X-Git-Url: http://git.ipfire.org/?a=blobdiff_plain;f=gdb%2Fs390-tdep.c;h=a5b0de18b8eb55f6cc0048df41742173aadab010;hb=a9762ec78a53fbe9209fe1654db42df0cd328d50;hp=c97f8c5f7e03ace99a39b9592b7c60a7c5d275c2;hpb=9ab9195f183692346cff01bbe15e77774ef1d608;p=thirdparty%2Fbinutils-gdb.git diff --git a/gdb/s390-tdep.c b/gdb/s390-tdep.c index c97f8c5f7e0..a5b0de18b8e 100644 --- a/gdb/s390-tdep.c +++ b/gdb/s390-tdep.c @@ -1,6 +1,7 @@ /* Target-dependent code for GDB, the GNU debugger. - Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc. + Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007 + Free Software Foundation, Inc. Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) for IBM Deutschland Entwicklung GmbH, IBM Corporation. @@ -9,7 +10,7 @@ This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -18,12 +19,9 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA - 02111-1307, USA. */ + along with this program. If not, see . */ -#define S390_TDEP /* for special macros in tm-s390.h */ -#include +#include "defs.h" #include "arch-utils.h" #include "frame.h" #include "inferior.h" @@ -32,545 +30,411 @@ #include "gdbcore.h" #include "gdbcmd.h" #include "objfiles.h" -#include "tm.h" -#include "../bfd/bfd.h" #include "floatformat.h" #include "regcache.h" +#include "trad-frame.h" +#include "frame-base.h" +#include "frame-unwind.h" +#include "dwarf2-frame.h" +#include "reggroups.h" +#include "regset.h" #include "value.h" #include "gdb_assert.h" #include "dis-asm.h" +#include "solib-svr4.h" +#include "prologue-value.h" +#include "s390-tdep.h" -/* Number of bytes of storage in the actual machine representation - for register N. */ -static int -s390_register_raw_size (int reg_nr) -{ - if (S390_FP0_REGNUM <= reg_nr - && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS) - return S390_FPR_SIZE; - else - return 4; -} +/* The tdep structure. */ -static int -s390x_register_raw_size (int reg_nr) +struct gdbarch_tdep { - return (reg_nr == S390_FPC_REGNUM) - || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8; -} + /* ABI version. */ + enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi; -static int -s390_cannot_fetch_register (int regno) -{ - return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) || - (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR); -} + /* Core file register sets. */ + const struct regset *gregset; + int sizeof_gregset; -static int -s390_register_byte (int reg_nr) -{ - if (reg_nr <= S390_GP_LAST_REGNUM) - return reg_nr * S390_GPR_SIZE; - if (reg_nr <= S390_LAST_ACR) - return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE); - if (reg_nr <= S390_LAST_CR) - return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE); - if (reg_nr == S390_FPC_REGNUM) - return S390_FPC_OFFSET; - else - return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE); -} - -#define S390_MAX_INSTR_SIZE (6) -#define S390_SYSCALL_OPCODE (0x0a) -#define S390_SYSCALL_SIZE (2) -#define S390_SIGCONTEXT_SREGS_OFFSET (8) -#define S390X_SIGCONTEXT_SREGS_OFFSET (8) -#define S390_SIGREGS_FP0_OFFSET (144) -#define S390X_SIGREGS_FP0_OFFSET (216) -#define S390_UC_MCONTEXT_OFFSET (256) -#define S390X_UC_MCONTEXT_OFFSET (344) -#define S390_STACK_FRAME_OVERHEAD 16*DEPRECATED_REGISTER_SIZE+32 -#define S390_STACK_PARAMETER_ALIGNMENT DEPRECATED_REGISTER_SIZE -#define S390_NUM_FP_PARAMETER_REGISTERS (GDB_TARGET_IS_ESAME ? 4:2) -#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96) -#define s390_NR_sigreturn 119 -#define s390_NR_rt_sigreturn 173 - - - -struct frame_extra_info -{ - int initialised; - int good_prologue; - CORE_ADDR function_start; - CORE_ADDR skip_prologue_function_start; - CORE_ADDR saved_pc_valid; - CORE_ADDR saved_pc; - CORE_ADDR sig_fixed_saved_pc_valid; - CORE_ADDR sig_fixed_saved_pc; - CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */ - CORE_ADDR stack_bought_valid; - CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */ - CORE_ADDR sigcontext; + const struct regset *fpregset; + int sizeof_fpregset; }; -static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi); - -static int -s390_readinstruction (bfd_byte instr[], CORE_ADDR at) +/* Return