UNIX
PRINTING

SYSTEM

CUPS Software Programmers Manual
CUPS-SPM-1.2.0

Easy Software Products
Copyright 1997-2002, All Rights Reserved

CUPS Software Programmers Manual

Table of Contents

= =01 = T
SYSTEIMIOVEIVIEW. ..11tvvvvvverevestarsrsesseessessssssssssessesssseeeeeeesereaeeeeeetaettteetettaatttetattattaaataeaeaaateaaeaaaaaaaaaaaaaaeaaaeaes i
DOCUMENIOVEIVIEW. ...ttt ettt e e ettt e e e ettt e e e et e e e et b e e e s e b s e e s e aaa e e e s e et eesea b s essebaa s eeseabaeesesbansnns 2
N [0) P21 T0] A LOT0] a1 VL=) 0110 0T TR 2
J N o 0T (SAVAF= 1 [0 01T
(@) 1 ST RIS (=) A101= :

1 — Printing SYStEMOVEIVIEW.uuuuuuuiutirtrirutestrsusessresresssessssesssessesseeeeseeeeeereeeeeererrerreerrt 5

Classes
1LY £
oo (=) 10 K=
a1 =Y D AN VA=) £

AT Yoo T PP |

2 = TN CUP S AP ..ottt ettt et e o4k et e oo a ke e 444t e e oA R e e e Rt e e e b et e e e e e e e e e n e e e e e e e e na

The CUPSAPI LIDIAIY. ...t aanneennennnes 9
Detectingthe CUPSAPI Library in GNU AUtOCONT........ccoooiiiii i 10
PrINTING SEIVICES. ...cvviiiiiiiieeeee ettt ettt ettt e e e et e 1(
TaTo [0 T0 (oY 1T 1(
PrNGNGAFIIE. ... ———————— 1C
Printing MUIIPIE FIlES ... ———— 10
CaNnCelliNGIODS.o ————————————— 11

Gettingthe Available PrintersandCIaSSES..........coooeiiiiii it 11
PrintingWIth OPLIONS. .. .uvvveiiiiiiiiiiieieieeeee et e e e e e e et e e e e e e et e aaaaaaeaaaaaaaaaaeas 12
SettiNgPINIEIOPLONS.....cciiiiiiiiiieeeeee e, 13

LT LT Lol 0] £ PP PPPPPPPP 1z
PassWOrdSINAAULNENEICALION. ceee et e ettt ettt e e et et e e e e e e e e e e eeneeeennn 14

ad DT Ao Y TR 1
[aTod (8 Te [SY 1[PPI 1t

Gettinga PPDFIle fOr aPIINLEL.......cccco i 15
LOAAINGAPPDFEIIE.......cciiiiiiieeieeeeeeeeeee e, 15
FreeingPP DIl INfOIMALION.uuuuiiiiiiiiiiiiiiiiiiiieeieereeeeseereeeeeeeseeeseeeeeeeeeerereseeereeeraeerrreereeeeeeaeeeeeees 16
TSN ad B | (SIS (U (o3 (U T 16
LT To @ o) 0 T PP 18
Checkingfor CONFlICTS.....vviiiiieiiiieeeeee e 19

Gl T4 10T T N =Y PP 2
(@ LY VA1) 2
SecUrityCoNSIAErationsS..........cooo i ——— 21
USEISANUGIOUDS. ..vvvvvvereteerressseesssssesseeresreeseeeeerreeetereteetttttattttttatttttttattaaaaaaataaeaaeaaaaeaaaeaaaaeaaaaaaeaeaaaes 21
=T 00 010 = LY, 1 (== TP PRSPPI 21
SendingMessagesn thEUSEY.........cooooiiiii e 22
=T =Yoo 011 10117 PP 272
(OT0] 0] A AT=TaTo et ML= AN [0 11001 016 TS 22
(70 0)YA CT =Y aT=] 7= 110 o F PSPPSR 23

CUPS Software Programmers Manual

Table of Contents

3 — Writing Filters
ENVIrONMENIVAIIADIES.oieeee ettt e et e e et e e e et s e e s et e e s eeba e e s sebaa e eeesbaaaeenes 23
[DIITSY=Tea 110 (40 T=N m | mtu €1 0 22 (Y 23
INitializing thEFIIEE. ... e nnrannes 23

PostScripiOutput

4 — WIItiNG PrINIEE DIVEIS......ooiiiiiiieeeeeeeeeeeeeeeeeee s 27
OV BTV, .. et e e ettt ettt et e et ettt et et e e e et e et e et e e et et e e e e e et e e 27

CUPSRasterData

=T =Yoo 011 |11 T PP 28
Color MaNAQEMENL.......coiieeeeeeee e —— 28
DeviceandBitmapVariables.o e s a————————rrraarrarraareaaees 28
[DIISTSY=Toa 110 (4 T=0 m | mtu md ©F B B 5 1Y/ = G 29
PPDFiles

ReadingRASIEIDALA.coo e —————————————— 30

5= WrtiNg BACKENAS.......cco o —————————— 33

(@ 1Y) VA1) 33
SecurityConSIAErationsS..........cooo i —— 33
(OT0] 0] A AF=T AT et ML= AN [0 11001 016 TSRS 33
(70 0)YA CT =Y aT=] = LT0] o F PSPPSR 33
=T =Yoo 011 111 T PSP 34
(O] [STV LY AN oo <Y1 34
Retries

Dissectingthe SerialPortBackend
SUPPOIINGDEVICEDISCOVEY.ccc e e e e e e et e e e e e e aa e aaaanneanreannennnes 34
OpeNINGINESEHAIPOIT. ... 35
WIriting DatatO thePOI ... ——— 35
FinishingUp

A — SOftWaAre LICENSEAGIEEIMENT. ittt ettt e aeee e eeeeaeseestessssassssssesssssssssssessressarrsrreserrareteereeeees 37

CommonUNIX Printing SystemLiCENSEAQIEEMENL.........uuuururrrrrrrrrerrrrrrrrrrerrrrerrrrrrrrrrer———————————. 37
Introduction 37

I To T A IoT =) (ot =] 1 [0 L PP PPPPPPP 38
Trademarks. 38

Binary DistribUtioN RIGNES. ..o —————— 39
1 161 T PR 39
GNU GENERAL PUBLIC LICENSE .. .oee ettt ettt e et e e e e e e e e e e e e e 40

GNU LIBRARY GENERAL PUBLIC LICENSE. ..ot 45

B — Constants
CUPSConstants
ALY 6o 0] a T AN LU L] = (TR 53

101 =] O o T o111 TP PPPPPPPPP 53

T T oo o 10T T 54
HTTP Constants

Limits
StatusCodes

CUPS Software Programmers Manual

Table of Contents

B — Constants

T[0T 5
L d = O 1S 7= 1€ 5
T 5
720 T 5
RESOIULIONUNIIES. ...ttt eeeet e ettt e e ettt e e et e e ettt e e e s et e e et e b e e e ee b s e s s e bba e e e s aaa s eesea b sesssbansessesbnsaesenns 57
LTS T T 5
(@111t 1 A10) 81T 5
(@ T F= 11T 5
N L0] 01 = 1 =3 :
a1 (=Y BS) =1 (== T 5¢
OPEIALIONS ————————————— 5¢
] =10 1S O 010 [T 5¢
o T 0] 1] 7= 11 5¢
[md md DY o A0 AT 1 A A=) 6110] o PO 60
o L Y= e [0 (Y 72 10 <INV 0= YRR 60
[=d md DS =T03 10 81T 6(
[= B 001 (0] 5] oY= Lo =L TSRS RRPRRRRR 60
e Lo (=] (O] 1S = 15 6(
RASIEISYNCWVOIAS. uuuueiuitiiitiiitittt e aae e eae e e ae et e st e eeeess e e seess e s s es s st s s s s s s s s s s s se s s s s s sssssenssnnsnnnsnnnnnns 60
R (=] 11 (oY= 1 1V 1010 =5 T 60
R (=11 1010) (Y- 10 @1 0] A 15) -1] £ TR 61
RASIEIJOQVAIUES......coiiiiiiieeeeeeeeee e 61
RAStEIONENIALIONVAIUES.cieeve et e e e e e e e e e e e et e e e e et s e s s e s e e ssebaeeeseranss 61
RASIEICUIMEIAVAIUES.uu ittt e et e e e et e e e e et e e e s et e e s eaba e e s eebbn e eeeaanss 61
RAStETAAVANCEMEQIAVAIUES. o ceieeee ettt e et e e et e e e et s e e s e e e e s e e e e e s sbb e e ereaanaas 61
Rasten €adiNGEAQA/AIUES.uuiiiiiiiiieieiieeieeeaeeeeeeeaeeaeeaaeeaaaaeaeeess 61
R (=] (O] [0 O (0 (ST A2z 11 [T 62
RIS (=) (OF0] [0 6T 0 F= (o1 V= | U L= JA PP 62
(O Y 11103 10 =Y €
(@4] TS (o (1 (= 6
(O8] ST BTy (1= 110 L= 63
O SN 0] o1 6!
L0881V 1TSS o 1= 64
CUPSOPLONS.ceeiiieieeeeeeeeeeee e 64
N EIWOIKING SEIUCTUIES. uutittiiitititiiiiiitttateetaesaeeesesssesseeessssssessssssssssssssaessssssessseesseeseeesseeseeeaeeeseesaeeaeeees 64
[Y 7= | (T 6
L od Y v= | (= TR 6'
e LS (=] A 10 (1= 6"
RASIEPAGEHEAAE.eeiieeeeeeeeeeeeee e, 65
I U 1o 110 = €
(o101 01T Yo [0 | L= T PP 6
0157 T [6
0 01T 01 6
e 1017 6
DESCIIPLION. ..ceeeeeeieiee ettt 6¢

CUPS Software Programmers Manual

Table of Contents

D — Functions

D=1 0101][68
YTy AN £ o J TP 68
(o101 01T Vo [0 (@ 1 1T a (P 69
057 T [69
0 0] T 01 69
= 11 69
DESCIIPLION. ..eeeeieeeeeeeeee e, 69
D=1 010]][69
YTy AN £ o J TR 69
CUPSCANCEIJOD() ... 70
057 T [70
0 0T 01 70
= 11 70
DESCIIPLION. .. ettt 70
D=1 0101][70
YTy AN ETo TP 70
CUPSDOFIIEREGUESE(). ... ce i i e e ettt a b e ae b b ae e e b bebae s assesbessessasesssensnnnsees 71
0157 T [71
0 0T 01 71
= 11 71
DESCIIPLION. ..ceeeeeeieeee ettt 71
D=1 010]][PP 71
YTy AN £ o TR 72
(o101 01T BT =T o LU 1=1S) (P 73
157 T [73
0 0T 01 73
= 11 73
DESCIIPLION. ..ceeeieeieeee et 73
D=1 0101][73
YTy AN £ o J TR 74
(o101 01T =Y aloTo e [=T@] o) 1 o] o 1S/ P 75
0157 T [75
0 01T 01 R 75
DESCIIPLION. ..ceeeieeieeee et 75
D=1 0101][75
YTy AN ETo TR 75
(o110 1SY = To] Y/ 01110 a1 (P 76
57T [76
= 11 76
DESCIIPLION. ..ceetieeeeeee et 76
D=1 010]][76
YTy AN £ o TR 76
CUPSETEEDESIS(). . vvvvveeeieeiiieiiieiiie ettt ettt ettt ettt ettt et ettt e e et e et e et e e e et e aeaaeaaaaens 77
57T [77
0 0T 01 77
DESCIIPLION. ..ceeeieeieeee ettt 77
D=1 010]][77

CUPS Software Programmers Manual

Table of Contents

D — Functions

ST SY = A F= o 7
(o110 1Y e =T [0 0 1= (PP 7
0157 T [7
0 0T 01 7
DESCIIPLION. ..eeeeieeieeee ettt 7
D=1 010]][7

ST SY = A £ o 7
CUPSEIEEOPLONS[) . .eeiieiieeiieii i, 7¢
0157 T [7

N0 0T 01 7
DESCIIPLON. ..ceeeieeieeeeeeee e, 7
D=1 0101][PP 7

ST SY = A £ o 7

(o110 1Y 1= (O F= TSTT=] PP 8(
0157 T [8

0 01T 01 8(

e 1017 8
DESCIIPLION. ..ceeeieeiieeeeee e, 8(
D=1 0101][8

ST SY = A £ o 8

(o101 01T 1= (=) 7= TV 1 P 8:
157 T [8

e 1017 8
DESCIIPLION. ..ceeeeeeieeeeeeee e, 8:
D=1 0101][PP 8
ST A £ o 8
CUPSGEIDESI()..c e e ————————— 8.
57T [8
0 01T 01 8.

e 101 8
DESCIIPLION. ..ceeeieeieeee ettt 8:
D=1 0101][8
ST A F= o 8
(o110 1SY 1= 1T (=] (PP 8.
57T [8
0 0T 01 8:

e 1017 8
DESCIIPLION. ..ceeeieeieeeeeeee e, 8:
D=1 010]][8

ST SY = A £ o 8

(o1 1011 1<) A0 [o 1= () T 8
157 T [8
0 0T 01 8:

e L0] 17 8
DESCIIPLION. ..ceeeeeeieeeeeeee e, 8-
D=1 010]][PP 8
ST A £ o 8

CUPS Software Programmers Manual

Table of Contents

D — Functions

CUPSGELOPLIONE) .. e et eeeeeee e e —— 85
0157 T [85
0 0T 01 85
e 1017 85
DESCIIPLION. ..eeeeieeieeee ettt 85
ST SY = A £ o T 85

(o110 1SY 1=y (= L1Y 1YL 0) (o | P 86
0157 T [86
0 0T 01 86
e 101 86
DESCIIPLON. ..ceeeieeieeeeeeee e, 86
D=1 010]][86
ST SY = A £ o T 86

CUPSGEIPPD()...cc i ————————— 87
0157 T [87
0 01T 01 87
e 1017 87
DESCIIPLION. ..ceeeieeiieeeeee e, 87
D=1 0101][P 87

CUDPSGEEPTINEEIS() v vvvvvrrrvrrrrerrerreeereeereeereeereereeereeereeeteett ittt te ittt ittt tttatttaetaaetaaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaens 88
157 T [88
0 0T 01 88
e 1017 88
DESCIIPLION. ..ceeeieeieeee ettt 88
D=1 0101][P 88
ST SY = A £ o T 88

(oT0 01T I Tt | 1= 7= 11 L PP 89
57T [89
e 1017 89
DESCIIPLION. ..ceeeeeeieeeee e, 89
D=1 0101][89
ST SY = £ o 89

(o110 1Y IV aTo | =1 Todo o [T [PPSR 90
57T [90
0 01T 01 90
e 1017 a0
DESCIIPLION. ..ceeeieeieeee et 90
D=1 010]][90
ST SY = A F= o T 90

[oT 1o 1SY =TT | 0= T P 91
157 T [91
DESCIIPLON. ...eeeieeeeeeeeee e, 91
D=1 010]][91
ST SY = £ o 91

(oI 1o TY I T aTe | o C=T=) D PRSP 92
57T [92
0 0T 01 92

Vi

CUPS Software Programmers Manual

Table of Contents

D — Functions

DESCIIPLION. ..eeetieeieeeeeee e, 9:
D=1 0101][9
ST F= o 9
CUPSLANGGELL) ..o c i e e ———————— 9.
0157 T [9
0 0] T 01 9!
e 1017 9
DESCIIPLION. ..ceeteeeeeeee ettt 9!
D=1 0101][PP 9
ST SY = £ o 9
[oT 1 01T =T aTo 1S 11T | PP 9«
57T [9
0 0T 01 9
e 101 9
DESCIIPLION. ..ceeeieeieeeeeeee e, 9
D=1 0101][PP 9.
ST SY = A £ o 9.
CUPSLASTEITON()..vvtvverieeieeeieieeee e e et e ettt ettt et e e et e et ettt e et e e et e et e e et e e et eeeeeaeaaeaaaanas 9!
157 T [9
e L0 17N 9
DESCIIPLION. .. ceeeieeeeeeeeee e, 9
D=1 0101][9
ST SY = A £ o T 9
CUPSMAIKODEIONS(): .+t vuvvurrruuuuunrsunrunssensesssesssesssreeeeeeeens 9¢€
157 T [9
0 0T 01 e[
e L0] 17 9
DESCIIPLION. ..ceetieeieeeeeeee e, 9
D=1 0101][9
ST SY = A £ o T 9
(o110 1Y = TST=L @ 01110 a1) PP 97
0157 T [9
0 01T 01 R 9
e 1017 9
DESCIIPLION. ..ceeeieeieeee et 9
D=1 0101][9
ST A £ o 9
(o101 0TS = (1014 1= PP 9
57T [9
0 0T 01 9
e 1017 9
DESCIIPLON. ...eeteeeieeeeeee e, 9
D=1 0101][9
ST A £ o 9
(o110 1SY md (1010 1 (ST (PRSP TRTTTR o
57T [9
0 0T 01 9

Vii

CUPS Software Programmers Manual

Table of Contents

D — Functions

= 101 99
DESCIIPLION. ..eeetieeieeeeeee e, 99
D=1 0101][PP 99
YTy AN £ o J TR 99
CUPSRASIEICIOSE() . .eeieieiiieiiee e ——— 100
L0157 T [100
0 01T 01 100
DY ol 1 140 PSPPSR RUURRUPRRR 100
D=1 101][RP 100
YTy AN Yo TR 100
CUPSRASEIOPEII(). 1+t vvvvvrrrvrrrrrsressrrsssesssessssesseseereeeerererererreerreetrttttrtttetttetttttttteteeetteatteaeeeeteeeseeaeeeaaaeeeees 101
L0157 T [101
0 01T 01 101
= 1011 101
[TSY ol 1 140 PRSP RUURRRPRRR 101
D=1 0101][PP 101
Y oY Y AN £ o TSR 101
cupsRasterReadHEAAEN().......cceveeee e 102
015710 [102
0 01T 01 102
= 1011 102
DYl] 140 PSP SURUSUUPRUPRRP 102
D=1 0101][PP 102
Y EY Y AN £ o TR 102
(1|01 R Y (=11 md=Y= 10 | md =))) F PP PPPPPPPPP 103
0157 T [103
0 0]8T 01 103
= 1011 103
[Tl] 140 T PSPPSR SUURSURRRP 103
=T 0101][PP 103
Y EY Y AN Yo J T 103
(1010 1Y R S (=T AIAVA 1 (=) m L= 10 (=)) P 104
0157210 [104
a0 00T 01 104
= 1011 104
[Tl] 140 T PSPPSR SUURSURRRP 104
=T 0101][PP 104
YTy AN Yo TR 104
CUPSRASEIWIITEPIXEIS().....coeeeeeieeeeeee e, 105
015710 [105
0 0]8T 01 105
= 1011 105
DY ol 1 140 PSPPSR RSURRUPRRP 105
D=1 0101][PP 105
YTy AN Yo J TR 105
L0110 TSRS T T A= 1 (RS 106
L0157 T [106

viii

CUPS Software Programmers Manual

Table of Contents

D — Functions

= (01 10
DYl] 140 PSPPSR SUURRUPRRP 10¢
=T 0101][RP 10
Y EY Y AN ETo J TR 10
CUPSSEIDESIS() ..o ceeeee e i et ——————————————————— 10
L0157 T [10
0 01T 01 10°
DY ol 1 140 PSPPSR RUURRUPRRR 10°
=T 0101][PP 10
Y oY Y AN £ o TR 10
(o[o TS Y =1 o 77 0) 11010 () F USSP URRRRR 10¢€
L0157 T [10
0 01T 01 10¢
DY ol 1 1410 PSPPSR SSUPSURRRP 10¢
=T 001][PP 10
Y oY Y AN £ o TSR 10
CUPSSELPASSWOIACB() ... uteereeiieieiieiieeeeeeieeeeeeee e e e e e e e ee e e e et e et eeee e et et e e et e e e et ettt e e et e e et e e e e eaataaaaaaeaaaaaaaaaaaaaaaaaas 109
0157210 [10
0 01T 01 10¢
DYl] 140 PSP URUSSURRURRRP 10¢
D=1 010]][PP 10
YTy AN £ o TR 10
CUDSSEESEIVEI(): v vvvvvvrrrrerrreeeeeereereereeeeeereeeeeeeeeteeteeeteettattttetteetetetteteetaetataetaeataaataaaaaeeaaaaaaaeaaeaaaaaaaaaaaaaeas 110
L0157 T [11
a0 02T 01 11¢
DYl 1 140 PSPPSR SUSSUPSURRRP 11(
=T 0101][PP 11
Y oY Y AN Yo J TR 11
CUPSSEIUSEE(). . veveeeeeeeiiieeiiii ettt ettt ettt ettt ettt ettt ettt ettt e et e et e e et e aaeeaaaeaaeeas 11
0157 T [11
0 00T 01 11:
DYl] 140 PP SURUSSUPRURRRP 11:
=T 0101][PP 11
YTy AN £ o TSP 11
(o101 0TS =T 00 o () PR 11:
015710 [11
0 01T 01 11
= 1011 11
DYl] 140 PSSP SUURSURRRP 11:
=T 0101][PP 11
YTy AN Yo TR 11
(o101 oIS =T 0010 1 =Y (USSP PRPPR 11:
0157 T [11
0 0]8T 01 11:
= (01 11
[Tl] 140 PSSR RSURSURRRR 11
=T 0101][RP 11

CUPS Software Programmers Manual

Table of Contents

D — Functions

ST SY = £ o T 113
Lo 101X 1T PP 114
0157 T [114
L0 114
DYl] 140 PSPPSR RSUPRURRRP 114
=T 0101][PP 114
ST SY = £ o T 114
170 23 ToTod 4o T PP 115
L0157 T [115
a0 01T 01 115
DY ol 1 140 PO US SR SUURSURRRR 115
D=1 101][RP 115
ST SY = £ o T 115
NP CRECK(). ..o —————————————————————— 116
015710 [116
0 02T 01 116
= L0 116
DYl] 1410 PSP UUSSUURURRRP 116
D=1 0101][PP 116
ST SY = £ o T 116
10y @ =TT 1= o T PP 117
015710 [117
0 0127 01 117
DYl] 140 PSPPSR SUURSURRRP 117
=T 001][PP 117
ST £ o T 117
01111 @4 [0 Y= SRS PSSP PURURPPR 118
015710 [118
a0 00T 01 118
DYl] 140 PP SURUSSUPRURRRP 118
D=1 0101][PP 118
ST SY = £ o T 118
NEPCONNECTL)...cc e ——————— 119
015710 [119
a0 00T 01 119
101N 119
[Tl] 140 T PSPPSR SUURSURRRP 119
=T 0101][PP 119
ST SY =Y F= o T 119
NP CONNECIENCIYPI(). vt vterteeeieeeeiei ettt e et e e e e e e e e e e e et e aeaeaaeeas 120
015710 [120
0 0]8T 01 120
01N 120
[Tl] 140 PSSR SRS SUPSUPRRR 120
D=1 0101][PP 120
ST SY = F= o T 120
hHEPDECOAEBA().....cceeeeiieeeiee e ——— 121

CUPS Software Programmers Manual

Table of Contents

D — Functions

L0157 T [12
0 01T 01 12
e L0 12
DY ol] 140 PSPPSR SSUUSUPRRP 12
=T 0101][PP 12
ST SY = £ o T 12
DD EIETE() ... e ——————————————— 12
L0157 T [12
0 01T 01 12:
L0 1N 12
DYl] 140 PSS SS U SSUPRURRRP 12:
D=1 0101][PP 12
ST SY =Y £ o T 12
10T o] S aTofoTo [T o | TR PP PSPPSR PPPRRPPR 12
0157 T [12
0 02T 01 12
e 011N 12
DYl] 1410 PSP UUSSUURURRRP 12:
D=1 0101][PP 12
ST SY = F= o T 12
10T o] Lo 8/ 01010 a1 PP 12
015710 [12
0 0127 01 12
0] 12
DY ol 1 140 PP S USSR 12
=T 0101][PP 12
ST SY =Y F= o T 12
101 0] 0T (PRSP PPPPPRPPR 12
0157210 [12
0 01T 01 12!
L0 11N 12
DYl] 140 PP SURUSSUPRURRRP 12¢
=T 0101][PP 12
ST SY = F= o T 12
100 [0S T PRSP P PP 12
015710 [12
0 01T 01 121
DYl] 140 PSSP SUURSURRRP 12¢
=T 0101][PP 12
ST SY =Y F= o T 12
111 T 1= o) PSSP URRRPPRP 12
015710 [12
0 0]8T 01 12
01N 12
DY ol 1 140 PP S USSR 12°
=T 001][PP 12
ST SY = F= o T 12

Xi

CUPS Software Programmers Manual

Table of Contents

D — Functions

Xii

1 L= Y PPN 128
057 T [128
0 00T 01 128
L0 128
DYl] 140 PSPPSR RSUPRURRRP 128
=T 0101][PP 128
ST SY = £ o T 128

NHEPGEIDAESTING(). . e evreeeeieiieee ittt 129
L0157 T [129
a0 01T 01 129
01N 129
[Tl] 1410 PSPPSR RSURRURRRR 129
D=1 0101][RP 129
ST SY = F= o T 129

10T T Ty (B oY= T 1=y () TP 130
L0157 T [130
0 0107 01 130
= L0 130
DYl] 140 PSSP UURSURSURRRP 130
D=1 0101][PP 130
ST SY =Y F= o T 130

