bitmap = NULL;
1641 else if (old && old->dirty_bitmap)
1642 new->dirty_bitmap = old->dirty_bitmap;
1643 else if (kvm_use_dirty_bitmap(kvm)) {
1644 r = kvm_alloc_dirty_bitmap(new);
1645 if (r)
1646 return r;
1647
1648 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1649 bitmap_set(new->dirty_bitmap, 0, new->npages);
1650 }
1651 }
1652
1653 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1654
1655 /* Free the bitmap on failure if it was allocated above. */
1656 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1657 kvm_destroy_dirty_bitmap(new);
1658
1659 return r;
1660 }
1661
1662 static void kvm_commit_memory_region(struct kvm *kvm,
1663 struct kvm_memory_slot *old,
1664 const struct kvm_memory_slot *new,
1665 enum kvm_mr_change change)
1666 {
1667 int old_flags = old ? old->flags : 0;
1668 int new_flags = new ? new->flags : 0;
1669 /*
1670 * Update the total number of memslot pages before calling the arch
1671 * hook so that architectures can consume the result directly.
1672 */
1673 if (change == KVM_MR_DELETE)
1674 kvm->nr_memslot_pages -= old->npages;
1675 else if (change == KVM_MR_CREATE)
1676 kvm->nr_memslot_pages += new->npages;
1677
1678 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1679 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1680 atomic_set(&kvm->nr_memslots_dirty_logging,
1681 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1682 }
1683
1684 kvm_arch_commit_memory_region(kvm, old, new, change);
1685
1686 switch (change) {
1687 case KVM_MR_CREATE:
1688 /* Nothing more to do. */
1689 break;
1690 case KVM_MR_DELETE:
1691 /* Free the old memslot and all its metadata. */
1692 kvm_free_memslot(kvm, old);
1693 break;
1694 case KVM_MR_MOVE:
1695 case KVM_MR_FLAGS_ONLY:
1696 /*
1697 * Free the dirty bitmap as needed; the below check encompasses
1698 * both the flags and whether a ring buffer is being used)
1699 */
1700 if (old->dirty_bitmap && !new->dirty_bitmap)
1701 kvm_destroy_dirty_bitmap(old);
1702
1703 /*
1704 * The final quirk. Free the detached, old slot, but only its
1705 * memory, not any metadata. Metadata, including arch specific
1706 * data, may be reused by @new.
1707 */
1708 kfree(old);
1709 break;
1710 default:
1711 BUG();
1712 }
1713 }
1714
1715 /*
1716 * Activate @new, which must be installed in the inactive slots by the caller,
1717 * by swapping the active slots and then propagating @new to @old once @old is
1718 * unreachable and can be safely modified.
1719 *
1720 * With NULL @old this simply adds @new to @active (while swapping the sets).
1721 * With NULL @new this simply removes @old from @active and frees it
1722 * (while also swapping the sets).
1723 */
1724 static void kvm_activate_memslot(struct kvm *kvm,
1725 struct kvm_memory_slot *old,
1726 struct kvm_memory_slot *new)
1727 {
1728 int as_id = kvm_memslots_get_as_id(old, new);
1729
1730 kvm_swap_active_memslots(kvm, as_id);
1731
1732 /* Propagate the new memslot to the now inactive memslots. */
1733 kvm_replace_memslot(kvm, old, new);
1734 }
1735
1736 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1737 const struct kvm_memory_slot *src)
1738 {
1739 dest->base_gfn = src->base_gfn;
1740 dest->npages = src->npages;
1741 dest->dirty_bitmap = src->dirty_bitmap;
1742 dest->arch = src->arch;
1743 dest->userspace_addr = src->userspace_addr;
1744 dest->flags = src->flags;
1745 dest->id = src->id;
1746 dest->as_id = src->as_id;
1747 }
1748
1749 static void kvm_invalidate_memslot(struct kvm *kvm,
1750 struct kvm_memory_slot *old,
1751 struct kvm_memory_slot *invalid_slot)
1752 {
1753 /*
1754 * Mark the current slot INVALID. As with all memslot modifications,
1755 * this must be done on an unreachable slot to avoid modifying the
1756 * current slot in the active tree.
1757 */
1758 kvm_copy_memslot(invalid_slot, old);
1759 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1760 kvm_replace_memslot(kvm, old, invalid_slot);
1761
1762 /*
1763 * Activate the slot that is now marked INVALID, but don't propagate
1764 * the slot to the now inactive slots. The slot is either going to be
1765 * deleted or recreated as a new slot.
1766 */
1767 kvm_swap_active_memslots(kvm, old->as_id);
1768
1769 /*
1770 * From this point no new shadow pages pointing to a deleted, or moved,
1771 * memslot will be created. Validation of sp->gfn happens in:
1772 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1773 * - kvm_is_visible_gfn (mmu_check_root)
1774 */
1775 kvm_arch_flush_shadow_memslot(kvm, old);
1776 kvm_arch_guest_memory_reclaimed(kvm);
1777
1778 /* Was released by kvm_swap_active_memslots(), reacquire. */
1779 mutex_lock(&kvm->slots_arch_lock);
1780
1781 /*
1782 * Copy the arch-specific field of the newly-installed slot back to the
1783 * old slot as the arch data could have changed between releasing
1784 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1785 * above. Writers are required to retrieve memslots *after* acquiring
1786 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1787 */
1788 old->arch = invalid_slot->arch;
1789 }
1790
1791 static void kvm_create_memslot(struct kvm *kvm,
1792 struct kvm_memory_slot *new)
1793 {
1794 /* Add the new memslot to the inactive set and activate. */
1795 kvm_replace_memslot(kvm, NULL, new);
1796 kvm_activate_memslot(kvm, NULL, new);
1797 }
1798
1799 static void kvm_delete_memslot(struct kvm *kvm,
1800 struct kvm_memory_slot *old,
1801 struct kvm_memory_slot *invalid_slot)
1802 {
1803 /*
1804 * Remove the old memslot (in the inactive memslots) by passing NULL as
1805 * the "new" slot, and for the invalid version in the active slots.
1806 */
1807 kvm_replace_memslot(kvm, old, NULL);
1808 kvm_activate_memslot(kvm, invalid_slot, NULL);
1809 }
1810
1811 static void kvm_move_memslot(struct kvm *kvm,
1812 struct kvm_memory_slot *old,
1813 struct kvm_memory_slot *new,
1814 struct kvm_memory_slot *invalid_slot)
1815 {
1816 /*
1817 * Replace the old memslot in the inactive slots, and then swap slots
1818 * and replace the current INVALID with the new as well.
1819 */
1820 kvm_replace_memslot(kvm, old, new);
1821 kvm_activate_memslot(kvm, invalid_slot, new);
1822 }
1823
1824 static void kvm_update_flags_memslot(struct kvm *kvm,
1825 struct kvm_memory_slot *old,
1826 struct kvm_memory_slot *new)
1827 {
1828 /*
1829 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1830 * an intermediate step. Instead, the old memslot is simply replaced
1831 * with a new, updated copy in both memslot sets.
1832 */
1833 kvm_replace_memslot(kvm, old, new);
1834 kvm_activate_memslot(kvm, old, new);
1835 }
1836
1837 static int kvm_set_memslot(struct kvm *kvm,
1838 struct kvm_memory_slot *old,
1839 struct kvm_memory_slot *new,
1840 enum kvm_mr_change change)
1841 {
1842 struct kvm_memory_slot *invalid_slot;
1843 int r;
1844
1845 /*
1846 * Released in kvm_swap_active_memslots().
1847 *
1848 * Must be held from before the current memslots are copied until after
1849 * the new memslots are installed with rcu_assign_pointer, then
1850 * released before the synchronize srcu in kvm_swap_active_memslots().
1851 *
1852 * When modifying memslots outside of the slots_lock, must be held
1853 * before reading the pointer to the current memslots until after all
1854 * changes to those memslots are complete.
1855 *
1856 * These rules ensure that installing new memslots does not lose
1857 * changes made to the previous memslots.
1858 */
1859 mutex_lock(&kvm->slots_arch_lock);
1860
1861 /*
1862 * Invalidate the old slot if it's being deleted or moved. This is
1863 * done prior to actually deleting/moving the memslot to allow vCPUs to
1864 * continue running by ensuring there are no mappings or shadow pages
1865 * for the memslot when it is deleted/moved. Without pre-invalidation
1866 * (and without a lock), a window would exist between effecting the
1867 * delete/move and committing the changes in arch code where KVM or a
1868 * guest could access a non-existent memslot.
1869 *
1870 * Modifications are done on a temporary, unreachable slot. The old
1871 * slot needs to be preserved in case a later step fails and the
1872 * invalidation needs to be reverted.
1873 */
1874 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1875 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1876 if (!invalid_slot) {
1877 mutex_unlock(&kvm->slots_arch_lock);
1878 return -ENOMEM;
1879 }
1880 kvm_invalidate_memslot(kvm, old, invalid_slot);
1881 }
1882
1883 r = kvm_prepare_memory_region(kvm, old, new, change);
1884 if (r) {
1885 /*
1886 * For DELETE/MOVE, revert the above INVALID change. No
1887 * modifications required since the original slot was preserved
1888 * in the inactive slots. Changing the active memslots also
1889 * release slots_arch_lock.
1890 */
1891 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1892 kvm_activate_memslot(kvm, invalid_slot, old);
1893 kfree(invalid_slot);
1894 } else {
1895 mutex_unlock(&kvm->slots_arch_lock);
1896 }
1897 return r;
1898 }
1899
1900 /*
1901 * For DELETE and MOVE, the working slot is now active as the INVALID
1902 * version of the old slot. MOVE is particularly special as it reuses
1903 * the old slot and returns a copy of the old slot (in working_slot).
1904 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1905 * old slot is detached but otherwise preserved.
1906 */
1907 if (change == KVM_MR_CREATE)
1908 kvm_create_memslot(kvm, new);
1909 else if (change == KVM_MR_DELETE)
1910 kvm_delete_memslot(kvm, old, invalid_slot);
1911 else if (change == KVM_MR_MOVE)
1912 kvm_move_memslot(kvm, old, new, invalid_slot);
1913 else if (change == KVM_MR_FLAGS_ONLY)
1914 kvm_update_flags_memslot(kvm, old, new);
1915 else
1916 BUG();
1917
1918 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1919 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1920 kfree(invalid_slot);
1921
1922 /*
1923 * No need to refresh new->arch, changes after dropping slots_arch_lock
1924 * will directly hit the final, active memslot. Architectures are
1925 * responsible for knowing that new->arch may be stale.
1926 */
1927 kvm_commit_memory_region(kvm, old, new, change);
1928
1929 return 0;
1930 }
1931
1932 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1933 gfn_t start, gfn_t end)
1934 {
1935 struct kvm_memslot_iter iter;
1936
1937 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1938 if (iter.slot->id != id)
1939 return true;
1940 }
1941
1942 return false;
1943 }
1944
1945 /*
1946 * Allocate some memory and give it an address in the guest physical address
1947 * space.
1948 *
1949 * Discontiguous memory is allowed, mostly for framebuffers.
1950 *
1951 * Must be called holding kvm->slots_lock for write.
1952 */
1953 int __kvm_set_memory_region(struct kvm *kvm,
1954 const struct kvm_userspace_memory_region *mem)
1955 {
1956 struct kvm_memory_slot *old, *new;
1957 struct kvm_memslots *slots;
1958 enum kvm_mr_change change;
1959 unsigned long npages;
1960 gfn_t base_gfn;
1961 int as_id, id;
1962 int r;
1963
1964 r = check_memory_region_flags(mem);
1965 if (r)
1966 return r;
1967
1968 as_id = mem->slot >> 16;
1969 id = (u16)mem->slot;
1970
1971 /* General sanity checks */
1972 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1973 (mem->memory_size != (unsigned long)mem->memory_size))
1974 return -EINVAL;
1975 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1976 return -EINVAL;
1977 /* We can read the guest memory with __xxx_user() later on. */
1978 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1979 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1980 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1981 mem->memory_size))
1982 return -EINVAL;
1983 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1984 return -EINVAL;
1985 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1986 return -EINVAL;
1987 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1988 return -EINVAL;
1989
1990 slots = __kvm_memslots(kvm, as_id);
1991
1992 /*
1993 * Note, the old memslot (and the pointer itself!) may be invalidated
1994 * and/or destroyed by kvm_set_memslot().
1995 */
1996 old = id_to_memslot(slots, id);
1997
1998 if (!mem->memory_size) {
1999 if (!old || !old->npages)
2000 return -EINVAL;
2001
2002 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2003 return -EIO;
2004
2005 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2006 }
2007
2008 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2009 npages = (mem->memory_size >> PAGE_SHIFT);
2010
2011 if (!old || !old->npages) {
2012 change = KVM_MR_CREATE;
2013
2014 /*
2015 * To simplify KVM internals, the total number of pages across
2016 * all memslots must fit in an unsigned long.
2017 */
2018 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2019 return -EINVAL;
2020 } else { /* Modify an existing slot. */
2021 if ((mem->userspace_addr != old->userspace_addr) ||
2022 (npages != old->npages) ||
2023 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2024 return -EINVAL;
2025
2026 if (base_gfn != old->base_gfn)
2027 change = KVM_MR_MOVE;
2028 else if (mem->flags != old->flags)
2029 change = KVM_MR_FLAGS_ONLY;
2030 else /* Nothing to change. */
2031 return 0;
2032 }
2033
2034 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2035 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2036 return -EEXIST;
2037
2038 /* Allocate a slot that will persist in the memslot. */
2039 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2040 if (!new)
2041 return -ENOMEM;
2042
2043 new->as_id = as_id;
2044 new->id = id;
2045 new->base_gfn = base_gfn;
2046 new->npages = npages;
2047 new->flags = mem->flags;
2048 new->userspace_addr = mem->userspace_addr;
2049
2050 r = kvm_set_memslot(kvm, old, new, change);
2051 if (r)
2052 kfree(new);
2053 return r;
2054 }
2055 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2056
2057 int kvm_set_memory_region(struct kvm *kvm,
2058 const struct kvm_userspace_memory_region *mem)
2059 {
2060 int r;
2061
2062 mutex_lock(&kvm->slots_lock);
2063 r = __kvm_set_memory_region(kvm, mem);
2064 mutex_unlock(&kvm->slots_lock);
2065 return r;
2066 }
2067 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2068
2069 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2070 struct kvm_userspace_memory_region *mem)
2071 {
2072 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2073 return -EINVAL;
2074
2075 return kvm_set_memory_region(kvm, mem);
2076 }
2077
2078 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2079 /**
2080 * kvm_get_dirty_log - get a snapshot of dirty pages
2081 * @kvm: pointer to kvm instance
2082 * @log: slot id and address to which we copy the log
2083 * @is_dirty: set to '1' if any dirty pages were found
2084 * @memslot: set to the associated memslot, always valid on success
2085 */
2086 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2087 int *is_dirty, struct kvm_memory_slot **memslot)
2088 {
2089 struct kvm_memslots *slots;
2090 int i, as_id, id;
2091 unsigned long n;
2092 unsigned long any = 0;
2093
2094 /* Dirty ring tracking may be exclusive to dirty log tracking */
2095 if (!kvm_use_dirty_bitmap(kvm))
2096 return -ENXIO;
2097
2098 *memslot = NULL;
2099 *is_dirty = 0;
2100
2101 as_id = log->slot >> 16;
2102 id = (u16)log->slot;
2103 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2104 return -EINVAL;
2105
2106 slots = __kvm_memslots(kvm, as_id);
2107 *memslot = id_to_memslot(slots, id);
2108 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2109 return -ENOENT;
2110
2111 kvm_arch_sync_dirty_log(kvm, *memslot);
2112
2113 n = kvm_dirty_bitmap_bytes(*memslot);
2114
2115 for (i = 0; !any && i < n/sizeof(long); ++i)
2116 any = (*memslot)->dirty_bitmap[i];
2117
2118 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2119 return -EFAULT;
2120
2121 if (any)
2122 *is_dirty = 1;
2123 return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2126
2127 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2128 /**
2129 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2130 * and reenable dirty page tracking for the corresponding pages.
