]> git.ipfire.org Git - thirdparty/gcc.git/blob
112c8c7
[thirdparty/gcc.git] /
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "cp-tree.h"
26 #include "gimple-expr.h"
27 #include "cgraph.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tree-iterator.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "gimplify.h"
35 #include "attribs.h"
36
37 static tree bot_manip (tree *, int *, void *);
38 static tree bot_replace (tree *, int *, void *);
39 static hashval_t list_hash_pieces (tree, tree, tree);
40 static tree build_target_expr (tree, tree, tsubst_flags_t);
41 static tree count_trees_r (tree *, int *, void *);
42 static tree verify_stmt_tree_r (tree *, int *, void *);
43 static tree build_local_temp (tree);
44
45 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
46 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
47 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
48
49 /* If REF is an lvalue, returns the kind of lvalue that REF is.
50 Otherwise, returns clk_none. */
51
52 cp_lvalue_kind
53 lvalue_kind (const_tree ref)
54 {
55 cp_lvalue_kind op1_lvalue_kind = clk_none;
56 cp_lvalue_kind op2_lvalue_kind = clk_none;
57
58 /* Expressions of reference type are sometimes wrapped in
59 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
60 representation, not part of the language, so we have to look
61 through them. */
62 if (REFERENCE_REF_P (ref))
63 return lvalue_kind (TREE_OPERAND (ref, 0));
64
65 if (TREE_TYPE (ref)
66 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
67 {
68 /* unnamed rvalue references are rvalues */
69 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
70 && TREE_CODE (ref) != PARM_DECL
71 && !VAR_P (ref)
72 && TREE_CODE (ref) != COMPONENT_REF
73 /* Functions are always lvalues. */
74 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
75 return clk_rvalueref;
76
77 /* lvalue references and named rvalue references are lvalues. */
78 return clk_ordinary;
79 }
80
81 if (ref == current_class_ptr)
82 return clk_none;
83
84 switch (TREE_CODE (ref))
85 {
86 case SAVE_EXPR:
87 return clk_none;
88 /* preincrements and predecrements are valid lvals, provided
89 what they refer to are valid lvals. */
90 case PREINCREMENT_EXPR:
91 case PREDECREMENT_EXPR:
92 case TRY_CATCH_EXPR:
93 case WITH_CLEANUP_EXPR:
94 case REALPART_EXPR:
95 case IMAGPART_EXPR:
96 return lvalue_kind (TREE_OPERAND (ref, 0));
97
98 case MEMBER_REF:
99 case DOTSTAR_EXPR:
100 if (TREE_CODE (ref) == MEMBER_REF)
101 op1_lvalue_kind = clk_ordinary;
102 else
103 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
104 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
105 op1_lvalue_kind = clk_none;
106 return op1_lvalue_kind;
107
108 case COMPONENT_REF:
109 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
110 /* Look at the member designator. */
111 if (!op1_lvalue_kind)
112 ;
113 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
114 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
115 situations. If we're seeing a COMPONENT_REF, it's a non-static
116 member, so it isn't an lvalue. */
117 op1_lvalue_kind = clk_none;
118 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
119 /* This can be IDENTIFIER_NODE in a template. */;
120 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
121 {
122 /* Clear the ordinary bit. If this object was a class
123 rvalue we want to preserve that information. */
124 op1_lvalue_kind &= ~clk_ordinary;
125 /* The lvalue is for a bitfield. */
126 op1_lvalue_kind |= clk_bitfield;
127 }
128 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
129 op1_lvalue_kind |= clk_packed;
130
131 return op1_lvalue_kind;
132
133 case STRING_CST:
134 case COMPOUND_LITERAL_EXPR:
135 return clk_ordinary;
136
137 case CONST_DECL:
138 /* CONST_DECL without TREE_STATIC are enumeration values and
139 thus not lvalues. With TREE_STATIC they are used by ObjC++
140 in objc_build_string_object and need to be considered as
141 lvalues. */
142 if (! TREE_STATIC (ref))
143 return clk_none;
144 case VAR_DECL:
145 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
146 && DECL_LANG_SPECIFIC (ref)
147 && DECL_IN_AGGR_P (ref))
148 return clk_none;
149 case INDIRECT_REF:
150 case ARROW_EXPR:
151 case ARRAY_REF:
152 case ARRAY_NOTATION_REF:
153 case PARM_DECL:
154 case RESULT_DECL:
155 case PLACEHOLDER_EXPR:
156 return clk_ordinary;
157
158 /* A scope ref in a template, left as SCOPE_REF to support later
159 access checking. */
160 case SCOPE_REF:
161 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
162 {
163 tree op = TREE_OPERAND (ref, 1);
164 if (TREE_CODE (op) == FIELD_DECL)
165 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
166 else
167 return lvalue_kind (op);
168 }
169
170 case MAX_EXPR:
171 case MIN_EXPR:
172 /* Disallow <? and >? as lvalues if either argument side-effects. */
173 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
174 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
175 return clk_none;
176 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
177 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
178 break;
179
180 case COND_EXPR:
181 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
182 ? TREE_OPERAND (ref, 1)
183 : TREE_OPERAND (ref, 0));
184 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
185 break;
186
187 case MODOP_EXPR:
188 /* We expect to see unlowered MODOP_EXPRs only during
189 template processing. */
190 gcc_assert (processing_template_decl);
191 return clk_ordinary;
192
193 case MODIFY_EXPR:
194 case TYPEID_EXPR:
195 return clk_ordinary;
196
197 case COMPOUND_EXPR:
198 return lvalue_kind (TREE_OPERAND (ref, 1));
199
200 case TARGET_EXPR:
201 return clk_class;
202
203 case VA_ARG_EXPR:
204 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
205
206 case CALL_EXPR:
207 /* We can see calls outside of TARGET_EXPR in templates. */
208 if (CLASS_TYPE_P (TREE_TYPE (ref)))
209 return clk_class;
210 return clk_none;
211
212 case FUNCTION_DECL:
213 /* All functions (except non-static-member functions) are
214 lvalues. */
215 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
216 ? clk_none : clk_ordinary);
217
218 case BASELINK:
219 /* We now represent a reference to a single static member function
220 with a BASELINK. */
221 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
222 its argument unmodified and we assign it to a const_tree. */
223 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
224
225 case NON_DEPENDENT_EXPR:
226 return lvalue_kind (TREE_OPERAND (ref, 0));
227
228 default:
229 if (!TREE_TYPE (ref))
230 return clk_none;
231 if (CLASS_TYPE_P (TREE_TYPE (ref)))
232 return clk_class;
233 break;
234 }
235
236 /* If one operand is not an lvalue at all, then this expression is
237 not an lvalue. */
238 if (!op1_lvalue_kind || !op2_lvalue_kind)
239 return clk_none;
240
241 /* Otherwise, it's an lvalue, and it has all the odd properties
242 contributed by either operand. */
243 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
244 /* It's not an ordinary lvalue if it involves any other kind. */
245 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
246 op1_lvalue_kind &= ~clk_ordinary;
247 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
248 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
249 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
250 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
251 op1_lvalue_kind = clk_none;
252 return op1_lvalue_kind;
253 }
254
255 /* Returns the kind of lvalue that REF is, in the sense of
256 [basic.lval]. This function should really be named lvalue_p; it
257 computes the C++ definition of lvalue. */
258
259 cp_lvalue_kind
260 real_lvalue_p (const_tree ref)
261 {
262 cp_lvalue_kind kind = lvalue_kind (ref);
263 if (kind & (clk_rvalueref|clk_class))
264 return clk_none;
265 else
266 return kind;
267 }
268
269 /* This differs from real_lvalue_p in that class rvalues are considered
270 lvalues. */
271
272 bool
273 lvalue_p (const_tree ref)
274 {
275 return (lvalue_kind (ref) != clk_none);
276 }
277
278 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
279 rvalue references are considered rvalues. */
280
281 bool
282 lvalue_or_rvalue_with_address_p (const_tree ref)
283 {
284 cp_lvalue_kind kind = lvalue_kind (ref);
285 if (kind & clk_class)
286 return false;
287 else
288 return (kind != clk_none);
289 }
290
291 /* Returns true if REF is an xvalue, false otherwise. */
292
293 bool
294 xvalue_p (const_tree ref)
295 {
296 return (lvalue_kind (ref) == clk_rvalueref);
297 }
298
299 /* Test whether DECL is a builtin that may appear in a
300 constant-expression. */
301
302 bool
303 builtin_valid_in_constant_expr_p (const_tree decl)
304 {
305 if (!(TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl)))
306 /* Not a built-in. */
307 return false;
308 switch (DECL_FUNCTION_CODE (decl))
309 {
310 case BUILT_IN_CONSTANT_P:
311 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
312 /* These have constant results even if their operands are
313 non-constant. */
314 return true;
315 default:
316 return false;
317 }
318 }
319
320 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
321
322 static tree
323 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
324 {
325 tree t;
326 tree type = TREE_TYPE (decl);
327
328 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value))
329 || TREE_TYPE (decl) == TREE_TYPE (value)
330 /* On ARM ctors return 'this'. */
331 || (TYPE_PTR_P (TREE_TYPE (value))
332 && TREE_CODE (value) == CALL_EXPR)
333 || useless_type_conversion_p (TREE_TYPE (decl),
334 TREE_TYPE (value)));
335
336 t = cxx_maybe_build_cleanup (decl, complain);
337 if (t == error_mark_node)
338 return error_mark_node;
339 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
340 if (EXPR_HAS_LOCATION (value))
341 SET_EXPR_LOCATION (t, EXPR_LOCATION (value));
342 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
343 ignore the TARGET_EXPR. If there really turn out to be no
344 side-effects, then the optimizer should be able to get rid of
345 whatever code is generated anyhow. */
346 TREE_SIDE_EFFECTS (t) = 1;
347
348 return t;
349 }
350
351 /* Return an undeclared local temporary of type TYPE for use in building a
352 TARGET_EXPR. */
353
354 static tree
355 build_local_temp (tree type)
356 {
357 tree slot = build_decl (input_location,
358 VAR_DECL, NULL_TREE, type);
359 DECL_ARTIFICIAL (slot) = 1;
360 DECL_IGNORED_P (slot) = 1;
361 DECL_CONTEXT (slot) = current_function_decl;
362 layout_decl (slot, 0);
363 return slot;
364 }
365
366 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
367
368 static void
369 process_aggr_init_operands (tree t)
370 {
371 bool side_effects;
372
373 side_effects = TREE_SIDE_EFFECTS (t);
374 if (!side_effects)
375 {
376 int i, n;
377 n = TREE_OPERAND_LENGTH (t);
378 for (i = 1; i < n; i++)
379 {
380 tree op = TREE_OPERAND (t, i);
381 if (op && TREE_SIDE_EFFECTS (op))
382 {
383 side_effects = 1;
384 break;
385 }
386 }
387 }
388 TREE_SIDE_EFFECTS (t) = side_effects;
389 }
390
391 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
392 FN, and SLOT. NARGS is the number of call arguments which are specified
393 as a tree array ARGS. */
394
395 static tree
396 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
397 tree *args)
398 {
399 tree t;
400 int i;
401
402 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
403 TREE_TYPE (t) = return_type;
404 AGGR_INIT_EXPR_FN (t) = fn;
405 AGGR_INIT_EXPR_SLOT (t) = slot;
406 for (i = 0; i < nargs; i++)
407 AGGR_INIT_EXPR_ARG (t, i) = args[i];
408 process_aggr_init_operands (t);
409 return t;
410 }
411
412 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
413 target. TYPE is the type to be initialized.
414
415 Build an AGGR_INIT_EXPR to represent the initialization. This function
416 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
417 to initialize another object, whereas a TARGET_EXPR can either
418 initialize another object or create its own temporary object, and as a
419 result building up a TARGET_EXPR requires that the type's destructor be
420 callable. */
421
422 tree
423 build_aggr_init_expr (tree type, tree init)
424 {
425 tree fn;
426 tree slot;
427 tree rval;
428 int is_ctor;
429
430 /* Don't build AGGR_INIT_EXPR in a template. */
431 if (processing_template_decl)
432 return init;
433
434 if (TREE_CODE (init) == CALL_EXPR)
435 fn = CALL_EXPR_FN (init);
436 else if (TREE_CODE (init) == AGGR_INIT_EXPR)
437 fn = AGGR_INIT_EXPR_FN (init);
438 else
439 return convert (type, init);
440
441 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
442 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
443 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
444
445 /* We split the CALL_EXPR into its function and its arguments here.
446 Then, in expand_expr, we put them back together. The reason for
447 this is that this expression might be a default argument
448 expression. In that case, we need a new temporary every time the
449 expression is used. That's what break_out_target_exprs does; it
450 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
451 temporary slot. Then, expand_expr builds up a call-expression
452 using the new slot. */
453
454 /* If we don't need to use a constructor to create an object of this
455 type, don't mess with AGGR_INIT_EXPR. */
456 if (is_ctor || TREE_ADDRESSABLE (type))
457 {
458 slot = build_local_temp (type);
459
460 if (TREE_CODE (init) == CALL_EXPR)
461 {
462 rval = build_aggr_init_array (void_type_node, fn, slot,
463 call_expr_nargs (init),
464 CALL_EXPR_ARGP (init));
465 AGGR_INIT_FROM_THUNK_P (rval)
466 = CALL_FROM_THUNK_P (init);
467 }
468 else
469 {
470 rval = build_aggr_init_array (void_type_node, fn, slot,
471 aggr_init_expr_nargs (init),
472 AGGR_INIT_EXPR_ARGP (init));
473 AGGR_INIT_FROM_THUNK_P (rval)
474 = AGGR_INIT_FROM_THUNK_P (init);
475 }
476 TREE_SIDE_EFFECTS (rval) = 1;
477 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
478 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
479 CALL_EXPR_LIST_INIT_P (rval) = CALL_EXPR_LIST_INIT_P (init);
480 }
481 else
482 rval = init;
483
484 return rval;
485 }
486
487 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
488 target. TYPE is the type that this initialization should appear to
489 have.
490
491 Build an encapsulation of the initialization to perform
492 and return it so that it can be processed by language-independent
493 and language-specific expression expanders. */
494
495 tree
496 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
497 {
498 tree rval = build_aggr_init_expr (type, init);
499 tree slot;
500
501 if (!complete_type_or_maybe_complain (type, init, complain))
502 return error_mark_node;
503
504 /* Make sure that we're not trying to create an instance of an
505 abstract class. */
506 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
507 return error_mark_node;
508
509 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
510 slot = AGGR_INIT_EXPR_SLOT (rval);
511 else if (TREE_CODE (rval) == CALL_EXPR
512 || TREE_CODE (rval) == CONSTRUCTOR)
513 slot = build_local_temp (type);
514 else
515 return rval;
516
517 rval = build_target_expr (slot, rval, complain);
518
519 if (rval != error_mark_node)
520 TARGET_EXPR_IMPLICIT_P (rval) = 1;
521
522 return rval;
523 }
524
525 /* Subroutine of build_vec_init_expr: Build up a single element
526 intialization as a proxy for the full array initialization to get things
527 marked as used and any appropriate diagnostics.