NHPGELFIEIAL). ... ————————— 131
015710 [131
a0 02T 01 131
01N 131
DY ol 1 140 PSPPSR RSURRUPRRP 131
=T 0101][PP 131
ST SY = £ o T 131

httpGEtHOSIBYNAME(). ...t eeeieeeeee i e ee e ettt ab et aee e et st se s bt s et sssssssssssssssssnssennnnnsennennes 132
0157 T [132
0 00T 01 132
101N 132
[Tl] 140 T PSPPSR SUURSURRRP 132
=T 0101][PP 132

hHPGELLENGLNL) ... ——— 133
015710 [133
0 01T 01 133
= L0 133
[Tl] 140 PSPPSR RUSSUURRRRRP 133
=T 0101][PP 133
ST SY = F= o T 133

NP GELSUBFIEIA(). ..o c e oo —————————— 134
L0157 T [134

0 0]8T 01 134
01N 134
[Tl] 140 PSSR SRS SUPSUPRRR 134
=T 0101][RP 134

CUPS Software Programmers Manual

Table of Contents

D — Functions

ST SY = £ o T 13
1010 [z 10 [PRSP P PR 13
L0157 T [13
a0 01T 01 13!
L0]S 13
DYl 1 140 PSSR SSUPRURRRP 13¢
D=1 0101][RP 13
ST SY = F= o T 13
10T o] LTz =Y PP 13
0157 T [13
DYl] 140 PSS SS U SSUPRURRRP 13¢
D=1 0101][PP 13
ST SY =Y £ o T 13
1010111 LT PSSP PRSPPI 13
0157 T [13
0 02T 01 13
e 011N 13
DYl] 1410 PSP UUSSUURURRRP 13
D=1 0101][PP 13
ST SY = F= o T 13
hEPMDSFEINAI. ... ce e e ——— 13¢
015710 [13
0 0127 01 13
0] 13
DY ol 1 140 PP S USSR 13¢
=T 0101][PP 13
ST SY =Y F= o T 13
NIEPIMDSSEIINQ(). vt vvvvevvrtnnrenneeuaesrsensressesssessessesssresesesserssrraeesereerereereeeeees 13¢
0157210 [13
0 01T 01 13
L0 11N 13
DYl] 140 PP SURUSSUPRURRRP 13¢
=T 0101][PP 13
ST SY = F= o T 13
21011 @ o) 10T a TS PSPPSR RUPRPRRP 14
015710 [14
0 01T 01 14
= 01N 14
DYl] 140 PSSP SUURSURRRP 14(
=T 0101][PP 14
ST SY = F= o T 14
NEPPOSI) . .o —————— 14
0157 T [14
0 0]8T 01 14
01N 14
[Tl] 140 PSSR RSURSURRRR 14
=T 0101][RP 14

CUPS Software Programmers Manual

Table of Contents

D — Functions

Xiv

.. 141
PPN e, 142
0157 T [142
a0 01T 01 142
01N 142
DYl 1 140 PSSR SSUPRURRRP 142
=T 0101][PP 142
ST SY = £ o T 142
PEEPPUL(). vttt e e e e e e e e e e e e eeeseeeeeeeeeeeeeeeeeeeaee aaaaaaaaaaaaaaaaaaaaaaaaaans 143
0157 T [143
0 0101 01 143
01N 143
[Tl] 1410 PSPPSR RSURRURRRR 143
D=1 001][PP 143
ST SY = F= o T 143
1110 Y= 1o [PRSP P PP 144
L0157 T [144
a0 0107 01 144
0] 11N 144
DYl] 140 PSP URUSSURRURRRP 144
D=1 0101][PP 144
ST SY = £ o T 144
hHPRECONNECE)....cc i i 145
L0157 T [145
a0 02T 01 145
01N 145
[Tl] 140 PSPPSR RUSSUURRRRRP 145
=T 0101][PP 145
ST SY = £ o T 145
NEPSEPAIALE(). . .c e i e e —————————— 146
05710 [146
0 01T 01 146
[Tl] 140 T PSPPSR SUURSURRRP 146
=T 0101][PP 146
ST SY = F= o T 146
NEPSELEIEIA(). ...cc e ———————————— 147
015710 [147
0 0]8T 01 147
[Tl] 140 PSPPSR RUSSUURRRRRP 147
=T 0101][PP 147
ST SY = F= o T 147
DD STATUS()...eveeeeeeee ettt ettt e et e e e e e e 148
L0157 T [148
0 0]8T 01 148
01N 148
[Tl] 140 PSSR SRS SUPSUPRRR 148
=T 0101][RP 148

CUPS Software Programmers Manual

Table of Contents

D — Functions

10T = Tod= TP PSP P PP 14
057 T [14
0 08T 01 14
L0117 14
DYl] 140 PSPPSR RSUPRURRRP 14¢
D=1 0101][RP 14
ST SY = £ o T 14

10T L0 oo F= L (=Y PP 15
L0157 T [15
a0 01T 01 15(
L0 F 15
[Tl] 1410 PSPPSR RSURRURRRR 15(
D=1 0101][PP 15
ST SY = F= o T 15

10T 0N TAT A L= PSPPSR PPPPPPPR 15
L0157 T [15
0 0107 01 15
0] 15
DYl] 140 PSSP UURSURSURRRP 15
=T 0101][PP 15
ST SY = F= o T 15

ToToYANe [0 | 20T [=F=Ta] () PP PP 152
015710 [15
a0 02T 01 15:
01N 15
DYl 1 140 PSPPSR SUSSUPSURRRP 15:
=T 0101][PP 15
ST SY = F= o T 15

IPPAAABOOIEANS().....cceeeeeeeee e ————————————— 152
0157 T [15
0 00T 01 15
e L0115 15
DYl] 140 PP SURUSSUPRURRRP 15:
=T 0101][PP 15
ST SY = F= o T 15

IPRAAADALE().....cceieeee e —————————— 15.
015710 [15
0 0]8T 01 15
= 01N 15
DYl] 140 PSSP SUURSURRRP 15¢
=T 0101][PP 15
ST SY = F= o T 15

IPRAAAINTEGEI()....ce e —— 15!
0157 T [15
0 0]8T 01 15!
01N 15
DYl 1 140 PSPPSR SUSSUPSURRRP 15¢

XV

CUPS Software Programmers Manual

Table of Contents

D — Functions

=T 0101][RP 155
ST SY = F= o T 155
100y Ao [0 | T a1 (=T o [T] PP PPPPPPPPP 156
015710 [156
0 0187 01 156
01N 156
DY ol 1 140 PSPPSR RUURRUPRRR 156
=T 0101][RP 156
ST SY = £ o T 156
1o oY ANe [0 | m = TaTo =T PSPPSR UPPRRRPP 157
0157 T [157
a0 0127 01 157
L0 157
DY ol 1 1410 PSPPSR SSUPSURRRP 157
=T 0101][PP 157
ST SY = F= o T 157
10 0y ANe [0 | = a0 [Ty P 158
0157210 [158
0 01T 01 158
011 158
[T ol] 140 PSPPSR SSURSURRRP 158
=T 0101][PP 158
ST SY = £ o T 158
IPPAAARESOIULION(Y. ..o ———— 159
0157 T [159
0 0]8T 01 159
01N 159
[Tl] 140 T PSPPSR SUURSURRRP 159
=T 0101][PP 159
ST SY = £ o T 159
10 oY ANe [0 | R T=TSY o [U Lo 1=y (P 160
L0157 T [160
0 01T 01 160
101N 160
[Tl] 140 T PSPPSR SUURSURRRP 160
=T 0101][PP 160
ST SY = £ o T 160
IDPAAASEPAIALOL(). ... cceeeeeeeee e e et —————————————— 161
015710 [161
0 0]8T 01 161
01N 161
DYl] 140] PSSR UUSSURSUPRRP 161
=T 0101][RP 161
ST SY = F= o T 161
100y ANe [0 5] (T To T PSPPSR 162
0157 T [162
0 0]8T 01 162

XVi

CUPS Software Programmers Manual

Table of Contents

D — Functions

01N 16
DYl] 140 PSPPSR SUURRUPRRP 16:
=T 0101][RP 16
ST SY = £ o T 16
10 0 YA [0] (T T (P 16:
L0157 T [16
0 01T 01 16
01N 16
DY ol] 1410 PSS SSRURSUURURRRP 16:
=T 0101][PP 16
ST SY = F= o T 16
IPPDAETOTIMEL) ceiieeiieeeieee et 16¢
015710 [16
a0 02T 01 16-
011N 16
DYl] 140 PSS UUSSUPRURRRP 16:¢
D=1 001][PP 16
ST SY = F= o T 16
1001 L= 1= (=T USSP U PPPURRRPPR 16
L0157 T [16
0 01T 01 16!
DYl] 140 PSSP UUSUUPSUPRRR 16°
D=1 0101][PP 16
ST £ o T 16
IPRETOISEINGL). . e e eeeeee e ——— 16¢
0157 T [16
0 0]8T 01 16/
e 011N 16
DYl] 140 PP SURUSSUPRURRRP 16¢
=T 0101][PP 16
ST SY = £ o T 16
IPREINAALIDULE(). ..o ——————————— 167
0157210 [16
a0 00T 01 16
L0 11N 16
[Tl] 140 T PSPPSR SUURSURRRP 16°
=T 0101][PP 16
ST SY = £ o T 16
o] o] T Te |\ L TN L] 0T (=T PP 168
015710 [16
0 0]8T 01 16
101N 16
DYl 1 140 PSPPSR SUSSUPSURRRP 16¢
=T 001][PP 16
ST SY =y £ o T 16
PPLENGEN(). . e ———————————————————————— 16
L0157 T [16

CUPS Software Programmers Manual

Table of Contents

D — Functions

0 01T 01 169
e 01N 169
DYl 1 140 PSS SSUURSUURURRRP 169
=T 0101][PP 169
ST SY = £ o T 169
IBBNEW() .. eeieeeeeeeeeee e ——————— 170
L0157 T [170
01N 170
DY ol] 1410 PSS SSRURSUURURRRP 170
D=1 101][RP 170
ST SY = £ o T 170
10T 0] ndo T {) S SPSSUUPSURRSPPRP 171
015710 [171
011N 171
[TSY ol 1 140 PRSP RUURRRPRRR 171
D=1 0101][PP 171
ST SY =Y £ o T 171
IPPREAA(). .. i e eeiiieieeee e —————— 172
015710 [172
0 01T 01 172
01 172
DYl] 140 PSP SURUSUUPRUPRRP 172
D=1 0101][PP 172
ST £ o T 172
PRSP OIL). ... —————————————————— 173
0157 T [173
0 0]8T 01 173
[Tl] 140 T PSPPSR SUURSURRRP 173
=T 0101][PP 173
ST SY = £ o T 173
IPPTIMETODAIE) ceiieeiieee e 174
L0157 T [174
0 01T 01 174
101N 174
[Tl] 140 T PSPPSR SUURSURRRP 174
=T 0101][PP 174
ST SY = £ o T 174
10 01T 1 (= (Rt 175
015710 [175
0 0]8T 01 175
01N 175
DYl] 140] PSSR UUSSURSUPRRP 175
=T 0101][RP 175
ST SY = F= o T 175
o] 010 (@4 [0 Y= T PRSP PR 176
0157 T [176
0 0]8T 01 176

XVviii

CUPS Software Programmers Manual

Table of Contents

D — Functions

DYl] 140 PSPPSR SUURRUPRRP 17¢
=T 0101][PP 17
ST SY = £ o T 17
o] 010 (@)1 [=Tox {1 PP 17
0157 T [17
0 01T 01 17
= 0 110 17
DY ol 1 140 PSPPSR RUURRUPRRR 17
=T 0101][PP 17
ST SY = F= o T 17
o] Lo (@] a1 1Tos £ 1 PP 17
L0157 T [17
0 01T 01 17
101N 17
DYl] 140 PSS SUPURSURSURRRP 17¢
=T 0101][PP 17
ST SY = F= o T 17
0] 01| =10 1 TP 17
015710 [17
0 01T 01 17
= 0 110 17
DYl] 140 PSSP UUSUUPSUPRRR 17
D=1 0101][PP 17
ST £ o T 17
o] oL | =10 T o PP 18
0157 T [18
0 0]8T 01 18I
= 0 110 18
DYl] 140 PP SURUSSUPRURRRP 18(
=T 0101][PP 18
ST SY = £ o T 18
o] oTe| ST aTe (@ aTo T To]=T PP PPPPPPPPP 18!
0157210 [18
a0 00T 01 18
L0 11N 18
[Tl] 140 T PSPPSR SUURSURRRP 18:
=T 0101][PP 18
STy N Yo 18
o] oTo | T aTe |1 =T =T (@ aTo T T = PSPPI 182
015710 [18
0 0]8T 01 18:
= 0 110 18
DYl 1 140 PSPPSR SUSSUPSURRRP 18:
=T 001][PP 18
ST SY =y £ o T 18
o] oTo | ST aTe (@] o)1) aT () Hu PP PPPPPPPPPPP 18
L0157 T [18

XiX

CUPS Software Programmers Manual

Table of Contents

D — Functions

0 01T 01 183
= 1011 183
DYl 1 140 PSS SSUURSUURURRRP 183
=T 0101][PP 183
YTy AN Yo TR 183
o] oTo LTV F= T =T PP 184
L0157 T [184
0 0121 01 184
= 1011 184
DY ol] 1410 PSS SSRURSUURURRRP 184
D=1 101][RP 184
YTy AN Yo J TR 184
o] oT0 |1 T = 7= 10 LT PP 185
015710 [185
a0 00T 01 185
DYl] 140 PSS UUSSUPRURRRP 185
=T 0101][PP 185
Y oY Y AN Yo J TR 185
PRAMAIKOPLON()eeiiieee e 186
L0157 T [186
0 0 10T 01 186
= 1011 186
[Tl 1 140 PSSR UURSURSURRRP 186
=T 0101][PP 186
YTy AN Yo J TR 186
o] 010 (@] 01=T 01) TR PRSP P PP 187
015710 [187
0 01T 01 187
= 1011 187
DYl] 140 PP SURUSSUPRURRRP 187
D=1 0101][PP 187
Y EY Y AN Yo J TSR 187
o] Lo (@] T=T 0] o[(PSSR 188
015710 [188
a0 00T 01 188
= 1011 188
[Tl] 140 T PSPPSR SUURSURRRP 188
=T 0101][PP 188
Y oY Y AN Yo TR 188
o] 10 (@0 T=T 0] i1 (Y PP 189
015710 [189
0 0]8T 01 189
= 1011 189
[Tl] 140 PSSR SRS SUPSUPRRR 189
D=1 0101][PP 189
Y oY Y AN Yo J TR 189
o] oTo | == Yo =TI =TaTo 10 () P PPPPPPPPPPP 190

XX

CUPS Software Programmers Manual

Table of Contents

D — Functions
Usage

... 19
0 01T 01 19
e L0 19
DY ol] 140 PSPPSR SSUUSUPRRP 19(
=T 0101][PP 19
ST SY = £ o T 19
o] oT0 | == To TS T 4= 4 PP 19:
L0157 T [19
0 01T 01 19:
L0 1N 19
DYl] 140 PSS SS U SSUPRURRRP 19:
D=1 0101][PP 19
ST SY =Y £ o T 19
o] oL | == Yo TN Ao 110 P 19:
0157 T [19
0 02T 01 19:
e 011N 19
DYl] 1410 PSP UUSSUURURRRP 19:
D=1 0101][PP 19
ST SY = F= o T 19

XXi

CUPS Software Programmers Manual

XXii

Preface

This software programmers manual provides software programming information for the Common UNIX
Printing System ("CUPS") Version 1.2.0.

System Overview

CUPS provides a portable printing layer for UNIX®-based operating systems. It has been developed by Ea:
Software Products to promote a standard printing solution for all UNIX vendors and users. CUPS provides tl
System V and Berkeley command-line interfaces.

CUPS uses the Internet Printing Protocol ("IPP") as the basis for managing print jobs and queues. The Line
Printer Daemon ("LPD") Server Message Block ("SMB"), and AppSocket (a.k.a. JetDirect) protocols are alst
supported with reduced functionality. CUPS adds network printer browsing and PostScript Printer Descriptic
("PPD") based printing options to support real-world printing under UNIX.

CUPS also includes a customized version of GNU Ghostscript (currently based off GNU Ghostscript 5.50)

and an image file RIP that are used to support non—PostScript printers. Sample drivers for HP and EPSON
printers are included that use these filters.

Preface 1

http://www.easysw.com
http://www.easysw.com

CUPS Software Programmers Manual

Document Overview
This software programmers manual is organized into the following sections:

» 1 — Printing System Overview
* 2—The CUPS API

» 3 — Writing Filters

» 4 — Writing Printer Drivers

» 5 — Writing Backends

» A — Software License Agreement
« B — Constants

e C — Structures
* D — Functions

Notation Conventions

Various font and syntax conventions are used in this guide. Examples and their meanings and uses are
explained below:

Example Description
Ipstat The names of commands; the first
Ipstat(1) mention of a command or function in a

chapter is followed by a manual page
section number.

Ivar File and directory names.
/usr/share/cups/data/testprint.ps

Request ID is Printer-123 Screen output.

Ip —d printer filename ENTER Literal user input; special keys like
ENTER are in ALL CAPS.

12.3 Numbers in the text are written using the
period (.) to indicate the decimal point.

2 Document Overview

CUPS Software Programmers Manual
Abbreviations

The following abbreviations are used throughout this manual:

kb

Kilobytes, or 1024 bytes
Mb

Megabytes, or 1048576 bytes
Gb

Gigabytes, or 1073741824 bytes

Other References

CUPS Software Administrators Manual
An administration guide for the CUPS software.

CUPS Software Users Manual
An end-user guide for using the CUPS software.

Abbreviations

CUPS Software Programmers Manual

Abbreviations

1 — Printing System Overview

This chapter provides an overview of how the Common UNIX Printing System works.

The Printing Problem

For years the printing problem has plagued UNIX. Unlike Microsoft® Windows® or Mac OS, UNIX has no
standard interface or system in place for supporting printers. Among the solutions currently available, the
Berkeley and System V printing systems are the most prevalent.

These printing systems support line printers (text only) or PostScript printers (text and graphics), and with
some coaxing they can be made to support a full range of printers and file formats. However, because each
varient of the UNIX operating system uses a different printing system than the next developing printer driver
for a wide range of printers and operating systems is extremely difficult. That combined with the limited
volume of customers for each UNIX varient has forced most printer vendors to give up supporting UNIX
entirely.

CUPS is designed to eliminate the printing problem. One common printing system can be used by all UNIX

varients to support the printing needs of users. Printer vendors can use its modular filter interface to develoy
single driver program that supports a wide range of file formats with little or no effort. Since CUPS provides

both the System V and Berkeley printing commands, users (and applications) can reap the benefits of this n
technology with no changes.

1 - Printing System Overview 5

CUPS Software Programmers Manual
The Technology

CUPS is based upon an emerging Internet standard called the Internet Printing Protocol. IPP has been
embraced by dozens of printer and printer server manufacturers and is supported by Microsoft Windows 2000.

IPP defines a standard protocol for printing as well as managing print jobs and printer options like media size,
resolution, and so forth. Like all IP-based protocols, IPP can be used locally or over the Internet to printers
hundreds or thousands of miles away. Unlike other protocols, however, IPP also supports access control,
authentication, and encryption, making it a much more capable and secure printing solution than older ones.

IPP is layered on top of the Hyper—Text Transport Protocol ("HTTP") which is the basis of web servers on the
Internet. This allows users to view documentation, check status information on a printer or server, and manage
their printers, classes, and jobs using their web browser.

CUPS provides a complete IPP/1.1 based printing system that provides Basic, Digest, and local certificate

authentication and user, domain, or IP-based access control. TLS encryption will be available in future
versions of CUPS.

Jobs

Each file or set of files that is submitted for printing is called a job. Jobs are identified by a unique number
starting at 1 and are assigned to a particular destination, usually a printer. Jobs can also have options
associated with them such as media size, number of copies, and priority.

Classes

CUPS supports collections of printers known as classes. Jobs sent to a class are forwarded to the first
available printer in the class.

Filters

Filters allow a user or application to print many types of files without extra effort. Print jobs sent to a CUPS
server are filtered before sending them to a printer. Some filters convert job files to different formats that the
printer can understand. Others perform page selection and ordering tasks.

CUPS provides filters for printing many types of image files, HP-GL/2 files, PDF files, and text files. CUPS

also supplies PostScript and image file Raster Image Processor ("RIP") filters that convert PostScript or image
files into bitmaps that can be sent to a raster printer.

Backends

Backends perform the most important task of all — they send the filtered print data to the printer.

CUPS provides backends for printing over parallel, serial, and USB ports, and over the network via the IPP,
JetDirect (AppSocket), and Line Printer Daemon ("LPD") protocols. Additional backends are available in
network service packages such as the SMB backend included with the popular SAMBA software.

Backends are also used to determine the available devices. On startup each backend is asked for a list of
devices it supports, and any information that is available. This allows the parallel backend to tell CUPS that

6 The Technology

CUPS Software Programmers Manual

an EPSON Stylus Color 600 printer is attached to parallel port 1, for example.

Printer Drivers

Printer drivers in CUPS consist of one of more filters specific to a printer. CUPS includes sample printer
drivers for Hewlett—Packard LaserJet and DeskJet printers and EPSON 9-pin, 24-pin, Stylus Color, and
Stylus Photo printers. While these drivers do not generate optimal output for the different printer models, the
do provide basic printing and demonstrate how you can write your own printer drivers and incorporate them
into CUPS.

Networking

Printers and classes on the local system are automatically shared with other systems on the network. This
allows you to setup one system to print to a printer and use this system as a printer server or spool host for
of the others. Users may then select a local printer by name or a remote printer using "name@server".

CUPS also provides implicit classes, which are collections of printers and/or classes with the same name. T
allows you to setup multiple servers pointing to the same physical network printer, for example, so that you
aren't relying on a single system for printing. Because this also works with printer classes, you can setup
multiple servers and printers and never worry about a single point of failure unless all of the printers and
servers go down!

Printer Drivers 7

CUPS Software Programmers Manual

Printer Drivers

2 — The CUPS API

This chapter describes the CUPS Application Programmers Interface ("API").

The CUPS API Library

The CUPS library provides a whole collection of interfaces needed to support the internal needs of the CUP
software as well as the needs of applications, filters, printer drivers, and backends.

Unlike the rest of CUPS, the CUPS API library is provided under the GNU Library General Public License.
This means that you can use the CUPS API library in both proprietary and open—source programs.

Programs that use the CUPS API library typically will include the <cups/cups.h> header file:

#include <cups/cups.h>

jobid = cupsPrintFile("myprinter", "filename.ps", "title",
num_options, options);

Use the —Icups compiler option when linking to the CUPS API library:
cc —0 program program.c —lcups ENTER

Additional options and libraries may be required depending on the operating system and the location of the
CUPS API library.

2 — The CUPS API 9

CUPS Software Programmers Manual

Detecting the CUPS API Library in GNU Autoconf

GNU autoconf is a popular configuration tool used by many programs. Add the following lines to your
configure.in file to check for the CUPS API library in your configuration script:

AC_CHECK_LIB(socket,socket,
if test "$uname" !="IRIX"; then
LIBS="-Isocket $LIBS"
else
echo "Not using —Isocket since you are running IRIX."
fi)
AC_CHECK_LIB(nsl,gethostbyaddr,
if test "$uname" !="IRIX"; then
LIBS="-Ins| $LIBS"
else
echo "Not using —Insl since you are running IRIX."
fi)

AC_CHECK_LIB(cups,httpConnect)
Printing Services
The CUPS API library provides some basic printing services for applications that need to print files.
Include Files

The include file used by all of these functions is <cups/cups.h>:

#include <cups/cups.h>
Printing a File

The CUPS API provides two functions for printing files. The first is cupsPrintFile which prints a single
named file:

#include <cups/cups.h>
int jobid,;

jobid = cupsPrintFile("name", "filename”, "title", 0, NULL);

The name string is the name of the printer or class to print to. The filename string is the name of the file to
print. The title string is the name of the print job, e.g. "Acme Word Document".

The return value is a unique ID number for the print job or O if there was an error.
Printing Multiple Files

The second printing function is cupsPrintFiles:

10 Detecting the CUPS API Library in GNU Autoconf

CUPS Software Programmers Manual

#include <cups/cups.h>

int jobid;
int num_files;
const char *files[100];

jobid = cupsPrintFiles("name", num_files, files, "title", 0, NULL);

Instead of passing a filename string as with cupsPrintFile() you pass a file count (num_files) and
filename pointer array (files) for each file that you want to print.

As with cupsPrintFile() the return value is a unique ID for the print job.

Cancelling Jobs

The cupsCancelJob() function cancels a queued print job:
#include <cups/cups.h>

int jobid;
int status;

status = cupsCancelJob("name", jobid);

The name string specifies the destination and is used to determine the server to send the request to. The
jobid value is the integer returned from a previous cupsPrintFile() or cupsPrintFiles() call.

cupsCancelJob() returns 1 if the job was successfully cancelled and O if there was an error.

Getting the Available Printers and Classes

The cupsGetDests() function can be used to get a list of the available printers, classes, and instances that
a user has defined:

#include <cups/cups.h>

int num_dests;
cups_dest_t *dests;

num_dests = cupsGetDests(&dests);

Each destination is stored in a cups_dest_t structure which defines the printer or class nhame, the instance
name (if any), if it is the default destination, and the default options the user has defined for the destination:

typedef struct [¥*** Destination ****/

{
Cancelling Jobs 11

CUPS Software Programmers Manual

char *name, /* Printer or class name */
instance; / Local instance name or NULL */

int is_default; /* Is this printer the default? */

int num_options; /* Number of options */

cups_option_t *options; /* Options */
} cups_dest _t;

The destinations are sorted by name and instance for your convenience. Once you have the list of available
destinations, you can lookup a specific destination using the cupsGetDest() function:

#include <cups/cups.h>

int num_dests;
cups_dest_t *dests;
cups_dest_t *mydest;

mydest = cupsGetDest("'name", "instance", num_dests, dests);
The name string is the printer or class name. You can pass a value of NULL to get the default destination.

