]> git.ipfire.org Git - thirdparty/gcc.git/blob
c37107a
[thirdparty/gcc.git] /
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
68 #include "rtl-iter.h"
69
70 /* So we can assign to cfun in this file. */
71 #undef cfun
72
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
76
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78
79 /* Round a value to the lowest integer less than it that is a multiple of
80 the required alignment. Avoid using division in case the value is
81 negative. Assume the alignment is a power of two. */
82 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
83
84 /* Similar, but round to the next highest integer that meets the
85 alignment. */
86 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
87
88 /* Nonzero once virtual register instantiation has been done.
89 assign_stack_local uses frame_pointer_rtx when this is nonzero.
90 calls.c:emit_library_call_value_1 uses it to set up
91 post-instantiation libcalls. */
92 int virtuals_instantiated;
93
94 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
95 static GTY(()) int funcdef_no;
96
97 /* These variables hold pointers to functions to create and destroy
98 target specific, per-function data structures. */
99 struct machine_function * (*init_machine_status) (void);
100
101 /* The currently compiled function. */
102 struct function *cfun = 0;
103
104 /* These hashes record the prologue and epilogue insns. */
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
106 htab_t prologue_insn_hash;
107 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
108 htab_t epilogue_insn_hash;
109 \f
110
111 htab_t types_used_by_vars_hash = NULL;
112 vec<tree, va_gc> *types_used_by_cur_var_decl;
113
114 /* Forward declarations. */
115
116 static struct temp_slot *find_temp_slot_from_address (rtx);
117 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
118 static void pad_below (struct args_size *, enum machine_mode, tree);
119 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
120 static int all_blocks (tree, tree *);
121 static tree *get_block_vector (tree, int *);
122 extern tree debug_find_var_in_block_tree (tree, tree);
123 /* We always define `record_insns' even if it's not used so that we
124 can always export `prologue_epilogue_contains'. */
125 static void record_insns (rtx_insn *, rtx, htab_t *) ATTRIBUTE_UNUSED;
126 static bool contains (const_rtx, htab_t);
127 static void prepare_function_start (void);
128 static void do_clobber_return_reg (rtx, void *);
129 static void do_use_return_reg (rtx, void *);
130 \f
131 /* Stack of nested functions. */
132 /* Keep track of the cfun stack. */
133
134 typedef struct function *function_p;
135
136 static vec<function_p> function_context_stack;
137
138 /* Save the current context for compilation of a nested function.
139 This is called from language-specific code. */
140
141 void
142 push_function_context (void)
143 {
144 if (cfun == 0)
145 allocate_struct_function (NULL, false);
146
147 function_context_stack.safe_push (cfun);
148 set_cfun (NULL);
149 }
150
151 /* Restore the last saved context, at the end of a nested function.
152 This function is called from language-specific code. */
153
154 void
155 pop_function_context (void)
156 {
157 struct function *p = function_context_stack.pop ();
158 set_cfun (p);
159 current_function_decl = p->decl;
160
161 /* Reset variables that have known state during rtx generation. */
162 virtuals_instantiated = 0;
163 generating_concat_p = 1;
164 }
165
166 /* Clear out all parts of the state in F that can safely be discarded
167 after the function has been parsed, but not compiled, to let
168 garbage collection reclaim the memory. */
169
170 void
171 free_after_parsing (struct function *f)
172 {
173 f->language = 0;
174 }
175
176 /* Clear out all parts of the state in F that can safely be discarded
177 after the function has been compiled, to let garbage collection
178 reclaim the memory. */
179
180 void
181 free_after_compilation (struct function *f)
182 {
183 prologue_insn_hash = NULL;
184 epilogue_insn_hash = NULL;
185
186 free (crtl->emit.regno_pointer_align);
187
188 memset (crtl, 0, sizeof (struct rtl_data));
189 f->eh = NULL;
190 f->machine = NULL;
191 f->cfg = NULL;
192
193 regno_reg_rtx = NULL;
194 }
195 \f
196 /* Return size needed for stack frame based on slots so far allocated.
197 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
198 the caller may have to do that. */
199
200 HOST_WIDE_INT
201 get_frame_size (void)
202 {
203 if (FRAME_GROWS_DOWNWARD)
204 return -frame_offset;
205 else
206 return frame_offset;
207 }
208
209 /* Issue an error message and return TRUE if frame OFFSET overflows in
210 the signed target pointer arithmetics for function FUNC. Otherwise
211 return FALSE. */
212
213 bool
214 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
215 {
216 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
217
218 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
219 /* Leave room for the fixed part of the frame. */
220 - 64 * UNITS_PER_WORD)
221 {
222 error_at (DECL_SOURCE_LOCATION (func),
223 "total size of local objects too large");
224 return TRUE;
225 }
226
227 return FALSE;
228 }
229
230 /* Return stack slot alignment in bits for TYPE and MODE. */
231
232 static unsigned int
233 get_stack_local_alignment (tree type, enum machine_mode mode)
234 {
235 unsigned int alignment;
236
237 if (mode == BLKmode)
238 alignment = BIGGEST_ALIGNMENT;
239 else
240 alignment = GET_MODE_ALIGNMENT (mode);
241
242 /* Allow the frond-end to (possibly) increase the alignment of this
243 stack slot. */
244 if (! type)
245 type = lang_hooks.types.type_for_mode (mode, 0);
246
247 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
248 }
249
250 /* Determine whether it is possible to fit a stack slot of size SIZE and
251 alignment ALIGNMENT into an area in the stack frame that starts at
252 frame offset START and has a length of LENGTH. If so, store the frame
253 offset to be used for the stack slot in *POFFSET and return true;
254 return false otherwise. This function will extend the frame size when
255 given a start/length pair that lies at the end of the frame. */
256
257 static bool
258 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
259 HOST_WIDE_INT size, unsigned int alignment,
260 HOST_WIDE_INT *poffset)
261 {
262 HOST_WIDE_INT this_frame_offset;
263 int frame_off, frame_alignment, frame_phase;
264
265 /* Calculate how many bytes the start of local variables is off from
266 stack alignment. */
267 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
268 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
269 frame_phase = frame_off ? frame_alignment - frame_off : 0;
270
271 /* Round the frame offset to the specified alignment. */
272
273 /* We must be careful here, since FRAME_OFFSET might be negative and
274 division with a negative dividend isn't as well defined as we might
275 like. So we instead assume that ALIGNMENT is a power of two and
276 use logical operations which are unambiguous. */
277 if (FRAME_GROWS_DOWNWARD)
278 this_frame_offset
279 = (FLOOR_ROUND (start + length - size - frame_phase,
280 (unsigned HOST_WIDE_INT) alignment)
281 + frame_phase);
282 else
283 this_frame_offset
284 = (CEIL_ROUND (start - frame_phase,
285 (unsigned HOST_WIDE_INT) alignment)
286 + frame_phase);
287
288 /* See if it fits. If this space is at the edge of the frame,
289 consider extending the frame to make it fit. Our caller relies on
290 this when allocating a new slot. */
291 if (frame_offset == start && this_frame_offset < frame_offset)
292 frame_offset = this_frame_offset;
293 else if (this_frame_offset < start)
294 return false;
295 else if (start + length == frame_offset
296 && this_frame_offset + size > start + length)
297 frame_offset = this_frame_offset + size;
298 else if (this_frame_offset + size > start + length)
299 return false;
300
301 *poffset = this_frame_offset;
302 return true;
303 }
304
305 /* Create a new frame_space structure describing free space in the stack
306 frame beginning at START and ending at END, and chain it into the
307 function's frame_space_list. */
308
309 static void
310 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
311 {
312 struct frame_space *space = ggc_alloc<frame_space> ();
313 space->next = crtl->frame_space_list;
314 crtl->frame_space_list = space;
315 space->start = start;
316 space->length = end - start;
317 }
318
319 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
320 with machine mode MODE.
321
322 ALIGN controls the amount of alignment for the address of the slot:
323 0 means according to MODE,
324 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
325 -2 means use BITS_PER_UNIT,
326 positive specifies alignment boundary in bits.
327
328 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
329 alignment and ASLK_RECORD_PAD bit set if we should remember
330 extra space we allocated for alignment purposes. When we are
331 called from assign_stack_temp_for_type, it is not set so we don't
332 track the same stack slot in two independent lists.
333
334 We do not round to stack_boundary here. */
335
336 rtx
337 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
338 int align, int kind)
339 {
340 rtx x, addr;
341 int bigend_correction = 0;
342 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
343 unsigned int alignment, alignment_in_bits;
344
345 if (align == 0)
346 {
347 alignment = get_stack_local_alignment (NULL, mode);
348 alignment /= BITS_PER_UNIT;
349 }
350 else if (align == -1)
351 {
352 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
353 size = CEIL_ROUND (size, alignment);
354 }
355 else if (align == -2)
356 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
357 else
358 alignment = align / BITS_PER_UNIT;
359
360 alignment_in_bits = alignment * BITS_PER_UNIT;
361
362 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
363 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
364 {
365 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
366 alignment = alignment_in_bits / BITS_PER_UNIT;
367 }
368
369 if (SUPPORTS_STACK_ALIGNMENT)
370 {
371 if (crtl->stack_alignment_estimated < alignment_in_bits)
372 {
373 if (!crtl->stack_realign_processed)
374 crtl->stack_alignment_estimated = alignment_in_bits;
375 else
376 {
377 /* If stack is realigned and stack alignment value
378 hasn't been finalized, it is OK not to increase
379 stack_alignment_estimated. The bigger alignment
380 requirement is recorded in stack_alignment_needed
381 below. */
382 gcc_assert (!crtl->stack_realign_finalized);
383 if (!crtl->stack_realign_needed)
384 {
385 /* It is OK to reduce the alignment as long as the
386 requested size is 0 or the estimated stack
387 alignment >= mode alignment. */
388 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
389 || size == 0
390 || (crtl->stack_alignment_estimated
391 >= GET_MODE_ALIGNMENT (mode)));
392 alignment_in_bits = crtl->stack_alignment_estimated;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
394 }
395 }
396 }
397 }
398
399 if (crtl->stack_alignment_needed < alignment_in_bits)
400 crtl->stack_alignment_needed = alignment_in_bits;
401 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
402 crtl->max_used_stack_slot_alignment = alignment_in_bits;
403
404 if (mode != BLKmode || size != 0)
405 {
406 if (kind & ASLK_RECORD_PAD)
407 {
408 struct frame_space **psp;
409
410 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
411 {
412 struct frame_space *space = *psp;
413 if (!try_fit_stack_local (space->start, space->length, size,
414 alignment, &slot_offset))
415 continue;
416 *psp = space->next;
417 if (slot_offset > space->start)
418 add_frame_space (space->start, slot_offset);
419 if (slot_offset + size < space->start + space->length)
420 add_frame_space (slot_offset + size,
421 space->start + space->length);
422 goto found_space;
423 }
424 }
425 }
426 else if (!STACK_ALIGNMENT_NEEDED)
427 {
428 slot_offset = frame_offset;
429 goto found_space;
430 }
431
432 old_frame_offset = frame_offset;
433
434 if (FRAME_GROWS_DOWNWARD)
435 {
436 frame_offset -= size;
437 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
438
439 if (kind & ASLK_RECORD_PAD)
440 {
441 if (slot_offset > frame_offset)
442 add_frame_space (frame_offset, slot_offset);
443 if (slot_offset + size < old_frame_offset)
444 add_frame_space (slot_offset + size, old_frame_offset);
445 }
446 }
447 else
448 {
449 frame_offset += size;
450 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
451
452 if (kind & ASLK_RECORD_PAD)
453 {
454 if (slot_offset > old_frame_offset)
455 add_frame_space (old_frame_offset, slot_offset);
456 if (slot_offset + size < frame_offset)
457 add_frame_space (slot_offset + size, frame_offset);
458 }
459 }
460
461 found_space:
462 /* On a big-endian machine, if we are allocating more space than we will use,
463 use the least significant bytes of those that are allocated. */
464 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
465 bigend_correction = size - GET_MODE_SIZE (mode);
466
467 /* If we have already instantiated virtual registers, return the actual
468 address relative to the frame pointer. */
469 if (virtuals_instantiated)
470 addr = plus_constant (Pmode, frame_pointer_rtx,
471 trunc_int_for_mode
472 (slot_offset + bigend_correction
473 + STARTING_FRAME_OFFSET, Pmode));
474 else
475 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
476 trunc_int_for_mode
477 (slot_offset + bigend_correction,
478 Pmode));
479
480 x = gen_rtx_MEM (mode, addr);
481 set_mem_align (x, alignment_in_bits);
482 MEM_NOTRAP_P (x) = 1;
483
484 stack_slot_list
485 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
486
487 if (frame_offset_overflow (frame_offset, current_function_decl))
488 frame_offset = 0;
489
490 return x;
491 }
492
493 /* Wrap up assign_stack_local_1 with last parameter as false. */
494
495 rtx
496 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
497 {
498 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
499 }
500 \f
501 /* In order to evaluate some expressions, such as function calls returning
502 structures in memory, we need to temporarily allocate stack locations.
503 We record each allocated temporary in the following structure.
504
505 Associated with each temporary slot is a nesting level. When we pop up
506 one level, all temporaries associated with the previous level are freed.
507 Normally, all temporaries are freed after the execution of the statement
508 in which they were created. However, if we are inside a ({...}) grouping,
509 the result may be in a temporary and hence must be preserved. If the
510 result could be in a temporary, we preserve it if we can determine which
511 one it is in. If we cannot determine which temporary may contain the
512 result, all temporaries are preserved. A temporary is preserved by
513 pretending it was allocated at the previous nesting level. */
514
515 struct GTY(()) temp_slot {
516 /* Points to next temporary slot. */
517 struct temp_slot *next;
518 /* Points to previous temporary slot. */
519 struct temp_slot *prev;
520 /* The rtx to used to reference the slot. */
521 rtx slot;
522 /* The size, in units, of the slot. */
523 HOST_WIDE_INT size;
524 /* The type of the object in the slot, or zero if it doesn't correspond
525 to a type. We use this to determine whether a slot can be reused.
526 It can be reused if objects of the type of the new slot will always
527 conflict with objects of the type of the old slot. */
528 tree type;
529 /* The alignment (in bits) of the slot. */
530 unsigned int align;
531 /* Nonzero if this temporary is currently in use. */
532 char in_use;
533 /* Nesting level at which this slot is being used. */
534 int level;
535 /* The offset of the slot from the frame_pointer, including extra space
536 for alignment. This info is for combine_temp_slots. */
537 HOST_WIDE_INT base_offset;
538 /* The size of the slot, including extra space for alignment. This
539 info is for combine_temp_slots. */
540 HOST_WIDE_INT full_size;
541 };
542
543 /* A table of addresses that represent a stack slot. The table is a mapping
544 from address RTXen to a temp slot. */
545 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
546 static size_t n_temp_slots_in_use;
547
548 /* Entry for the above hash table. */
549 struct GTY(()) temp_slot_address_entry {
550 hashval_t hash;
551 rtx address;
552 struct temp_slot *temp_slot;
553 };
554
555 /* Removes temporary slot TEMP from LIST. */
556
557 static void
558 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
559 {
560 if (temp->next)
561 temp->next->prev = temp->prev;
562 if (temp->prev)
563 temp->prev->next = temp->next;
564 else
565 *list = temp->next;
566
567 temp->prev = temp->next = NULL;
568 }
569
570 /* Inserts temporary slot TEMP to LIST. */
571
572 static void
573 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
574 {
575 temp->next = *list;
576 if (*list)
577 (*list)->prev = temp;
578 temp->prev = NULL;
579 *list = temp;
580 }
581
582 /* Returns the list of used temp slots at LEVEL. */
583
584 static struct temp_slot **
585 temp_slots_at_level (int level)
586 {
587 if (level >= (int) vec_safe_length (used_temp_slots))
588 vec_safe_grow_cleared (used_temp_slots, level + 1);
589
590 return &(*used_temp_slots)[level];
591 }
592
593 /* Returns the maximal temporary slot level. */
594
595 static int
596 max_slot_level (void)
597 {
598 if (!used_temp_slots)
599 return -1;
600
601 return used_temp_slots->length () - 1;
602 }
603
604 /* Moves temporary slot TEMP to LEVEL. */
605
606 static void
607 move_slot_to_level (struct temp_slot *temp, int level)
608 {
609 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
610 insert_slot_to_list (temp, temp_slots_at_level (level));
611 temp->level = level;
612 }
613
614 /* Make temporary slot TEMP available. */
615
616 static void
617 make_slot_available (struct temp_slot *temp)
618 {
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, &avail_temp_slots);
621 temp->in_use = 0;
622 temp->level = -1;
623 n_temp_slots_in_use--;
624 }
625
626 /* Compute the hash value for an address -> temp slot mapping.
627 The value is cached on the mapping entry. */
628 static hashval_t
629 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
630 {
631 int do_not_record = 0;
632 return hash_rtx (t->address, GET_MODE (t->address),
633 &do_not_record, NULL, false);
634 }
635
636 /* Return the hash value for an address -> temp slot mapping. */
637 static hashval_t
638 temp_slot_address_hash (const void *p)
639 {
640 const struct temp_slot_address_entry *t;
641 t = (const struct temp_slot_address_entry *) p;
642 return t->hash;
643 }
644
645 /* Compare two address -> temp slot mapping entries. */
646 static int
647 temp_slot_address_eq (const void *p1, const void *p2)
648 {
649 const struct temp_slot_address_entry *t1, *t2;
650 t1 = (const struct temp_slot_address_entry *) p1;
651 t2 = (const struct temp_slot_address_entry *) p2;
652 return exp_equiv_p (t1->address, t2->address, 0, true);
653 }
654
655 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
656 static void
657 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
658 {
659 void **slot;
660 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
661 t->address = address;
662 t->temp_slot = temp_slot;
663 t->hash = temp_slot_address_compute_hash (t);
664 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
665 *slot = t;
666 }
667
668 /* Remove an address -> temp slot mapping entry if the temp slot is
669 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
670 static int
671 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
672 {
673 const struct temp_slot_address_entry *t;
674 t = (const struct temp_slot_address_entry *) *slot;
675 if (! t->temp_slot->in_use)
676 htab_clear_slot (temp_slot_address_table, slot);
677 return 1;
678 }
679
680 /* Remove all mappings of addresses to unused temp slots. */
681 static void
682 remove_unused_temp_slot_addresses (void)
683 {
684 /* Use quicker clearing if there aren't any active temp slots. */
685 if (n_temp_slots_in_use)
686 htab_traverse (temp_slot_address_table,
687 remove_unused_temp_slot_addresses_1,
688 NULL);
689 else
690 htab_empty (temp_slot_address_table);
691 }
692
693 /* Find the temp slot corresponding to the object at address X. */
694
695 static struct temp_slot *
696 find_temp_slot_from_address (rtx x)
697 {
698 struct temp_slot *p;
699 struct temp_slot_address_entry tmp, *t;
700
701 /* First try the easy way:
702 See if X exists in the address -> temp slot mapping. */
703 tmp.address = x;
704 tmp.temp_slot = NULL;
705 tmp.hash = temp_slot_address_compute_hash (&tmp);
706 t = (struct temp_slot_address_entry *)
707 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
708 if (t)
709 return t->temp_slot;
710
711 /* If we have a sum involving a register, see if it points to a temp
712 slot. */
713 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
714 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
715 return p;
716 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
717 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
718 return p;
719
720 /* Last resort: Address is a virtual stack var address. */
721 if (GET_CODE (x) == PLUS
722 && XEXP (x, 0) == virtual_stack_vars_rtx
723 && CONST_INT_P (XEXP (x, 1)))
724 {
725 int i;
726 for (i = max_slot_level (); i >= 0; i--)
727 for (p = *temp_slots_at_level (i); p; p = p->next)
728 {
729 if (INTVAL (XEXP (x, 1)) >= p->base_offset
730 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
731 return p;
732 }
733 }
734
735 return NULL;
736 }
737 \f
738 /* Allocate a temporary stack slot and record it for possible later
739 reuse.
740
741 MODE is the machine mode to be given to the returned rtx.
742
743 SIZE is the size in units of the space required. We do no rounding here
744 since assign_stack_local will do any required rounding.
745
746 TYPE is the type that will be used for the stack slot. */
747
748 rtx
749 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
750 tree type)
751 {
752 unsigned int align;
753 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
754 rtx slot;
755
756 /* If SIZE is -1 it means that somebody tried to allocate a temporary
757 of a variable size. */
758 gcc_assert (size != -1);
759
760 align = get_stack_local_alignment (type, mode);
761
762 /* Try to find an available, already-allocated temporary of the proper
763 mode which meets the size and alignment requirements. Choose the
764 smallest one with the closest alignment.
765
766 If assign_stack_temp is called outside of the tree->rtl expansion,
767 we cannot reuse the stack slots (that may still refer to
768 VIRTUAL_STACK_VARS_REGNUM). */
769 if (!virtuals_instantiated)
770 {
771 for (p = avail_temp_slots; p; p = p->next)
772 {
773 if (p->align >= align && p->size >= size
774 && GET_MODE (p->slot) == mode
775 && objects_must_conflict_p (p->type, type)
776 && (best_p == 0 || best_p->size > p->size
777 || (best_p->size == p->size && best_p->align > p->align)))
778 {
779 if (p->align == align && p->size == size)
780 {
781 selected = p;
782 cut_slot_from_list (selected, &avail_temp_slots);
783 best_p = 0;
784 break;
785 }
786 best_p = p;
787 }
788 }
789 }
790
791 /* Make our best, if any, the one to use. */
792 if (best_p)
793 {
794 selected = best_p;
795 cut_slot_from_list (selected, &avail_temp_slots);
796
797 /* If there are enough aligned bytes left over, make them into a new
798 temp_slot so that the extra bytes don't get wasted. Do this only
799 for BLKmode slots, so that we can be sure of the alignment. */
800 if (GET_MODE (best_p->slot) == BLKmode)
801 {
802 int alignment = best_p->align / BITS_PER_UNIT;
803 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
804
805 if (best_p->size - rounded_size >= alignment)
806 {
807 p = ggc_alloc<temp_slot> ();
808 p->in_use = 0;
809 p->size = best_p->size - rounded_size;
810 p->base_offset = best_p->base_offset + rounded_size;
811 p->full_size = best_p->full_size - rounded_size;
812 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
813 p->align = best_p->align;
814 p->type = best_p->type;
815 insert_slot_to_list (p, &avail_temp_slots);
816
817 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
818 stack_slot_list);
819
820 best_p->size = rounded_size;
821 best_p->full_size = rounded_size;
822 }
823 }
824 }
825
826 /* If we still didn't find one, make a new temporary. */
827 if (selected == 0)
828 {
829 HOST_WIDE_INT frame_offset_old = frame_offset;
830
831 p = ggc_alloc<temp_slot> ();
832
833 /* We are passing an explicit alignment request to assign_stack_local.
834 One side effect of that is assign_stack_local will not round SIZE
835 to ensure the frame offset remains suitably aligned.