the name of register REGNUM. */ +static const char * +s390_register_name (int regnum) { - int instrlen; - - static int s390_instrlen[] = { - 2, - 4, - 4, - 6 - }; - if (target_read_memory (at, &instr[0], 2)) - return -1; - instrlen = s390_instrlen[instr[0] >> 6]; - if (instrlen > 2) + static const char *register_names[S390_NUM_TOTAL_REGS] = { - if (target_read_memory (at + 2, &instr[2], instrlen - 2)) - return -1; - } - return instrlen; -} - -static void -s390_memset_extra_info (struct frame_extra_info *fextra_info) + /* Program Status Word. */ + "pswm", "pswa", + /* General Purpose Registers. */ + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + /* Access Registers. */ + "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7", + "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15", + /* Floating Point Control Word. */ + "fpc", + /* Floating Point Registers. */ + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + /* Pseudo registers. */ + "pc", "cc", + }; + + gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS); + return register_names[regnum]; +} + +/* Return the GDB type object for the "standard" data type of data in + register REGNUM. */ +static struct type * +s390_register_type (struct gdbarch *gdbarch, int regnum) { - memset (fextra_info, 0, sizeof (struct frame_extra_info)); -} - - - -static const char * -s390_register_name (int reg_nr) -{ - static char *register_names[] = { - "pswm", "pswa", - "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", - "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7", - "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15", - "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", - "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15", - "fpc", - "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", - "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15" - }; + if (regnum == S390_PSWM_REGNUM || regnum == S390_PSWA_REGNUM) + return builtin_type_long; + if (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM) + return builtin_type_long; + if (regnum >= S390_A0_REGNUM && regnum <= S390_A15_REGNUM) + return builtin_type_int; + if (regnum == S390_FPC_REGNUM) + return builtin_type_int; + if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM) + return builtin_type_double; + if (regnum == S390_PC_REGNUM) + return builtin_type_void_func_ptr; + if (regnum == S390_CC_REGNUM) + return builtin_type_int; - if (reg_nr <= S390_LAST_REGNUM) - return register_names[reg_nr]; - else - return NULL; + internal_error (__FILE__, __LINE__, _("invalid regnum")); } +/* DWARF Register Mapping. */ - - -static int -s390_stab_reg_to_regnum (int regno) +static int s390_dwarf_regmap[] = { - return regno >= 64 ? S390_PSWM_REGNUM - 64 : - regno >= 48 ? S390_FIRST_ACR - 48 : - regno >= 32 ? S390_FIRST_CR - 32 : - regno <= 15 ? (regno + 2) : - S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) + - (((regno - 16) & 4) >> 2); -} + /* General Purpose Registers. */ + S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, + S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, + S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, + S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, + /* Floating Point Registers. */ + S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, + S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, + S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, + S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, -/* Prologue analysis. */ - -/* When we analyze a prologue, we're really doing 'abstract - interpretation' or 'pseudo-evaluation': running the function's code - in simulation, but using conservative approximations of the values - it would have when it actually runs. For example, if our function - starts with the instruction: - - ahi r1, 42 # add halfword immediate 42 to r1 - - we don't know exactly what value will be in r1 after executing this - instruction, but we do know it'll be 42 greater than its original - value. - - If we then see an instruction like: - - ahi r1, 22 # add halfword immediate 22 to r1 - - we still don't know what r1's value is, but