The instance string is the user—defined instance name. Pass NULL to select the default instance, e.g.
"name" instead of "name/instance".

Printing with Options

All of the previous printing examples have passed 0 and NULL for the last two arguments to the
cupsPrintFile() and cupsPrintFiles() functions. These last two arguments are the number of
options and a pointer to the option array:

int cupsPrintFile(const char *name, const char *filename, const char *title,
int num_options, cups_option_t *options);

int cupsPrintFiles(const char *name, int num_files, const char **files,
const char *title, int num_options,
cups_option_t *options);

The cups_option_t structure holds each option and its value. These are converted as needed and passed
to the CUPS server when printing a file.

The simplest way of handling options is to use the num_options and options members of the
cups_dest _t structure described earlier:

#include <cups/cups.h>
int jobid,;
int num_dests;

cups_dest_t *dests;
cups_dest_t *mydest;

12 Printing with Options

CUPS Software Programmers Manual

mydest = cupsGetDest("name", "instance", num_dests, dests);

jobid = cupsPrintFile(mydest->name, "filename", "title",
mydest—>num_options, mydest—>options);

This effectively uses the options a user has previous selected without a lot of code.

Setting Printer Options

Options can also be set by your program using the cupsAddOption() function:

#include <cups/cups.h>

int num_options;
cups_option_t *options;

num_options = 0;
options = NULL;

num_options = cupsAddOption("name”, "

num_options = cupsAddOption("name”,

value", num_options, &options);

value", num_options, &options);
num_options = cupsAddOption("name”, "value", num_options, &options);
num_options = cupsAddOption("name”, "value", num_options, &options);

The name string is the name of the option, and the value string is the value for that option.
Each call to cupsAddOption() returns the new number of options. Since adding two options with the
same name overwrites the first value with the second, do not assume that calling cupsAddOptions() 20

times will result in 20 options.

Call cupsFreeOptions once you are done using the options:

#include <cups/cups.h>

int num_options;

cups_option_t *options;

cupsFreeOptions(num_options, options);
Getting Errors
If any of the CUPS API printing functions returns an error, the reason for that error can be found by calling
cupsLastError() and cupsErrorString(). cupsLastError() returns the last IPP error code

that was encountered. cupsErrorString() converts the error code to a localized message string suitable
for presentation to the user:

Setting Printer Options 13

CUPS Software Programmers Manual

#include <cups/cups.h>

int jobid;

if (jobid == 0)
puts(cupsErrorString(cupsLastError()));

Passwords and Authentication

CUPS supports authentication of any request, including submission of print jobs. The default mechanism for
getting the username and password is to use the login user and a password from the console.

To support other types of applications, in particular Graphical User Interfaces ("GUIs"), the CUPS API
provides functions to set the default username and to register a callback function that returns a password
string.

The_cupsSetPasswordCB() function is used to set a password callback in your program. Only one
function can be used at any time.

The_cupsSetUser() function sets the current username for authentication. This function can be called by
your password callback function to change the current username as needed.

The following example shows a simple password callback that gets a username and password from the user:

#include <cups/cups.h>

const char *
my_password_cb(const char *prompt)

{
char user[65];
puts(prompt);
[* Get a username from the user */
printf("Username: ");
if (fgets(user, sizeof(user), stdin) == NULL)
return (NULL);

[* Strip the newline from the string and set the user */
user[strlen(user) — 1] ="\0";

cupsSetUser(user);

/* Use getpass() to ask for the password... */
return (getpass("Password: "));

}

cupsSetPasswordCB(my_password_cb);

14 Passwords and Authentication

CUPS Software Programmers Manual

Similarly, a GUI interface could display the prompt string in a window with input fields for the username and
password. The username should probably default to the value of cupsUser() to make things easier on the
user.

PPD Services

CUPS includes functions to access and manipulate PostScript Printer Description ("PPD") files that are usec
with the printer drivers in CUPS.

Each PPD file enumerates the available features provided by a printer, including conflict information for
specific options (e.g. can't duplex output on envelopes.)

Include Files
Include the <cups/ppd.h> header file to use the PPD functions:
#include <cups/ppd.h>

This header file is also included by the <cups/cups.h> header file.
Getting a PPD File for a Printer

The cupsGetPPD() function retrieves the PPD file for the named printer or class:

#include <cups/cups.h>

const char *filename;

filename = cupsGetPPD("name");

The name string is the name of the printer or class, including the remote server name as appropriate (e.g.
"printer@server".)

The return value is a pointer to a filename in static storage; this value is overwritten with each call to
cupsGetPPD(). If the printer or class does not exist, a NULL pointer will be returned.

Loading a PPD File

The ppdOpenFile() function "opens" a PPD file and loads it into memory:

#include <cups/ppd.h>

ppd_file_t *ppd;

ppd = ppdOpenFile("filename");

The filename string is the name of the file to load, such as the value returned by the cupsGetPPD()
function.

PPD Services 15

CUPS Software Programmers Manual

The return value is a pointer to a structure describing the contents of the PPD file or NULL if the PPD file
could not be read.

Freeing PPD File Information

Once you are done using a PPD file, call the ppdClose() function to free all memory that has been used:

#include <cups/ppd.h>

ppd_file_t *ppd;

ppdClose(ppd);

The PPD File Structure

Each PPD file contains a number of capability attributes, printer options, and conflict definitions. The page
size options also include the physical margins for the printer and the minimum and maximum sizes for the
printer. All of this information is stored in the ppd_file_t structure.

Capabilities

Each PPD file contains a number of informational attributes that describe the capabilities of the printer. These
are provided in the ppd_file_t structure in the following members:

Member Type Description
accurate_screens int 1 = supports accurate screens
color_device int 1 = color device

Default colorspace: PPD_CS_CMYK,
PPD_CS_CMY, PPD_CS_GRAY,

colorspace ppd_cs_t PPD_CS_RGB, PPD_CS_RGBK,
PPD CS N
contone_only int 1 = printer is continuous tone only
int

num_emulations ppd_emul_t |Emulations supported by the printer
*

emulations

flip_duplex int 1 = need to flip odd pages when duplexing
][louanS_fonts Icnr:ar - The fonts available on the printer.
J.g:—bigm char * Job Control Language commands for
}cl_gn d PostScript output

landscape int Landscape orientation, —90 or 90 degrees
lang_encoding char * The character used for the option strings
lang_version char * The language used for the options strings

(English, French, etc.)

16 Freeing PPD File Information

CUPS Software Programmers Manual

language_level int PostScript language level, 1 to 3

manual_copies int 1 = Copies are done manually

model_number int Driver—specific model number.

patches char * Patch commands to send to the printer

manufacturer char * 'I_'he_Manufacturer attribute from the PPD
file, if any

modelname char * The ModelName attribute from the PPD fjle

nickname char * _The NickName attribute from the PPD file,
if any

product char * The Product attribute from the PPD file, if
any

shortnickname char * 'I_'he.ShortNickName attribute from the PFD
file, if any

throughput int Number of pages per minute

ttrasterizer char * The TruType font rasterizer (Type42)

variable_sizes int 1 = supports variable sizes

Options and Groups

PPD files support multiple options, which are stored in ppd_option_t and ppd_choice_t structures by
the PPD functions.

Each option in turn is associated with a group stored in the ppd_group_t structure. Groups can be specified
in the PPD file; if an option is not associated with a group then it is put in a "General" or "Extra" group
depending on the option.

Groups can also have sub—groups; CUPS currently limits the depth of sub—groups to 1 level to reduce
programming complexity.

Conflicts

PPD files support specification of conflict conditions between different options. Conflicts are stored in
ppd_conflict_t structures which specify the options that conflict with each other.

Page Sizes

PPD files specify all of the available pages sizes and the physical margins associated with them. These size
are stored in ppd_size t structures and are available in the num_sizes and sizes members of the

ppd_file_t structure. You can lookup a particular page size with the ppdPageWidth(),

ppdPagelLength(), and ppdPageSize() functions:

#include <cups/ppd.h>

ppd_file_t *ppd;
ppd_size_t *size;
float width;
float length;

The PPD File Structure 17

CUPS Software Programmers Manual

size = ppdPageSize(ppd, "size");
width = ppdPageWidth(ppd, "size");
length = ppdPagelLength(ppd, "size");

The size string is the named page size option. The width and length are in points; there are 72 points per
inch. The ppd_size_t structure contains the width, length, and margin information:

typedef struct /**** Page Sizes ****/

{

int marked; /* Page size selected? */

char name[41]; /* Media size option */

float width, /* Width of media in points */
length, /* Length of media in points */
left, /* Left printable margin in points */
bottom, /* Bottom printable margin in points */
right, /* Right printable margin in points */
top; /* Top printable margin in points */

} ppd_size_t;

Custom Page Sizes
Besides the standard page sizes listed in a PPD file, some printers support variable or custom page sizes. If
variables_sizes is non-zero, the custom_min, custom_max, and custom_margins members of

the ppd_file_t structure define the limits of the variable sizes.

To get the resulting media size, use a page size string of Custom.widthxlength, where width and
length are integer values in points:

Custom.612x792 [8.5 inches wide, 11 inches long]
Custom.1224x792 [17 inches wide, 11 inches long]

Marking Options

Before marking any user—defined options, call the ppdMarkDefaults() function to mark the default
options from the PPD file:

#include <cups/ppd.h>

ppd_file_t *ppd;

ppdMarkDefaults(ppd);

Then call the ppdMarkOption() function to mark individual options:

#include <cups/ppd.h>

ppd_file_t *ppd;
int conflicts;

18 The PPD File Structure

CUPS Software Programmers Manual

conflicts = ppdMarkOption(ppd, "name", "value");

The name and value strings choose a particular option and choice, respectively. The return value is O if
there are not conflicts created by the selection.

CUPS also provides a convenience function for marking all options in the cups_option_t structure:

#include <cups/cups.h>

ppd_file_t *ppd;

int num_options;
cups_option_t *options;
int conflicts;

conflicts = cupsMarkOptions(ppd, num_options, options);

The cupsMarkOptions() function also handles mapping the IPP job template attributes to PPD options.
The return value is the number of conflicts present.

Checking for Conflicts

The ppdMarkOption() and cupsMarkOptions() functions return the number of conflicts with the
currently marked options.

Call the ppdConflicts() function to get the number of conflicts after you have marked all of the options:

#include <cups/cups.h>

ppd_file_t *ppd;
int conflicts;

conflicts = ppdConflicts(ppd);

The return value is the number of conflicting options, or O if there are no conflicts.

Checking for Conflicts 19

20

CUPS Software Programmers Manual

Checking for Conflicts

3 — Writing Filters

This chapter describes how to write a file filter for CUPS.

Overview

File filters are programs that convert from one or more MIME types to another type. Filters use a common
command-line and environment interface that allows them to be joined as needed to print files to any type ¢
printer.

Security Considerations

Filters are normally run as a non—priviledged user, so the major security consideration is resource utilization
filters should not depend on unlimited amounts of memory and disk space.

Users and Groups
The default CUPS configuration runs filters as user "Ip" and group "other".
Temporary Files

Temporary files should be created in the directory specified by the "TMPDIR" environment variable. The
cupsTempkFile() function can be used to safely choose temporary files in this directory.

3 — Writing Filters 21

CUPS Software Programmers Manual

Sending Messages to the User

The CUPS scheduler collects messages sent to the standard error file by the filter. These messages are relayed
to the user based upon the scheduler LogLevel directive.

The type of message is determined by an initial prefix sent on each line:

« DEBUG: - a debug message

* INFO: — an informational message

« WARNING: - a warning message

« ERROR: — an error message

* PAGE: - a page accounting message

If the line of text does not begin with any of the above prefixes, it is treated as a debug message. Text
following the prefix is copied to the printer—state—-message attribute for the printer, and also added to
the error_log unless it is an informational or page accounting message.

Page Accounting

Page accounting messages are used to inform the server when one or more pages are printed. Each line has the
form:

PAGE: page—-number copy—count

The page—number field is the current page number, starting at 1. The copy—count field specifies the number
of copies of that page that was produced.

Page account messages are added to the page_log file and cause the job—sheets—completed attribute
to be updated for the job.

Command-Line Arguments

Every filter accepts exactly 6 or 7 command-line arguments:

printer job user title copies options [filename]

* printer — The name of the printer queue (normally this is the hame of the program being run)

* job — The numeric job ID for the job being printed

 user — The string from the originating—user—name attribute

* title — The string from the job—name attribute

 copies — The numeric value from the number—copies attribute

* options — String representations of the job template attributes, separated by spaces. Boolean
attributes are provided as "name" for true values and "noname" for false values. All other attributes
are provided as "name=value" for single—valued attributes and "name=valuel,value2,...,valueN" for
set attributes

« filename — The request file

The filename argument is only provided to the first filter in the chain; all filters must be prepared to read the
print file from the standard input if the filename argument is omitted.

22 Sending Messages to the User

CUPS Software Programmers Manual

Copy Generation

The copies argument specifies the number of copies to produce of the input file. In general, you should only
generate copies if the filename argument is supplied. The only exception to this are filters that produce
device-independent PostScript output (without any printer commands from the printer's PPD file), since the
PostScript filter pstops is responsible for copy generation.

Environment Variables

Every filter receives a fixed set of environment variables that can be used by the filter:

* CHARSET - The character set used by the client for this print file

« CONTENT_TYPE - The original document type, such as "application/postscript"
* CUPS_DATADIR - The location of CUPS data files

*« CUPS_SERVERROOT - The location of CUPS configuration files

* DEVICE_URI - The output device URI

* LANG - The language used by the client for this print file

* PATH - The execution path exported to the filter

« PPD - The full filename of the printer's PPD file

* PRINTER - The name of the printer queue

* RIP_CACHE - The maximum amount of memory each filter should use
*« SOFTWARE - The name of the CUPS software, typically "CUPS/1.1"

* TZ — The local timezone

* USER - The name of the current user

Dissecting the HP-GL/2 Filter

The HP-GL/2 filter (hpgltops) provided with CUPS is a complex program that converts HP-GL/2 files
into device—independent PostScript output. Since it produces device-independent PostScript output, it does
not need to handle copy generation or writing printer options from the printer's PPD file.

Initializing the Filter

The first task of any filter is to ensure that the correct number of command-line arguments are present:
if (argc < 6 || argc > 7)
fputs("ERROR: hpgltops job—-id user title copies options [file]\n", stderr);

return (1);

}
After this you open the print file or read from the standard input as needed:

FILE *fp;

/*

* |f we have 7 arguments, print the file named on the command-line.
* Otherwise, send stdin instead...

*/

if (argc == 6)
fp = stdin;

Copy Generation 23

CUPS Software Programmers Manual

else

{

/*
* Try to open the print file...
*/

if ((fp = fopen(argv[6], "rb")) == NULL)

perror("ERROR: unable to open print file —");
return (1);

}
}

Once the print file has been opened, options can be processed using the cupsParseOptions() and
cupsGetOption() functions:

int num_options;

cups_option_t *options;

const char *val;

/*

* Process command-line options and write the prolog...
*/

options = NULL;
num_options = cupsParseOptions(argv[5], 0,

if ((val = cupsGetOption("blackplot”, num_options, options)) != NULL)
shading = 0;

if ((val = cupsGetOption(“fitplot", num_options, options)) = NULL)
FitPlot = 1;

if ((val = cupsGetOption("penwidth", num_options, options)) != NULL)
PenWidth = (float)atoi(val) * 0.001f;

After the options have been processed, the filter writes PostScript code to the standard output based on the
print file, closes the print file (as needed), and returns O to the scheduler.

PostScript Output

Filters that produce PostScript output must generate output conforming to the Adobe Document Structuring
Conventions, 3.0. In general this means the beginning of each file must begin with:

%!PS—-Adobe-3.0

%%BoundingBox: left bottom right top
%%Pages: (atend)
%%EndComments

The left, bottom, right, and top values are integers in points from the lower-lefthand corner of the page.

Pages must be surrounded by:

%%Page: number number
gsave

grestore

24 PostScript Output

CUPS Software Programmers Manual
showpage
And the end of each file must contain:

%%Trailer
%%Pages: number—-pages
%%EOF

These comments allow the PostScript filter to correctly perform page accounting, copy generation, N-up
printing, and so forth.

PostScript Output 25

26

CUPS Software Programmers Manual

PostScript Output

4 — Writing Printer Drivers

This chapter discusses how to write a printer driver, which is a special filter program that converts CUPS
raster data into the appropriate commands and data required for a printer.

Overview
Raster printers utilitize PPD files that specify one or more device—specific filters that handle converting print

files for the printer. The simplest raster printer drivers provide a single filter that converts CUPS raster data t
the printer's native format.

CUPS Raster Data

CUPS raster data (application/vnd.cups—raster) consists of a stream of raster page descriptions
produced by one of the RIP filters, such as pstoraster or imagetoraster.

Each page of data begins with a page dictionary structure called cups_raster_header_t. This structure
contains the colorspace, bits per color, media size, media type, hardware resolution, and so forth.

After the page dictionary comes the page data which is a full-resolution, uncompressed bitmap representing
the page in the printer's output colorspace.

4 — Writing Printer Drivers 27

Page Accounting

CUPS Software Programmers Manual

Printer drivers must handle all page accounting. This means they must send "PAGE:" messages to the
standard error file for each page (and in many cases, copy) sent to the printer.

Color Management

Printer drivers can implement their color management via the cupsColorProfile attributes in the PPD
file or internally in the driver from a device—-independent colorspace. In general, color management performed
by the RIP filters is more efficient than that performed inside printer drivers.

For example, the pstoraster filter often only has to perform a color conversion once each time the color is
used for multiple output pixels, while the raster filter must convert every pixel on the page.

Device and Bitmap Variables

Besides the standard PostScript page device dictionary variables defined in the Adobe PostScript Level 3
reference manual, the CUPS filters support additional variables that are passed in the page device dictionary
header for the page and in some cases control the type of raster data that is generated:

28

Variable Type Description
cupsWidth read—-only integer Width of bitmap in pixels
cupsHeight read-only integer Height of bitmap in pixels

cupsMediaType

read-write integer

Device—specific media type code

cupsBitsPerColor

read-write integer

Number of bits per color; 1, 2, 4, and 8 ar
currently supported

cupsBitsPerPixel

read-only integer

Number of bits per pixel; 1 to 32

cupsBytesPerLine

read-only integer

Number of bytes per line of raster graphid

cupsColorOrder

read—write enum

The order of color values in the bitmap:

* CUPS_ORDER_CHUNKED -
CMYK CMYK CMYK

* CUPS_ORDER_BANDED -
CCC MMM YYY KKK

* CUPS_ORDER_PLANAR -
CCC ... MMM ... YYY ... KKK ...

cupsColorSpace

read—write enum

The colorspace of the bitmap:

* CUPS_CSPACE_W - White
(luminance)

* CUPS_CSPACE_RGB - Red, gre
blue

* CUPS_CSPACE_RGBA - Red,
green, blue, alpha

* CUPS_CSPACE_K - Black

* CUPS_CSPACE_CMY - Cyan,
magenta, yellow

en,

Page Accou

nting

CUPS Software Programmers Manual

* CUPS_CSPACE_YMC - Yellow,
magenta, cyan

* CUPS_CSPACE_CMYK - Cyan,
magenta, yellow, black

* CUPS_CSPACE_YMCK - Yellow,
magenta, cyan, black

* CUPS_CSPACE_KCMY - Black,
cyan, magenta, yellow

* CUPS_CSPACE_KCMYcm - Blagk,
cyan, magenta, yellow, light cyan,
light magenta

* CUPS_CSPACE_GMCK - Metalllc
yellow (gold), metallic magenta,
metallic cyan, black

* CUPS_CSPACE_GMCS - Metalllc
yellow (gold), metallic magenta,
metallic cyan, metallic grey (silver

* CUPS_CSPACE_WHITE - White
pigment (black as white pigment)

* CUPS_CSPACE_GOLD - Gold foil
(black as gold foil)

* CUPS_CSPACE_SILVER - Silvef
foil (black as silver foil)

J

cupsCompression read-write integer Device—specific compression type code
cupsRowCount read-write integer Device—specific row count value
cupsRowFeed read-write integer Device—specific row feed value
cupsRowStep read-write integer Device—specific row step value

Bitmaps with a colorspace of CUPS_CSPACE_KCMYcm and more than 1 bit per color are transmitted to th
raster driver in KCMY colorspace; the driver is responsible for producing the correct separation of normal ar
light cyan and magenta inks.

Dissecting the HP—-PCL Driver

The HP-PCL driver provided with CUPS (rastertohp) converts bitmap data from the raster filters into
HP-PCL commands for most PCL-compatible printers. The actual format of the raster data is controlled by
the PPD file being used - deskjet.ppd or laserjet.ppd.

PPD Files

PPD files play an important part of all raster printer drivers. Options defined in the PPD file contain
PostScript commands that control the raster data that is sent to the printer driver.

A typical CUPS printer driver will include ColorModel, InputSlot, PageSize, PageRegion, and
Resolution options. Each option is shown using the standard PPD format:

*OpenUl *PageSize/Media Size: PickOne
*OrderDependency: 10 AnySetup *PageSize
*DefaultPageSize: Letter

*PageSize Letter/US Letter: "<<

Dissecting the HP—PCL Driver 29

CUPS Software Programmers Manual

/PageSize [612 792]
/ImagingBBox null

>> setpagedevice"
*End

*PageSize Legal/US Legal: "<<
/PageSize [612 1008]
/ImagingBBox null

>> setpagedevice"
*End

*PageSize A4/A4: "<<
/PageSize [595 842]
/ImagingBBox null

>> setpagedevice"
*End

*CloseUl: *PageSize

The OpenUl keyword specifies the new option. The first name is the option with an asterisk (*) in front of it.
The first name is usually followed by a slash (/) and a human-readable version of the option name.

Every option must have a default value, specified using the DefaultOption keyword.

Each option begins with the option name followed by the computer and human-readable values. The
PostScript commands follow these inside double quotes. PostScript commands can be provided on a single
line:

*PageSize A4/A4: "<</PageSize[595 842]/ImagingBBox null>> setpagedevice"
or broken down on separate lines using the End keyword to terminate them:

*PageSize A4/A4; "<<
/PageSize [595 842]
/ImagingBBox null

>> setpagedevice"
*End

The choice of the two formats is usually esthetic. However, each line in a PPD file must not exceed 255
characters, so if your PostScript commands are long you may need to break them up on separate lines.

Reading Raster Data

As with any filter, your printer driver should handle raster data from a filename specified on the
command-line or from the standard input. The cupsRasterOpen() function opens a raster stream for
printing:

int fd; /* File descriptor */

cups_raster_t *ras; /* Raster stream for printing */

/*
* Check for valid arguments...
*/
if (argc < 6 || argc > 7)
/*
* We don't have the correct number of arguments; write an error message

30 Reading Raster Data

CUPS Software Programmers Manual

* and return.
*/

fputs("ERROR: rastertopcl job—id user title copies options [file]\n", stderr);
return (1);

}

/*
* Open the page stream...
*/

if (argc ==7)
if ((fd = open(argv[6], O_RDONLY)) == -1)

perror("ERROR: Unable to open raster file = ");
sleep(1);
return (1);

}
}

else
fd=0;

ras = cupsRasterOpen(fd, CUPS_RASTER_READ);

Once you have opened the raster stream you just need to read each page and print it:

cups_raster_header_t header;
int y;
unsigned char data[8192];

while (cupsRasterReadHeader(ras, &header))

{

... initialize the printer ...
for (y = header.cupsHeight; y > 0; y ++)
{

cupsRasterReadPixels(ras, data, header.cupsBytesPerLine);
... send raster line to printer ...

}
}

After you have processed all pages, close the raster stream and return:

cupsRasterClose(ras);

return (0);

Reading Raster Data

32

CUPS Software Programmers Manual

Reading Raster Data

5 — Writing Backends

This chapter describes how to write a backend for CUPS. Backends communicate directly with printers and
allow printer drivers and filters to send data using any type of connection transparently.

Overview

Backends are special filters that communicate with printers directly. They are treated slightly differently than
filters, however, and have some unigue requirements.

Security Considerations

Backends are run as the root user, so special care must be taken to avoid potential security violations. In
particular, remember that a backend will be able to manipulate disk files, devices, and other resources that
potentially could damage a system or printer.

Command-Line Arguments

Besides the standard filter arguments, backends are also run with no arguments to get a list of available
devices. This discovery process is described later in this chapter.

Copy Generation

Like filters, backends should send multiple copies of the print file only if a filename is supplied on the
command-line. Otherwise the backend should assume that the upstream filter has already added the neces

5 — Writing Backends 33

CUPS Software Programmers Manual
commands or data to produce the multiple copies.
Page Accounting
Backend filters generally do not do page accounting, however they should at a minimum produce a single

page message for each copy that is produced when a filename is present on the command-line. This is
because the user selected "raw" printing and no other accounting information is possible.

Exclusive Access

Backends that talk to local character or block devices should open the device file in exclusive mode
(O_EXCL) to cooperate with other printers defined for the same device.