528
529 Since we're deferring building the actual constructor calls until
530 gimplification time, we need to build one now and throw it away so
531 that the relevant constructor gets mark_used before cgraph decides
532 what functions are needed. Here we assume that init is either
533 NULL_TREE, void_type_node (indicating value-initialization), or
534 another array to copy. */
535
536 static tree
537 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
538 {
539 tree inner_type = strip_array_types (type);
540 vec<tree, va_gc> *argvec;
541
542 if (integer_zerop (array_type_nelts_total (type))
543 || !CLASS_TYPE_P (inner_type))
544 /* No interesting initialization to do. */
545 return integer_zero_node;
546 else if (init == void_type_node)
547 return build_value_init (inner_type, complain);
548
549 gcc_assert (init == NULL_TREE
550 || (same_type_ignoring_top_level_qualifiers_p
551 (type, TREE_TYPE (init))));
552
553 argvec = make_tree_vector ();
554 if (init)
555 {
556 tree init_type = strip_array_types (TREE_TYPE (init));
557 tree dummy = build_dummy_object (init_type);
558 if (!real_lvalue_p (init))
559 dummy = move (dummy);
560 argvec->quick_push (dummy);
561 }
562 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
563 &argvec, inner_type, LOOKUP_NORMAL,
564 complain);
565 release_tree_vector (argvec);
566
567 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
568 we don't want one here because we aren't creating a temporary. */
569 if (TREE_CODE (init) == TARGET_EXPR)
570 init = TARGET_EXPR_INITIAL (init);
571
572 return init;
573 }
574
575 /* Return a TARGET_EXPR which expresses the initialization of an array to
576 be named later, either default-initialization or copy-initialization
577 from another array of the same type. */
578
579 tree
580 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
581 {
582 tree slot;
583 bool value_init = false;
584 tree elt_init = build_vec_init_elt (type, init, complain);
585
586 if (init == void_type_node)
587 {
588 value_init = true;
589 init = NULL_TREE;
590 }
591
592 slot = build_local_temp (type);
593 init = build2 (VEC_INIT_EXPR, type, slot, init);
594 TREE_SIDE_EFFECTS (init) = true;
595 SET_EXPR_LOCATION (init, input_location);
596
597 if (cxx_dialect >= cxx11
598 && potential_constant_expression (elt_init))
599 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
600 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
601
602 return init;
603 }
604
605 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
606 that requires a constant expression. */
607
608 void
609 diagnose_non_constexpr_vec_init (tree expr)
610 {
611 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
612 tree init, elt_init;
613 if (VEC_INIT_EXPR_VALUE_INIT (expr))
614 init = void_type_node;
615 else
616 init = VEC_INIT_EXPR_INIT (expr);
617
618 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
619 require_potential_constant_expression (elt_init);
620 }
621
622 tree
623 build_array_copy (tree init)
624 {
625 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
626 }
627
628 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
629 indicated TYPE. */
630
631 tree
632 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
633 {
634 gcc_assert (!VOID_TYPE_P (type));
635
636 if (TREE_CODE (init) == TARGET_EXPR
637 || init == error_mark_node)
638 return init;
639 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
640 && !VOID_TYPE_P (TREE_TYPE (init))
641 && TREE_CODE (init) != COND_EXPR
642 && TREE_CODE (init) != CONSTRUCTOR
643 && TREE_CODE (init) != VA_ARG_EXPR)
644 /* We need to build up a copy constructor call. A void initializer
645 means we're being called from bot_manip. COND_EXPR is a special
646 case because we already have copies on the arms and we don't want
647 another one here. A CONSTRUCTOR is aggregate initialization, which
648 is handled separately. A VA_ARG_EXPR is magic creation of an
649 aggregate; there's no additional work to be done. */
650 return force_rvalue (init, complain);
651
652 return force_target_expr (type, init, complain);
653 }
654
655 /* Like the above function, but without the checking. This function should
656 only be used by code which is deliberately trying to subvert the type
657 system, such as call_builtin_trap. Or build_over_call, to avoid
658 infinite recursion. */
659
660 tree
661 force_target_expr (tree type, tree init, tsubst_flags_t complain)
662 {
663 tree slot;
664
665 gcc_assert (!VOID_TYPE_P (type));
666
667 slot = build_local_temp (type);
668 return build_target_expr (slot, init, complain);
669 }
670
671 /* Like build_target_expr_with_type, but use the type of INIT. */
672
673 tree
674 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
675 {
676 if (TREE_CODE (init) == AGGR_INIT_EXPR)
677 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
678 else if (TREE_CODE (init) == VEC_INIT_EXPR)
679 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
680 else
681 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
682 }
683
684 tree
685 get_target_expr (tree init)
686 {
687 return get_target_expr_sfinae (init, tf_warning_or_error);
688 }
689
690 /* If EXPR is a bitfield reference, convert it to the declared type of
691 the bitfield, and return the resulting expression. Otherwise,
692 return EXPR itself. */
693
694 tree
695 convert_bitfield_to_declared_type (tree expr)
696 {
697 tree bitfield_type;
698
699 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
700 if (bitfield_type)
701 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type),
702 expr);
703 return expr;
704 }
705
706 /* EXPR is being used in an rvalue context. Return a version of EXPR
707 that is marked as an rvalue. */
708
709 tree
710 rvalue (tree expr)
711 {
712 tree type;
713
714 if (error_operand_p (expr))
715 return expr;
716
717 expr = mark_rvalue_use (expr);
718
719 /* [basic.lval]
720
721 Non-class rvalues always have cv-unqualified types. */
722 type = TREE_TYPE (expr);
723 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
724 type = cv_unqualified (type);
725
726 /* We need to do this for rvalue refs as well to get the right answer
727 from decltype; see c++/36628. */
728 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
729 expr = build1 (NON_LVALUE_EXPR, type, expr);
730 else if (type != TREE_TYPE (expr))
731 expr = build_nop (type, expr);
732
733 return expr;
734 }
735
736 \f
737 struct cplus_array_info
738 {
739 tree type;
740 tree domain;
741 };
742
743 struct cplus_array_hasher : ggc_ptr_hash<tree_node>
744 {
745 typedef cplus_array_info *compare_type;
746
747 static hashval_t hash (tree t);
748 static bool equal (tree, cplus_array_info *);
749 };
750
751 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
752
753 hashval_t
754 cplus_array_hasher::hash (tree t)
755 {
756 hashval_t hash;
757
758 hash = TYPE_UID (TREE_TYPE (t));
759 if (TYPE_DOMAIN (t))
760 hash ^= TYPE_UID (TYPE_DOMAIN (t));
761 return hash;
762 }
763
764 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
765 of type `cplus_array_info*'. */
766
767 bool
768 cplus_array_hasher::equal (tree t1, cplus_array_info *t2)
769 {
770 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
771 }
772
773 /* Hash table containing dependent array types, which are unsuitable for
774 the language-independent type hash table. */
775 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab;
776
777 /* Build an ARRAY_TYPE without laying it out. */
778
779 static tree
780 build_min_array_type (tree elt_type, tree index_type)
781 {
782 tree t = cxx_make_type (ARRAY_TYPE);
783 TREE_TYPE (t) = elt_type;
784 TYPE_DOMAIN (t) = index_type;
785 return t;
786 }
787
788 /* Set TYPE_CANONICAL like build_array_type_1, but using
789 build_cplus_array_type. */
790
791 static void
792 set_array_type_canon (tree t, tree elt_type, tree index_type)
793 {
794 /* Set the canonical type for this new node. */
795 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
796 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
797 SET_TYPE_STRUCTURAL_EQUALITY (t);
798 else if (TYPE_CANONICAL (elt_type) != elt_type
799 || (index_type && TYPE_CANONICAL (index_type) != index_type))
800 TYPE_CANONICAL (t)
801 = build_cplus_array_type (TYPE_CANONICAL (elt_type),
802 index_type
803 ? TYPE_CANONICAL (index_type) : index_type);
804 else
805 TYPE_CANONICAL (t) = t;
806 }
807
808 /* Like build_array_type, but handle special C++ semantics: an array of a
809 variant element type is a variant of the array of the main variant of
810 the element type. */
811
812 tree
813 build_cplus_array_type (tree elt_type, tree index_type)
814 {
815 tree t;
816
817 if (elt_type == error_mark_node || index_type == error_mark_node)
818 return error_mark_node;
819
820 bool dependent = (uses_template_parms (elt_type)
821 || (index_type && uses_template_parms (index_type)));
822
823 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
824 /* Start with an array of the TYPE_MAIN_VARIANT. */
825 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
826 index_type);
827 else if (dependent)
828 {
829 /* Since type_hash_canon calls layout_type, we need to use our own
830 hash table. */
831 cplus_array_info cai;
832 hashval_t hash;
833
834 if (cplus_array_htab == NULL)
835 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61);
836
837 hash = TYPE_UID (elt_type);
838 if (index_type)
839 hash ^= TYPE_UID (index_type);
840 cai.type = elt_type;
841 cai.domain = index_type;
842
843 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT);
844 if (*e)
845 /* We have found the type: we're done. */
846 return (tree) *e;
847 else
848 {
849 /* Build a new array type. */
850 t = build_min_array_type (elt_type, index_type);
851
852 /* Store it in the hash table. */
853 *e = t;
854
855 /* Set the canonical type for this new node. */
856 set_array_type_canon (t, elt_type, index_type);
857 }
858 }
859 else
860 {
861 t = build_array_type (elt_type, index_type);
862 }
863
864 /* Now check whether we already have this array variant. */
865 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
866 {
867 tree m = t;
868 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
869 if (TREE_TYPE (t) == elt_type
870 && TYPE_NAME (t) == NULL_TREE
871 && TYPE_ATTRIBUTES (t) == NULL_TREE)
872 break;
873 if (!t)
874 {
875 t = build_min_array_type (elt_type, index_type);
876 set_array_type_canon (t, elt_type, index_type);
877 if (!dependent)
878 {
879 layout_type (t);
880 /* Make sure sizes are shared with the main variant.
881 layout_type can't be called after setting TYPE_NEXT_VARIANT,
882 as it will overwrite alignment etc. of all variants. */
883 TYPE_SIZE (t) = TYPE_SIZE (m);
884 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m);
885 }
886
887 TYPE_MAIN_VARIANT (t) = m;
888 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
889 TYPE_NEXT_VARIANT (m) = t;
890 }
891 }
892
893 /* Avoid spurious warnings with VLAs (c++/54583). */
894 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
895 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
896
897 /* Push these needs up to the ARRAY_TYPE so that initialization takes
898 place more easily. */
899 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t)
900 = TYPE_NEEDS_CONSTRUCTING (elt_type));
901 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
902 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type));
903
904 if (!dependent && t == TYPE_MAIN_VARIANT (t)
905 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type))
906 {
907 /* The element type has been completed since the last time we saw
908 this array type; update the layout and 'tor flags for any variants
909 that need it. */
910 layout_type (t);
911 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
912 {
913 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor;
914 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor;
915 }
916 }
917
918 return t;
919 }
920
921 /* Return an ARRAY_TYPE with element type ELT and length N. */
922
923 tree
924 build_array_of_n_type (tree elt, int n)
925 {
926 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
927 }
928
929 /* True iff T is an N3639 array of runtime bound (VLA). These were
930 approved for C++14 but then removed. */
931
932 bool
933 array_of_runtime_bound_p (tree t)
934 {
935 if (!t || TREE_CODE (t) != ARRAY_TYPE)
936 return false;
937 tree dom = TYPE_DOMAIN (t);
938 if (!dom)
939 return false;
940 tree max = TYPE_MAX_VALUE (dom);
941 return (!potential_rvalue_constant_expression (max)
942 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
943 }
944
945 /* Return a reference type node referring to TO_TYPE. If RVAL is
946 true, return an rvalue reference type, otherwise return an lvalue
947 reference type. If a type node exists, reuse it, otherwise create
948 a new one. */
949 tree
950 cp_build_reference_type (tree to_type, bool rval)
951 {
952 tree lvalue_ref, t;
953 lvalue_ref = build_reference_type (to_type);
954 if (!rval)
955 return lvalue_ref;
956
957 /* This code to create rvalue reference types is based on and tied
958 to the code creating lvalue reference types in the middle-end
959 functions build_reference_type_for_mode and build_reference_type.
960
961 It works by putting the rvalue reference type nodes after the
962 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
963 they will effectively be ignored by the middle end. */
964
965 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
966 if (TYPE_REF_IS_RVALUE (t))
967 return t;
968
969 t = build_distinct_type_copy (lvalue_ref);
970
971 TYPE_REF_IS_RVALUE (t) = true;
972 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
973 TYPE_NEXT_REF_TO (lvalue_ref) = t;
974
975 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
976 SET_TYPE_STRUCTURAL_EQUALITY (t);
977 else if (TYPE_CANONICAL (to_type) != to_type)
978 TYPE_CANONICAL (t)
979 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
980 else
981 TYPE_CANONICAL (t) = t;
982
983 layout_type (t);
984
985 return t;
986
987 }
988
989 /* Returns EXPR cast to rvalue reference type, like std::move. */
990
991 tree
992 move (tree expr)
993 {
994 tree type = TREE_TYPE (expr);
995 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
996 type = cp_build_reference_type (type, /*rval*/true);
997 return build_static_cast (type, expr, tf_warning_or_error);
998 }
999
1000 /* Used by the C++ front end to build qualified array types. However,
1001 the C version of this function does not properly maintain canonical
1002 types (which are not used in C). */
1003 tree
1004 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */,
1005 size_t /* orig_qual_indirect */)
1006 {
1007 return cp_build_qualified_type (type, type_quals);
1008 }
1009
1010 \f
1011 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
1012 arrays correctly. In particular, if TYPE is an array of T's, and
1013 TYPE_QUALS is non-empty, returns an array of qualified T's.
1014
1015 FLAGS determines how to deal with ill-formed qualifications. If
1016 tf_ignore_bad_quals is set, then bad qualifications are dropped
1017 (this is permitted if TYPE was introduced via a typedef or template
1018 type parameter). If bad qualifications are dropped and tf_warning
1019 is set, then a warning is issued for non-const qualifications. If
1020 tf_ignore_bad_quals is not set and tf_error is not set, we
1021 return error_mark_node. Otherwise, we issue an error, and ignore
1022 the qualifications.
1023
1024 Qualification of a reference type is valid when the reference came
1025 via a typedef or template type argument. [dcl.ref] No such
1026 dispensation is provided for qualifying a function type. [dcl.fct]
1027 DR 295 queries this and the proposed resolution brings it into line
1028 with qualifying a reference. We implement the DR. We also behave
1029 in a similar manner for restricting non-pointer types. */
1030
1031 tree
1032 cp_build_qualified_type_real (tree type,
1033 int type_quals,
1034 tsubst_flags_t complain)
1035 {
1036 tree result;
1037 int bad_quals = TYPE_UNQUALIFIED;
1038
1039 if (type == error_mark_node)
1040 return type;
1041
1042 if (type_quals == cp_type_quals (type))
1043 return type;
1044
1045 if (TREE_CODE (type) == ARRAY_TYPE)
1046 {
1047 /* In C++, the qualification really applies to the array element
1048 type. Obtain the appropriately qualified element type. */
1049 tree t;
1050 tree element_type
1051 = cp_build_qualified_type_real (TREE_TYPE (type),
1052 type_quals,
1053 complain);
1054
1055 if (element_type == error_mark_node)
1056 return error_mark_node;
1057
1058 /* See if we already have an identically qualified type. Tests
1059 should be equivalent to those in check_qualified_type. */
1060 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1061 if (TREE_TYPE (t) == element_type
1062 && TYPE_NAME (t) == TYPE_NAME (type)
1063 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1064 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1065 TYPE_ATTRIBUTES (type)))
1066 break;
1067
1068 if (!t)
1069 {
1070 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1071
1072 /* Keep the typedef name. */
1073 if (TYPE_NAME (t) != TYPE_NAME (type))
1074 {
1075 t = build_variant_type_copy (t);
1076 TYPE_NAME (t) = TYPE_NAME (type);
1077 SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
1078 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
1079 }
1080 }
1081
1082 /* Even if we already had this variant, we update
1083 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1084 they changed since the variant was originally created.
1085
1086 This seems hokey; if there is some way to use a previous
1087 variant *without* coming through here,
1088 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1089 TYPE_NEEDS_CONSTRUCTING (t)
1090 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1091 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1092 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1093 return t;
1094 }
1095 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1096 {
1097 tree t = PACK_EXPANSION_PATTERN (type);
1098
1099 t = cp_build_qualified_type_real (t, type_quals, complain);
1100 return make_pack_expansion (t);
1101 }
1102
1103 /* A reference or method type shall not be cv-qualified.
1104 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1105 (in CD1) we always ignore extra cv-quals on functions. */
1106 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1107 && (TREE_CODE (type) == REFERENCE_TYPE
1108 || TREE_CODE (type) == FUNCTION_TYPE
1109 || TREE_CODE (type) == METHOD_TYPE))
1110 {
1111 if (TREE_CODE (type) == REFERENCE_TYPE)
1112 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1113 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1114 }
1115
1116 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1117 if (TREE_CODE (type) == FUNCTION_TYPE)
1118 type_quals |= type_memfn_quals (type);
1119
1120 /* A restrict-qualified type must be a pointer (or reference)
1121 to object or incomplete type. */
1122 if ((type_quals & TYPE_QUAL_RESTRICT)
1123 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1124 && TREE_CODE (type) != TYPENAME_TYPE
1125 && !POINTER_TYPE_P (type))
1126 {
1127 bad_quals |= TYPE_QUAL_RESTRICT;
1128 type_quals &= ~TYPE_QUAL_RESTRICT;
1129 }
1130
1131 if (bad_quals == TYPE_UNQUALIFIED
1132 || (complain & tf_ignore_bad_quals))
1133 /*OK*/;
1134 else if (!(complain & tf_error))
1135 return error_mark_node;
1136 else
1137 {
1138 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1139 error ("%qV qualifiers cannot be applied to %qT",
1140 bad_type, type);
1141 }
1142
1143 /* Retrieve (or create) the appropriately qualified variant. */
1144 result = build_qualified_type (type, type_quals);
1145
1146 /* Preserve exception specs and ref-qualifier since build_qualified_type
1147 doesn't know about them. */
1148 if (TREE_CODE (result) == FUNCTION_TYPE
1149 || TREE_CODE (result) == METHOD_TYPE)
1150 {
1151 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1152 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1153 }
1154
1155 return result;
1156 }
1157
1158 /* Return TYPE with const and volatile removed. */
1159
1160 tree
1161 cv_unqualified (tree type)
1162 {
1163 int quals;
1164
1165 if (type == error_mark_node)
1166 return type;
1167
1168 quals = cp_type_quals (type);
1169 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1170 return cp_build_qualified_type (type, quals);
1171 }
1172
1173 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes
1174 from ATTRIBS that affect type identity, and no others. If any are not
1175 applied, set *remove_attributes to true. */
1176
1177 static tree
1178 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes)
1179 {
1180 tree first_ident = NULL_TREE;
1181 tree new_attribs = NULL_TREE;
1182 tree *p = &new_attribs;
1183
1184 if (OVERLOAD_TYPE_P (result))
1185 {
1186 /* On classes and enums all attributes are ingrained. */
1187 gcc_assert (attribs == TYPE_ATTRIBUTES (result));
1188 return result;
1189 }
1190
1191 for (tree a = attribs; a; a = TREE_CHAIN (a))
1192 {
1193 const attribute_spec *as
1194 = lookup_attribute_spec (get_attribute_name (a));
1195 if (as && as->affects_type_identity)
1196 {
1197 if (!first_ident)
1198 first_ident = a;
1199 else if (first_ident == error_mark_node)
1200 {
1201 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE);
1202 p = &TREE_CHAIN (*p);
1203 }
1204 }
1205 else if (first_ident)
1206 {
1207 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2))
1208 {
1209 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE);
1210 p = &TREE_CHAIN (*p);
1211 }
1212 first_ident = error_mark_node;
1213 }
1214 }
1215 if (first_ident != error_mark_node)
1216 new_attribs = first_ident;
1217
1218 if (first_ident == attribs)
1219 /* All attributes affected type identity. */;
1220 else
1221 *remove_attributes = true;
1222
1223 return cp_build_type_attribute_variant (result, new_attribs);
1224 }
1225
1226 /* Builds a qualified variant of T that is not a typedef variant.