836
837 So for requests which depended on the rounding of SIZE, we go ahead
838 and round it now. We also make sure ALIGNMENT is at least
839 BIGGEST_ALIGNMENT. */
840 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
841 p->slot = assign_stack_local_1 (mode,
842 (mode == BLKmode
843 ? CEIL_ROUND (size,
844 (int) align
845 / BITS_PER_UNIT)
846 : size),
847 align, 0);
848
849 p->align = align;
850
851 /* The following slot size computation is necessary because we don't
852 know the actual size of the temporary slot until assign_stack_local
853 has performed all the frame alignment and size rounding for the
854 requested temporary. Note that extra space added for alignment
855 can be either above or below this stack slot depending on which
856 way the frame grows. We include the extra space if and only if it
857 is above this slot. */
858 if (FRAME_GROWS_DOWNWARD)
859 p->size = frame_offset_old - frame_offset;
860 else
861 p->size = size;
862
863 /* Now define the fields used by combine_temp_slots. */
864 if (FRAME_GROWS_DOWNWARD)
865 {
866 p->base_offset = frame_offset;
867 p->full_size = frame_offset_old - frame_offset;
868 }
869 else
870 {
871 p->base_offset = frame_offset_old;
872 p->full_size = frame_offset - frame_offset_old;
873 }
874
875 selected = p;
876 }
877
878 p = selected;
879 p->in_use = 1;
880 p->type = type;
881 p->level = temp_slot_level;
882 n_temp_slots_in_use++;
883
884 pp = temp_slots_at_level (p->level);
885 insert_slot_to_list (p, pp);
886 insert_temp_slot_address (XEXP (p->slot, 0), p);
887
888 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
889 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
890 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
891
892 /* If we know the alias set for the memory that will be used, use
893 it. If there's no TYPE, then we don't know anything about the
894 alias set for the memory. */
895 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
896 set_mem_align (slot, align);
897
898 /* If a type is specified, set the relevant flags. */
899 if (type != 0)
900 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
901 MEM_NOTRAP_P (slot) = 1;
902
903 return slot;
904 }
905
906 /* Allocate a temporary stack slot and record it for possible later
907 reuse. First two arguments are same as in preceding function. */
908
909 rtx
910 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
911 {
912 return assign_stack_temp_for_type (mode, size, NULL_TREE);
913 }
914 \f
915 /* Assign a temporary.
916 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
917 and so that should be used in error messages. In either case, we
918 allocate of the given type.
919 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
920 it is 0 if a register is OK.
921 DONT_PROMOTE is 1 if we should not promote values in register
922 to wider modes. */
923
924 rtx
925 assign_temp (tree type_or_decl, int memory_required,
926 int dont_promote ATTRIBUTE_UNUSED)
927 {
928 tree type, decl;
929 enum machine_mode mode;
930 #ifdef PROMOTE_MODE
931 int unsignedp;
932 #endif
933
934 if (DECL_P (type_or_decl))
935 decl = type_or_decl, type = TREE_TYPE (decl);
936 else
937 decl = NULL, type = type_or_decl;
938
939 mode = TYPE_MODE (type);
940 #ifdef PROMOTE_MODE
941 unsignedp = TYPE_UNSIGNED (type);
942 #endif
943
944 if (mode == BLKmode || memory_required)
945 {
946 HOST_WIDE_INT size = int_size_in_bytes (type);
947 rtx tmp;
948
949 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
950 problems with allocating the stack space. */
951 if (size == 0)
952 size = 1;
953
954 /* Unfortunately, we don't yet know how to allocate variable-sized
955 temporaries. However, sometimes we can find a fixed upper limit on
956 the size, so try that instead. */
957 else if (size == -1)
958 size = max_int_size_in_bytes (type);
959
960 /* The size of the temporary may be too large to fit into an integer. */
961 /* ??? Not sure this should happen except for user silliness, so limit
962 this to things that aren't compiler-generated temporaries. The
963 rest of the time we'll die in assign_stack_temp_for_type. */
964 if (decl && size == -1
965 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
966 {
967 error ("size of variable %q+D is too large", decl);
968 size = 1;
969 }
970
971 tmp = assign_stack_temp_for_type (mode, size, type);
972 return tmp;
973 }
974
975 #ifdef PROMOTE_MODE
976 if (! dont_promote)
977 mode = promote_mode (type, mode, &unsignedp);
978 #endif
979
980 return gen_reg_rtx (mode);
981 }
982 \f
983 /* Combine temporary stack slots which are adjacent on the stack.
984
985 This allows for better use of already allocated stack space. This is only
986 done for BLKmode slots because we can be sure that we won't have alignment
987 problems in this case. */
988
989 static void
990 combine_temp_slots (void)
991 {
992 struct temp_slot *p, *q, *next, *next_q;
993 int num_slots;
994
995 /* We can't combine slots, because the information about which slot
996 is in which alias set will be lost. */
997 if (flag_strict_aliasing)
998 return;
999
1000 /* If there are a lot of temp slots, don't do anything unless
1001 high levels of optimization. */
1002 if (! flag_expensive_optimizations)
1003 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1004 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1005 return;
1006
1007 for (p = avail_temp_slots; p; p = next)
1008 {
1009 int delete_p = 0;
1010
1011 next = p->next;
1012
1013 if (GET_MODE (p->slot) != BLKmode)
1014 continue;
1015
1016 for (q = p->next; q; q = next_q)
1017 {
1018 int delete_q = 0;
1019
1020 next_q = q->next;
1021
1022 if (GET_MODE (q->slot) != BLKmode)
1023 continue;
1024
1025 if (p->base_offset + p->full_size == q->base_offset)
1026 {
1027 /* Q comes after P; combine Q into P. */
1028 p->size += q->size;
1029 p->full_size += q->full_size;
1030 delete_q = 1;
1031 }
1032 else if (q->base_offset + q->full_size == p->base_offset)
1033 {
1034 /* P comes after Q; combine P into Q. */
1035 q->size += p->size;
1036 q->full_size += p->full_size;
1037 delete_p = 1;
1038 break;
1039 }
1040 if (delete_q)
1041 cut_slot_from_list (q, &avail_temp_slots);
1042 }
1043
1044 /* Either delete P or advance past it. */
1045 if (delete_p)
1046 cut_slot_from_list (p, &avail_temp_slots);
1047 }
1048 }
1049 \f
1050 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1051 slot that previously was known by OLD_RTX. */
1052
1053 void
1054 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1055 {
1056 struct temp_slot *p;
1057
1058 if (rtx_equal_p (old_rtx, new_rtx))
1059 return;
1060
1061 p = find_temp_slot_from_address (old_rtx);
1062
1063 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1064 NEW_RTX is a register, see if one operand of the PLUS is a
1065 temporary location. If so, NEW_RTX points into it. Otherwise,
1066 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1067 in common between them. If so, try a recursive call on those
1068 values. */
1069 if (p == 0)
1070 {
1071 if (GET_CODE (old_rtx) != PLUS)
1072 return;
1073
1074 if (REG_P (new_rtx))
1075 {
1076 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1077 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1078 return;
1079 }
1080 else if (GET_CODE (new_rtx) != PLUS)
1081 return;
1082
1083 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1084 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1085 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1086 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1087 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1091
1092 return;
1093 }
1094
1095 /* Otherwise add an alias for the temp's address. */
1096 insert_temp_slot_address (new_rtx, p);
1097 }
1098
1099 /* If X could be a reference to a temporary slot, mark that slot as
1100 belonging to the to one level higher than the current level. If X
1101 matched one of our slots, just mark that one. Otherwise, we can't
1102 easily predict which it is, so upgrade all of them.
1103
1104 This is called when an ({...}) construct occurs and a statement
1105 returns a value in memory. */
1106
1107 void
1108 preserve_temp_slots (rtx x)
1109 {
1110 struct temp_slot *p = 0, *next;
1111
1112 if (x == 0)
1113 return;
1114
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. */
1117 if (REG_P (x) && REG_POINTER (x))
1118 p = find_temp_slot_from_address (x);
1119
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot. */
1122 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1123 return;
1124
1125 /* First see if we can find a match. */
1126 if (p == 0)
1127 p = find_temp_slot_from_address (XEXP (x, 0));
1128
1129 if (p != 0)
1130 {
1131 if (p->level == temp_slot_level)
1132 move_slot_to_level (p, temp_slot_level - 1);
1133 return;
1134 }
1135
1136 /* Otherwise, preserve all non-kept slots at this level. */
1137 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1138 {
1139 next = p->next;
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 }
1142 }
1143
1144 /* Free all temporaries used so far. This is normally called at the
1145 end of generating code for a statement. */
1146
1147 void
1148 free_temp_slots (void)
1149 {
1150 struct temp_slot *p, *next;
1151 bool some_available = false;
1152
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 {
1155 next = p->next;
1156 make_slot_available (p);
1157 some_available = true;
1158 }
1159
1160 if (some_available)
1161 {
1162 remove_unused_temp_slot_addresses ();
1163 combine_temp_slots ();
1164 }
1165 }
1166
1167 /* Push deeper into the nesting level for stack temporaries. */
1168
1169 void
1170 push_temp_slots (void)
1171 {
1172 temp_slot_level++;
1173 }
1174
1175 /* Pop a temporary nesting level. All slots in use in the current level
1176 are freed. */
1177
1178 void
1179 pop_temp_slots (void)
1180 {
1181 free_temp_slots ();
1182 temp_slot_level--;
1183 }
1184
1185 /* Initialize temporary slots. */
1186
1187 void
1188 init_temp_slots (void)
1189 {
1190 /* We have not allocated any temporaries yet. */
1191 avail_temp_slots = 0;
1192 vec_alloc (used_temp_slots, 0);
1193 temp_slot_level = 0;
1194 n_temp_slots_in_use = 0;
1195
1196 /* Set up the table to map addresses to temp slots. */
1197 if (! temp_slot_address_table)
1198 temp_slot_address_table = htab_create_ggc (32,
1199 temp_slot_address_hash,
1200 temp_slot_address_eq,
1201 NULL);
1202 else
1203 htab_empty (temp_slot_address_table);
1204 }
1205 \f
1206 /* Functions and data structures to keep track of the values hard regs
1207 had at the start of the function. */
1208
1209 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1210 and has_hard_reg_initial_val.. */
1211 typedef struct GTY(()) initial_value_pair {
1212 rtx hard_reg;
1213 rtx pseudo;
1214 } initial_value_pair;
1215 /* ??? This could be a VEC but there is currently no way to define an
1216 opaque VEC type. This could be worked around by defining struct
1217 initial_value_pair in function.h. */
1218 typedef struct GTY(()) initial_value_struct {
1219 int num_entries;
1220 int max_entries;
1221 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1222 } initial_value_struct;
1223
1224 /* If a pseudo represents an initial hard reg (or expression), return
1225 it, else return NULL_RTX. */
1226
1227 rtx
1228 get_hard_reg_initial_reg (rtx reg)
1229 {
1230 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1231 int i;
1232
1233 if (ivs == 0)
1234 return NULL_RTX;
1235
1236 for (i = 0; i < ivs->num_entries; i++)
1237 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1238 return ivs->entries[i].hard_reg;
1239
1240 return NULL_RTX;
1241 }
1242
1243 /* Make sure that there's a pseudo register of mode MODE that stores the
1244 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1245
1246 rtx
1247 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1248 {
1249 struct initial_value_struct *ivs;
1250 rtx rv;
1251
1252 rv = has_hard_reg_initial_val (mode, regno);
1253 if (rv)
1254 return rv;
1255
1256 ivs = crtl->hard_reg_initial_vals;
1257 if (ivs == 0)
1258 {
1259 ivs = ggc_alloc<initial_value_struct> ();
1260 ivs->num_entries = 0;
1261 ivs->max_entries = 5;
1262 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1263 crtl->hard_reg_initial_vals = ivs;
1264 }
1265
1266 if (ivs->num_entries >= ivs->max_entries)
1267 {
1268 ivs->max_entries += 5;
1269 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1270 ivs->max_entries);
1271 }
1272
1273 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1274 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1275
1276 return ivs->entries[ivs->num_entries++].pseudo;
1277 }
1278
1279 /* See if get_hard_reg_initial_val has been used to create a pseudo
1280 for the initial value of hard register REGNO in mode MODE. Return
1281 the associated pseudo if so, otherwise return NULL. */
1282
1283 rtx
1284 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1285 {
1286 struct initial_value_struct *ivs;
1287 int i;
1288
1289 ivs = crtl->hard_reg_initial_vals;
1290 if (ivs != 0)
1291 for (i = 0; i < ivs->num_entries; i++)
1292 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1293 && REGNO (ivs->entries[i].hard_reg) == regno)
1294 return ivs->entries[i].pseudo;
1295
1296 return NULL_RTX;
1297 }
1298
1299 unsigned int
1300 emit_initial_value_sets (void)
1301 {
1302 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1303 int i;
1304 rtx_insn *seq;
1305
1306 if (ivs == 0)
1307 return 0;
1308
1309 start_sequence ();
1310 for (i = 0; i < ivs->num_entries; i++)
1311 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1312 seq = get_insns ();
1313 end_sequence ();
1314
1315 emit_insn_at_entry (seq);
1316 return 0;
1317 }
1318
1319 /* Return the hardreg-pseudoreg initial values pair entry I and
1320 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1321 bool
1322 initial_value_entry (int i, rtx *hreg, rtx *preg)
1323 {
1324 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1325 if (!ivs || i >= ivs->num_entries)
1326 return false;
1327
1328 *hreg = ivs->entries[i].hard_reg;
1329 *preg = ivs->entries[i].pseudo;
1330 return true;
1331 }
1332 \f
1333 /* These routines are responsible for converting virtual register references
1334 to the actual hard register references once RTL generation is complete.
1335
1336 The following four variables are used for communication between the
1337 routines. They contain the offsets of the virtual registers from their
1338 respective hard registers. */
1339
1340 static int in_arg_offset;
1341 static int var_offset;
1342 static int dynamic_offset;
1343 static int out_arg_offset;
1344 static int cfa_offset;
1345
1346 /* In most machines, the stack pointer register is equivalent to the bottom
1347 of the stack. */
1348
1349 #ifndef STACK_POINTER_OFFSET
1350 #define STACK_POINTER_OFFSET 0
1351 #endif
1352
1353 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1354 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1355 #endif
1356
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360
1361 #ifndef STACK_DYNAMIC_OFFSET
1362
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1370
1371 #ifdef INCOMING_REG_PARM_STACK_SPACE
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1384
1385 \f
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1389
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 {
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1395
1396 if (x == virtual_incoming_args_rtx)
1397 {
1398 if (stack_realign_drap)
1399 {
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1404 }
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 }
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1415 {
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1422 }
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1424 {
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1427 }
1428 else
1429 return NULL_RTX;
1430
1431 *poffset = offset;
1432 return new_rtx;
1433 }
1434
1435 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1436 registers present inside of *LOC. The expression is simplified,
1437 as much as possible, but is not to be considered "valid" in any sense
1438 implied by the target. Return true if any change is made. */
1439
1440 static bool
1441 instantiate_virtual_regs_in_rtx (rtx *loc)
1442 {
1443 if (!*loc)
1444 return false;
1445 bool changed = false;
1446 subrtx_ptr_iterator::array_type array;
1447 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1448 {
1449 rtx *loc = *iter;
1450 if (rtx x = *loc)
1451 {
1452 rtx new_rtx;
1453 HOST_WIDE_INT offset;
1454 switch (GET_CODE (x))
1455 {
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1459 {
1460 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1461 changed = true;
1462 }
1463 iter.skip_subrtxes ();
1464 break;
1465
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1469 {
1470 XEXP (x, 0) = new_rtx;
1471 *loc = plus_constant (GET_MODE (x), x, offset, true);
1472 changed = true;
1473 iter.skip_subrtxes ();
1474 break;
1475 }
1476
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1482
1483 default:
1484 break;
1485 }
1486 }
1487 }
1488 return changed;
1489 }
1490
1491 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1492 matches the predicate for insn CODE operand OPERAND. */
1493
1494 static int
1495 safe_insn_predicate (int code, int operand, rtx x)
1496 {
1497 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1498 }
1499
1500 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1501 registers present inside of insn. The result will be a valid insn. */
1502
1503 static void
1504 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1505 {
1506 HOST_WIDE_INT offset;
1507 int insn_code, i;
1508 bool any_change = false;
1509 rtx set, new_rtx, x;
1510 rtx_insn *seq;
1511
1512 /* There are some special cases to be handled first. */
1513 set = single_set (insn);
1514 if (set)
1515 {
1516 /* We're allowed to assign to a virtual register. This is interpreted
1517 to mean that the underlying register gets assigned the inverse
1518 transformation. This is used, for example, in the handling of
1519 non-local gotos. */
1520 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1521 if (new_rtx)
1522 {
1523 start_sequence ();
1524
1525 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1526 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1527 gen_int_mode (-offset, GET_MODE (new_rtx)));
1528 x = force_operand (x, new_rtx);
1529 if (x != new_rtx)
1530 emit_move_insn (new_rtx, x);
1531
1532 seq = get_insns ();
1533 end_sequence ();
1534
1535 emit_insn_before (seq, insn);
1536 delete_insn (insn);
1537 return;
1538 }
1539
1540 /* Handle a straight copy from a virtual register by generating a
1541 new add insn. The difference between this and falling through
1542 to the generic case is avoiding a new pseudo and eliminating a
1543 move insn in the initial rtl stream. */
1544 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1545 if (new_rtx && offset != 0
1546 && REG_P (SET_DEST (set))
1547 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1548 {
1549 start_sequence ();
1550
1551 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1552 gen_int_mode (offset,
1553 GET_MODE (SET_DEST (set))),
1554 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1555 if (x != SET_DEST (set))
1556 emit_move_insn (SET_DEST (set), x);
1557
1558 seq = get_insns ();
1559 end_sequence ();
1560
1561 emit_insn_before (seq, insn);
1562 delete_insn (insn);
1563 return;
1564 }
1565
1566 extract_insn (insn);
1567 insn_code = INSN_CODE (insn);
1568
1569 /* Handle a plus involving a virtual register by determining if the
1570 operands remain valid if they're modified in place. */
1571 if (GET_CODE (SET_SRC (set)) == PLUS
1572 && recog_data.n_operands >= 3
1573 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1574 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1575 && CONST_INT_P (recog_data.operand[2])
1576 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1577 {
1578 offset += INTVAL (recog_data.operand[2]);
1579
1580 /* If the sum is zero, then replace with a plain move. */
1581 if (offset == 0
1582 && REG_P (SET_DEST (set))
1583 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1584 {
1585 start_sequence ();
1586 emit_move_insn (SET_DEST (set), new_rtx);
1587 seq = get_insns ();
1588 end_sequence ();
1589
1590 emit_insn_before (seq, insn);
1591 delete_insn (insn);
1592 return;
1593 }
1594
1595 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1596
1597 /* Using validate_change and apply_change_group here leaves
1598 recog_data in an invalid state. Since we know exactly what
1599 we want to check, do those two by hand. */
1600 if (safe_insn_predicate (insn_code, 1, new_rtx)
1601 && safe_insn_predicate (insn_code, 2, x))
1602 {
1603 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1604 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1605 any_change = true;
1606
1607 /* Fall through into the regular operand fixup loop in
1608 order to take care of operands other than 1 and 2. */
1609 }
1610 }
1611 }
1612 else
1613 {
1614 extract_insn (insn);
1615 insn_code = INSN_CODE (insn);
1616 }
1617
1618 /* In the general case, we expect virtual registers to appear only in
1619 operands, and then only as either bare registers or inside memories. */
1620 for (i = 0; i < recog_data.n_operands; ++i)
1621 {
1622 x = recog_data.operand[i];
1623 switch (GET_CODE (x))
1624 {
1625 case MEM:
1626 {
1627 rtx addr = XEXP (x, 0);
1628
1629 if (!instantiate_virtual_regs_in_rtx (&addr))
1630 continue;
1631
1632 start_sequence ();
1633 x = replace_equiv_address (x, addr, true);
1634 /* It may happen that the address with the virtual reg
1635 was valid (e.g. based on the virtual stack reg, which might
1636 be acceptable to the predicates with all offsets), whereas
1637 the address now isn't anymore, for instance when the address
1638 is still offsetted, but the base reg isn't virtual-stack-reg
1639 anymore. Below we would do a force_reg on the whole operand,
1640 but this insn might actually only accept memory. Hence,
1641 before doing that last resort, try to reload the address into
1642 a register, so this operand stays a MEM. */
1643 if (!safe_insn_predicate (insn_code, i, x))
1644 {
1645 addr = force_reg (GET_MODE (addr), addr);
1646 x = replace_equiv_address (x, addr, true);
1647 }
1648 seq = get_insns ();
1649 end_sequence ();
1650 if (seq)
1651 emit_insn_before (seq, insn);
1652 }
1653 break;
1654
1655 case REG:
1656 new_rtx = instantiate_new_reg (x, &offset);
1657 if (new_rtx == NULL)
1658 continue;
1659 if (offset == 0)
1660 x = new_rtx;
1661 else
1662 {
1663 start_sequence ();
1664
1665 /* Careful, special mode predicates may have stuff in
1666 insn_data[insn_code].operand[i].mode that isn't useful
1667 to us for computing a new value. */
1668 /* ??? Recognize address_operand and/or "p" constraints
1669 to see if (plus new offset) is a valid before we put
1670 this through expand_simple_binop. */
1671 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1672 gen_int_mode (offset, GET_MODE (x)),
1673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1674 seq = get_insns ();
1675 end_sequence ();
1676 emit_insn_before (seq, insn);
1677 }
1678 break;
1679
1680 case SUBREG:
1681 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1682 if (new_rtx == NULL)
1683 continue;
1684 if (offset != 0)
1685 {
1686 start_sequence ();
1687 new_rtx = expand_simple_binop
1688 (GET_MODE (new_rtx), PLUS, new_rtx,
1689 gen_int_mode (offset, GET_MODE (new_rtx)),
1690 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1691 seq = get_insns ();
1692 end_sequence ();
1693 emit_insn_before (seq, insn);
1694 }
1695 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1696 GET_MODE (new_rtx), SUBREG_BYTE (x));
1697 gcc_assert (x);
1698 break;
1699
1700 default:
1701 continue;
1702 }
1703
1704 /* At this point, X contains the new value for the operand.