2131 * @kvm: pointer to kvm instance
2132 * @log: slot id and address to which we copy the log
2133 *
2134 * We need to keep it in mind that VCPU threads can write to the bitmap
2135 * concurrently. So, to avoid losing track of dirty pages we keep the
2136 * following order:
2137 *
2138 * 1. Take a snapshot of the bit and clear it if needed.
2139 * 2. Write protect the corresponding page.
2140 * 3. Copy the snapshot to the userspace.
2141 * 4. Upon return caller flushes TLB's if needed.
2142 *
2143 * Between 2 and 4, the guest may write to the page using the remaining TLB
2144 * entry. This is not a problem because the page is reported dirty using
2145 * the snapshot taken before and step 4 ensures that writes done after
2146 * exiting to userspace will be logged for the next call.
2147 *
2148 */
2149 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2150 {
2151 struct kvm_memslots *slots;
2152 struct kvm_memory_slot *memslot;
2153 int i, as_id, id;
2154 unsigned long n;
2155 unsigned long *dirty_bitmap;
2156 unsigned long *dirty_bitmap_buffer;
2157 bool flush;
2158
2159 /* Dirty ring tracking may be exclusive to dirty log tracking */
2160 if (!kvm_use_dirty_bitmap(kvm))
2161 return -ENXIO;
2162
2163 as_id = log->slot >> 16;
2164 id = (u16)log->slot;
2165 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2166 return -EINVAL;
2167
2168 slots = __kvm_memslots(kvm, as_id);
2169 memslot = id_to_memslot(slots, id);
2170 if (!memslot || !memslot->dirty_bitmap)
2171 return -ENOENT;
2172
2173 dirty_bitmap = memslot->dirty_bitmap;
2174
2175 kvm_arch_sync_dirty_log(kvm, memslot);
2176
2177 n = kvm_dirty_bitmap_bytes(memslot);
2178 flush = false;
2179 if (kvm->manual_dirty_log_protect) {
2180 /*
2181 * Unlike kvm_get_dirty_log, we always return false in *flush,
2182 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2183 * is some code duplication between this function and
2184 * kvm_get_dirty_log, but hopefully all architecture
2185 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2186 * can be eliminated.
2187 */
2188 dirty_bitmap_buffer = dirty_bitmap;
2189 } else {
2190 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2191 memset(dirty_bitmap_buffer, 0, n);
2192
2193 KVM_MMU_LOCK(kvm);
2194 for (i = 0; i < n / sizeof(long); i++) {
2195 unsigned long mask;
2196 gfn_t offset;
2197
2198 if (!dirty_bitmap[i])
2199 continue;
2200
2201 flush = true;
2202 mask = xchg(&dirty_bitmap[i], 0);
2203 dirty_bitmap_buffer[i] = mask;
2204
2205 offset = i * BITS_PER_LONG;
2206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2207 offset, mask);
2208 }
2209 KVM_MMU_UNLOCK(kvm);
2210 }
2211
2212 if (flush)
2213 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2214
2215 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2216 return -EFAULT;
2217 return 0;
2218 }
2219
2220
2221 /**
2222 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2223 * @kvm: kvm instance
2224 * @log: slot id and address to which we copy the log
2225 *
2226 * Steps 1-4 below provide general overview of dirty page logging. See
2227 * kvm_get_dirty_log_protect() function description for additional details.
2228 *
2229 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2230 * always flush the TLB (step 4) even if previous step failed and the dirty
2231 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2232 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2233 * writes will be marked dirty for next log read.
2234 *
2235 * 1. Take a snapshot of the bit and clear it if needed.
2236 * 2. Write protect the corresponding page.
2237 * 3. Copy the snapshot to the userspace.
2238 * 4. Flush TLB's if needed.
2239 */
2240 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2241 struct kvm_dirty_log *log)
2242 {
2243 int r;
2244
2245 mutex_lock(&kvm->slots_lock);
2246
2247 r = kvm_get_dirty_log_protect(kvm, log);
2248
2249 mutex_unlock(&kvm->slots_lock);
2250 return r;
2251 }
2252
2253 /**
2254 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2255 * and reenable dirty page tracking for the corresponding pages.
2256 * @kvm: pointer to kvm instance
2257 * @log: slot id and address from which to fetch the bitmap of dirty pages
2258 */
2259 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2260 struct kvm_clear_dirty_log *log)
2261 {
2262 struct kvm_memslots *slots;
2263 struct kvm_memory_slot *memslot;
2264 int as_id, id;
2265 gfn_t offset;
2266 unsigned long i, n;
2267 unsigned long *dirty_bitmap;
2268 unsigned long *dirty_bitmap_buffer;
2269 bool flush;
2270
2271 /* Dirty ring tracking may be exclusive to dirty log tracking */
2272 if (!kvm_use_dirty_bitmap(kvm))
2273 return -ENXIO;
2274
2275 as_id = log->slot >> 16;
2276 id = (u16)log->slot;
2277 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2278 return -EINVAL;
2279
2280 if (log->first_page & 63)
2281 return -EINVAL;
2282
2283 slots = __kvm_memslots(kvm, as_id);
2284 memslot = id_to_memslot(slots, id);
2285 if (!memslot || !memslot->dirty_bitmap)
2286 return -ENOENT;
2287
2288 dirty_bitmap = memslot->dirty_bitmap;
2289
2290 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2291
2292 if (log->first_page > memslot->npages ||
2293 log->num_pages > memslot->npages - log->first_page ||
2294 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2295 return -EINVAL;
2296
2297 kvm_arch_sync_dirty_log(kvm, memslot);
2298
2299 flush = false;
2300 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2301 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2302 return -EFAULT;
2303
2304 KVM_MMU_LOCK(kvm);
2305 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2306 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2307 i++, offset += BITS_PER_LONG) {
2308 unsigned long mask = *dirty_bitmap_buffer++;
2309 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2310 if (!mask)
2311 continue;
2312
2313 mask &= atomic_long_fetch_andnot(mask, p);
2314
2315 /*
2316 * mask contains the bits that really have been cleared. This
2317 * never includes any bits beyond the length of the memslot (if
2318 * the length is not aligned to 64 pages), therefore it is not
2319 * a problem if userspace sets them in log->dirty_bitmap.
2320 */
2321 if (mask) {
2322 flush = true;
2323 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2324 offset, mask);
2325 }
2326 }
2327 KVM_MMU_UNLOCK(kvm);
2328
2329 if (flush)
2330 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2331
2332 return 0;
2333 }
2334
2335 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2336 struct kvm_clear_dirty_log *log)
2337 {
2338 int r;
2339
2340 mutex_lock(&kvm->slots_lock);
2341
2342 r = kvm_clear_dirty_log_protect(kvm, log);
2343
2344 mutex_unlock(&kvm->slots_lock);
2345 return r;
2346 }
2347 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2348
2349 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2350 {
2351 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2352 }
2353 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2354
2355 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2356 {
2357 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2358 u64 gen = slots->generation;
2359 struct kvm_memory_slot *slot;
2360
2361 /*
2362 * This also protects against using a memslot from a different address space,
2363 * since different address spaces have different generation numbers.
2364 */
2365 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2366 vcpu->last_used_slot = NULL;
2367 vcpu->last_used_slot_gen = gen;
2368 }
2369
2370 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2371 if (slot)
2372 return slot;
2373
2374 /*
2375 * Fall back to searching all memslots. We purposely use
2376 * search_memslots() instead of __gfn_to_memslot() to avoid
2377 * thrashing the VM-wide last_used_slot in kvm_memslots.
2378 */
2379 slot = search_memslots(slots, gfn, false);
2380 if (slot) {
2381 vcpu->last_used_slot = slot;
2382 return slot;
2383 }
2384
2385 return NULL;
2386 }
2387
2388 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2389 {
2390 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2391
2392 return kvm_is_visible_memslot(memslot);
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2395
2396 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2397 {
2398 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2399
2400 return kvm_is_visible_memslot(memslot);
2401 }
2402 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2403
2404 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2405 {
2406 struct vm_area_struct *vma;
2407 unsigned long addr, size;
2408
2409 size = PAGE_SIZE;
2410
2411 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2412 if (kvm_is_error_hva(addr))
2413 return PAGE_SIZE;
2414
2415 mmap_read_lock(current->mm);
2416 vma = find_vma(current->mm, addr);
2417 if (!vma)
2418 goto out;
2419
2420 size = vma_kernel_pagesize(vma);
2421
2422 out:
2423 mmap_read_unlock(current->mm);
2424
2425 return size;
2426 }
2427
2428 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2429 {
2430 return slot->flags & KVM_MEM_READONLY;
2431 }
2432
2433 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2434 gfn_t *nr_pages, bool write)
2435 {
2436 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2437 return KVM_HVA_ERR_BAD;
2438
2439 if (memslot_is_readonly(slot) && write)
2440 return KVM_HVA_ERR_RO_BAD;
2441
2442 if (nr_pages)
2443 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2444
2445 return __gfn_to_hva_memslot(slot, gfn);
2446 }
2447
2448 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2449 gfn_t *nr_pages)
2450 {
2451 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2452 }
2453
2454 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2455 gfn_t gfn)
2456 {
2457 return gfn_to_hva_many(slot, gfn, NULL);
2458 }
2459 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2460
2461 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2462 {
2463 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2464 }
2465 EXPORT_SYMBOL_GPL(gfn_to_hva);
2466
2467 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2468 {
2469 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2470 }
2471 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2472
2473 /*
2474 * Return the hva of a @gfn and the R/W attribute if possible.
2475 *
2476 * @slot: the kvm_memory_slot which contains @gfn
2477 * @gfn: the gfn to be translated
2478 * @writable: used to return the read/write attribute of the @slot if the hva
2479 * is valid and @writable is not NULL
2480 */
2481 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2482 gfn_t gfn, bool *writable)
2483 {
2484 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2485
2486 if (!kvm_is_error_hva(hva) && writable)
2487 *writable = !memslot_is_readonly(slot);
2488
2489 return hva;
2490 }
2491
2492 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2493 {
2494 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2495
2496 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2497 }
2498
2499 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2500 {
2501 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2502
2503 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2504 }
2505
2506 static inline int check_user_page_hwpoison(unsigned long addr)
2507 {
2508 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2509
2510 rc = get_user_pages(addr, 1, flags, NULL);
2511 return rc == -EHWPOISON;
2512 }
2513
2514 /*
2515 * The fast path to get the writable pfn which will be stored in @pfn,
2516 * true indicates success, otherwise false is returned. It's also the
2517 * only part that runs if we can in atomic context.
2518 */
2519 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2520 bool *writable, kvm_pfn_t *pfn)
2521 {
2522 struct page *page[1];
2523
2524 /*
2525 * Fast pin a writable pfn only if it is a write fault request
2526 * or the caller allows to map a writable pfn for a read fault
2527 * request.
2528 */
2529 if (!(write_fault || writable))
2530 return false;
2531
2532 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2533 *pfn = page_to_pfn(page[0]);
2534
2535 if (writable)
2536 *writable = true;
2537 return true;
2538 }
2539
2540 return false;
2541 }
2542
2543 /*
2544 * The slow path to get the pfn of the specified host virtual address,
2545 * 1 indicates success, -errno is returned if error is detected.
2546 */
2547 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2548 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2549 {
2550 /*
2551 * When a VCPU accesses a page that is not mapped into the secondary
2552 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2553 * make progress. We always want to honor NUMA hinting faults in that
2554 * case, because GUP usage corresponds to memory accesses from the VCPU.
2555 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2556 * mapped into the secondary MMU and gets accessed by a VCPU.
2557 *
2558 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2559 * implicitly honor NUMA hinting faults and don't need this flag.
2560 */
2561 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2562 struct page *page;
2563 int npages;
2564
2565 might_sleep();
2566
2567 if (writable)
2568 *writable = write_fault;
2569
2570 if (write_fault)
2571 flags |= FOLL_WRITE;
2572 if (async)
2573 flags |= FOLL_NOWAIT;
2574 if (interruptible)
2575 flags |= FOLL_INTERRUPTIBLE;
2576
2577 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2578 if (npages != 1)
2579 return npages;
2580
2581 /* map read fault as writable if possible */
2582 if (unlikely(!write_fault) && writable) {
2583 struct page *wpage;
2584
2585 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2586 *writable = true;
2587 put_page(page);
2588 page = wpage;
2589 }
2590 }
2591 *pfn = page_to_pfn(page);
2592 return npages;
2593 }
2594
2595 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2596 {
2597 if (unlikely(!(vma->vm_flags & VM_READ)))
2598 return false;
2599
2600 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2601 return false;
2602
2603 return true;
2604 }
2605
2606 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2607 {
2608 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2609
2610 if (!page)
2611 return 1;
2612
2613 return get_page_unless_zero(page);
2614 }
2615
2616 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2617 unsigned long addr, bool write_fault,
2618 bool *writable, kvm_pfn_t *p_pfn)
2619 {
2620 kvm_pfn_t pfn;
2621 pte_t *ptep;
2622 pte_t pte;
2623 spinlock_t *ptl;
2624 int r;
2625
2626 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2627 if (r) {
2628 /*
2629 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2630 * not call the fault handler, so do it here.
2631 */
2632 bool unlocked = false;
2633 r = fixup_user_fault(current->mm, addr,
2634 (write_fault ? FAULT_FLAG_WRITE : 0),
2635 &unlocked);
2636 if (unlocked)
2637 return -EAGAIN;
2638 if (r)
2639 return r;
2640
2641 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2642 if (r)
2643 return r;
2644 }
2645
2646 pte = ptep_get(ptep);
2647
2648 if (write_fault && !pte_write(pte)) {
2649 pfn = KVM_PFN_ERR_RO_FAULT;
2650 goto out;
2651 }
2652
2653 if (writable)
2654 *writable = pte_write(pte);
2655 pfn = pte_pfn(pte);
2656
2657 /*
2658 * Get a reference here because callers of *hva_to_pfn* and
2659 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2660 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2661 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2662 * simply do nothing for reserved pfns.
2663 *
2664 * Whoever called remap_pfn_range is also going to call e.g.
2665 * unmap_mapping_range before the underlying pages are freed,
2666 * causing a call to our MMU notifier.
2667 *
2668 * Certain IO or PFNMAP mappings can be backed with valid
2669 * struct pages, but be allocated without refcounting e.g.,
2670 * tail pages of non-compound higher order allocations, which
2671 * would then underflow the refcount when the caller does the
2672 * required put_page. Don't allow those pages here.
2673 */
2674 if (!kvm_try_get_pfn(pfn))
2675 r = -EFAULT;
2676
2677 out:
2678 pte_unmap_unlock(ptep, ptl);
2679 *p_pfn = pfn;
2680
2681 return r;
2682 }
2683
2684 /*
2685 * Pin guest page in memory and return its pfn.
2686 * @addr: host virtual address which maps memory to the guest
2687 * @atomic: whether this function can sleep
2688 * @interruptible: whether the process can be interrupted by non-fatal signals
2689 * @async: whether this function need to wait IO complete if the
2690 * host page is not in the memory
2691 * @write_fault: whether we should get a writable host page
2692 * @writable: whether it allows to map a writable host page for !@write_fault
2693 *
2694 * The function will map a writable host page for these two cases:
2695 * 1): @write_fault = true
2696 * 2): @write_fault = false && @writable, @writable will tell the caller
2697 * whether the mapping is writable.