1227 E.g. consider the following declarations:
1228 typedef const int ConstInt;
1229 typedef ConstInt* PtrConstInt;
1230 If T is PtrConstInt, this function returns a type representing
1231 const int*.
1232 In other words, if T is a typedef, the function returns the underlying type.
1233 The cv-qualification and attributes of the type returned match the
1234 input type.
1235 They will always be compatible types.
1236 The returned type is built so that all of its subtypes
1237 recursively have their typedefs stripped as well.
1238
1239 This is different from just returning TYPE_CANONICAL (T)
1240 Because of several reasons:
1241 * If T is a type that needs structural equality
1242 its TYPE_CANONICAL (T) will be NULL.
1243 * TYPE_CANONICAL (T) desn't carry type attributes
1244 and loses template parameter names.
1245
1246 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't
1247 affect type identity, and set the referent to true if any were
1248 stripped. */
1249
1250 tree
1251 strip_typedefs (tree t, bool *remove_attributes)
1252 {
1253 tree result = NULL, type = NULL, t0 = NULL;
1254
1255 if (!t || t == error_mark_node)
1256 return t;
1257
1258 if (TREE_CODE (t) == TREE_LIST)
1259 {
1260 bool changed = false;
1261 vec<tree,va_gc> *vec = make_tree_vector ();
1262 tree r = t;
1263 for (; t; t = TREE_CHAIN (t))
1264 {
1265 gcc_assert (!TREE_PURPOSE (t));
1266 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes);
1267 if (elt != TREE_VALUE (t))
1268 changed = true;
1269 vec_safe_push (vec, elt);
1270 }
1271 if (changed)
1272 r = build_tree_list_vec (vec);
1273 release_tree_vector (vec);
1274 return r;
1275 }
1276
1277 gcc_assert (TYPE_P (t));
1278
1279 if (t == TYPE_CANONICAL (t))
1280 return t;
1281
1282 if (dependent_alias_template_spec_p (t))
1283 /* DR 1558: However, if the template-id is dependent, subsequent
1284 template argument substitution still applies to the template-id. */
1285 return t;
1286
1287 switch (TREE_CODE (t))
1288 {
1289 case POINTER_TYPE:
1290 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1291 result = build_pointer_type (type);
1292 break;
1293 case REFERENCE_TYPE:
1294 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1295 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1296 break;
1297 case OFFSET_TYPE:
1298 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes);
1299 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1300 result = build_offset_type (t0, type);
1301 break;
1302 case RECORD_TYPE:
1303 if (TYPE_PTRMEMFUNC_P (t))
1304 {
1305 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes);
1306 result = build_ptrmemfunc_type (t0);
1307 }
1308 break;
1309 case ARRAY_TYPE:
1310 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1311 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes);
1312 result = build_cplus_array_type (type, t0);
1313 break;
1314 case FUNCTION_TYPE:
1315 case METHOD_TYPE:
1316 {
1317 tree arg_types = NULL, arg_node, arg_node2, arg_type;
1318 bool changed;
1319
1320 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places
1321 around the compiler (e.g. cp_parser_late_parsing_default_args), we
1322 can't expect that re-hashing a function type will find a previous
1323 equivalent type, so try to reuse the input type if nothing has
1324 changed. If the type is itself a variant, that will change. */
1325 bool is_variant = typedef_variant_p (t);
1326 if (remove_attributes
1327 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t)))
1328 is_variant = true;
1329
1330 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1331 changed = type != TREE_TYPE (t) || is_variant;
1332
1333 for (arg_node = TYPE_ARG_TYPES (t);
1334 arg_node;
1335 arg_node = TREE_CHAIN (arg_node))
1336 {
1337 if (arg_node == void_list_node)
1338 break;
1339 arg_type = strip_typedefs (TREE_VALUE (arg_node),
1340 remove_attributes);
1341 gcc_assert (arg_type);
1342 if (arg_type == TREE_VALUE (arg_node) && !changed)
1343 continue;
1344
1345 if (!changed)
1346 {
1347 changed = true;
1348 for (arg_node2 = TYPE_ARG_TYPES (t);
1349 arg_node2 != arg_node;
1350 arg_node2 = TREE_CHAIN (arg_node2))
1351 arg_types
1352 = tree_cons (TREE_PURPOSE (arg_node2),
1353 TREE_VALUE (arg_node2), arg_types);
1354 }
1355
1356 arg_types
1357 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1358 }
1359
1360 if (!changed)
1361 return t;
1362
1363 if (arg_types)
1364 arg_types = nreverse (arg_types);
1365
1366 /* A list of parameters not ending with an ellipsis
1367 must end with void_list_node. */
1368 if (arg_node)
1369 arg_types = chainon (arg_types, void_list_node);
1370
1371 if (TREE_CODE (t) == METHOD_TYPE)
1372 {
1373 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1374 gcc_assert (class_type);
1375 result =
1376 build_method_type_directly (class_type, type,
1377 TREE_CHAIN (arg_types));
1378 result
1379 = build_ref_qualified_type (result, type_memfn_rqual (t));
1380 }
1381 else
1382 {
1383 result = build_function_type (type,
1384 arg_types);
1385 result = apply_memfn_quals (result,
1386 type_memfn_quals (t),
1387 type_memfn_rqual (t));
1388 }
1389
1390 if (TYPE_RAISES_EXCEPTIONS (t))
1391 result = build_exception_variant (result,
1392 TYPE_RAISES_EXCEPTIONS (t));
1393 if (TYPE_HAS_LATE_RETURN_TYPE (t))
1394 TYPE_HAS_LATE_RETURN_TYPE (result) = 1;
1395 }
1396 break;
1397 case TYPENAME_TYPE:
1398 {
1399 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1400 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1401 && TREE_OPERAND (fullname, 1))
1402 {
1403 tree args = TREE_OPERAND (fullname, 1);
1404 tree new_args = copy_node (args);
1405 bool changed = false;
1406 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1407 {
1408 tree arg = TREE_VEC_ELT (args, i);
1409 tree strip_arg;
1410 if (TYPE_P (arg))
1411 strip_arg = strip_typedefs (arg, remove_attributes);
1412 else
1413 strip_arg = strip_typedefs_expr (arg, remove_attributes);
1414 TREE_VEC_ELT (new_args, i) = strip_arg;
1415 if (strip_arg != arg)
1416 changed = true;
1417 }
1418 if (changed)
1419 {
1420 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1421 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1422 fullname
1423 = lookup_template_function (TREE_OPERAND (fullname, 0),
1424 new_args);
1425 }
1426 else
1427 ggc_free (new_args);
1428 }
1429 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t),
1430 remove_attributes),
1431 fullname, typename_type, tf_none);
1432 /* Handle 'typedef typename A::N N;' */
1433 if (typedef_variant_p (result))
1434 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (result)));
1435 }
1436 break;
1437 case DECLTYPE_TYPE:
1438 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t),
1439 remove_attributes);
1440 if (result == DECLTYPE_TYPE_EXPR (t))
1441 result = NULL_TREE;
1442 else
1443 result = (finish_decltype_type
1444 (result,
1445 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1446 tf_none));
1447 break;
1448 default:
1449 break;
1450 }
1451
1452 if (!result)
1453 {
1454 if (typedef_variant_p (t))
1455 {
1456 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't
1457 strip typedefs with attributes. */
1458 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t)));
1459 result = strip_typedefs (result);
1460 }
1461 else
1462 result = TYPE_MAIN_VARIANT (t);
1463 }
1464 gcc_assert (!typedef_variant_p (result));
1465 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1466 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1467 {
1468 gcc_assert (TYPE_USER_ALIGN (t));
1469 if (remove_attributes)
1470 *remove_attributes = true;
1471 else
1472 {
1473 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1474 result = build_variant_type_copy (result);
1475 else
1476 result = build_aligned_type (result, TYPE_ALIGN (t));
1477 TYPE_USER_ALIGN (result) = true;
1478 }
1479 }
1480 if (TYPE_ATTRIBUTES (t))
1481 {
1482 if (remove_attributes)
1483 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t),
1484 remove_attributes);
1485 else
1486 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1487 }
1488 return cp_build_qualified_type (result, cp_type_quals (t));
1489 }
1490
1491 /* Like strip_typedefs above, but works on expressions, so that in
1492
1493 template<class T> struct A
1494 {
1495 typedef T TT;
1496 B<sizeof(TT)> b;
1497 };
1498
1499 sizeof(TT) is replaced by sizeof(T). */
1500
1501 tree
1502 strip_typedefs_expr (tree t, bool *remove_attributes)
1503 {
1504 unsigned i,n;
1505 tree r, type, *ops;
1506 enum tree_code code;
1507
1508 if (t == NULL_TREE || t == error_mark_node)
1509 return t;
1510
1511 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1512 return t;
1513
1514 /* Some expressions have type operands, so let's handle types here rather
1515 than check TYPE_P in multiple places below. */
1516 if (TYPE_P (t))
1517 return strip_typedefs (t, remove_attributes);
1518
1519 code = TREE_CODE (t);
1520 switch (code)
1521 {
1522 case IDENTIFIER_NODE:
1523 case TEMPLATE_PARM_INDEX:
1524 case OVERLOAD:
1525 case BASELINK:
1526 case ARGUMENT_PACK_SELECT:
1527 return t;
1528
1529 case TRAIT_EXPR:
1530 {
1531 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes);
1532 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes);
1533 if (type1 == TRAIT_EXPR_TYPE1 (t)
1534 && type2 == TRAIT_EXPR_TYPE2 (t))
1535 return t;
1536 r = copy_node (t);
1537 TRAIT_EXPR_TYPE1 (r) = type1;
1538 TRAIT_EXPR_TYPE2 (r) = type2;
1539 return r;
1540 }
1541
1542 case TREE_LIST:
1543 {
1544 vec<tree, va_gc> *vec = make_tree_vector ();
1545 bool changed = false;
1546 tree it;
1547 for (it = t; it; it = TREE_CHAIN (it))
1548 {
1549 tree val = strip_typedefs_expr (TREE_VALUE (t), remove_attributes);
1550 vec_safe_push (vec, val);
1551 if (val != TREE_VALUE (t))
1552 changed = true;
1553 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1554 }
1555 if (changed)
1556 {
1557 r = NULL_TREE;
1558 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1559 r = tree_cons (NULL_TREE, it, r);
1560 }
1561 else
1562 r = t;
1563 release_tree_vector (vec);
1564 return r;
1565 }
1566
1567 case TREE_VEC:
1568 {
1569 bool changed = false;
1570 vec<tree, va_gc> *vec = make_tree_vector ();
1571 n = TREE_VEC_LENGTH (t);
1572 vec_safe_reserve (vec, n);
1573 for (i = 0; i < n; ++i)
1574 {
1575 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i),
1576 remove_attributes);
1577 vec->quick_push (op);
1578 if (op != TREE_VEC_ELT (t, i))
1579 changed = true;
1580 }
1581 if (changed)
1582 {
1583 r = copy_node (t);
1584 for (i = 0; i < n; ++i)
1585 TREE_VEC_ELT (r, i) = (*vec)[i];
1586 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1587 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1588 }
1589 else
1590 r = t;
1591 release_tree_vector (vec);
1592 return r;
1593 }
1594
1595 case CONSTRUCTOR:
1596 {
1597 bool changed = false;
1598 vec<constructor_elt, va_gc> *vec
1599 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1600 n = CONSTRUCTOR_NELTS (t);
1601 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1602 for (i = 0; i < n; ++i)
1603 {
1604 constructor_elt *e = &(*vec)[i];
1605 tree op = strip_typedefs_expr (e->value, remove_attributes);
1606 if (op != e->value)
1607 {
1608 changed = true;
1609 e->value = op;
1610 }
1611 gcc_checking_assert
1612 (e->index == strip_typedefs_expr (e->index, remove_attributes));
1613 }
1614
1615 if (!changed && type == TREE_TYPE (t))
1616 {
1617 vec_free (vec);
1618 return t;
1619 }
1620 else
1621 {
1622 r = copy_node (t);
1623 TREE_TYPE (r) = type;
1624 CONSTRUCTOR_ELTS (r) = vec;
1625 return r;
1626 }
1627 }
1628
1629 case LAMBDA_EXPR:
1630 error ("lambda-expression in a constant expression");
1631 return error_mark_node;
1632
1633 default:
1634 break;
1635 }
1636
1637 gcc_assert (EXPR_P (t));
1638
1639 n = TREE_OPERAND_LENGTH (t);
1640 ops = XALLOCAVEC (tree, n);
1641 type = TREE_TYPE (t);
1642
1643 switch (code)
1644 {
1645 CASE_CONVERT:
1646 case IMPLICIT_CONV_EXPR:
1647 case DYNAMIC_CAST_EXPR:
1648 case STATIC_CAST_EXPR:
1649 case CONST_CAST_EXPR:
1650 case REINTERPRET_CAST_EXPR:
1651 case CAST_EXPR:
1652 case NEW_EXPR:
1653 type = strip_typedefs (type, remove_attributes);
1654 /* fallthrough */
1655
1656 default:
1657 for (i = 0; i < n; ++i)
1658 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes);
1659 break;
1660 }
1661
1662 /* If nothing changed, return t. */
1663 for (i = 0; i < n; ++i)
1664 if (ops[i] != TREE_OPERAND (t, i))
1665 break;
1666 if (i == n && type == TREE_TYPE (t))
1667 return t;
1668
1669 r = copy_node (t);
1670 TREE_TYPE (r) = type;
1671 for (i = 0; i < n; ++i)
1672 TREE_OPERAND (r, i) = ops[i];
1673 return r;
1674 }
1675
1676 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1677 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1678 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1679 VIRT indicates whether TYPE is inherited virtually or not.
1680 IGO_PREV points at the previous binfo of the inheritance graph
1681 order chain. The newly copied binfo's TREE_CHAIN forms this
1682 ordering.
1683
1684 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1685 correct order. That is in the order the bases themselves should be
1686 constructed in.
1687
1688 The BINFO_INHERITANCE of a virtual base class points to the binfo
1689 of the most derived type. ??? We could probably change this so that
1690 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1691 remove a field. They currently can only differ for primary virtual
1692 virtual bases. */
1693
1694 tree
1695 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1696 {
1697 tree new_binfo;
1698
1699 if (virt)
1700 {
1701 /* See if we've already made this virtual base. */
1702 new_binfo = binfo_for_vbase (type, t);
1703 if (new_binfo)
1704 return new_binfo;
1705 }
1706
1707 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1708 BINFO_TYPE (new_binfo) = type;
1709
1710 /* Chain it into the inheritance graph. */
1711 TREE_CHAIN (*igo_prev) = new_binfo;
1712 *igo_prev = new_binfo;
1713
1714 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1715 {
1716 int ix;
1717 tree base_binfo;
1718
1719 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1720
1721 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1722 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1723
1724 /* We do not need to copy the accesses, as they are read only. */
1725 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1726
1727 /* Recursively copy base binfos of BINFO. */
1728 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1729 {
1730 tree new_base_binfo;
1731 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1732 t, igo_prev,
1733 BINFO_VIRTUAL_P (base_binfo));
1734
1735 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1736 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1737 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1738 }
1739 }
1740 else
1741 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1742
1743 if (virt)
1744 {
1745 /* Push it onto the list after any virtual bases it contains
1746 will have been pushed. */
1747 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1748 BINFO_VIRTUAL_P (new_binfo) = 1;
1749 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1750 }
1751
1752 return new_binfo;
1753 }
1754 \f
1755 /* Hashing of lists so that we don't make duplicates.