1705 Validate the new value vs the insn predicate. Note that
1706 asm insns will have insn_code -1 here. */
1707 if (!safe_insn_predicate (insn_code, i, x))
1708 {
1709 start_sequence ();
1710 if (REG_P (x))
1711 {
1712 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1713 x = copy_to_reg (x);
1714 }
1715 else
1716 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1717 seq = get_insns ();
1718 end_sequence ();
1719 if (seq)
1720 emit_insn_before (seq, insn);
1721 }
1722
1723 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1724 any_change = true;
1725 }
1726
1727 if (any_change)
1728 {
1729 /* Propagate operand changes into the duplicates. */
1730 for (i = 0; i < recog_data.n_dups; ++i)
1731 *recog_data.dup_loc[i]
1732 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1733
1734 /* Force re-recognition of the instruction for validation. */
1735 INSN_CODE (insn) = -1;
1736 }
1737
1738 if (asm_noperands (PATTERN (insn)) >= 0)
1739 {
1740 if (!check_asm_operands (PATTERN (insn)))
1741 {
1742 error_for_asm (insn, "impossible constraint in %<asm%>");
1743 /* For asm goto, instead of fixing up all the edges
1744 just clear the template and clear input operands
1745 (asm goto doesn't have any output operands). */
1746 if (JUMP_P (insn))
1747 {
1748 rtx asm_op = extract_asm_operands (PATTERN (insn));
1749 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1750 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1751 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1752 }
1753 else
1754 delete_insn (insn);
1755 }
1756 }
1757 else
1758 {
1759 if (recog_memoized (insn) < 0)
1760 fatal_insn_not_found (insn);
1761 }
1762 }
1763
1764 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1765 do any instantiation required. */
1766
1767 void
1768 instantiate_decl_rtl (rtx x)
1769 {
1770 rtx addr;
1771
1772 if (x == 0)
1773 return;
1774
1775 /* If this is a CONCAT, recurse for the pieces. */
1776 if (GET_CODE (x) == CONCAT)
1777 {
1778 instantiate_decl_rtl (XEXP (x, 0));
1779 instantiate_decl_rtl (XEXP (x, 1));
1780 return;
1781 }
1782
1783 /* If this is not a MEM, no need to do anything. Similarly if the
1784 address is a constant or a register that is not a virtual register. */
1785 if (!MEM_P (x))
1786 return;
1787
1788 addr = XEXP (x, 0);
1789 if (CONSTANT_P (addr)
1790 || (REG_P (addr)
1791 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1792 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1793 return;
1794
1795 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1796 }
1797
1798 /* Helper for instantiate_decls called via walk_tree: Process all decls
1799 in the given DECL_VALUE_EXPR. */
1800
1801 static tree
1802 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1803 {
1804 tree t = *tp;
1805 if (! EXPR_P (t))
1806 {
1807 *walk_subtrees = 0;
1808 if (DECL_P (t))
1809 {
1810 if (DECL_RTL_SET_P (t))
1811 instantiate_decl_rtl (DECL_RTL (t));
1812 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1813 && DECL_INCOMING_RTL (t))
1814 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1815 if ((TREE_CODE (t) == VAR_DECL
1816 || TREE_CODE (t) == RESULT_DECL)
1817 && DECL_HAS_VALUE_EXPR_P (t))
1818 {
1819 tree v = DECL_VALUE_EXPR (t);
1820 walk_tree (&v, instantiate_expr, NULL, NULL);
1821 }
1822 }
1823 }
1824 return NULL;
1825 }
1826
1827 /* Subroutine of instantiate_decls: Process all decls in the given
1828 BLOCK node and all its subblocks. */
1829
1830 static void
1831 instantiate_decls_1 (tree let)
1832 {
1833 tree t;
1834
1835 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1836 {
1837 if (DECL_RTL_SET_P (t))
1838 instantiate_decl_rtl (DECL_RTL (t));
1839 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1840 {
1841 tree v = DECL_VALUE_EXPR (t);
1842 walk_tree (&v, instantiate_expr, NULL, NULL);
1843 }
1844 }
1845
1846 /* Process all subblocks. */
1847 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1848 instantiate_decls_1 (t);
1849 }
1850
1851 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1852 all virtual registers in their DECL_RTL's. */
1853
1854 static void
1855 instantiate_decls (tree fndecl)
1856 {
1857 tree decl;
1858 unsigned ix;
1859
1860 /* Process all parameters of the function. */
1861 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1862 {
1863 instantiate_decl_rtl (DECL_RTL (decl));
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1865 if (DECL_HAS_VALUE_EXPR_P (decl))
1866 {
1867 tree v = DECL_VALUE_EXPR (decl);
1868 walk_tree (&v, instantiate_expr, NULL, NULL);
1869 }
1870 }
1871
1872 if ((decl = DECL_RESULT (fndecl))
1873 && TREE_CODE (decl) == RESULT_DECL)
1874 {
1875 if (DECL_RTL_SET_P (decl))
1876 instantiate_decl_rtl (DECL_RTL (decl));
1877 if (DECL_HAS_VALUE_EXPR_P (decl))
1878 {
1879 tree v = DECL_VALUE_EXPR (decl);
1880 walk_tree (&v, instantiate_expr, NULL, NULL);
1881 }
1882 }
1883
1884 /* Process the saved static chain if it exists. */
1885 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1886 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1888
1889 /* Now process all variables defined in the function or its subblocks. */
1890 instantiate_decls_1 (DECL_INITIAL (fndecl));
1891
1892 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1893 if (DECL_RTL_SET_P (decl))
1894 instantiate_decl_rtl (DECL_RTL (decl));
1895 vec_free (cfun->local_decls);
1896 }
1897
1898 /* Pass through the INSNS of function FNDECL and convert virtual register
1899 references to hard register references. */
1900
1901 static unsigned int
1902 instantiate_virtual_regs (void)
1903 {
1904 rtx_insn *insn;
1905
1906 /* Compute the offsets to use for this function. */
1907 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1908 var_offset = STARTING_FRAME_OFFSET;
1909 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1910 out_arg_offset = STACK_POINTER_OFFSET;
1911 #ifdef FRAME_POINTER_CFA_OFFSET
1912 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1913 #else
1914 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1915 #endif
1916
1917 /* Initialize recognition, indicating that volatile is OK. */
1918 init_recog ();
1919
1920 /* Scan through all the insns, instantiating every virtual register still
1921 present. */
1922 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1923 if (INSN_P (insn))
1924 {
1925 /* These patterns in the instruction stream can never be recognized.
1926 Fortunately, they shouldn't contain virtual registers either. */
1927 if (GET_CODE (PATTERN (insn)) == USE
1928 || GET_CODE (PATTERN (insn)) == CLOBBER
1929 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1930 continue;
1931 else if (DEBUG_INSN_P (insn))
1932 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1933 else
1934 instantiate_virtual_regs_in_insn (insn);
1935
1936 if (insn->deleted ())
1937 continue;
1938
1939 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1940
1941 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1942 if (CALL_P (insn))
1943 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1944 }
1945
1946 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1947 instantiate_decls (current_function_decl);
1948
1949 targetm.instantiate_decls ();
1950
1951 /* Indicate that, from now on, assign_stack_local should use
1952 frame_pointer_rtx. */
1953 virtuals_instantiated = 1;
1954
1955 return 0;
1956 }
1957
1958 namespace {
1959
1960 const pass_data pass_data_instantiate_virtual_regs =
1961 {
1962 RTL_PASS, /* type */
1963 "vregs", /* name */
1964 OPTGROUP_NONE, /* optinfo_flags */
1965 TV_NONE, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 0, /* todo_flags_finish */
1971 };
1972
1973 class pass_instantiate_virtual_regs : public rtl_opt_pass
1974 {
1975 public:
1976 pass_instantiate_virtual_regs (gcc::context *ctxt)
1977 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1978 {}
1979
1980 /* opt_pass methods: */
1981 virtual unsigned int execute (function *)
1982 {
1983 return instantiate_virtual_regs ();
1984 }
1985
1986 }; // class pass_instantiate_virtual_regs
1987
1988 } // anon namespace
1989
1990 rtl_opt_pass *
1991 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1992 {
1993 return new pass_instantiate_virtual_regs (ctxt);
1994 }
1995
1996 \f
1997 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1998 This means a type for which function calls must pass an address to the
1999 function or get an address back from the function.
2000 EXP may be a type node or an expression (whose type is tested). */
2001
2002 int
2003 aggregate_value_p (const_tree exp, const_tree fntype)
2004 {
2005 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2006 int i, regno, nregs;
2007 rtx reg;
2008
2009 if (fntype)
2010 switch (TREE_CODE (fntype))
2011 {
2012 case CALL_EXPR:
2013 {
2014 tree fndecl = get_callee_fndecl (fntype);
2015 fntype = (fndecl
2016 ? TREE_TYPE (fndecl)
2017 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2018 }
2019 break;
2020 case FUNCTION_DECL:
2021 fntype = TREE_TYPE (fntype);
2022 break;
2023 case FUNCTION_TYPE:
2024 case METHOD_TYPE:
2025 break;
2026 case IDENTIFIER_NODE:
2027 fntype = NULL_TREE;
2028 break;
2029 default:
2030 /* We don't expect other tree types here. */
2031 gcc_unreachable ();
2032 }
2033
2034 if (VOID_TYPE_P (type))
2035 return 0;
2036
2037 /* If a record should be passed the same as its first (and only) member
2038 don't pass it as an aggregate. */
2039 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2040 return aggregate_value_p (first_field (type), fntype);
2041
2042 /* If the front end has decided that this needs to be passed by
2043 reference, do so. */
2044 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2045 && DECL_BY_REFERENCE (exp))
2046 return 1;
2047
2048 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2049 if (fntype && TREE_ADDRESSABLE (fntype))
2050 return 1;
2051
2052 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2053 and thus can't be returned in registers. */
2054 if (TREE_ADDRESSABLE (type))
2055 return 1;
2056
2057 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2058 return 1;
2059
2060 /* Pointers-to-shared must be considered as aggregates for
2061 the purpose of passing them as return values, but only
2062 when the underlying mode of the representation would
2063 require that its value be passed on the stack.
2064 This occurs when using the 'struct' representation
2065 of a shared pointer. */
2066 if (flag_pcc_struct_return && POINTER_TYPE_P (type)
2067 && upc_shared_type_p (TREE_TYPE (type))
2068 && AGGREGATE_TYPE_P (upc_pts_rep_type_node))
2069 return 1;
2070
2071 if (targetm.calls.return_in_memory (type, fntype))
2072 return 1;
2073
2074 /* Make sure we have suitable call-clobbered regs to return
2075 the value in; if not, we must return it in memory. */
2076 reg = hard_function_value (type, 0, fntype, 0);
2077
2078 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2079 it is OK. */
2080 if (!REG_P (reg))
2081 return 0;
2082
2083 regno = REGNO (reg);
2084 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2085 for (i = 0; i < nregs; i++)
2086 if (! call_used_regs[regno + i])
2087 return 1;
2088
2089 return 0;
2090 }
2091 \f
2092 /* Return true if we should assign DECL a pseudo register; false if it
2093 should live on the local stack. */
2094
2095 bool
2096 use_register_for_decl (const_tree decl)
2097 {
2098 if (!targetm.calls.allocate_stack_slots_for_args ())
2099 return true;
2100
2101 /* Honor volatile. */
2102 if (TREE_SIDE_EFFECTS (decl))
2103 return false;
2104
2105 /* Honor addressability. */
2106 if (TREE_ADDRESSABLE (decl))
2107 return false;
2108
2109 /* Only register-like things go in registers. */
2110 if (DECL_MODE (decl) == BLKmode)
2111 return false;
2112
2113 /* If -ffloat-store specified, don't put explicit float variables
2114 into registers. */
2115 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2116 propagates values across these stores, and it probably shouldn't. */
2117 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2118 return false;
2119
2120 /* If we're not interested in tracking debugging information for
2121 this decl, then we can certainly put it in a register. */
2122 if (DECL_IGNORED_P (decl))
2123 return true;
2124
2125 if (optimize)
2126 return true;
2127
2128 if (!DECL_REGISTER (decl))
2129 return false;
2130
2131 switch (TREE_CODE (TREE_TYPE (decl)))
2132 {
2133 case RECORD_TYPE:
2134 case UNION_TYPE:
2135 case QUAL_UNION_TYPE:
2136 /* When not optimizing, disregard register keyword for variables with
2137 types containing methods, otherwise the methods won't be callable
2138 from the debugger. */
2139 if (TYPE_METHODS (TREE_TYPE (decl)))
2140 return false;
2141 break;
2142 default:
2143 break;
2144 }
2145
2146 return true;
2147 }
2148
2149 /* Return true if TYPE should be passed by invisible reference. */
2150
2151 bool
2152 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2153 tree type, bool named_arg)
2154 {
2155 if (type)
2156 {
2157 /* If this type contains non-trivial constructors, then it is
2158 forbidden for the middle-end to create any new copies. */
2159 if (TREE_ADDRESSABLE (type))
2160 return true;
2161
2162 /* GCC post 3.4 passes *all* variable sized types by reference. */
2163 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2164 return true;
2165
2166 /* If a record type should be passed the same as its first (and only)
2167 member, use the type and mode of that member. */
2168 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2169 {
2170 type = TREE_TYPE (first_field (type));
2171 mode = TYPE_MODE (type);
2172 }
2173 }
2174
2175 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2176 type, named_arg);
2177 }
2178
2179 /* Return true if TYPE, which is passed by reference, should be callee
2180 copied instead of caller copied. */
2181
2182 bool
2183 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2184 tree type, bool named_arg)
2185 {
2186 if (type && TREE_ADDRESSABLE (type))
2187 return false;
2188 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2189 named_arg);
2190 }
2191
2192 /* Structures to communicate between the subroutines of assign_parms.
2193 The first holds data persistent across all parameters, the second
2194 is cleared out for each parameter. */
2195
2196 struct assign_parm_data_all
2197 {
2198 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2199 should become a job of the target or otherwise encapsulated. */
2200 CUMULATIVE_ARGS args_so_far_v;
2201 cumulative_args_t args_so_far;
2202 struct args_size stack_args_size;
2203 tree function_result_decl;
2204 tree orig_fnargs;
2205 rtx_insn *first_conversion_insn;
2206 rtx_insn *last_conversion_insn;
2207 HOST_WIDE_INT pretend_args_size;
2208 HOST_WIDE_INT extra_pretend_bytes;
2209 int reg_parm_stack_space;
2210 };
2211
2212 struct assign_parm_data_one
2213 {
2214 tree nominal_type;
2215 tree passed_type;
2216 rtx entry_parm;
2217 rtx stack_parm;
2218 enum machine_mode nominal_mode;
2219 enum machine_mode passed_mode;
2220 enum machine_mode promoted_mode;
2221 struct locate_and_pad_arg_data locate;
2222 int partial;
2223 BOOL_BITFIELD named_arg : 1;
2224 BOOL_BITFIELD passed_pointer : 1;
2225 BOOL_BITFIELD on_stack : 1;
2226 BOOL_BITFIELD loaded_in_reg : 1;
2227 };
2228
2229 /* A subroutine of assign_parms. Initialize ALL. */
2230
2231 static void
2232 assign_parms_initialize_all (struct assign_parm_data_all *all)
2233 {
2234 tree fntype ATTRIBUTE_UNUSED;
2235
2236 memset (all, 0, sizeof (*all));
2237
2238 fntype = TREE_TYPE (current_function_decl);
2239
2240 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2241 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2242 #else
2243 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2244 current_function_decl, -1);
2245 #endif
2246 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2247
2248 #ifdef INCOMING_REG_PARM_STACK_SPACE
2249 all->reg_parm_stack_space
2250 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2251 #endif
2252 }
2253
2254 /* If ARGS contains entries with complex types, split the entry into two
2255 entries of the component type. Return a new list of substitutions are
2256 needed, else the old list. */
2257
2258 static void
2259 split_complex_args (vec<tree> *args)
2260 {
2261 unsigned i;
2262 tree p;
2263
2264 FOR_EACH_VEC_ELT (*args, i, p)
2265 {
2266 tree type = TREE_TYPE (p);
2267 if (TREE_CODE (type) == COMPLEX_TYPE
2268 && targetm.calls.split_complex_arg (type))
2269 {
2270 tree decl;
2271 tree subtype = TREE_TYPE (type);
2272 bool addressable = TREE_ADDRESSABLE (p);
2273
2274 /* Rewrite the PARM_DECL's type with its component. */
2275 p = copy_node (p);
2276 TREE_TYPE (p) = subtype;
2277 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2278 DECL_MODE (p) = VOIDmode;
2279 DECL_SIZE (p) = NULL;
2280 DECL_SIZE_UNIT (p) = NULL;
2281 /* If this arg must go in memory, put it in a pseudo here.
2282 We can't allow it to go in memory as per normal parms,
2283 because the usual place might not have the imag part
2284 adjacent to the real part. */
2285 DECL_ARTIFICIAL (p) = addressable;
2286 DECL_IGNORED_P (p) = addressable;
2287 TREE_ADDRESSABLE (p) = 0;
2288 layout_decl (p, 0);
2289 (*args)[i] = p;
2290
2291 /* Build a second synthetic decl. */
2292 decl = build_decl (EXPR_LOCATION (p),
2293 PARM_DECL, NULL_TREE, subtype);
2294 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2295 DECL_ARTIFICIAL (decl) = addressable;
2296 DECL_IGNORED_P (decl) = addressable;
2297 layout_decl (decl, 0);
2298 args->safe_insert (++i, decl);
2299 }
2300 }
2301 }
2302
2303 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2304 the hidden struct return argument, and (abi willing) complex args.
2305 Return the new parameter list. */
2306
2307 static vec<tree>
2308 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2309 {
2310 tree fndecl = current_function_decl;
2311 tree fntype = TREE_TYPE (fndecl);
2312 vec<tree> fnargs = vNULL;
2313 tree arg;
2314
2315 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2316 fnargs.safe_push (arg);
2317
2318 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2319
2320 /* If struct value address is treated as the first argument, make it so. */
2321 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2322 && ! cfun->returns_pcc_struct
2323 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2324 {
2325 tree type = build_pointer_type (TREE_TYPE (fntype));
2326 tree decl;
2327
2328 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2329 PARM_DECL, get_identifier (".result_ptr"), type);
2330 DECL_ARG_TYPE (decl) = type;
2331 DECL_ARTIFICIAL (decl) = 1;
2332 DECL_NAMELESS (decl) = 1;
2333 TREE_CONSTANT (decl) = 1;
2334
2335 DECL_CHAIN (decl) = all->orig_fnargs;
2336 all->orig_fnargs = decl;
2337 fnargs.safe_insert (0, decl);
2338
2339 all->function_result_decl = decl;
2340 }
2341
2342 /* If the target wants to split complex arguments into scalars, do so. */
2343 if (targetm.calls.split_complex_arg)
2344 split_complex_args (&fnargs);
2345
2346 return fnargs;
2347 }
2348
2349 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2350 data for the parameter. Incorporate ABI specifics such as pass-by-
2351 reference and type promotion. */
2352
2353 static void
2354 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2355 struct assign_parm_data_one *data)
2356 {
2357 tree nominal_type, passed_type;
2358 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2359 int unsignedp;
2360
2361 memset (data, 0, sizeof (*data));
2362
2363 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2364 if (!cfun->stdarg)
2365 data->named_arg = 1; /* No variadic parms. */
2366 else if (DECL_CHAIN (parm))
2367 data->named_arg = 1; /* Not the last non-variadic parm. */
2368 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2369 data->named_arg = 1; /* Only variadic ones are unnamed. */
2370 else
2371 data->named_arg = 0; /* Treat as variadic. */
2372
2373 nominal_type = TREE_TYPE (parm);
2374 passed_type = DECL_ARG_TYPE (parm);
2375
2376 /* Look out for errors propagating this far. Also, if the parameter's
2377 type is void then its value doesn't matter. */
2378 if (TREE_TYPE (parm) == error_mark_node
2379 /* This can happen after weird syntax errors
2380 or if an enum type is defined among the parms. */
2381 || TREE_CODE (parm) != PARM_DECL
2382 || passed_type == NULL
2383 || VOID_TYPE_P (nominal_type))
2384 {
2385 nominal_type = passed_type = void_type_node;
2386 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2387 goto egress;
2388 }
2389
2390 /* Find mode of arg as it is passed, and mode of arg as it should be
2391 during execution of this function. */
2392 passed_mode = TYPE_MODE (passed_type);
2393 nominal_mode = TYPE_MODE (nominal_type);
2394
2395 /* If the parm is to be passed as a transparent union or record, use the
2396 type of the first field for the tests below. We have already verified
2397 that the modes are the same. */
2398 if ((TREE_CODE (passed_type) == UNION_TYPE
2399 || TREE_CODE (passed_type) == RECORD_TYPE)
2400 && TYPE_TRANSPARENT_AGGR (passed_type))
2401 passed_type = TREE_TYPE (first_field (passed_type));
2402
2403 /* See if this arg was passed by invisible reference. */
2404 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2405 passed_type, data->named_arg))
2406 {
2407 passed_type = nominal_type = build_pointer_type (passed_type);
2408 data->passed_pointer = true;
2409 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2410 }
2411
2412 /* Find mode as it is passed by the ABI. */
2413 unsignedp = TYPE_UNSIGNED (passed_type);
2414 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2415 TREE_TYPE (current_function_decl), 0);
2416
2417 egress:
2418 data->nominal_type = nominal_type;
2419 data->passed_type = passed_type;
2420 data->nominal_mode = nominal_mode;
2421 data->passed_mode = passed_mode;
2422 data->promoted_mode = promoted_mode;
2423 }
2424
2425 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2426
2427 static void
2428 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2429 struct assign_parm_data_one *data, bool no_rtl)
2430 {
2431 int varargs_pretend_bytes = 0;
2432
2433 targetm.calls.setup_incoming_varargs (all->args_so_far,
2434 data->promoted_mode,
2435 data->passed_type,
2436 &varargs_pretend_bytes, no_rtl);
2437
2438 /* If the back-end has requested extra stack space, record how much is
2439 needed. Do not change pretend_args_size otherwise since it may be
2440 nonzero from an earlier partial argument. */
2441 if (varargs_pretend_bytes > 0)
2442 all->pretend_args_size = varargs_pretend_bytes;
2443 }
2444
2445 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2446 the incoming location of the current parameter. */
2447
2448 static void
2449 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2450 struct assign_parm_data_one *data)
2451 {
2452 HOST_WIDE_INT pretend_bytes = 0;
2453 rtx entry_parm;
2454 bool in_regs;
2455
2456 if (data->promoted_mode == VOIDmode)
2457 {
2458 data->entry_parm = data->stack_parm = const0_rtx;
2459 return;
2460 }
2461
2462 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2463 data->promoted_mode,
2464 data->passed_type,
2465 data->named_arg);
2466
2467 if (entry_parm == 0)
2468 data->promoted_mode = data->passed_mode;
2469
2470 /* Determine parm's home in the stack, in case it arrives in the stack
2471 or we should pretend it did. Compute the stack position and rtx where
2472 the argument arrives and its size.
2473
2474 There is one complexity here: If this was a parameter that would
2475 have been passed in registers, but wasn't only because it is
2476 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2477 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2478 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2479 as it was the previous time. */
2480 in_regs = entry_parm != 0;
2481 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2482 in_regs = true;
2483 #endif
2484 if (!in_regs && !data->named_arg)
2485 {
2486 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2487 {
2488 rtx tem;
2489 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2490 data->promoted_mode,
2491 data->passed_type, true);
2492 in_regs = tem != NULL;
2493 }
2494 }
2495
2496 /* If this parameter was passed both in registers and in the stack, use
2497 the copy on the stack. */
2498 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2499 data->passed_type))
2500 entry_parm = 0;
2501
2502 if (entry_parm)
2503 {
2504 int partial;
2505
2506 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2507 data->promoted_mode,
2508 data->passed_type,
2509 data->named_arg);
2510 data->partial = partial;
2511
2512 /* The caller might already have allocated stack space for the
2513 register parameters. */
2514 if (partial != 0 && all->reg_parm_stack_space == 0)
2515 {
2516 /* Part of this argument is passed in registers and part
2517 is passed on the stack. Ask the prologue code to extend
2518 the stack part so that we can recreate the full value.
2519
2520 PRETEND_BYTES is the size of the registers we need to store.
2521 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2522 stack space that the prologue should allocate.