Retries

All backends must retry connections to the device. This includes backends that talk to local character or block
devices, as the user may define more than one printer queue pointing at the same physical device.

To prevent excess CPU utilitization, the backend should go to sleep for an amount of time between retries; the
CUPS-supplied backends retry once every 30 seconds.

Dissecting the Serial Port Backend

The serial port backend provides support for serial printers. Since it does everything a good backend needs to
do, it provides an excellent example of what to do.

Supporting Device Discovery

As previously noted, backends are special filter programs that talk to printer devices. Another task a backend
must perform is to list the available devices it supports. The backend lists the available devices when no
additioanl arguments are supplied on the command-line (i.e. just the command name...)

The serial backend lists devices by looking at serial port files in the /dev directory, by consulting a hardware
inventory (IRIX), and in some cases by trying to open the ports to see if they actually exist.

Once it finds a serial port it writes a single line for each port to the standard error file. Each line looks like
this:

serial serial:/dev/ttyS0?baud=115200 "Unknown" "Serial Port 1"

The first word "serial" is the device class; this identifies the class of device which can be used to categorize it
in user interfaces. CUPS currently recognizes the following classes:

* "file" — a disk file.

« "direct" — a parallel or fixed-rate serial data port, currently used for Centronics, IEEE-1284, and
USB printer ports.

« "serial" — a variable-rate serial port.

* "network" — a network connection, typically via AppSocket, HTTP, IPP, LPD, or SMB/CIFS
protocols.

34 Page Accounting

CUPS Software Programmers Manual

After the device class is the device URI, in this case "serial:/dev/ttyS0?baud=115200". This is the URI that
should be used by the user to select this port. For serial ports, the "baud=115200" specifies the maximum b
rate supported by the port — the actual value will vary based on the speed the user selects for the printer.

The last two strings are the model and description for the port. The "Unknown" string means that the printer
model is unknown — some devices are able to provide a make and model such as "HP DeskJet" that allows
users and software to choose an appropriate printer driver more easily. Both the model and description mus
be enclosed inside double quotes.

Opening the Serial Port

As noted previously, all backends should open device files in exclusive mode, and retry as needed until the
port is available. The serial port does this using a do—while loop:

do

{
if ((fd = open(resource, O_WRONLY | O_NOCTTY | O_EXCL)) == -1)
{

if (errno == EBUSY)

{
fputs("INFO: Serial port busy; will retry in 30 seconds...\n", stderr);

sleep(30);

else

{

perror("ERROR: Unable to open serial port device file");
return (1);

}
}

}
while (fd < 0);
If the port is busy or in use by another process, the backend will go to sleep for 30 seconds and try again. If

another error is detected a message is sent to the user and the backend aborts the print job until the probler
can be corrected.

Writing Data to the Port

Network and character devices pose an interesting problem when writing data to the port — they may not be
able to write all of the bytes in your buffer before returning. To work around this problem you must loop until
all bytes have been written:

while (nbytes > 0)
if ((wbytes = write(fd, bufptr, nbytes)) < 0)
if (errno == ENOTTY)
whytes = write(fd, bufptr, nbytes);
if (wbytes < 0)

perror("ERROR: Unable to send print file to printer");
break;

}

nbytes —= wbytes;
bufptr += whbytes;

Opening the Serial Port 35

CUPS Software Programmers Manual
}

The check for the ENOTTY error is needed on some platforms to clear an error from a previous ioctl()
call.

Finishing Up

Once you have sent the print file, return O if the file printed successfully or 1 if it did not. This will allow the
scheduler to stop the print job if there is a device error, preserving the print job for later printing once the
problem has been corrected.

36 Finishing Up

A — Software License Agreement

Common UNIX Printing System License Agreement

Copyright 1997-2002 by Easy Software Products
44141 AIRPORT VIEW DR STE 204
HOLLYWOOD, MARYLAND 20636-3111 USA

Voice: +1.301.373.9600

Email;_cups-info@cups.org
WWW:_http://www.cups.org

Introduction

The Common UNIX Printing Systefl, ("CUPS™"), is provided under the GNU General Public License
("GPL") and GNU Library General Public License ("LGPL"), Version 2, with exceptions for Apple operating
systems and the OpenSSL toolkit. A copy of the exceptions and licenses follow this introduction.

The GNU LGPL applies to the CUPS API library, located in the "cups" subdirectory of the CUPS source
distribution and in the "cups" include directory and library files in the binary distributions. The GNU GPL

applies to the remainder of the CUPS distribution, including the "pdftops" filter which is based upon Xpdf an
the CUPS imaging library.

For those not familiar with the GNU GPL, the license basically allows you to:

A — Software License Agreement 37

mailto:cups-info@cups.org
http://www.cups.org

CUPS Software Programmers Manual

» Use the CUPS software at no charge.

« Distribute verbatim copies of the software in source or binary form.

« Sell verbatim copies of the software for a media fee, or sell support for the software.

« Distribute or sell printer drivers and filters that use CUPS so long as source code is made available
under the GPL.

What this license does not allow you to do is make changes or add features to CUPS and then sell a binary
distribution without source code. You must provide source for any new drivers, changes, or additions to the
software, and all code must be provided under the GPL or LGPL as appropriate. The only exceptions to this
are the portions of the CUPS software covered by the Apple operating system license exceptions outlined later
in this license agreement.

The GNU LGPL relaxes the "link—to" restriction, allowing you to develop applications that use the CUPS API
library under other licenses and/or conditions as appropriate for your application.

License Exceptions

In addition, as the copyright holder of CUPS, Easy Software Products grants the following special exceptions:

1. Apple Operating System Development License Exception;

a. Software that is developed by any person or entity for an Apple Operating System ("Apple
OS-Developed Software"), including but not limited to Apple and third party printer drivers,
filters, and backends for an Apple Operating System, that is linked to the CUPS imaging
library or based on any sample filters or backends provided with CUPS shall not be
considered to be a derivative work or collective work based on the CUPS program and is
exempt from the mandatory source code release clauses of the GNU GPL. You may therefore
distribute linked combinations of the CUPS imaging library with Apple OS-Developed
Software without releasing the source code of the Apple OS—-Developed Software. You may
also use sample filters and backends provided with CUPS to develop Apple OS-Developed
Software without releasing the source code of the Apple OS—-Developed Software.

b. An Apple Operating System means any operating system software developed and/or
marketed by Apple Computer, Inc., including but not limited to all existing releases and
versions of Apple's Darwin, Mac OS X, and Mac OS X Server products and all follow-on
releases and future versions thereof.

c. This exception is only available for Apple OS—Developed Software and does not apply to
software that is distributed for use on other operating systems.

d. All CUPS software that falls under this license exception have the following text at the top of
each source file:

This file is subject to the Apple OS—-Developed Software exception.
2.0penSSL Toolkit License Exception;
a.Easy Software Products explicitly allows the compilation and distribution of the CUPS
software with the OpenSSL Toolkit.
No developer is required to provide these exceptions in a derived work.

Trademarks

Easy Software Products has trademarked the Common UNIX Printing System, CUPS, and CUPS logo. These
names and logos may be used freely in any direct port or binary distribution of CUPS. Please contract Easy

38 License Exceptions

CUPS Software Programmers Manual

Software Products for written permission to use them in derivative products. Our intention is to protect the
value of these trademarks and ensure that any derivative product meets the same high—quality standards a:
original.

Binary Distribution Rights
Easy Software Products also sells rights to the CUPS source code under a binary distribution license for
vendors that are unable to release source code for their drivers, additions, and modifications to CUPS unde

the GNU GPL and LGPL. For information please contact us at the address shown above.

The Common UNIX Printing System provides a "pdftops" filter that is based on the Xpdf software. For binar
distribution licensing of this software, please contact:

Derek B. Noonburg

Email_derekn@foolabs.com
WWW:_http://www.foolabs.com/xpdf/

Support

Easy Software Products sells software support for CUPS as well as a commercial printing product based on
CUPS called ESP Print Pro. You can find out more at our web site:

http://www.easysw.com/

Binary Distribution Rights 39

mailto:derekn@foolabs.com
http://www.foolabs.com/xpdf/
http://www.easysw.com/

CUPS Software Programmers Manual
GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software——to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

40 GNU GENERAL PUBLIC LICENSE

CUPS Software Programmers Manual

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification”.) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program |
covered only if its contents constitute a work based on the Program (independent of having been ma
by running the Program). Whether that is true depends on what the Program does.

9. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and t
the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

8. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c. if the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warrant
(or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an announcement, your worl
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works i
themselves, then this License, and its terms, do not apply to those sections when you distribute then
as separate works. But when you distribute the same sections as part of a whole which is a work bas
on the Program, the distribution of the whole must be on the terms of this License, whose permissior
for other licensees extend to the entire whole, and thus to each and every part regardless of who wire
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the othe

GNU GENERAL PUBLIC LICENSE 41

CUPS Software Programmers Manual

work under the scope of this License.

7.You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a.Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For

an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

0. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

1. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

2. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

6. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty—free redistribution of the

GNU GENERAL PUBLIC LICENSE

CUPS Software Programmers Manual

10.Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claim:s
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity ¢
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest o
this License.

3. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

5. The Free Software Foundation may publish revised and/or new versions of the General Public Licen
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

4. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11.BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

GNU GENERAL PUBLIC LICENSE 43

CUPS Software Programmers Manual

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

44

GNU GENERAL PUBLIC LICENSE

CUPS Software Programmers Manual
GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place — Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. Itis
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast
the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software——to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software
Foundation software, and to any other libraries whose authors decide to use it. You can use it for your
libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the softwa
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies «
the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients a
the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you li
a program with the library, you must provide complete object files to the recipients so that they can relink
them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make certain that everyone understands that there is no
warranty for this free library. If the library is modified by someone else and passed on, we want its recipients
to know that what they have is not the original version, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
companies distributing free software will individually obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we have made it clear that any patent must be licensed fi
everyone's free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, whicl

GNU LIBRARY GENERAL PUBLIC LICENSE 45

CUPS Software Programmers Manual

was designed for utility programs. This license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary one; be sure to read it in full, and don't
assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually
make between modifying or adding to a program and simply using it. Linking a program with a library,
without changing the library, is in some sense simply using the library, and is analogous to running a utility
program or application program. However, in a textual and legal sense, the linked executable is a combined
work, a derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively
promote software sharing, because most developers did not use the libraries. We concluded that weaker
conditions might promote sharing better.

However, unrestricted linking of non—free programs would deprive the users of those programs of all benefit
from the free status of the libraries themselves. This Library General Public License is intended to permit
developers of non—free programs to use free libraries, while preserving your freedom as a user of such
programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the actual functions of the
Library.) The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a "work based on the library" and a "work that uses the library". The former contains code
derived from the library, while the latter only works together with the library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this
special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright
holder or other authorized party saying it may be distributed under the terms of this Library General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation in
the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside

its scope. The act of running a program using the Library is not restricted, and output from such a program is
covered only if its contents constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what the program that uses the

46 GNU LIBRARY GENERAL PUBLIC LICENSE

CUPS Software Programmers Manual

Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in a
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright

notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided thi
you also meet all of these conditions:

d. The modified work must itself be a software library.

c. You must cause the files modified to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause the whole of the work to be licensed at no charge to all third parties under the terms
of this License.

a.If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely
well-defined independent of the application. Therefore, Subsection 2d requires that any
application—supplied function or table used by this function must be optional: if the application does
not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work base
on the Library) on a volume of a storage or distribution medium does not bring the other work under the sco
of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refe
to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than

GNU LIBRARY GENERAL PUBLIC LICENSE 47

CUPS Software Programmers Manual

version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead
if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation,
is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of
the Library (because it contains portions of the Library), rather than a "work that uses the library". The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether this is
true is especially significant if the work can be linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless
of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library
will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the
terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are
linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses the Library" with the
Library to produce a work containing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library
and its use are covered by this License. You must supply a copy of this License. If the work during execution
displays copyright notices, you must include the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this License. Also, you must do one of these things:

d. Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2

48 GNU LIBRARY GENERAL PUBLIC LICENSE

CUPS Software Programmers Manual

above); and, if the work is an executable linked with the Library, with the complete machine-readabl
"work that uses the Library", as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified Library. (It is
understood that the user who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified definitions.)

c. Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

b. If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

a. Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable runs, unle
that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do r
normally accompany the operating system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side—by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

b. Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

a. Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants y«
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to

GNU LIBRARY GENERAL PUBLIC LICENSE 49

CUPS Software Programmers Manual

these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty—free redistribution of the Library by all those who receive copies directly or

indirectly through you, then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

50 GNU LIBRARY GENERAL PUBLIC LICENSE

CUPS Software Programmers Manual

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO

LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

GNU LIBRARY GENERAL PUBLIC LICENSE 51

52

CUPS Software Programmers Manual

GNU LIBRARY GENERAL PUBLIC LICENSE

B — Constants

This appendix lists all of the constants that are defined by the CUPS API.

CUPS Constants

Version Number

The CUPS_VERSION constant is a floating—point number representing the API version number. The curren
version number is 1.0100 which represents CUPS version 1.1.0.

Printer Capabilities
The CUPS_PRINTER constants represent capability bits for printers and classes:

* CUPS_PRINTER_LOCAL - Is a local printer or class.

* CUPS_PRINTER_REMOTE - Is a remote printer or class.

e CUPS_PRINTER_CLASS - Is aclass.

* CUPS_PRINTER_BW - Printer prints in black and white.

* CUPS_PRINTER_COLOR - Printer prints in color.

* CUPS_PRINTER_DUPLEX - Printer can print double-sided.

* CUPS_PRINTER_STAPLE - Printer can staple output.

* CUPS_PRINTER_COPIES - Printer can produce multiple copies on its own.
* CUPS_PRINTER_COLLATE - Printer can collate copies.

* CUPS_PRINTER_PUNCH - Printer can punch holes in output.

B — Constants 53

CUPS Software Programmers Manual

*« CUPS_PRINTER_COVER - Printer can put covers on output.

« CUPS_PRINTER_BIND - Printer can bind output.

*« CUPS_PRINTER_SORT - Printer can sort output.

* CUPS_PRINTER_SMALL - Printer can print on media up to 9x14 inches.

* CUPS_PRINTER_MEDIUM - Printer can print on media from 9x14 to 18x24 inches.
* CUPS_PRINTER_LARGE - Printer can print on media larger than 18x24 inches.

*« CUPS_PRINTER_VARIABLE - Printer can print on variable or custom media sizes.
* CUPS_PRINTER_IMPLICIT - Is an implicit class.

*« CUPS_PRINTER_OPTIONS - All of the printer capability and option bits.

Encodings
CUPS defines the following character set encoding constants:

« CUPS_US_ASCII = US ASCII character set.

« CUPS_UTF_8 - UTF-8 encoding of Unicode.

* CUPS_1S08859 1 - ISO-8859-1 character set.

* CUPS_1S08859 2 - ISO-8859-2 character set.

* CUPS_1S08859 3 - ISO-8859-3 character set.

* CUPS_1S08859 4 - ISO-8859-4 character set.

* CUPS_1S08859 5 - ISO-8859-5 character set.

* CUPS_1S08859 6 - ISO-8859-6 character set.

* CUPS_1S08859 7 - ISO-8859-7 character set.

* CUPS_1S08859 8 - ISO-8859-8 character set.

* CUPS_1S08859 9 - ISO-8859-9 character set.

* CUPS_1S08859 10 - ISO-8859-10 character set.

* CUPS_1S08859 13 - ISO-8859-13 character set.

* CUPS_1S08859 14 - ISO-8859-14 character set.

* CUPS_1S08859 15 - ISO-8859-15 character set.

« CUPS_WINDOWS_ 874 — Windows code page 874.

« CUPS_WINDOWS_ 1250 - Windows code page 1250.
« CUPS_WINDOWS 1251 - Windows code page 1251.
« CUPS_WINDOWS 1252 - Windows code page 1252.
« CUPS_WINDOWS 1253 - Windows code page 1253.
« CUPS_WINDOWS 1254 - Windows code page 1254.
« CUPS_WINDOWS_ 1255 - Windows code page 1255.
« CUPS_WINDOWS 1256 - Windows code page 1256.
« CUPS_WINDOWS 1257 - Windows code page 1257.
« CUPS_WINDOWS 1258 - Windows code page 1258.
*« CUPS_KOI8 R - Russian code page koi8-r.

* CUPS_KOI8 U - Ukrainian code page koi8-r.

HTTP Constants
Limits
The following constants define the limits for strings:

« HTTP_MAX BUFFER - Size of socket buffer.
e HTTP_MAX_ HOST - Maximum length of hostname.

54 Encodings

CUPS Software Programmers Manual

e HTTP_MAX_ URI — Maximum length of URI.
e HTTP_MAX_ VALUE - Maximum length of field values.

Status Codes

The following status codes can be returned by httpUpdate():

« HTTP_ERROR - A network error occurred

« HTTP_CONTINUE - Continue response from HTTP proxy

« HTTP_OK - OPTIONS/GET/HEAD/POST/TRACE command was successful
« HTTP_CREATED - PUT command was successful

« HTTP_ACCEPTED - DELETE command was successful

« HTTP_NOT_AUTHORITATIVE - Information isn't authoritative

« HTTP_NO_CONTENT - Successful command

« HTTP_RESET_CONTENT - Content was reset/recreated

« HTTP_PARTIAL_CONTENT - Only a partial file was recieved/sent

* HTTP_MULTIPLE_CHOICES - Multiple files match request

* HTTP_MOVED_PERMANENTLY - Document has moved permanently
* HTTP_MOVED_TEMPORARILY - Document has moved temporarily

« HTTP_SEE_OTHER - See this other link...

« HTTP_NOT_MODIFIED - File not modified

« HTTP_USE_PROXY - Must use a proxy to access this URI

* HTTP_BAD_REQUEST - Bad request

« HTTP_UNAUTHORIZED - Unauthorized to access host

* HTTP_PAYMENT_REQUIRED - Payment required

« HTTP_FORBIDDEN - Forbidden to access this URI

« HTTP_NOT_FOUND - URI was not found

e HTTP_METHOD_NOT_ALLOWED - Method is not allowed

* HTTP_NOT_ACCEPTABLE - Not Acceptable

* HTTP_PROXY_AUTHENTICATION - Proxy Authentication is Required
e HTTP_REQUEST_TIMEOUT - Request timed out

* HTTP_CONFLICT - Request is self-conflicting

* HTTP_GONE - Server has gone away

« HTTP_LENGTH_REQUIRED - A content length or encoding is required
e HTTP_PRECONDITION - Precondition failed

* HTTP_REQUEST_TOO_LARGE - Request entity too large

e HTTP_URI_TOO_LONG - URI too long

* HTTP_UNSUPPORTED_MEDIATYPE - The requested media type is unsupported
« HTTP_SERVER_ERROR - Internal server error

* HTTP_NOT_IMPLEMENTED - Feature not implemented

* HTTP_BAD_GATEWAY - Bad gateway

« HTTP_SERVICE_UNAVAILABLE - Service is unavailable

« HTTP_GATEWAY_TIMEOUT - Gateway connection timed out

* HTTP_NOT_SUPPORTED - HTTP version not supported

Fields

The following fields are indices for each of the standard HTTP fields in HTTP 1/1:

« HTTP_FIELD_ACCEPT_LANGUAGE - Accept-Language

Status Codes

55

CUPS Software Programmers Manual

« HTTP_FIELD_ACCEPT_RANGES - Accept—-Ranges

* HTTP_FIELD_AUTHORIZATION - Authorization

e HTTP_FIELD_CONNECTION - Connection

* HTTP_FIELD_CONTENT_ENCODING - Content—Encoding

e HTTP_FIELD_CONTENT_LANGUAGE - Content-Language
* HTTP_FIELD_CONTENT_LENGTH - Content-Length

* HTTP_FIELD_CONTENT_LOCATION - Content-Location

* HTTP_FIELD_CONTENT_MDS5 - Content—-MD5

« HTTP_FIELD_CONTENT_RANGE - Content—-Range

* HTTP_FIELD_CONTENT_TYPE - Content-Type

e HTTP_FIELD_CONTENT_VERSION - Content-Version

* HTTP_FIELD_DATE - Date

* HTTP_FIELD_HOST - Host

* HTTP_FIELD_IF_MODIFIED_SINCE - If-Modified-Since

* HTTP_FIELD_IF_UNMODIFIED_SINCE - If-Unmodified-Since
* HTTP_FIELD_KEEP_ALIVE - Keep-Alive

* HTTP_FIELD_LAST_MODIFIED - Last-Modified

* HTTP_FIELD_LINK - Link

* HTTP_FIELD_LOCATION - Location

* HTTP_FIELD_RANGE - Range

* HTTP_FIELD_REFERER - Referer

* HTTP_FIELD_RETRY_AFTER - Retry—After

e HTTP_FIELD_TRANSFER_ENCODING - Transfer—-Encoding
* HTTP_FIELD_UPGRADE - Upgrade

* HTTP_FIELD_USER_AGENT - User—Agent

* HTTP_FIELD_WWW_AUTHENTICATE - WWW-Authenticate

IPP Constants
Limits
The following constants define array limits for IPP data:

* IPP_MAX_NAME - Maximum length of an attribute name
* IPP_MAX_VALUES - Maximum number of set—of values that can be read in a request.

Tags

* IPP_TAG_ZERO - Wildcard tag value for searches; also used to separate groups of attributes
* IPP_TAG_OPERATION - Tag for values of type operation

* IPP_TAG_JOB - Tag for values of type job

* IPP_TAG_END - Tag for values of type end

* IPP_TAG_PRINTER - Tag for values of type printer

* IPP_TAG_UNSUPPORTED_GROUP - Tag for values of type unsupported_group
* IPP_TAG_UNSUPPORTED_VALUE - Tag for values of type unsupported_value
* IPP_TAG_DEFAULT - Tag for values of type default

* IPP_TAG_UNKNOWN - Tag for values of type unknown

* IPP_TAG_NOVALUE - Tag for values of type novalue

* IPP_TAG_NOTSETTABLE - Tag for values of type notsettable

* IPP_TAG_DELETEATTR - Tag for values of type deleteattr

56 IPP Constants

CUPS Software Programmers Manual

* IPP_TAG_ANYVALUE - Tag for values of type anyvalue

* IPP_TAG_INTEGER - Tag for values of type integer

« IPP_TAG_BOOLEAN - Tag for values of type boolean

* IPP_TAG_ENUM - Tag for values of type enum

* IPP_TAG_STRING - Tag for values of type string

» IPP_TAG_DATE - Tag for values of type date

* IPP_TAG_RESOLUTION - Tag for values of type resolution
* IPP_TAG_RANGE - Tag for values of type range

« IPP_TAG_COLLECTION - Tag for values of type collection
* IPP_TAG_TEXTLANG - Tag for values of type textlang

* IPP_TAG_NAMELANG - Tag for values of type namelang
* IPP_TAG_TEXT - Tag for values of type text

* IPP_TAG_NAME - Tag for values of type name

* IPP_TAG_KEYWORD - Tag for values of type keyword

* IPP_TAG_URI - Tag for values of type uri

* IPP_TAG_URISCHEME - Tag for values of type urischeme
« IPP_TAG_CHARSET - Tag for values of type charset

* IPP_TAG_LANGUAGE - Tag for values of type language

* IPP_TAG_MIMETYPE - Tag for values of type mimetype

Resolution Units

The IPP_RES PER_INCH and IPP_RES_PER_CM constants specify dots per inch and dots per centimetel
respectively.

Finishings

The finishing values specify special finishing operations to be performed on the job.
* IPP_FINISH_NONE - Do no finishing
* IPP_FINISH_STAPLE - Staple the job
* IPP_FINISH_PUNCH - Punch the job

* IPP_FINISH_COVER - Cover the job
 IPP_FINISH_BIND - Bind the job

Orientations
The orientation values specify the orientation of the job.
« IPP_PORTRAIT - No rotation
* IPP_LANDSCAPE - 90 degrees counter—clockwise

* IPP_REVERSE_LANDSCAPE - 90 degrees clockwise
* IPP_REVERSE_PORTRAIT - 180 degrees

Qualities
The quality values specify the desired quality of the print.

e IPP_QUALITY_DRAFT - Draft quality
e IPP_QUALITY_NORMAL - Normal quality

Resolution Units 57

CUPS Software Programmers Manual

* IPP_QUALITY_HIGH - High quality
Job States

The job state values are used to represent the current job state.

« IPP_JOB_PENDING - Job is pending

* IPP_JOB_HELD - Job is held

« IPP_JOB_PROCESSING - Job is processing
« IPP_JOB_STOPPED - Job is stopped

* IPP_JOB_CANCELLED - Job is cancelled

« IPP_JOB_ABORTED - Job is aborted

« IPP_JOB_COMPLETED - Job is completed

Printer States
The printer state values are used to represent the current printer state.

* IPP_PRINTER_IDLE - Printer is idle
« IPP_PRINTER_PROCESSING - Printer is processing
* IPP_PRINTER_STOPPED - Printer is stopped

Operations
The operation values represent the available IPP operations.