2698 */
2699 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2700 bool *async, bool write_fault, bool *writable)
2701 {
2702 struct vm_area_struct *vma;
2703 kvm_pfn_t pfn;
2704 int npages, r;
2705
2706 /* we can do it either atomically or asynchronously, not both */
2707 BUG_ON(atomic && async);
2708
2709 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2710 return pfn;
2711
2712 if (atomic)
2713 return KVM_PFN_ERR_FAULT;
2714
2715 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2716 writable, &pfn);
2717 if (npages == 1)
2718 return pfn;
2719 if (npages == -EINTR)
2720 return KVM_PFN_ERR_SIGPENDING;
2721
2722 mmap_read_lock(current->mm);
2723 if (npages == -EHWPOISON ||
2724 (!async && check_user_page_hwpoison(addr))) {
2725 pfn = KVM_PFN_ERR_HWPOISON;
2726 goto exit;
2727 }
2728
2729 retry:
2730 vma = vma_lookup(current->mm, addr);
2731
2732 if (vma == NULL)
2733 pfn = KVM_PFN_ERR_FAULT;
2734 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2735 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2736 if (r == -EAGAIN)
2737 goto retry;
2738 if (r < 0)
2739 pfn = KVM_PFN_ERR_FAULT;
2740 } else {
2741 if (async && vma_is_valid(vma, write_fault))
2742 *async = true;
2743 pfn = KVM_PFN_ERR_FAULT;
2744 }
2745 exit:
2746 mmap_read_unlock(current->mm);
2747 return pfn;
2748 }
2749
2750 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2751 bool atomic, bool interruptible, bool *async,
2752 bool write_fault, bool *writable, hva_t *hva)
2753 {
2754 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2755
2756 if (hva)
2757 *hva = addr;
2758
2759 if (addr == KVM_HVA_ERR_RO_BAD) {
2760 if (writable)
2761 *writable = false;
2762 return KVM_PFN_ERR_RO_FAULT;
2763 }
2764
2765 if (kvm_is_error_hva(addr)) {
2766 if (writable)
2767 *writable = false;
2768 return KVM_PFN_NOSLOT;
2769 }
2770
2771 /* Do not map writable pfn in the readonly memslot. */
2772 if (writable && memslot_is_readonly(slot)) {
2773 *writable = false;
2774 writable = NULL;
2775 }
2776
2777 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2778 writable);
2779 }
2780 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2781
2782 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2783 bool *writable)
2784 {
2785 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2786 NULL, write_fault, writable, NULL);
2787 }
2788 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2789
2790 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2791 {
2792 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2793 NULL, NULL);
2794 }
2795 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2796
2797 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2798 {
2799 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2800 NULL, NULL);
2801 }
2802 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2803
2804 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2805 {
2806 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2807 }
2808 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2809
2810 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2811 {
2812 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2813 }
2814 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2815
2816 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2817 {
2818 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2819 }
2820 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2821
2822 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2823 struct page **pages, int nr_pages)
2824 {
2825 unsigned long addr;
2826 gfn_t entry = 0;
2827
2828 addr = gfn_to_hva_many(slot, gfn, &entry);
2829 if (kvm_is_error_hva(addr))
2830 return -1;
2831
2832 if (entry < nr_pages)
2833 return 0;
2834
2835 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2836 }
2837 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2838
2839 /*
2840 * Do not use this helper unless you are absolutely certain the gfn _must_ be
2841 * backed by 'struct page'. A valid example is if the backing memslot is
2842 * controlled by KVM. Note, if the returned page is valid, it's refcount has
2843 * been elevated by gfn_to_pfn().
2844 */
2845 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2846 {
2847 struct page *page;
2848 kvm_pfn_t pfn;
2849
2850 pfn = gfn_to_pfn(kvm, gfn);
2851
2852 if (is_error_noslot_pfn(pfn))
2853 return KVM_ERR_PTR_BAD_PAGE;
2854
2855 page = kvm_pfn_to_refcounted_page(pfn);
2856 if (!page)
2857 return KVM_ERR_PTR_BAD_PAGE;
2858
2859 return page;
2860 }
2861 EXPORT_SYMBOL_GPL(gfn_to_page);
2862
2863 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2864 {
2865 if (dirty)
2866 kvm_release_pfn_dirty(pfn);
2867 else
2868 kvm_release_pfn_clean(pfn);
2869 }
2870
2871 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2872 {
2873 kvm_pfn_t pfn;
2874 void *hva = NULL;
2875 struct page *page = KVM_UNMAPPED_PAGE;
2876
2877 if (!map)
2878 return -EINVAL;
2879
2880 pfn = gfn_to_pfn(vcpu->kvm, gfn);
2881 if (is_error_noslot_pfn(pfn))
2882 return -EINVAL;
2883
2884 if (pfn_valid(pfn)) {
2885 page = pfn_to_page(pfn);
2886 hva = kmap(page);
2887 #ifdef CONFIG_HAS_IOMEM
2888 } else {
2889 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2890 #endif
2891 }
2892
2893 if (!hva)
2894 return -EFAULT;
2895
2896 map->page = page;
2897 map->hva = hva;
2898 map->pfn = pfn;
2899 map->gfn = gfn;
2900
2901 return 0;
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2904
2905 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2906 {
2907 if (!map)
2908 return;
2909
2910 if (!map->hva)
2911 return;
2912
2913 if (map->page != KVM_UNMAPPED_PAGE)
2914 kunmap(map->page);
2915 #ifdef CONFIG_HAS_IOMEM
2916 else
2917 memunmap(map->hva);
2918 #endif
2919
2920 if (dirty)
2921 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2922
2923 kvm_release_pfn(map->pfn, dirty);
2924
2925 map->hva = NULL;
2926 map->page = NULL;
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2929
2930 static bool kvm_is_ad_tracked_page(struct page *page)
2931 {
2932 /*
2933 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2934 * touched (e.g. set dirty) except by its owner".
2935 */
2936 return !PageReserved(page);
2937 }
2938
2939 static void kvm_set_page_dirty(struct page *page)
2940 {
2941 if (kvm_is_ad_tracked_page(page))
2942 SetPageDirty(page);
2943 }
2944
2945 static void kvm_set_page_accessed(struct page *page)
2946 {
2947 if (kvm_is_ad_tracked_page(page))
2948 mark_page_accessed(page);
2949 }
2950
2951 void kvm_release_page_clean(struct page *page)
2952 {
2953 WARN_ON(is_error_page(page));
2954
2955 kvm_set_page_accessed(page);
2956 put_page(page);
2957 }
2958 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2959
2960 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2961 {
2962 struct page *page;
2963
2964 if (is_error_noslot_pfn(pfn))
2965 return;
2966
2967 page = kvm_pfn_to_refcounted_page(pfn);
2968 if (!page)
2969 return;
2970
2971 kvm_release_page_clean(page);
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2974
2975 void kvm_release_page_dirty(struct page *page)
2976 {
2977 WARN_ON(is_error_page(page));
2978
2979 kvm_set_page_dirty(page);
2980 kvm_release_page_clean(page);
2981 }
2982 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2983
2984 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2985 {
2986 struct page *page;
2987
2988 if (is_error_noslot_pfn(pfn))
2989 return;
2990
2991 page = kvm_pfn_to_refcounted_page(pfn);
2992 if (!page)
2993 return;
2994
2995 kvm_release_page_dirty(page);
2996 }
2997 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2998
2999 /*
3000 * Note, checking for an error/noslot pfn is the caller's responsibility when
3001 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3002 * "set" helpers are not to be used when the pfn might point at garbage.
3003 */
3004 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3005 {
3006 if (WARN_ON(is_error_noslot_pfn(pfn)))
3007 return;
3008
3009 if (pfn_valid(pfn))
3010 kvm_set_page_dirty(pfn_to_page(pfn));
3011 }
3012 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3013
3014 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3015 {
3016 if (WARN_ON(is_error_noslot_pfn(pfn)))
3017 return;
3018
3019 if (pfn_valid(pfn))
3020 kvm_set_page_accessed(pfn_to_page(pfn));
3021 }
3022 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3023
3024 static int next_segment(unsigned long len, int offset)
3025 {
3026 if (len > PAGE_SIZE - offset)
3027 return PAGE_SIZE - offset;
3028 else
3029 return len;
3030 }
3031
3032 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3033 void *data, int offset, int len)
3034 {
3035 int r;
3036 unsigned long addr;
3037
3038 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3039 if (kvm_is_error_hva(addr))
3040 return -EFAULT;
3041 r = __copy_from_user(data, (void __user *)addr + offset, len);
3042 if (r)
3043 return -EFAULT;
3044 return 0;
3045 }
3046
3047 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3048 int len)
3049 {
3050 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3051
3052 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3053 }
3054 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3055
3056 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3057 int offset, int len)
3058 {
3059 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3060
3061 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3062 }
3063 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3064
3065 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3066 {
3067 gfn_t gfn = gpa >> PAGE_SHIFT;
3068 int seg;
3069 int offset = offset_in_page(gpa);
3070 int ret;
3071
3072 while ((seg = next_segment(len, offset)) != 0) {
3073 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3074 if (ret < 0)
3075 return ret;
3076 offset = 0;
3077 len -= seg;
3078 data += seg;
3079 ++gfn;
3080 }
3081 return 0;
3082 }
3083 EXPORT_SYMBOL_GPL(kvm_read_guest);
3084
3085 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3086 {
3087 gfn_t gfn = gpa >> PAGE_SHIFT;
3088 int seg;
3089 int offset = offset_in_page(gpa);
3090 int ret;
3091
3092 while ((seg = next_segment(len, offset)) != 0) {
3093 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3094 if (ret < 0)
3095 return ret;
3096 offset = 0;
3097 len -= seg;
3098 data += seg;
3099 ++gfn;
3100 }
3101 return 0;
3102 }
3103 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3104
3105 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3106 void *data, int offset, unsigned long len)
3107 {
3108 int r;
3109 unsigned long addr;
3110
3111 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3112 if (kvm_is_error_hva(addr))
3113 return -EFAULT;
3114 pagefault_disable();
3115 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3116 pagefault_enable();
3117 if (r)
3118 return -EFAULT;
3119 return 0;
3120 }
3121
3122 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3123 void *data, unsigned long len)
3124 {
3125 gfn_t gfn = gpa >> PAGE_SHIFT;
3126 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3127 int offset = offset_in_page(gpa);
3128
3129 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3130 }
3131 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3132
3133 static int __kvm_write_guest_page(struct kvm *kvm,
3134 struct kvm_memory_slot *memslot, gfn_t gfn,
3135 const void *data, int offset, int len)
3136 {
3137 int r;
3138 unsigned long addr;
3139
3140 addr = gfn_to_hva_memslot(memslot, gfn);
3141 if (kvm_is_error_hva(addr))
3142 return -EFAULT;
3143 r = __copy_to_user((void __user *)addr + offset, data, len);
3144 if (r)
3145 return -EFAULT;
3146 mark_page_dirty_in_slot(kvm, memslot, gfn);
3147 return 0;
3148 }
3149
3150 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3151 const void *data, int offset, int len)
3152 {
3153 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3154
3155 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3156 }
3157 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3158
3159 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3160 const void *data, int offset, int len)
3161 {
3162 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3163
3164 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3165 }
3166 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3167
3168 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3169 unsigned long len)
3170 {
3171 gfn_t gfn = gpa >> PAGE_SHIFT;
3172 int seg;
3173 int offset = offset_in_page(gpa);
3174 int ret;
3175
3176 while ((seg = next_segment(len, offset)) != 0) {
3177 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3178 if (ret < 0)
3179 return ret;
3180 offset = 0;
3181 len -= seg;
3182 data += seg;
3183 ++gfn;
3184 }
3185 return 0;
3186 }
3187 EXPORT_SYMBOL_GPL(kvm_write_guest);
3188
3189 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3190 unsigned long len)
3191 {
3192 gfn_t gfn = gpa >> PAGE_SHIFT;
3193 int seg;
3194 int offset = offset_in_page(gpa);
3195 int ret;
3196
3197 while ((seg = next_segment(len, offset)) != 0) {
3198 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3199 if (ret < 0)
3200 return ret;
3201 offset = 0;
3202 len -= seg;
3203 data += seg;
3204 ++gfn;
3205 }
3206 return 0;
3207 }
3208 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3209
3210 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3211 struct gfn_to_hva_cache *ghc,
3212 gpa_t gpa, unsigned long len)
3213 {
3214 int offset = offset_in_page(gpa);
3215 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3216 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3217 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3218 gfn_t nr_pages_avail;
3219
3220 /* Update ghc->generation before performing any error checks. */
3221 ghc->generation = slots->generation;
3222
3223 if (start_gfn > end_gfn) {
3224 ghc->hva = KVM_HVA_ERR_BAD;
3225 return -EINVAL;
3226 }
3227
3228 /*
3229 * If the requested region crosses two memslots, we still
3230 * verify that the entire region is valid here.
3231 */
3232 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3233 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3234 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3235 &nr_pages_avail);
3236 if (kvm_is_error_hva(ghc->hva))
3237 return -EFAULT;
3238 }
3239
3240 /* Use the slow path for cross page reads and writes. */
3241 if (nr_pages_needed == 1)
3242 ghc->hva += offset;
3243 else
3244 ghc->memslot = NULL;
3245
3246 ghc->gpa = gpa;
3247 ghc->len = len;
3248 return 0;
3249 }
3250
3251 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3252 gpa_t gpa, unsigned long len)
3253 {
3254 struct kvm_memslots *slots = kvm_memslots(kvm);
3255 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3256 }
3257 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3258
3259 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3260 void *data, unsigned int offset,
3261 unsigned long len)
3262 {
3263 struct kvm_memslots *slots = kvm_memslots(kvm);
3264 int r;
3265 gpa_t gpa = ghc->gpa + offset;
3266
3267 if (WARN_ON_ONCE(len + offset > ghc->len))
3268 return -EINVAL;
3269
3270 if (slots->generation != ghc->generation) {
3271 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3272 return -EFAULT;
3273 }
3274
3275 if (kvm_is_error_hva(ghc->hva))
3276 return -EFAULT;
3277
3278 if (unlikely(!ghc->memslot))
3279 return kvm_write_guest(kvm, gpa, data, len);
3280
3281 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3282 if (r)
3283 return -EFAULT;
3284 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3285
3286 return 0;
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3289
3290 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3291 void *data, unsigned long len)
3292 {
3293 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3294 }
3295 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3296
3297 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3298 void *data, unsigned int offset,
3299 unsigned long len)
3300 {
3301 struct kvm_memslots *slots = kvm_memslots(kvm);
3302 int r;
3303 gpa_t gpa = ghc->gpa + offset;
3304
3305 if (WARN_ON_ONCE(len + offset > ghc->len))
3306 return -EINVAL;
3307
3308 if (slots->generation != ghc->generation) {
3309 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3310 return -EFAULT;
3311 }
3312
3313 if (kvm_is_error_hva(ghc->hva))
3314 return -EFAULT;
3315
3316 if (unlikely(!ghc->memslot))
3317 return kvm_read_guest(kvm, gpa, data, len);
3318
3319 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3320 if (r)
3321 return -EFAULT;
3322
3323 return 0;
3324 }
3325 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3326
3327 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3328 void *data, unsigned long len)
3329 {
3330 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3331 }
3332 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3333
3334 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3335 {
3336 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3337 gfn_t gfn = gpa >> PAGE_SHIFT;
3338 int seg;
3339 int offset = offset_in_page(gpa);
3340 int ret;
3341
3342 while ((seg = next_segment(len, offset)) != 0) {
3343 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3344 if (ret < 0)
3345 return ret;
3346 offset = 0;
3347 len -= seg;
3348 ++gfn;
3349 }
3350 return 0;
3351 }
3352 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3353
3354 void mark_page_dirty_in_slot(struct kvm *kvm,
3355 const struct kvm_memory_slot *memslot,
3356 gfn_t gfn)
3357 {
3358 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3359
3360 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3361 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3362 return;
3363
3364 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3365 #endif
3366
3367 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3368 unsigned long rel_gfn = gfn - memslot->base_gfn;
3369 u32 slot = (memslot->as_id << 16) | memslot->id;
3370
3371 if (kvm->dirty_ring_size && vcpu)
3372 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3373 else if (memslot->dirty_bitmap)
3374 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3375 }
3376 }
3377 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3378
3379 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3380 {
3381 struct kvm_memory_slot *memslot;
3382
3383 memslot = gfn_to_memslot(kvm, gfn);
3384 mark_page_dirty_in_slot(kvm, memslot, gfn);
3385 }
3386 EXPORT_SYMBOL_GPL(mark_page_dirty);
3387
3388 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3389 {
3390 struct kvm_memory_slot *memslot;
3391
3392 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3393 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3394 }
3395 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3396
3397 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3398 {
3399 if (!vcpu->sigset_active)
3400 return;
3401
3402 /*
3403 * This does a lockless modification of ->real_blocked, which is fine
3404 * because, only current can change ->real_blocked and all readers of
3405 * ->real_blocked don't care as long ->real_blocked is always a subset
3406 * of ->blocked.