again, we can say it is - now 64 greater than its original value. - - If the next instruction were: - - lr r2, r1 # set r2 to r1's value - - then we can say that r2's value is now the original value of r1 - plus 64. And so on. - - Of course, this can only go so far before it gets unreasonable. If - we wanted to be able to say anything about the value of r1 after - the instruction: + /* Control Registers (not mapped). */ + -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, - xr r1, r3 # exclusive-or r1 and r3, place result in r1 + /* Access Registers. */ + S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, + S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, + S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, + S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, - then things would get pretty complex. But remember, we're just - doing a conservative approximation; if exclusive-or instructions - aren't relevant to prologues, we can just say r1's value is now - 'unknown'. We can ignore things that are too complex, if that loss - of information is acceptable for our application. - - Once you've reached an instruction that you don't know how to - simulate, you stop. Now you examine the state of the registers and - stack slots you've kept track of. For example: - - - To see how large your stack frame is, just check the value of sp; - if it's the original value of sp minus a constant, then that - constant is the stack frame's size. If the sp's value has been - marked as 'unknown', then that means the prologue has done - something too complex for us to track, and we don't know the - frame size. - - - To see whether we've saved the SP in the current frame's back - chain slot, we just check whether the current value of the back - chain stack slot is the original value of the sp. - - Sure, this takes some work. But prologue analyzers aren't - quick-and-simple pattern patching to recognize a few fixed prologue - forms any more; they're big, hairy functions. Along with inferior - function calls, prologue analysis accounts for a substantial - portion of the time needed to stabilize a GDB port. So I think - it's worthwhile to look for an approach that will be easier to - understand and maintain. In the approach used here: - - - It's easier to see that the analyzer is correct: you just see - whether the analyzer properly (albiet conservatively) simulates - the effect of each instruction. - - - It's easier to extend the analyzer: you can add support for new - instructions, and know that you haven't broken anything that - wasn't already broken before. - - - It's orthogonal: to gather new information, you don't need to - complicate the code for each instruction. As long as your domain - of conservative values is already detailed enough to tell you - what you need, then all the existing instruction simulations are - already gathering the right data for you. - - A 'struct prologue_value' is a conservative approximation of the - real value the register or stack slot will have. */ + /* Program Status Word. */ + S390_PSWM_REGNUM, + S390_PSWA_REGNUM +}; -struct prologue_value { +/* Convert DWARF register number REG to the appropriate register + number used by GDB. */ +static int +s390_dwarf_reg_to_regnum (int reg) +{ + int regnum = -1; - /* What sort of value is this? This determines the interpretation - of subsequent fields. */ - enum { + if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) + regnum = s390_dwarf_regmap[reg]; - /* We don't know anything about the value. This is also used for - values we could have kept track of, when doing so would have - been too complex and we don't want to bother. The bottom of - our lattice. */ - pv_unknown, + if (regnum == -1) + warning (_("Unmapped DWARF Register #%d encountered."), reg); - /* A known constant. K is its value. */ - pv_constant, + return regnum; +} - /* The value that register REG originally had *UPON ENTRY TO THE - FUNCTION*, plus K. If K is zero, this means, obviously, just - the value REG had upon entry to the function. REG is a GDB - register number. Before we start interpreting, we initialize - every