* IPP_PRINT_JOB - Print a file

* IPP_PRINT_URI - Print a URI

* IPP_VALIDATE_JOB - Validate job attributes

« IPP_CREATE_JOB - Create a new job

« IPP_SEND_DOCUMENT - Send a document to a job

« IPP_SEND_URI - Send a URI to a job

« IPP_CANCEL_JOB - Cancel a job

« IPP_GET _JOB_ATTRIBUTES - Get job attributes

« IPP_GET_JOBS - Get a list of all jobs

* IPP_GET_PRINTER_ATTRIBUTES - Get printer attributes
e IPP_HOLD_JOB - Hold a pending job

* IPP_RELEASE_JOB - Release a held job

* IPP_RESTART_JOB - Restart a completed job

* IPP_PAUSE_PRINTER - Pause a printer

« IPP_RESUME_PRINTER - Restart a paused printer

« IPP_PURGE_JOBS - Purge jobs from the queue

« IPP_SET PRINTER_ATTRIBUTES - Set printer attributes
« IPP_SET JOB_ATTRIBUTES - Set job attributes

* IPP_GET_PRINTER_SUPPORTED_VALUES - Get printer supported values
« CUPS_GET_DEFAULT - Get the default destination

« CUPS_GET_PRINTERS - Get a list of all printers

« CUPS_ADD_PRINTER - Add or modify a printer

e CUPS_DELETE_PRINTER - Delete a printer

e CUPS_GET_CLASSES - Get a list of all classes

58 Job States

CUPS Software Programmers Manual

« CUPS_ADD_CLASS - Add or modify a class

« CUPS_DELETE_CLASS - Delete a class

*« CUPS_ACCEPT _JOBS - Accept jobs on a printer or class
« CUPS_REJECT_JOBS - Reject jobs on a printer or class
« CUPS_SET DEFAULT - Set the default destination

e CUPS_GET_DEVICES - Get a list of all devices

« CUPS_GET_PPDS - Get a list of all PPDs

« CUPS_MOVE_JOB - Move a job to a new destination

Status Codes

Status codes are returned by all IPP requests.

* IPP_OK - Request completed with no errors

« IPP_OK_SUBST - Request completed but some attribute values were substituted

* IPP_OK_CONFLICT - Request completed but some attributes conflicted

« IPP_BAD_REQUEST - The request was bad

« IPP_FORBIDDEN - You don't have access to the resource

* IPP_NOT_AUTHENTICATED - You are not authenticated for the resource

* IPP_NOT_AUTHORIZED - You nhot authorized to access the resource

« IPP_NOT_POSSIBLE - The requested operation cannot be completed

« IPP_TIMEOUT - A timeout occurred

* IPP_NOT_FOUND - The resource was not found

* IPP_GONE - The resource has gone away

« IPP_REQUEST_ENTITY - The request was too large

* IPP_REQUEST_ VALUE - The request contained a value that was unknown to the server
* IPP_DOCUMENT_FORMAT - The document format is not supported by the server

« IPP_ATTRIBUTES - Required attributes are missing

e IPP_URI_SCHEME - The URI scheme is not supported

* IPP_CHARSET - The charset is not supported

e IPP_CONFLICT - One or more attributes conflict

* IPP_COMPRESSION_NOT_SUPPORTED - The specified compression is not supported
* IPP_COMPRESSION_ERROR - The compressed data contained an error

* IPP_DOCUMENT_FORMAT_ERROR - The document data contained an error in it

* IPP_DOCUMENT_ACCESS_ ERROR - The remote document could not be accessed
« IPP_INTERNAL_ERROR - The server encountered an internal error

* IPP_OPERATION_NOT_SUPPORTED - The requested operation is not supported

* IPP_SERVICE_UNAVAILABLE - The requested service is unavailable

* IPP_VERSION_NOT_SUPPORTED - The IPP request version is not supported

« IPP_DEVICE_ERROR - The output device encountered an error

* IPP_TEMPORARY_ERROR - A temporary error occurred

* IPP_NOT_ACCEPTING - The destination is not accepting jobs

* IPP_PRINTER_BUSY - The destination is busy

* IPP_ERROR_JOB_CANCELLED - The requested job has been cancelled

« IPP_MULTIPLE_JOBS NOT_SUPPORTED - The server does not support multiple jobs

PPD Constants

Status Codes

59

CUPS Software Programmers Manual

PPD Format Version

The PPD_VERSION constant defines a floating point number representing the newest format version that is
supported by CUPS, currently 4.3.

PPD User-Interface Types
Each printer option has a type associated with it:

« PPD_UI_BOOLEAN - The user can turn this option on or off
« PPD_UI_PICKONE - The user can choose one option value to use.
« PPD_UI_PICKMANY - The user can choose zero or more option values.

PPD Sections

Some options must be output before others, or in different sections of the output document. The
ppd_section_t enumeration defines which section the option must be output in:

« PPD_ORDER_ANY - The option can be output in any of the document, page, or prolog sections of the
document

« PPD_ORDER_DOCUMENT - The option must be output in the DocumentSetup section of the
document

« PPD_ORDER_EXIT - The option must be output before the document

« PPD_ORDER_JCL - The option must be output in the job control section of the document

« PPD_ORDER_PAGE - The option must be output in the PageSetup section of the document

« PPD_ORDER_PROLOG - The option must be output in the Prolog section of the document

PPD Colorspaces
Each printer has a default colorspace:
« PPD_CS_CMYK - The printer uses CMYK colors by default
« PPD_CS_CMY - The printer uses CMY colors by default
« PPD_CS_GRAY - The printer uses grayscale by default
« PPD_CS_RGB - The printer uses RGB colors by default

« PPD_CS_RGBK - The printer uses RGBK colors by default
« PPD_CS_N - The printer uses a DeviceN colorspace by default

Raster Constants

Raster Sync Words

The CUPS_RASTER_SYNC and CUPS_RASTER_REVSYNC constants define the standard sync words at the
beginning of each CUPS raster file.

Raster Stream Modes

The CUPS_RASTER_READ and CUPS_RASTER_WRITE constants are used with the
cupsRasterOpen() function to specify a stream for reading or writing.

60 PPD Format Version

CUPS Software Programmers Manual

Raster Boolean Constants

The CUPS_FALSE and CUPS_TRUE constants represent boolean values in the page header.

Raster Jog Values
The cups_jog_t enumeration defines constants for the Jog page device dictionary variable:

*« CUPS_JOG_NONE - Do no jogging

« CUPS_JOG_FILE - Jog pages after each file

* CUPS_JOG_JOB - Jog pages after each job

* CUPS_JOG_SET - Jog pages after each set of jobs

Raster Orientation Values
The cups_orient_t enumeration defines constants for the Orientation page device dictionary variable:

*« CUPS_ORIENT_0 - Portrait orientation

*« CUPS_ORIENT_90 - Landscape orientation

*« CUPS_ORIENT_180 - Reverse—portrait orientation

*« CUPS_ORIENT_270 - Reverse-landscape orientation

Raster CutMedia Values
The cups_cut_t enumeration defines constants for the CutMedia page device dictionary variable:

« CUPS_CUT_NONE - Do no jogging

* CUPS_CUT_FILE - Cut pages after each file

« CUPS_CUT _JOB - Cut pages after each job

« CUPS_CUT_SET - Cut pages after each set of jobs
« CUPS_CUT_PAGE - Cut each page

Raster AdvanceMedia Values

The cups_advance_t enumeration defines constants for the AdvanceMedia page device dictionary
variable:

« CUPS_ADVANCE_NONE - Do no jogging

« CUPS_ADVANCE_FILE - Advance media after each file

« CUPS_ADVANCE_JOB - Advance media after each job

« CUPS_ADVANCE_SET - Advance media after each set of jobs
« CUPS_ADVANCE_PAGE - Advance media for each page

Raster LeadingEdge Values

The cups_edge_t enumeration defines constants for the LeadingEdge page device dictionary variable:
« CUPS_EDGE_TOP - The top of the media is the leading edge
« CUPS_EDGE_RIGHT - The right of the media is the leading edge
« CUPS_EDGE_BOTTOM - The bottom of the media is the leading edge

Raster Boolean Constants 61

CUPS Software Programmers Manual

« CUPS_EDGE_LEFT - The left of the media is the leading edge
Raster Color Order Values

The cups_order_t enumeration defines the possible color value orderings:

* CUPS_ORDER_CHUNKED - CMYK CMYK CMYK
* CUPS_ORDER_BANDED - CCC MMM YYY KKK
* CUPS_ORDER_PLANAR - CCC ... MMM ... YYY ... KKK ...

Raster Colorspace Values
The cups_cspace_t enumeration defines the possible colorspaces:

*« CUPS_CSPACE_W - White (luminance)

« CUPS_CSPACE_RGB - Red, green, blue

« CUPS_CSPACE_RGBA - Red, green, blue, alpha

* CUPS_CSPACE_K - Black

« CUPS_CSPACE_CMY - Cyan, magenta, yellow

« CUPS_CSPACE_YMC - Yellow, magenta, cyan

« CUPS_CSPACE_CMYK - Cyan, magenta, yellow, black

« CUPS_CSPACE_YMCK - Yellow, magenta, cyan, black

« CUPS_CSPACE_KCMY - Black, cyan, magenta, yellow

« CUPS_CSPACE_KCMYcm - Black, cyan, magenta, yellow, light cyan, light magenta

« CUPS_CSPACE_GMCK - Metallic yellow (gold), metallic magenta, metallic cyan, black

*« CUPS_CSPACE_GMCS - Metallic yellow (gold), metallic magenta, metallic cyan, metallic grey
(silver)

« CUPS_CSPACE_WHITE - White pigment (black as white pigment)

« CUPS_CSPACE_GOLD - Gold foil (black as gold foil)

* CUPS_CSPACE_SILVER - Silver foil (black as silver foil)

62 Raster Color Order Values

C — Structures

This appendix describes all of the structures that are defined by the CUPS API.

CUPS Structures

CUPS Destinations

The CUPS destination structure (cups_dest_t) contains information on a specific destination or instance:

Member

Type

Description

name char *

The name of the printer or class.

instance char *

The instance of the printer or class; NULL for the primary instance.

is_default [int

1 if the destination is set as the default, O otherwise.

num_optiongint

The number of options associated with this destination.

options cups_option_t 1

'The options associated with this destination.

CUPS Jobs

The CUPS job structure (cups_job_t) contains information on a specific job:

Member

Type

Description

int

The job ID for this job.

C - Structures

63

CUPS Software Programmers Manual

dest char * The destination for this job (printer or class name).

title char * The job—name for this job (title).

user char * The job—originating—user—name for this job (username).
format char * The document-format for this job (MIME type string).
state ipp_jstate |The current state of the job.

size int The size of this job in kilobytes.

priority int The priority of this job from 1 to 100 (50 is normal).
completed_time |time_t The time the job was completed, or O if not yet completed.
creation_time time_t The time the job was queued.

processing_time |time_t The time the job started printing.

CUPS Messages

The CUPS messages structure (cups_lang_t) contains the character set, locale name, and messages array:

Member Type Description
next cups_lang t* Pointer to the next messages structure in memory.
used int The number of active users of this messages structure.
encoding cups_encoding t [The character encoding of the message strings.
language char [16] The language/locale name.
messages |char *[] The array of message strings.

CUPS Options

The CUPS option structure (cups_option_t) contains the option name and string value:

Member Type Description
name char * The name of the option.
value char * The string value of the option.

Networking Structures

HTTP State

The HTTP state structure (http_t) contains the current state of a HTTP request or response:

Member Type Description
fd int The socket for the HTTP connection.
blocking int 1 if the HTTP functions should block, 0 if not.
error int The last OS error that occurred on the socket.
activity time_t The last time the HTTP connection was used.
state http_state t The current HTTP request/response state.
status int The last HTTP status seen.
version http_version_t [The HTTP protocol version in use.

64 CUPS Messages

CUPS Software Programmers Manual
keep_alive |http_keep_alive [Whether or not to use Keep—Alive
hostaddr struct sockaddr_ifThe IPv4 address of the HTTP server.
hostname char [] The hostname of the HTTP server.
fields char [][] The string values of all HTTP request/response fields.
data char * Current byte in data buffer.

data_encoding

http_encoding_t

The transfer encoding for the request/response.

data_remainin

Nt

The number of bytes remaining in the current request,

response, or chunk.

used int The number of bytes that are used in the buffer.
buffer char] The read/write buffer.
auth_type int The type of authentication in use.
md5_state md5_state t The current MD5 digest state.
nonce char [] The nonce value for Digest authentication.
nonce_count |int The nonce count value.
tls void * A pointer to private encryption data.
encryption http_encryption_{The current encryption mode.
IPP State

The IPP state structure (ipp_t) contains the current state of a IPP request or response:

| Member

Type Description

Raster Structures

Raster Page Header

The raster page header (cups_raster_header_t) consists of the PostScript page device dictionary for

nd

the page:
Member Type Description

MediaClass char[64] The media class name

MediaColor char[64] The media color name

MediaType char[64] The media type name

OutputType char[64] The output type name

AdvanceDistance |unsigned The distance to advance the media in points

AdvanceMedia cups_adv_t |When to advance the media

Collate cups_bool_t |Whether or not to produce collated copies

CutMedia cups_cut_t |When to cut the media

Duplex cups_bool_t |Whether or not to print on both sides of the paper
The resolution of the page image in pixels per inch; the

HWResolution unsigned[2] |HWResolution[0] represents the horizontal resolution ai
HWResolution[1] represents the vertical resolution

ImagingBoundingBojunsigned[4]

IPP State

65

CUPS Software Programmers Manual

The bounding box for the page in points; the elements
represent the left, bottom, right, and top coordinates of
imaged area (if 0 then the whole page is imaged)

the

InsertSheet cups_bool_t |Whether or not to insert a sheet before this page

Jog cups_jog_t |When to jog copies of the page

LeadingEdge cups_edge_t|The leading edge of the page

Margins unsigned[2] [The lower—lefthand margin of the page in points

ManualFeed cups_bool_t |Whether or not to manually feed the page

MediaPosition unsigned The input slot number to use

MediaWeight unsigned The weight of the output media in gram$/m

MirrorPrint cups_bool_t |Whether or not to mirror the print

NegativePrint cups_bool_t [Whether or not to invert the print

NumCopies unsigned The number of copies to produce

Orientation cups_orient_{The orientation of the page image

OutputFaceUp cups_bool_t |Whether or not to output the page face up

PageSize unsigned[2] |The width and height of the page in points

Separations cups_bool_t |Whether or not to output separations

TraySwitch cups_bool_t Whether or not_to a_lutomatically switch trays for the
requested media size/type

Tumble cups_bool_t |Whether or not to rotate the back side of the page

cupsWidth unsigned The width of the page image in pixels

cupsHeight unsigned The height of the page image in pixels

cupsMediaType unsigned The device—specific media type code

cupsBitsPerColor |unsigned The number of bits per color

cupsBitsPerPixel |unsigned The number of bits per pixel

cupsBytesPerLine |unsigned The number of bytes per line of image data

cupsColorOrder

cups_order_t

The order of color values

cupsColorSpace

cups_cspace

' ihe type of color values

cupsCompression |unsigned The device—-specific compression code
cupsRowCount unsigned The device—-specific row count
cupsRowFeed unsigned The device-specific row feed
cupsRowStep unsigned The device-specific row step

IPP State

This appendix provides a reference for all of the CUPS API functions.

D - Functions

D - Functions

67

CUPS Software Programmers Manual

cupsAddDest()

Usage

int

cupsAddDest(const char *name,
const char *instance,
int num_dests,
cups_dest_t **dests);

Arguments
Argument Description
name The name of the destination.
instance The instance of the destination, or NULL for the primary instance.

num_dests [The number of destinations in the array.

dest A pointer to the destination

array pointer.

Returns

The new number of destinations in the array.

Description

cupsAddDest() adds the named destination to the destination array if it does not already exist.

Example

#include <cups/cups.h>

int num_dests;
cups_dest_t *dests;

num_dests = cupsAddDests("foo", "bar", num_dests, &dests);

See Also

cupsFreeDests(), cupsGetDest(), cupsGetDests()

68

cupsAddDest()

CUPS Software Programmers Manual

cupsAddOption()

Usage

int

cupsAddOption(const char *name,
const char *value,
int num_options,
cups_option_t **options);

Arguments
Argument Description
name The name of the option.
value The value of the option.
num_options Number of options currently in the array.
options Pointer to the options array.
Returns

The new number of options.

Description

cupsAddOption() adds an option to the specified array.

Example

#include <cups.h>

/* Declare the options array */

int num_options;

cups_option_t *options;

/* Initialize the options array */
num_options = 0;

options = (cups_option_t *)0;

/* Add options using cupsAddOption() */

num_options = cupsAddOption("media", "letter", num_options, &options);
num_options = cupsAddOption("resolution”, "300dpi", num_options, &options);

See Also

cupsEncodeOptions(). cupsFreeOptions(), cupsGetOption(), cupsParseQptions()

cupsAddOption()

CUPS Software Programmers Manual
cupsCancelJob()

Usage

int
cupsCancelJob(const char *dest,

int job);
Arguments
Argument Description
dest Printer or class name
job Job ID
Returns

1 on success, 0 on failure. On failure the error can be found by calling cupsLastError().

Description
cupsCancelJob() cancels the specifies job.

Example

#include <cups.h>

cupsCancelJob("LaserJet", 1);
See Also

cupsLastError(), cupsPrintFile(), cupsPrintFiles()

70

cupsCancelJob()

CUPS Software Programmers Manual

cupsDoFileRequest()

Usage

ipp_t *

cupsDoFileRequest(http_t *http,
ipp_t *request,
const char *resource,
const char *filename);

Arguments
Argument Description
http HTTP connection to server.
request IPP request data.
resource HTTP resource name for POST.
filename File to send with POST request (NULL pointer if none.)
Returns

IPP response data or NULL if the request fails. On failure the error can be found by calling

cupslastError().
Description

cupsDoFileRequest() does a HTTP POST request and provides the IPP request and optionally the
contents of a file to the IPP server. It also handles resubmitting the request and performing password
authentication as needed.

Example
#include <cups.h>

http t *http;
cups_lang_t *language;
ipp_t *request;
ipp_t *response;

[* Get the default language */
language = cupsLangDefault();

/* Create a new IPP request */

request = ippNew():

request—>request.op.operation_id = IPP_PRINT_FILE;
request—>request.op.request_id =1;

/* Add required attributes */
ippAddstring(request, IPP_TAG_OPERATION, IPP_TAG_CHARSET,

"attributes—charset", NULL, cupsLangEncoding(language)):

cupsDoFileRequest() 71

CUPS Software Programmers Manual

ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_LANGUAGE,
"attributes—natural-language", NULL,
language !'= NULL ? language—>language : "C");

ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_URI, "printer—uri",
NULL, "ipp://hostname/resource");

ippAddsString(request, IPP_TAG_OPERATION, IPP_TAG_NAME, "requesting—user—-name",
NULL, cupsUser()):

/* Do the request... */
response = cupsDoFileRequest(http, request, "/resource”, "filename.txt");

See Also

cupsLangDefault(), cupsLangEncoding(), cupsUser(), httpConnect(),
ippAddString(). ippNew()

72 See Also

CUPS Software Programmers Manual

cupsDoRequest()

Usage

ipp_t*

cupsDoRequest(http_t *http,
ipp_t *request,
const char *resource);

Arguments
Argument Description
http HTTP connection to server.
request IPP request data.
resource HTTP resource name for POST.
Returns

IPP response data or NULL if the request fails. On failure the error can be found by calling

cupslastError().
Description

cupsDoRequest() does a HTTP POST request and provides the IPP request to the IPP server. It also
handles resubmitting the request and performing password authentication as needed.

Example
#include <cups.h>

http t *http;
cups_lang_t *language;
ipp_t *request;
ipp_t *response;

/* Get the default language */
language = cupsLangDefault();

/* Create a new IPP request */

request = ippNew():

request—>request.op.operation_id = IPP_GET_PRINTER_ATTRIBUTES;
request—>request.op.request_id =1;

/* Add required attributes */
ippAddString(request, IPP_TAG_OPERATION, IPP_TAG_CHARSET,

"attributes—charset", NULL, cupsLangEncoding(language)):
ippAddsString(request, IPP_TAG_OPERATION, IPP_TAG_LANGUAGE,

"attributes—natural-language", NULL,
language '= NULL ? language—>language : "C");

cupsDoRequest() 73

CUPS Software Programmers Manual

ippAddsString(request, IPP_TAG_OPERATION, IPP_TAG_URI, "printer—uri",
NULL, "ipp://hostname/resource");

/* Do the request... */
response = cupsDoRequest(http, request, "/resource");

See Also

cupsLangDefault(), cupsLangEncoding(). cupsUser(), httpConnect().

ippAddString(). ippNew()

74

See Also

CUPS Software Programmers Manual

cupsEncodeOptions()

Usage

void

cupsEncodeOptions(ipp_t *ipp,
int num_options,
cups_option_t *options);

Arguments
Argument Description
ipp The IPP request.
num_options The number of options.
options The options.
Description

cupsEncodeOptions() encodes all of the options in the specified array as IPP attributes and adds them
to the IPP request.

Example
#include <cups/cups.h>

ipp t_ *ipp;
int num_options;
cups_option_t *options;

cupsEncodeOptions(ipp, num_options, options);
See Also

cupsAddOption(). cupsParseOptions(). ippNew()

cupsEncodeOptions() 75

CUPS Software Programmers Manual
cupsEncryption()

Usage

http_encryption_t
cupsEncryption(void);

Returns

The current encryption setting.

Description

cupsEncryption() returns the current encryption setting for IPP requests such as printing.
Example

#include <cups/cups.h>

http_t *http;

printf("The current encryption setting is %d.\n", cupsEncryption());

http = httpConnectEncrypt(cupsServer(), ippPort(), cupsEncryption());
See Also

cupsServer(), httpConnectEncrypt(). ippPort()

76 cupsEncryption()

CUPS Software Programmers Manual

cupsFreeDests()
Usage

void

cupsFreeDests(int num_dests,

cups_dest_t *dests);

Arguments
Argument Description
num_dests The number of destinations in the array.
dests The destination array.
Description

cupsFreeDests() frees a destination array that was created using cupsGetDests().

Example

#include <cups/cups.h>
int num_dests;
cups_dest_t *dests;
cups_dest_t *dest;

num_dests = cupsGetDests(&dests);
dest = cupsGetDest(NULL, NULL, num_dests, dests);

if (dest)

printf("The default destination is %s\n", dest->name);
else

puts("No default destination.");

cupsFreeDests(num_dests, dests);
See Also

cupsGetDest(), cupsGetDests()

cupsFreeDests()

77

CUPS Software Programmers Manual

cupsFreeJobs()

Usage

void
cupsFreeJobs(int num_jobs,
cups_job_t *jobs);

Arguments
Argument Description
num_jobs The number of jobs.
jobs The job array.
Description

cupsFreeJobs() frees an array of print jobs created by the cupsGetJobs() function.

Example

#include <cups/cups.h>

int i

int num_jobs;

cups_job_t *jobs;

num_jobs = cupsGetJobs(&jobs, NULL, 0, 0);

printf("%d active job(s):\n", num_jobs);

for (i=0; i <num_jobs; i ++)

printf("%—16.16s %-6d %-12.12s %s (%s)\n", jobs[i].dest, jobs][i].id,

jobs]i].user, jobsJi].title,

jobsli].state != IPP_JOB_PENDING ? "printing" : "pending");

cupsFreeJobs(num_jobs, jobs);
See Also

cupsGetJobs(), cupsGetDests()

78

cupsFreeJobs()

CUPS Software Programmers Manual

cupsFreeOptions()
Usage

void

cupsFreeOptions(int num_options,

cups_option_t *options);

Arguments
Argument Description
num_options Number of options in array.
options Pointer to options array.
Description

cupsFreeOptions() frees all memory associated with the option array specified.

Example

#include <cups/cups.h>

int num_options;
cups_option_t *options;

cupsFreeOptions(num_options, options);

See Also

cupsAddOption(). cupsEncodeOptions(), cupsGetOption(). cupsMarkQptions().

cupsParseQptions()

cupsFreeOptions()

79

CUPS Software Programmers Manual
cupsGetClasses()

Usage

int
cupsGetClasses(char ***classes);

Arguments

Argument Description
classes Pointer to character pointer array.

Returns

The number of printer classes available.

Description

cupsGetClasses() gets a list of the available printer classes. The returned array should be freed using the
free() when it is no longer needed.

Example

#include <cups/cups.h>

int i
int num_classes;
char **classes;

num_classes = cupsGetClasses(

if (num_classes > 0)

{
for (i = 0; i < num_classes; i ++)
free(classes]i]);

free(classes);

}

See Also

cupsGetDefault(), cupsGetPrinters()

80 cupsGetClasses()

CUPS Software Programmers Manual
cupsGetDefault()

Usage

const char *
cupsGetDefault(void);

Returns
A pointer to the default destination.
Description

cupsGetDefault() gets the default destination printer or class. The default destination is stored in a static
string and will be overwritten (usually with the same value) after each call.

Example

#include <cups/cups.h>

printf("The default destination is %s\n", cupsGetDefault());
See Also

cupsGetClasses(), cupsGetPrinters()

cupsGetDefault() 81

CUPS Software Programmers Manual

cupsGetDest()

Usage

cups_dest_t*
cupsGetDest(const char *name,
const char *instance,
int num_dests,
cups_dest_t *dests);

Arguments
Argument Description
name The name of the destination, or NULL for the default destination.
instance The instance of the destination, or NULL for the primary instance.
num_dests [The number of destinations.
dests The destination array.
Returns

A pointer to the specified destination, or NULL if none exists.

Description

cupsGetDest() finds the specified destination in the array of destinations created by the
cupsGetDests() function.

Example

#include <cups/cups.h>
int num_dests;
cups_dest_t *dests;
cups_dest_t *dest;

num_dests = cupsGetDests(&dests);
dest = cupsGetDest(NULL, NULL, num_dests, dests);

if (dest)

printf("The default destination is %s\n", dest->name);
else

puts("No default destination.");

cupsFreeDests(num_dests, dests);
See Also

cupsGetDests(), cupsGetJobs()

82 cupsGetDest()

CUPS Software Programmers Manual
cupsGetDests()

Usage

int
cupsGetDests(cups_dest_t **dests);

Arguments

Argument Description
dests A pointer to a destination array pointer.