1756 The entry point is `list_hash_canon'. */
1757
1758 struct list_proxy
1759 {
1760 tree purpose;
1761 tree value;
1762 tree chain;
1763 };
1764
1765 struct list_hasher : ggc_ptr_hash<tree_node>
1766 {
1767 typedef list_proxy *compare_type;
1768
1769 static hashval_t hash (tree);
1770 static bool equal (tree, list_proxy *);
1771 };
1772
1773 /* Now here is the hash table. When recording a list, it is added
1774 to the slot whose index is the hash code mod the table size.
1775 Note that the hash table is used for several kinds of lists.
1776 While all these live in the same table, they are completely independent,
1777 and the hash code is computed differently for each of these. */
1778
1779 static GTY (()) hash_table<list_hasher> *list_hash_table;
1780
1781 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1782 for a node we are thinking about adding). */
1783
1784 bool
1785 list_hasher::equal (tree t, list_proxy *proxy)
1786 {
1787 return (TREE_VALUE (t) == proxy->value
1788 && TREE_PURPOSE (t) == proxy->purpose
1789 && TREE_CHAIN (t) == proxy->chain);
1790 }
1791
1792 /* Compute a hash code for a list (chain of TREE_LIST nodes
1793 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1794 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1795
1796 static hashval_t
1797 list_hash_pieces (tree purpose, tree value, tree chain)
1798 {
1799 hashval_t hashcode = 0;
1800
1801 if (chain)
1802 hashcode += TREE_HASH (chain);
1803
1804 if (value)
1805 hashcode += TREE_HASH (value);
1806 else
1807 hashcode += 1007;
1808 if (purpose)
1809 hashcode += TREE_HASH (purpose);
1810 else
1811 hashcode += 1009;
1812 return hashcode;
1813 }
1814
1815 /* Hash an already existing TREE_LIST. */
1816
1817 hashval_t
1818 list_hasher::hash (tree t)
1819 {
1820 return list_hash_pieces (TREE_PURPOSE (t),
1821 TREE_VALUE (t),
1822 TREE_CHAIN (t));
1823 }
1824
1825 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1826 object for an identical list if one already exists. Otherwise, build a
1827 new one, and record it as the canonical object. */
1828
1829 tree
1830 hash_tree_cons (tree purpose, tree value, tree chain)
1831 {
1832 int hashcode = 0;
1833 tree *slot;
1834 struct list_proxy proxy;
1835
1836 /* Hash the list node. */
1837 hashcode = list_hash_pieces (purpose, value, chain);
1838 /* Create a proxy for the TREE_LIST we would like to create. We
1839 don't actually create it so as to avoid creating garbage. */
1840 proxy.purpose = purpose;
1841 proxy.value = value;
1842 proxy.chain = chain;
1843 /* See if it is already in the table. */
1844 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT);
1845 /* If not, create a new node. */
1846 if (!*slot)
1847 *slot = tree_cons (purpose, value, chain);
1848 return (tree) *slot;
1849 }
1850
1851 /* Constructor for hashed lists. */
1852
1853 tree
1854 hash_tree_chain (tree value, tree chain)
1855 {
1856 return hash_tree_cons (NULL_TREE, value, chain);
1857 }
1858 \f
1859 void
1860 debug_binfo (tree elem)
1861 {
1862 HOST_WIDE_INT n;
1863 tree virtuals;
1864
1865 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1866 "\nvtable type:\n",
1867 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1868 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1869 debug_tree (BINFO_TYPE (elem));
1870 if (BINFO_VTABLE (elem))
1871 fprintf (stderr, "vtable decl \"%s\"\n",
1872 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1873 else
1874 fprintf (stderr, "no vtable decl yet\n");
1875 fprintf (stderr, "virtuals:\n");
1876 virtuals = BINFO_VIRTUALS (elem);
1877 n = 0;
1878
1879 while (virtuals)
1880 {
1881 tree fndecl = TREE_VALUE (virtuals);
1882 fprintf (stderr, "%s [%ld =? %ld]\n",
1883 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1884 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1885 ++n;
1886 virtuals = TREE_CHAIN (virtuals);
1887 }
1888 }
1889
1890 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1891 the type of the result expression, if known, or NULL_TREE if the
1892 resulting expression is type-dependent. If TEMPLATE_P is true,
1893 NAME is known to be a template because the user explicitly used the
1894 "template" keyword after the "::".
1895
1896 All SCOPE_REFs should be built by use of this function. */
1897
1898 tree
1899 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1900 {
1901 tree t;
1902 if (type == error_mark_node
1903 || scope == error_mark_node
1904 || name == error_mark_node)
1905 return error_mark_node;
1906 t = build2 (SCOPE_REF, type, scope, name);
1907 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1908 PTRMEM_OK_P (t) = true;
1909 if (type)
1910 t = convert_from_reference (t);
1911 return t;
1912 }
1913
1914 /* Like check_qualified_type, but also check ref-qualifier and exception
1915 specification. */
1916
1917 static bool
1918 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
1919 cp_ref_qualifier rqual, tree raises)
1920 {
1921 return (check_qualified_type (cand, base, type_quals)
1922 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
1923 ce_exact)
1924 && type_memfn_rqual (cand) == rqual);
1925 }
1926
1927 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
1928
1929 tree
1930 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
1931 {
1932 tree t;
1933
1934 if (rqual == type_memfn_rqual (type))
1935 return type;
1936
1937 int type_quals = TYPE_QUALS (type);
1938 tree raises = TYPE_RAISES_EXCEPTIONS (type);
1939 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1940 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
1941 return t;
1942
1943 t = build_variant_type_copy (type);
1944 switch (rqual)
1945 {
1946 case REF_QUAL_RVALUE:
1947 FUNCTION_RVALUE_QUALIFIED (t) = 1;
1948 FUNCTION_REF_QUALIFIED (t) = 1;
1949 break;
1950 case REF_QUAL_LVALUE:
1951 FUNCTION_RVALUE_QUALIFIED (t) = 0;
1952 FUNCTION_REF_QUALIFIED (t) = 1;
1953 break;
1954 default:
1955 FUNCTION_REF_QUALIFIED (t) = 0;
1956 break;
1957 }
1958
1959 if (TYPE_STRUCTURAL_EQUALITY_P (type))
1960 /* Propagate structural equality. */
1961 SET_TYPE_STRUCTURAL_EQUALITY (t);
1962 else if (TYPE_CANONICAL (type) != type)
1963 /* Build the underlying canonical type, since it is different
1964 from TYPE. */
1965 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
1966 rqual);
1967 else
1968 /* T is its own canonical type. */
1969 TYPE_CANONICAL (t) = t;
1970
1971 return t;
1972 }
1973
1974 /* Returns nonzero if X is an expression for a (possibly overloaded)
1975 function. If "f" is a function or function template, "f", "c->f",
1976 "c.f", "C::f", and "f<int>" will all be considered possibly
1977 overloaded functions. Returns 2 if the function is actually
1978 overloaded, i.e., if it is impossible to know the type of the
1979 function without performing overload resolution. */
1980
1981 int
1982 is_overloaded_fn (tree x)
1983 {
1984 /* A baselink is also considered an overloaded function. */
1985 if (TREE_CODE (x) == OFFSET_REF
1986 || TREE_CODE (x) == COMPONENT_REF)
1987 x = TREE_OPERAND (x, 1);
1988 if (BASELINK_P (x))
1989 x = BASELINK_FUNCTIONS (x);
1990 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
1991 x = TREE_OPERAND (x, 0);
1992 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
1993 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
1994 return 2;
1995 return (TREE_CODE (x) == FUNCTION_DECL
1996 || TREE_CODE (x) == OVERLOAD);
1997 }
1998
1999 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
2000 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
2001 NULL_TREE. */
2002
2003 tree
2004 dependent_name (tree x)
2005 {
2006 if (identifier_p (x))
2007 return x;
2008 if (TREE_CODE (x) != COMPONENT_REF
2009 && TREE_CODE (x) != OFFSET_REF
2010 && TREE_CODE (x) != BASELINK
2011 && is_overloaded_fn (x))
2012 return DECL_NAME (get_first_fn (x));
2013 return NULL_TREE;
2014 }
2015
2016 /* Returns true iff X is an expression for an overloaded function
2017 whose type cannot be known without performing overload
2018 resolution. */
2019
2020 bool
2021 really_overloaded_fn (tree x)
2022 {
2023 return is_overloaded_fn (x) == 2;
2024 }
2025
2026 tree
2027 get_fns (tree from)
2028 {
2029 gcc_assert (is_overloaded_fn (from));
2030 /* A baselink is also considered an overloaded function. */
2031 if (TREE_CODE (from) == OFFSET_REF
2032 || TREE_CODE (from) == COMPONENT_REF)
2033 from = TREE_OPERAND (from, 1);
2034 if (BASELINK_P (from))
2035 from = BASELINK_FUNCTIONS (from);
2036 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
2037 from = TREE_OPERAND (from, 0);
2038 return from;
2039 }
2040
2041 tree
2042 get_first_fn (tree from)
2043 {
2044 return OVL_CURRENT (get_fns (from));
2045 }
2046
2047 /* Return a new OVL node, concatenating it with the old one. */
2048
2049 tree
2050 ovl_cons (tree decl, tree chain)
2051 {
2052 tree result = make_node (OVERLOAD);
2053 TREE_TYPE (result) = unknown_type_node;
2054 OVL_FUNCTION (result) = decl;
2055 TREE_CHAIN (result) = chain;
2056
2057 return result;
2058 }
2059
2060 /* Build a new overloaded function. If this is the first one,
2061 just return it; otherwise, ovl_cons the _DECLs */
2062
2063 tree
2064 build_overload (tree decl, tree chain)
2065 {
2066 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
2067 return decl;
2068 return ovl_cons (decl, chain);
2069 }
2070
2071 /* Return the scope where the overloaded functions OVL were found. */
2072
2073 tree
2074 ovl_scope (tree ovl)
2075 {
2076 if (TREE_CODE (ovl) == OFFSET_REF
2077 || TREE_CODE (ovl) == COMPONENT_REF)
2078 ovl = TREE_OPERAND (ovl, 1);
2079 if (TREE_CODE (ovl) == BASELINK)
2080 return BINFO_TYPE (BASELINK_BINFO (ovl));
2081 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
2082 ovl = TREE_OPERAND (ovl, 0);
2083 /* Skip using-declarations. */
2084 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
2085 ovl = OVL_CHAIN (ovl);
2086 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
2087 }
2088
2089 /* Return TRUE if FN is a non-static member function, FALSE otherwise.
2090 This function looks into BASELINK and OVERLOAD nodes. */
2091
2092 bool
2093 non_static_member_function_p (tree fn)
2094 {
2095 if (fn == NULL_TREE)
2096 return false;
2097
2098 if (is_overloaded_fn (fn))
2099 fn = get_first_fn (fn);
2100
2101 return (DECL_P (fn)
2102 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn));
2103 }
2104
2105 \f
2106 #define PRINT_RING_SIZE 4
2107
2108 static const char *
2109 cxx_printable_name_internal (tree decl, int v, bool translate)
2110 {
2111 static unsigned int uid_ring[PRINT_RING_SIZE];
2112 static char *print_ring[PRINT_RING_SIZE];
2113 static bool trans_ring[PRINT_RING_SIZE];
2114 static int ring_counter;
2115 int i;
2116
2117 /* Only cache functions. */
2118 if (v < 2
2119 || TREE_CODE (decl) != FUNCTION_DECL
2120 || DECL_LANG_SPECIFIC (decl) == 0)
2121 return lang_decl_name (decl, v, translate);
2122
2123 /* See if this print name is lying around. */
2124 for (i = 0; i < PRINT_RING_SIZE; i++)
2125 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
2126 /* yes, so return it. */
2127 return print_ring[i];
2128
2129 if (++ring_counter == PRINT_RING_SIZE)
2130 ring_counter = 0;
2131
2132 if (current_function_decl != NULL_TREE)
2133 {
2134 /* There may be both translated and untranslated versions of the
2135 name cached. */
2136 for (i = 0; i < 2; i++)
2137 {
2138 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
2139 ring_counter += 1;
2140 if (ring_counter == PRINT_RING_SIZE)
2141 ring_counter = 0;
2142 }
2143 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
2144 }
2145
2146 free (print_ring[ring_counter]);
2147
2148 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
2149 uid_ring[ring_counter] = DECL_UID (decl);
2150 trans_ring[ring_counter] = translate;
2151 return print_ring[ring_counter];
2152 }
2153
2154 const char *
2155 cxx_printable_name (tree decl, int v)
2156 {
2157 return cxx_printable_name_internal (decl, v, false);
2158 }
2159
2160 const char *
2161 cxx_printable_name_translate (tree decl, int v)
2162 {
2163 return cxx_printable_name_internal (decl, v, true);
2164 }
2165 \f
2166 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
2167 listed in RAISES. */
2168
2169 tree
2170 build_exception_variant (tree type, tree raises)
2171 {
2172 tree v;
2173 int type_quals;
2174
2175 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2176 return type;
2177
2178 type_quals = TYPE_QUALS (type);
2179 cp_ref_qualifier rqual = type_memfn_rqual (type);
2180 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2181 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2182 return v;
2183
2184 /* Need to build a new variant. */
2185 v = build_variant_type_copy (type);
2186 TYPE_RAISES_EXCEPTIONS (v) = raises;
2187 return v;
2188 }
2189
2190 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2191 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2192 arguments. */
2193
2194 tree
2195 bind_template_template_parm (tree t, tree newargs)
2196 {
2197 tree decl = TYPE_NAME (t);
2198 tree t2;
2199
2200 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2201 decl = build_decl (input_location,
2202 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2203
2204 /* These nodes have to be created to reflect new TYPE_DECL and template
2205 arguments. */
2206 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2207 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2208 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2209 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2210
2211 TREE_TYPE (decl) = t2;
2212 TYPE_NAME (t2) = decl;
2213 TYPE_STUB_DECL (t2) = decl;
2214 TYPE_SIZE (t2) = 0;
2215 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2216
2217 return t2;
2218 }
2219
2220 /* Called from count_trees via walk_tree. */
2221
2222 static tree
2223 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2224 {
2225 ++*((int *) data);
2226
2227 if (TYPE_P (*tp))
2228 *walk_subtrees = 0;
2229
2230 return NULL_TREE;
2231 }
2232
2233 /* Debugging function for measuring the rough complexity of a tree
2234 representation. */
2235
2236 int
2237 count_trees (tree t)
2238 {
2239 int n_trees = 0;
2240 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2241 return n_trees;
2242 }
2243
2244 /* Called from verify_stmt_tree via walk_tree. */
2245
2246 static tree
2247 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2248 {
2249 tree t = *tp;
2250 hash_table<nofree_ptr_hash <tree_node> > *statements
2251 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data);
2252 tree_node **slot;
2253
2254 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2255 return NULL_TREE;
2256
2257 /* If this statement is already present in the hash table, then
2258 there is a circularity in the statement tree. */
2259 gcc_assert (!statements->find (t));
2260
2261 slot = statements->find_slot (t, INSERT);
2262 *slot = t;
2263
2264 return NULL_TREE;
2265 }
2266
2267 /* Debugging function to check that the statement T has not been
2268 corrupted. For now, this function simply checks that T contains no
2269 circularities. */
2270
2271 void
2272 verify_stmt_tree (tree t)
2273 {
2274 hash_table<nofree_ptr_hash <tree_node> > statements (37);
2275 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2276 }
2277
2278 /* Check if the type T depends on a type with no linkage and if so, return
2279 it. If RELAXED_P then do not consider a class type declared within
2280 a vague-linkage function to have no linkage. */
2281
2282 tree
2283 no_linkage_check (tree t, bool relaxed_p)
2284 {
2285 tree r;
2286
2287 /* There's no point in checking linkage on template functions; we
2288 can't know their complete types. */
2289 if (processing_template_decl)
2290 return NULL_TREE;
2291
2292 switch (TREE_CODE (t))
2293 {
2294 case RECORD_TYPE:
2295 if (TYPE_PTRMEMFUNC_P (t))
2296 goto ptrmem;
2297 /* Lambda types that don't have mangling scope have no linkage. We
2298 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2299 when we get here from pushtag none of the lambda information is
2300 set up yet, so we want to assume that the lambda has linkage and
2301 fix it up later if not. */
2302 if (CLASSTYPE_LAMBDA_EXPR (t)
2303 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2304 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2305 return t;
2306 /* Fall through. */
2307 case UNION_TYPE:
2308 if (!CLASS_TYPE_P (t))
2309 return NULL_TREE;
2310 /* Fall through. */
2311 case ENUMERAL_TYPE:
2312 /* Only treat anonymous types as having no linkage if they're at
2313 namespace scope. This is core issue 966. */
2314 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2315 return t;
2316
2317 for (r = CP_TYPE_CONTEXT (t); ; )
2318 {
2319 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2320 have linkage, or we might just be in an anonymous namespace.