2523
2524 Internally, gcc assumes that the argument pointer is aligned
2525 to STACK_BOUNDARY bits. This is used both for alignment
2526 optimizations (see init_emit) and to locate arguments that are
2527 aligned to more than PARM_BOUNDARY bits. We must preserve this
2528 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2529 a stack boundary. */
2530
2531 /* We assume at most one partial arg, and it must be the first
2532 argument on the stack. */
2533 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2534
2535 pretend_bytes = partial;
2536 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2537
2538 /* We want to align relative to the actual stack pointer, so
2539 don't include this in the stack size until later. */
2540 all->extra_pretend_bytes = all->pretend_args_size;
2541 }
2542 }
2543
2544 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2545 all->reg_parm_stack_space,
2546 entry_parm ? data->partial : 0, current_function_decl,
2547 &all->stack_args_size, &data->locate);
2548
2549 /* Update parm_stack_boundary if this parameter is passed in the
2550 stack. */
2551 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2552 crtl->parm_stack_boundary = data->locate.boundary;
2553
2554 /* Adjust offsets to include the pretend args. */
2555 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2556 data->locate.slot_offset.constant += pretend_bytes;
2557 data->locate.offset.constant += pretend_bytes;
2558
2559 data->entry_parm = entry_parm;
2560 }
2561
2562 /* A subroutine of assign_parms. If there is actually space on the stack
2563 for this parm, count it in stack_args_size and return true. */
2564
2565 static bool
2566 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2567 struct assign_parm_data_one *data)
2568 {
2569 /* Trivially true if we've no incoming register. */
2570 if (data->entry_parm == NULL)
2571 ;
2572 /* Also true if we're partially in registers and partially not,
2573 since we've arranged to drop the entire argument on the stack. */
2574 else if (data->partial != 0)
2575 ;
2576 /* Also true if the target says that it's passed in both registers
2577 and on the stack. */
2578 else if (GET_CODE (data->entry_parm) == PARALLEL
2579 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2580 ;
2581 /* Also true if the target says that there's stack allocated for
2582 all register parameters. */
2583 else if (all->reg_parm_stack_space > 0)
2584 ;
2585 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2586 else
2587 return false;
2588
2589 all->stack_args_size.constant += data->locate.size.constant;
2590 if (data->locate.size.var)
2591 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2592
2593 return true;
2594 }
2595
2596 /* A subroutine of assign_parms. Given that this parameter is allocated
2597 stack space by the ABI, find it. */
2598
2599 static void
2600 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2601 {
2602 rtx offset_rtx, stack_parm;
2603 unsigned int align, boundary;
2604
2605 /* If we're passing this arg using a reg, make its stack home the
2606 aligned stack slot. */
2607 if (data->entry_parm)
2608 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2609 else
2610 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2611
2612 stack_parm = crtl->args.internal_arg_pointer;
2613 if (offset_rtx != const0_rtx)
2614 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2615 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2616
2617 if (!data->passed_pointer)
2618 {
2619 set_mem_attributes (stack_parm, parm, 1);
2620 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2621 while promoted mode's size is needed. */
2622 if (data->promoted_mode != BLKmode
2623 && data->promoted_mode != DECL_MODE (parm))
2624 {
2625 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2626 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2627 {
2628 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2629 data->promoted_mode);
2630 if (offset)
2631 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2632 }
2633 }
2634 }
2635
2636 boundary = data->locate.boundary;
2637 align = BITS_PER_UNIT;
2638
2639 /* If we're padding upward, we know that the alignment of the slot
2640 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2641 intentionally forcing upward padding. Otherwise we have to come
2642 up with a guess at the alignment based on OFFSET_RTX. */
2643 if (data->locate.where_pad != downward || data->entry_parm)
2644 align = boundary;
2645 else if (CONST_INT_P (offset_rtx))
2646 {
2647 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2648 align = align & -align;
2649 }
2650 set_mem_align (stack_parm, align);
2651
2652 if (data->entry_parm)
2653 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2654
2655 data->stack_parm = stack_parm;
2656 }
2657
2658 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2659 always valid and contiguous. */
2660
2661 static void
2662 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2663 {
2664 rtx entry_parm = data->entry_parm;
2665 rtx stack_parm = data->stack_parm;
2666
2667 /* If this parm was passed part in regs and part in memory, pretend it
2668 arrived entirely in memory by pushing the register-part onto the stack.
2669 In the special case of a DImode or DFmode that is split, we could put
2670 it together in a pseudoreg directly, but for now that's not worth
2671 bothering with. */
2672 if (data->partial != 0)
2673 {
2674 /* Handle calls that pass values in multiple non-contiguous
2675 locations. The Irix 6 ABI has examples of this. */
2676 if (GET_CODE (entry_parm) == PARALLEL)
2677 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2678 data->passed_type,
2679 int_size_in_bytes (data->passed_type));
2680 else
2681 {
2682 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2683 move_block_from_reg (REGNO (entry_parm),
2684 validize_mem (copy_rtx (stack_parm)),
2685 data->partial / UNITS_PER_WORD);
2686 }
2687
2688 entry_parm = stack_parm;
2689 }
2690
2691 /* If we didn't decide this parm came in a register, by default it came
2692 on the stack. */
2693 else if (entry_parm == NULL)
2694 entry_parm = stack_parm;
2695
2696 /* When an argument is passed in multiple locations, we can't make use
2697 of this information, but we can save some copying if the whole argument
2698 is passed in a single register. */
2699 else if (GET_CODE (entry_parm) == PARALLEL
2700 && data->nominal_mode != BLKmode
2701 && data->passed_mode != BLKmode)
2702 {
2703 size_t i, len = XVECLEN (entry_parm, 0);
2704
2705 for (i = 0; i < len; i++)
2706 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2707 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2708 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2709 == data->passed_mode)
2710 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2711 {
2712 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2713 break;
2714 }
2715 }
2716
2717 data->entry_parm = entry_parm;
2718 }
2719
2720 /* A subroutine of assign_parms. Reconstitute any values which were
2721 passed in multiple registers and would fit in a single register. */
2722
2723 static void
2724 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2725 {
2726 rtx entry_parm = data->entry_parm;
2727
2728 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2729 This can be done with register operations rather than on the
2730 stack, even if we will store the reconstituted parameter on the
2731 stack later. */
2732 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2733 {
2734 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2735 emit_group_store (parmreg, entry_parm, data->passed_type,
2736 GET_MODE_SIZE (GET_MODE (entry_parm)));
2737 entry_parm = parmreg;
2738 }
2739
2740 data->entry_parm = entry_parm;
2741 }
2742
2743 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2744 always valid and properly aligned. */
2745
2746 static void
2747 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2748 {
2749 rtx stack_parm = data->stack_parm;
2750
2751 /* If we can't trust the parm stack slot to be aligned enough for its
2752 ultimate type, don't use that slot after entry. We'll make another
2753 stack slot, if we need one. */
2754 if (stack_parm
2755 && ((STRICT_ALIGNMENT
2756 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2757 || (data->nominal_type
2758 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2759 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2760 stack_parm = NULL;
2761
2762 /* If parm was passed in memory, and we need to convert it on entry,
2763 don't store it back in that same slot. */
2764 else if (data->entry_parm == stack_parm
2765 && data->nominal_mode != BLKmode
2766 && data->nominal_mode != data->passed_mode)
2767 stack_parm = NULL;
2768
2769 /* If stack protection is in effect for this function, don't leave any
2770 pointers in their passed stack slots. */
2771 else if (crtl->stack_protect_guard
2772 && (flag_stack_protect == 2
2773 || data->passed_pointer
2774 || POINTER_TYPE_P (data->nominal_type)))
2775 stack_parm = NULL;
2776
2777 data->stack_parm = stack_parm;
2778 }
2779
2780 /* A subroutine of assign_parms. Return true if the current parameter
2781 should be stored as a BLKmode in the current frame. */
2782
2783 static bool
2784 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2785 {
2786 if (data->nominal_mode == BLKmode)
2787 return true;
2788 if (GET_MODE (data->entry_parm) == BLKmode)
2789 return true;
2790
2791 #ifdef BLOCK_REG_PADDING
2792 /* Only assign_parm_setup_block knows how to deal with register arguments
2793 that are padded at the least significant end. */
2794 if (REG_P (data->entry_parm)
2795 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2796 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2797 == (BYTES_BIG_ENDIAN ? upward : downward)))
2798 return true;
2799 #endif
2800
2801 return false;
2802 }
2803
2804 /* A subroutine of assign_parms. Arrange for the parameter to be
2805 present and valid in DATA->STACK_RTL. */
2806
2807 static void
2808 assign_parm_setup_block (struct assign_parm_data_all *all,
2809 tree parm, struct assign_parm_data_one *data)
2810 {
2811 rtx entry_parm = data->entry_parm;
2812 rtx stack_parm = data->stack_parm;
2813 HOST_WIDE_INT size;
2814 HOST_WIDE_INT size_stored;
2815
2816 if (GET_CODE (entry_parm) == PARALLEL)
2817 entry_parm = emit_group_move_into_temps (entry_parm);
2818
2819 size = int_size_in_bytes (data->passed_type);
2820 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2821 if (stack_parm == 0)
2822 {
2823 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2824 stack_parm = assign_stack_local (BLKmode, size_stored,
2825 DECL_ALIGN (parm));
2826 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2827 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2828 set_mem_attributes (stack_parm, parm, 1);
2829 }
2830
2831 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2832 calls that pass values in multiple non-contiguous locations. */
2833 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2834 {
2835 rtx mem;
2836
2837 /* Note that we will be storing an integral number of words.
2838 So we have to be careful to ensure that we allocate an
2839 integral number of words. We do this above when we call
2840 assign_stack_local if space was not allocated in the argument
2841 list. If it was, this will not work if PARM_BOUNDARY is not
2842 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2843 if it becomes a problem. Exception is when BLKmode arrives
2844 with arguments not conforming to word_mode. */
2845
2846 if (data->stack_parm == 0)
2847 ;
2848 else if (GET_CODE (entry_parm) == PARALLEL)
2849 ;
2850 else
2851 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2852
2853 mem = validize_mem (copy_rtx (stack_parm));
2854
2855 /* Handle values in multiple non-contiguous locations. */
2856 if (GET_CODE (entry_parm) == PARALLEL)
2857 {
2858 push_to_sequence2 (all->first_conversion_insn,
2859 all->last_conversion_insn);
2860 emit_group_store (mem, entry_parm, data->passed_type, size);
2861 all->first_conversion_insn = get_insns ();
2862 all->last_conversion_insn = get_last_insn ();
2863 end_sequence ();
2864 }
2865
2866 else if (size == 0)
2867 ;
2868
2869 /* If SIZE is that of a mode no bigger than a word, just use
2870 that mode's store operation. */
2871 else if (size <= UNITS_PER_WORD)
2872 {
2873 enum machine_mode mode
2874 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2875
2876 if (mode != BLKmode
2877 #ifdef BLOCK_REG_PADDING
2878 && (size == UNITS_PER_WORD
2879 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2880 != (BYTES_BIG_ENDIAN ? upward : downward)))
2881 #endif
2882 )
2883 {
2884 rtx reg;
2885
2886 /* We are really truncating a word_mode value containing
2887 SIZE bytes into a value of mode MODE. If such an
2888 operation requires no actual instructions, we can refer
2889 to the value directly in mode MODE, otherwise we must
2890 start with the register in word_mode and explicitly
2891 convert it. */
2892 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2893 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2894 else
2895 {
2896 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2897 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2898 }
2899 emit_move_insn (change_address (mem, mode, 0), reg);
2900 }
2901
2902 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2903 machine must be aligned to the left before storing
2904 to memory. Note that the previous test doesn't
2905 handle all cases (e.g. SIZE == 3). */
2906 else if (size != UNITS_PER_WORD
2907 #ifdef BLOCK_REG_PADDING
2908 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2909 == downward)
2910 #else
2911 && BYTES_BIG_ENDIAN
2912 #endif
2913 )
2914 {
2915 rtx tem, x;
2916 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2917 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2918
2919 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2920 tem = change_address (mem, word_mode, 0);
2921 emit_move_insn (tem, x);
2922 }
2923 else
2924 move_block_from_reg (REGNO (entry_parm), mem,
2925 size_stored / UNITS_PER_WORD);
2926 }
2927 else
2928 move_block_from_reg (REGNO (entry_parm), mem,
2929 size_stored / UNITS_PER_WORD);
2930 }
2931 else if (data->stack_parm == 0)
2932 {
2933 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2934 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2935 BLOCK_OP_NORMAL);
2936 all->first_conversion_insn = get_insns ();
2937 all->last_conversion_insn = get_last_insn ();
2938 end_sequence ();
2939 }
2940
2941 data->stack_parm = stack_parm;
2942 SET_DECL_RTL (parm, stack_parm);
2943 }
2944
2945 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2946 parameter. Get it there. Perform all ABI specified conversions. */
2947
2948 static void
2949 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2950 struct assign_parm_data_one *data)
2951 {
2952 rtx parmreg, validated_mem;
2953 rtx equiv_stack_parm;
2954 enum machine_mode promoted_nominal_mode;
2955 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2956 bool did_conversion = false;
2957 bool need_conversion, moved;
2958
2959 /* Store the parm in a pseudoregister during the function, but we may
2960 need to do it in a wider mode. Using 2 here makes the result
2961 consistent with promote_decl_mode and thus expand_expr_real_1. */
2962 promoted_nominal_mode
2963 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2964 TREE_TYPE (current_function_decl), 2);
2965
2966 parmreg = gen_reg_rtx (promoted_nominal_mode);
2967
2968 if (!DECL_ARTIFICIAL (parm))
2969 mark_user_reg (parmreg);
2970
2971 /* If this was an item that we received a pointer to,
2972 set DECL_RTL appropriately. */
2973 if (data->passed_pointer)
2974 {
2975 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2976 set_mem_attributes (x, parm, 1);
2977 SET_DECL_RTL (parm, x);
2978 }
2979 else
2980 SET_DECL_RTL (parm, parmreg);
2981
2982 assign_parm_remove_parallels (data);
2983
2984 /* Copy the value into the register, thus bridging between
2985 assign_parm_find_data_types and expand_expr_real_1. */
2986
2987 equiv_stack_parm = data->stack_parm;
2988 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2989
2990 need_conversion = (data->nominal_mode != data->passed_mode
2991 || promoted_nominal_mode != data->promoted_mode);
2992 moved = false;
2993
2994 if (need_conversion
2995 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2996 && data->nominal_mode == data->passed_mode
2997 && data->nominal_mode == GET_MODE (data->entry_parm))
2998 {
2999 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3000 mode, by the caller. We now have to convert it to
3001 NOMINAL_MODE, if different. However, PARMREG may be in
3002 a different mode than NOMINAL_MODE if it is being stored
3003 promoted.
3004
3005 If ENTRY_PARM is a hard register, it might be in a register
3006 not valid for operating in its mode (e.g., an odd-numbered
3007 register for a DFmode). In that case, moves are the only
3008 thing valid, so we can't do a convert from there. This
3009 occurs when the calling sequence allow such misaligned
3010 usages.
3011
3012 In addition, the conversion may involve a call, which could
3013 clobber parameters which haven't been copied to pseudo
3014 registers yet.
3015
3016 First, we try to emit an insn which performs the necessary
3017 conversion. We verify that this insn does not clobber any
3018 hard registers. */
3019
3020 enum insn_code icode;
3021 rtx op0, op1;
3022
3023 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3024 unsignedp);
3025
3026 op0 = parmreg;
3027 op1 = validated_mem;
3028 if (icode != CODE_FOR_nothing
3029 && insn_operand_matches (icode, 0, op0)
3030 && insn_operand_matches (icode, 1, op1))
3031 {
3032 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3033 rtx_insn *insn, *insns;
3034 rtx t = op1;
3035 HARD_REG_SET hardregs;
3036
3037 start_sequence ();
3038 /* If op1 is a hard register that is likely spilled, first
3039 force it into a pseudo, otherwise combiner might extend
3040 its lifetime too much. */
3041 if (GET_CODE (t) == SUBREG)
3042 t = SUBREG_REG (t);
3043 if (REG_P (t)
3044 && HARD_REGISTER_P (t)
3045 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3046 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3047 {
3048 t = gen_reg_rtx (GET_MODE (op1));
3049 emit_move_insn (t, op1);
3050 }
3051 else
3052 t = op1;
3053 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3054 data->passed_mode, unsignedp);
3055 emit_insn (pat);
3056 insns = get_insns ();
3057
3058 moved = true;
3059 CLEAR_HARD_REG_SET (hardregs);
3060 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3061 {
3062 if (INSN_P (insn))
3063 note_stores (PATTERN (insn), record_hard_reg_sets,
3064 &hardregs);
3065 if (!hard_reg_set_empty_p (hardregs))
3066 moved = false;
3067 }
3068
3069 end_sequence ();
3070
3071 if (moved)
3072 {
3073 emit_insn (insns);
3074 if (equiv_stack_parm != NULL_RTX)
3075 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3076 equiv_stack_parm);
3077 }
3078 }
3079 }
3080
3081 if (moved)
3082 /* Nothing to do. */
3083 ;
3084 else if (need_conversion)
3085 {
3086 /* We did not have an insn to convert directly, or the sequence
3087 generated appeared unsafe. We must first copy the parm to a
3088 pseudo reg, and save the conversion until after all
3089 parameters have been moved. */
3090
3091 int save_tree_used;
3092 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3093
3094 emit_move_insn (tempreg, validated_mem);
3095
3096 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3097 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3098
3099 if (GET_CODE (tempreg) == SUBREG
3100 && GET_MODE (tempreg) == data->nominal_mode
3101 && REG_P (SUBREG_REG (tempreg))
3102 && data->nominal_mode == data->passed_mode
3103 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3104 && GET_MODE_SIZE (GET_MODE (tempreg))
3105 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3106 {
3107 /* The argument is already sign/zero extended, so note it
3108 into the subreg. */
3109 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3110 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3111 }
3112
3113 /* TREE_USED gets set erroneously during expand_assignment. */
3114 save_tree_used = TREE_USED (parm);
3115 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3116 TREE_USED (parm) = save_tree_used;
3117 all->first_conversion_insn = get_insns ();
3118 all->last_conversion_insn = get_last_insn ();
3119 end_sequence ();
3120
3121 did_conversion = true;
3122 }
3123 else
3124 emit_move_insn (parmreg, validated_mem);
3125
3126 /* If we were passed a pointer but the actual value can safely live
3127 in a register, retrieve it and use it directly. */
3128 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3129 {
3130 /* We can't use nominal_mode, because it will have been set to
3131 Pmode above. We must use the actual mode of the parm. */
3132 if (use_register_for_decl (parm))
3133 {
3134 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3135 mark_user_reg (parmreg);
3136 }
3137 else
3138 {
3139 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3140 TYPE_MODE (TREE_TYPE (parm)),
3141 TYPE_ALIGN (TREE_TYPE (parm)));
3142 parmreg
3143 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3144 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3145 align);
3146 set_mem_attributes (parmreg, parm, 1);
3147 }
3148
3149 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3150 {
3151 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3152 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3153
3154 push_to_sequence2 (all->first_conversion_insn,
3155 all->last_conversion_insn);
3156 emit_move_insn (tempreg, DECL_RTL (parm));
3157 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3158 emit_move_insn (parmreg, tempreg);
3159 all->first_conversion_insn = get_insns ();
3160 all->last_conversion_insn = get_last_insn ();
3161 end_sequence ();
3162
3163 did_conversion = true;
3164 }
3165 else
3166 emit_move_insn (parmreg, DECL_RTL (parm));
3167
3168 SET_DECL_RTL (parm, parmreg);
3169
3170 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3171 now the parm. */
3172 data->stack_parm = NULL;
3173 }
3174
3175 /* Mark the register as eliminable if we did no conversion and it was
3176 copied from memory at a fixed offset, and the arg pointer was not
3177 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3178 offset formed an invalid address, such memory-equivalences as we
3179 make here would screw up life analysis for it. */
3180 if (data->nominal_mode == data->passed_mode
3181 && !did_conversion
3182 && data->stack_parm != 0
3183 && MEM_P (data->stack_parm)
3184 && data->locate.offset.var == 0
3185 && reg_mentioned_p (virtual_incoming_args_rtx,
3186 XEXP (data->stack_parm, 0)))
3187 {
3188 rtx_insn *linsn = get_last_insn ();
3189 rtx_insn *sinsn;
3190 rtx set;
3191
3192 /* Mark complex types separately. */
3193 if (GET_CODE (parmreg) == CONCAT)
3194 {
3195 enum machine_mode submode
3196 = GET_MODE_INNER (GET_MODE (parmreg));
3197 int regnor = REGNO (XEXP (parmreg, 0));
3198 int regnoi = REGNO (XEXP (parmreg, 1));
3199 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3200 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3201 GET_MODE_SIZE (submode));
3202
3203 /* Scan backwards for the set of the real and
3204 imaginary parts. */
3205 for (sinsn = linsn; sinsn != 0;
3206 sinsn = prev_nonnote_insn (sinsn))
3207 {
3208 set = single_set (sinsn);
3209 if (set == 0)
3210 continue;
3211
3212 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3213 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3214 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3215 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3216 }
3217 }
3218 else
3219 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3220 }
3221
3222 /* For pointer data type, suggest pointer register. */
3223 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3224 mark_reg_pointer (parmreg,
3225 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3226 }
3227
3228 /* A subroutine of assign_parms. Allocate stack space to hold the current
3229 parameter. Get it there. Perform all ABI specified conversions. */
3230
3231 static void
3232 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3233 struct assign_parm_data_one *data)
3234 {
3235 /* Value must be stored in the stack slot STACK_PARM during function
3236 execution. */
3237 bool to_conversion = false;
3238
3239 assign_parm_remove_parallels (data);
3240
3241 if (data->promoted_mode != data->nominal_mode)
3242 {
3243 /* Conversion is required. */
3244 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3245
3246 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3247
3248 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3249 to_conversion = true;
3250
3251 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3252 TYPE_UNSIGNED (TREE_TYPE (parm)));
3253
3254 if (data->stack_parm)
3255 {
3256 int offset = subreg_lowpart_offset (data->nominal_mode,
3257 GET_MODE (data->stack_parm));
3258 /* ??? This may need a big-endian conversion on sparc64. */
3259 data->stack_parm
3260 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3261 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3262 set_mem_offset (data->stack_parm,
3263 MEM_OFFSET (data->stack_parm) + offset);
3264 }
3265 }
3266
3267 if (data->entry_parm != data->stack_parm)
3268 {
3269 rtx src, dest;
3270
3271 if (data->stack_parm == 0)
3272 {
3273 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3274 GET_MODE (data->entry_parm),
3275 TYPE_ALIGN (data->passed_type));
3276 data->stack_parm
3277 = assign_stack_local (GET_MODE (data->entry_parm),
3278 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3279 align);
3280 set_mem_attributes (data->stack_parm, parm, 1);
3281 }
3282
3283 dest = validize_mem (copy_rtx (data->stack_parm));
3284 src = validize_mem (copy_rtx (data->entry_parm));
3285
3286 if (MEM_P (src))
3287 {
3288 /* Use a block move to handle potentially misaligned entry_parm. */
3289 if (!to_conversion)
3290 push_to_sequence2 (all->first_conversion_insn,
3291 all->last_conversion_insn);
3292 to_conversion = true;
3293
3294 emit_block_move (dest, src,
3295 GEN_INT (int_size_in_bytes (data->passed_type)),
3296 BLOCK_OP_NORMAL);
3297 }
3298 else
3299 emit_move_insn (dest, src);
3300 }
3301