3407 */
3408 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3409 }
3410
3411 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3412 {
3413 if (!vcpu->sigset_active)
3414 return;
3415
3416 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3417 sigemptyset(&current->real_blocked);
3418 }
3419
3420 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3421 {
3422 unsigned int old, val, grow, grow_start;
3423
3424 old = val = vcpu->halt_poll_ns;
3425 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3426 grow = READ_ONCE(halt_poll_ns_grow);
3427 if (!grow)
3428 goto out;
3429
3430 val *= grow;
3431 if (val < grow_start)
3432 val = grow_start;
3433
3434 vcpu->halt_poll_ns = val;
3435 out:
3436 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3437 }
3438
3439 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3440 {
3441 unsigned int old, val, shrink, grow_start;
3442
3443 old = val = vcpu->halt_poll_ns;
3444 shrink = READ_ONCE(halt_poll_ns_shrink);
3445 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3446 if (shrink == 0)
3447 val = 0;
3448 else
3449 val /= shrink;
3450
3451 if (val < grow_start)
3452 val = 0;
3453
3454 vcpu->halt_poll_ns = val;
3455 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3456 }
3457
3458 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3459 {
3460 int ret = -EINTR;
3461 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3462
3463 if (kvm_arch_vcpu_runnable(vcpu))
3464 goto out;
3465 if (kvm_cpu_has_pending_timer(vcpu))
3466 goto out;
3467 if (signal_pending(current))
3468 goto out;
3469 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3470 goto out;
3471
3472 ret = 0;
3473 out:
3474 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3475 return ret;
3476 }
3477
3478 /*
3479 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3480 * pending. This is mostly used when halting a vCPU, but may also be used
3481 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3482 */
3483 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3484 {
3485 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3486 bool waited = false;
3487
3488 vcpu->stat.generic.blocking = 1;
3489
3490 preempt_disable();
3491 kvm_arch_vcpu_blocking(vcpu);
3492 prepare_to_rcuwait(wait);
3493 preempt_enable();
3494
3495 for (;;) {
3496 set_current_state(TASK_INTERRUPTIBLE);
3497
3498 if (kvm_vcpu_check_block(vcpu) < 0)
3499 break;
3500
3501 waited = true;
3502 schedule();
3503 }
3504
3505 preempt_disable();
3506 finish_rcuwait(wait);
3507 kvm_arch_vcpu_unblocking(vcpu);
3508 preempt_enable();
3509
3510 vcpu->stat.generic.blocking = 0;
3511
3512 return waited;
3513 }
3514
3515 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3516 ktime_t end, bool success)
3517 {
3518 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3519 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3520
3521 ++vcpu->stat.generic.halt_attempted_poll;
3522
3523 if (success) {
3524 ++vcpu->stat.generic.halt_successful_poll;
3525
3526 if (!vcpu_valid_wakeup(vcpu))
3527 ++vcpu->stat.generic.halt_poll_invalid;
3528
3529 stats->halt_poll_success_ns += poll_ns;
3530 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3531 } else {
3532 stats->halt_poll_fail_ns += poll_ns;
3533 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3534 }
3535 }
3536
3537 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3538 {
3539 struct kvm *kvm = vcpu->kvm;
3540
3541 if (kvm->override_halt_poll_ns) {
3542 /*
3543 * Ensure kvm->max_halt_poll_ns is not read before
3544 * kvm->override_halt_poll_ns.
3545 *
3546 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3547 */
3548 smp_rmb();
3549 return READ_ONCE(kvm->max_halt_poll_ns);
3550 }
3551
3552 return READ_ONCE(halt_poll_ns);
3553 }
3554
3555 /*
3556 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3557 * polling is enabled, busy wait for a short time before blocking to avoid the
3558 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3559 * is halted.
3560 */
3561 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3562 {
3563 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3564 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3565 ktime_t start, cur, poll_end;
3566 bool waited = false;
3567 bool do_halt_poll;
3568 u64 halt_ns;
3569
3570 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3571 vcpu->halt_poll_ns = max_halt_poll_ns;
3572
3573 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3574
3575 start = cur = poll_end = ktime_get();
3576 if (do_halt_poll) {
3577 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3578
3579 do {
3580 if (kvm_vcpu_check_block(vcpu) < 0)
3581 goto out;
3582 cpu_relax();
3583 poll_end = cur = ktime_get();
3584 } while (kvm_vcpu_can_poll(cur, stop));
3585 }
3586
3587 waited = kvm_vcpu_block(vcpu);
3588
3589 cur = ktime_get();
3590 if (waited) {
3591 vcpu->stat.generic.halt_wait_ns +=
3592 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3593 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3594 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3595 }
3596 out:
3597 /* The total time the vCPU was "halted", including polling time. */
3598 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3599
3600 /*
3601 * Note, halt-polling is considered successful so long as the vCPU was
3602 * never actually scheduled out, i.e. even if the wake event arrived
3603 * after of the halt-polling loop itself, but before the full wait.
3604 */
3605 if (do_halt_poll)
3606 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3607
3608 if (halt_poll_allowed) {
3609 /* Recompute the max halt poll time in case it changed. */
3610 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3611
3612 if (!vcpu_valid_wakeup(vcpu)) {
3613 shrink_halt_poll_ns(vcpu);
3614 } else if (max_halt_poll_ns) {
3615 if (halt_ns <= vcpu->halt_poll_ns)
3616 ;
3617 /* we had a long block, shrink polling */
3618 else if (vcpu->halt_poll_ns &&
3619 halt_ns > max_halt_poll_ns)
3620 shrink_halt_poll_ns(vcpu);
3621 /* we had a short halt and our poll time is too small */
3622 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3623 halt_ns < max_halt_poll_ns)
3624 grow_halt_poll_ns(vcpu);
3625 } else {
3626 vcpu->halt_poll_ns = 0;
3627 }
3628 }
3629
3630 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3633
3634 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3635 {
3636 if (__kvm_vcpu_wake_up(vcpu)) {
3637 WRITE_ONCE(vcpu->ready, true);
3638 ++vcpu->stat.generic.halt_wakeup;
3639 return true;
3640 }
3641
3642 return false;
3643 }
3644 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3645
3646 #ifndef CONFIG_S390
3647 /*
3648 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3649 */
3650 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3651 {
3652 int me, cpu;
3653
3654 if (kvm_vcpu_wake_up(vcpu))
3655 return;
3656
3657 me = get_cpu();
3658 /*
3659 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3660 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3661 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3662 * within the vCPU thread itself.
3663 */
3664 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3665 if (vcpu->mode == IN_GUEST_MODE)
3666 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3667 goto out;
3668 }
3669
3670 /*
3671 * Note, the vCPU could get migrated to a different pCPU at any point
3672 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3673 * IPI to the previous pCPU. But, that's ok because the purpose of the
3674 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3675 * vCPU also requires it to leave IN_GUEST_MODE.
3676 */
3677 if (kvm_arch_vcpu_should_kick(vcpu)) {
3678 cpu = READ_ONCE(vcpu->cpu);
3679 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3680 smp_send_reschedule(cpu);
3681 }
3682 out:
3683 put_cpu();
3684 }
3685 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3686 #endif /* !CONFIG_S390 */
3687
3688 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3689 {
3690 struct pid *pid;
3691 struct task_struct *task = NULL;
3692 int ret = 0;
3693
3694 rcu_read_lock();
3695 pid = rcu_dereference(target->pid);
3696 if (pid)
3697 task = get_pid_task(pid, PIDTYPE_PID);
3698 rcu_read_unlock();
3699 if (!task)
3700 return ret;
3701 ret = yield_to(task, 1);
3702 put_task_struct(task);
3703
3704 return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3707
3708 /*
3709 * Helper that checks whether a VCPU is eligible for directed yield.
3710 * Most eligible candidate to yield is decided by following heuristics:
3711 *
3712 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3713 * (preempted lock holder), indicated by @in_spin_loop.
3714 * Set at the beginning and cleared at the end of interception/PLE handler.
3715 *
3716 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3717 * chance last time (mostly it has become eligible now since we have probably
3718 * yielded to lockholder in last iteration. This is done by toggling
3719 * @dy_eligible each time a VCPU checked for eligibility.)
3720 *
3721 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3722 * to preempted lock-holder could result in wrong VCPU selection and CPU
3723 * burning. Giving priority for a potential lock-holder increases lock
3724 * progress.
3725 *
3726 * Since algorithm is based on heuristics, accessing another VCPU data without
3727 * locking does not harm. It may result in trying to yield to same VCPU, fail
3728 * and continue with next VCPU and so on.
3729 */
3730 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3731 {
3732 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3733 bool eligible;
3734
3735 eligible = !vcpu->spin_loop.in_spin_loop ||
3736 vcpu->spin_loop.dy_eligible;
3737
3738 if (vcpu->spin_loop.in_spin_loop)
3739 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3740
3741 return eligible;
3742 #else
3743 return true;
3744 #endif
3745 }
3746
3747 /*
3748 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3749 * a vcpu_load/vcpu_put pair. However, for most architectures
3750 * kvm_arch_vcpu_runnable does not require vcpu_load.
3751 */
3752 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3753 {
3754 return kvm_arch_vcpu_runnable(vcpu);
3755 }
3756
3757 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3758 {
3759 if (kvm_arch_dy_runnable(vcpu))
3760 return true;
3761
3762 #ifdef CONFIG_KVM_ASYNC_PF
3763 if (!list_empty_careful(&vcpu->async_pf.done))
3764 return true;
3765 #endif
3766
3767 return false;
3768 }
3769
3770 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3771 {
3772 return false;
3773 }
3774
3775 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3776 {
3777 struct kvm *kvm = me->kvm;
3778 struct kvm_vcpu *vcpu;
3779 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3780 unsigned long i;
3781 int yielded = 0;
3782 int try = 3;
3783 int pass;
3784
3785 kvm_vcpu_set_in_spin_loop(me, true);
3786 /*
3787 * We boost the priority of a VCPU that is runnable but not
3788 * currently running, because it got preempted by something
3789 * else and called schedule in __vcpu_run. Hopefully that
3790 * VCPU is holding the lock that we need and will release it.
3791 * We approximate round-robin by starting at the last boosted VCPU.
3792 */
3793 for (pass = 0; pass < 2 && !yielded && try; pass++) {
3794 kvm_for_each_vcpu(i, vcpu, kvm) {
3795 if (!pass && i <= last_boosted_vcpu) {
3796 i = last_boosted_vcpu;
3797 continue;
3798 } else if (pass && i > last_boosted_vcpu)
3799 break;
3800 if (!READ_ONCE(vcpu->ready))
3801 continue;
3802 if (vcpu == me)
3803 continue;
3804 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3805 continue;
3806 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3807 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3808 !kvm_arch_vcpu_in_kernel(vcpu))
3809 continue;
3810 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3811 continue;
3812
3813 yielded = kvm_vcpu_yield_to(vcpu);
3814 if (yielded > 0) {
3815 kvm->last_boosted_vcpu = i;
3816 break;
3817 } else if (yielded < 0) {
3818 try--;
3819 if (!try)
3820 break;
3821 }
3822 }
3823 }
3824 kvm_vcpu_set_in_spin_loop(me, false);
3825
3826 /* Ensure vcpu is not eligible during next spinloop */
3827 kvm_vcpu_set_dy_eligible(me, false);
3828 }
3829 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3830
3831 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3832 {
3833 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3834 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3835 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3836 kvm->dirty_ring_size / PAGE_SIZE);
3837 #else
3838 return false;
3839 #endif
3840 }
3841
3842 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3843 {
3844 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3845 struct page *page;
3846
3847 if (vmf->pgoff == 0)
3848 page = virt_to_page(vcpu->run);
3849 #ifdef CONFIG_X86
3850 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3851 page = virt_to_page(vcpu->arch.pio_data);
3852 #endif
3853 #ifdef CONFIG_KVM_MMIO
3854 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3855 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3856 #endif
3857 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3858 page = kvm_dirty_ring_get_page(
3859 &vcpu->dirty_ring,
3860 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3861 else
3862 return kvm_arch_vcpu_fault(vcpu, vmf);
3863 get_page(page);
3864 vmf->page = page;
3865 return 0;
3866 }
3867
3868 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3869 .fault = kvm_vcpu_fault,
3870 };
3871
3872 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3873 {
3874 struct kvm_vcpu *vcpu = file->private_data;
3875 unsigned long pages = vma_pages(vma);
3876
3877 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3878 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3879 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3880 return -EINVAL;
3881
3882 vma->vm_ops = &kvm_vcpu_vm_ops;
3883 return 0;
3884 }
3885
3886 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3887 {
3888 struct kvm_vcpu *vcpu = filp->private_data;
3889
3890 kvm_put_kvm(vcpu->kvm);
3891 return 0;
3892 }
3893
3894 static const struct file_operations kvm_vcpu_fops = {
3895 .release = kvm_vcpu_release,
3896 .unlocked_ioctl = kvm_vcpu_ioctl,
3897 .mmap = kvm_vcpu_mmap,
3898 .llseek = noop_llseek,
3899 KVM_COMPAT(kvm_vcpu_compat_ioctl),
3900 };
3901
3902 /*
3903 * Allocates an inode for the vcpu.
3904 */
3905 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3906 {
3907 char name[8 + 1 + ITOA_MAX_LEN + 1];
3908
3909 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3910 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3911 }
3912
3913 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3914 static int vcpu_get_pid(void *data, u64 *val)
3915 {
3916 struct kvm_vcpu *vcpu = data;
3917
3918 rcu_read_lock();
3919 *val = pid_nr(rcu_dereference(vcpu->pid));
3920 rcu_read_unlock();
3921 return 0;
3922 }
3923
3924 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3925
3926 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3927 {
3928 struct dentry *debugfs_dentry;
3929 char dir_name[ITOA_MAX_LEN * 2];
3930
3931 if (!debugfs_initialized())
3932 return;
3933
3934 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3935 debugfs_dentry = debugfs_create_dir(dir_name,
3936 vcpu->kvm->debugfs_dentry);
3937 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3938 &vcpu_get_pid_fops);
3939
3940 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3941 }
3942 #endif
3943
3944 /*
3945 * Creates some virtual cpus. Good luck creating more than one.
3946 */
3947 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3948 {
3949 int r;
3950 struct kvm_vcpu *vcpu;
3951 struct page *page;
3952
3953 if (id >= KVM_MAX_VCPU_IDS)
3954 return -EINVAL;
3955
3956 mutex_lock(&kvm->lock);
3957 if (kvm->created_vcpus >= kvm->max_vcpus) {
3958 mutex_unlock(&kvm->lock);
3959 return -EINVAL;
3960 }
3961
3962 r = kvm_arch_vcpu_precreate(kvm, id);
3963 if (r) {
3964 mutex_unlock(&kvm->lock);
3965 return r;
3966 }
3967
3968 kvm->created_vcpus++;
3969 mutex_unlock(&kvm->lock);
3970
3971 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3972 if (!vcpu) {
3973 r = -ENOMEM;
3974 goto vcpu_decrement;
3975 }
3976
3977 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3978 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3979 if (!page) {
3980 r = -ENOMEM;
3981 goto vcpu_free;
3982 }
3983 vcpu->run = page_address(page);
3984
3985 kvm_vcpu_init(vcpu, kvm, id);
3986
3987 r = kvm_arch_vcpu_create(vcpu);
3988 if (r)
3989 goto vcpu_free_run_page;
3990
3991 if (kvm->dirty_ring_size) {
3992 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3993 id, kvm->dirty_ring_size);
3994 if (r)
3995 goto arch_vcpu_destroy;
3996 }
3997
3998 mutex_lock(&kvm->lock);
3999
4000 #ifdef CONFIG_LOCKDEP
4001 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4002 mutex_lock(&vcpu->mutex);
4003 mutex_unlock(&vcpu->mutex);
4004 #endif
4005
4006 if (kvm_get_vcpu_by_id(kvm, id)) {
4007 r = -EEXIST;
4008 goto unlock_vcpu_destroy;
4009 }
4010
4011 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4012 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4013 if (r)
4014 goto unlock_vcpu_destroy;
4015
4016 /* Now it's all set up, let userspace reach it */
4017 kvm_get_kvm(kvm);
4018 r = create_vcpu_fd(vcpu);
4019 if (r < 0)
4020 goto kvm_put_xa_release;
4021
4022 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4023 r = -EINVAL;
4024 goto kvm_put_xa_release;
4025 }
4026
4027 /*
4028 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4029 * pointer before kvm->online_vcpu's incremented value.