Returns

The number of available destinations.

Description

cupsGetDests() creates an array of available destinations that the user can print to. The array should be
freed using the cupsFreeDests() function.

Example

#include <cups/cups.h>
int num_dests;
cups_dest_t *dests;
cups_dest_t *dest;

num_dests = cupsGetDests(&dests);
dest = cupsGetDest(NULL, NULL, num_dests, dests);

if (dest)

printf("The default destination is %s\n", dest->name);
else

puts("No default destination.");

cupsFreeDests(num_dests, dests);
See Also

cupsFreeDests(), cupsGetDest(), cupsGetJobs()

cupsGetDests() 83

CUPS Software Programmers Manual

cupsGetJobs()

Usage

int

cupsGetJobs(cups_job_t **jobs,
const char *dest,
int myjobs,
int completed);

Arguments
Argument Description
jobs A pointer to the job array pointer.
dest The destination name, or NULL if jobs for all destinations are requested.
mviobs 1 if only those jobs submitted by the current cupsUser() should be
Y] returned, 0 for jobs submitted by all users.
completed.l if only completed jobs should be returned, 0 if only pending/processing
jobs should be returned.
Returns

The number of jobs.

Description

cupsGetJobs() creates an array of print jobs based on the arguments supplied in the function call. The
returned array should be freed using the cupsFreeJobs() function.

Example

#include <cups/cups.h>

int i;

int num_jobs;

cups_job_t *jobs;

num_jobs = cupsGetJobs(&jobs, NULL, 0, 0);

printf("%d active job(s):\n", num_jobs);

for (i=0; i <num_jobs; i ++)

printf("%-16.16s %-6d %-12.12s %s (%s)\n", jobs[i].dest, jobs]i].id,

jobsJi].user, jobs]i].title,

jobsJi].state != IPP_JOB_PENDING ? "printing" : "pending");

cupsFreeJobs(num_jobs, jobs);
See Also

cupsFreeJobs(). cupsGetDests()

84 cupsGetJobs()

CUPS Software Programmers Manual

cupsGetOption()

Usage

const char *

cupsGetOption(const char *name,
int num_options,
cups_option_t *options);

Arguments
Argument Description
name The name of the option.
num_options The number of options in the array.
options The options array.
Returns

A pointer to the option values or NULL if the option is not defined.

Description

cupsGetOption() returns the first occurrence of the named option. If the option is not included in the
options array then a NULL pointer is returned.

#include <cups/cups.h>

int num_options;

cups_option_t *options;

const char *media;

media = cupsGetOption("media", num_options, options);

See Also

cupsAddOption(), cupsEncodeOptions(). cupsFreeOptions(), cupsMarkOptions(),
cupsParseOptions()

cupsGetOption() 85

CUPS Software Programmers Manual
cupsGetPassword()

Usage

const char *
cupsGetPassword(const char *prompt);

Arguments

Argument Description
prompt The prompt to display to the user.

Returns
A pointer to the password that was entered or NULL if no password was entered.
Description

cupsGetPassword() displays the prompt string and asks the user for a password. The password text is
not echoed to the user.

Example

#include <cups/cups.h>

char *password;

password = cupsGetPassword("Please enter a password:");
See Also

cupsServer(), cupsSetPasswordCB(), cupsSetServer(), cupsSetUser(), cupsUser()

86 cupsGetPassword()

CUPS Software Programmers Manual

cupsGetPPD()

Usage

const char *
cupsGetPPD(const char *printer);

Arguments

Argument Description
printer The name of the printer.

Returns

The name of a temporary file containing the PPD file or NULL if the printer cannot be located or does not
have a PPD file.

Description

cupsGetPPD() gets a copy of the PPD file for the named printer. The printer name can be of the form
"printer" or "printer@hostname”.

You should remove (unlink) the PPD file after you are done using it. The filename is stored in a static buffer
and will be overwritten with each call to cupsGetPPD().

Example

#include <cups/cups.h>

char *ppd;

ppd = cupsGetPPD("printer@hostname");

unlink(ppd);

cupsGetPPD() 87

cupsGetPrinters()

Usage

int
cupsGetPrinters(char ***printers);

Arguments

CUPS Software Programmers Manual

Argument

Description

printers

Pointer to character pointer array.

Returns

The number of printer printers available.

Description

cupsGetPrinters() gets a list of the available printers. The returned array should be freed using the
free() when it is no longer needed.

Example

#include <cups/cups.h>

int i
int num_printers;
char **printers;

num_printers = cupsGetPrinters(

if (num_printers > 0)

{
for (i = 0; i < num_printers; i ++)
free(printersli]);

free(printers);

}

See Also

cupsGetClasses() cupsGetDefault()

88

cupsGetPrinters()

CUPS Software Programmers Manual
cupsLangDefault()

Usage

const char *
cupsLangDefault(void);

Returns

A pointer to the default language structure.

Description

cupsLangDefault() returns a language structure for the default language. The default language is
defined by the LANG environment variable. If the specified language cannot be located then the POSIX
(English) locale is used.

Call cupsLangFree() to free any memory associated with the language structure when you are done.
Example

#include <cups/language.h>

cups_lang_t *language;

language = cupsLangDefault();

cupsLangFree(language);
See Also

cupsLangEncoding(). cupsLangFlush(). cupsLangFree(). cupsLangGet().
cupslangString()

cupsLangDefault() 89

CUPS Software Programmers Manual
cupsLangEncoding()

Usage

char *
cupsLangEncoding(cups_lang_t *language);

Arguments

Argument Description
language The language structure.

Returns
A pointer to the encoding string.
Description

cupsLangEncoding() returns the language encoding used for the specified language, e.g. "iso—8859-1",
"utf-8", etc.

Example
#include <cups/language.h>

cups_lang_t *language;
char *encoding;

language = cupsLangDefault();
encoding = cupsLangEncoding(language);

cupsLangFree(language);
See Also

cupsLangDefault(), cupsLangFlush(), cupsLangFree(). cupsLangGet(),
cupsLangString()

90 cupsLangEncoding()

CUPS Software Programmers Manual
cupsLangFlush()

Usage

void
cupsLangFlush(void);

Description

cupsLangFlush() frees all language structures that have been allocated.

Example

#include <cups/language.h>

cupsLangFlush();
See Also

cupsLangDefault(), cupsLangEncoding(), cupsLangFree(), cupsLangGet(),

cupsLangString()

cupsLangFlush()

91

CUPS Software Programmers Manual
cupsLangFree()

Usage

void
cupsLangFree(cups_lang_t *language);

Arguments
Argument Description
language The language structure to free.
Description

cupsLangFree() frees the specified language structure.

Example

#include <cups/language.h>
cups_lang_t *language;
cupsLangFree(language);
See Also

cupsLangDefault(), cupsLangEncoding(), cupsLangFlush(), cupslLangGet(),
cupsLangString()

92 cupsLangFree()

CUPS Software Programmers Manual
cupsLangGet()

Usage

cups_lang_t*
cupsLangGet(const char *name);

Arguments

Argument Description
name The name of the locale.

Returns
A pointer to a language structure.
Description

cupsLangGet() returns a language structure for the specified locale. If the locale is not defined then the
POSIX (English) locale is substituted.

Example
#include <cups/language.h>

cups_lang_t *language;

language = cupsLangGet("fr");

cupsLangFree(language);
See Also

cupsLangDefault(), cupsLangEncoding(), cupsLangFlush(), cupsLangFree().
cupsLangStringQ)

cupsLangGet() 93

CUPS Software Programmers Manual

cupsLangString()
Usage
char *
cupsLangString(cups_lang_t *language,
int message);
Arguments
Argument Description
language The language to query.
message The message number.
Returns

A pointer to the message string or NULL if the message is not defined.

Description

cupsLangString() returns a pointer to the specified message string in the specified language.

Example

#include <cups/language.h>

cups_lang_t *language;

char *s;

language = cupsLangGet("fr");

s = cupsLangString(language, CUPS_MSG_YES);

cupsLangFree(language);

See Also

cupslLangDefault(). cupsLangEncoding(). cupsLangFlush(), cupsLangFree().

cupslLangGet()

94

cupsLangString()

CUPS Software Programmers Manual
cupsLastError()

Usage

ipp_status_t
cupsLastError(void);

Returns
An enumeration containing the last IPP error.

Description

cupsLastError() returns the last IPP error that occurred. If no error occurred then it will return IPP_OK
or IPP_OK_CONFLICT.

Example

#include <cups/cups.h>

ipp_status_t status;

status = cupsLastError();
See Also

cupsCancelJob(), cupsPrintFile()

cupsLastError() 95

cupsMarkOptions()

Usage

int

cupsMarkOptions(ppd_file_t *ppd,

int num_options,
cups_option_t *options);

CUPS Software Programmers Manual

Arguments
Argument Description
ppd The PPD file to mark.
num_options The number of options in the options array.
options A pointer to the options array.
Returns

The number of conflicts found.

Description

cupsMarkOptions() marks options in the PPD file. It also handles mapping of IPP option names and

values to PPD option names.

Example

#include <cups/cups.h>

int num_options;
cups_option_t *options;
ppd_file_ t *ppd;

cupsMarkOptions(ppd, num_options, options);

See Also

cupsAddOption(). cupsFreeOptions(), cupsGetOption(), cupsParseQptions()

96

cupsMarkOptions()

CUPS Software Programmers Manual

cupsParseOptions()

Usage

int

cupsParseOptions(const char *arg,
int num_options,
cups_option_t **options);

Arguments
Argument Description
arg The string containing one or more options.
num_options The number of options in the options array.
options A pointer to the options array pointer.
Returns

The new number of options in the array.

Description

cupsParseOptions() parses the specifies string for one or more options of the form "name=value",

"name”, or "noname". It can be called multiple times to combine the options from several strings.

Example

#include <cups/cups.h>

int num_options;
cups_option_t *options;

num_options = 0;
options = (cups_option_t *)0;
num_options = cupsParseOptions(argv[5], num_options, &options);

See Also

cupsAddOption(), cupsFreeOptions(). cupsGetOption(), cupsMarkOptions()

cupsParseOptions()

97

CUPS Software Programmers Manual

cupsPrintFile()

Usage

int

cupsPrintFile(const char *printer,
const char *filename,
const char *title,
int num_options,
cups_option_t *options);

Arguments
Argument Description
printer The printer or class to print to.
filename The file to print.
title The job title.
num_options The number of options in the options array.
options A pointer to the options array.
Returns

The new job ID number or O on error.

Description

cupsPrintFile() sends a file to the specified printer or class for printing. If the job cannot be printed the
error code can be found by calling cupsLastError().

Example

#include <cups/cups.h>

int num_options;

cups_option_t *options;
int jobid;

jobid = cupsPrintFile("printer@hostname”, "filename.ps”, "Job Title",
num_options, options);
See Also

cupsCancelJob(), cupsLastError(), cupsPrintFiles()

98 cupsPrintFile()

CUPS Software Programmers Manual

cupsPrintFiles()

Usage

int

cupsPrintFiles(const char *printer,
int num_files,
const char **files,
const char *title,
int num_options,
cups_option_t *options);

Arguments
Argument Description
printer The printer or class to print to.
num_files The number of files to print.
files The files to print.
title The job title.
num_options The number of options in the options array.
options A pointer to the options array.
Returns

The new job ID number or 0 on error.

Description

cupsPrintFiles() sends multiple files to the specified printer or class for printing. If the job cannot be
printed the error code can be found by calling cupsLastError().

Example

#include <cups/cups.h>

int num_files;
const char *files[100];
int num_options;

cups_option_t *options;
int jobid;

jobid = cupsPrintFiles("printer@hostname”, num_files, files,
"Job Title", num_options, options);
See Also

cupsCancelJob(), cupsLastError(), cupsPrintFile()

cupsPrintFiles() 99

CUPS Software Programmers Manual
cupsRasterClose()

Usage

void
cupsRasterClose(cups_raster_t *ras);

Arguments
Argument Description
ras The raster stream to close.
Description

cupsRasterClose() closes the specified raster stream.

Example
#include <cups/raster.h>

cups_raster_t *ras;

cupsRasterClose(ras);

See Also

cupsRasterOpen(), cupsRasterReadHeader(), cupsRasterReadPixels().
cupsRasterWriteHeader(), cupsRasterWritePixels()

100

cupsRasterClose()

CUPS Software Programmers Manual

cupsRasterOpen()

Usage

cups_raster_t *
cupsRasterOpen(int fd,
cups_mode_t mode);

Arguments
Argument Description
fd The file descriptor to use.
mode The mode to use; CUPS_RASTER_READ or CUPS_RASTER_WRITE.

Returns

A pointer to a raster stream or NULL if there was an error.
Description

cupsRasterOpen() opens a raster stream for reading or writing.
Example

#include <cups/raster.h>

cups_raster_t *ras;

ras = cupsRasterOpen(0, CUPS_RASTER_READ);
See Also

cupsRasterClose(), cupsRasterReadHeader(). cupsRasterReadPixels().
cupsRasterWriteHeader(), cupsRasterWritePixels()

cupsRasterOpen() 101

CUPS Software Programmers Manual

cupsRasterReadHeader()

Usage

unsigned
cupsRasterReadHeader(cups_raster t *ras,
cups_page_header_t *header);

Arguments
Argument Description
ras The raster stream to read from.
header A pointer to a page header structure to read into.
Returns

1 on success, 0 on EOF or error.

Description

cupsRasterReadHeader() reads a page header from the specified raster stream.

Example

#include <cups/raster.h>

int line;
cups_raster t *ras;

cups_raster_header_t header;
unsigned char pixels[8192];

while (cupsRasterReadHeader(ras, &header))

{

for (line = 0O; line < header.cupsHeight; line ++)

{

cupsRasterReadPixels(ras, pixels, header.cupsBytesPerLine);

=
}

See Also

cupsRasterClose(), cupsRasterOpen(), cupsRasterReadPixels(),
cupsRasterWriteHeader(), cupsRasterWritePixels()

102 cupsRasterReadHeader()

CUPS Software Programmers Manual

cupsRasterReadPixels()

Usage

unsigned

cupsRasterReadPixels(cups_raster_t *ras,
unsigned char *pixels,
unsigned length);

Arguments
Argument Description
ras The raster stream to read from.
pixels The pointer to a pixel buffer.
length The number of bytes of pixel data to read.
Returns

The number of bytes read or 0 on EOF or error.

Description

cupsRasterReadPixels() reads pixel data from the specified raster stream.

Example

#include <cups/raster.h>

int line;
cups_raster_t *ras;

cups_raster_header_t header;
unsigned char pixels[8192];

while (cupsRasterReadHeader(ras, &header))

{

for (line = 0; line < header.cupsHeight; line ++)

{

cupsRasterReadPixels(ras, pixels, header.cupsBytesPerLine);

=
}

See Also

cupsRasterClose(). cupsRasterOpen(). cupsRasterReadHeader().
cupsRasterWriteHeader(). cupsRasterWritePixels()

cupsRasterReadPixels()

103

CUPS Software Programmers Manual

cupsRasterWriteHeader()

Usage

unsigned
cupsRasterWriteHeader(cups_raster_t *ras,
cups_page_header_t *header);

Arguments
Argument Description
ras The raster stream to write to.
header A pointer to the page header to write.
Returns

1 on success, 0 on error.

Description

cupsRasterWriteHeader() writes the specified page header to a raster stream.

Example

#include <cups/raster.h>
int line;

cups_raster t *ras;

cups_raster_header_t header;
unsigned char pixels[8192];

cupsRasterWriteHeader(ras, &header);

for (line = 0; line < header.cupsHeight; line ++)

{

cupsRasterWritePixels(ras, pixels, header.cupsBytesPerLine);

}

See Also

cupsRasterClose(). cupsRasterOpen(), cupsRasterReadHeader(),
cupsRasterReadPixels(), cupsRasterWritePixels()

104 cupsRasterWriteHeader()

CUPS Software Programmers Manual

cupsRasterWritePixels()

Usage

unsigned

cupsRasterWritePixels(cups_raster_t *ras,
unsigned char *pixels,
unsigned length);

Arguments
Argument Description
ras The raster stream to write to.
pixels The pixel data to write.
length The number of bytes to write.
Returns

The number of bytes written.

Description

cupsRasterWritePixels() writes the specified pixel data to a raster stream.

Example

#include <cups/raster.h>
int line;

cups_raster_t *ras;

cups_raster_header_t header;
unsigned char pixels[8192];

cupsRasterWriteHeader(ras, &header);

for (line = 0; line < header.cupsHeight; line ++)

{

cupsRasterWritePixels(ras, pixels, header.cupsBytesPerLine);

}

See Also

cupsRasterClose(). cupsRasterOpen(), cupsRasterReadHeader(),
cupsRasterReadPixels(), cupsRasterWriteHeader()

cupsRasterWritePixels() 105

CUPS Software Programmers Manual

cupsServer()

Usage

const char *
cupsServer(void);

Returns

A pointer to the default server name.

Description

cupsServer() returns a pointer to the default server name. The server name is stored in a static location
and will be overwritten with every call to cupsServer().

The default server is determined from the following locations:
1. The CUPS_SERVER environment variable,

2. The ServerName directive in the client.conf file,
3. The default host, "localhost".

Example

#include <cups/cups.h>
const char *server;

server = cupsServer();
See Also

cupsGetPassword(), cupsSetPasswordCB(), cupsSetServer(), cupsSetUser(),
cupsUser()

106 cupsServer()

CUPS Software Programmers Manual

cupsSetDests()
Usage

void

cupsSetDests(int num_dests,

cups_dest_t *dests);

Arguments
Argument Description
num_dests Number of destinations.
dests Array of destinations.
Description

cupsSetDests() saves the destination array to disk. If the current UID is 0, the destinations are saved in
the /etc/cups/Ipoptions file, otherwise they are saved in the ~/.Ipoptions file. This function is typically used
to save the default options and instances that are set by the user.

Example

#include <cups/cups.h>

int num_dests;
cups_dest_t *dests;

cupsSetDests(num_dests, dests);
See Also

cupsGetDests()

cupsSetDests() 107

cupsSetEncryption()

Usage

void

CUPS Software Programmers Manual

cupsSetEncryption(http_encryption_t encryption);

Arguments
Argument Description
encryption The type of encryption to use.
Description

cupsSetEncryption() sets the default type of encryption to use when connecting with the print server.

Example

#include <cups/cups.h>

cupsSetEncryption(HTTP_ENCRYPT_REQUIRED);

See Also

cupsEncryption()

108

cupsSetEncryption()

CUPS Software Programmers Manual
cupsSetPasswordCB()

Usage

void
cupsSetPasswordCB(const char *(*cb)(const char *prompt));

Arguments
Argument Description
cb The password callback function.
Description

cupsSetPasswordCB() sets the callback function to use when asking the user for a password. The
callback function must accept a single character string pointer (the prompt string) and return NULL if the use
did not enter a password string or a pointer to the password string otherwise.

Example

#include <cups/cups.h>

const char *
my_password_cb(const char *prompt)

{

return (getpass(prompt));

}

char *password,;

cupsSetPasswordCB(my_password_cb);
password = cupsGetPassword("Please enter a password:");

See Also

cupsServer(), cupsSetServer(). cupsSetUser(), cupsUser()

cupsSetPasswordCB() 109

CUPS Software Programmers Manual
cupsSetServer()

Usage

void
cupsSetServer(const char *server);

Arguments
Argument Description
server The default server to use.
Description

cupsSetServer() sets the default server to use for the CUPS API. If the server argument is NULL, the
default server is used.

Example

#include <cups/cups.h>

cupsSetServer("foo.bar.com");
See Also

cupsServer(), cupsSetPasswordCB(). cupsSetUser(), cupsUser()

110 cupsSetServer()

CUPS Software Programmers Manual
cupsSetUser()

Usage

void
cupsSetUser(const char *user);

Arguments
Argument Description
user The user name string to use.
Description

cupsSetUser() sets the default user name for authentication. If the user argument is NULL then the
current login user is used.

Example

#include <cups/cups.h>

cupsSetUser("root");
See Also

cupsServer(), cupsSetPasswordCB(). cupsSetServer(), cupsUser()

cupsSetUser() 111

cupsTempFd()

Usage

int
cupsTempFd(char *filename,

CUPS Software Programmers Manual

int length);
Arguments
Argument Description
filename The character string to hold the temporary filename.
length The size of the filename string in bytes.
Returns

A file descriptor open for reading and writing.

Description

cupsTempFd() create a temporary filename in the /var/tmp directory or the directory specified by the

TMPDIR environment variable.

Example

#include <cups/cups.h>

int fd;
char filename[256];

fd = cupsTempFd(filename, sizeof(filename));

See Also

cupsTempkFile()

112

cupsTempFd()

CUPS Software Programmers Manual

cupsTempFile()

Usage
char *
cupsTempFile(char *filename,
int length);
Arguments
Argument Description

filename The character string to hold the temporary filename.

length The size of the filename string in bytes.
Returns

A pointer to filename.

Description

cupsTempkFile() creates a temporary filename in the /var/tmp directory or the directory specified by the
TMPDIR environment variable.

Example

#include <cups/cups.h>
char filename[256];

cupsTempFile(filename, sizeof(filename));
See Also

cupsTempFd()

cupsTempFile() 113

CUPS Software Programmers Manual
cupsUser()

Usage

const char *
cupsUser(void);

Returns
A pointer to the current username or NULL if the user ID is undefined.
Description

cupsUser() returns the name associated with the current user ID as reported by the getuid() system
call.

Example

#include <cups/cups.h>
const char *user;

user = cupsUser();

See Also

cupsGetPassword(), cupsServer()

114 cupsUser()

httpBlocking()

Usage
void

httpBlocking(http_t *http,
int blocking)

Arguments

CUPS Software Programmers Manual

Argument

Description

http

The HTTP connection

blocking

0 if the connection should be non-blocking, 1 if it should be blocking

)

Description

The httpBlocking() function sets the blocking mode for the HTTP connection. By default HTTP

connections will block (stop) the client program until data is available or can be sent to the server.

Example

#include <cups/http.h>

http_t *http;

http = httpConnect("server", port);

httpBlocking(http, 0);

See Also

httpCheck(), httpConnect()

httpBlocking()

115

httpCheck()

Usage

int

httpCheck(http_t *http);

Arguments

CUPS Software Programmers Manual

Argument

Description

http

The HTTP connection

Returns

0 if there is no data pending, 1 otherwise.

Description

The httpCheck() function checks to see if there is any data pending on an HTTP connection.

Example

#include <cups/http.h>
http_t *http;

if (httpCheck(http))

{

... do something ...

}

See Also

httpBlocking(), httpConnect(). httpGets(). httpRead()

116

httpCheck()

CUPS Software Programmers Manual

httpClearFields()

Usage

void

httpClearFields(http_t *http)

Arguments

Argument

Description

http

The HTTP connection

Description

The httpClearFields() function clears all HTTP request fields for the HTTP connection.

Example

#include <cups/http.h>
http_t *http;

httpClearFields(http);

See Also

httpConnect(), httpGetField(), httpSetField()

httpClearFields()

117

httpClose()

Usage

void
httpClose(http_t *http);

Arguments

CUPS Software Programmers Manual

Argument

Description

http

The HTTP connection

Description

The httpClose() function closes an active HTTP connection.

Example

#include <cups/http.h>
http_t *http;

httpClose(http);
See Also

httpConnect()

118

httpClose()

CUPS Software Programmers Manual

httpConnect()

Usage

http_t *
httpConnect(const char *hostname,
int port);

Arguments

Argument Description

hostname The name or IP address of the server to connect to

port The port number to use

Returns

A pointer to a HTTP connection structure or NULL if the connection could not be made.

Description
The httpConnect() function opens a HTTP connection to the specified server and port.
Example

#include <cups/http.h>

http_t *http;

http = httpConnect(cupsServer(), ippPort());
See Also

httpClose(). httpConnectEncrypt(), httpGet(), httpGets(), hitpPost().
httpRead(). httpWrite()

httpConnect()

119

CUPS Software Programmers Manual

httpConnectEncrypt()

Usage

http_t *

httpConnectEncrypt(const char

Arguments
Argument Description
hostname The name or IP address of the server to connect to
port The port number to use
encryption The level of encryption to use
Returns

int

port,

*hostname,

http_encryption_t encryption);

A pointer to a HTTP connection structure or NULL if the connection could not be made.

Description

The httpConnectEncrypt() function opens a HTTP connection to the specified server, port, and
encryption.

Example

#include <cups/http.h>

http_t *http;

http = httpConnectEncrypt(cupsServer(), ippPort(), cupsEncryption());

See Also

httpClose(). httpConnect(), httpGet(). httpGets(), httpPost(), httpRead(),

httpWrite()

120

httpConnectEncrypt()

CUPS Software Programmers Manual

httpDecode64()

Usage

char *
httpDecode64(char *out,
const char *in);

Arguments
Argument Description
out The output string
in The input string
Returns

A pointer to the decoded string.

Description

The httpDecode64() function decodes a base—-64 encoded string to the original string.

Example

#include <cups/http.h>

char encoded_string[255];
char original_string[255];

httpDecode64(original_string, encoded_string);
See Also

httpEncode64()

httpDecode64()

121

httpDelete()

Usage

int
httpDelete(http_t *http,
const char *uri);

CUPS Software Programmers Manual

Arguments
Argument Description
http The HTTP connection
uri The URI to delete
Returns

0 on success, non-zero on failure.