2321 If we're in a TREE_PUBLIC class, we have linkage. */
2322 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2323 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2324 else if (TREE_CODE (r) == FUNCTION_DECL)
2325 {
2326 if (!relaxed_p || !vague_linkage_p (r))
2327 return t;
2328 else
2329 r = CP_DECL_CONTEXT (r);
2330 }
2331 else
2332 break;
2333 }
2334
2335 return NULL_TREE;
2336
2337 case ARRAY_TYPE:
2338 case POINTER_TYPE:
2339 case REFERENCE_TYPE:
2340 case VECTOR_TYPE:
2341 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2342
2343 case OFFSET_TYPE:
2344 ptrmem:
2345 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2346 relaxed_p);
2347 if (r)
2348 return r;
2349 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2350
2351 case METHOD_TYPE:
2352 case FUNCTION_TYPE:
2353 {
2354 tree parm = TYPE_ARG_TYPES (t);
2355 if (TREE_CODE (t) == METHOD_TYPE)
2356 /* The 'this' pointer isn't interesting; a method has the same
2357 linkage (or lack thereof) as its enclosing class. */
2358 parm = TREE_CHAIN (parm);
2359 for (;
2360 parm && parm != void_list_node;
2361 parm = TREE_CHAIN (parm))
2362 {
2363 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2364 if (r)
2365 return r;
2366 }
2367 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2368 }
2369
2370 default:
2371 return NULL_TREE;
2372 }
2373 }
2374
2375 extern int depth_reached;
2376
2377 void
2378 cxx_print_statistics (void)
2379 {
2380 print_search_statistics ();
2381 print_class_statistics ();
2382 print_template_statistics ();
2383 if (GATHER_STATISTICS)
2384 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2385 depth_reached);
2386 }
2387
2388 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2389 (which is an ARRAY_TYPE). This counts only elements of the top
2390 array. */
2391
2392 tree
2393 array_type_nelts_top (tree type)
2394 {
2395 return fold_build2_loc (input_location,
2396 PLUS_EXPR, sizetype,
2397 array_type_nelts (type),
2398 size_one_node);
2399 }
2400
2401 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2402 (which is an ARRAY_TYPE). This one is a recursive count of all
2403 ARRAY_TYPEs that are clumped together. */
2404
2405 tree
2406 array_type_nelts_total (tree type)
2407 {
2408 tree sz = array_type_nelts_top (type);
2409 type = TREE_TYPE (type);
2410 while (TREE_CODE (type) == ARRAY_TYPE)
2411 {
2412 tree n = array_type_nelts_top (type);
2413 sz = fold_build2_loc (input_location,
2414 MULT_EXPR, sizetype, sz, n);
2415 type = TREE_TYPE (type);
2416 }
2417 return sz;
2418 }
2419
2420 /* Called from break_out_target_exprs via mapcar. */
2421
2422 static tree
2423 bot_manip (tree* tp, int* walk_subtrees, void* data)
2424 {
2425 splay_tree target_remap = ((splay_tree) data);
2426 tree t = *tp;
2427
2428 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2429 {
2430 /* There can't be any TARGET_EXPRs or their slot variables below this
2431 point. But we must make a copy, in case subsequent processing
2432 alters any part of it. For example, during gimplification a cast
2433 of the form (T) &X::f (where "f" is a member function) will lead
2434 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2435 *walk_subtrees = 0;
2436 *tp = unshare_expr (t);
2437 return NULL_TREE;
2438 }
2439 if (TREE_CODE (t) == TARGET_EXPR)
2440 {
2441 tree u;
2442
2443 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2444 {
2445 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2446 tf_warning_or_error);
2447 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2448 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2449 }
2450 else
2451 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2452 tf_warning_or_error);
2453
2454 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2455 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2456 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2457
2458 /* Map the old variable to the new one. */
2459 splay_tree_insert (target_remap,
2460 (splay_tree_key) TREE_OPERAND (t, 0),
2461 (splay_tree_value) TREE_OPERAND (u, 0));
2462
2463 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2464
2465 /* Replace the old expression with the new version. */
2466 *tp = u;
2467 /* We don't have to go below this point; the recursive call to
2468 break_out_target_exprs will have handled anything below this
2469 point. */
2470 *walk_subtrees = 0;
2471 return NULL_TREE;
2472 }
2473 if (TREE_CODE (*tp) == SAVE_EXPR)
2474 {
2475 t = *tp;
2476 splay_tree_node n = splay_tree_lookup (target_remap,
2477 (splay_tree_key) t);
2478 if (n)
2479 {
2480 *tp = (tree)n->value;
2481 *walk_subtrees = 0;
2482 }
2483 else
2484 {
2485 copy_tree_r (tp, walk_subtrees, NULL);
2486 splay_tree_insert (target_remap,
2487 (splay_tree_key)t,
2488 (splay_tree_value)*tp);
2489 /* Make sure we don't remap an already-remapped SAVE_EXPR. */
2490 splay_tree_insert (target_remap,
2491 (splay_tree_key)*tp,
2492 (splay_tree_value)*tp);
2493 }
2494 return NULL_TREE;
2495 }
2496
2497 /* Make a copy of this node. */
2498 t = copy_tree_r (tp, walk_subtrees, NULL);
2499 if (TREE_CODE (*tp) == CALL_EXPR)
2500 {
2501 set_flags_from_callee (*tp);
2502
2503 /* builtin_LINE and builtin_FILE get the location where the default
2504 argument is expanded, not where the call was written. */
2505 tree callee = get_callee_fndecl (*tp);
2506 if (callee && DECL_BUILT_IN (callee))
2507 switch (DECL_FUNCTION_CODE (callee))
2508 {
2509 case BUILT_IN_FILE:
2510 case BUILT_IN_LINE:
2511 SET_EXPR_LOCATION (*tp, input_location);
2512 default:
2513 break;
2514 }
2515 }
2516 return t;
2517 }
2518
2519 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2520 DATA is really a splay-tree mapping old variables to new
2521 variables. */
2522
2523 static tree
2524 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2525 {
2526 splay_tree target_remap = ((splay_tree) data);
2527
2528 if (VAR_P (*t))
2529 {
2530 splay_tree_node n = splay_tree_lookup (target_remap,
2531 (splay_tree_key) *t);
2532 if (n)
2533 *t = (tree) n->value;
2534 }
2535 else if (TREE_CODE (*t) == PARM_DECL
2536 && DECL_NAME (*t) == this_identifier
2537 && !DECL_CONTEXT (*t))
2538 {
2539 /* In an NSDMI we need to replace the 'this' parameter we used for
2540 parsing with the real one for this function. */
2541 *t = current_class_ptr;
2542 }
2543 else if (TREE_CODE (*t) == CONVERT_EXPR
2544 && CONVERT_EXPR_VBASE_PATH (*t))
2545 {
2546 /* In an NSDMI build_base_path defers building conversions to virtual
2547 bases, and we handle it here. */
2548 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2549 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2550 int i; tree binfo;
2551 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2552 if (BINFO_TYPE (binfo) == basetype)
2553 break;
2554 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2555 tf_warning_or_error);
2556 }
2557
2558 return NULL_TREE;
2559 }
2560
2561 /* When we parse a default argument expression, we may create
2562 temporary variables via TARGET_EXPRs. When we actually use the
2563 default-argument expression, we make a copy of the expression
2564 and replace the temporaries with appropriate local versions. */
2565
2566 tree
2567 break_out_target_exprs (tree t)
2568 {
2569 static int target_remap_count;
2570 static splay_tree target_remap;
2571
2572 if (!target_remap_count++)
2573 target_remap = splay_tree_new (splay_tree_compare_pointers,
2574 /*splay_tree_delete_key_fn=*/NULL,
2575 /*splay_tree_delete_value_fn=*/NULL);
2576 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2577 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2578
2579 if (!--target_remap_count)
2580 {
2581 splay_tree_delete (target_remap);
2582 target_remap = NULL;
2583 }
2584
2585 return t;
2586 }
2587
2588 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX,
2589 which we expect to have type TYPE. */
2590
2591 tree
2592 build_ctor_subob_ref (tree index, tree type, tree obj)
2593 {
2594 if (index == NULL_TREE)
2595 /* Can't refer to a particular member of a vector. */
2596 obj = NULL_TREE;
2597 else if (TREE_CODE (index) == INTEGER_CST)
2598 obj = cp_build_array_ref (input_location, obj, index, tf_none);
2599 else
2600 obj = build_class_member_access_expr (obj, index, NULL_TREE,
2601 /*reference*/false, tf_none);
2602 if (obj)
2603 {
2604 tree objtype = TREE_TYPE (obj);
2605 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype))
2606 {
2607 /* When the destination object refers to a flexible array member
2608 verify that it matches the type of the source object except
2609 for its domain and qualifiers. */
2610 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type),
2611 TYPE_MAIN_VARIANT (objtype),
2612 COMPARE_REDECLARATION));
2613 }
2614 else
2615 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype));
2616 }
2617
2618 return obj;
2619 }
2620
2621 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and
2622 build up subexpressions as we go deeper. */
2623
2624 static tree
2625 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_)
2626 {
2627 tree obj = static_cast<tree>(data_);
2628
2629 if (TREE_CONSTANT (*t))
2630 {
2631 *walk_subtrees = false;
2632 return NULL_TREE;
2633 }
2634
2635 switch (TREE_CODE (*t))
2636 {
2637 case PLACEHOLDER_EXPR:
2638 {
2639 tree x = obj;
2640 for (; !(same_type_ignoring_top_level_qualifiers_p
2641 (TREE_TYPE (*t), TREE_TYPE (x)));
2642 x = TREE_OPERAND (x, 0))
2643 gcc_assert (TREE_CODE (x) == COMPONENT_REF);
2644 *t = x;
2645 *walk_subtrees = false;
2646 }
2647 break;
2648
2649 case CONSTRUCTOR:
2650 {
2651 constructor_elt *ce;
2652 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t);
2653 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i)
2654 {
2655 tree *valp = &ce->value;
2656 tree type = TREE_TYPE (*valp);
2657 tree subob = obj;
2658
2659 if (TREE_CODE (*valp) == CONSTRUCTOR
2660 && AGGREGATE_TYPE_P (type))
2661 {
2662 /* If we're looking at the initializer for OBJ, then build
2663 a sub-object reference. If we're looking at an
2664 initializer for another object, just pass OBJ down. */
2665 if (same_type_ignoring_top_level_qualifiers_p
2666 (TREE_TYPE (*t), TREE_TYPE (obj)))
2667 subob = build_ctor_subob_ref (ce->index, type, obj);
2668 if (TREE_CODE (*valp) == TARGET_EXPR)
2669 valp = &TARGET_EXPR_INITIAL (*valp);
2670 }
2671
2672 cp_walk_tree (valp, replace_placeholders_r,
2673 subob, NULL);
2674 }
2675 *walk_subtrees = false;
2676 break;
2677 }
2678
2679 default:
2680 break;
2681 }
2682
2683 return NULL_TREE;
2684 }
2685
2686 tree
2687 replace_placeholders (tree exp, tree obj)
2688 {
2689 tree *tp = &exp;
2690 if (TREE_CODE (exp) == TARGET_EXPR)
2691 tp = &TARGET_EXPR_INITIAL (exp);
2692 cp_walk_tree (tp, replace_placeholders_r, obj, NULL);
2693 return exp;
2694 }
2695
2696 /* Similar to `build_nt', but for template definitions of dependent
2697 expressions */
2698
2699 tree
2700 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2701 {
2702 tree t;
2703 int length;
2704 int i;
2705 va_list p;
2706
2707 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2708
2709 va_start (p, code);
2710
2711 t = make_node (code);
2712 SET_EXPR_LOCATION (t, loc);
2713 length = TREE_CODE_LENGTH (code);
2714
2715 for (i = 0; i < length; i++)
2716 {
2717 tree x = va_arg (p, tree);
2718 TREE_OPERAND (t, i) = x;
2719 }
2720
2721 va_end (p);
2722 return t;
2723 }
2724
2725
2726 /* Similar to `build', but for template definitions. */
2727
2728 tree
2729 build_min (enum tree_code code, tree tt, ...)
2730 {
2731 tree t;
2732 int length;
2733 int i;
2734 va_list p;
2735
2736 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2737
2738 va_start (p, tt);
2739
2740 t = make_node (code);
2741 length = TREE_CODE_LENGTH (code);
2742 TREE_TYPE (t) = tt;
2743
2744 for (i = 0; i < length; i++)
2745 {
2746 tree x = va_arg (p, tree);
2747 TREE_OPERAND (t, i) = x;
2748 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2749 TREE_SIDE_EFFECTS (t) = 1;
2750 }
2751
2752 va_end (p);
2753 return t;
2754 }
2755
2756 /* Similar to `build', but for template definitions of non-dependent
2757 expressions. NON_DEP is the non-dependent expression that has been
2758 built. */
2759
2760 tree
2761 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2762 {
2763 tree t;
2764 int length;
2765 int i;
2766 va_list p;
2767
2768 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2769
2770 va_start (p, non_dep);
2771
2772 if (REFERENCE_REF_P (non_dep))
2773 non_dep = TREE_OPERAND (non_dep, 0);
2774
2775 t = make_node (code);
2776 length = TREE_CODE_LENGTH (code);
2777 TREE_TYPE (t) = TREE_TYPE (non_dep);
2778 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2779
2780 for (i = 0; i < length; i++)
2781 {
2782 tree x = va_arg (p, tree);
2783 TREE_OPERAND (t, i) = x;
2784 }
2785
2786 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2787 /* This should not be considered a COMPOUND_EXPR, because it
2788 resolves to an overload. */
2789 COMPOUND_EXPR_OVERLOADED (t) = 1;
2790
2791 va_end (p);
2792 return convert_from_reference (t);
2793 }
2794
2795 /* Similar to `build_nt_call_vec', but for template definitions of
2796 non-dependent expressions. NON_DEP is the non-dependent expression
2797 that has been built. */
2798
2799 tree
2800 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2801 {
2802 tree t = build_nt_call_vec (fn, argvec);
2803 if (REFERENCE_REF_P (non_dep))
2804 non_dep = TREE_OPERAND (non_dep, 0);
2805 TREE_TYPE (t) = TREE_TYPE (non_dep);
2806 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2807 return convert_from_reference (t);
2808 }
2809
2810 /* Similar to build_min_non_dep, but for expressions that have been resolved to
2811 a call to an operator overload. OP is the operator that has been
2812 overloaded. NON_DEP is the non-dependent expression that's been built,
2813 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is
2814 the overload that NON_DEP is calling. */
2815
2816 tree
2817 build_min_non_dep_op_overload (enum tree_code op,
2818 tree non_dep,
2819 tree overload, ...)