register R to { pv_register, R, 0 }. */ - pv_register, +/* Pseudo registers - PC and condition code. */ - } kind; +static void +s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, gdb_byte *buf) +{ + ULONGEST val; - /* The meanings of the following fields depend on 'kind'; see the - comments for the specific 'kind' values. */ - int reg; - CORE_ADDR k; -}; + switch (regnum) + { + case S390_PC_REGNUM: + regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val); + store_unsigned_integer (buf, 4, val & 0x7fffffff); + break; + case S390_CC_REGNUM: + regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); + store_unsigned_integer (buf, 4, (val >> 12) & 3); + break; -/* Set V to be unknown. */ -static void -pv_set_to_unknown (struct prologue_value *v) -{ - v->kind = pv_unknown; + default: + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } } - -/* Set V to the constant K. */ static void -pv_set_to_constant (struct prologue_value *v, CORE_ADDR k) +s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, const gdb_byte *buf) { - v->kind = pv_constant; - v->k = k; -} + ULONGEST val, psw; + switch (regnum) + { + case S390_PC_REGNUM: + val = extract_unsigned_integer (buf, 4); + regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); + psw = (psw & 0x80000000) | (val & 0x7fffffff); + regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw); + break; -/* Set V to the original value of register REG, plus K. */ -static void -pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k) -{ - v->kind = pv_register; - v->reg = reg; - v->k = k; -} + case S390_CC_REGNUM: + val = extract_unsigned_integer (buf, 4); + regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); + psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); + regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw); + break; + default: + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } +} -/* If one of *A and *B is a constant, and the other isn't, swap the - pointers as necessary to ensure that *B points to the constant. - This can reduce the number of cases we need to analyze in the - functions below. */ static void -pv_constant_last (struct prologue_value **a, - struct prologue_value **b) +s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, gdb_byte *buf) { - if ((*a)->kind == pv_constant - && (*b)->kind != pv_constant) + ULONGEST val; + + switch (regnum) { - struct prologue_value *temp = *a; - *a = *b; - *b = temp; + case S390_PC_REGNUM: + regcache_raw_read (regcache, S390_PSWA_REGNUM, buf); + break; + + case S390_CC_REGNUM: + regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); + store_unsigned_integer (buf, 4, (val >> 44) & 3); + break; + + default: + internal_error (__FILE__, __LINE__, _("invalid regnum")); } } - -/* Set SUM to the sum of A and B. SUM, A, and B may point to the same - 'struct prologue_value' object. */ static void -pv_add (struct prologue_value *sum, - struct prologue_value *a, - struct prologue_value *b) +s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, const gdb_byte *buf) { - pv_constant_last (&a, &b); + ULONGEST val, psw; - /* We can handle adding constants to registers, and other constants. */ - if (b->kind == pv_constant - && (a->kind == pv_register - || a->kind == pv_constant)) + switch (regnum) { - sum->kind = a->kind; - sum->reg = a->reg; /* not meaningful if a is pv_constant, but - harmless */ - sum->k = a->k + b->k; - } + case S390_PC_REGNUM: + regcache_raw_write (regcache, S390_PSWA_REGNUM, buf); + break; - /* Anything else we don't know how to add. We don't have a - representation for, say, the sum of two registers, or a multiple - of a register's value (adding a register to itself). */ - else - sum->kind = pv_unknown; + case S390_CC_REGNUM: + val = extract_unsigned_integer (buf, 4); + regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); + psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); + regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw); + break; + + default: + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } } +/* 'float' values are stored in the upper half of floating-point + registers, even though we are