3302 if (to_conversion)
3303 {
3304 all->first_conversion_insn = get_insns ();
3305 all->last_conversion_insn = get_last_insn ();
3306 end_sequence ();
3307 }
3308
3309 SET_DECL_RTL (parm, data->stack_parm);
3310 }
3311
3312 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3313 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3314
3315 static void
3316 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3317 vec<tree> fnargs)
3318 {
3319 tree parm;
3320 tree orig_fnargs = all->orig_fnargs;
3321 unsigned i = 0;
3322
3323 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3324 {
3325 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3326 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3327 {
3328 rtx tmp, real, imag;
3329 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3330
3331 real = DECL_RTL (fnargs[i]);
3332 imag = DECL_RTL (fnargs[i + 1]);
3333 if (inner != GET_MODE (real))
3334 {
3335 real = gen_lowpart_SUBREG (inner, real);
3336 imag = gen_lowpart_SUBREG (inner, imag);
3337 }
3338
3339 if (TREE_ADDRESSABLE (parm))
3340 {
3341 rtx rmem, imem;
3342 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3343 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3344 DECL_MODE (parm),
3345 TYPE_ALIGN (TREE_TYPE (parm)));
3346
3347 /* split_complex_arg put the real and imag parts in
3348 pseudos. Move them to memory. */
3349 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3350 set_mem_attributes (tmp, parm, 1);
3351 rmem = adjust_address_nv (tmp, inner, 0);
3352 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3353 push_to_sequence2 (all->first_conversion_insn,
3354 all->last_conversion_insn);
3355 emit_move_insn (rmem, real);
3356 emit_move_insn (imem, imag);
3357 all->first_conversion_insn = get_insns ();
3358 all->last_conversion_insn = get_last_insn ();
3359 end_sequence ();
3360 }
3361 else
3362 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3363 SET_DECL_RTL (parm, tmp);
3364
3365 real = DECL_INCOMING_RTL (fnargs[i]);
3366 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3367 if (inner != GET_MODE (real))
3368 {
3369 real = gen_lowpart_SUBREG (inner, real);
3370 imag = gen_lowpart_SUBREG (inner, imag);
3371 }
3372 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3373 set_decl_incoming_rtl (parm, tmp, false);
3374 i++;
3375 }
3376 }
3377 }
3378
3379 /* Assign RTL expressions to the function's parameters. This may involve
3380 copying them into registers and using those registers as the DECL_RTL. */
3381
3382 static void
3383 assign_parms (tree fndecl)
3384 {
3385 struct assign_parm_data_all all;
3386 tree parm;
3387 vec<tree> fnargs;
3388 unsigned i;
3389
3390 crtl->args.internal_arg_pointer
3391 = targetm.calls.internal_arg_pointer ();
3392
3393 assign_parms_initialize_all (&all);
3394 fnargs = assign_parms_augmented_arg_list (&all);
3395
3396 FOR_EACH_VEC_ELT (fnargs, i, parm)
3397 {
3398 struct assign_parm_data_one data;
3399
3400 /* Extract the type of PARM; adjust it according to ABI. */
3401 assign_parm_find_data_types (&all, parm, &data);
3402
3403 /* Early out for errors and void parameters. */
3404 if (data.passed_mode == VOIDmode)
3405 {
3406 SET_DECL_RTL (parm, const0_rtx);
3407 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3408 continue;
3409 }
3410
3411 /* Estimate stack alignment from parameter alignment. */
3412 if (SUPPORTS_STACK_ALIGNMENT)
3413 {
3414 unsigned int align
3415 = targetm.calls.function_arg_boundary (data.promoted_mode,
3416 data.passed_type);
3417 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3418 align);
3419 if (TYPE_ALIGN (data.nominal_type) > align)
3420 align = MINIMUM_ALIGNMENT (data.nominal_type,
3421 TYPE_MODE (data.nominal_type),
3422 TYPE_ALIGN (data.nominal_type));
3423 if (crtl->stack_alignment_estimated < align)
3424 {
3425 gcc_assert (!crtl->stack_realign_processed);
3426 crtl->stack_alignment_estimated = align;
3427 }
3428 }
3429
3430 if (cfun->stdarg && !DECL_CHAIN (parm))
3431 assign_parms_setup_varargs (&all, &data, false);
3432
3433 /* Find out where the parameter arrives in this function. */
3434 assign_parm_find_entry_rtl (&all, &data);
3435
3436 /* Find out where stack space for this parameter might be. */
3437 if (assign_parm_is_stack_parm (&all, &data))
3438 {
3439 assign_parm_find_stack_rtl (parm, &data);
3440 assign_parm_adjust_entry_rtl (&data);
3441 }
3442
3443 /* Record permanently how this parm was passed. */
3444 if (data.passed_pointer)
3445 {
3446 rtx incoming_rtl
3447 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3448 data.entry_parm);
3449 set_decl_incoming_rtl (parm, incoming_rtl, true);
3450 }
3451 else
3452 set_decl_incoming_rtl (parm, data.entry_parm, false);
3453
3454 /* Update info on where next arg arrives in registers. */
3455 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3456 data.passed_type, data.named_arg);
3457
3458 assign_parm_adjust_stack_rtl (&data);
3459
3460 if (assign_parm_setup_block_p (&data))
3461 assign_parm_setup_block (&all, parm, &data);
3462 else if (data.passed_pointer || use_register_for_decl (parm))
3463 assign_parm_setup_reg (&all, parm, &data);
3464 else
3465 assign_parm_setup_stack (&all, parm, &data);
3466 }
3467
3468 if (targetm.calls.split_complex_arg)
3469 assign_parms_unsplit_complex (&all, fnargs);
3470
3471 fnargs.release ();
3472
3473 /* Output all parameter conversion instructions (possibly including calls)
3474 now that all parameters have been copied out of hard registers. */
3475 emit_insn (all.first_conversion_insn);
3476
3477 /* Estimate reload stack alignment from scalar return mode. */
3478 if (SUPPORTS_STACK_ALIGNMENT)
3479 {
3480 if (DECL_RESULT (fndecl))
3481 {
3482 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3483 enum machine_mode mode = TYPE_MODE (type);
3484
3485 if (mode != BLKmode
3486 && mode != VOIDmode
3487 && !AGGREGATE_TYPE_P (type))
3488 {
3489 unsigned int align = GET_MODE_ALIGNMENT (mode);
3490 if (crtl->stack_alignment_estimated < align)
3491 {
3492 gcc_assert (!crtl->stack_realign_processed);
3493 crtl->stack_alignment_estimated = align;
3494 }
3495 }
3496 }
3497 }
3498
3499 /* If we are receiving a struct value address as the first argument, set up
3500 the RTL for the function result. As this might require code to convert
3501 the transmitted address to Pmode, we do this here to ensure that possible
3502 preliminary conversions of the address have been emitted already. */
3503 if (all.function_result_decl)
3504 {
3505 tree result = DECL_RESULT (current_function_decl);
3506 rtx addr = DECL_RTL (all.function_result_decl);
3507 rtx x;
3508
3509 if (DECL_BY_REFERENCE (result))
3510 {
3511 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3512 x = addr;
3513 }
3514 else
3515 {
3516 SET_DECL_VALUE_EXPR (result,
3517 build1 (INDIRECT_REF, TREE_TYPE (result),
3518 all.function_result_decl));
3519 addr = convert_memory_address (Pmode, addr);
3520 x = gen_rtx_MEM (DECL_MODE (result), addr);
3521 set_mem_attributes (x, result, 1);
3522 }
3523
3524 DECL_HAS_VALUE_EXPR_P (result) = 1;
3525
3526 SET_DECL_RTL (result, x);
3527 }
3528
3529 /* We have aligned all the args, so add space for the pretend args. */
3530 crtl->args.pretend_args_size = all.pretend_args_size;
3531 all.stack_args_size.constant += all.extra_pretend_bytes;
3532 crtl->args.size = all.stack_args_size.constant;
3533
3534 /* Adjust function incoming argument size for alignment and
3535 minimum length. */
3536
3537 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3538 crtl->args.size = CEIL_ROUND (crtl->args.size,
3539 PARM_BOUNDARY / BITS_PER_UNIT);
3540
3541 #ifdef ARGS_GROW_DOWNWARD
3542 crtl->args.arg_offset_rtx
3543 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3544 : expand_expr (size_diffop (all.stack_args_size.var,
3545 size_int (-all.stack_args_size.constant)),
3546 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3547 #else
3548 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3549 #endif
3550
3551 /* See how many bytes, if any, of its args a function should try to pop
3552 on return. */
3553
3554 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3555 TREE_TYPE (fndecl),
3556 crtl->args.size);
3557
3558 /* For stdarg.h function, save info about
3559 regs and stack space used by the named args. */
3560
3561 crtl->args.info = all.args_so_far_v;
3562
3563 /* Set the rtx used for the function return value. Put this in its
3564 own variable so any optimizers that need this information don't have
3565 to include tree.h. Do this here so it gets done when an inlined
3566 function gets output. */
3567
3568 crtl->return_rtx
3569 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3570 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3571
3572 /* If scalar return value was computed in a pseudo-reg, or was a named
3573 return value that got dumped to the stack, copy that to the hard
3574 return register. */
3575 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3576 {
3577 tree decl_result = DECL_RESULT (fndecl);
3578 rtx decl_rtl = DECL_RTL (decl_result);
3579
3580 if (REG_P (decl_rtl)
3581 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3582 : DECL_REGISTER (decl_result))
3583 {
3584 rtx real_decl_rtl;
3585
3586 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3587 fndecl, true);
3588 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3589 /* The delay slot scheduler assumes that crtl->return_rtx
3590 holds the hard register containing the return value, not a
3591 temporary pseudo. */
3592 crtl->return_rtx = real_decl_rtl;
3593 }
3594 }
3595 }
3596
3597 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3598 For all seen types, gimplify their sizes. */
3599
3600 static tree
3601 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3602 {
3603 tree t = *tp;
3604
3605 *walk_subtrees = 0;
3606 if (TYPE_P (t))
3607 {
3608 if (POINTER_TYPE_P (t))
3609 *walk_subtrees = 1;
3610 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3611 && !TYPE_SIZES_GIMPLIFIED (t))
3612 {
3613 gimplify_type_sizes (t, (gimple_seq *) data);
3614 *walk_subtrees = 1;
3615 }
3616 }
3617
3618 return NULL;
3619 }
3620
3621 /* Gimplify the parameter list for current_function_decl. This involves
3622 evaluating SAVE_EXPRs of variable sized parameters and generating code
3623 to implement callee-copies reference parameters. Returns a sequence of
3624 statements to add to the beginning of the function. */
3625
3626 gimple_seq
3627 gimplify_parameters (void)
3628 {
3629 struct assign_parm_data_all all;
3630 tree parm;
3631 gimple_seq stmts = NULL;
3632 vec<tree> fnargs;
3633 unsigned i;
3634
3635 assign_parms_initialize_all (&all);
3636 fnargs = assign_parms_augmented_arg_list (&all);
3637
3638 FOR_EACH_VEC_ELT (fnargs, i, parm)
3639 {
3640 struct assign_parm_data_one data;
3641
3642 /* Extract the type of PARM; adjust it according to ABI. */
3643 assign_parm_find_data_types (&all, parm, &data);
3644
3645 /* Early out for errors and void parameters. */
3646 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3647 continue;
3648
3649 /* Update info on where next arg arrives in registers. */
3650 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3651 data.passed_type, data.named_arg);
3652
3653 /* ??? Once upon a time variable_size stuffed parameter list
3654 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3655 turned out to be less than manageable in the gimple world.
3656 Now we have to hunt them down ourselves. */
3657 walk_tree_without_duplicates (&data.passed_type,
3658 gimplify_parm_type, &stmts);
3659
3660 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3661 {
3662 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3663 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3664 }
3665
3666 if (data.passed_pointer)
3667 {
3668 tree type = TREE_TYPE (data.passed_type);
3669 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3670 type, data.named_arg))
3671 {
3672 tree local, t;
3673
3674 /* For constant-sized objects, this is trivial; for
3675 variable-sized objects, we have to play games. */
3676 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3677 && !(flag_stack_check == GENERIC_STACK_CHECK
3678 && compare_tree_int (DECL_SIZE_UNIT (parm),
3679 STACK_CHECK_MAX_VAR_SIZE) > 0))
3680 {
3681 local = create_tmp_var (type, get_name (parm));
3682 DECL_IGNORED_P (local) = 0;
3683 /* If PARM was addressable, move that flag over
3684 to the local copy, as its address will be taken,
3685 not the PARMs. Keep the parms address taken
3686 as we'll query that flag during gimplification. */
3687 if (TREE_ADDRESSABLE (parm))
3688 TREE_ADDRESSABLE (local) = 1;
3689 else if (TREE_CODE (type) == COMPLEX_TYPE
3690 || TREE_CODE (type) == VECTOR_TYPE)
3691 DECL_GIMPLE_REG_P (local) = 1;
3692 }
3693 else
3694 {
3695 tree ptr_type, addr;
3696
3697 ptr_type = build_pointer_type (type);
3698 addr = create_tmp_reg (ptr_type, get_name (parm));
3699 DECL_IGNORED_P (addr) = 0;
3700 local = build_fold_indirect_ref (addr);
3701
3702 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3703 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3704 size_int (DECL_ALIGN (parm)));
3705
3706 /* The call has been built for a variable-sized object. */
3707 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3708 t = fold_convert (ptr_type, t);
3709 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3710 gimplify_and_add (t, &stmts);
3711 }
3712
3713 gimplify_assign (local, parm, &stmts);
3714
3715 SET_DECL_VALUE_EXPR (parm, local);
3716 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3717 }
3718 }
3719 }
3720
3721 fnargs.release ();
3722
3723 return stmts;
3724 }
3725 \f
3726 /* Compute the size and offset from the start of the stacked arguments for a
3727 parm passed in mode PASSED_MODE and with type TYPE.
3728
3729 INITIAL_OFFSET_PTR points to the current offset into the stacked
3730 arguments.
3731
3732 The starting offset and size for this parm are returned in
3733 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3734 nonzero, the offset is that of stack slot, which is returned in
3735 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3736 padding required from the initial offset ptr to the stack slot.
3737
3738 IN_REGS is nonzero if the argument will be passed in registers. It will
3739 never be set if REG_PARM_STACK_SPACE is not defined.
3740
3741 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3742 for arguments which are passed in registers.
3743
3744 FNDECL is the function in which the argument was defined.
3745
3746 There are two types of rounding that are done. The first, controlled by
3747 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3748 argument list to be aligned to the specific boundary (in bits). This
3749 rounding affects the initial and starting offsets, but not the argument
3750 size.
3751
3752 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3753 optionally rounds the size of the parm to PARM_BOUNDARY. The
3754 initial offset is not affected by this rounding, while the size always
3755 is and the starting offset may be. */
3756
3757 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3758 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3759 callers pass in the total size of args so far as
3760 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3761
3762 void
3763 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3764 int reg_parm_stack_space, int partial,
3765 tree fndecl ATTRIBUTE_UNUSED,
3766 struct args_size *initial_offset_ptr,
3767 struct locate_and_pad_arg_data *locate)
3768 {
3769 tree sizetree;
3770 enum direction where_pad;
3771 unsigned int boundary, round_boundary;
3772 int part_size_in_regs;
3773
3774 /* If we have found a stack parm before we reach the end of the
3775 area reserved for registers, skip that area. */
3776 if (! in_regs)
3777 {
3778 if (reg_parm_stack_space > 0)
3779 {
3780 if (initial_offset_ptr->var)
3781 {
3782 initial_offset_ptr->var
3783 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3784 ssize_int (reg_parm_stack_space));
3785 initial_offset_ptr->constant = 0;
3786 }
3787 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3788 initial_offset_ptr->constant = reg_parm_stack_space;
3789 }
3790 }
3791
3792 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3793
3794 sizetree
3795 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3796 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3797 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3798 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3799 type);
3800 locate->where_pad = where_pad;
3801
3802 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3803 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3804 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3805
3806 locate->boundary = boundary;
3807
3808 if (SUPPORTS_STACK_ALIGNMENT)
3809 {
3810 /* stack_alignment_estimated can't change after stack has been
3811 realigned. */
3812 if (crtl->stack_alignment_estimated < boundary)
3813 {
3814 if (!crtl->stack_realign_processed)
3815 crtl->stack_alignment_estimated = boundary;
3816 else
3817 {
3818 /* If stack is realigned and stack alignment value
3819 hasn't been finalized, it is OK not to increase
3820 stack_alignment_estimated. The bigger alignment
3821 requirement is recorded in stack_alignment_needed
3822 below. */
3823 gcc_assert (!crtl->stack_realign_finalized
3824 && crtl->stack_realign_needed);
3825 }
3826 }
3827 }
3828
3829 /* Remember if the outgoing parameter requires extra alignment on the
3830 calling function side. */
3831 if (crtl->stack_alignment_needed < boundary)
3832 crtl->stack_alignment_needed = boundary;
3833 if (crtl->preferred_stack_boundary < boundary)
3834 crtl->preferred_stack_boundary = boundary;
3835
3836 #ifdef ARGS_GROW_DOWNWARD
3837 locate->slot_offset.constant = -initial_offset_ptr->constant;
3838 if (initial_offset_ptr->var)
3839 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3840 initial_offset_ptr->var);
3841
3842 {
3843 tree s2 = sizetree;
3844 if (where_pad != none
3845 && (!tree_fits_uhwi_p (sizetree)
3846 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3847 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3848 SUB_PARM_SIZE (locate->slot_offset, s2);
3849 }
3850
3851 locate->slot_offset.constant += part_size_in_regs;
3852
3853 if (!in_regs || reg_parm_stack_space > 0)
3854 pad_to_arg_alignment (&locate->slot_offset, boundary,
3855 &locate->alignment_pad);
3856
3857 locate->size.constant = (-initial_offset_ptr->constant
3858 - locate->slot_offset.constant);
3859 if (initial_offset_ptr->var)
3860 locate->size.var = size_binop (MINUS_EXPR,
3861 size_binop (MINUS_EXPR,
3862 ssize_int (0),
3863 initial_offset_ptr->var),
3864 locate->slot_offset.var);
3865
3866 /* Pad_below needs the pre-rounded size to know how much to pad
3867 below. */
3868 locate->offset = locate->slot_offset;
3869 if (where_pad == downward)
3870 pad_below (&locate->offset, passed_mode, sizetree);
3871
3872 #else /* !ARGS_GROW_DOWNWARD */
3873 if (!in_regs || reg_parm_stack_space > 0)
3874 pad_to_arg_alignment (initial_offset_ptr, boundary,
3875 &locate->alignment_pad);
3876 locate->slot_offset = *initial_offset_ptr;
3877
3878 #ifdef PUSH_ROUNDING
3879 if (passed_mode != BLKmode)
3880 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3881 #endif
3882
3883 /* Pad_below needs the pre-rounded size to know how much to pad below
3884 so this must be done before rounding up. */
3885 locate->offset = locate->slot_offset;
3886 if (where_pad == downward)
3887 pad_below (&locate->offset, passed_mode, sizetree);
3888
3889 if (where_pad != none
3890 && (!tree_fits_uhwi_p (sizetree)
3891 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3892 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3893
3894 ADD_PARM_SIZE (locate->size, sizetree);
3895
3896 locate->size.constant -= part_size_in_regs;
3897 #endif /* ARGS_GROW_DOWNWARD */
3898
3899 #ifdef FUNCTION_ARG_OFFSET
3900 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3901 #endif
3902 }
3903
3904 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3905 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3906
3907 static void
3908 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3909 struct args_size *alignment_pad)
3910 {
3911 tree save_var = NULL_TREE;
3912 HOST_WIDE_INT save_constant = 0;
3913 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3914 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3915
3916 #ifdef SPARC_STACK_BOUNDARY_HACK
3917 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3918 the real alignment of %sp. However, when it does this, the
3919 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3920 if (SPARC_STACK_BOUNDARY_HACK)
3921 sp_offset = 0;
3922 #endif
3923
3924 if (boundary > PARM_BOUNDARY)
3925 {
3926 save_var = offset_ptr->var;
3927 save_constant = offset_ptr->constant;
3928 }
3929
3930 alignment_pad->var = NULL_TREE;
3931 alignment_pad->constant = 0;
3932
3933 if (boundary > BITS_PER_UNIT)
3934 {
3935 if (offset_ptr->var)
3936 {
3937 tree sp_offset_tree = ssize_int (sp_offset);
3938 tree offset = size_binop (PLUS_EXPR,
3939 ARGS_SIZE_TREE (*offset_ptr),
3940 sp_offset_tree);
3941 #ifdef ARGS_GROW_DOWNWARD
3942 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3943 #else
3944 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3945 #endif
3946
3947 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3948 /* ARGS_SIZE_TREE includes constant term. */
3949 offset_ptr->constant = 0;
3950 if (boundary > PARM_BOUNDARY)
3951 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3952 save_var);
3953 }
3954 else
3955 {
3956 offset_ptr->constant = -sp_offset +
3957 #ifdef ARGS_GROW_DOWNWARD
3958 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3959 #else
3960 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3961 #endif
3962 if (boundary > PARM_BOUNDARY)
3963 alignment_pad->constant = offset_ptr->constant - save_constant;
3964 }
3965 }
3966 }
3967
3968 static void
3969 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3970 {
3971 if (passed_mode != BLKmode)
3972 {
3973 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3974 offset_ptr->constant
3975 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3976 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3977 - GET_MODE_SIZE (passed_mode));
3978 }
3979 else
3980 {
3981 if (TREE_CODE (sizetree) != INTEGER_CST
3982 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3983 {
3984 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3985 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3986 /* Add it in. */
3987 ADD_PARM_SIZE (*offset_ptr, s2);
3988 SUB_PARM_SIZE (*offset_ptr, sizetree);
3989 }
3990 }
3991 }
3992 \f
3993
3994 /* True if register REGNO was alive at a place where `setjmp' was
3995 called and was set more than once or is an argument. Such regs may
3996 be clobbered by `longjmp'. */
3997
3998 static bool
3999 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4000 {
4001 /* There appear to be cases where some local vars never reach the
4002 backend but have bogus regnos. */
4003 if (regno >= max_reg_num ())
4004 return false;
4005
4006 return ((REG_N_SETS (regno) > 1
4007 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4008 regno))
4009 && REGNO_REG_SET_P (setjmp_crosses, regno));
4010 }
4011
4012 /* Walk the tree of blocks describing the binding levels within a
4013 function and warn about variables the might be killed by setjmp or
4014 vfork. This is done after calling flow_analysis before register
4015 allocation since that will clobber the pseudo-regs to hard
4016 regs. */
4017
4018 static void
4019 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4020 {
4021 tree decl, sub;
4022
4023 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4024 {
4025 if (TREE_CODE (decl) == VAR_DECL
4026 && DECL_RTL_SET_P (decl)
4027 && REG_P (DECL_RTL (decl))
4028 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4029 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4030 " %<longjmp%> or %<vfork%>", decl);
4031 }
4032
4033 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4034 setjmp_vars_warning (setjmp_crosses, sub);
4035 }
4036
4037 /* Do the appropriate part of setjmp_vars_warning
4038 but for arguments instead of local variables. */
4039
4040 static void
4041 setjmp_args_warning (bitmap setjmp_crosses)
4042 {
4043 tree decl;
4044 for (decl = DECL_ARGUMENTS (current_function_decl);
4045 decl; decl = DECL_CHAIN (decl))
4046 if (DECL_RTL (decl) != 0
4047 && REG_P (DECL_RTL (decl))
4048 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4049 warning (OPT_Wclobbered,
4050 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4051 decl);
4052 }
4053
4054 /* Generate warning messages for variables live across setjmp. */
4055
4056 void
4057 generate_setjmp_warnings (void)
4058 {
4059 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4060
4061 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4062 || bitmap_empty_p (setjmp_crosses))
4063 return;
4064
4065 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4066 setjmp_args_warning (setjmp_crosses);
4067 }
4068
4069 \f
4070 /* Reverse the order of elements in the fragment chain T of blocks,
4071 and return the new head of the chain (old last element).
4072 In addition to that clear BLOCK_SAME_RANGE flags when needed
4073 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4074 its super fragment origin. */
4075
4076 static tree
4077 block_fragments_nreverse (tree t)
4078 {
4079 tree prev = 0, block, next, prev_super = 0;
4080 tree super = BLOCK_SUPERCONTEXT (t);
4081 if (BLOCK_FRAGMENT_ORIGIN (super))
4082 super = BLOCK_FRAGMENT_ORIGIN (super);
4083 for (block = t; block; block = next)
4084 {
4085 next = BLOCK_FRAGMENT_CHAIN (block);
4086 BLOCK_FRAGMENT_CHAIN (block) = prev;
4087 if ((prev && !BLOCK_SAME_RANGE (prev))
4088 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4089 != prev_super))
4090 BLOCK_SAME_RANGE (block) = 0;
4091 prev_super = BLOCK_SUPERCONTEXT (block);
4092 BLOCK_SUPERCONTEXT (block) = super;
4093 prev = block;
4094 }
4095 t = BLOCK_FRAGMENT_ORIGIN (t);
4096 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4097 != prev_super)
4098 BLOCK_SAME_RANGE (t) = 0;
4099 BLOCK_SUPERCONTEXT (t) = super;
4100 return prev;
4101 }
4102
4103 /* Reverse the order of elements in the chain T of blocks,
4104 and return the new head of the chain (old last element).