2820 {
2821 va_list p;
2822 int nargs, expected_nargs;
2823 tree fn, call;
2824 vec<tree, va_gc> *args;
2825
2826 if (REFERENCE_REF_P (non_dep))
2827 non_dep = TREE_OPERAND (non_dep, 0);
2828
2829 nargs = call_expr_nargs (non_dep);
2830
2831 expected_nargs = cp_tree_code_length (op);
2832 if (op == POSTINCREMENT_EXPR
2833 || op == POSTDECREMENT_EXPR)
2834 expected_nargs += 1;
2835 gcc_assert (nargs == expected_nargs);
2836
2837 args = make_tree_vector ();
2838 va_start (p, overload);
2839
2840 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE)
2841 {
2842 fn = overload;
2843 for (int i = 0; i < nargs; i++)
2844 {
2845 tree arg = va_arg (p, tree);
2846 vec_safe_push (args, arg);
2847 }
2848 }
2849 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE)
2850 {
2851 tree object = va_arg (p, tree);
2852 tree binfo = TYPE_BINFO (TREE_TYPE (object));
2853 tree method = build_baselink (binfo, binfo, overload, NULL_TREE);
2854 fn = build_min (COMPONENT_REF, TREE_TYPE (overload),
2855 object, method, NULL_TREE);
2856 for (int i = 1; i < nargs; i++)
2857 {
2858 tree arg = va_arg (p, tree);
2859 vec_safe_push (args, arg);
2860 }
2861 }
2862 else
2863 gcc_unreachable ();
2864
2865 va_end (p);
2866 call = build_min_non_dep_call_vec (non_dep, fn, args);
2867 release_tree_vector (args);
2868
2869 tree call_expr = call;
2870 if (REFERENCE_REF_P (call_expr))
2871 call_expr = TREE_OPERAND (call_expr, 0);
2872 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep);
2873
2874 return call;
2875 }
2876
2877 tree
2878 get_type_decl (tree t)
2879 {
2880 if (TREE_CODE (t) == TYPE_DECL)
2881 return t;
2882 if (TYPE_P (t))
2883 return TYPE_STUB_DECL (t);
2884 gcc_assert (t == error_mark_node);
2885 return t;
2886 }
2887
2888 /* Returns the namespace that contains DECL, whether directly or
2889 indirectly. */
2890
2891 tree
2892 decl_namespace_context (tree decl)
2893 {
2894 while (1)
2895 {
2896 if (TREE_CODE (decl) == NAMESPACE_DECL)
2897 return decl;
2898 else if (TYPE_P (decl))
2899 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2900 else
2901 decl = CP_DECL_CONTEXT (decl);
2902 }
2903 }
2904
2905 /* Returns true if decl is within an anonymous namespace, however deeply
2906 nested, or false otherwise. */
2907
2908 bool
2909 decl_anon_ns_mem_p (const_tree decl)
2910 {
2911 while (1)
2912 {
2913 if (decl == NULL_TREE || decl == error_mark_node)
2914 return false;
2915 if (TREE_CODE (decl) == NAMESPACE_DECL
2916 && DECL_NAME (decl) == NULL_TREE)
2917 return true;
2918 /* Classes and namespaces inside anonymous namespaces have
2919 TREE_PUBLIC == 0, so we can shortcut the search. */
2920 else if (TYPE_P (decl))
2921 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2922 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2923 return (TREE_PUBLIC (decl) == 0);
2924 else
2925 decl = DECL_CONTEXT (decl);
2926 }
2927 }
2928
2929 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2930 CALL_EXPRS. Return whether they are equivalent. */
2931
2932 static bool
2933 called_fns_equal (tree t1, tree t2)
2934 {
2935 /* Core 1321: dependent names are equivalent even if the overload sets
2936 are different. But do compare explicit template arguments. */
2937 tree name1 = dependent_name (t1);
2938 tree name2 = dependent_name (t2);
2939 if (name1 || name2)
2940 {
2941 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2942
2943 if (name1 != name2)
2944 return false;
2945
2946 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2947 targs1 = TREE_OPERAND (t1, 1);
2948 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2949 targs2 = TREE_OPERAND (t2, 1);
2950 return cp_tree_equal (targs1, targs2);
2951 }
2952 else
2953 return cp_tree_equal (t1, t2);
2954 }
2955
2956 /* Return truthvalue of whether T1 is the same tree structure as T2.
2957 Return 1 if they are the same. Return 0 if they are different. */
2958
2959 bool
2960 cp_tree_equal (tree t1, tree t2)
2961 {
2962 enum tree_code code1, code2;
2963
2964 if (t1 == t2)
2965 return true;
2966 if (!t1 || !t2)
2967 return false;
2968
2969 code1 = TREE_CODE (t1);
2970 code2 = TREE_CODE (t2);
2971
2972 if (code1 != code2)
2973 return false;
2974
2975 switch (code1)
2976 {
2977 case VOID_CST:
2978 /* There's only a single VOID_CST node, so we should never reach
2979 here. */
2980 gcc_unreachable ();
2981
2982 case INTEGER_CST:
2983 return tree_int_cst_equal (t1, t2);
2984
2985 case REAL_CST:
2986 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
2987
2988 case STRING_CST:
2989 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2990 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2991 TREE_STRING_LENGTH (t1));
2992
2993 case FIXED_CST:
2994 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
2995 TREE_FIXED_CST (t2));
2996
2997 case COMPLEX_CST:
2998 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
2999 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
3000
3001 case VECTOR_CST:
3002 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
3003
3004 case CONSTRUCTOR:
3005 /* We need to do this when determining whether or not two
3006 non-type pointer to member function template arguments
3007 are the same. */
3008 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
3009 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
3010 return false;
3011 {
3012 tree field, value;
3013 unsigned int i;
3014 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
3015 {
3016 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
3017 if (!cp_tree_equal (field, elt2->index)
3018 || !cp_tree_equal (value, elt2->value))
3019 return false;
3020 }
3021 }
3022 return true;
3023
3024 case TREE_LIST:
3025 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
3026 return false;
3027 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
3028 return false;
3029 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
3030
3031 case SAVE_EXPR:
3032 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3033
3034 case CALL_EXPR:
3035 {
3036 tree arg1, arg2;
3037 call_expr_arg_iterator iter1, iter2;
3038 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
3039 return false;
3040 for (arg1 = first_call_expr_arg (t1, &iter1),
3041 arg2 = first_call_expr_arg (t2, &iter2);
3042 arg1 && arg2;
3043 arg1 = next_call_expr_arg (&iter1),
3044 arg2 = next_call_expr_arg (&iter2))
3045 if (!cp_tree_equal (arg1, arg2))
3046 return false;
3047 if (arg1 || arg2)
3048 return false;
3049 return true;
3050 }
3051
3052 case TARGET_EXPR:
3053 {
3054 tree o1 = TREE_OPERAND (t1, 0);
3055 tree o2 = TREE_OPERAND (t2, 0);
3056
3057 /* Special case: if either target is an unallocated VAR_DECL,
3058 it means that it's going to be unified with whatever the
3059 TARGET_EXPR is really supposed to initialize, so treat it
3060 as being equivalent to anything. */
3061 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
3062 && !DECL_RTL_SET_P (o1))
3063 /*Nop*/;
3064 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
3065 && !DECL_RTL_SET_P (o2))
3066 /*Nop*/;
3067 else if (!cp_tree_equal (o1, o2))
3068 return false;
3069
3070 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3071 }
3072
3073 case WITH_CLEANUP_EXPR:
3074 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3075 return false;
3076 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3077
3078 case COMPONENT_REF:
3079 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
3080 return false;
3081 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3082
3083 case PARM_DECL:
3084 /* For comparing uses of parameters in late-specified return types
3085 with an out-of-class definition of the function, but can also come
3086 up for expressions that involve 'this' in a member function
3087 template. */
3088
3089 if (comparing_specializations && !CONSTRAINT_VAR_P (t1))
3090 /* When comparing hash table entries, only an exact match is
3091 good enough; we don't want to replace 'this' with the
3092 version from another function. But be more flexible
3093 with local parameters in a requires-expression. */
3094 return false;
3095
3096 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3097 {
3098 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
3099 return false;
3100 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2))
3101 return false;
3102 if (DECL_ARTIFICIAL (t1)
3103 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
3104 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
3105 return true;
3106 }
3107 return false;
3108
3109 case VAR_DECL:
3110 case CONST_DECL:
3111 case FIELD_DECL:
3112 case FUNCTION_DECL:
3113 case TEMPLATE_DECL:
3114 case IDENTIFIER_NODE:
3115 case SSA_NAME:
3116 return false;
3117
3118 case BASELINK:
3119 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
3120 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
3121 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
3122 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
3123 BASELINK_FUNCTIONS (t2)));
3124
3125 case TEMPLATE_PARM_INDEX:
3126 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
3127 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
3128 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
3129 == TEMPLATE_PARM_PARAMETER_PACK (t2))
3130 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
3131 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
3132
3133 case TEMPLATE_ID_EXPR:
3134 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
3135 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
3136
3137 case CONSTRAINT_INFO:
3138 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1),
3139 CI_ASSOCIATED_CONSTRAINTS (t2));
3140
3141 case TREE_VEC:
3142 {
3143 unsigned ix;
3144 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
3145 return false;
3146 for (ix = TREE_VEC_LENGTH (t1); ix--;)
3147 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
3148 TREE_VEC_ELT (t2, ix)))
3149 return false;
3150 return true;
3151 }
3152
3153 case SIZEOF_EXPR:
3154 case ALIGNOF_EXPR:
3155 {
3156 tree o1 = TREE_OPERAND (t1, 0);
3157 tree o2 = TREE_OPERAND (t2, 0);
3158
3159 if (code1 == SIZEOF_EXPR)
3160 {
3161 if (SIZEOF_EXPR_TYPE_P (t1))
3162 o1 = TREE_TYPE (o1);
3163 if (SIZEOF_EXPR_TYPE_P (t2))
3164 o2 = TREE_TYPE (o2);
3165 }
3166 if (TREE_CODE (o1) != TREE_CODE (o2))
3167 return false;
3168 if (TYPE_P (o1))
3169 return same_type_p (o1, o2);
3170 else
3171 return cp_tree_equal (o1, o2);
3172 }
3173
3174 case MODOP_EXPR:
3175 {
3176 tree t1_op1, t2_op1;
3177
3178 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3179 return false;
3180
3181 t1_op1 = TREE_OPERAND (t1, 1);
3182 t2_op1 = TREE_OPERAND (t2, 1);
3183 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
3184 return false;
3185
3186 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
3187 }
3188
3189 case PTRMEM_CST:
3190 /* Two pointer-to-members are the same if they point to the same
3191 field or function in the same class. */
3192 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
3193 return false;
3194
3195 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
3196
3197 case OVERLOAD:
3198 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
3199 return false;
3200 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
3201
3202 case TRAIT_EXPR:
3203 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
3204 return false;
3205 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
3206 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
3207
3208 case CAST_EXPR:
3209 case STATIC_CAST_EXPR:
3210 case REINTERPRET_CAST_EXPR:
3211 case CONST_CAST_EXPR:
3212 case DYNAMIC_CAST_EXPR:
3213 case IMPLICIT_CONV_EXPR:
3214 case NEW_EXPR:
3215 CASE_CONVERT:
3216 case NON_LVALUE_EXPR:
3217 case VIEW_CONVERT_EXPR:
3218 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3219 return false;
3220 /* Now compare operands as usual. */
3221 break;
3222
3223 case DEFERRED_NOEXCEPT:
3224 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
3225 DEFERRED_NOEXCEPT_PATTERN (t2))
3226 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
3227 DEFERRED_NOEXCEPT_ARGS (t2)));
3228 break;
3229
3230 default:
3231 break;
3232 }
3233
3234 switch (TREE_CODE_CLASS (code1))
3235 {
3236 case tcc_unary:
3237 case tcc_binary:
3238 case tcc_comparison:
3239 case tcc_expression:
3240 case tcc_vl_exp:
3241 case tcc_reference:
3242 case tcc_statement:
3243 {
3244 int i, n;
3245
3246 n = cp_tree_operand_length (t1);
3247 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
3248 && n != TREE_OPERAND_LENGTH (t2))
3249 return false;
3250
3251 for (i = 0; i < n; ++i)
3252 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
3253 return false;
3254
3255 return true;
3256 }
3257
3258 case tcc_type:
3259 return same_type_p (t1, t2);
3260 default:
3261 gcc_unreachable ();
3262 }
3263 /* We can get here with --disable-checking. */
3264 return false;
3265 }
3266
3267 /* The type of ARG when used as an lvalue. */
3268
3269 tree
3270 lvalue_type (tree arg)
3271 {
3272 tree type = TREE_TYPE (arg);
3273 return type;
3274 }
3275
3276 /* The type of ARG for printing error messages; denote lvalues with
3277 reference types. */
3278
3279 tree
3280 error_type (tree arg)
3281 {
3282 tree type = TREE_TYPE (arg);
3283
3284 if (TREE_CODE (type) == ARRAY_TYPE)
3285 ;
3286 else if (TREE_CODE (type) == ERROR_MARK)
3287 ;
3288 else if (real_lvalue_p (arg))
3289 type = build_reference_type (lvalue_type (arg));
3290 else if (MAYBE_CLASS_TYPE_P (type))
3291 type = lvalue_type (arg);
3292
3293 return type;
3294 }
3295
3296 /* Does FUNCTION use a variable-length argument list? */
3297
3298 int
3299 varargs_function_p (const_tree function)
3300 {
3301 return stdarg_p (TREE_TYPE (function));
3302 }
3303
3304 /* Returns 1 if decl is a member of a class. */
3305
3306 int
3307 member_p (const_tree decl)
3308 {
3309 const_tree const ctx = DECL_CONTEXT (decl);
3310 return (ctx && TYPE_P (ctx));
3311 }
3312
3313 /* Create a placeholder for member access where we don't actually have an
3314 object that the access is against. */
3315
3316 tree
3317 build_dummy_object (tree type)
3318 {
3319 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node);
3320 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
3321 }
3322
3323 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
3324 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
3325 binfo path from current_class_type to TYPE, or 0. */
3326
3327 tree
3328 maybe_dummy_object (tree type, tree* binfop)
3329 {
3330 tree decl, context;
3331 tree binfo;
3332 tree current = current_nonlambda_class_type ();
3333
3334 if (current
3335 && (binfo = lookup_base (current, type, ba_any, NULL,
3336 tf_warning_or_error)))
3337 context = current;
3338 else
3339 {
3340 /* Reference from a nested class member function. */
3341 context = type;
3342 binfo = TYPE_BINFO (type);
3343 }
3344
3345 if (binfop)
3346 *binfop = binfo;
3347
3348 if (current_class_ref
3349 /* current_class_ref might not correspond to current_class_type if
3350 we're in tsubst_default_argument or a lambda-declarator; in either
3351 case, we want to use current_class_ref if it matches CONTEXT. */
3352 && (same_type_ignoring_top_level_qualifiers_p
3353 (TREE_TYPE (current_class_ref), context)))
3354 decl = current_class_ref;
3355 else
3356 decl = build_dummy_object (context);
3357
3358 return decl;
3359 }
3360
3361 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
3362
3363 int
3364 is_dummy_object (const_tree ob)
3365 {
3366 if (INDIRECT_REF_P (ob))
3367 ob = TREE_OPERAND (ob, 0);
3368 return (TREE_CODE (ob) == CONVERT_EXPR
3369 && TREE_OPERAND (ob, 0) == void_node);
3370 }
3371
3372 /* Returns 1 iff type T is something we want to treat as a scalar type for
3373 the purpose of deciding whether it is trivial/POD/standard-layout. */
3374
3375 bool
3376 scalarish_type_p (const_tree t)
3377 {
3378 if (t == error_mark_node)
3379 return 1;
3380
3381 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t));
3382 }
3383
3384 /* Returns true iff T requires non-trivial default initialization. */
3385
3386 bool
3387 type_has_nontrivial_default_init (const_tree t)
3388 {
3389 t = strip_array_types (CONST_CAST_TREE (t));
3390
3391 if (CLASS_TYPE_P (t))
3392 return TYPE_HAS_COMPLEX_DFLT (t);
3393 else
3394 return 0;
3395 }
3396
3397 /* Returns true iff copying an object of type T (including via move
3398 constructor) is non-trivial. That is, T has no non-trivial copy
3399 constructors and no non-trivial move constructors. */
3400
3401 bool
3402 type_has_nontrivial_copy_init (const_tree t)
3403 {
3404 t = strip_array_types (CONST_CAST_TREE (t));
3405
3406 if (CLASS_TYPE_P (t))
3407 {
3408 gcc_assert (COMPLETE_TYPE_P (t));
3409 return ((TYPE_HAS_COPY_CTOR (t)
3410 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
3411 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
3412 }
3413 else
3414 return 0;
3415 }
3416
3417 /* Returns 1 iff type T is a trivially copyable type, as defined in
3418 [basic.types] and [class]. */
3419
3420 bool
3421 trivially_copyable_p (const_tree t)
3422 {
3423 t = strip_array_types (CONST_CAST_TREE (t));
3424
3425 if (CLASS_TYPE_P (t))
3426 return ((!TYPE_HAS_COPY_CTOR (t)
3427 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
3428 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
3429 && (!TYPE_HAS_COPY_ASSIGN (t)
3430 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
3431 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
3432 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
3433 else
3434 return !CP_TYPE_VOLATILE_P (t) && scalarish_type_p (t);
3435 }
3436
3437 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
3438 [class]. */
3439
3440 bool
3441 trivial_type_p (const_tree t)
3442 {
3443 t = strip_array_types (CONST_CAST_TREE (t));
3444
3445 if (CLASS_TYPE_P (t))
3446 return (TYPE_HAS_TRIVIAL_DFLT (t)
3447 && trivially_copyable_p (t));
3448 else
3449 return scalarish_type_p (t);
3450 }
3451
3452 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
3453
3454 bool
3455 pod_type_p (const_tree t)
3456 {
3457 /* This CONST_CAST is okay because strip_array_types returns its
3458 argument unmodified and we assign it to a const_tree. */
3459 t = strip_array_types (CONST_CAST_TREE(t));
3460
3461 if (!CLASS_TYPE_P (t))
3462 return scalarish_type_p (t);
3463 else if (cxx_dialect > cxx98)
3464 /* [class]/10: A POD struct is a class that is both a trivial class and a
3465 standard-layout class, and has no non-static data members of type
3466 non-POD struct, non-POD union (or array of such types).