4030 */
4031 smp_wmb();
4032 atomic_inc(&kvm->online_vcpus);
4033
4034 mutex_unlock(&kvm->lock);
4035 kvm_arch_vcpu_postcreate(vcpu);
4036 kvm_create_vcpu_debugfs(vcpu);
4037 return r;
4038
4039 kvm_put_xa_release:
4040 kvm_put_kvm_no_destroy(kvm);
4041 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4042 unlock_vcpu_destroy:
4043 mutex_unlock(&kvm->lock);
4044 kvm_dirty_ring_free(&vcpu->dirty_ring);
4045 arch_vcpu_destroy:
4046 kvm_arch_vcpu_destroy(vcpu);
4047 vcpu_free_run_page:
4048 free_page((unsigned long)vcpu->run);
4049 vcpu_free:
4050 kmem_cache_free(kvm_vcpu_cache, vcpu);
4051 vcpu_decrement:
4052 mutex_lock(&kvm->lock);
4053 kvm->created_vcpus--;
4054 mutex_unlock(&kvm->lock);
4055 return r;
4056 }
4057
4058 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4059 {
4060 if (sigset) {
4061 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4062 vcpu->sigset_active = 1;
4063 vcpu->sigset = *sigset;
4064 } else
4065 vcpu->sigset_active = 0;
4066 return 0;
4067 }
4068
4069 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4070 size_t size, loff_t *offset)
4071 {
4072 struct kvm_vcpu *vcpu = file->private_data;
4073
4074 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4075 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4076 sizeof(vcpu->stat), user_buffer, size, offset);
4077 }
4078
4079 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4080 {
4081 struct kvm_vcpu *vcpu = file->private_data;
4082
4083 kvm_put_kvm(vcpu->kvm);
4084 return 0;
4085 }
4086
4087 static const struct file_operations kvm_vcpu_stats_fops = {
4088 .read = kvm_vcpu_stats_read,
4089 .release = kvm_vcpu_stats_release,
4090 .llseek = noop_llseek,
4091 };
4092
4093 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4094 {
4095 int fd;
4096 struct file *file;
4097 char name[15 + ITOA_MAX_LEN + 1];
4098
4099 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4100
4101 fd = get_unused_fd_flags(O_CLOEXEC);
4102 if (fd < 0)
4103 return fd;
4104
4105 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4106 if (IS_ERR(file)) {
4107 put_unused_fd(fd);
4108 return PTR_ERR(file);
4109 }
4110
4111 kvm_get_kvm(vcpu->kvm);
4112
4113 file->f_mode |= FMODE_PREAD;
4114 fd_install(fd, file);
4115
4116 return fd;
4117 }
4118
4119 static long kvm_vcpu_ioctl(struct file *filp,
4120 unsigned int ioctl, unsigned long arg)
4121 {
4122 struct kvm_vcpu *vcpu = filp->private_data;
4123 void __user *argp = (void __user *)arg;
4124 int r;
4125 struct kvm_fpu *fpu = NULL;
4126 struct kvm_sregs *kvm_sregs = NULL;
4127
4128 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4129 return -EIO;
4130
4131 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4132 return -EINVAL;
4133
4134 /*
4135 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4136 * execution; mutex_lock() would break them.
4137 */
4138 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4139 if (r != -ENOIOCTLCMD)
4140 return r;
4141
4142 if (mutex_lock_killable(&vcpu->mutex))
4143 return -EINTR;
4144 switch (ioctl) {
4145 case KVM_RUN: {
4146 struct pid *oldpid;
4147 r = -EINVAL;
4148 if (arg)
4149 goto out;
4150 oldpid = rcu_access_pointer(vcpu->pid);
4151 if (unlikely(oldpid != task_pid(current))) {
4152 /* The thread running this VCPU changed. */
4153 struct pid *newpid;
4154
4155 r = kvm_arch_vcpu_run_pid_change(vcpu);
4156 if (r)
4157 break;
4158
4159 newpid = get_task_pid(current, PIDTYPE_PID);
4160 rcu_assign_pointer(vcpu->pid, newpid);
4161 if (oldpid)
4162 synchronize_rcu();
4163 put_pid(oldpid);
4164 }
4165 r = kvm_arch_vcpu_ioctl_run(vcpu);
4166 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4167 break;
4168 }
4169 case KVM_GET_REGS: {
4170 struct kvm_regs *kvm_regs;
4171
4172 r = -ENOMEM;
4173 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4174 if (!kvm_regs)
4175 goto out;
4176 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4177 if (r)
4178 goto out_free1;
4179 r = -EFAULT;
4180 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4181 goto out_free1;
4182 r = 0;
4183 out_free1:
4184 kfree(kvm_regs);
4185 break;
4186 }
4187 case KVM_SET_REGS: {
4188 struct kvm_regs *kvm_regs;
4189
4190 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4191 if (IS_ERR(kvm_regs)) {
4192 r = PTR_ERR(kvm_regs);
4193 goto out;
4194 }
4195 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4196 kfree(kvm_regs);
4197 break;
4198 }
4199 case KVM_GET_SREGS: {
4200 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4201 GFP_KERNEL_ACCOUNT);
4202 r = -ENOMEM;
4203 if (!kvm_sregs)
4204 goto out;
4205 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4206 if (r)
4207 goto out;
4208 r = -EFAULT;
4209 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4210 goto out;
4211 r = 0;
4212 break;
4213 }
4214 case KVM_SET_SREGS: {
4215 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4216 if (IS_ERR(kvm_sregs)) {
4217 r = PTR_ERR(kvm_sregs);
4218 kvm_sregs = NULL;
4219 goto out;
4220 }
4221 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4222 break;
4223 }
4224 case KVM_GET_MP_STATE: {
4225 struct kvm_mp_state mp_state;
4226
4227 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4228 if (r)
4229 goto out;
4230 r = -EFAULT;
4231 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4232 goto out;
4233 r = 0;
4234 break;
4235 }
4236 case KVM_SET_MP_STATE: {
4237 struct kvm_mp_state mp_state;
4238
4239 r = -EFAULT;
4240 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4241 goto out;
4242 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4243 break;
4244 }
4245 case KVM_TRANSLATE: {
4246 struct kvm_translation tr;
4247
4248 r = -EFAULT;
4249 if (copy_from_user(&tr, argp, sizeof(tr)))
4250 goto out;
4251 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4252 if (r)
4253 goto out;
4254 r = -EFAULT;
4255 if (copy_to_user(argp, &tr, sizeof(tr)))
4256 goto out;
4257 r = 0;
4258 break;
4259 }
4260 case KVM_SET_GUEST_DEBUG: {
4261 struct kvm_guest_debug dbg;
4262
4263 r = -EFAULT;
4264 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4265 goto out;
4266 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4267 break;
4268 }
4269 case KVM_SET_SIGNAL_MASK: {
4270 struct kvm_signal_mask __user *sigmask_arg = argp;
4271 struct kvm_signal_mask kvm_sigmask;
4272 sigset_t sigset, *p;
4273
4274 p = NULL;
4275 if (argp) {
4276 r = -EFAULT;
4277 if (copy_from_user(&kvm_sigmask, argp,
4278 sizeof(kvm_sigmask)))
4279 goto out;
4280 r = -EINVAL;
4281 if (kvm_sigmask.len != sizeof(sigset))
4282 goto out;
4283 r = -EFAULT;
4284 if (copy_from_user(&sigset, sigmask_arg->sigset,
4285 sizeof(sigset)))
4286 goto out;
4287 p = &sigset;
4288 }
4289 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4290 break;
4291 }
4292 case KVM_GET_FPU: {
4293 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4294 r = -ENOMEM;
4295 if (!fpu)
4296 goto out;
4297 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4298 if (r)
4299 goto out;
4300 r = -EFAULT;
4301 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4302 goto out;
4303 r = 0;
4304 break;
4305 }
4306 case KVM_SET_FPU: {
4307 fpu = memdup_user(argp, sizeof(*fpu));
4308 if (IS_ERR(fpu)) {
4309 r = PTR_ERR(fpu);
4310 fpu = NULL;
4311 goto out;
4312 }
4313 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4314 break;
4315 }
4316 case KVM_GET_STATS_FD: {
4317 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4318 break;
4319 }
4320 default:
4321 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4322 }
4323 out:
4324 mutex_unlock(&vcpu->mutex);
4325 kfree(fpu);
4326 kfree(kvm_sregs);
4327 return r;
4328 }
4329
4330 #ifdef CONFIG_KVM_COMPAT
4331 static long kvm_vcpu_compat_ioctl(struct file *filp,
4332 unsigned int ioctl, unsigned long arg)
4333 {
4334 struct kvm_vcpu *vcpu = filp->private_data;
4335 void __user *argp = compat_ptr(arg);
4336 int r;
4337
4338 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4339 return -EIO;
4340
4341 switch (ioctl) {
4342 case KVM_SET_SIGNAL_MASK: {
4343 struct kvm_signal_mask __user *sigmask_arg = argp;
4344 struct kvm_signal_mask kvm_sigmask;
4345 sigset_t sigset;
4346
4347 if (argp) {
4348 r = -EFAULT;
4349 if (copy_from_user(&kvm_sigmask, argp,
4350 sizeof(kvm_sigmask)))
4351 goto out;
4352 r = -EINVAL;
4353 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4354 goto out;
4355 r = -EFAULT;
4356 if (get_compat_sigset(&sigset,
4357 (compat_sigset_t __user *)sigmask_arg->sigset))
4358 goto out;
4359 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4360 } else
4361 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4362 break;
4363 }
4364 default:
4365 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4366 }
4367
4368 out:
4369 return r;
4370 }
4371 #endif
4372
4373 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4374 {
4375 struct kvm_device *dev = filp->private_data;
4376
4377 if (dev->ops->mmap)
4378 return dev->ops->mmap(dev, vma);
4379
4380 return -ENODEV;
4381 }
4382
4383 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4384 int (*accessor)(struct kvm_device *dev,
4385 struct kvm_device_attr *attr),
4386 unsigned long arg)
4387 {
4388 struct kvm_device_attr attr;
4389
4390 if (!accessor)
4391 return -EPERM;
4392
4393 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4394 return -EFAULT;
4395
4396 return accessor(dev, &attr);
4397 }
4398
4399 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4400 unsigned long arg)
4401 {
4402 struct kvm_device *dev = filp->private_data;
4403
4404 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4405 return -EIO;
4406
4407 switch (ioctl) {
4408 case KVM_SET_DEVICE_ATTR:
4409 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4410 case KVM_GET_DEVICE_ATTR:
4411 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4412 case KVM_HAS_DEVICE_ATTR:
4413 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4414 default:
4415 if (dev->ops->ioctl)
4416 return dev->ops->ioctl(dev, ioctl, arg);
4417
4418 return -ENOTTY;
4419 }
4420 }
4421
4422 static int kvm_device_release(struct inode *inode, struct file *filp)
4423 {
4424 struct kvm_device *dev = filp->private_data;
4425 struct kvm *kvm = dev->kvm;
4426
4427 if (dev->ops->release) {
4428 mutex_lock(&kvm->lock);
4429 list_del(&dev->vm_node);
4430 dev->ops->release(dev);
4431 mutex_unlock(&kvm->lock);
4432 }
4433
4434 kvm_put_kvm(kvm);
4435 return 0;
4436 }
4437
4438 static const struct file_operations kvm_device_fops = {
4439 .unlocked_ioctl = kvm_device_ioctl,
4440 .release = kvm_device_release,
4441 KVM_COMPAT(kvm_device_ioctl),
4442 .mmap = kvm_device_mmap,
4443 };
4444
4445 struct kvm_device *kvm_device_from_filp(struct file *filp)
4446 {
4447 if (filp->f_op != &kvm_device_fops)
4448 return NULL;
4449
4450 return filp->private_data;
4451 }
4452
4453 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4454 #ifdef CONFIG_KVM_MPIC
4455 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4456 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4457 #endif
4458 };
4459
4460 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4461 {
4462 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4463 return -ENOSPC;
4464
4465 if (kvm_device_ops_table[type] != NULL)
4466 return -EEXIST;
4467
4468 kvm_device_ops_table[type] = ops;
4469 return 0;
4470 }
4471
4472 void kvm_unregister_device_ops(u32 type)
4473 {
4474 if (kvm_device_ops_table[type] != NULL)
4475 kvm_device_ops_table[type] = NULL;
4476 }
4477
4478 static int kvm_ioctl_create_device(struct kvm *kvm,
4479 struct kvm_create_device *cd)
4480 {
4481 const struct kvm_device_ops *ops;
4482 struct kvm_device *dev;
4483 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4484 int type;
4485 int ret;
4486
4487 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4488 return -ENODEV;
4489
4490 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4491 ops = kvm_device_ops_table[type];
4492 if (ops == NULL)
4493 return -ENODEV;
4494
4495 if (test)
4496 return 0;
4497
4498 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4499 if (!dev)
4500 return -ENOMEM;
4501
4502 dev->ops = ops;
4503 dev->kvm = kvm;
4504
4505 mutex_lock(&kvm->lock);
4506 ret = ops->create(dev, type);
4507 if (ret < 0) {
4508 mutex_unlock(&kvm->lock);
4509 kfree(dev);
4510 return ret;
4511 }
4512 list_add(&dev->vm_node, &kvm->devices);
4513 mutex_unlock(&kvm->lock);
4514
4515 if (ops->init)
4516 ops->init(dev);
4517
4518 kvm_get_kvm(kvm);
4519 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4520 if (ret < 0) {
4521 kvm_put_kvm_no_destroy(kvm);
4522 mutex_lock(&kvm->lock);
4523 list_del(&dev->vm_node);
4524 if (ops->release)
4525 ops->release(dev);
4526 mutex_unlock(&kvm->lock);
4527 if (ops->destroy)
4528 ops->destroy(dev);
4529 return ret;
4530 }
4531
4532 cd->fd = ret;
4533 return 0;
4534 }
4535
4536 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4537 {
4538 switch (arg) {
4539 case KVM_CAP_USER_MEMORY:
4540 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4541 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4542 case KVM_CAP_INTERNAL_ERROR_DATA:
4543 #ifdef CONFIG_HAVE_KVM_MSI
4544 case KVM_CAP_SIGNAL_MSI:
4545 #endif
4546 #ifdef CONFIG_HAVE_KVM_IRQFD
4547 case KVM_CAP_IRQFD:
4548 #endif
4549 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4550 case KVM_CAP_CHECK_EXTENSION_VM:
4551 case KVM_CAP_ENABLE_CAP_VM:
4552 case KVM_CAP_HALT_POLL:
4553 return 1;
4554 #ifdef CONFIG_KVM_MMIO
4555 case KVM_CAP_COALESCED_MMIO:
4556 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4557 case KVM_CAP_COALESCED_PIO:
4558 return 1;
4559 #endif
4560 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4561 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4562 return KVM_DIRTY_LOG_MANUAL_CAPS;
4563 #endif
4564 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4565 case KVM_CAP_IRQ_ROUTING:
4566 return KVM_MAX_IRQ_ROUTES;
4567 #endif
4568 #if KVM_ADDRESS_SPACE_NUM > 1
4569 case KVM_CAP_MULTI_ADDRESS_SPACE:
4570 return KVM_ADDRESS_SPACE_NUM;
4571 #endif
4572 case KVM_CAP_NR_MEMSLOTS:
4573 return KVM_USER_MEM_SLOTS;
4574 case KVM_CAP_DIRTY_LOG_RING:
4575 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4576 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4577 #else
4578 return 0;
4579 #endif
4580 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4581 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4582 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4583 #else
4584 return 0;
4585 #endif
4586 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4587 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4588 #endif
4589 case KVM_CAP_BINARY_STATS_FD:
4590 case KVM_CAP_SYSTEM_EVENT_DATA:
4591 return 1;
4592 default:
4593 break;
4594 }
4595 return kvm_vm_ioctl_check_extension(kvm, arg);
4596 }
4597
4598 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4599 {
4600 int r;
4601
4602 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4603 return -EINVAL;
4604
4605 /* the size should be power of 2 */
4606 if (!size || (size & (size - 1)))
4607 return -EINVAL;
4608
4609 /* Should be bigger to keep the reserved entries, or a page */
4610 if (size < kvm_dirty_ring_get_rsvd_entries() *
4611 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4612 return -EINVAL;
4613
4614 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4615 sizeof(struct kvm_dirty_gfn))
4616 return -E2BIG;
4617
4618 /* We only allow it to set once */
4619 if (kvm->dirty_ring_size)
4620 return -EINVAL;
4621
4622 mutex_lock(&kvm->lock);
4623
4624 if (kvm->created_vcpus) {
4625 /* We don't allow to change this value after vcpu created */
4626 r = -EINVAL;
4627 } else {
4628 kvm->dirty_ring_size = size;
4629 r = 0;
4630 }
4631
4632 mutex_unlock(&kvm->lock);
4633 return r;
4634 }
4635
4636 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4637 {
4638 unsigned long i;
4639 struct kvm_vcpu *vcpu;
4640 int cleared = 0;
4641
4642 if (!kvm->dirty_ring_size)
4643 return -EINVAL;
4644
4645 mutex_lock(&kvm->slots_lock);
4646
4647 kvm_for_each_vcpu(i, vcpu, kvm)
4648 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4649
4650 mutex_unlock(&kvm->slots_lock);
4651
4652 if (cleared)
4653 kvm_flush_remote_tlbs(kvm);
4654
4655 return cleared;
4656 }
4657
4658 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4659 struct kvm_enable_cap *cap)
4660 {
4661 return -EINVAL;
4662 }
4663
4664 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4665 {
4666 int i;
4667
4668 lockdep_assert_held(&kvm->slots_lock);
4669
4670 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4671 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4672 return false;
4673 }
4674
4675 return true;
4676 }
4677 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4678
4679 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4680 struct kvm_enable_cap *cap)
4681 {
4682 switch (cap->cap) {
4683 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4684 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4685 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4686
4687 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4688 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4689
4690 if (cap->flags || (cap->args[0] & ~allowed_options))
4691 return -EINVAL;
4692 kvm->manual_dirty_log_protect = cap->args[0];
4693 return 0;
4694 }
4695 #endif
4696 case KVM_CAP_HALT_POLL: {
4697 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4698 return -EINVAL;
4699
4700 kvm->max_halt_poll_ns = cap->args[0];
4701
4702 /*
4703 * Ensure kvm->override_halt_poll_ns does not become visible
4704 * before kvm->max_halt_poll_ns.