4105 Also do the same on subblocks and reverse the order of elements
4106 in BLOCK_FRAGMENT_CHAIN as well. */
4107
4108 static tree
4109 blocks_nreverse_all (tree t)
4110 {
4111 tree prev = 0, block, next;
4112 for (block = t; block; block = next)
4113 {
4114 next = BLOCK_CHAIN (block);
4115 BLOCK_CHAIN (block) = prev;
4116 if (BLOCK_FRAGMENT_CHAIN (block)
4117 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4118 {
4119 BLOCK_FRAGMENT_CHAIN (block)
4120 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4121 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4122 BLOCK_SAME_RANGE (block) = 0;
4123 }
4124 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4125 prev = block;
4126 }
4127 return prev;
4128 }
4129
4130
4131 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4132 and create duplicate blocks. */
4133 /* ??? Need an option to either create block fragments or to create
4134 abstract origin duplicates of a source block. It really depends
4135 on what optimization has been performed. */
4136
4137 void
4138 reorder_blocks (void)
4139 {
4140 tree block = DECL_INITIAL (current_function_decl);
4141
4142 if (block == NULL_TREE)
4143 return;
4144
4145 auto_vec<tree, 10> block_stack;
4146
4147 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4148 clear_block_marks (block);
4149
4150 /* Prune the old trees away, so that they don't get in the way. */
4151 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4152 BLOCK_CHAIN (block) = NULL_TREE;
4153
4154 /* Recreate the block tree from the note nesting. */
4155 reorder_blocks_1 (get_insns (), block, &block_stack);
4156 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4157 }
4158
4159 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4160
4161 void
4162 clear_block_marks (tree block)
4163 {
4164 while (block)
4165 {
4166 TREE_ASM_WRITTEN (block) = 0;
4167 clear_block_marks (BLOCK_SUBBLOCKS (block));
4168 block = BLOCK_CHAIN (block);
4169 }
4170 }
4171
4172 static void
4173 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4174 vec<tree> *p_block_stack)
4175 {
4176 rtx_insn *insn;
4177 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4178
4179 for (insn = insns; insn; insn = NEXT_INSN (insn))
4180 {
4181 if (NOTE_P (insn))
4182 {
4183 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4184 {
4185 tree block = NOTE_BLOCK (insn);
4186 tree origin;
4187
4188 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4189 origin = block;
4190
4191 if (prev_end)
4192 BLOCK_SAME_RANGE (prev_end) = 0;
4193 prev_end = NULL_TREE;
4194
4195 /* If we have seen this block before, that means it now
4196 spans multiple address regions. Create a new fragment. */
4197 if (TREE_ASM_WRITTEN (block))
4198 {
4199 tree new_block = copy_node (block);
4200
4201 BLOCK_SAME_RANGE (new_block) = 0;
4202 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4203 BLOCK_FRAGMENT_CHAIN (new_block)
4204 = BLOCK_FRAGMENT_CHAIN (origin);
4205 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4206
4207 NOTE_BLOCK (insn) = new_block;
4208 block = new_block;
4209 }
4210
4211 if (prev_beg == current_block && prev_beg)
4212 BLOCK_SAME_RANGE (block) = 1;
4213
4214 prev_beg = origin;
4215
4216 BLOCK_SUBBLOCKS (block) = 0;
4217 TREE_ASM_WRITTEN (block) = 1;
4218 /* When there's only one block for the entire function,
4219 current_block == block and we mustn't do this, it
4220 will cause infinite recursion. */
4221 if (block != current_block)
4222 {
4223 tree super;
4224 if (block != origin)
4225 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4226 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4227 (origin))
4228 == current_block);
4229 if (p_block_stack->is_empty ())
4230 super = current_block;
4231 else
4232 {
4233 super = p_block_stack->last ();
4234 gcc_assert (super == current_block
4235 || BLOCK_FRAGMENT_ORIGIN (super)
4236 == current_block);
4237 }
4238 BLOCK_SUPERCONTEXT (block) = super;
4239 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4240 BLOCK_SUBBLOCKS (current_block) = block;
4241 current_block = origin;
4242 }
4243 p_block_stack->safe_push (block);
4244 }
4245 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4246 {
4247 NOTE_BLOCK (insn) = p_block_stack->pop ();
4248 current_block = BLOCK_SUPERCONTEXT (current_block);
4249 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4250 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4251 prev_beg = NULL_TREE;
4252 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4253 ? NOTE_BLOCK (insn) : NULL_TREE;
4254 }
4255 }
4256 else
4257 {
4258 prev_beg = NULL_TREE;
4259 if (prev_end)
4260 BLOCK_SAME_RANGE (prev_end) = 0;
4261 prev_end = NULL_TREE;
4262 }
4263 }
4264 }
4265
4266 /* Reverse the order of elements in the chain T of blocks,
4267 and return the new head of the chain (old last element). */
4268
4269 tree
4270 blocks_nreverse (tree t)
4271 {
4272 tree prev = 0, block, next;
4273 for (block = t; block; block = next)
4274 {
4275 next = BLOCK_CHAIN (block);
4276 BLOCK_CHAIN (block) = prev;
4277 prev = block;
4278 }
4279 return prev;
4280 }
4281
4282 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4283 by modifying the last node in chain 1 to point to chain 2. */
4284
4285 tree
4286 block_chainon (tree op1, tree op2)
4287 {
4288 tree t1;
4289
4290 if (!op1)
4291 return op2;
4292 if (!op2)
4293 return op1;
4294
4295 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4296 continue;
4297 BLOCK_CHAIN (t1) = op2;
4298
4299 #ifdef ENABLE_TREE_CHECKING
4300 {
4301 tree t2;
4302 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4303 gcc_assert (t2 != t1);
4304 }
4305 #endif
4306
4307 return op1;
4308 }
4309
4310 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4311 non-NULL, list them all into VECTOR, in a depth-first preorder
4312 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4313 blocks. */
4314
4315 static int
4316 all_blocks (tree block, tree *vector)
4317 {
4318 int n_blocks = 0;
4319
4320 while (block)
4321 {
4322 TREE_ASM_WRITTEN (block) = 0;
4323
4324 /* Record this block. */
4325 if (vector)
4326 vector[n_blocks] = block;
4327
4328 ++n_blocks;
4329
4330 /* Record the subblocks, and their subblocks... */
4331 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4332 vector ? vector + n_blocks : 0);
4333 block = BLOCK_CHAIN (block);
4334 }
4335
4336 return n_blocks;
4337 }
4338
4339 /* Return a vector containing all the blocks rooted at BLOCK. The
4340 number of elements in the vector is stored in N_BLOCKS_P. The
4341 vector is dynamically allocated; it is the caller's responsibility
4342 to call `free' on the pointer returned. */
4343
4344 static tree *
4345 get_block_vector (tree block, int *n_blocks_p)
4346 {
4347 tree *block_vector;
4348
4349 *n_blocks_p = all_blocks (block, NULL);
4350 block_vector = XNEWVEC (tree, *n_blocks_p);
4351 all_blocks (block, block_vector);
4352
4353 return block_vector;
4354 }
4355
4356 static GTY(()) int next_block_index = 2;
4357
4358 /* Set BLOCK_NUMBER for all the blocks in FN. */
4359
4360 void
4361 number_blocks (tree fn)
4362 {
4363 int i;
4364 int n_blocks;
4365 tree *block_vector;
4366
4367 /* For SDB and XCOFF debugging output, we start numbering the blocks
4368 from 1 within each function, rather than keeping a running
4369 count. */
4370 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4371 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4372 next_block_index = 1;
4373 #endif
4374
4375 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4376
4377 /* The top-level BLOCK isn't numbered at all. */
4378 for (i = 1; i < n_blocks; ++i)
4379 /* We number the blocks from two. */
4380 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4381
4382 free (block_vector);
4383
4384 return;
4385 }
4386
4387 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4388
4389 DEBUG_FUNCTION tree
4390 debug_find_var_in_block_tree (tree var, tree block)
4391 {
4392 tree t;
4393
4394 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4395 if (t == var)
4396 return block;
4397
4398 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4399 {
4400 tree ret = debug_find_var_in_block_tree (var, t);
4401 if (ret)
4402 return ret;
4403 }
4404
4405 return NULL_TREE;
4406 }
4407 \f
4408 /* Keep track of whether we're in a dummy function context. If we are,
4409 we don't want to invoke the set_current_function hook, because we'll
4410 get into trouble if the hook calls target_reinit () recursively or
4411 when the initial initialization is not yet complete. */
4412
4413 static bool in_dummy_function;
4414
4415 /* Invoke the target hook when setting cfun. Update the optimization options
4416 if the function uses different options than the default. */
4417
4418 static void
4419 invoke_set_current_function_hook (tree fndecl)
4420 {
4421 if (!in_dummy_function)
4422 {
4423 tree opts = ((fndecl)
4424 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4425 : optimization_default_node);
4426
4427 if (!opts)
4428 opts = optimization_default_node;
4429
4430 /* Change optimization options if needed. */
4431 if (optimization_current_node != opts)
4432 {
4433 optimization_current_node = opts;
4434 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4435 }
4436
4437 targetm.set_current_function (fndecl);
4438 this_fn_optabs = this_target_optabs;
4439
4440 if (opts != optimization_default_node)
4441 {
4442 init_tree_optimization_optabs (opts);
4443 if (TREE_OPTIMIZATION_OPTABS (opts))
4444 this_fn_optabs = (struct target_optabs *)
4445 TREE_OPTIMIZATION_OPTABS (opts);
4446 }
4447 }
4448 }
4449
4450 /* cfun should never be set directly; use this function. */
4451
4452 void
4453 set_cfun (struct function *new_cfun)
4454 {
4455 if (cfun != new_cfun)
4456 {
4457 cfun = new_cfun;
4458 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4459 }
4460 }
4461
4462 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4463
4464 static vec<function_p> cfun_stack;
4465
4466 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4467 current_function_decl accordingly. */
4468
4469 void
4470 push_cfun (struct function *new_cfun)
4471 {
4472 gcc_assert ((!cfun && !current_function_decl)
4473 || (cfun && current_function_decl == cfun->decl));
4474 cfun_stack.safe_push (cfun);
4475 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4476 set_cfun (new_cfun);
4477 }
4478
4479 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4480
4481 void
4482 pop_cfun (void)
4483 {
4484 struct function *new_cfun = cfun_stack.pop ();
4485 /* When in_dummy_function, we do have a cfun but current_function_decl is
4486 NULL. We also allow pushing NULL cfun and subsequently changing
4487 current_function_decl to something else and have both restored by
4488 pop_cfun. */
4489 gcc_checking_assert (in_dummy_function
4490 || !cfun
4491 || current_function_decl == cfun->decl);
4492 set_cfun (new_cfun);
4493 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4494 }
4495
4496 /* Return value of funcdef and increase it. */
4497 int
4498 get_next_funcdef_no (void)
4499 {
4500 return funcdef_no++;
4501 }
4502
4503 /* Return value of funcdef. */
4504 int
4505 get_last_funcdef_no (void)
4506 {
4507 return funcdef_no;
4508 }
4509
4510 /* Allocate a function structure for FNDECL and set its contents
4511 to the defaults. Set cfun to the newly-allocated object.
4512 Some of the helper functions invoked during initialization assume
4513 that cfun has already been set. Therefore, assign the new object
4514 directly into cfun and invoke the back end hook explicitly at the
4515 very end, rather than initializing a temporary and calling set_cfun
4516 on it.
4517
4518 ABSTRACT_P is true if this is a function that will never be seen by
4519 the middle-end. Such functions are front-end concepts (like C++
4520 function templates) that do not correspond directly to functions
4521 placed in object files. */
4522
4523 void
4524 allocate_struct_function (tree fndecl, bool abstract_p)
4525 {
4526 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4527
4528 cfun = ggc_cleared_alloc<function> ();
4529
4530 init_eh_for_function ();
4531
4532 if (init_machine_status)
4533 cfun->machine = (*init_machine_status) ();
4534
4535 #ifdef OVERRIDE_ABI_FORMAT
4536 OVERRIDE_ABI_FORMAT (fndecl);
4537 #endif
4538
4539 if (fndecl != NULL_TREE)
4540 {
4541 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4542 cfun->decl = fndecl;
4543 current_function_funcdef_no = get_next_funcdef_no ();
4544 }
4545
4546 invoke_set_current_function_hook (fndecl);
4547
4548 if (fndecl != NULL_TREE)
4549 {
4550 tree result = DECL_RESULT (fndecl);
4551 if (!abstract_p && aggregate_value_p (result, fndecl))
4552 {
4553 #ifdef PCC_STATIC_STRUCT_RETURN
4554 cfun->returns_pcc_struct = 1;
4555 #endif
4556 cfun->returns_struct = 1;
4557 }
4558
4559 cfun->stdarg = stdarg_p (fntype);
4560
4561 /* Assume all registers in stdarg functions need to be saved. */
4562 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4563 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4564
4565 /* ??? This could be set on a per-function basis by the front-end
4566 but is this worth the hassle? */
4567 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4568 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4569
4570 if (!profile_flag && !flag_instrument_function_entry_exit)
4571 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4572 }
4573 }
4574
4575 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4576 instead of just setting it. */
4577
4578 void
4579 push_struct_function (tree fndecl)
4580 {
4581 /* When in_dummy_function we might be in the middle of a pop_cfun and
4582 current_function_decl and cfun may not match. */
4583 gcc_assert (in_dummy_function
4584 || (!cfun && !current_function_decl)
4585 || (cfun && current_function_decl == cfun->decl));
4586 cfun_stack.safe_push (cfun);
4587 current_function_decl = fndecl;
4588 allocate_struct_function (fndecl, false);
4589 }
4590
4591 /* Reset crtl and other non-struct-function variables to defaults as
4592 appropriate for emitting rtl at the start of a function. */
4593
4594 static void
4595 prepare_function_start (void)
4596 {
4597 gcc_assert (!crtl->emit.x_last_insn);
4598 init_temp_slots ();
4599 init_emit ();
4600 init_varasm_status ();
4601 init_expr ();
4602 default_rtl_profile ();
4603
4604 if (flag_stack_usage_info)
4605 {
4606 cfun->su = ggc_cleared_alloc<stack_usage> ();
4607 cfun->su->static_stack_size = -1;
4608 }
4609
4610 cse_not_expected = ! optimize;
4611
4612 /* Caller save not needed yet. */
4613 caller_save_needed = 0;
4614
4615 /* We haven't done register allocation yet. */
4616 reg_renumber = 0;
4617
4618 /* Indicate that we have not instantiated virtual registers yet. */
4619 virtuals_instantiated = 0;
4620
4621 /* Indicate that we want CONCATs now. */
4622 generating_concat_p = 1;
4623
4624 /* Indicate we have no need of a frame pointer yet. */
4625 frame_pointer_needed = 0;
4626 }
4627
4628 /* Initialize the rtl expansion mechanism so that we can do simple things
4629 like generate sequences. This is used to provide a context during global
4630 initialization of some passes. You must call expand_dummy_function_end
4631 to exit this context. */
4632
4633 void
4634 init_dummy_function_start (void)
4635 {
4636 gcc_assert (!in_dummy_function);
4637 in_dummy_function = true;
4638 push_struct_function (NULL_TREE);
4639 prepare_function_start ();
4640 }
4641
4642 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4643 and initialize static variables for generating RTL for the statements
4644 of the function. */
4645
4646 void
4647 init_function_start (tree subr)
4648 {
4649 if (subr && DECL_STRUCT_FUNCTION (subr))
4650 set_cfun (DECL_STRUCT_FUNCTION (subr));
4651 else
4652 allocate_struct_function (subr, false);
4653
4654 /* Initialize backend, if needed. */
4655 initialize_rtl ();
4656
4657 prepare_function_start ();
4658 decide_function_section (subr);
4659
4660 /* Warn if this value is an aggregate type,
4661 regardless of which calling convention we are using for it. */
4662 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4663 warning (OPT_Waggregate_return, "function returns an aggregate");
4664 }
4665
4666 /* Expand code to verify the stack_protect_guard. This is invoked at
4667 the end of a function to be protected. */
4668
4669 #ifndef HAVE_stack_protect_test
4670 # define HAVE_stack_protect_test 0
4671 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4672 #endif
4673
4674 void
4675 stack_protect_epilogue (void)
4676 {
4677 tree guard_decl = targetm.stack_protect_guard ();
4678 rtx_code_label *label = gen_label_rtx ();
4679 rtx x, y, tmp;
4680
4681 x = expand_normal (crtl->stack_protect_guard);
4682 y = expand_normal (guard_decl);
4683
4684 /* Allow the target to compare Y with X without leaking either into
4685 a register. */
4686 switch ((int) (HAVE_stack_protect_test != 0))
4687 {
4688 case 1:
4689 tmp = gen_stack_protect_test (x, y, label);
4690 if (tmp)
4691 {
4692 emit_insn (tmp);
4693 break;
4694 }
4695 /* FALLTHRU */
4696
4697 default:
4698 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4699 break;
4700 }
4701
4702 /* The noreturn predictor has been moved to the tree level. The rtl-level
4703 predictors estimate this branch about 20%, which isn't enough to get
4704 things moved out of line. Since this is the only extant case of adding
4705 a noreturn function at the rtl level, it doesn't seem worth doing ought
4706 except adding the prediction by hand. */
4707 tmp = get_last_insn ();
4708 if (JUMP_P (tmp))
4709 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4710
4711 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4712 free_temp_slots ();
4713 emit_label (label);
4714 }
4715 \f
4716 /* Start the RTL for a new function, and set variables used for
4717 emitting RTL.
4718 SUBR is the FUNCTION_DECL node.
4719 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4720 the function's parameters, which must be run at any return statement. */
4721
4722 void
4723 expand_function_start (tree subr)
4724 {
4725 /* Make sure volatile mem refs aren't considered
4726 valid operands of arithmetic insns. */
4727 init_recog_no_volatile ();
4728
4729 crtl->profile
4730 = (profile_flag
4731 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4732
4733 crtl->limit_stack
4734 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4735
4736 /* Make the label for return statements to jump to. Do not special
4737 case machines with special return instructions -- they will be
4738 handled later during jump, ifcvt, or epilogue creation. */
4739 return_label = gen_label_rtx ();
4740
4741 /* Initialize rtx used to return the value. */
4742 /* Do this before assign_parms so that we copy the struct value address
4743 before any library calls that assign parms might generate. */
4744
4745 /* Decide whether to return the value in memory or in a register. */
4746 if (aggregate_value_p (DECL_RESULT (subr), subr))
4747 {
4748 /* Returning something that won't go in a register. */
4749 rtx value_address = 0;
4750
4751 #ifdef PCC_STATIC_STRUCT_RETURN
4752 if (cfun->returns_pcc_struct)
4753 {
4754 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4755 value_address = assemble_static_space (size);
4756 }
4757 else
4758 #endif
4759 {
4760 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4761 /* Expect to be passed the address of a place to store the value.
4762 If it is passed as an argument, assign_parms will take care of
4763 it. */
4764 if (sv)
4765 {
4766 value_address = gen_reg_rtx (Pmode);
4767 emit_move_insn (value_address, sv);
4768 }
4769 }
4770 if (value_address)
4771 {
4772 rtx x = value_address;
4773 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4774 {
4775 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4776 set_mem_attributes (x, DECL_RESULT (subr), 1);
4777 }
4778 SET_DECL_RTL (DECL_RESULT (subr), x);
4779 }
4780 }
4781 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4782 /* If return mode is void, this decl rtl should not be used. */
4783 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4784 else
4785 {
4786 /* Compute the return values into a pseudo reg, which we will copy
4787 into the true return register after the cleanups are done. */
4788 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4789 if (TYPE_MODE (return_type) != BLKmode
4790 && targetm.calls.return_in_msb (return_type))
4791 /* expand_function_end will insert the appropriate padding in
4792 this case. Use the return value's natural (unpadded) mode
4793 within the function proper. */
4794 SET_DECL_RTL (DECL_RESULT (subr),
4795 gen_reg_rtx (TYPE_MODE (return_type)));
4796 else
4797 {
4798 /* In order to figure out what mode to use for the pseudo, we
4799 figure out what the mode of the eventual return register will
4800 actually be, and use that. */
4801 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4802
4803 /* Structures that are returned in registers are not
4804 aggregate_value_p, so we may see a PARALLEL or a REG. */
4805 if (REG_P (hard_reg))
4806 SET_DECL_RTL (DECL_RESULT (subr),
4807 gen_reg_rtx (GET_MODE (hard_reg)));
4808 else
4809 {
4810 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4811 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4812 }
4813 }
4814
4815 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4816 result to the real return register(s). */
4817 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4818 }
4819
4820 /* Initialize rtx for parameters and local variables.
4821 In some cases this requires emitting insns. */
4822 assign_parms (subr);
4823
4824 /* If function gets a static chain arg, store it. */
4825 if (cfun->static_chain_decl)
4826 {
4827 tree parm = cfun->static_chain_decl;
4828 rtx local, chain, insn;
4829
4830 local = gen_reg_rtx (Pmode);
4831 chain = targetm.calls.static_chain (current_function_decl, true);
4832
4833 set_decl_incoming_rtl (parm, chain, false);
4834 SET_DECL_RTL (parm, local);
4835 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4836
4837 insn = emit_move_insn (local, chain);
4838
4839 /* Mark the register as eliminable, similar to parameters. */
4840 if (MEM_P (chain)
4841 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4842 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4843
4844 /* If we aren't optimizing, save the static chain onto the stack. */
4845 if (!optimize)
4846 {
4847 tree saved_static_chain_decl
4848 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4849 DECL_NAME (parm), TREE_TYPE (parm));
4850 rtx saved_static_chain_rtx
4851 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4852 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4853 emit_move_insn (saved_static_chain_rtx, chain);
4854 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4855 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4856 }
4857 }
4858
4859 /* If the function receives a non-local goto, then store the
4860 bits we need to restore the frame pointer. */
4861 if (cfun->nonlocal_goto_save_area)
4862 {
4863 tree t_save;
4864 rtx r_save;
4865
4866 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4867 gcc_assert (DECL_RTL_SET_P (var));
4868
4869 t_save = build4 (ARRAY_REF,
4870 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4871 cfun->nonlocal_goto_save_area,
4872 integer_zero_node, NULL_TREE, NULL_TREE);
4873 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4874 gcc_assert (GET_MODE (r_save) == Pmode);
4875
4876 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4877 update_nonlocal_goto_save_area ();
4878 }
4879
4880 /* The following was moved from init_function_start.