Description

The httpDelete() function sends a HTTP DELETE request to the server.

Example

#include <cups/http.h>

http_t *http;

httpDelete(http, "/some/uri");

See Also

httpConnect(). httpSetField(), httpUpdate()

122

httpDelete()

CUPS Software Programmers Manual

httpEncode64()

Usage

char *
httpEncode64(char *out,
const char *in);

Arguments
Argument Description
out The output string
in The input string
Returns

A pointer to the encoded string.

Description

The httpEncode64() function decodes a base—64 encoded string to the original string.

Example

#include <cups/http.h>

char encoded_string[255];
char original_string[255];

httpEncode64(encoded_string, original_string);
See Also

httpD de64

httpEncode64()

123

CUPS Software Programmers Manual

httpEncryption()

Usage

int
httpEncryption(http_t *http,
http_encryption_t encryption);

Arguments
Argument Description
http The HTTP connection.
encryption The desired level of encryption.
Returns

0 on success, -1 on error.
Description
httpEncryption() sets the encryption level for the HTTP connection.

Example
#include <cups/http.h>

http_t *http;

httpEncryption(http, HTTP_ENCRYPT_REQUIRED);
See Also

httpConnectEncrypt()

124

httpEncryption()

CUPS Software Programmers Manual

httpError()

Usage

int
httpError(http_t *http);

Arguments

Argument Description

http The HTTP connection

Returns

The last error that occurred or O if no error has occurred.

Description

The httpError() function returns the last error that occurred on the HTTP connection.

Example
#include <cups/http.h>
http_t *http;

if (httpError(http))
{

... show an error message ...

}

See Also

httpConnect()

httpError()

125

httpFlush()

Usage

void
httpFlush(http_t *http);

Arguments

CUPS Software Programmers Manual

Argument

Description

http

The HTTP connection

Description

The httpFlush() function flushes any remaining data left from a GET or POST operation.

Example

#include <cups/http.h>
http_t *http;

httpFlush(http);
See Also

httpConnect(),

126

httpFlush()

CUPS Software Programmers Manual

httpGet()

Usage

int
httpGet(http_t *http,
const char *uri);

Arguments
Argument Description
http The HTTP connection
uri The URI to get
Returns

0 on success, non-zero on failure.

Description
The httpGet() function sends a HTTP GET request to the server.
Example

#include <cups/http.h>

http_t *http;

httpGet(http, "/some/uri");
See Also

httpConnect(). httpSetField(), httpUpdate()

httpGet()

127

CUPS Software Programmers Manual

httpGets()

Usage

char *

httpGets(char *line,
int length,
http_t *http)

Arguments
Argument Description
line The string to fill with a line from the HTTP connection
length The maximum length of the string
http The HTTP connection
Returns

A pointer to the string or NULL if no line could be retrieved.

Description

The httpGets() function is used to read a request line from the HTTP connection. It is not normally used
by a client program.

Example
#include <cups/http.h>

http_t *http;
char line[1024];

if (httpGets(line, sizeof(line), http))

... process the line ...

}

See Also

httpConnect(), httpUpdate()

128 httpGets()

CUPS Software Programmers Manual

httpGetDateString()

Usage

const char *

httpGetDateString(time_t time)

Arguments

Argument

Description

time

The UNIX date/time value

Returns

A pointer to a static string containing the HTTP date/time string for the specified UNIX time value.

Description

The httpGetDateString() function generates a date/time string suitable for HTTP requests from a

UNIX time value.

Example

#include <cups/http.h>

puts(httpGetDateString(time(NULL)));

See Also

httpGetDateTime()

httpGetDateString()

129

CUPS Software Programmers Manual

httpGetDateTime()

Usage

time_t
httpGetDateTime(const char *date)

Arguments

Argument

Description

date

The HTTP date/time string

Returns

A UNIX time value.

Description

The httpGetDateTime() function converts a HTTP date/time string to a UNIX time value.

Example

#include <cups/http.h>

printf("%d\n", httpGetDateTime("Fri, 30 June 2000 12:34:56 GMT"));

See Also

httpGetDateString()

130

httpGetDateTime()

CUPS Software Programmers Manual

httpGetField()

Usage

const char *
httpGetField(http_t *http,
http_field_t field);

Arguments
Argument Description
http The HTTP connection
field The HTTP field
Returns

A pointer to the field value string.

Description

The httpGetField() function returns the current value for the specified HTTP field.

Example
#include <cups/http.h>

http_t *http;

httpGet(http, "/some/uri");

while (httpUpdate(http) == HTTP_CONTINUE);

puts(httpGetField(http, HTTP_FIELD_CONTENT_TYPE));

See Also

httpConnect(), httpGetSubField(), httpSetField()

httpGetField()

131

CUPS Software Programmers Manual

httpGetHostByName()

Usage

struct hostent *
httpGetHostByName(const char *name);

Arguments

Returns

Argument

Description

name

Name or IP address to lookup.

NULL if the host could not be found or a pointer to a host entry containing one or more addresses.

Description

httpGetHostByName() is a portable wrapper around the gethostbyname() function which handles
both hostnames and IP addresses.

Example

#include <cups/http.h>

struct hostent *hostaddr;

hostaddr = httpGetHostByName("foo.bar.com™);

132

httpGetHostByName()

CUPS Software Programmers Manual

httpGetLength()

Usage

int
httpGetLength(http_t *http);

Arguments

Argument Description

http The HTTP connection.

Returns

The content length of the response or MAX_INT if chunking is used.
Description

httpGetLength() returns the content length of a response.

Example
#include <cups/http.h>

http_t *http;

printf("The length of the response is %d bytes.\n", httpGetLength(http));
See Also

httpGet(). httpPost()

httpGetLength()

133

CUPS Software Programmers Manual

httpGetSubField()

Usage

const char *

httpGetSubField(http_t *http,
http_field_t field,
const char *name,

char *value);
Arguments
Argument Description

http The HTTP connection.

field The HTTP field.

name The name of the subfield.

value The string to hold the subfield value.
Returns

A pointer to the subfield value string or NULL if it does not exist.

Description

The httpGetSubField() function returns a subfield value from the specified HTTP field. The destination
string buffer must be at least HTTP_MAX_VALUE bytes in length.

Example
#include <cups/http.h>

http_t *http;
char value[HTTP_MAX_VALUE];

httpGet(http, "/some/uri");
while (httpUpdate(http) == HTTP_CONTINUE);

puts(httpGetSubField(http, HTTP_FIELD_CONTENT_TYPE, "charset", value));
See Also

httpConnect(), httpGetField(), httpSetField()

134 httpGetSubField()

CUPS Software Programmers Manual

httpHead()

Usage

int
httpHead(http_t *http,
const char *uri);

Arguments
Argument Description
http The HTTP connection
uri The URI to head
Returns

0 on success, non-zero on failure.

Description

The httpHead() function sends a HTTP HEAD request to the server.

Example

#include <cups/http.h>
http_t *http;

httpHead(http, "/some/uri");

See Also

httpConnect(). httpSetField(), httpUpdate()

httpHead()

135

CUPS Software Programmers Manual
httplnitialize()
Usage
void httplnitialize(void);
Description

The httplnitialize() function initializes the networking code as needed by the underlying platform. It
is called automatically by the httpConnect() function.

Example

#include <cups/http.h>

httplnitialize();
See Also

httpConnect()

136 httplnitialize()

CUPS Software Programmers Manual

httpMD5()

Usage

char *

httpMD5(const char *username,
const char *realm,
const char *passwd,
char md5[33]);

Arguments
Argument Description
username The authenticating user name.
realm The authenticating realm name.
passwd The authenticating password.
md5 The MD5 sum string.
Returns

A pointer to the MD5 sum string.

Description

httpMD5() computes the MD5 hash of the username, realm, and password as required by the HTTP Digest
specification.

Example

#include <cups/http.h>

char md5[33];

httpMD5("user”, "realm", "password", md5);
See Also

httpMD5Final(). httpMD5String()

httpMD5() 137

httpMD5Final()

Usage

char *

httpMD5Final(const char *nonce,
const char *method,
const char *resource,
char md5[33]);

CUPS Software Programmers Manual

Arguments
Argument Description
nonce The server nonce value.
method The HTTP method (GET, POST, etc.)
resource The resource path.
md5 The MD5 sum string.
Returns

The MD5 sum string.

Description

httpMD5Final() appends the nonce, method, and resource to the specified MD5 sum.

Example

#include <cups/http.h>

char md5[33];

httpMD5Final("nonce", "GET", "/jobs", md5);

See Also

httpMD5(), httpMD5String()

138

httpMD5Final()

CUPS Software Programmers Manual

httpMD5String()
Usage
char *
httpMD5String(const md5_byte t *sum,
char md5[33));
Arguments
Argument Description
sum The raw MD5 sum data.
md>5 The MD5 sum string.
Returns

The MD5 sum string.
Description
httpMD5String() converts the raw MD5 sum value to a string.

Example

#include <cups/http.h>

md5_byte_t sum[16];
char md5[33];

httpMD5String(sum, md5);
See Also

httpMD5(), httpMD5Final()

httpMD5String()

139

CUPS Software Programmers Manual
httpOptions()

Usage

int
httpOptions(http_t *http,
const char *uri);

Arguments
Argument Description
http The HTTP connection
uri The URI to check for options
Returns

0 on success, non—-zero on failure.

Description

The httpOptions() function sends a HTTP OPTIONS request to the server.

Example

#include <cups/http.h>
http_t *http;

httpOptions(http, "/some/uri");
See Also

httpConnect(), httpSetField(), httpUpdate()

140

httpOptions()

httpPost()

Usage

int

httpPost(http_t *http,

const char *uri);

Arguments

CUPS Software Programmers Manual

Argument

Description

http

The HTTP connection

uril

The URI to post to

Returns

0 on success, non-zero on failure.

Description

The httpPost() function sends a HTTP POST request to the server.

Example

#include <cups/http.h>

http_t *http;

httpPost(http, "/some/uri");

See Also

httpConnect(). httpSetField(), httpUpdate()

httpPost()

141

CUPS Software Programmers Manual

httpPrintf()

Usage

int
httpPrintf(http_t *http,
const char *format,

)

Arguments
Argument Description
http The HTTP connection
format A printf-style format string
Returns

The number of bytes written.

Description

The httpPrintf() function sends a formatted string to the HTTP connection. It is normally only used by

the CUPS API and scheduler.

Example

#include <cups/http.h>
http_t *http;

httpPrintf(http, "GET / HTTP/1.1 \r\n");
See Also

httpConnect()

142

httpPrintf()

CUPS Software Programmers Manual

httpPut()

Usage

int
httpPut(http_t *http,
const char *uri);

Arguments
Argument Description
http The HTTP connection
uri The URI to put
Returns

0 on success, non-zero on failure.
Description
The httpPut() function sends a HTTP PUT request to the server.

Example

#include <cups/http.h>
http_t *http;

httpDelete(http, "/some/uri");
See Also

httpConnect(). httpSetField(), httpUpdate()

httpPut() 143

CUPS Software Programmers Manual

httpRead()

Usage

int
httpRead(http_t *http,
char *buffer,

int length);
Arguments
Argument Description
http The HTTP connection
buffer The buffer to read into
length The number of bytes to read
Returns

The number of bytes read or -1 on error.

Description

The httpRead() function reads data from the HTTP connection, possibly the result of a GET or POST
request.

Example

#include <cups/http.h>

http_t *http;
char buffer[1024];
int bytes;

httpGet(http, "/");
while (httpUpdate(http) = HTTP_CONTINUE);
while ((bytes = httpRead(http, buffer, sizeof(buffer) — 1)) > 0)
{
buffer[bytes] = "\0';
fputs(buffer, stdout);
}

See Also

httpConnect(), httpWrite()

144 httpRead()

CUPS Software Programmers Manual
httpReconnect()

Usage

int
httpReconnect(http_t *http);

Arguments

Argument Description
http The HTTP connection

Returns
0 on success, non—zero on failure.
Description

The httpReconnect() function reconnects to the HTTP server. This is usually done automatically if the
HTTP functions detect that the server connection has terminated.

Example

#include <cups/http.h>
http_t *http;

httpReconnect(http);
See Also

httpConnect()

httpReconnect() 145

CUPS Software Programmers Manual

httpSeparate()

Usage

void

httpSeparate(const char *uri,
char *method,
char *username,
char *host,
int *port,
char *resource);

Arguments

Argument Description

uri The URI to separate

method |[The method (scheme) of the URI

username|The username (and password) portion of the URI, if any

host The hostname portion of the URI, if any

The port number for the URI, either as specified or as default for the
port

method/scheme

resource |The resource string, usually a filename on the server

Description
The httpSeparate() function separates the specified URI into its component parts. The method,

username, hostname, and resource strings should be at least HTTP_MAX_URI characters long to avoid
potential buffer overflow problems.

Example

char urifHTTP_MAX_URIJ;

char method[HTTP_MAX_URI];
char username[HTTP_MAX_URI];
char host[HTTP_MAX_URI];

char resource[HTTP_MAX_URI];
int port;

httpSeparate(uri, method, username, host, &port, resource);
See Also

httpConnect()

146 httpSeparate()

httpSetField()

Usage

void
httpSetField(http_t

*http,
http_field_t field,

const char *value);

Arguments

CUPS Software Programmers Manual

Argument

Description

http

The HTTP connection

field

The HTTP field

value

The string value for the field

Description

The httpSetField() function sets the current value for the specified HTTP field.

Example

#include <cups/http.h>

http_t *http;

httpSetField(http, HTTP_FIELD_AUTHORIZATION, "Basic dfdr34453454325"));
httpGet(http, "/some/uri");
while (httpUpdate(http) == HTTP_CONTINUE);

See Also

httpConnect(), httpGetField()

httpSetField()

147

CUPS Software Programmers Manual

httpStatus()

Usage

const char *
httpStatus(http_status_t status);

Arguments

Argument Description
status The HTTP status code from the server.

Returns

The standard HTTP status text associated with the status code.

Description

httpStatus() returns the standard HTTP status text associated with the status code.

Example
#include <cups/http.h>

http_t *http;

puts(httpStatus(http—>status));

148 httpStatus()

CUPS Software Programmers Manual

httpTrace()

Usage

int
httpTrace(http_t *http,
const char *uri);

Arguments
Argument Description
http The HTTP connection
uri The URI to trace
Returns

0 on success, non-zero on failure.

Description

The httpTrace() function sends a HTTP TRACE request to the server.

Example

#include <cups/http.h>
http_t *http;

httpTrace(http, "/some/uri");

See Also

httpConnect(). httpSetField(), httpUpdate()

httpTrace()

149

CUPS Software Programmers Manual

httpUpdate()

Usage

http_status_t
httpUpdate(http_t *http);

Arguments

Argument Description
http The HTTP connection

Returns

The HTTP status of the current request.

Description

The httpUpdate() function updates the current request status. It is used after any DELETE, GET, HEAD,
OPTIONS, POST, PUT, or TRACE request to finalize the HTTP request and retrieve the request status.

Since proxies and the current blocking mode can cause the request to take longer, programs should continue
calling httpUpdate() until the return status is not the constant value
HTTP_CONTINUE.

Example

#include <cups/http.h>

http_t *http;
http_status_t status;

httpGet(http, "/some/uri");

while ((status = httpUpdate(http)) == HTTP_CONTINUE);
printf("Request status is %d\n", status);

See Also

httpConnect(). httpDelete(), httpGet(). hitpHead(),_httpOptions(), httpPost().
httpPut(), httpTrace()

150 httpUpdate()

CUPS Software Programmers Manual

httpWrite()

Usage

int
httpWrite(http_t *http,
char *buffer,

int length);
Arguments
Argument Description
http The HTTP connection
buffer The buffer to read into
length The number of bytes to read
Returns

The number of bytes read or —1 on error.

Description

The httpWrite() function reads data from the HTTP connection, possibly the result of a GET or POST
request.

Example

#include <cups/http.h>
http_t *http;

FILE *fp;

char buffer[1024];

int bytes;
httpPost(http, "/");

while ((bytes = fread(buffer, 1, sizeof(buffer), fp)) > 0)
httpWrite(http, buffer, bytes);

while (httpUpdate(http) != HTTP_CONTINUE);
while ((bytes = httpRead(http, buffer, sizeof(buffer) — 1)) > 0)
buffer[bytes] = "\0';

fputs(buffer, stdout);
}

See Also

httpConnect(). httpRead()

httpWrite() 151

CUPS Software Programmers Manual

ippAddBoolean()

Usage

ipp_attribute_t *

ippAddBoolean(ipp_t *ipp,
ipp_tag_t group,
const char *name,
char value);

Arguments
Argument Description
ipp The IPP request
group The IPP group
name The name of attribute
value The boolean value
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddBoolean() function adds a single boolean attribute value to the specified IPP request.

Example
#include <cups/ipp.h>

ipp_t *ipp;

ippAddBoolean(ipp, IPP_TAG_OPERATION, "my-jobs", 1);

See Also

ippAddBooleans(). ippAddDate(). ippAddinteger(). ippAddintegers().

ippAddRange(). ippAddRanges(). ippAddResolution(), ippAddResolutions(),

ippAddSeparator(). ippAddString(). ippAddStrings()

152

ippAddBoolean()

CUPS Software Programmers Manual

ippAddBooleans()

Usage

ipp_attribute_t *

ippAddBooleans(ipp_t *ipp,
ipp_tag_t group,
const char *name,
int num_values,
const char *values);

Arguments
Argument Description
ipp The IPP request
group The IPP group
name The name of attribute
num_values The number of values
values The boolean values
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddBooleans() function adds one or more boolean attribute values to the specified IPP request.

If the values pointer is NULL then an array of num_values false values is created.

Example
#include <cups/ipp.h>

ipp_t *ipp;
char values[10];

ippAddBooleans(ipp, IPP_TAG_OPERATION, "some-attribute", 10, values);

See Also

ippAddBoolean(), ippAddDate(). ippAddinteger(). ippAddintegers().

ippAddRange(). ippAddRanges(). ippAddResolution(), ippAddResolutions(),

ippAddSeparator(), ippAddString(), ippAddStrings()

ippAddBooleans()

153

CUPS Software Programmers Manual

ippAddDate()

Usage

ipp_attribute_t *

ippAddDate(ipp_t *ipp,
ipp_tag_t group,
const char *name,
ipp_uchar_t *value);

Arguments
Argument Description
ipp The IPP request
group The IPP group
name The name of attribute
value The date value
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddDate() function adds a single date—time attribute value to the specified IPP request.

Example
#include <cups/ipp.h>

ipp_t *ipp;

ippAddDate(ipp, IPP_TAG_OPERATION, "some-attribute",

ippTimeToDate(time(NULL));

See Also

ippAddBoolean(), ippAddBooleans(). ippAddinteger(). ippAddintegers().

ippAddRange(). ippAddRanges(). ippAddResolution(), ippAddResolutions(),

ippAddSeparator(). ippAddString(). ippAddStrings(), ippTimeToDate()

154

ippAddDate()

CUPS Software Programmers Manual

ippAddinteger()

Usage

ipp_attribute_t *
ippAddinteger(ipp_t *ipp,
ipp_tag_t group,

ipp_tag_t tag,
const char *name,
int value);
Arguments
Argument Description
ipp The IPP request
group The IPP group
tag The type of integer value (IPP_TAG_INTEGER or IPP_TAG_ENUM
name The name of attribute
value The integer value
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddinteger() function adds a single integer attribute value to the specified IPP request.

Example

#include <cups/ipp.h>

ipp_t *ipp;

ippAddinteger(ipp, IPP_TAG_OPERATION, "limit", 100);

See Also

ippAddBoolean(), ippAddBooleans(). ippAddDate(). ippAddintegers(),
ippAddRange(). ippAddRanges(). ippAddResolution(), ippAddResolutions(),
ippAddSeparator(). ippAddString(). ippAddStrings()

ippAddinteger() 155

CUPS Software Programmers Manual

ippAddintegers()

Usage

ipp_attribute_t *

ippAddintegers(ipp_t *ipp,
ipp_tag_t group,
ipp_tag_t tag,
const char *name,
int num_values,
const int *values);

Arguments
Argument Description
ipp The IPP request
group The IPP group
tag The type of integer value (IPP_TAG_INTEGER or IPP_TAG_ENUM)
name The name of attribute
num_values|The number of values
values The integer values
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddintegers() function adds one or more integer attribute values to the specified IPP request. If
the values pointer is NULL then an array of num_values 0 values is created.

Example

#include <cupsl/ipp.h>

ipp_t *ipp;
int values[100];

ippAddintegers(ipp, IPP_TAG_OPERATION, "some-attribute", 100, values);

See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger().
ippAddRange(). ippAddRanges(). ippAddResolution(), ippAddResolutions(),
ippAddSeparator(), ippAddString(), ippAddStrings()

156 ippAddintegers()

CUPS Software Programmers Manual

ippAddRange()

Usage

ipp_attribute_t *

ippAddRange(ipp_t *ipp,
ipp_tag_t group,
const char *name,

int low,
int high);
Arguments
Argument Description
ipp The IPP request
group The IPP group
name The name of attribute
low The lower value
high The higher value
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddRange() function adds a single range attribute value to the specified IPP request.

Example
#include <cups/ipp.h>

ipp_t *ipp;

ippAddRange(ipp, IPP_TAG_OPERATION, "page-ranges", 1, 10);

See Also

ippAddBoolean(), ippAddBooleans(). ippAddDate(). ippAddinteger().

ippAddintegers(). ippAddRanges(). ippAddResolution(). ippAddResolutions(),

ippAddSeparator(). ippAddString(). ippAddStrings()

ippAddRange()

157

CUPS Software Programmers Manual

ippAddRanges()

Usage

ipp_attribute_t *

ippAddRanges(ipp_t *ipp,
ipp_tag_t group,
const char *name,
int num_values,
const int *lows,
const int *highs);

Arguments
Argument Description

ipp The IPP request
group The IPP group
name The name of attribute
num_values The number of range values
lows The lower values
highs The higher values

Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddRanges() function adds one or more range attribute values to the specified IPP request. If the
values pointer is NULL then an array of num_values 0,0 ranges is created.

Example

#include <cupsl/ipp.h>
ipp_t *ipp;

int lows[2];

int highs[2];

ippAddRanges(ipp, IPP_TAG_OPERATION, "page-ranges", 2, lows, highs);
See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger(),
ippAddintegers(). ippAddRange(). ippAddResolution(). ippAddResolutions().
ippAddSeparator(). ippAddString(). ippAddStrings()

158 ippAddRanges()

CUPS Software Programmers Manual

ippAddResolution()

Usage

ipp_attribute_t *
ippAddResolution(ipp_t *ipp,
ipp_tag_t group,
const char *name,
int Xres,
int yres,
ipp_res_t units);

Arguments
Argument Description

ipp The IPP request

group The IPP group

name The name of attribute

Xres The horizontal resolution

yres The vertical resolution

units The resolution units
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddResolution() function adds a single resolution attribute value to the specified IPP request.

Example
#include <cupsl/ipp.h>

ipp_t *ipp;

ippAddBoolean(ipp, IPP_TAG_OPERATION, "printer-resolution",
720, 720, IPP_RES_PER_INCH);

See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger().
ippAddintegers(). ippAddRange(). ippAddRanges(). ippAddResolutions(),
ippAddSeparator(), ippAddString(), ippAddStrings()

ippAddResolution() 159

CUPS Software Programmers Manual

ippAddResolutions()

Usage

ipp_attribute_t *

ippAddResolutions(ipp_t *ipp,
ipp_tag_t group,
constchar *name,
int num_values,
const int *xres,
const int *yres,
const ipp_res_t *units);

Arguments
Argument Description
ipp The IPP request
group The IPP group
name The name of attribute
num_values The number of resolution values
Xres The horizontal resolutions
yres The vertical resolutions
units The resolution units
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddResolutions() function adds one or more resolution attribute values to the specified IPP
request. If the values pointer is NULL then an array of num_values 0,0 resolutions is created.

Example
#include <cups/ipp.h>

ipp_t *ipp;
int xres[5];
int yres[5];
ipp_res_t units[5];

ippAddBoolean(ipp, IPP_TAG_OPERATION, "printer-resolutions—supported",
5, xres, yres, units);

See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger().
ippAddintegers(). ippAddRange(). ippAddRanges(). ippAddResolution().
ippAddSeparator(). ippAddString(). ippAddStrings()

160 ippAddResolutions()

CUPS Software Programmers Manual
ippAddSeparator()

Usage

ipp_attribute_t *
ippAddSeparator(ipp_t *ipp);

Arguments

Argument Description

ipp The IPP request

Returns

A pointer to the new separator or NULL if the separator could not be created.

Description

The ippAddSeparator() function adds a group separator to the specified IPP request.

Example
#include <cups/ipp.h>
ipp_t *ipp;

ippAddSeparator(ipp);
See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger().
ippAddintegers(). ippAddRange(). ippAddRanges(). ippAddResolution().

ippAddResolutions(). ippAddString(). ippAddStrings()

ippAddSeparator()

161

CUPS Software Programmers Manual

IppAddString()

Usage

ipp_attribute_t *

ippAddString(ipp_t *ipp,
ipp_tag_t group,
ipp_tag_t tag,
const char *name,
const char *charset,
const char *value);

Arguments
Argument Description
ipp The IPP request
group The IPP group
tag The type of string value
name The name of attribute
charset The character set for the string
value The string value
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddString() function adds a single string attribute value to the specified IPP request. For
IPP_TAG_NAMELANG and IPP_TAG_TEXTLANG strings, the charset value is provided with the string to
identify the string encoding used. Otherwise the charset value is ignored.