4705 *
4706 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4707 */
4708 smp_wmb();
4709 kvm->override_halt_poll_ns = true;
4710
4711 return 0;
4712 }
4713 case KVM_CAP_DIRTY_LOG_RING:
4714 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4715 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4716 return -EINVAL;
4717
4718 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4719 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4720 int r = -EINVAL;
4721
4722 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4723 !kvm->dirty_ring_size || cap->flags)
4724 return r;
4725
4726 mutex_lock(&kvm->slots_lock);
4727
4728 /*
4729 * For simplicity, allow enabling ring+bitmap if and only if
4730 * there are no memslots, e.g. to ensure all memslots allocate
4731 * a bitmap after the capability is enabled.
4732 */
4733 if (kvm_are_all_memslots_empty(kvm)) {
4734 kvm->dirty_ring_with_bitmap = true;
4735 r = 0;
4736 }
4737
4738 mutex_unlock(&kvm->slots_lock);
4739
4740 return r;
4741 }
4742 default:
4743 return kvm_vm_ioctl_enable_cap(kvm, cap);
4744 }
4745 }
4746
4747 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4748 size_t size, loff_t *offset)
4749 {
4750 struct kvm *kvm = file->private_data;
4751
4752 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4753 &kvm_vm_stats_desc[0], &kvm->stat,
4754 sizeof(kvm->stat), user_buffer, size, offset);
4755 }
4756
4757 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4758 {
4759 struct kvm *kvm = file->private_data;
4760
4761 kvm_put_kvm(kvm);
4762 return 0;
4763 }
4764
4765 static const struct file_operations kvm_vm_stats_fops = {
4766 .read = kvm_vm_stats_read,
4767 .release = kvm_vm_stats_release,
4768 .llseek = noop_llseek,
4769 };
4770
4771 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4772 {
4773 int fd;
4774 struct file *file;
4775
4776 fd = get_unused_fd_flags(O_CLOEXEC);
4777 if (fd < 0)
4778 return fd;
4779
4780 file = anon_inode_getfile("kvm-vm-stats",
4781 &kvm_vm_stats_fops, kvm, O_RDONLY);
4782 if (IS_ERR(file)) {
4783 put_unused_fd(fd);
4784 return PTR_ERR(file);
4785 }
4786
4787 kvm_get_kvm(kvm);
4788
4789 file->f_mode |= FMODE_PREAD;
4790 fd_install(fd, file);
4791
4792 return fd;
4793 }
4794
4795 static long kvm_vm_ioctl(struct file *filp,
4796 unsigned int ioctl, unsigned long arg)
4797 {
4798 struct kvm *kvm = filp->private_data;
4799 void __user *argp = (void __user *)arg;
4800 int r;
4801
4802 if (kvm->mm != current->mm || kvm->vm_dead)
4803 return -EIO;
4804 switch (ioctl) {
4805 case KVM_CREATE_VCPU:
4806 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4807 break;
4808 case KVM_ENABLE_CAP: {
4809 struct kvm_enable_cap cap;
4810
4811 r = -EFAULT;
4812 if (copy_from_user(&cap, argp, sizeof(cap)))
4813 goto out;
4814 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4815 break;
4816 }
4817 case KVM_SET_USER_MEMORY_REGION: {
4818 struct kvm_userspace_memory_region kvm_userspace_mem;
4819
4820 r = -EFAULT;
4821 if (copy_from_user(&kvm_userspace_mem, argp,
4822 sizeof(kvm_userspace_mem)))
4823 goto out;
4824
4825 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4826 break;
4827 }
4828 case KVM_GET_DIRTY_LOG: {
4829 struct kvm_dirty_log log;
4830
4831 r = -EFAULT;
4832 if (copy_from_user(&log, argp, sizeof(log)))
4833 goto out;
4834 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4835 break;
4836 }
4837 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4838 case KVM_CLEAR_DIRTY_LOG: {
4839 struct kvm_clear_dirty_log log;
4840
4841 r = -EFAULT;
4842 if (copy_from_user(&log, argp, sizeof(log)))
4843 goto out;
4844 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4845 break;
4846 }
4847 #endif
4848 #ifdef CONFIG_KVM_MMIO
4849 case KVM_REGISTER_COALESCED_MMIO: {
4850 struct kvm_coalesced_mmio_zone zone;
4851
4852 r = -EFAULT;
4853 if (copy_from_user(&zone, argp, sizeof(zone)))
4854 goto out;
4855 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4856 break;
4857 }
4858 case KVM_UNREGISTER_COALESCED_MMIO: {
4859 struct kvm_coalesced_mmio_zone zone;
4860
4861 r = -EFAULT;
4862 if (copy_from_user(&zone, argp, sizeof(zone)))
4863 goto out;
4864 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4865 break;
4866 }
4867 #endif
4868 case KVM_IRQFD: {
4869 struct kvm_irqfd data;
4870
4871 r = -EFAULT;
4872 if (copy_from_user(&data, argp, sizeof(data)))
4873 goto out;
4874 r = kvm_irqfd(kvm, &data);
4875 break;
4876 }
4877 case KVM_IOEVENTFD: {
4878 struct kvm_ioeventfd data;
4879
4880 r = -EFAULT;
4881 if (copy_from_user(&data, argp, sizeof(data)))
4882 goto out;
4883 r = kvm_ioeventfd(kvm, &data);
4884 break;
4885 }
4886 #ifdef CONFIG_HAVE_KVM_MSI
4887 case KVM_SIGNAL_MSI: {
4888 struct kvm_msi msi;
4889
4890 r = -EFAULT;
4891 if (copy_from_user(&msi, argp, sizeof(msi)))
4892 goto out;
4893 r = kvm_send_userspace_msi(kvm, &msi);
4894 break;
4895 }
4896 #endif
4897 #ifdef __KVM_HAVE_IRQ_LINE
4898 case KVM_IRQ_LINE_STATUS:
4899 case KVM_IRQ_LINE: {
4900 struct kvm_irq_level irq_event;
4901
4902 r = -EFAULT;
4903 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4904 goto out;
4905
4906 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4907 ioctl == KVM_IRQ_LINE_STATUS);
4908 if (r)
4909 goto out;
4910
4911 r = -EFAULT;
4912 if (ioctl == KVM_IRQ_LINE_STATUS) {
4913 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4914 goto out;
4915 }
4916
4917 r = 0;
4918 break;
4919 }
4920 #endif
4921 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4922 case KVM_SET_GSI_ROUTING: {
4923 struct kvm_irq_routing routing;
4924 struct kvm_irq_routing __user *urouting;
4925 struct kvm_irq_routing_entry *entries = NULL;
4926
4927 r = -EFAULT;
4928 if (copy_from_user(&routing, argp, sizeof(routing)))
4929 goto out;
4930 r = -EINVAL;
4931 if (!kvm_arch_can_set_irq_routing(kvm))
4932 goto out;
4933 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4934 goto out;
4935 if (routing.flags)
4936 goto out;
4937 if (routing.nr) {
4938 urouting = argp;
4939 entries = vmemdup_user(urouting->entries,
4940 array_size(sizeof(*entries),
4941 routing.nr));
4942 if (IS_ERR(entries)) {
4943 r = PTR_ERR(entries);
4944 goto out;
4945 }
4946 }
4947 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4948 routing.flags);
4949 kvfree(entries);
4950 break;
4951 }
4952 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4953 case KVM_CREATE_DEVICE: {
4954 struct kvm_create_device cd;
4955
4956 r = -EFAULT;
4957 if (copy_from_user(&cd, argp, sizeof(cd)))
4958 goto out;
4959
4960 r = kvm_ioctl_create_device(kvm, &cd);
4961 if (r)
4962 goto out;
4963
4964 r = -EFAULT;
4965 if (copy_to_user(argp, &cd, sizeof(cd)))
4966 goto out;
4967
4968 r = 0;
4969 break;
4970 }
4971 case KVM_CHECK_EXTENSION:
4972 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4973 break;
4974 case KVM_RESET_DIRTY_RINGS:
4975 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4976 break;
4977 case KVM_GET_STATS_FD:
4978 r = kvm_vm_ioctl_get_stats_fd(kvm);
4979 break;
4980 default:
4981 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4982 }
4983 out:
4984 return r;
4985 }
4986
4987 #ifdef CONFIG_KVM_COMPAT
4988 struct compat_kvm_dirty_log {
4989 __u32 slot;
4990 __u32 padding1;
4991 union {
4992 compat_uptr_t dirty_bitmap; /* one bit per page */
4993 __u64 padding2;
4994 };
4995 };
4996
4997 struct compat_kvm_clear_dirty_log {
4998 __u32 slot;
4999 __u32 num_pages;
5000 __u64 first_page;
5001 union {
5002 compat_uptr_t dirty_bitmap; /* one bit per page */
5003 __u64 padding2;
5004 };
5005 };
5006
5007 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5008 unsigned long arg)
5009 {
5010 return -ENOTTY;
5011 }
5012
5013 static long kvm_vm_compat_ioctl(struct file *filp,
5014 unsigned int ioctl, unsigned long arg)
5015 {
5016 struct kvm *kvm = filp->private_data;
5017 int r;
5018
5019 if (kvm->mm != current->mm || kvm->vm_dead)
5020 return -EIO;
5021
5022 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5023 if (r != -ENOTTY)
5024 return r;
5025
5026 switch (ioctl) {
5027 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5028 case KVM_CLEAR_DIRTY_LOG: {
5029 struct compat_kvm_clear_dirty_log compat_log;
5030 struct kvm_clear_dirty_log log;
5031
5032 if (copy_from_user(&compat_log, (void __user *)arg,
5033 sizeof(compat_log)))
5034 return -EFAULT;
5035 log.slot = compat_log.slot;
5036 log.num_pages = compat_log.num_pages;
5037 log.first_page = compat_log.first_page;
5038 log.padding2 = compat_log.padding2;
5039 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5040
5041 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5042 break;
5043 }
5044 #endif
5045 case KVM_GET_DIRTY_LOG: {
5046 struct compat_kvm_dirty_log compat_log;
5047 struct kvm_dirty_log log;
5048
5049 if (copy_from_user(&compat_log, (void __user *)arg,
5050 sizeof(compat_log)))
5051 return -EFAULT;
5052 log.slot = compat_log.slot;
5053 log.padding1 = compat_log.padding1;
5054 log.padding2 = compat_log.padding2;
5055 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5056
5057 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5058 break;
5059 }
5060 default:
5061 r = kvm_vm_ioctl(filp, ioctl, arg);
5062 }
5063 return r;
5064 }
5065 #endif
5066
5067 static const struct file_operations kvm_vm_fops = {
5068 .release = kvm_vm_release,
5069 .unlocked_ioctl = kvm_vm_ioctl,
5070 .llseek = noop_llseek,
5071 KVM_COMPAT(kvm_vm_compat_ioctl),
5072 };
5073
5074 bool file_is_kvm(struct file *file)
5075 {
5076 return file && file->f_op == &kvm_vm_fops;
5077 }
5078 EXPORT_SYMBOL_GPL(file_is_kvm);
5079
5080 static int kvm_dev_ioctl_create_vm(unsigned long type)
5081 {
5082 char fdname[ITOA_MAX_LEN + 1];
5083 int r, fd;
5084 struct kvm *kvm;
5085 struct file *file;
5086
5087 fd = get_unused_fd_flags(O_CLOEXEC);
5088 if (fd < 0)
5089 return fd;
5090
5091 snprintf(fdname, sizeof(fdname), "%d", fd);
5092
5093 kvm = kvm_create_vm(type, fdname);
5094 if (IS_ERR(kvm)) {
5095 r = PTR_ERR(kvm);
5096 goto put_fd;
5097 }
5098
5099 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5100 if (IS_ERR(file)) {
5101 r = PTR_ERR(file);
5102 goto put_kvm;
5103 }
5104
5105 /*
5106 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5107 * already set, with ->release() being kvm_vm_release(). In error
5108 * cases it will be called by the final fput(file) and will take
5109 * care of doing kvm_put_kvm(kvm).