otherwise a big-endian platform. */ -/* Add the constant K to V. */ -static void -pv_add_constant (struct prologue_value *v, CORE_ADDR k) +static struct value * +s390_value_from_register (struct type *type, int regnum, + struct frame_info *frame) { - struct prologue_value pv_k; + struct value *value = default_value_from_register (type, regnum, frame); + int len = TYPE_LENGTH (type); + + if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8) + set_value_offset (value, 0); - /* Rather than thinking of all the cases we can and can't handle, - we'll just let pv_add take care of that for us. */ - pv_set_to_constant (&pv_k, k); - pv_add (v, v, &pv_k); + return value; } +/* Register groups. */ -/* Subtract B from A, and put the result in DIFF. +static int +s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum, + struct reggroup *group) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + /* Registers displayed via 'info regs'. */ + if (group == general_reggroup) + return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM) + || regnum == S390_PC_REGNUM + || regnum == S390_CC_REGNUM; + + /* Registers displayed via 'info float'. */ + if (group == float_reggroup) + return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM) + || regnum == S390_FPC_REGNUM; + + /* Registers that need to be saved/restored in order to + push or pop frames. */ + if (group == save_reggroup || group == restore_reggroup) + return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM; + + return default_register_reggroup_p (gdbarch, regnum, group); +} + + +/* Core file register sets. */ + +int s390_regmap_gregset[S390_NUM_REGS] = +{ + /* Program Status Word. */ + 0x00, 0x04, + /* General Purpose Registers. */ + 0x08, 0x0c, 0x10, 0x14, + 0x18, 0x1c, 0x20, 0x24, + 0x28, 0x2c, 0x30, 0x34, + 0x38, 0x3c, 0x40, 0x44, + /* Access Registers. */ + 0x48, 0x4c, 0x50, 0x54, + 0x58, 0x5c, 0x60, 0x64, + 0x68, 0x6c, 0x70, 0x74, + 0x78, 0x7c, 0x80, 0x84, + /* Floating Point Control Word. */ + -1, + /* Floating Point Registers. */ + -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, +}; - This isn't quite the same as negating B and adding it to A, since - we don't have a representation for the negation of anything but a - constant. For example, we can't negate { pv_register, R1, 10 }, - but we do know that { pv_register, R1, 10 } minus { pv_register, - R1, 5 } is { pv_constant, , 5 }. +int s390x_regmap_gregset[S390_NUM_REGS] = +{ + 0x00, 0x08, + /* General Purpose Registers. */ + 0x10, 0x18, 0x20, 0x28, + 0x30, 0x38, 0x40, 0x48, + 0x50, 0x58, 0x60, 0x68, + 0x70, 0x78, 0x80, 0x88, + /* Access Registers. */ + 0x90, 0x94, 0x98, 0x9c, + 0xa0, 0xa4, 0xa8, 0xac, + 0xb0, 0xb4, 0xb8, 0xbc, + 0xc0, 0xc4, 0xc8, 0xcc, + /* Floating Point Control Word. */ + -1, + /* Floating Point Registers. */ + -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, +}; - This means, for example, that we can subtract two stack addresses; - they're both relative to the original SP. Since the frame pointer - is set based on the SP, its value will be the original SP plus some - constant (probably zero), so we can use its value just fine. */ +int s390_regmap_fpregset[S390_NUM_REGS] = +{ + /* Program Status Word. */ + -1, -1, + /* General Purpose Registers. */ + -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, + /* Access Registers. */ + -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, + /* Floating Point Control Word. */ + 0x00, + /* Floating Point Registers. */ + 0x08, 0x10, 0x18, 0x20, + 0x28, 0x30, 0x38, 0x40, + 0x48, 0x50, 0x58, 0x60, + 0x68, 0x70, 0x78, 0x80, +}; + +/* Supply register REGNUM from the register set REGSET to register cache + REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ static void -pv_subtract (struct prologue_value *diff, - struct prologue_value *a, - struct prologue_value *b) +s390_supply_regset (const struct regset *regset, struct regcache *regcache, + int regnum, const void *regs, size_t len) { - pv_constant_last (&a, &b); - - /* We can subtract a constant from another constant, or from a - register. */ - if (b->kind == pv_constant - && (a->kind == pv_register - || a->kind == pv_constant)) - { - diff->kind = a->kind; - diff->reg = a->reg; /* not always meaningful, but harmless */ - diff->k = a->k - b->k; - } + const int *offset = regset->descr; + int i; - /* We can subtract a register from itself, yielding a constant. */ - else if (a->kind == pv_register - && b->kind == pv_register - && a->reg == b->reg) + for (i = 0; i < S390_NUM_REGS; i++) { - diff->kind = pv_constant; - diff->k = a->k - b->k; + if ((regnum == i || regnum == -1) && offset[i] != -1) + regcache_raw_supply (regcache, i, (const char *)regs + offset[i]); } - - /* We don't know how to subtract anything else. */ - else - diff->kind = pv_unknown; } - -/* Set AND to the logical and of A and B. */ +/* Collect register REGNUM from the register cache REGCACHE and store + it in the buffer specified by REGS and LEN as described by the + general-purpose register set REGSET. If REGNUM is -1, do this for + all registers in REGSET. */ static void -pv_logical_and (struct prologue_value *and, - struct prologue_value *a, - struct prologue_value *b) +s390_collect_regset (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *regs, size_t len) { - pv_constant_last (&a, &b); - - /* We can 'and' two constants. */ - if (a->kind == pv_constant - && b->kind == pv_constant) - { - and->kind = pv_constant; - and->k = a->k & b->k; - } + const int *offset = regset->descr; + int i; - /* We can 'and' anything with the constant zero. */ - else if (b->kind == pv_constant - && b->k == 0) + for (i = 0; i < S390_NUM_REGS; i++) { - and->kind = pv_constant; - and->k = 0; + if ((regnum == i || regnum == -1) && offset[i] != -1) + regcache_raw_collect (regcache, i, (char *)regs + offset[i]); } - - /* We can 'and' anything with ~0. */ - else if (b->kind == pv_constant - && b->k == ~ (CORE_ADDR) 0) - *and = *a; - - /* We can 'and' a register with itself. */ - else if (a->kind == pv_register - && b->kind == pv_register - && a->reg == b->reg - && a->k == b->k) - *and = *a; - - /* Otherwise, we don't know. */ - else - pv_set_to_unknown (and); } +static const struct regset s390_gregset = { + s390_regmap_gregset, + s390_supply_regset, + s390_collect_regset +}; -/* Return non-zero iff A and B are identical expressions. - - This is not the same as asking if the two values are equal; the - result of such a comparison would have to be a pv_boolean, and - asking whether two 'unknown' values were equal would give you - pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and { - pv_register, R2, 0}. Instead, this is asking whether the two - representations are the same. */ -static int -pv_is_identical (struct prologue_value *a, - struct prologue_value *b) -{ - if (a->kind != b->kind) - return 0; - - switch (a->kind) - { - case pv_unknown: - return 1; - case pv_constant: - return (a->k == b->k); - case pv_register: - return (a->reg == b->reg && a->k == b->k); - default: - gdb_assert (0); - } -} +static const struct regset s390x_gregset = { + s390x_regmap_gregset, + s390_supply_regset, + s390_collect_regset +}; +static const struct regset s390_fpregset = { + s390_regmap_fpregset, + s390_supply_regset, + s390_collect_regset +}; -/* Return non-zero if A is the original value of register number R - plus K, zero otherwise. */ -static int -pv_is_register (struct prologue_value *a, int r, CORE_ADDR k) +/* Return the appropriate register set for the core section identified + by SECT_NAME and SECT_SIZE. */ +const struct regset * +s390_regset_from_core_section (struct gdbarch *gdbarch, + const char *sect_name, size_t sect_size) { - return (a->kind == pv_register - && a->reg == r - && a->k == k); -} + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset) + return tdep->gregset; -/* A prologue-value-esque boolean type, including "maybe", when we - can't figure out whether something is true or not. */ -enum pv_boolean { - pv_maybe, - pv_definite_yes, - pv_definite_no, -}; + if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) + return tdep->fpregset; - -/* Decide whether a reference to SIZE bytes at ADDR refers exactly to - an element of an array. The array starts at ARRAY_ADDR, and has - ARRAY_LEN values of ELT_SIZE bytes each. If