3467
3468 We don't need to check individual members because if a member is
3469 non-std-layout or non-trivial, the class will be too. */
3470 return (std_layout_type_p (t) && trivial_type_p (t));
3471 else
3472 /* The C++98 definition of POD is different. */
3473 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3474 }
3475
3476 /* Returns true iff T is POD for the purpose of layout, as defined in the
3477 C++ ABI. */
3478
3479 bool
3480 layout_pod_type_p (const_tree t)
3481 {
3482 t = strip_array_types (CONST_CAST_TREE (t));
3483
3484 if (CLASS_TYPE_P (t))
3485 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3486 else
3487 return scalarish_type_p (t);
3488 }
3489
3490 /* Returns true iff T is a standard-layout type, as defined in
3491 [basic.types]. */
3492
3493 bool
3494 std_layout_type_p (const_tree t)
3495 {
3496 t = strip_array_types (CONST_CAST_TREE (t));
3497
3498 if (CLASS_TYPE_P (t))
3499 return !CLASSTYPE_NON_STD_LAYOUT (t);
3500 else
3501 return scalarish_type_p (t);
3502 }
3503
3504 /* Nonzero iff type T is a class template implicit specialization. */
3505
3506 bool
3507 class_tmpl_impl_spec_p (const_tree t)
3508 {
3509 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3510 }
3511
3512 /* Returns 1 iff zero initialization of type T means actually storing
3513 zeros in it. */
3514
3515 int
3516 zero_init_p (const_tree t)
3517 {
3518 /* This CONST_CAST is okay because strip_array_types returns its
3519 argument unmodified and we assign it to a const_tree. */
3520 t = strip_array_types (CONST_CAST_TREE(t));
3521
3522 if (t == error_mark_node)
3523 return 1;
3524
3525 /* NULL pointers to data members are initialized with -1. */
3526 if (TYPE_PTRDATAMEM_P (t))
3527 return 0;
3528
3529 /* Classes that contain types that can't be zero-initialized, cannot
3530 be zero-initialized themselves. */
3531 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3532 return 0;
3533
3534 return 1;
3535 }
3536
3537 /* Table of valid C++ attributes. */
3538 const struct attribute_spec cxx_attribute_table[] =
3539 {
3540 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3541 affects_type_identity } */
3542 { "java_interface", 0, 0, false, false, false,
3543 handle_java_interface_attribute, false },
3544 { "init_priority", 1, 1, true, false, false,
3545 handle_init_priority_attribute, false },
3546 { "abi_tag", 1, -1, false, false, false,
3547 handle_abi_tag_attribute, true },
3548 { NULL, 0, 0, false, false, false, NULL, false }
3549 };
3550
3551 /* Handle a "java_interface" attribute; arguments as in
3552 struct attribute_spec.handler. */
3553 static tree
3554 handle_java_interface_attribute (tree* node,
3555 tree name,
3556 tree /*args*/,
3557 int flags,
3558 bool* no_add_attrs)
3559 {
3560 if (DECL_P (*node)
3561 || !CLASS_TYPE_P (*node)
3562 || !TYPE_FOR_JAVA (*node))
3563 {
3564 error ("%qE attribute can only be applied to Java class definitions",
3565 name);
3566 *no_add_attrs = true;
3567 return NULL_TREE;
3568 }
3569 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3570 *node = build_variant_type_copy (*node);
3571 TYPE_JAVA_INTERFACE (*node) = 1;
3572
3573 return NULL_TREE;
3574 }
3575
3576 /* Handle an "init_priority" attribute; arguments as in
3577 struct attribute_spec.handler. */
3578 static tree
3579 handle_init_priority_attribute (tree* node,
3580 tree name,
3581 tree args,
3582 int /*flags*/,
3583 bool* no_add_attrs)
3584 {
3585 tree initp_expr = TREE_VALUE (args);
3586 tree decl = *node;
3587 tree type = TREE_TYPE (decl);
3588 int pri;
3589
3590 STRIP_NOPS (initp_expr);
3591 initp_expr = default_conversion (initp_expr);
3592 if (initp_expr)
3593 initp_expr = maybe_constant_value (initp_expr);
3594
3595 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3596 {
3597 error ("requested init_priority is not an integer constant");
3598 cxx_constant_value (initp_expr);
3599 *no_add_attrs = true;
3600 return NULL_TREE;
3601 }
3602
3603 pri = TREE_INT_CST_LOW (initp_expr);
3604
3605 type = strip_array_types (type);
3606
3607 if (decl == NULL_TREE
3608 || !VAR_P (decl)
3609 || !TREE_STATIC (decl)
3610 || DECL_EXTERNAL (decl)
3611 || (TREE_CODE (type) != RECORD_TYPE
3612 && TREE_CODE (type) != UNION_TYPE)
3613 /* Static objects in functions are initialized the
3614 first time control passes through that
3615 function. This is not precise enough to pin down an
3616 init_priority value, so don't allow it. */
3617 || current_function_decl)
3618 {
3619 error ("can only use %qE attribute on file-scope definitions "
3620 "of objects of class type", name);
3621 *no_add_attrs = true;
3622 return NULL_TREE;
3623 }
3624
3625 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3626 {
3627 error ("requested init_priority is out of range");
3628 *no_add_attrs = true;
3629 return NULL_TREE;
3630 }
3631
3632 /* Check for init_priorities that are reserved for
3633 language and runtime support implementations.*/
3634 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3635 {
3636 warning
3637 (0, "requested init_priority is reserved for internal use");
3638 }
3639
3640 if (SUPPORTS_INIT_PRIORITY)
3641 {
3642 SET_DECL_INIT_PRIORITY (decl, pri);
3643 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3644 return NULL_TREE;
3645 }
3646 else
3647 {
3648 error ("%qE attribute is not supported on this platform", name);
3649 *no_add_attrs = true;
3650 return NULL_TREE;
3651 }
3652 }
3653
3654 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3655 and the new one has the tags in NEW_. Give an error if there are tags
3656 in NEW_ that weren't in OLD. */
3657
3658 bool
3659 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3660 {
3661 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3662 old = TREE_VALUE (old);
3663 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3664 new_ = TREE_VALUE (new_);
3665 bool err = false;
3666 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3667 {
3668 tree str = TREE_VALUE (t);
3669 for (const_tree in = old; in; in = TREE_CHAIN (in))
3670 {
3671 tree ostr = TREE_VALUE (in);
3672 if (cp_tree_equal (str, ostr))
3673 goto found;
3674 }
3675 error ("redeclaration of %qD adds abi tag %E", decl, str);
3676 err = true;
3677 found:;
3678 }
3679 if (err)
3680 {
3681 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3682 return false;
3683 }
3684 return true;
3685 }
3686
3687 /* The abi_tag attribute with the name NAME was given ARGS. If they are
3688 ill-formed, give an error and return false; otherwise, return true. */
3689
3690 bool
3691 check_abi_tag_args (tree args, tree name)
3692 {
3693 if (!args)
3694 {
3695 error ("the %qE attribute requires arguments", name);
3696 return false;
3697 }
3698 for (tree arg = args; arg; arg = TREE_CHAIN (arg))
3699 {
3700 tree elt = TREE_VALUE (arg);
3701 if (TREE_CODE (elt) != STRING_CST
3702 || (!same_type_ignoring_top_level_qualifiers_p
3703 (strip_array_types (TREE_TYPE (elt)),
3704 char_type_node)))
3705 {
3706 error ("arguments to the %qE attribute must be narrow string "
3707 "literals", name);
3708 return false;
3709 }
3710 const char *begin = TREE_STRING_POINTER (elt);
3711 const char *end = begin + TREE_STRING_LENGTH (elt);
3712 for (const char *p = begin; p != end; ++p)
3713 {
3714 char c = *p;
3715 if (p == begin)
3716 {
3717 if (!ISALPHA (c) && c != '_')
3718 {
3719 error ("arguments to the %qE attribute must contain valid "
3720 "identifiers", name);
3721 inform (input_location, "%<%c%> is not a valid first "
3722 "character for an identifier", c);
3723 return false;
3724 }
3725 }
3726 else if (p == end - 1)
3727 gcc_assert (c == 0);
3728 else
3729 {
3730 if (!ISALNUM (c) && c != '_')
3731 {
3732 error ("arguments to the %qE attribute must contain valid "
3733 "identifiers", name);
3734 inform (input_location, "%<%c%> is not a valid character "
3735 "in an identifier", c);
3736 return false;
3737 }
3738 }
3739 }
3740 }
3741 return true;
3742 }
3743
3744 /* Handle an "abi_tag" attribute; arguments as in
3745 struct attribute_spec.handler. */
3746
3747 static tree
3748 handle_abi_tag_attribute (tree* node, tree name, tree args,
3749 int flags, bool* no_add_attrs)
3750 {
3751 if (!check_abi_tag_args (args, name))
3752 goto fail;
3753
3754 if (TYPE_P (*node))
3755 {
3756 if (!OVERLOAD_TYPE_P (*node))
3757 {
3758 error ("%qE attribute applied to non-class, non-enum type %qT",
3759 name, *node);
3760 goto fail;
3761 }
3762 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3763 {
3764 error ("%qE attribute applied to %qT after its definition",
3765 name, *node);
3766 goto fail;
3767 }
3768 else if (CLASS_TYPE_P (*node)
3769 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
3770 {
3771 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3772 "template instantiation %qT", name, *node);
3773 goto fail;
3774 }
3775 else if (CLASS_TYPE_P (*node)
3776 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
3777 {
3778 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3779 "template specialization %qT", name, *node);
3780 goto fail;
3781 }
3782
3783 tree attributes = TYPE_ATTRIBUTES (*node);
3784 tree decl = TYPE_NAME (*node);
3785
3786 /* Make sure all declarations have the same abi tags. */
3787 if (DECL_SOURCE_LOCATION (decl) != input_location)
3788 {
3789 if (!check_abi_tag_redeclaration (decl,
3790 lookup_attribute ("abi_tag",
3791 attributes),
3792 args))
3793 goto fail;
3794 }
3795 }
3796 else
3797 {
3798 if (!VAR_OR_FUNCTION_DECL_P (*node))
3799 {
3800 error ("%qE attribute applied to non-function, non-variable %qD",
3801 name, *node);
3802 goto fail;
3803 }
3804 else if (DECL_LANGUAGE (*node) == lang_c)
3805 {
3806 error ("%qE attribute applied to extern \"C\" declaration %qD",
3807 name, *node);
3808 goto fail;
3809 }
3810 }
3811
3812 return NULL_TREE;
3813
3814 fail:
3815 *no_add_attrs = true;
3816 return NULL_TREE;
3817 }
3818
3819 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3820 thing pointed to by the constant. */
3821
3822 tree
3823 make_ptrmem_cst (tree type, tree member)
3824 {
3825 tree ptrmem_cst = make_node (PTRMEM_CST);
3826 TREE_TYPE (ptrmem_cst) = type;
3827 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3828 return ptrmem_cst;
3829 }
3830
3831 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3832 return an existing type if an appropriate type already exists. */
3833
3834 tree
3835 cp_build_type_attribute_variant (tree type, tree attributes)
3836 {
3837 tree new_type;
3838
3839 new_type = build_type_attribute_variant (type, attributes);
3840 if (TREE_CODE (new_type) == FUNCTION_TYPE
3841 || TREE_CODE (new_type) == METHOD_TYPE)
3842 {
3843 new_type = build_exception_variant (new_type,
3844 TYPE_RAISES_EXCEPTIONS (type));
3845 new_type = build_ref_qualified_type (new_type,
3846 type_memfn_rqual (type));
3847 }
3848
3849 /* Making a new main variant of a class type is broken. */
3850 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3851
3852 return new_type;
3853 }
3854
3855 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3856 Called only after doing all language independent checks. Only
3857 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3858 compared in type_hash_eq. */
3859
3860 bool
3861 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3862 {
3863 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3864 || TREE_CODE (typea) == METHOD_TYPE);
3865
3866 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3867 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3868 }
3869
3870 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3871 traversal. Called from walk_tree. */
3872
3873 tree
3874 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3875 void *data, hash_set<tree> *pset)
3876 {
3877 enum tree_code code = TREE_CODE (*tp);
3878 tree result;
3879
3880 #define WALK_SUBTREE(NODE) \
3881 do \
3882 { \
3883 result = cp_walk_tree (&(NODE), func, data, pset); \
3884 if (result) goto out; \
3885 } \
3886 while (0)
3887
3888 /* Not one of the easy cases. We must explicitly go through the
3889 children. */
3890 result = NULL_TREE;
3891 switch (code)
3892 {
3893 case DEFAULT_ARG:
3894 case TEMPLATE_TEMPLATE_PARM:
3895 case BOUND_TEMPLATE_TEMPLATE_PARM:
3896 case UNBOUND_CLASS_TEMPLATE:
3897 case TEMPLATE_PARM_INDEX:
3898 case TEMPLATE_TYPE_PARM:
3899 case TYPENAME_TYPE:
3900 case TYPEOF_TYPE:
3901 case UNDERLYING_TYPE:
3902 /* None of these have subtrees other than those already walked
3903 above. */
3904 *walk_subtrees_p = 0;
3905 break;
3906
3907 case BASELINK:
3908 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3909 *walk_subtrees_p = 0;
3910 break;
3911
3912 case PTRMEM_CST:
3913 WALK_SUBTREE (TREE_TYPE (*tp));
3914 *walk_subtrees_p = 0;
3915 break;
3916
3917 case TREE_LIST:
3918 WALK_SUBTREE (TREE_PURPOSE (*tp));
3919 break;
3920
3921 case OVERLOAD:
3922 WALK_SUBTREE (OVL_FUNCTION (*tp));
3923 WALK_SUBTREE (OVL_CHAIN (*tp));
3924 *walk_subtrees_p = 0;
3925 break;
3926
3927 case USING_DECL:
3928 WALK_SUBTREE (DECL_NAME (*tp));
3929 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
3930 WALK_SUBTREE (USING_DECL_DECLS (*tp));
3931 *walk_subtrees_p = 0;
3932 break;
3933
3934 case RECORD_TYPE:
3935 if (TYPE_PTRMEMFUNC_P (*tp))
3936 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp));
3937 break;
3938
3939 case TYPE_ARGUMENT_PACK:
3940 case NONTYPE_ARGUMENT_PACK:
3941 {
3942 tree args = ARGUMENT_PACK_ARGS (*tp);
3943 int i, len = TREE_VEC_LENGTH (args);
3944 for (i = 0; i < len; i++)
3945 WALK_SUBTREE (TREE_VEC_ELT (args, i));
3946 }
3947 break;
3948
3949 case TYPE_PACK_EXPANSION:
3950 WALK_SUBTREE (TREE_TYPE (*tp));
3951 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3952 *walk_subtrees_p = 0;
3953 break;
3954
3955 case EXPR_PACK_EXPANSION:
3956 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
3957 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3958 *walk_subtrees_p = 0;
3959 break;
3960
3961 case CAST_EXPR:
3962 case REINTERPRET_CAST_EXPR:
3963 case STATIC_CAST_EXPR:
3964 case CONST_CAST_EXPR:
3965 case DYNAMIC_CAST_EXPR:
3966 case IMPLICIT_CONV_EXPR:
3967 if (TREE_TYPE (*tp))
3968 WALK_SUBTREE (TREE_TYPE (*tp));
3969
3970 {
3971 int i;
3972 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
3973 WALK_SUBTREE (TREE_OPERAND (*tp, i));
3974 }
3975 *walk_subtrees_p = 0;
3976 break;
3977
3978 case TRAIT_EXPR:
3979 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
3980 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
3981 *walk_subtrees_p = 0;
3982 break;
3983
3984 case DECLTYPE_TYPE:
3985 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
3986 *walk_subtrees_p = 0;
3987 break;
3988
3989 case REQUIRES_EXPR:
3990 // Only recurse through the nested expression. Do not
3991 // walk the parameter list. Doing so causes false
3992 // positives in the pack expansion checker since the
3993 // requires parameters are introduced as pack expansions.