4881 The move is supposed to make sdb output more accurate. */
4882 /* Indicate the beginning of the function body,
4883 as opposed to parm setup. */
4884 emit_note (NOTE_INSN_FUNCTION_BEG);
4885
4886 gcc_assert (NOTE_P (get_last_insn ()));
4887
4888 parm_birth_insn = get_last_insn ();
4889
4890 if (crtl->profile)
4891 {
4892 #ifdef PROFILE_HOOK
4893 PROFILE_HOOK (current_function_funcdef_no);
4894 #endif
4895 }
4896
4897 /* If we are doing generic stack checking, the probe should go here. */
4898 if (flag_stack_check == GENERIC_STACK_CHECK)
4899 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4900 }
4901 \f
4902 /* Undo the effects of init_dummy_function_start. */
4903 void
4904 expand_dummy_function_end (void)
4905 {
4906 gcc_assert (in_dummy_function);
4907
4908 /* End any sequences that failed to be closed due to syntax errors. */
4909 while (in_sequence_p ())
4910 end_sequence ();
4911
4912 /* Outside function body, can't compute type's actual size
4913 until next function's body starts. */
4914
4915 free_after_parsing (cfun);
4916 free_after_compilation (cfun);
4917 pop_cfun ();
4918 in_dummy_function = false;
4919 }
4920
4921 /* Call DOIT for each hard register used as a return value from
4922 the current function. */
4923
4924 void
4925 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4926 {
4927 rtx outgoing = crtl->return_rtx;
4928
4929 if (! outgoing)
4930 return;
4931
4932 if (REG_P (outgoing))
4933 (*doit) (outgoing, arg);
4934 else if (GET_CODE (outgoing) == PARALLEL)
4935 {
4936 int i;
4937
4938 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4939 {
4940 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4941
4942 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4943 (*doit) (x, arg);
4944 }
4945 }
4946 }
4947
4948 static void
4949 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4950 {
4951 emit_clobber (reg);
4952 }
4953
4954 void
4955 clobber_return_register (void)
4956 {
4957 diddle_return_value (do_clobber_return_reg, NULL);
4958
4959 /* In case we do use pseudo to return value, clobber it too. */
4960 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4961 {
4962 tree decl_result = DECL_RESULT (current_function_decl);
4963 rtx decl_rtl = DECL_RTL (decl_result);
4964 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4965 {
4966 do_clobber_return_reg (decl_rtl, NULL);
4967 }
4968 }
4969 }
4970
4971 static void
4972 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4973 {
4974 emit_use (reg);
4975 }
4976
4977 static void
4978 use_return_register (void)
4979 {
4980 diddle_return_value (do_use_return_reg, NULL);
4981 }
4982
4983 /* Possibly warn about unused parameters. */
4984 void
4985 do_warn_unused_parameter (tree fn)
4986 {
4987 tree decl;
4988
4989 for (decl = DECL_ARGUMENTS (fn);
4990 decl; decl = DECL_CHAIN (decl))
4991 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4992 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4993 && !TREE_NO_WARNING (decl))
4994 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4995 }
4996
4997 /* Set the location of the insn chain starting at INSN to LOC. */
4998
4999 static void
5000 set_insn_locations (rtx_insn *insn, int loc)
5001 {
5002 while (insn != NULL)
5003 {
5004 if (INSN_P (insn))
5005 INSN_LOCATION (insn) = loc;
5006 insn = NEXT_INSN (insn);
5007 }
5008 }
5009
5010 /* Generate RTL for the end of the current function. */
5011
5012 void
5013 expand_function_end (void)
5014 {
5015 rtx clobber_after;
5016
5017 /* If arg_pointer_save_area was referenced only from a nested
5018 function, we will not have initialized it yet. Do that now. */
5019 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5020 get_arg_pointer_save_area ();
5021
5022 /* If we are doing generic stack checking and this function makes calls,
5023 do a stack probe at the start of the function to ensure we have enough
5024 space for another stack frame. */
5025 if (flag_stack_check == GENERIC_STACK_CHECK)
5026 {
5027 rtx_insn *insn, *seq;
5028
5029 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5030 if (CALL_P (insn))
5031 {
5032 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5033 start_sequence ();
5034 if (STACK_CHECK_MOVING_SP)
5035 anti_adjust_stack_and_probe (max_frame_size, true);
5036 else
5037 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5038 seq = get_insns ();
5039 end_sequence ();
5040 set_insn_locations (seq, prologue_location);
5041 emit_insn_before (seq, stack_check_probe_note);
5042 break;
5043 }
5044 }
5045
5046 /* End any sequences that failed to be closed due to syntax errors. */
5047 while (in_sequence_p ())
5048 end_sequence ();
5049
5050 clear_pending_stack_adjust ();
5051 do_pending_stack_adjust ();
5052
5053 /* Output a linenumber for the end of the function.
5054 SDB depends on this. */
5055 set_curr_insn_location (input_location);
5056
5057 /* Before the return label (if any), clobber the return
5058 registers so that they are not propagated live to the rest of
5059 the function. This can only happen with functions that drop
5060 through; if there had been a return statement, there would
5061 have either been a return rtx, or a jump to the return label.
5062
5063 We delay actual code generation after the current_function_value_rtx
5064 is computed. */
5065 clobber_after = get_last_insn ();
5066
5067 /* Output the label for the actual return from the function. */
5068 emit_label (return_label);
5069
5070 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5071 {
5072 /* Let except.c know where it should emit the call to unregister
5073 the function context for sjlj exceptions. */
5074 if (flag_exceptions)
5075 sjlj_emit_function_exit_after (get_last_insn ());
5076 }
5077 else
5078 {
5079 /* We want to ensure that instructions that may trap are not
5080 moved into the epilogue by scheduling, because we don't
5081 always emit unwind information for the epilogue. */
5082 if (cfun->can_throw_non_call_exceptions)
5083 emit_insn (gen_blockage ());
5084 }
5085
5086 /* If this is an implementation of throw, do what's necessary to
5087 communicate between __builtin_eh_return and the epilogue. */
5088 expand_eh_return ();
5089
5090 /* If scalar return value was computed in a pseudo-reg, or was a named
5091 return value that got dumped to the stack, copy that to the hard
5092 return register. */
5093 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5094 {
5095 tree decl_result = DECL_RESULT (current_function_decl);
5096 rtx decl_rtl = DECL_RTL (decl_result);
5097
5098 if (REG_P (decl_rtl)
5099 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5100 : DECL_REGISTER (decl_result))
5101 {
5102 rtx real_decl_rtl = crtl->return_rtx;
5103
5104 /* This should be set in assign_parms. */
5105 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5106
5107 /* If this is a BLKmode structure being returned in registers,
5108 then use the mode computed in expand_return. Note that if
5109 decl_rtl is memory, then its mode may have been changed,
5110 but that crtl->return_rtx has not. */
5111 if (GET_MODE (real_decl_rtl) == BLKmode)
5112 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5113
5114 /* If a non-BLKmode return value should be padded at the least
5115 significant end of the register, shift it left by the appropriate
5116 amount. BLKmode results are handled using the group load/store
5117 machinery. */
5118 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5119 && REG_P (real_decl_rtl)
5120 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5121 {
5122 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5123 REGNO (real_decl_rtl)),
5124 decl_rtl);
5125 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5126 }
5127 /* If a named return value dumped decl_return to memory, then
5128 we may need to re-do the PROMOTE_MODE signed/unsigned
5129 extension. */
5130 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5131 {
5132 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5133 promote_function_mode (TREE_TYPE (decl_result),
5134 GET_MODE (decl_rtl), &unsignedp,
5135 TREE_TYPE (current_function_decl), 1);
5136
5137 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5138 }
5139 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5140 {
5141 /* If expand_function_start has created a PARALLEL for decl_rtl,
5142 move the result to the real return registers. Otherwise, do
5143 a group load from decl_rtl for a named return. */
5144 if (GET_CODE (decl_rtl) == PARALLEL)
5145 emit_group_move (real_decl_rtl, decl_rtl);
5146 else
5147 emit_group_load (real_decl_rtl, decl_rtl,
5148 TREE_TYPE (decl_result),
5149 int_size_in_bytes (TREE_TYPE (decl_result)));
5150 }
5151 /* In the case of complex integer modes smaller than a word, we'll
5152 need to generate some non-trivial bitfield insertions. Do that
5153 on a pseudo and not the hard register. */
5154 else if (GET_CODE (decl_rtl) == CONCAT
5155 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5156 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5157 {
5158 int old_generating_concat_p;
5159 rtx tmp;
5160
5161 old_generating_concat_p = generating_concat_p;
5162 generating_concat_p = 0;
5163 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5164 generating_concat_p = old_generating_concat_p;
5165
5166 emit_move_insn (tmp, decl_rtl);
5167 emit_move_insn (real_decl_rtl, tmp);
5168 }
5169 else
5170 emit_move_insn (real_decl_rtl, decl_rtl);
5171 }
5172 }
5173
5174 /* If returning a structure, arrange to return the address of the value
5175 in a place where debuggers expect to find it.
5176
5177 If returning a structure PCC style,
5178 the caller also depends on this value.
5179 And cfun->returns_pcc_struct is not necessarily set. */
5180 if (cfun->returns_struct
5181 || cfun->returns_pcc_struct)
5182 {
5183 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5184 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5185 rtx outgoing;
5186
5187 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5188 type = TREE_TYPE (type);
5189 else
5190 value_address = XEXP (value_address, 0);
5191
5192 outgoing = targetm.calls.function_value (build_pointer_type (type),
5193 current_function_decl, true);
5194
5195 /* Mark this as a function return value so integrate will delete the
5196 assignment and USE below when inlining this function. */
5197 REG_FUNCTION_VALUE_P (outgoing) = 1;
5198
5199 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5200 value_address = convert_memory_address (GET_MODE (outgoing),
5201 value_address);
5202
5203 emit_move_insn (outgoing, value_address);
5204
5205 /* Show return register used to hold result (in this case the address
5206 of the result. */
5207 crtl->return_rtx = outgoing;
5208 }
5209
5210 /* Emit the actual code to clobber return register. Don't emit
5211 it if clobber_after is a barrier, then the previous basic block
5212 certainly doesn't fall thru into the exit block. */
5213 if (!BARRIER_P (clobber_after))
5214 {
5215 rtx seq;
5216
5217 start_sequence ();
5218 clobber_return_register ();
5219 seq = get_insns ();
5220 end_sequence ();
5221
5222 emit_insn_after (seq, clobber_after);
5223 }
5224
5225 /* Output the label for the naked return from the function. */
5226 if (naked_return_label)
5227 emit_label (naked_return_label);
5228
5229 /* @@@ This is a kludge. We want to ensure that instructions that
5230 may trap are not moved into the epilogue by scheduling, because
5231 we don't always emit unwind information for the epilogue. */
5232 if (cfun->can_throw_non_call_exceptions
5233 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5234 emit_insn (gen_blockage ());
5235
5236 /* If stack protection is enabled for this function, check the guard. */
5237 if (crtl->stack_protect_guard)
5238 stack_protect_epilogue ();
5239
5240 /* If we had calls to alloca, and this machine needs
5241 an accurate stack pointer to exit the function,
5242 insert some code to save and restore the stack pointer. */
5243 if (! EXIT_IGNORE_STACK
5244 && cfun->calls_alloca)
5245 {
5246 rtx tem = 0, seq;
5247
5248 start_sequence ();
5249 emit_stack_save (SAVE_FUNCTION, &tem);
5250 seq = get_insns ();
5251 end_sequence ();
5252 emit_insn_before (seq, parm_birth_insn);
5253
5254 emit_stack_restore (SAVE_FUNCTION, tem);
5255 }
5256
5257 /* ??? This should no longer be necessary since stupid is no longer with
5258 us, but there are some parts of the compiler (eg reload_combine, and
5259 sh mach_dep_reorg) that still try and compute their own lifetime info
5260 instead of using the general framework. */
5261 use_return_register ();
5262 }
5263
5264 rtx
5265 get_arg_pointer_save_area (void)
5266 {
5267 rtx ret = arg_pointer_save_area;
5268
5269 if (! ret)
5270 {
5271 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5272 arg_pointer_save_area = ret;
5273 }
5274
5275 if (! crtl->arg_pointer_save_area_init)
5276 {
5277 rtx seq;
5278
5279 /* Save the arg pointer at the beginning of the function. The
5280 generated stack slot may not be a valid memory address, so we
5281 have to check it and fix it if necessary. */
5282 start_sequence ();
5283 emit_move_insn (validize_mem (copy_rtx (ret)),
5284 crtl->args.internal_arg_pointer);
5285 seq = get_insns ();
5286 end_sequence ();
5287
5288 push_topmost_sequence ();
5289 emit_insn_after (seq, entry_of_function ());
5290 pop_topmost_sequence ();
5291
5292 crtl->arg_pointer_save_area_init = true;
5293 }
5294
5295 return ret;
5296 }
5297 \f
5298 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5299 for the first time. */
5300
5301 static void
5302 record_insns (rtx_insn *insns, rtx end, htab_t *hashp)
5303 {
5304 rtx_insn *tmp;
5305 htab_t hash = *hashp;
5306
5307 if (hash == NULL)
5308 *hashp = hash
5309 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5310
5311 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5312 {
5313 void **slot = htab_find_slot (hash, tmp, INSERT);
5314 gcc_assert (*slot == NULL);
5315 *slot = tmp;
5316 }
5317 }
5318
5319 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5320 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5321 insn, then record COPY as well. */
5322
5323 void
5324 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5325 {
5326 htab_t hash;
5327 void **slot;
5328
5329 hash = epilogue_insn_hash;
5330 if (!hash || !htab_find (hash, insn))
5331 {
5332 hash = prologue_insn_hash;
5333 if (!hash || !htab_find (hash, insn))
5334 return;
5335 }
5336
5337 slot = htab_find_slot (hash, copy, INSERT);
5338 gcc_assert (*slot == NULL);
5339 *slot = copy;
5340 }
5341
5342 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5343 we can be running after reorg, SEQUENCE rtl is possible. */
5344
5345 static bool
5346 contains (const_rtx insn, htab_t hash)
5347 {
5348 if (hash == NULL)
5349 return false;
5350
5351 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5352 {
5353 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5354 int i;
5355 for (i = seq->len () - 1; i >= 0; i--)
5356 if (htab_find (hash, seq->element (i)))
5357 return true;
5358 return false;
5359 }
5360
5361 return htab_find (hash, insn) != NULL;
5362 }
5363
5364 int
5365 prologue_epilogue_contains (const_rtx insn)
5366 {
5367 if (contains (insn, prologue_insn_hash))
5368 return 1;
5369 if (contains (insn, epilogue_insn_hash))
5370 return 1;
5371 return 0;
5372 }
5373
5374 #ifdef HAVE_return
5375 /* Insert use of return register before the end of BB. */
5376
5377 static void
5378 emit_use_return_register_into_block (basic_block bb)
5379 {
5380 rtx seq, insn;
5381 start_sequence ();
5382 use_return_register ();
5383 seq = get_insns ();
5384 end_sequence ();
5385 insn = BB_END (bb);
5386 #ifdef HAVE_cc0
5387 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5388 insn = prev_cc0_setter (insn);
5389 #endif
5390 emit_insn_before (seq, insn);
5391 }
5392
5393
5394 /* Create a return pattern, either simple_return or return, depending on
5395 simple_p. */
5396
5397 static rtx
5398 gen_return_pattern (bool simple_p)
5399 {
5400 #ifdef HAVE_simple_return
5401 return simple_p ? gen_simple_return () : gen_return ();
5402 #else
5403 gcc_assert (!simple_p);
5404 return gen_return ();
5405 #endif
5406 }
5407
5408 /* Insert an appropriate return pattern at the end of block BB. This
5409 also means updating block_for_insn appropriately. SIMPLE_P is
5410 the same as in gen_return_pattern and passed to it. */
5411
5412 void
5413 emit_return_into_block (bool simple_p, basic_block bb)
5414 {
5415 rtx jump, pat;
5416 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5417 pat = PATTERN (jump);
5418 if (GET_CODE (pat) == PARALLEL)
5419 pat = XVECEXP (pat, 0, 0);
5420 gcc_assert (ANY_RETURN_P (pat));
5421 JUMP_LABEL (jump) = pat;
5422 }
5423 #endif
5424
5425 /* Set JUMP_LABEL for a return insn. */
5426
5427 void
5428 set_return_jump_label (rtx returnjump)
5429 {
5430 rtx pat = PATTERN (returnjump);
5431 if (GET_CODE (pat) == PARALLEL)
5432 pat = XVECEXP (pat, 0, 0);
5433 if (ANY_RETURN_P (pat))
5434 JUMP_LABEL (returnjump) = pat;
5435 else
5436 JUMP_LABEL (returnjump) = ret_rtx;
5437 }
5438
5439 #if defined (HAVE_return) || defined (HAVE_simple_return)
5440 /* Return true if there are any active insns between HEAD and TAIL. */
5441 bool
5442 active_insn_between (rtx_insn *head, rtx_insn *tail)
5443 {
5444 while (tail)
5445 {
5446 if (active_insn_p (tail))
5447 return true;
5448 if (tail == head)
5449 return false;
5450 tail = PREV_INSN (tail);
5451 }
5452 return false;
5453 }
5454
5455 /* LAST_BB is a block that exits, and empty of active instructions.
5456 Examine its predecessors for jumps that can be converted to
5457 (conditional) returns. */
5458 vec<edge>
5459 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5460 vec<edge> unconverted ATTRIBUTE_UNUSED)
5461 {
5462 int i;
5463 basic_block bb;
5464 rtx label;
5465 edge_iterator ei;
5466 edge e;
5467 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5468
5469 FOR_EACH_EDGE (e, ei, last_bb->preds)
5470 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5471 src_bbs.quick_push (e->src);
5472
5473 label = BB_HEAD (last_bb);
5474
5475 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5476 {
5477 rtx_insn *jump = BB_END (bb);
5478
5479 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5480 continue;
5481
5482 e = find_edge (bb, last_bb);
5483
5484 /* If we have an unconditional jump, we can replace that
5485 with a simple return instruction. */
5486 if (simplejump_p (jump))
5487 {
5488 /* The use of the return register might be present in the exit
5489 fallthru block. Either:
5490 - removing the use is safe, and we should remove the use in
5491 the exit fallthru block, or
5492 - removing the use is not safe, and we should add it here.
5493 For now, we conservatively choose the latter. Either of the
5494 2 helps in crossjumping. */
5495 emit_use_return_register_into_block (bb);
5496
5497 emit_return_into_block (simple_p, bb);
5498 delete_insn (jump);
5499 }
5500
5501 /* If we have a conditional jump branching to the last
5502 block, we can try to replace that with a conditional
5503 return instruction. */
5504 else if (condjump_p (jump))
5505 {
5506 rtx dest;
5507
5508 if (simple_p)
5509 dest = simple_return_rtx;
5510 else
5511 dest = ret_rtx;
5512 if (!redirect_jump (jump, dest, 0))
5513 {
5514 #ifdef HAVE_simple_return
5515 if (simple_p)
5516 {
5517 if (dump_file)
5518 fprintf (dump_file,
5519 "Failed to redirect bb %d branch.\n", bb->index);
5520 unconverted.safe_push (e);
5521 }
5522 #endif
5523 continue;
5524 }
5525
5526 /* See comment in simplejump_p case above. */
5527 emit_use_return_register_into_block (bb);
5528
5529 /* If this block has only one successor, it both jumps
5530 and falls through to the fallthru block, so we can't
5531 delete the edge. */
5532 if (single_succ_p (bb))
5533 continue;
5534 }
5535 else
5536 {
5537 #ifdef HAVE_simple_return
5538 if (simple_p)
5539 {
5540 if (dump_file)
5541 fprintf (dump_file,
5542 "Failed to redirect bb %d branch.\n", bb->index);
5543 unconverted.safe_push (e);
5544 }
5545 #endif
5546 continue;
5547 }
5548
5549 /* Fix up the CFG for the successful change we just made. */
5550 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5551 e->flags &= ~EDGE_CROSSING;
5552 }
5553 src_bbs.release ();
5554 return unconverted;
5555 }
5556
5557 /* Emit a return insn for the exit fallthru block. */
5558 basic_block
5559 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5560 {
5561 basic_block last_bb = exit_fallthru_edge->src;
5562
5563 if (JUMP_P (BB_END (last_bb)))
5564 {
5565 last_bb = split_edge (exit_fallthru_edge);
5566 exit_fallthru_edge = single_succ_edge (last_bb);
5567 }
5568 emit_barrier_after (BB_END (last_bb));
5569 emit_return_into_block (simple_p, last_bb);
5570 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5571 return last_bb;
5572 }
5573 #endif
5574
5575
5576 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5577 this into place with notes indicating where the prologue ends and where
5578 the epilogue begins. Update the basic block information when possible.
5579
5580 Notes on epilogue placement:
5581 There are several kinds of edges to the exit block:
5582 * a single fallthru edge from LAST_BB
5583 * possibly, edges from blocks containing sibcalls
5584 * possibly, fake edges from infinite loops
5585
5586 The epilogue is always emitted on the fallthru edge from the last basic
5587 block in the function, LAST_BB, into the exit block.
5588
5589 If LAST_BB is empty except for a label, it is the target of every
5590 other basic block in the function that ends in a return. If a
5591 target has a return or simple_return pattern (possibly with
5592 conditional variants), these basic blocks can be changed so that a
5593 return insn is emitted into them, and their target is adjusted to
5594 the real exit block.
5595
5596 Notes on shrink wrapping: We implement a fairly conservative
5597 version of shrink-wrapping rather than the textbook one. We only
5598 generate a single prologue and a single epilogue. This is
5599 sufficient to catch a number of interesting cases involving early
5600 exits.
5601
5602 First, we identify the blocks that require the prologue to occur before
5603 them. These are the ones that modify a call-saved register, or reference
5604 any of the stack or frame pointer registers. To simplify things, we then
5605 mark everything reachable from these blocks as also requiring a prologue.
5606 This takes care of loops automatically, and avoids the need to examine
5607 whether MEMs reference the frame, since it is sufficient to check for
5608 occurrences of the stack or frame pointer.
5609
5610 We then compute the set of blocks for which the need for a prologue
5611 is anticipatable (borrowing terminology from the shrink-wrapping
5612 description in Muchnick's book). These are the blocks which either
5613 require a prologue themselves, or those that have only successors
5614 where the prologue is anticipatable. The prologue needs to be
5615 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5616 is not. For the moment, we ensure that only one such edge exists.
5617
5618 The epilogue is placed as described above, but we make a
5619 distinction between inserting return and simple_return patterns
5620 when modifying other blocks that end in a return. Blocks that end
5621 in a sibcall omit the sibcall_epilogue if the block is not in
5622 ANTIC. */
5623
5624 static void
5625 thread_prologue_and_epilogue_insns (void)
5626 {
5627 bool inserted;
5628 #ifdef HAVE_simple_return
5629 vec<edge> unconverted_simple_returns = vNULL;
5630 bitmap_head bb_flags;
5631 #endif
5632 rtx_insn *returnjump;
5633 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5634 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5635 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5636 edge_iterator ei;
5637
5638 df_analyze ();
5639
5640 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5641
5642 inserted = false;
5643 epilogue_end = NULL;
5644 returnjump = NULL;
5645
5646 /* Can't deal with multiple successors of the entry block at the
5647 moment. Function should always have at least one entry
5648 point. */
5649 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5650 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5651 orig_entry_edge = entry_edge;
5652
5653 split_prologue_seq = NULL;
5654 if (flag_split_stack
5655 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5656 == NULL))
5657 {
5658 #ifndef HAVE_split_stack_prologue
5659 gcc_unreachable ();
5660 #else
5661 gcc_assert (HAVE_split_stack_prologue);
5662
5663 start_sequence ();
5664 emit_insn (gen_split_stack_prologue ());
5665 split_prologue_seq = get_insns ();
5666 end_sequence ();
5667
5668 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5669 set_insn_locations (split_prologue_seq, prologue_location);
5670 #endif
5671 }
5672
5673 prologue_seq = NULL;
5674 #ifdef HAVE_prologue
5675 if (HAVE_prologue)
5676 {
5677 start_sequence ();
5678 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5679 emit_insn (seq);
5680
5681 /* Insert an explicit USE for the frame pointer
5682 if the profiling is on and the frame pointer is required. */
5683 if (crtl->profile && frame_pointer_needed)
5684 emit_use (hard_frame_pointer_rtx);
5685
5686 /* Retain a map of the prologue insns. */
5687 record_insns (seq, NULL, &prologue_insn_hash);
5688 emit_note (NOTE_INSN_PROLOGUE_END);
5689
5690 /* Ensure that instructions are not moved into the prologue when
5691 profiling is on. The call to the profiling routine can be
5692 emitted within the live range of a call-clobbered register. */
5693 if (!targetm.profile_before_prologue () && crtl->profile)
5694 emit_insn (gen_blockage ());
5695
5696 prologue_seq = get_insns ();
5697 end_sequence ();
5698 set_insn_locations (prologue_seq, prologue_location);
5699 }
5700 #endif
5701
5702 #ifdef HAVE_simple_return
5703 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5704
5705 /* Try to perform a kind of shrink-wrapping, making sure the
5706 prologue/epilogue is emitted only around those parts of the
5707 function that require it. */
5708
5709 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5710 #endif
5711
5712 if (split_prologue_seq != NULL_RTX)
5713 {
5714 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5715 inserted = true;
5716 }
5717 if (prologue_seq != NULL_RTX)
5718 {
5719 insert_insn_on_edge (prologue_seq, entry_edge);
5720 inserted = true;
5721 }
5722
5723 /* If the exit block has no non-fake predecessors, we don't need
5724 an epilogue. */
5725 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5726 if ((e->flags & EDGE_FAKE) == 0)
5727 break;
5728 if (e == NULL)
5729 goto epilogue_done;
5730
5731 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5732
5733 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5734
5735 #ifdef HAVE_simple_return
5736 if (entry_edge != orig_entry_edge)
5737 exit_fallthru_edge
5738 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5739 &unconverted_simple_returns,
5740 &returnjump);
5741 #endif
5742 #ifdef HAVE_return
5743 if (HAVE_return)
5744 {
5745 if (exit_fallthru_edge == NULL)
5746 goto epilogue_done;
5747
5748 if (optimize)
5749 {
5750 basic_block last_bb = exit_fallthru_edge->src;
5751
5752 if (LABEL_P (BB_HEAD (last_bb))
5753 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5754 convert_jumps_to_returns (last_bb, false, vNULL);
5755
5756 if (EDGE_COUNT (last_bb->preds) != 0
5757 && single_succ_p (last_bb))
5758 {
5759 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5760 epilogue_end = returnjump = BB_END (last_bb);
5761 #ifdef HAVE_simple_return
5762 /* Emitting the return may add a basic block.