ADDR definitely does - refer to an array element, set *I to the index of the referenced - element in the array, and return pv_definite_yes. If it definitely - doesn't, return pv_definite_no. If we can't tell, return pv_maybe. - - If the reference does touch the array, but doesn't fall exactly on - an element boundary, or doesn't refer to the whole element, return - pv_maybe. */ -static enum pv_boolean -pv_is_array_ref (struct prologue_value *addr, - CORE_ADDR size, - struct prologue_value *array_addr, - CORE_ADDR array_len, - CORE_ADDR elt_size, - int *i) -{ - struct prologue_value offset; - - /* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned, - if addr is *before* the start of the array, then this isn't going - to be negative... */ - pv_subtract (&offset, addr, array_addr); - - if (offset.kind == pv_constant) - { - /* This is a rather odd test. We want to know if the SIZE bytes - at ADDR don't overlap the array at all, so you'd expect it to - be an || expression: "if we're completely before || we're - completely after". But with unsigned arithmetic, things are - different: since it's a number circle, not a number line, the - right values for offset.k are actually one contiguous range. */ - if (offset.k <= -size - && offset.k >= array_len * elt_size) - return pv_definite_no; - else if (offset.k % elt_size != 0 - || size != elt_size) - return pv_maybe; - else - { - *i = offset.k / elt_size; - return pv_definite_yes; - } - } - else - return pv_maybe; + return NULL; } - /* Decoding S/390 instructions. */ /* Named opcode values for the S/390 instructions we recognize. Some @@ -578,30 +442,79 @@ pv_is_array_ref (struct prologue_value *addr, op1_* and op2_* enums. */ enum { - op1_aghi = 0xa7, op2_aghi = 0xb, - op1_ahi = 0xa7, op2_ahi = 0xa, - op_ar = 0x1a, - op_basr = 0x0d, - op1_bras = 0xa7, op2_bras = 0x5, - op_l = 0x58, - op_la = 0x41, - op1_larl = 0xc0, op2_larl = 0x0, - op_lgr = 0xb904, - op1_lghi = 0xa7, op2_lghi = 0x9, - op1_lhi = 0xa7, op2_lhi = 0x8, + op1_lhi = 0xa7, op2_lhi = 0x08, + op1_lghi = 0xa7, op2_lghi = 0x09, + op1_lgfi = 0xc0, op2_lgfi = 0x01, op_lr = 0x18, - op_nr = 0x14, - op_ngr = 0xb980, - op_s = 0x5b, + op_lgr = 0xb904, + op_l = 0x58, + op1_ly = 0xe3, op2_ly = 0x58, + op1_lg = 0xe3, op2_lg = 0x04, + op_lm = 0x98, + op1_lmy = 0xeb, op2_lmy = 0x98, + op1_lmg = 0xeb, op2_lmg = 0x04, op_st = 0x50, - op_std = 0x60, + op1_sty = 0xe3, op2_sty = 0x50, op1_stg = 0xe3, op2_stg = 0x24, + op_std = 0x60, op_stm = 0x90, + op1_stmy = 0xeb, op2_stmy = 0x90, op1_stmg = 0xeb, op2_stmg = 0x24, - op_svc = 0x0a, + op1_aghi = 0xa7, op2_aghi = 0x0b, + op1_ahi = 0xa7, op2_ahi = 0x0a, + op1_agfi = 0xc2, op2_agfi = 0x08, + op1_afi = 0xc2, op2_afi = 0x09, + op1_algfi= 0xc2, op2_algfi= 0x0a, + op1_alfi = 0xc2, op2_alfi = 0x0b, + op_ar = 0x1a, + op_agr = 0xb908, + op_a = 0x5a, + op1_ay = 0xe3, op2_ay = 0x5a, + op1_ag = 0xe3, op2_ag = 0x08, + op1_slgfi= 0xc2, op2_slgfi= 0x04, + op1_slfi = 0xc2, op2_slfi = 0x05, + op_sr = 0x1b, + op_sgr = 0xb909, + op_s = 0x5b, + op1_sy = 0xe3, op2_sy = 0x5b, + op1_sg = 0xe3, op2_sg = 0x09, + op_nr = 0x14, + op_ngr = 0xb980, + op_la = 0x41, + op1_lay = 0xe3, op2_lay = 0x71, + op1_larl = 0xc0, op2_larl = 0x00, + op_basr = 0x0d, + op_bas = 0x4d, + op_bcr = 0x07, + op_bc = 0x0d, + op1_bras = 0xa7, op2_bras = 0x05, + op1_brasl= 0xc0, op2_brasl= 0x05, + op1_brc = 0xa7, op2_brc = 0x04, + op1_brcl = 0xc0, op2_brcl = 0x04, }; +/* Read a single instruction from address AT. */ + +#define S390_MAX_INSTR_SIZE 6 +static int +s390_readinstruction (bfd_byte instr[], CORE_ADDR at) +{ + static int s390_instrlen[] = { 2, 4, 4, 6 }; + int instrlen; + + if (read_memory_nobpt (at, &instr[0], 2)) + return -1; + instrlen = s390_instrlen[instr[0] >> 6]; + if (instrlen > 2) + { + if (read_memory_nobpt (at + 2, &instr[2], instrlen - 2)) + return -1; + } + return instrlen; +} + + /* The functions below are for recognizing and decoding S/390 instructions of various formats. Each of them checks whether INSN is an instruction of the given format, with the specified opcodes. @@ -698,17 +611,18 @@ is_rs (bfd_byte *insn, int op, static int -is_rse (bfd_byte *insn, int