Example

#include <cupsl/ipp.h>

ipp_t *ipp;

ippAddString(ipp, IPP_TAG_OPERATION, IPP_TAG_NAME, "job—name",
NULL, "abc123");

See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger().
ippAddintegers(). ippAddRange(). ippAddRanges(). ippAddResolution().
ippAddResolutions(), ippAddSeparator(), ippAddStrings()

162 ippAddString()

CUPS Software Programmers Manual
IppAddStrings()

Usage

ipp_attribute_t *

ippAddsStrings(ipp_t *ipp,
ipp_tag_t group,
ipp_tag_t tag,
const char *name,
int num_values,
const char *charset,
const char **values);

Arguments
Argument Description
ipp The IPP request
group The IPP group
tag The type of string value
name The name of attribute
num_values The number of strings
charset The character set for the strings
values The string values
Returns

A pointer to the new attribute or NULL if the attribute could not be created.

Description

The ippAddStrings() function adds one or more string attribute values to the specified IPP request. For
IPP_TAG_NAMELANG and IPP_TAG_TEXTLANG strings, the charset value is provided with the strings to
identify the string encoding used. Otherwise the charset value is ignored. If the values pointer is NULL then
an array of num_values NULL strings is created.

Example
#include <cups/ipp.h>

ipp_t *ipp;
char *values[2] = { "one", "two" };

ippAddsStrings(ipp, IPP_TAG_OPERATION, IPP_TAG_KEYWORD, "attr—-name”,
2, NULL, values);

See Also

ippAddBoolean(). ippAddBooleans(). ippAddDate(). ippAddinteger().
ippAddintegers(). ippAddRange(). ippAddRanges(). ippAddResolution().
ippAddResolutions(). ippAddSeparator(). ippAddString()

ippAddStrings() 163

CUPS Software Programmers Manual

ippDateToTime()

Usage

time_t

ippDateToTime(const ipp_uchar_t date[11]);

Arguments

Returns

A UNIX time value.

Argument

Description

date

The IPP date—time value

Description

The ippDateToTime() function converts an IPP date—time value to a UNIX time value.

Example

#include <cups/ipp.h>
ipp_uchar_t date[11];

printf("UNIX time is %d\n", ippDateToTime(date));

See Also

ippTimeToDate()

164

ippDateToTime()

CUPS Software Programmers Manual
ippDelete()

Usage

void
ippDelete(ipp_t *ipp);

Arguments
Argument Description
ipp The IPP request or response
Description

The ippDelete() function deletes all memory used by an IPP request or response.

Example
#include <cups/ipp.h>
ipp_t *ipp;

ippDelete(ipp);

See Also

ippNew()

ippDelete() 165

CUPS Software Programmers Manual

IppErrorString()

Usage

const char *
ippErrorString(ipp_status_t error);

Arguments

Argument

Description

error

IPP error code.

Returns

The standard text representation of the IPP error code.

Description

ippErrorString() returns the standard text representation of the IPP error code.

Example

#include <cups/ipp.h>

puts(ippErrorString(IPP_OK));
See Also

cupslastError()

166

ippErrorString()

CUPS Software Programmers Manual

ippFindAttribute()

Usage

ipp_attribute_t *

ippFindAttribute(ipp_t *ipp,
const char *name,
ipp_tag_t tag);

Arguments
Argument Description
ipp The IPP request or response
name The name of the attribute
ta The required value tag for the attribute or IPP_TAG_ZERO for any type of
9 value.
Returns

A pointer to the first occurrence of the requested attribute, or NULL if it was not found.

Description

ippFindAttribute() finds the first occurrence of the named attribute. The tag parameter restricts the
search to a specific value type — use IPP_TAG_ZERO to find any value with the name.

The value tags IPP_TAG_NAME and IPP_TAG_TEXT match the name/text values with or without the
language code.

Example

ipp_attribute_t *attr;

attr = ippFindAttribute(response, "printer-state—-message", IPP_TAG_TEXT);
while (attr '= NULL)

{

puts(attr—>values|[0].string.text);

attr = ippFindNextAttribute(response, "printer—state—-message", IPP_TAG_TEXT);
}

See Also

cupsDoFileRequest(), cupsDoReqguest(). ippDelete(), ippFindNextAttribute(),
ippNew()

ippFindAttribute() 167

CUPS Software Programmers Manual

ippFindNextAttribute()

Usage

ipp_attribute_t *
ippFindNextAttribute(ipp_t *ipp,
const char *name,

ipp_tag_t tag);

Arguments
Argument Description
ipp The IPP request or response
name The name of the attribute
ta The required value tag for the attribute or IPP_TAG_ZERO for any type of
9 value.
Returns

A pointer to the next occurrence of the requested attribute, or NULL if it was not found.

Description

ippFindNextAttribute() finds the next occurrence of the named attribute. The tag parameter
restricts the search to a specific value type — use IPP_TAG_ZERO to find any value with the name.

The value tags IPP_TAG_NAME and IPP_TAG_TEXT match the name/text values with or without the
language code.

Example

ipp_attribute_t *attr;

attr = ippFindAttribute(response, "printer-state—-message", IPP_TAG_TEXT);
while (attr '= NULL)

{

puts(attr—>values|[0].string.text);

attr = ippFindNextAttribute(response, "printer—state—-message", IPP_TAG_TEXT);
}

See Also

cupsDoFileRequest(), cupsDoReqguest(). ippDelete(), ippFindNextAttribute(),
ippNew()

168 ippFindNextAttribute()

CUPS Software Programmers Manual
ippLength()
Usage

int
ippLength(ipp_t *ipp);

Arguments

Argument Description
ipp The IPP request or response

Returns

The total encoded length of the IPP request or response in bytes.
Description

ippLength() returns the length of the IPP request or response in bytes.

Example

printf("The length of the response is %d bytes.\n", ippLength(response));
See Also

ippDelete(). ippNew()

ippLength() 169

CUPS Software Programmers Manual

ippNew()
Usage

ipp_t*
ippNew(void);

Returns

A pointer to a new IPP request or response.

Description

The ippNew() function creates a new IPP request or response.
Example

#include <cups/ipp.h>

ipp_t *ipp;

ipp = ippNew();

See Also

ippDelete()

170 ippNew()

CUPS Software Programmers Manual

ippPort()
Usage

int
ippPort(void);

Returns

The default TCP/IP port number for IPP requests.

Description

The ippPort() function returns the default IPP port number for requests.

Example

#include <cups/http.h>
#include <cups/ipp.h>

http_t *http;

http = httpConnect(cupsServer(), ippPort());
See Also

cupsServer(), ippSetPort()

ippPort() 171

CUPS Software Programmers Manual

ippRead()

Usage

ipp_state_t

ippRead(http_t *http,
ipp_t *ipp);

Arguments

Argument Description
http The HTTP connection
ipp The IPP request or response

Returns

The current read state.

Description

The ippRead() function reads IPP attributes from the specified HTTP connection. Programs should
continue calling ippRead() until IPP_ERROR or IPP_DATA is returned.

Example

#include <cups/http.h>
#include <cups/ipp.h>

http_t *http;

ipp_t *ipp;
ipp_state_t status;

ipp = ippNew();
while ((status = ippRead(http, ipp)) != IPP_ERROR)
if (status == IPP_DATA)
break;

if (status == IPP_DATA)

... read additional non-IPP data using httpRead() ...
}

See Also

ippWrite()

172 ippRead()

ippSetPort()

Usage

void
ippSetPort(int port);

Arguments

CUPS Software Programmers Manual

Argument

Description

port

The port number to use

Description

The ippSetPort() function sets the default IPP port number for requests.

Example

#include <cups/http.h>
#include <cups/ipp.h>

ippSetPort(8631);
See Also

ippPort()

ippSetPort()

173

CUPS Software Programmers Manual

ippTimeToDate()

Usage

ipp_uchar_t *
ippTimeToDate(time_t time);

Arguments

Argument

Description

time

The UNIX time value

Returns

A static pointer to an IPP date-time value.

Description

The ippTimeToDate() function converts a UNIX time to an IPP date-time value.

Example

#include <cups/ipp.h>
ipp_uchar_t *date;

date = ippTimeToDate(time(NULL));
See Also

ippDateToTime()

174

ippTimeToDate()

CUPS Software Programmers Manual
ippWrite()
Usage
ipp_state_t
ippWrite(http_t *http,

ipp_t *ipp);

Arguments

Argument Description
http The HTTP connection
ipp The IPP request or response

Returns

The current write state.

Description

The ippWrite() function writes IPP attributes to the specified HTTP connection. Programs should
continue calling ippWrite() until IPP_ERROR or IPP_DATA is returned.

Example

#include <cups/http.h>
#include <cups/ipp.h>

http_t *http;
ipp_t *ipp;
ipp_state_t status;

ipp = ippNew();
... add attributes ...

while ((status = ippWrite(http, ipp)) = IPP_ERROR)
if (status == IPP_DATA)
break;
if (status == IPP_DATA)

{
... read additional non-IPP data using httpWrite() ...

}

See Also

ippRead()

ippWrite() 175

CUPS Software Programmers Manual
ppdClose()

Usage

void
ppdClose(ppd_file_t *ppd);

Arguments

Argument Description

ppd The PPD file

Description
The ppdClose() function frees all memory associated with the PPD file.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;

ppdClose(ppd);
See Also

ppdOpen(), ppdOpenFd(). ppdOpenFile()

176

ppdClose()

CUPS Software Programmers Manual

ppdCollect()

Usage

int

ppdCollect(ppd_file_t *ppd,
ppd_section_t section,
ppd_choice_t ***choices);

Arguments
Argument Description
ppd The PPD file.
section The document section to collect.
choices The array of option choices that are marked.
Returns

The number of options collected.

Description
ppdCollect() collects all of the marked options in the specified section, sorts them by their order

dependency values, and returns an array that can be used to emit option commands in the proper order. It i
normally used by the ppdEmit*() functions.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;

int num_choices;

ppd_choice_t **choices;

num_choices = ppdCollect(ppd, PPD_ORDER_JCL, &choices);

See Also

ppdEmit(). ppdEmitFd(), ppdEmIitJCL()

ppdCollect() 177

ppdConflicts()

Usage

int

CUPS Software Programmers Manual

ppdConflicts(ppd_file_t *ppd);

Arguments

Returns

The number of option conflicts in the file.

Argument

Description

ppd

The PPD file

Description

The ppdConflicts() function returns the number of conflicts with the currently selected options.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;

printf("%d conflicts\n", ppdConflicts(ppd));

See Also

cupsMarkOptions(). ppdisMarked(). ppdMarkDefaults(). ppdMarkOption()

178

ppdConflicts()

ppdEmit()

Usage

int

ppdEmit(ppd_file_t *ppd,
FILE *file,
ppd_section_t section);

CUPS Software Programmers Manual

Arguments
Argument Description
ppd The PPD file
file The file to write to
section The option section to write
Returns

0 on success, —1 on error.

Description

The ppdEmit() function sends printer—specific option commands to the specified file.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;

ppdEmit(ppd, stdout, PPD_ORDER_PAGE);

See Also

ppdEmitFd()

ppdEmit()

179

ppdEmitFd()

Usage

int

ppdEmitFd(ppd_file_t *ppd,
int fd,
ppd_section_t section);

CUPS Software Programmers Manual

Arguments
Argument Description
ppd The PPD file
fd The file descriptor to write to
section The option section to write
Returns

0 on success, —1 on error.

Description

The ppdEmitFd() function sends printer—specific option commands to the specified file descriptor.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;

ppdEmitFd(ppd, 1, PPD_ORDER_PAGE);

See Also

ppdEmit()

180

ppdEmItFd()

CUPS Software Programmers Manual

ppdFindChoice()

Usage

ppd_choice_t *
ppdFindChoice(ppd_option_t *option,
const char *choice);

Arguments
Argument Description
option A pointer to the option
choice The name of the choice
Returns

A pointer to the choice data or NULL if the choice does not exist.

Description

The ppdFindChoice() function returns a pointer to the choice data for the specified option.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;
ppd_option_t *option;
ppd_choice_t *choice;

option = ppdFindOption(ppd, "PageSize");
choice = ppdFindChoice(option, "Letter");

See Also

ppdFindMarkedChoice(). ppdFindOption()

ppdFindChoice()

181

ppdFindMarkedChoice()

Usage

ppd_choice_t *

ppdFindMarkedChoice(ppd_file_t *ppd,

CUPS Software Programmers Manual

const char *keyword);

Arguments

Argument

Description

ppd

The PPD file

keyword

The name of the option

Returns

A pointer to the choice data or NULL if the choice does not exist or is not marked.

Description

The ppdFindMarkedChoice() function returns a pointer to the marked choice data for the specified

option.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;
ppd_choice_t *choice;

choice = ppdFindMarkedChoice(ppd, "PageSize");

See Also

ppdFindChoice(). ppdFindOption()

182

ppdFindMarkedChoice()

CUPS Software Programmers Manual

ppdFindOption()

Usage

ppd_option_t *

ppdFindOption(ppd_file_t *ppd,
const char *keyword);

Arguments

Argument

Description

ppd

The PPD file

keyword

The name of the option

Returns

A pointer to the option data or NULL if the option does not exist.

Description

The ppdFindOption() function returns a pointer to the option data for the specified option.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;
ppd_option_t *option;

option = ppdFindOption(ppd, "PageSize");

See Also

ppdFindChoice(). ppdFindMarkedChoice()

ppdFindOption()

183

CUPS Software Programmers Manual

ppdisMarked()

Usage

int

ppdisMarked(ppd_file_t *ppd,
const char *keyword,
const char *choice);

Arguments
Argument Description
ppd The PPD file
keyword The name of the option
choice The name of the option choice
Returns

1 if the choice is marked, O otherwise.
Description
The ppdisMarked() function returns whether or not the specified option choice is marked.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;

printf("Letter size %s selected.\n",
ppdisMarked(ppd, "PageSize", "Letter") ? "is" : "is not");

See Also

cupsMarkOptions(), ppdConflicts(). ppdisMarked(), ppdMarkDefaults().
ppdMarkOnption()

184 ppdisMarked()

CUPS Software Programmers Manual

ppdMarkDefaults()

Usage

void
ppdMarkDefaults(ppd_file_t *ppd);

Arguments

Argument Description

ppd The PPD file

Description

The ppdMarkDefaults() function marks all of the default choices in the PPD file.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;

ppdMarkDefaults(ppd);
See Also

cupsMarkOptions(), ppdConflicts(). ppdisMarked(). ppdMarkDefaults(),

ppdMarkOption()

ppdMarkDefaults()

185

CUPS Software Programmers Manual

ppdMarkOption()

Usage

int

ppdMarkOption(ppd_file_t *ppd,
const char *keyword,
const char *choice);

Arguments
Argument Description
ppd The PPD file
keyword The name of the option
choice The name of the choice
Returns

The number of conflicts in the PPD file.

Description

The ppdMarkOption() function marks the specified option choice.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;

ppdMarkOption(ppd, "PageSize", "Letter");

See Also

cupsMarkOptions()., ppdConflicts(), ppdisMarked(), ppdMarkDefaults(),

ppdMarkOption()

186

ppdMarkOption()

CUPS Software Programmers Manual
ppdOpen()

Usage

ppd_file_t*
ppdOpen(FILE *file);

Arguments

Argument Description

file The file to read from

Returns

A pointer to a PPD file structure or NULL if the PPD file could not be read.

Description

The ppdOpen() function reads a PPD file from the specified file into memory.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;
FILE *file;

file = fopen("filename.ppd", "rb");
ppd = ppdOpen(file);
fclose(file);

See Also

ppdClose(). ppdOpenFd(). ppdOpenFile()

ppdOpen()

187

CUPS Software Programmers Manual

ppdOpenFd()

Usage

ppd_file_t*
ppdOpenFd(int fd);

Arguments

Argument

Description

fd

The file descriptor to read from

Returns

A pointer to a PPD file structure or NULL if the PPD file could not be read.

Description

The ppdOpenFd() function reads a PPD file from the specified file descriptor into memory.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;
int fd;

fd = open(“filename.ppd", O_RDONLY);
ppd = ppdOpenkd(fd);
close(fd);

See Also

ppdClose(). ppdOpen(). ppdOpenFile()

188

ppdOpenkFd()

CUPS Software Programmers Manual

ppdOpenkFile()

Usage

ppd_file_t*
ppdOpenFile(const char *filename);

Arguments

Argument

Description

filename

The name of the file to read from

Returns

A pointer to a PPD file structure or NULL if the PPD file could not be read.

Description

The ppdOpenFile() function reads a PPD file from the named file into memory.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;

ppd = ppdOpenFile(“filename.ppd");
See Also

ppdClose(), ppdOpen(). ppdOpenkFd()

ppdOpenFile()

189

CUPS Software Programmers Manual

ppdPagelLength()

Usage

float
ppdPagelength(ppd_file_t *ppd,
const char *name);

Arguments
Argument Description
ppd The PPD file
name The name of the page size
Returns

The length of the specified page size in points or O if the page size does not exist.

Description

The ppdPageLength() function returns the page length of the specified page size.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;

printf("Length = %.0f\n", ppdPageLength(ppd, "Letter"));
See Also

ppdPagelength(), ppdPageSize(). ppdPageWidth()

190

ppdPagelLength()

CUPS Software Programmers Manual

ppdPageSize()

Usage

ppd_size t*
ppdPageSize(ppd._file_t *ppd,
const char *name);

Arguments
Argument Description
ppd The PPD file
name The name of the page size
Returns

A pointer to the page size record of the specified page size in points or NULL if the page size does not exist

Description

The ppdPageSize() function returns the page size record for the specified page size.

Example

#include <cups/ppd.h>

ppd_file_t *ppd;
ppd_size_t *size;

size = ppdPageSize(ppd, "Letter");

if (size '= NULL)

{
printf(" Width = %.0f\n", size—>width);
printf("Length = %.0f\n", size—>length);
printf(" Left = %.0f\n", size—>left);
printf(" Right = %.0f\n", size—>right);
printf("Bottom = %.0f\n", size—>bottom);
printf(" Top = %.0A\n", size—>top);

}

See Also

ppdPagel ength(), ppdPageWidth()

ppdPageSize() 191

CUPS Software Programmers Manual

ppdPageWidth()

Usage

float
ppdPageWidth(ppd_file_t *ppd,
const char *name);

Arguments
Argument Description
ppd The PPD file
name The name of the page size
Returns

The width of the specified page size in points or O if the page size does not exist.

Description
The ppdPageWidth() function returns the page width of the specified page size.

Example

#include <cups/ppd.h>
ppd_file_t *ppd;

printf("Width = %.0f\n", ppdPageWidth(ppd, "Letter"));
See Also

ppdPagel ength(), ppdPageSize()

192

ppdPageWidth()

	Table of Contents
	Preface
	System Overview
	Document Overview
	Notation Conventions
	Abbreviations
	Other References

	1 - Printing System Overview
	The Printing Problem
	The Technology
	Jobs
	Classes
	Filters
	Backends
	Printer Drivers
	Networking

	2 - The CUPS API
	The CUPS API Library
	Detecting the CUPS API Library in GNU Autoconf

	Printing Services
	Include Files
	Printing a File
	Printing Multiple Files
	Cancelling Jobs
	Getting the Available Printers and Classes
	Printing with Options
	Setting Printer Options
	Getting Errors
	Passwords and Authentication

	PPD Services
	Include Files
	Getting a PPD File for a Printer
	Loading a PPD File
	Freeing PPD File Information
	The PPD File Structure
	Marking Options
	Checking for Conflicts

	3 - Writing Filters
	Overview
	Security Considerations
	Users and Groups
	Temporary Files
	Sending Messages to the User
	Page Accounting
	Command-Line Arguments
	Copy Generation
	Environment Variables

	Dissecting the HP-GL/2 Filter
	Initializing the Filter

	PostScript Output

	4 - Writing Printer Drivers
	Overview
	CUPS Raster Data
	Page Accounting
	Color Management
	Device and Bitmap Variables

	Dissecting the HP-PCL Driver
	PPD Files
	Reading Raster Data

	5 - Writing Backends
	Overview
	Security Considerations
	Command-Line Arguments
	Copy Generation
	Page Accounting
	Exclusive Access
	Retries

	Dissecting the Serial Port Backend
	Supporting Device Discovery
	Opening the Serial Port
	Writing Data to the Port
	Finishing Up

	A - Software License Agreement
	Common UNIX Printing System License Agreement
	Introduction
	License Exceptions
	Trademarks
	Binary Distribution Rights
	Support

	GNU GENERAL PUBLIC LICENSE
	GNU LIBRARY GENERAL PUBLIC LICENSE

	B - Constants
	CUPS Constants
	Version Number
	Printer Capabilities
	Encodings

	HTTP Constants
	Limits
	Status Codes
	Fields

	IPP Constants
	Limits
	Tags
	Resolution Units
	Finishings
	Orientations
	Qualities
	Job States
	Printer States
	Operations
	Status Codes

	PPD Constants
	PPD Format Version
	PPD User-Interface Types
	PPD Sections
	PPD Colorspaces

	Raster Constants
	Raster Sync Words
	Raster Stream Modes
	Raster Boolean Constants
	Raster Jog Values
	Raster Orientation Values
	Raster CutMedia Values
	Raster AdvanceMedia Values
	Raster LeadingEdge Values
	Raster Color Order Values
	Raster Colorspace Values

	C - Structures
	CUPS Structures
	CUPS Destinations
	CUPS Jobs
	CUPS Messages
	CUPS Options

	Networking Structures
	HTTP State
	IPP State

	Raster Structures
	Raster Page Header

	D - Functions
	cupsAddDest()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsAddOption()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsCancelJob()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsDoFileRequest()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsDoRequest()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsEncodeOptions()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsEncryption()
	Usage
	Returns
	Description
	Example
	See Also

	cupsFreeDests()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsFreeJobs()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsFreeOptions()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsGetClasses()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsGetDefault()
	Usage
	Returns
	Description
	Example
	See Also

	cupsGetDest()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsGetDests()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsGetJobs()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsGetOption()
	Usage
	Arguments
	Returns
	Description
	See Also

	cupsGetPassword()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsGetPPD()
	Usage
	Arguments
	Returns
	Description
	Example

	cupsGetPrinters()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsLangDefault()
	Usage
	Returns
	Description
	Example
	See Also

	cupsLangEncoding()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsLangFlush()
	Usage
	Description
	Example
	See Also

	cupsLangFree()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsLangGet()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsLangString()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsLastError()
	Usage
	Returns
	Description
	Example
	See Also

	cupsMarkOptions()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsParseOptions()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsPrintFile()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsPrintFiles()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsRasterClose()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsRasterOpen()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsRasterReadHeader()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsRasterReadPixels()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsRasterWriteHeader()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsRasterWritePixels()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsServer()
	Usage
	Returns
	Description
	Example
	See Also

	cupsSetDests()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsSetEncryption()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsSetPasswordCB()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsSetServer()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsSetUser()
	Usage
	Arguments
	Description
	Example
	See Also

	cupsTempFd()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsTempFile()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	cupsUser()
	Usage
	Returns
	Description
	Example
	See Also

	httpBlocking()
	Usage
	Arguments
	Description
	Example
	See Also

	httpCheck()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpClearFields()
	Usage
	Arguments
	Description
	Example
	See Also

	httpClose()
	Usage
	Arguments
	Description
	Example
	See Also

	httpConnect()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpConnectEncrypt()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpDecode64()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpDelete()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpEncode64()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpEncryption()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpError()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpFlush()
	Usage
	Arguments
	Description
	Example
	See Also

	httpGet()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpGets()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpGetDateString()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpGetDateTime()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpGetField()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpGetHostByName()
	Usage
	Arguments
	Returns
	Description
	Example

	httpGetLength()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpGetSubField()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpHead()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpInitialize()
	Usage
	Description
	Example
	See Also

	httpMD5()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpMD5Final()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpMD5String()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpOptions()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpPost()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpPrintf()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpPut()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpRead()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpReconnect()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpSeparate()
	Usage
	Arguments
	Description
	Example
	See Also

	httpSetField()
	Usage
	Arguments
	Description
	Example
	See Also

	httpStatus()
	Usage
	Arguments
	Returns
	Description
	Example

	httpTrace()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpUpdate()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	httpWrite()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddBoolean()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddBooleans()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddDate()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddInteger()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddIntegers()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddRange()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddRanges()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddResolution()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddResolutions()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddSeparator()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddString()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippAddStrings()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippDateToTime()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippDelete()
	Usage
	Arguments
	Description
	Example
	See Also

	ippErrorString()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippFindAttribute()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippFindNextAttribute()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippLength()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippNew()
	Usage
	Returns
	Description
	Example
	See Also

	ippPort()
	Usage
	Returns
	Description
	Example
	See Also

	ippRead()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippSetPort()
	Usage
	Arguments
	Description
	Example
	See Also

	ippTimeToDate()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ippWrite()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdClose()
	Usage
	Arguments
	Description
	Example
	See Also

	ppdCollect()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdConflicts()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdEmit()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdEmitFd()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdFindChoice()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdFindMarkedChoice()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdFindOption()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdIsMarked()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdMarkDefaults()
	Usage
	Arguments
	Description
	Example
	See Also

	ppdMarkOption()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdOpen()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdOpenFd()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdOpenFile()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdPageLength()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdPageSize()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

	ppdPageWidth()
	Usage
	Arguments
	Returns
	Description
	Example
	See Also