5110 */
5111 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5112
5113 fd_install(fd, file);
5114 return fd;
5115
5116 put_kvm:
5117 kvm_put_kvm(kvm);
5118 put_fd:
5119 put_unused_fd(fd);
5120 return r;
5121 }
5122
5123 static long kvm_dev_ioctl(struct file *filp,
5124 unsigned int ioctl, unsigned long arg)
5125 {
5126 int r = -EINVAL;
5127
5128 switch (ioctl) {
5129 case KVM_GET_API_VERSION:
5130 if (arg)
5131 goto out;
5132 r = KVM_API_VERSION;
5133 break;
5134 case KVM_CREATE_VM:
5135 r = kvm_dev_ioctl_create_vm(arg);
5136 break;
5137 case KVM_CHECK_EXTENSION:
5138 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5139 break;
5140 case KVM_GET_VCPU_MMAP_SIZE:
5141 if (arg)
5142 goto out;
5143 r = PAGE_SIZE; /* struct kvm_run */
5144 #ifdef CONFIG_X86
5145 r += PAGE_SIZE; /* pio data page */
5146 #endif
5147 #ifdef CONFIG_KVM_MMIO
5148 r += PAGE_SIZE; /* coalesced mmio ring page */
5149 #endif
5150 break;
5151 case KVM_TRACE_ENABLE:
5152 case KVM_TRACE_PAUSE:
5153 case KVM_TRACE_DISABLE:
5154 r = -EOPNOTSUPP;
5155 break;
5156 default:
5157 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5158 }
5159 out:
5160 return r;
5161 }
5162
5163 static struct file_operations kvm_chardev_ops = {
5164 .unlocked_ioctl = kvm_dev_ioctl,
5165 .llseek = noop_llseek,
5166 KVM_COMPAT(kvm_dev_ioctl),
5167 };
5168
5169 static struct miscdevice kvm_dev = {
5170 KVM_MINOR,
5171 "kvm",
5172 &kvm_chardev_ops,
5173 };
5174
5175 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5176 __visible bool kvm_rebooting;
5177 EXPORT_SYMBOL_GPL(kvm_rebooting);
5178
5179 static DEFINE_PER_CPU(bool, hardware_enabled);
5180 static int kvm_usage_count;
5181
5182 static int __hardware_enable_nolock(void)
5183 {
5184 if (__this_cpu_read(hardware_enabled))
5185 return 0;
5186
5187 if (kvm_arch_hardware_enable()) {
5188 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5189 raw_smp_processor_id());
5190 return -EIO;
5191 }
5192
5193 __this_cpu_write(hardware_enabled, true);
5194 return 0;
5195 }
5196
5197 static void hardware_enable_nolock(void *failed)
5198 {
5199 if (__hardware_enable_nolock())
5200 atomic_inc(failed);
5201 }
5202
5203 static int kvm_online_cpu(unsigned int cpu)
5204 {
5205 int ret = 0;
5206
5207 /*
5208 * Abort the CPU online process if hardware virtualization cannot
5209 * be enabled. Otherwise running VMs would encounter unrecoverable
5210 * errors when scheduled to this CPU.
5211 */
5212 mutex_lock(&kvm_lock);
5213 if (kvm_usage_count)
5214 ret = __hardware_enable_nolock();
5215 mutex_unlock(&kvm_lock);
5216 return ret;
5217 }
5218
5219 static void hardware_disable_nolock(void *junk)
5220 {
5221 /*
5222 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5223 * hardware, not just CPUs that successfully enabled hardware!
5224 */
5225 if (!__this_cpu_read(hardware_enabled))
5226 return;
5227
5228 kvm_arch_hardware_disable();
5229
5230 __this_cpu_write(hardware_enabled, false);
5231 }
5232
5233 static int kvm_offline_cpu(unsigned int cpu)
5234 {
5235 mutex_lock(&kvm_lock);
5236 if (kvm_usage_count)
5237 hardware_disable_nolock(NULL);
5238 mutex_unlock(&kvm_lock);
5239 return 0;
5240 }
5241
5242 static void hardware_disable_all_nolock(void)
5243 {
5244 BUG_ON(!kvm_usage_count);
5245
5246 kvm_usage_count--;
5247 if (!kvm_usage_count)
5248 on_each_cpu(hardware_disable_nolock, NULL, 1);
5249 }
5250
5251 static void hardware_disable_all(void)
5252 {
5253 cpus_read_lock();
5254 mutex_lock(&kvm_lock);
5255 hardware_disable_all_nolock();
5256 mutex_unlock(&kvm_lock);
5257 cpus_read_unlock();
5258 }
5259
5260 static int hardware_enable_all(void)
5261 {
5262 atomic_t failed = ATOMIC_INIT(0);
5263 int r;
5264
5265 /*
5266 * Do not enable hardware virtualization if the system is going down.
5267 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5268 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5269 * after kvm_reboot() is called. Note, this relies on system_state
5270 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5271 * hook instead of registering a dedicated reboot notifier (the latter
5272 * runs before system_state is updated).
5273 */
5274 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5275 system_state == SYSTEM_RESTART)
5276 return -EBUSY;
5277
5278 /*
5279 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5280 * is called, and so on_each_cpu() between them includes the CPU that
5281 * is being onlined. As a result, hardware_enable_nolock() may get
5282 * invoked before kvm_online_cpu(), which also enables hardware if the
5283 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5284 * enable hardware multiple times.
5285 */
5286 cpus_read_lock();
5287 mutex_lock(&kvm_lock);
5288
5289 r = 0;
5290
5291 kvm_usage_count++;
5292 if (kvm_usage_count == 1) {
5293 on_each_cpu(hardware_enable_nolock, &failed, 1);
5294
5295 if (atomic_read(&failed)) {
5296 hardware_disable_all_nolock();
5297 r = -EBUSY;
5298 }
5299 }
5300
5301 mutex_unlock(&kvm_lock);
5302 cpus_read_unlock();
5303
5304 return r;
5305 }
5306
5307 static void kvm_shutdown(void)
5308 {
5309 /*
5310 * Disable hardware virtualization and set kvm_rebooting to indicate
5311 * that KVM has asynchronously disabled hardware virtualization, i.e.
5312 * that relevant errors and exceptions aren't entirely unexpected.
5313 * Some flavors of hardware virtualization need to be disabled before
5314 * transferring control to firmware (to perform shutdown/reboot), e.g.
5315 * on x86, virtualization can block INIT interrupts, which are used by
5316 * firmware to pull APs back under firmware control. Note, this path
5317 * is used for both shutdown and reboot scenarios, i.e. neither name is
5318 * 100% comprehensive.
5319 */
5320 pr_info("kvm: exiting hardware virtualization\n");
5321 kvm_rebooting = true;
5322 on_each_cpu(hardware_disable_nolock, NULL, 1);
5323 }
5324
5325 static int kvm_suspend(void)
5326 {
5327 /*
5328 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5329 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5330 * is stable. Assert that kvm_lock is not held to ensure the system
5331 * isn't suspended while KVM is enabling hardware. Hardware enabling
5332 * can be preempted, but the task cannot be frozen until it has dropped
5333 * all locks (userspace tasks are frozen via a fake signal).
5334 */
5335 lockdep_assert_not_held(&kvm_lock);
5336 lockdep_assert_irqs_disabled();
5337
5338 if (kvm_usage_count)
5339 hardware_disable_nolock(NULL);
5340 return 0;
5341 }
5342
5343 static void kvm_resume(void)
5344 {
5345 lockdep_assert_not_held(&kvm_lock);
5346 lockdep_assert_irqs_disabled();
5347
5348 if (kvm_usage_count)
5349 WARN_ON_ONCE(__hardware_enable_nolock());
5350 }
5351
5352 static struct syscore_ops kvm_syscore_ops = {
5353 .suspend = kvm_suspend,
5354 .resume = kvm_resume,
5355 .shutdown = kvm_shutdown,
5356 };
5357 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5358 static int hardware_enable_all(void)
5359 {
5360 return 0;
5361 }
5362
5363 static void hardware_disable_all(void)
5364 {
5365
5366 }
5367 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5368
5369 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5370 {
5371 if (dev->ops->destructor)
5372 dev->ops->destructor(dev);
5373 }
5374
5375 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5376 {
5377 int i;
5378
5379 for (i = 0; i < bus->dev_count; i++) {
5380 struct kvm_io_device *pos = bus->range[i].dev;
5381
5382 kvm_iodevice_destructor(pos);
5383 }
5384 kfree(bus);
5385 }
5386
5387 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5388 const struct kvm_io_range *r2)
5389 {
5390 gpa_t addr1 = r1->addr;
5391 gpa_t addr2 = r2->addr;
5392
5393 if (addr1 < addr2)
5394 return -1;
5395
5396 /* If r2->len == 0, match the exact address. If r2->len != 0,
5397 * accept any overlapping write. Any order is acceptable for
5398 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5399 * we process all of them.
5400 */
5401 if (r2->len) {
5402 addr1 += r1->len;
5403 addr2 += r2->len;
5404 }
5405
5406 if (addr1 > addr2)
5407 return 1;
5408
5409 return 0;
5410 }
5411
5412 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5413 {
5414 return kvm_io_bus_cmp(p1, p2);
5415 }
5416
5417 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5418 gpa_t addr, int len)
5419 {
5420 struct kvm_io_range *range, key;
5421 int off;
5422
5423 key = (struct kvm_io_range) {
5424 .addr = addr,
5425 .len = len,
5426 };
5427
5428 range = bsearch(&key, bus->range, bus->dev_count,
5429 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5430 if (range == NULL)
5431 return -ENOENT;
5432
5433 off = range - bus->range;
5434
5435 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5436 off--;
5437
5438 return off;
5439 }
5440
5441 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5442 struct kvm_io_range *range, const void *val)
5443 {
5444 int idx;
5445
5446 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5447 if (idx < 0)
5448 return -EOPNOTSUPP;
5449
5450 while (idx < bus->dev_count &&
5451 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5452 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5453 range->len, val))
5454 return idx;
5455 idx++;
5456 }
5457
5458 return -EOPNOTSUPP;
5459 }
5460
5461 /* kvm_io_bus_write - called under kvm->slots_lock */
5462 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5463 int len, const void *val)
5464 {
5465 struct kvm_io_bus *bus;
5466 struct kvm_io_range range;
5467 int r;
5468
5469 range = (struct kvm_io_range) {
5470 .addr = addr,
5471 .len = len,
5472 };
5473
5474 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5475 if (!bus)
5476 return -ENOMEM;
5477 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5478 return r < 0 ? r : 0;
5479 }
5480 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5481
5482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5484 gpa_t addr, int len, const void *val, long cookie)
5485 {
5486 struct kvm_io_bus *bus;
5487 struct kvm_io_range range;
5488
5489 range = (struct kvm_io_range) {
5490 .addr = addr,
5491 .len = len,
5492 };
5493
5494 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5495 if (!bus)
5496 return -ENOMEM;
5497
5498 /* First try the device referenced by cookie. */
5499 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5500 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5501 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5502 val))
5503 return cookie;
5504
5505 /*
5506 * cookie contained garbage; fall back to search and return the
5507 * correct cookie value.
5508 */
5509 return __kvm_io_bus_write(vcpu, bus, &range, val);
5510 }
5511
5512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5513 struct kvm_io_range *range, void *val)
5514 {
5515 int idx;
5516
5517 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5518 if (idx < 0)
5519 return -EOPNOTSUPP;
5520
5521 while (idx < bus->dev_count &&
5522 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5523 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5524 range->len, val))
5525 return idx;
5526 idx++;
5527 }
5528
5529 return -EOPNOTSUPP;
5530 }
5531
5532 /* kvm_io_bus_read - called under kvm->slots_lock */
5533 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5534 int len, void *val)
5535 {
5536 struct kvm_io_bus *bus;
5537 struct kvm_io_range range;
5538 int r;
5539
5540 range = (struct kvm_io_range) {
5541 .addr = addr,
5542 .len = len,
5543 };
5544
5545 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5546 if (!bus)
5547 return -ENOMEM;
5548 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5549 return r < 0 ? r : 0;
5550 }
5551
5552 /* Caller must hold slots_lock. */
5553 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5554 int len, struct kvm_io_device *dev)
5555 {
5556 int i;
5557 struct kvm_io_bus *new_bus, *bus;
5558 struct kvm_io_range range;
5559
5560 bus = kvm_get_bus(kvm, bus_idx);
5561 if (!bus)
5562 return -ENOMEM;
5563
5564 /* exclude ioeventfd which is limited by maximum fd */
5565 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5566 return -ENOSPC;
5567
5568 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5569 GFP_KERNEL_ACCOUNT);
5570 if (!new_bus)
5571 return -ENOMEM;
5572
5573 range = (struct kvm_io_range) {
5574 .addr = addr,
5575 .len = len,
5576 .dev = dev,
5577 };
5578
5579 for (i = 0; i < bus->dev_count; i++)
5580 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5581 break;
5582
5583 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5584 new_bus->dev_count++;
5585 new_bus->range[i] = range;
5586 memcpy(new_bus->range + i + 1, bus->range + i,
5587 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5588 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5589 synchronize_srcu_expedited(&kvm->srcu);
5590 kfree(bus);
5591
5592 return 0;
5593 }
5594
5595 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5596 struct kvm_io_device *dev)
5597 {
5598 int i;
5599 struct kvm_io_bus *new_bus, *bus;
5600
5601 lockdep_assert_held(&kvm->slots_lock);
5602
5603 bus = kvm_get_bus(kvm, bus_idx);
5604 if (!bus)
5605 return 0;
5606
5607 for (i = 0; i < bus->dev_count; i++) {
5608 if (bus->range[i].dev == dev) {
5609 break;
5610 }
5611 }
5612
5613 if (i == bus->dev_count)
5614 return 0;
5615
5616 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5617 GFP_KERNEL_ACCOUNT);
5618 if (new_bus) {
5619 memcpy(new_bus, bus, struct_size(bus, range, i));
5620 new_bus->dev_count--;
5621 memcpy(new_bus->range + i, bus->range + i + 1,
5622 flex_array_size(new_bus, range, new_bus->dev_count - i));
5623 }
5624
5625 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5626 synchronize_srcu_expedited(&kvm->srcu);
5627
5628 /*
5629 * If NULL bus is installed, destroy the old bus, including all the
5630 * attached devices. Otherwise, destroy the caller's device only.
5631 */
5632 if (!new_bus) {
5633 pr_err("kvm: failed to shrink bus, removing it completely\n");
5634 kvm_io_bus_destroy(bus);
5635 return -ENOMEM;
5636 }
5637
5638 kvm_iodevice_destructor(dev);
5639 kfree(bus);
5640 return 0;
5641 }
5642
5643 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5644 gpa_t addr)
5645 {
5646 struct kvm_io_bus *bus;
5647 int dev_idx, srcu_idx;
5648 struct kvm_io_device *iodev = NULL;
5649
5650 srcu_idx = srcu_read_lock(&kvm->srcu);
5651
5652 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5653 if (!bus)
5654 goto out_unlock;
5655
5656 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5657 if (dev_idx < 0)
5658 goto out_unlock;
5659
5660 iodev = bus->range[dev_idx].dev;
5661
5662 out_unlock:
5663 srcu_read_unlock(&kvm->srcu, srcu_idx);
5664
5665 return iodev;
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5668
5669 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5670 int (*get)(void *, u64 *), int (*set)(void *, u64),
5671 const char *fmt)
5672 {
5673 int ret;
5674 struct kvm_stat_data *stat_data = inode->i_private;
5675
5676 /*
5677 * The debugfs files are a reference to the kvm struct which
5678 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5679 * avoids the race between open and the removal of the debugfs directory.