5763 Fix bb_flags for the added block. */
5764 if (last_bb != exit_fallthru_edge->src)
5765 bitmap_set_bit (&bb_flags, last_bb->index);
5766 #endif
5767 goto epilogue_done;
5768 }
5769 }
5770 }
5771 #endif
5772
5773 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5774 this marker for the splits of EH_RETURN patterns, and nothing else
5775 uses the flag in the meantime. */
5776 epilogue_completed = 1;
5777
5778 #ifdef HAVE_eh_return
5779 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5780 some targets, these get split to a special version of the epilogue
5781 code. In order to be able to properly annotate these with unwind
5782 info, try to split them now. If we get a valid split, drop an
5783 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5784 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5785 {
5786 rtx_insn *prev, *last, *trial;
5787
5788 if (e->flags & EDGE_FALLTHRU)
5789 continue;
5790 last = BB_END (e->src);
5791 if (!eh_returnjump_p (last))
5792 continue;
5793
5794 prev = PREV_INSN (last);
5795 trial = try_split (PATTERN (last), last, 1);
5796 if (trial == last)
5797 continue;
5798
5799 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5800 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5801 }
5802 #endif
5803
5804 /* If nothing falls through into the exit block, we don't need an
5805 epilogue. */
5806
5807 if (exit_fallthru_edge == NULL)
5808 goto epilogue_done;
5809
5810 #ifdef HAVE_epilogue
5811 if (HAVE_epilogue)
5812 {
5813 start_sequence ();
5814 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5815 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
5816 if (seq)
5817 emit_jump_insn (seq);
5818
5819 /* Retain a map of the epilogue insns. */
5820 record_insns (seq, NULL, &epilogue_insn_hash);
5821 set_insn_locations (seq, epilogue_location);
5822
5823 seq = get_insns ();
5824 returnjump = get_last_insn ();
5825 end_sequence ();
5826
5827 insert_insn_on_edge (seq, exit_fallthru_edge);
5828 inserted = true;
5829
5830 if (JUMP_P (returnjump))
5831 set_return_jump_label (returnjump);
5832 }
5833 else
5834 #endif
5835 {
5836 basic_block cur_bb;
5837
5838 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5839 goto epilogue_done;
5840 /* We have a fall-through edge to the exit block, the source is not
5841 at the end of the function, and there will be an assembler epilogue
5842 at the end of the function.
5843 We can't use force_nonfallthru here, because that would try to
5844 use return. Inserting a jump 'by hand' is extremely messy, so
5845 we take advantage of cfg_layout_finalize using
5846 fixup_fallthru_exit_predecessor. */
5847 cfg_layout_initialize (0);
5848 FOR_EACH_BB_FN (cur_bb, cfun)
5849 if (cur_bb->index >= NUM_FIXED_BLOCKS
5850 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5851 cur_bb->aux = cur_bb->next_bb;
5852 cfg_layout_finalize ();
5853 }
5854
5855 epilogue_done:
5856
5857 default_rtl_profile ();
5858
5859 if (inserted)
5860 {
5861 sbitmap blocks;
5862
5863 commit_edge_insertions ();
5864
5865 /* Look for basic blocks within the prologue insns. */
5866 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5867 bitmap_clear (blocks);
5868 bitmap_set_bit (blocks, entry_edge->dest->index);
5869 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5870 find_many_sub_basic_blocks (blocks);
5871 sbitmap_free (blocks);
5872
5873 /* The epilogue insns we inserted may cause the exit edge to no longer
5874 be fallthru. */
5875 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5876 {
5877 if (((e->flags & EDGE_FALLTHRU) != 0)
5878 && returnjump_p (BB_END (e->src)))
5879 e->flags &= ~EDGE_FALLTHRU;
5880 }
5881 }
5882
5883 #ifdef HAVE_simple_return
5884 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5885 unconverted_simple_returns);
5886 #endif
5887
5888 #ifdef HAVE_sibcall_epilogue
5889 /* Emit sibling epilogues before any sibling call sites. */
5890 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5891 ei_safe_edge (ei));
5892 )
5893 {
5894 basic_block bb = e->src;
5895 rtx_insn *insn = BB_END (bb);
5896 rtx ep_seq;
5897
5898 if (!CALL_P (insn)
5899 || ! SIBLING_CALL_P (insn)
5900 #ifdef HAVE_simple_return
5901 || (entry_edge != orig_entry_edge
5902 && !bitmap_bit_p (&bb_flags, bb->index))
5903 #endif
5904 )
5905 {
5906 ei_next (&ei);
5907 continue;
5908 }
5909
5910 ep_seq = gen_sibcall_epilogue ();
5911 if (ep_seq)
5912 {
5913 start_sequence ();
5914 emit_note (NOTE_INSN_EPILOGUE_BEG);
5915 emit_insn (ep_seq);
5916 rtx_insn *seq = get_insns ();
5917 end_sequence ();
5918
5919 /* Retain a map of the epilogue insns. Used in life analysis to
5920 avoid getting rid of sibcall epilogue insns. Do this before we
5921 actually emit the sequence. */
5922 record_insns (seq, NULL, &epilogue_insn_hash);
5923 set_insn_locations (seq, epilogue_location);
5924
5925 emit_insn_before (seq, insn);
5926 }
5927 ei_next (&ei);
5928 }
5929 #endif
5930
5931 #ifdef HAVE_epilogue
5932 if (epilogue_end)
5933 {
5934 rtx_insn *insn, *next;
5935
5936 /* Similarly, move any line notes that appear after the epilogue.
5937 There is no need, however, to be quite so anal about the existence
5938 of such a note. Also possibly move
5939 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5940 info generation. */
5941 for (insn = epilogue_end; insn; insn = next)
5942 {
5943 next = NEXT_INSN (insn);
5944 if (NOTE_P (insn)
5945 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5946 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5947 }
5948 }
5949 #endif
5950
5951 #ifdef HAVE_simple_return
5952 bitmap_clear (&bb_flags);
5953 #endif
5954
5955 /* Threading the prologue and epilogue changes the artificial refs
5956 in the entry and exit blocks. */
5957 epilogue_completed = 1;
5958 df_update_entry_exit_and_calls ();
5959 }
5960
5961 /* Reposition the prologue-end and epilogue-begin notes after
5962 instruction scheduling. */
5963
5964 void
5965 reposition_prologue_and_epilogue_notes (void)
5966 {
5967 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5968 || defined (HAVE_sibcall_epilogue)
5969 /* Since the hash table is created on demand, the fact that it is
5970 non-null is a signal that it is non-empty. */
5971 if (prologue_insn_hash != NULL)
5972 {
5973 size_t len = htab_elements (prologue_insn_hash);
5974 rtx_insn *insn, *last = NULL, *note = NULL;
5975
5976 /* Scan from the beginning until we reach the last prologue insn. */
5977 /* ??? While we do have the CFG intact, there are two problems:
5978 (1) The prologue can contain loops (typically probing the stack),
5979 which means that the end of the prologue isn't in the first bb.
5980 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5981 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5982 {
5983 if (NOTE_P (insn))
5984 {
5985 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5986 note = insn;
5987 }
5988 else if (contains (insn, prologue_insn_hash))
5989 {
5990 last = insn;
5991 if (--len == 0)
5992 break;
5993 }
5994 }
5995
5996 if (last)
5997 {
5998 if (note == NULL)
5999 {
6000 /* Scan forward looking for the PROLOGUE_END note. It should
6001 be right at the beginning of the block, possibly with other
6002 insn notes that got moved there. */
6003 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6004 {
6005 if (NOTE_P (note)
6006 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6007 break;
6008 }
6009 }
6010
6011 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6012 if (LABEL_P (last))
6013 last = NEXT_INSN (last);
6014 reorder_insns (note, note, last);
6015 }
6016 }
6017
6018 if (epilogue_insn_hash != NULL)
6019 {
6020 edge_iterator ei;
6021 edge e;
6022
6023 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6024 {
6025 rtx_insn *insn, *first = NULL, *note = NULL;
6026 basic_block bb = e->src;
6027
6028 /* Scan from the beginning until we reach the first epilogue insn. */
6029 FOR_BB_INSNS (bb, insn)
6030 {
6031 if (NOTE_P (insn))
6032 {
6033 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6034 {
6035 note = insn;
6036 if (first != NULL)
6037 break;
6038 }
6039 }
6040 else if (first == NULL && contains (insn, epilogue_insn_hash))
6041 {
6042 first = insn;
6043 if (note != NULL)
6044 break;
6045 }
6046 }
6047
6048 if (note)
6049 {
6050 /* If the function has a single basic block, and no real
6051 epilogue insns (e.g. sibcall with no cleanup), the
6052 epilogue note can get scheduled before the prologue
6053 note. If we have frame related prologue insns, having
6054 them scanned during the epilogue will result in a crash.
6055 In this case re-order the epilogue note to just before
6056 the last insn in the block. */
6057 if (first == NULL)
6058 first = BB_END (bb);
6059
6060 if (PREV_INSN (first) != note)
6061 reorder_insns (note, note, PREV_INSN (first));
6062 }
6063 }
6064 }
6065 #endif /* HAVE_prologue or HAVE_epilogue */
6066 }
6067
6068 /* Returns the name of function declared by FNDECL. */
6069 const char *
6070 fndecl_name (tree fndecl)
6071 {
6072 if (fndecl == NULL)
6073 return "(nofn)";
6074 return lang_hooks.decl_printable_name (fndecl, 2);
6075 }
6076
6077 /* Returns the name of function FN. */
6078 const char *
6079 function_name (struct function *fn)
6080 {
6081 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6082 return fndecl_name (fndecl);
6083 }
6084
6085 /* Returns the name of the current function. */
6086 const char *
6087 current_function_name (void)
6088 {
6089 return function_name (cfun);
6090 }
6091 \f
6092
6093 static unsigned int
6094 rest_of_handle_check_leaf_regs (void)
6095 {
6096 #ifdef LEAF_REGISTERS
6097 crtl->uses_only_leaf_regs
6098 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6099 #endif
6100 return 0;
6101 }
6102
6103 /* Insert a TYPE into the used types hash table of CFUN. */
6104
6105 static void
6106 used_types_insert_helper (tree type, struct function *func)
6107 {
6108 if (type != NULL && func != NULL)
6109 {
6110 if (func->used_types_hash == NULL)
6111 func->used_types_hash = hash_set<tree>::create_ggc (37);
6112
6113 func->used_types_hash->add (type);
6114 }
6115 }
6116
6117 /* Given a type, insert it into the used hash table in cfun. */
6118 void
6119 used_types_insert (tree t)
6120 {
6121 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6122 if (TYPE_NAME (t))
6123 break;
6124 else
6125 t = TREE_TYPE (t);
6126 if (TREE_CODE (t) == ERROR_MARK)
6127 return;
6128 if (TYPE_NAME (t) == NULL_TREE
6129 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6130 t = TYPE_MAIN_VARIANT (t);
6131 if (debug_info_level > DINFO_LEVEL_NONE)
6132 {
6133 if (cfun)
6134 used_types_insert_helper (t, cfun);
6135 else
6136 {
6137 /* So this might be a type referenced by a global variable.
6138 Record that type so that we can later decide to emit its
6139 debug information. */
6140 vec_safe_push (types_used_by_cur_var_decl, t);
6141 }
6142 }
6143 }
6144
6145 /* Helper to Hash a struct types_used_by_vars_entry. */
6146
6147 static hashval_t
6148 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6149 {
6150 gcc_assert (entry && entry->var_decl && entry->type);
6151
6152 return iterative_hash_object (entry->type,
6153 iterative_hash_object (entry->var_decl, 0));
6154 }
6155
6156 /* Hash function of the types_used_by_vars_entry hash table. */
6157
6158 hashval_t
6159 types_used_by_vars_do_hash (const void *x)
6160 {
6161 const struct types_used_by_vars_entry *entry =
6162 (const struct types_used_by_vars_entry *) x;
6163
6164 return hash_types_used_by_vars_entry (entry);
6165 }
6166
6167 /*Equality function of the types_used_by_vars_entry hash table. */
6168
6169 int
6170 types_used_by_vars_eq (const void *x1, const void *x2)
6171 {
6172 const struct types_used_by_vars_entry *e1 =
6173 (const struct types_used_by_vars_entry *) x1;
6174 const struct types_used_by_vars_entry *e2 =
6175 (const struct types_used_by_vars_entry *)x2;
6176
6177 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6178 }
6179
6180 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6181
6182 void
6183 types_used_by_var_decl_insert (tree type, tree var_decl)
6184 {
6185 if (type != NULL && var_decl != NULL)
6186 {
6187 void **slot;
6188 struct types_used_by_vars_entry e;
6189 e.var_decl = var_decl;
6190 e.type = type;
6191 if (types_used_by_vars_hash == NULL)
6192 types_used_by_vars_hash =
6193 htab_create_ggc (37, types_used_by_vars_do_hash,
6194 types_used_by_vars_eq, NULL);
6195 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6196 hash_types_used_by_vars_entry (&e), INSERT);
6197 if (*slot == NULL)
6198 {
6199 struct types_used_by_vars_entry *entry;
6200 entry = ggc_alloc<types_used_by_vars_entry> ();
6201 entry->type = type;
6202 entry->var_decl = var_decl;
6203 *slot = entry;
6204 }
6205 }
6206 }
6207
6208 namespace {
6209
6210 const pass_data pass_data_leaf_regs =
6211 {
6212 RTL_PASS, /* type */
6213 "*leaf_regs", /* name */
6214 OPTGROUP_NONE, /* optinfo_flags */
6215 TV_NONE, /* tv_id */
6216 0, /* properties_required */
6217 0, /* properties_provided */
6218 0, /* properties_destroyed */
6219 0, /* todo_flags_start */
6220 0, /* todo_flags_finish */
6221 };
6222
6223 class pass_leaf_regs : public rtl_opt_pass
6224 {
6225 public:
6226 pass_leaf_regs (gcc::context *ctxt)
6227 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6228 {}
6229
6230 /* opt_pass methods: */
6231 virtual unsigned int execute (function *)
6232 {
6233 return rest_of_handle_check_leaf_regs ();
6234 }
6235
6236 }; // class pass_leaf_regs
6237
6238 } // anon namespace
6239
6240 rtl_opt_pass *
6241 make_pass_leaf_regs (gcc::context *ctxt)
6242 {
6243 return new pass_leaf_regs (ctxt);
6244 }
6245
6246 static unsigned int
6247 rest_of_handle_thread_prologue_and_epilogue (void)
6248 {
6249 if (optimize)
6250 cleanup_cfg (CLEANUP_EXPENSIVE);
6251
6252 /* On some machines, the prologue and epilogue code, or parts thereof,
6253 can be represented as RTL. Doing so lets us schedule insns between
6254 it and the rest of the code and also allows delayed branch
6255 scheduling to operate in the epilogue. */
6256 thread_prologue_and_epilogue_insns ();
6257
6258 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6259 see PR57320. */
6260 cleanup_cfg (0);
6261
6262 /* The stack usage info is finalized during prologue expansion. */
6263 if (flag_stack_usage_info)
6264 output_stack_usage ();
6265
6266 return 0;
6267 }
6268
6269 namespace {
6270
6271 const pass_data pass_data_thread_prologue_and_epilogue =
6272 {
6273 RTL_PASS, /* type */
6274 "pro_and_epilogue", /* name */
6275 OPTGROUP_NONE, /* optinfo_flags */
6276 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6277 0, /* properties_required */
6278 0, /* properties_provided */
6279 0, /* properties_destroyed */
6280 0, /* todo_flags_start */
6281 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6282 };
6283
6284 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6285 {
6286 public:
6287 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6288 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6289 {}
6290
6291 /* opt_pass methods: */
6292 virtual unsigned int execute (function *)
6293 {
6294 return rest_of_handle_thread_prologue_and_epilogue ();
6295 }
6296
6297 }; // class pass_thread_prologue_and_epilogue
6298
6299 } // anon namespace
6300
6301 rtl_opt_pass *
6302 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6303 {
6304 return new pass_thread_prologue_and_epilogue (ctxt);
6305 }
6306 \f
6307
6308 /* This mini-pass fixes fall-out from SSA in asm statements that have
6309 in-out constraints. Say you start with
6310
6311 orig = inout;
6312 asm ("": "+mr" (inout));
6313 use (orig);
6314
6315 which is transformed very early to use explicit output and match operands:
6316
6317 orig = inout;
6318 asm ("": "=mr" (inout) : "0" (inout));
6319 use (orig);
6320
6321 Or, after SSA and copyprop,
6322
6323 asm ("": "=mr" (inout_2) : "0" (inout_1));
6324 use (inout_1);
6325
6326 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6327 they represent two separate values, so they will get different pseudo
6328 registers during expansion. Then, since the two operands need to match
6329 per the constraints, but use different pseudo registers, reload can
6330 only register a reload for these operands. But reloads can only be
6331 satisfied by hardregs, not by memory, so we need a register for this
6332 reload, just because we are presented with non-matching operands.
6333 So, even though we allow memory for this operand, no memory can be
6334 used for it, just because the two operands don't match. This can
6335 cause reload failures on register-starved targets.
6336
6337 So it's a symptom of reload not being able to use memory for reloads
6338 or, alternatively it's also a symptom of both operands not coming into
6339 reload as matching (in which case the pseudo could go to memory just
6340 fine, as the alternative allows it, and no reload would be necessary).
6341 We fix the latter problem here, by transforming
6342
6343 asm ("": "=mr" (inout_2) : "0" (inout_1));
6344
6345 back to
6346
6347 inout_2 = inout_1;
6348 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6349
6350 static void
6351 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6352 {
6353 int i;
6354 bool changed = false;
6355 rtx op = SET_SRC (p_sets[0]);
6356 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6357 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6358 bool *output_matched = XALLOCAVEC (bool, noutputs);
6359
6360 memset (output_matched, 0, noutputs * sizeof (bool));
6361 for (i = 0; i < ninputs; i++)
6362 {
6363 rtx input, output;
6364 rtx_insn *insns;
6365 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6366 char *end;
6367 int match, j;
6368
6369 if (*constraint == '%')
6370 constraint++;
6371
6372 match = strtoul (constraint, &end, 10);
6373 if (end == constraint)
6374 continue;
6375
6376 gcc_assert (match < noutputs);
6377 output = SET_DEST (p_sets[match]);
6378 input = RTVEC_ELT (inputs, i);
6379 /* Only do the transformation for pseudos. */
6380 if (! REG_P (output)
6381 || rtx_equal_p (output, input)
6382 || (GET_MODE (input) != VOIDmode
6383 && GET_MODE (input) != GET_MODE (output)))
6384 continue;
6385
6386 /* We can't do anything if the output is also used as input,
6387 as we're going to overwrite it. */
6388 for (j = 0; j < ninputs; j++)
6389 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6390 break;
6391 if (j != ninputs)
6392 continue;
6393
6394 /* Avoid changing the same input several times. For
6395 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6396 only change in once (to out1), rather than changing it
6397 first to out1 and afterwards to out2. */
6398 if (i > 0)
6399 {
6400 for (j = 0; j < noutputs; j++)
6401 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6402 break;
6403 if (j != noutputs)
6404 continue;
6405 }
6406 output_matched[match] = true;
6407
6408 start_sequence ();
6409 emit_move_insn (output, input);
6410 insns = get_insns ();
6411 end_sequence ();
6412 emit_insn_before (insns, insn);
6413
6414 /* Now replace all mentions of the input with output. We can't
6415 just replace the occurrence in inputs[i], as the register might
6416 also be used in some other input (or even in an address of an
6417 output), which would mean possibly increasing the number of
6418 inputs by one (namely 'output' in addition), which might pose
6419 a too complicated problem for reload to solve. E.g. this situation:
6420
6421 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6422
6423 Here 'input' is used in two occurrences as input (once for the
6424 input operand, once for the address in the second output operand).
6425 If we would replace only the occurrence of the input operand (to
6426 make the matching) we would be left with this:
6427
6428 output = input
6429 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6430
6431 Now we suddenly have two different input values (containing the same
6432 value, but different pseudos) where we formerly had only one.
6433 With more complicated asms this might lead to reload failures
6434 which wouldn't have happen without this pass. So, iterate over
6435 all operands and replace all occurrences of the register used. */
6436 for (j = 0; j < noutputs; j++)
6437 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6438 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6439 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6440 input, output);
6441 for (j = 0; j < ninputs; j++)
6442 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6443 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6444 input, output);
6445
6446 changed = true;
6447 }
6448
6449 if (changed)
6450 df_insn_rescan (insn);
6451 }
6452
6453 namespace {
6454
6455 const pass_data pass_data_match_asm_constraints =
6456 {
6457 RTL_PASS, /* type */
6458 "asmcons", /* name */
6459 OPTGROUP_NONE, /* optinfo_flags */
6460 TV_NONE, /* tv_id */
6461 0, /* properties_required */
6462 0, /* properties_provided */
6463 0, /* properties_destroyed */
6464 0, /* todo_flags_start */
6465 0, /* todo_flags_finish */
6466 };
6467
6468 class pass_match_asm_constraints : public rtl_opt_pass
6469 {
6470 public:
6471 pass_match_asm_constraints (gcc::context *ctxt)
6472 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6473 {}
6474
6475 /* opt_pass methods: */
6476 virtual unsigned int execute (function *);
6477
6478 }; // class pass_match_asm_constraints
6479
6480 unsigned
6481 pass_match_asm_constraints::execute (function *fun)
6482 {
6483 basic_block bb;
6484 rtx_insn *insn;
6485 rtx pat, *p_sets;
6486 int noutputs;
6487
6488 if (!crtl->has_asm_statement)
6489 return 0;
6490
6491 df_set_flags (DF_DEFER_INSN_RESCAN);
6492 FOR_EACH_BB_FN (bb, fun)
6493 {
6494 FOR_BB_INSNS (bb, insn)
6495 {
6496 if (!INSN_P (insn))
6497 continue;
6498
6499 pat = PATTERN (insn);
6500 if (GET_CODE (pat) == PARALLEL)
6501 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6502 else if (GET_CODE (pat) == SET)
6503 p_sets = &PATTERN (insn), noutputs = 1;
6504 else
6505 continue;
6506
6507 if (GET_CODE (*p_sets) == SET
6508 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6509 match_asm_constraints_1 (insn, p_sets, noutputs);
6510 }
6511 }
6512
6513 return TODO_df_finish;
6514 }
6515
6516 } // anon namespace
6517
6518 rtl_opt_pass *
6519 make_pass_match_asm_constraints (gcc::context *ctxt)
6520 {
6521 return new pass_match_asm_constraints (ctxt);
6522 }
6523
6524
6525 #include "gt-function.h"