3994 WALK_SUBTREE (TREE_OPERAND (*tp, 1));
3995 *walk_subtrees_p = 0;
3996 break;
3997
3998 default:
3999 return NULL_TREE;
4000 }
4001
4002 /* We didn't find what we were looking for. */
4003 out:
4004 return result;
4005
4006 #undef WALK_SUBTREE
4007 }
4008
4009 /* Like save_expr, but for C++. */
4010
4011 tree
4012 cp_save_expr (tree expr)
4013 {
4014 /* There is no reason to create a SAVE_EXPR within a template; if
4015 needed, we can create the SAVE_EXPR when instantiating the
4016 template. Furthermore, the middle-end cannot handle C++-specific
4017 tree codes. */
4018 if (processing_template_decl)
4019 return expr;
4020 return save_expr (expr);
4021 }
4022
4023 /* Initialize tree.c. */
4024
4025 void
4026 init_tree (void)
4027 {
4028 list_hash_table = hash_table<list_hasher>::create_ggc (61);
4029 }
4030
4031 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
4032 is. Note that sfk_none is zero, so this function can be used as a
4033 predicate to test whether or not DECL is a special function. */
4034
4035 special_function_kind
4036 special_function_p (const_tree decl)
4037 {
4038 /* Rather than doing all this stuff with magic names, we should
4039 probably have a field of type `special_function_kind' in
4040 DECL_LANG_SPECIFIC. */
4041 if (DECL_INHERITED_CTOR_BASE (decl))
4042 return sfk_inheriting_constructor;
4043 if (DECL_COPY_CONSTRUCTOR_P (decl))
4044 return sfk_copy_constructor;
4045 if (DECL_MOVE_CONSTRUCTOR_P (decl))
4046 return sfk_move_constructor;
4047 if (DECL_CONSTRUCTOR_P (decl))
4048 return sfk_constructor;
4049 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
4050 {
4051 if (copy_fn_p (decl))
4052 return sfk_copy_assignment;
4053 if (move_fn_p (decl))
4054 return sfk_move_assignment;
4055 }
4056 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
4057 return sfk_destructor;
4058 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
4059 return sfk_complete_destructor;
4060 if (DECL_BASE_DESTRUCTOR_P (decl))
4061 return sfk_base_destructor;
4062 if (DECL_DELETING_DESTRUCTOR_P (decl))
4063 return sfk_deleting_destructor;
4064 if (DECL_CONV_FN_P (decl))
4065 return sfk_conversion;
4066
4067 return sfk_none;
4068 }
4069
4070 /* Returns nonzero if TYPE is a character type, including wchar_t. */
4071
4072 int
4073 char_type_p (tree type)
4074 {
4075 return (same_type_p (type, char_type_node)
4076 || same_type_p (type, unsigned_char_type_node)
4077 || same_type_p (type, signed_char_type_node)
4078 || same_type_p (type, char16_type_node)
4079 || same_type_p (type, char32_type_node)
4080 || same_type_p (type, wchar_type_node));
4081 }
4082
4083 /* Returns the kind of linkage associated with the indicated DECL. Th
4084 value returned is as specified by the language standard; it is
4085 independent of implementation details regarding template
4086 instantiation, etc. For example, it is possible that a declaration
4087 to which this function assigns external linkage would not show up
4088 as a global symbol when you run `nm' on the resulting object file. */
4089
4090 linkage_kind
4091 decl_linkage (tree decl)
4092 {
4093 /* This function doesn't attempt to calculate the linkage from first
4094 principles as given in [basic.link]. Instead, it makes use of
4095 the fact that we have already set TREE_PUBLIC appropriately, and
4096 then handles a few special cases. Ideally, we would calculate
4097 linkage first, and then transform that into a concrete
4098 implementation. */
4099
4100 /* Things that don't have names have no linkage. */
4101 if (!DECL_NAME (decl))
4102 return lk_none;
4103
4104 /* Fields have no linkage. */
4105 if (TREE_CODE (decl) == FIELD_DECL)
4106 return lk_none;
4107
4108 /* Things that are TREE_PUBLIC have external linkage. */
4109 if (TREE_PUBLIC (decl))
4110 return lk_external;
4111
4112 if (TREE_CODE (decl) == NAMESPACE_DECL)
4113 return lk_external;
4114
4115 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
4116 type. */
4117 if (TREE_CODE (decl) == CONST_DECL)
4118 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
4119
4120 /* Things in local scope do not have linkage, if they don't have
4121 TREE_PUBLIC set. */
4122 if (decl_function_context (decl))
4123 return lk_none;
4124
4125 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
4126 are considered to have external linkage for language purposes, as do
4127 template instantiations on targets without weak symbols. DECLs really
4128 meant to have internal linkage have DECL_THIS_STATIC set. */
4129 if (TREE_CODE (decl) == TYPE_DECL)
4130 return lk_external;
4131 if (VAR_OR_FUNCTION_DECL_P (decl))
4132 {
4133 if (!DECL_THIS_STATIC (decl))
4134 return lk_external;
4135
4136 /* Static data members and static member functions from classes
4137 in anonymous namespace also don't have TREE_PUBLIC set. */
4138 if (DECL_CLASS_CONTEXT (decl))
4139 return lk_external;
4140 }
4141
4142 /* Everything else has internal linkage. */
4143 return lk_internal;
4144 }
4145
4146 /* Returns the storage duration of the object or reference associated with
4147 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
4148
4149 duration_kind
4150 decl_storage_duration (tree decl)
4151 {
4152 if (TREE_CODE (decl) == PARM_DECL)
4153 return dk_auto;
4154 if (TREE_CODE (decl) == FUNCTION_DECL)
4155 return dk_static;
4156 gcc_assert (VAR_P (decl));
4157 if (!TREE_STATIC (decl)
4158 && !DECL_EXTERNAL (decl))
4159 return dk_auto;
4160 if (CP_DECL_THREAD_LOCAL_P (decl))
4161 return dk_thread;
4162 return dk_static;
4163 }
4164 \f
4165 /* EXP is an expression that we want to pre-evaluate. Returns (in
4166 *INITP) an expression that will perform the pre-evaluation. The
4167 value returned by this function is a side-effect free expression
4168 equivalent to the pre-evaluated expression. Callers must ensure
4169 that *INITP is evaluated before EXP. */
4170
4171 tree
4172 stabilize_expr (tree exp, tree* initp)
4173 {
4174 tree init_expr;
4175
4176 if (!TREE_SIDE_EFFECTS (exp))
4177 init_expr = NULL_TREE;
4178 else if (VOID_TYPE_P (TREE_TYPE (exp)))
4179 {
4180 init_expr = exp;
4181 exp = void_node;
4182 }
4183 /* There are no expressions with REFERENCE_TYPE, but there can be call
4184 arguments with such a type; just treat it as a pointer. */
4185 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
4186 || SCALAR_TYPE_P (TREE_TYPE (exp))
4187 || !lvalue_or_rvalue_with_address_p (exp))
4188 {
4189 init_expr = get_target_expr (exp);
4190 exp = TARGET_EXPR_SLOT (init_expr);
4191 if (CLASS_TYPE_P (TREE_TYPE (exp)))
4192 exp = move (exp);
4193 else
4194 exp = rvalue (exp);
4195 }
4196 else
4197 {
4198 bool xval = !real_lvalue_p (exp);
4199 exp = cp_build_addr_expr (exp, tf_warning_or_error);
4200 init_expr = get_target_expr (exp);
4201 exp = TARGET_EXPR_SLOT (init_expr);
4202 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
4203 if (xval)
4204 exp = move (exp);
4205 }
4206 *initp = init_expr;
4207
4208 gcc_assert (!TREE_SIDE_EFFECTS (exp));
4209 return exp;
4210 }
4211
4212 /* Add NEW_EXPR, an expression whose value we don't care about, after the
4213 similar expression ORIG. */
4214
4215 tree
4216 add_stmt_to_compound (tree orig, tree new_expr)
4217 {
4218 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
4219 return orig;
4220 if (!orig || !TREE_SIDE_EFFECTS (orig))
4221 return new_expr;
4222 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
4223 }
4224
4225 /* Like stabilize_expr, but for a call whose arguments we want to
4226 pre-evaluate. CALL is modified in place to use the pre-evaluated
4227 arguments, while, upon return, *INITP contains an expression to
4228 compute the arguments. */
4229
4230 void
4231 stabilize_call (tree call, tree *initp)
4232 {
4233 tree inits = NULL_TREE;
4234 int i;
4235 int nargs = call_expr_nargs (call);
4236
4237 if (call == error_mark_node || processing_template_decl)
4238 {
4239 *initp = NULL_TREE;
4240 return;
4241 }
4242
4243 gcc_assert (TREE_CODE (call) == CALL_EXPR);
4244
4245 for (i = 0; i < nargs; i++)
4246 {
4247 tree init;
4248 CALL_EXPR_ARG (call, i) =
4249 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
4250 inits = add_stmt_to_compound (inits, init);
4251 }
4252
4253 *initp = inits;
4254 }
4255
4256 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
4257 to pre-evaluate. CALL is modified in place to use the pre-evaluated
4258 arguments, while, upon return, *INITP contains an expression to
4259 compute the arguments. */
4260
4261 static void
4262 stabilize_aggr_init (tree call, tree *initp)
4263 {
4264 tree inits = NULL_TREE;
4265 int i;
4266 int nargs = aggr_init_expr_nargs (call);
4267
4268 if (call == error_mark_node)
4269 return;
4270
4271 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
4272
4273 for (i = 0; i < nargs; i++)
4274 {
4275 tree init;
4276 AGGR_INIT_EXPR_ARG (call, i) =
4277 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
4278 inits = add_stmt_to_compound (inits, init);
4279 }
4280
4281 *initp = inits;
4282 }
4283
4284 /* Like stabilize_expr, but for an initialization.
4285
4286 If the initialization is for an object of class type, this function
4287 takes care not to introduce additional temporaries.
4288
4289 Returns TRUE iff the expression was successfully pre-evaluated,
4290 i.e., if INIT is now side-effect free, except for, possibly, a
4291 single call to a constructor. */
4292
4293 bool
4294 stabilize_init (tree init, tree *initp)
4295 {
4296 tree t = init;
4297
4298 *initp = NULL_TREE;
4299
4300 if (t == error_mark_node || processing_template_decl)
4301 return true;
4302
4303 if (TREE_CODE (t) == INIT_EXPR)
4304 t = TREE_OPERAND (t, 1);
4305 if (TREE_CODE (t) == TARGET_EXPR)
4306 t = TARGET_EXPR_INITIAL (t);
4307
4308 /* If the RHS can be stabilized without breaking copy elision, stabilize
4309 it. We specifically don't stabilize class prvalues here because that
4310 would mean an extra copy, but they might be stabilized below. */
4311 if (TREE_CODE (init) == INIT_EXPR
4312 && TREE_CODE (t) != CONSTRUCTOR
4313 && TREE_CODE (t) != AGGR_INIT_EXPR
4314 && (SCALAR_TYPE_P (TREE_TYPE (t))
4315 || lvalue_or_rvalue_with_address_p (t)))
4316 {
4317 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
4318 return true;
4319 }
4320
4321 if (TREE_CODE (t) == COMPOUND_EXPR
4322 && TREE_CODE (init) == INIT_EXPR)
4323 {
4324 tree last = expr_last (t);
4325 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
4326 if (!TREE_SIDE_EFFECTS (last))
4327 {
4328 *initp = t;
4329 TREE_OPERAND (init, 1) = last;
4330 return true;
4331 }
4332 }
4333
4334 if (TREE_CODE (t) == CONSTRUCTOR)
4335 {
4336 /* Aggregate initialization: stabilize each of the field
4337 initializers. */
4338 unsigned i;
4339 constructor_elt *ce;
4340 bool good = true;
4341 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
4342 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
4343 {
4344 tree type = TREE_TYPE (ce->value);
4345 tree subinit;
4346 if (TREE_CODE (type) == REFERENCE_TYPE
4347 || SCALAR_TYPE_P (type))
4348 ce->value = stabilize_expr (ce->value, &subinit);
4349 else if (!stabilize_init (ce->value, &subinit))
4350 good = false;
4351 *initp = add_stmt_to_compound (*initp, subinit);
4352 }
4353 return good;
4354 }
4355
4356 if (TREE_CODE (t) == CALL_EXPR)
4357 {
4358 stabilize_call (t, initp);
4359 return true;
4360 }
4361
4362 if (TREE_CODE (t) == AGGR_INIT_EXPR)
4363 {
4364 stabilize_aggr_init (t, initp);
4365 return true;
4366 }
4367
4368 /* The initialization is being performed via a bitwise copy -- and
4369 the item copied may have side effects. */
4370 return !TREE_SIDE_EFFECTS (init);
4371 }
4372
4373 /* Returns true if a cast to TYPE may appear in an integral constant
4374 expression. */
4375
4376 bool
4377 cast_valid_in_integral_constant_expression_p (tree type)
4378 {
4379 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
4380 || cxx_dialect >= cxx11
4381 || dependent_type_p (type)
4382 || type == error_mark_node);
4383 }
4384
4385 /* Return true if we need to fix linkage information of DECL. */
4386
4387 static bool
4388 cp_fix_function_decl_p (tree decl)
4389 {
4390 /* Skip if DECL is not externally visible. */
4391 if (!TREE_PUBLIC (decl))
4392 return false;
4393
4394 /* We need to fix DECL if it a appears to be exported but with no
4395 function body. Thunks do not have CFGs and we may need to
4396 handle them specially later. */
4397 if (!gimple_has_body_p (decl)
4398 && !DECL_THUNK_P (decl)
4399 && !DECL_EXTERNAL (decl))
4400 {
4401 struct cgraph_node *node = cgraph_node::get (decl);
4402
4403 /* Don't fix same_body aliases. Although they don't have their own
4404 CFG, they share it with what they alias to. */
4405 if (!node || !node->alias
4406 || !vec_safe_length (node->ref_list.references))
4407 return true;
4408 }
4409
4410 return false;
4411 }
4412
4413 /* Clean the C++ specific parts of the tree T. */
4414
4415 void
4416 cp_free_lang_data (tree t)
4417 {
4418 if (TREE_CODE (t) == METHOD_TYPE
4419 || TREE_CODE (t) == FUNCTION_TYPE)
4420 {
4421 /* Default args are not interesting anymore. */
4422 tree argtypes = TYPE_ARG_TYPES (t);
4423 while (argtypes)
4424 {
4425 TREE_PURPOSE (argtypes) = 0;
4426 argtypes = TREE_CHAIN (argtypes);
4427 }
4428 }
4429 else if (TREE_CODE (t) == FUNCTION_DECL
4430 && cp_fix_function_decl_p (t))
4431 {
4432 /* If T is used in this translation unit at all, the definition
4433 must exist somewhere else since we have decided to not emit it
4434 in this TU. So make it an external reference. */
4435 DECL_EXTERNAL (t) = 1;
4436 TREE_STATIC (t) = 0;
4437 }
4438 if (TREE_CODE (t) == NAMESPACE_DECL)
4439 {
4440 /* The list of users of a namespace isn't useful for the middle-end
4441 or debug generators. */
4442 DECL_NAMESPACE_USERS (t) = NULL_TREE;
4443 /* Neither do we need the leftover chaining of namespaces
4444 from the binding level. */
4445 DECL_CHAIN (t) = NULL_TREE;
4446 }
4447 }
4448
4449 /* Stub for c-common. Please keep in sync with c-decl.c.
4450 FIXME: If address space support is target specific, then this
4451 should be a C target hook. But currently this is not possible,
4452 because this function is called via REGISTER_TARGET_PRAGMAS. */
4453 void
4454 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
4455 {
4456 }
4457
4458 /* Return the number of operands in T that we care about for things like
4459 mangling. */
4460
4461 int
4462 cp_tree_operand_length (const_tree t)
4463 {
4464 enum tree_code code = TREE_CODE (t);
4465
4466 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
4467 return VL_EXP_OPERAND_LENGTH (t);
4468
4469 return cp_tree_code_length (code);
4470 }
4471
4472 /* Like cp_tree_operand_length, but takes a tree_code CODE. */
4473
4474 int
4475 cp_tree_code_length (enum tree_code code)
4476 {
4477 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4478
4479 switch (code)
4480 {
4481 case PREINCREMENT_EXPR:
4482 case PREDECREMENT_EXPR:
4483 case POSTINCREMENT_EXPR:
4484 case POSTDECREMENT_EXPR:
4485 return 1;
4486
4487 case ARRAY_REF:
4488 return 2;
4489
4490 case EXPR_PACK_EXPANSION:
4491 return 1;
4492
4493 default:
4494 return TREE_CODE_LENGTH (code);
4495 }
4496 }
4497
4498 /* Implement -Wzero_as_null_pointer_constant. Return true if the
4499 conditions for the warning hold, false otherwise. */
4500 bool
4501 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
4502 {
4503 if (c_inhibit_evaluation_warnings == 0
4504 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
4505 {
4506 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
4507 "zero as null pointer constant");
4508 return true;
4509 }
4510 return false;
4511 }
4512 \f
4513 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4514 /* Complain that some language-specific thing hanging off a tree
4515 node has been accessed improperly. */
4516
4517 void
4518 lang_check_failed (const char* file, int line, const char* function)
4519 {
4520 internal_error ("lang_* check: failed in %s, at %s:%d",
4521 function, trim_filename (file), line);
4522 }
4523 #endif /* ENABLE_TREE_CHECKING */
4524
4525 #include "gt-cp-tree.h"