5680 */
5681 if (!kvm_get_kvm_safe(stat_data->kvm))
5682 return -ENOENT;
5683
5684 ret = simple_attr_open(inode, file, get,
5685 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5686 ? set : NULL, fmt);
5687 if (ret)
5688 kvm_put_kvm(stat_data->kvm);
5689
5690 return ret;
5691 }
5692
5693 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5694 {
5695 struct kvm_stat_data *stat_data = inode->i_private;
5696
5697 simple_attr_release(inode, file);
5698 kvm_put_kvm(stat_data->kvm);
5699
5700 return 0;
5701 }
5702
5703 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5704 {
5705 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5706
5707 return 0;
5708 }
5709
5710 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5711 {
5712 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5713
5714 return 0;
5715 }
5716
5717 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5718 {
5719 unsigned long i;
5720 struct kvm_vcpu *vcpu;
5721
5722 *val = 0;
5723
5724 kvm_for_each_vcpu(i, vcpu, kvm)
5725 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5726
5727 return 0;
5728 }
5729
5730 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5731 {
5732 unsigned long i;
5733 struct kvm_vcpu *vcpu;
5734
5735 kvm_for_each_vcpu(i, vcpu, kvm)
5736 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5737
5738 return 0;
5739 }
5740
5741 static int kvm_stat_data_get(void *data, u64 *val)
5742 {
5743 int r = -EFAULT;
5744 struct kvm_stat_data *stat_data = data;
5745
5746 switch (stat_data->kind) {
5747 case KVM_STAT_VM:
5748 r = kvm_get_stat_per_vm(stat_data->kvm,
5749 stat_data->desc->desc.offset, val);
5750 break;
5751 case KVM_STAT_VCPU:
5752 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5753 stat_data->desc->desc.offset, val);
5754 break;
5755 }
5756
5757 return r;
5758 }
5759
5760 static int kvm_stat_data_clear(void *data, u64 val)
5761 {
5762 int r = -EFAULT;
5763 struct kvm_stat_data *stat_data = data;
5764
5765 if (val)
5766 return -EINVAL;
5767
5768 switch (stat_data->kind) {
5769 case KVM_STAT_VM:
5770 r = kvm_clear_stat_per_vm(stat_data->kvm,
5771 stat_data->desc->desc.offset);
5772 break;
5773 case KVM_STAT_VCPU:
5774 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5775 stat_data->desc->desc.offset);
5776 break;
5777 }
5778
5779 return r;
5780 }
5781
5782 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5783 {
5784 __simple_attr_check_format("%llu\n", 0ull);
5785 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5786 kvm_stat_data_clear, "%llu\n");
5787 }
5788
5789 static const struct file_operations stat_fops_per_vm = {
5790 .owner = THIS_MODULE,
5791 .open = kvm_stat_data_open,
5792 .release = kvm_debugfs_release,
5793 .read = simple_attr_read,
5794 .write = simple_attr_write,
5795 .llseek = no_llseek,
5796 };
5797
5798 static int vm_stat_get(void *_offset, u64 *val)
5799 {
5800 unsigned offset = (long)_offset;
5801 struct kvm *kvm;
5802 u64 tmp_val;
5803
5804 *val = 0;
5805 mutex_lock(&kvm_lock);
5806 list_for_each_entry(kvm, &vm_list, vm_list) {
5807 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5808 *val += tmp_val;
5809 }
5810 mutex_unlock(&kvm_lock);
5811 return 0;
5812 }
5813
5814 static int vm_stat_clear(void *_offset, u64 val)
5815 {
5816 unsigned offset = (long)_offset;
5817 struct kvm *kvm;
5818
5819 if (val)
5820 return -EINVAL;
5821
5822 mutex_lock(&kvm_lock);
5823 list_for_each_entry(kvm, &vm_list, vm_list) {
5824 kvm_clear_stat_per_vm(kvm, offset);
5825 }
5826 mutex_unlock(&kvm_lock);
5827
5828 return 0;
5829 }
5830
5831 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5832 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5833
5834 static int vcpu_stat_get(void *_offset, u64 *val)
5835 {
5836 unsigned offset = (long)_offset;
5837 struct kvm *kvm;
5838 u64 tmp_val;
5839
5840 *val = 0;
5841 mutex_lock(&kvm_lock);
5842 list_for_each_entry(kvm, &vm_list, vm_list) {
5843 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5844 *val += tmp_val;
5845 }
5846 mutex_unlock(&kvm_lock);
5847 return 0;
5848 }
5849
5850 static int vcpu_stat_clear(void *_offset, u64 val)
5851 {
5852 unsigned offset = (long)_offset;
5853 struct kvm *kvm;
5854
5855 if (val)
5856 return -EINVAL;
5857
5858 mutex_lock(&kvm_lock);
5859 list_for_each_entry(kvm, &vm_list, vm_list) {
5860 kvm_clear_stat_per_vcpu(kvm, offset);
5861 }
5862 mutex_unlock(&kvm_lock);
5863
5864 return 0;
5865 }
5866
5867 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5868 "%llu\n");
5869 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5870
5871 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5872 {
5873 struct kobj_uevent_env *env;
5874 unsigned long long created, active;
5875
5876 if (!kvm_dev.this_device || !kvm)
5877 return;
5878
5879 mutex_lock(&kvm_lock);
5880 if (type == KVM_EVENT_CREATE_VM) {
5881 kvm_createvm_count++;
5882 kvm_active_vms++;
5883 } else if (type == KVM_EVENT_DESTROY_VM) {
5884 kvm_active_vms--;
5885 }
5886 created = kvm_createvm_count;
5887 active = kvm_active_vms;
5888 mutex_unlock(&kvm_lock);
5889
5890 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5891 if (!env)
5892 return;
5893
5894 add_uevent_var(env, "CREATED=%llu", created);
5895 add_uevent_var(env, "COUNT=%llu", active);
5896
5897 if (type == KVM_EVENT_CREATE_VM) {
5898 add_uevent_var(env, "EVENT=create");
5899 kvm->userspace_pid = task_pid_nr(current);
5900 } else if (type == KVM_EVENT_DESTROY_VM) {
5901 add_uevent_var(env, "EVENT=destroy");
5902 }
5903 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5904
5905 if (!IS_ERR(kvm->debugfs_dentry)) {
5906 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5907
5908 if (p) {
5909 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5910 if (!IS_ERR(tmp))
5911 add_uevent_var(env, "STATS_PATH=%s", tmp);
5912 kfree(p);
5913 }
5914 }
5915 /* no need for checks, since we are adding at most only 5 keys */
5916 env->envp[env->envp_idx++] = NULL;
5917 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5918 kfree(env);
5919 }
5920
5921 static void kvm_init_debug(void)
5922 {
5923 const struct file_operations *fops;
5924 const struct _kvm_stats_desc *pdesc;
5925 int i;
5926
5927 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5928
5929 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5930 pdesc = &kvm_vm_stats_desc[i];
5931 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5932 fops = &vm_stat_fops;
5933 else
5934 fops = &vm_stat_readonly_fops;
5935 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5936 kvm_debugfs_dir,
5937 (void *)(long)pdesc->desc.offset, fops);
5938 }
5939
5940 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5941 pdesc = &kvm_vcpu_stats_desc[i];
5942 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5943 fops = &vcpu_stat_fops;
5944 else
5945 fops = &vcpu_stat_readonly_fops;
5946 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5947 kvm_debugfs_dir,
5948 (void *)(long)pdesc->desc.offset, fops);
5949 }
5950 }
5951
5952 static inline
5953 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5954 {
5955 return container_of(pn, struct kvm_vcpu, preempt_notifier);
5956 }
5957
5958 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5959 {
5960 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5961
5962 WRITE_ONCE(vcpu->preempted, false);
5963 WRITE_ONCE(vcpu->ready, false);
5964
5965 __this_cpu_write(kvm_running_vcpu, vcpu);
5966 kvm_arch_sched_in(vcpu, cpu);
5967 kvm_arch_vcpu_load(vcpu, cpu);
5968 }
5969
5970 static void kvm_sched_out(struct preempt_notifier *pn,
5971 struct task_struct *next)
5972 {
5973 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5974
5975 if (current->on_rq) {
5976 WRITE_ONCE(vcpu->preempted, true);
5977 WRITE_ONCE(vcpu->ready, true);
5978 }
5979 kvm_arch_vcpu_put(vcpu);
5980 __this_cpu_write(kvm_running_vcpu, NULL);
5981 }
5982
5983 /**
5984 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5985 *
5986 * We can disable preemption locally around accessing the per-CPU variable,
5987 * and use the resolved vcpu pointer after enabling preemption again,
5988 * because even if the current thread is migrated to another CPU, reading
5989 * the per-CPU value later will give us the same value as we update the
5990 * per-CPU variable in the preempt notifier handlers.
5991 */
5992 struct kvm_vcpu *kvm_get_running_vcpu(void)
5993 {
5994 struct kvm_vcpu *vcpu;
5995
5996 preempt_disable();
5997 vcpu = __this_cpu_read(kvm_running_vcpu);
5998 preempt_enable();
5999
6000 return vcpu;
6001 }
6002 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6003
6004 /**
6005 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6006 */
6007 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6008 {
6009 return &kvm_running_vcpu;
6010 }
6011
6012 #ifdef CONFIG_GUEST_PERF_EVENTS
6013 static unsigned int kvm_guest_state(void)
6014 {
6015 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6016 unsigned int state;
6017
6018 if (!kvm_arch_pmi_in_guest(vcpu))
6019 return 0;
6020
6021 state = PERF_GUEST_ACTIVE;
6022 if (!kvm_arch_vcpu_in_kernel(vcpu))
6023 state |= PERF_GUEST_USER;
6024
6025 return state;
6026 }
6027
6028 static unsigned long kvm_guest_get_ip(void)
6029 {
6030 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6031
6032 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6033 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6034 return 0;
6035
6036 return kvm_arch_vcpu_get_ip(vcpu);
6037 }
6038
6039 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6040 .state = kvm_guest_state,
6041 .get_ip = kvm_guest_get_ip,
6042 .handle_intel_pt_intr = NULL,
6043 };
6044
6045 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6046 {
6047 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6048 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6049 }
6050 void kvm_unregister_perf_callbacks(void)
6051 {
6052 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6053 }
6054 #endif
6055
6056 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6057 {
6058 int r;
6059 int cpu;
6060
6061 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6062 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6063 kvm_online_cpu, kvm_offline_cpu);
6064 if (r)
6065 return r;
6066
6067 register_syscore_ops(&kvm_syscore_ops);
6068 #endif
6069
6070 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6071 if (!vcpu_align)
6072 vcpu_align = __alignof__(struct kvm_vcpu);
6073 kvm_vcpu_cache =
6074 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6075 SLAB_ACCOUNT,
6076 offsetof(struct kvm_vcpu, arch),
6077 offsetofend(struct kvm_vcpu, stats_id)
6078 - offsetof(struct kvm_vcpu, arch),
6079 NULL);
6080 if (!kvm_vcpu_cache) {
6081 r = -ENOMEM;
6082 goto err_vcpu_cache;
6083 }
6084
6085 for_each_possible_cpu(cpu) {
6086 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6087 GFP_KERNEL, cpu_to_node(cpu))) {
6088 r = -ENOMEM;
6089 goto err_cpu_kick_mask;
6090 }
6091 }
6092
6093 r = kvm_irqfd_init();
6094 if (r)
6095 goto err_irqfd;
6096
6097 r = kvm_async_pf_init();
6098 if (r)
6099 goto err_async_pf;
6100
6101 kvm_chardev_ops.owner = module;
6102
6103 kvm_preempt_ops.sched_in = kvm_sched_in;
6104 kvm_preempt_ops.sched_out = kvm_sched_out;
6105
6106 kvm_init_debug();
6107
6108 r = kvm_vfio_ops_init();
6109 if (WARN_ON_ONCE(r))
6110 goto err_vfio;
6111
6112 /*
6113 * Registration _must_ be the very last thing done, as this exposes
6114 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6115 */
6116 r = misc_register(&kvm_dev);
6117 if (r) {
6118 pr_err("kvm: misc device register failed\n");
6119 goto err_register;
6120 }
6121
6122 return 0;
6123
6124 err_register:
6125 kvm_vfio_ops_exit();
6126 err_vfio:
6127 kvm_async_pf_deinit();
6128 err_async_pf:
6129 kvm_irqfd_exit();
6130 err_irqfd:
6131 err_cpu_kick_mask:
6132 for_each_possible_cpu(cpu)
6133 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6134 kmem_cache_destroy(kvm_vcpu_cache);
6135 err_vcpu_cache:
6136 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6137 unregister_syscore_ops(&kvm_syscore_ops);
6138 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6139 #endif
6140 return r;
6141 }
6142 EXPORT_SYMBOL_GPL(kvm_init);
6143
6144 void kvm_exit(void)
6145 {
6146 int cpu;
6147
6148 /*
6149 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6150 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6151 * to KVM while the module is being stopped.
6152 */
6153 misc_deregister(&kvm_dev);
6154
6155 debugfs_remove_recursive(kvm_debugfs_dir);
6156 for_each_possible_cpu(cpu)
6157 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6158 kmem_cache_destroy(kvm_vcpu_cache);
6159 kvm_vfio_ops_exit();
6160 kvm_async_pf_deinit();
6161 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6162 unregister_syscore_ops(&kvm_syscore_ops);
6163 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6164 #endif
6165 kvm_irqfd_exit();
6166 }
6167 EXPORT_SYMBOL_GPL(kvm_exit);
6168
6169 struct kvm_vm_worker_thread_context {
6170 struct kvm *kvm;
6171 struct task_struct *parent;
6172 struct completion init_done;
6173 kvm_vm_thread_fn_t thread_fn;
6174 uintptr_t data;
6175 int err;
6176 };
6177
6178 static int kvm_vm_worker_thread(void *context)
6179 {
6180 /*
6181 * The init_context is allocated on the stack of the parent thread, so
6182 * we have to locally copy anything that is needed beyond initialization
6183 */
6184 struct kvm_vm_worker_thread_context *init_context = context;
6185 struct task_struct *parent;
6186 struct kvm *kvm = init_context->kvm;
6187 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6188 uintptr_t data = init_context->data;
6189 int err;
6190
6191 err = kthread_park(current);
6192 /* kthread_park(current) is never supposed to return an error */
6193 WARN_ON(err != 0);
6194 if (err)
6195 goto init_complete;
6196
6197 err = cgroup_attach_task_all(init_context->parent, current);
6198 if (err) {
6199 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6200 __func__, err);
6201 goto init_complete;
6202 }
6203
6204 set_user_nice(current, task_nice(init_context->parent));
6205
6206 init_complete:
6207 init_context->err = err;
6208 complete(&init_context->init_done);
6209 init_context = NULL;
6210
6211 if (err)
6212 goto out;
6213
6214 /* Wait to be woken up by the spawner before proceeding. */
6215 kthread_parkme();
6216
6217 if (!kthread_should_stop())
6218 err = thread_fn(kvm, data);
6219
6220 out:
6221 /*
6222 * Move kthread back to its original cgroup to prevent it lingering in
6223 * the cgroup of the VM process, after the latter finishes its
6224 * execution.
6225 *
6226 * kthread_stop() waits on the 'exited' completion condition which is
6227 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6228 * kthread is removed from the cgroup in the cgroup_exit() which is
6229 * called after the exit_mm(). This causes the kthread_stop() to return
6230 * before the kthread actually quits the cgroup.
6231 */
6232 rcu_read_lock();
6233 parent = rcu_dereference(current->real_parent);
6234 get_task_struct(parent);
6235 rcu_read_unlock();
6236 cgroup_attach_task_all(parent, current);
6237 put_task_struct(parent);
6238
6239 return err;
6240 }
6241
6242 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6243 uintptr_t data, const char *name,
6244 struct task_struct **thread_ptr)
6245 {
6246 struct kvm_vm_worker_thread_context init_context = {};
6247 struct task_struct *thread;
6248
6249 *thread_ptr = NULL;
6250 init_context.kvm = kvm;
6251 init_context.parent = current;
6252 init_context.thread_fn = thread_fn;
6253 init_context.data = data;
6254 init_completion(&init_context.init_done);
6255
6256 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6257 "%s-%d", name, task_pid_nr(current));
6258 if (IS_ERR(thread))
6259 return PTR_ERR(thread);
6260
6261 /* kthread_run is never supposed to return NULL */
6262 WARN_ON(thread == NULL);
6263
6264 wait_for_completion(&init_context.init_done);
6265
6266 if (!init_context.err)
6267 *thread_ptr = thread;
6268
6269 return init_context.err;
6270 }