op1, int op2, +is_rsy (bfd_byte *insn, int op1, int op2, unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) { if (insn[0] == op1 - /* Yes, insn[5]. insn[4] is unused. */ && insn[5] == op2) { *r1 = (insn[1] >> 4) & 0xf; *r3 = insn[1] & 0xf; *b2 = (insn[2] >> 4) & 0xf; - *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + /* The 'long displacement' is a 20-bit signed integer. */ + *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) + ^ 0x80000) - 0x80000; return 1; } else @@ -734,17 +648,18 @@ is_rx (bfd_byte *insn, int op, static int -is_rxe (bfd_byte *insn, int op1, int op2, +is_rxy (bfd_byte *insn, int op1, int op2, unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) { if (insn[0] == op1 - /* Yes, insn[5]. insn[4] is unused. */ && insn[5] == op2) { *r1 = (insn[1] >> 4) & 0xf; *x2 = insn[1] & 0xf; *b2 = (insn[2] >> 4) & 0xf; - *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + /* The 'long displacement' is a 20-bit signed integer. */ + *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) + ^ 0x80000) - 0x80000; return 1; } else @@ -752,187 +667,185 @@ is_rxe (bfd_byte *insn, int op1, int op2, } -/* Set ADDR to the effective address for an X-style instruction, like: +/* Prologue analysis. */ + +#define S390_NUM_GPRS 16 +#define S390_NUM_FPRS 16 + +struct s390_prologue_data { + + /* The stack. */ + struct pv_area *stack; + + /* The size of a GPR or FPR. */ + int gpr_size; + int fpr_size; + + /* The general-purpose registers. */ + pv_t gpr[S390_NUM_GPRS]; + + /* The floating-point registers. */ + pv_t fpr[S390_NUM_FPRS]; + + /* The offset relative to the CFA where the incoming GPR N was saved + by the function prologue. 0 if not saved or unknown. */ + int gpr_slot[S390_NUM_GPRS]; + + /* Likewise for FPRs. */ + int fpr_slot[S390_NUM_FPRS]; + + /* Nonzero if the backchain was saved. This is assumed to be the + case when the incoming SP is saved at the current SP location. */ + int back_chain_saved_p; +}; + +/* Return the effective address for an X-style instruction, like: L R1, D2(X2, B2) - Here, X2 and B2 are registers, and D2 is an unsigned 12-bit + Here, X2 and B2 are registers, and D2 is a signed 20-bit constant; the effective address is the sum of all three. If either X2 or B2 are zero, then it doesn't contribute to the sum --- this - means that r0 can't be used as either X2 or B2. - - GPR is an array of general register values, indexed by GPR number, - not GDB register number. */ -static void -compute_x_addr (struct prologue_value *addr, - struct prologue_value *gpr, - unsigned int d2, unsigned int x2, unsigned int b2) + means that r0 can't be used as either X2 or B2. */ +static pv_t +s390_addr (struct s390_prologue_data *data, + int d2, unsigned int x2, unsigned int b2) { - /* We can't just add stuff directly in addr; it might alias some of - the registers we need to read. */ - struct prologue_value result; + pv_t result; - pv_set_to_constant (&result, d2); + result = pv_constant (d2); if (x2) - pv_add (&result, &result, &gpr[x2]); + result = pv_add (result, data->gpr[x2]); if (b2) - pv_add (&result, &result, &gpr[b2]); - - *addr = result; -} - - -/* The number of GPR and FPR spill slots in an S/390 stack frame. We - track general-purpose registers r2 -- r15, and floating-point - registers f0, f2, f4, and f6. */ -#define S390_NUM_SPILL_SLOTS (14 + 4) - - -/* If the SIZE bytes at ADDR are a stack slot we're actually tracking, - return pv_definite_yes and set *STACK to point to the slot. If - we're sure that they are not any of our stack slots, then return - pv_definite_no. Otherwise, return pv_maybe. - - GPR is an array indexed by GPR number giving the current values - of the general-purpose registers. - - SPILL is an array tracking the spill area of the caller's frame; - SPILL[i] is the i'th spill slot. The spill slots are designated - for r2 -- r15, and then f0, f2, f4, and f6. - - BACK_CHAIN is the value of the back chain slot; it's only valid - when the current frame actually has some space for a back chain - slot --- that is, when the current value of the stack pointer - (according to GPR) is at least S390_STACK_FRAME_OVERHEAD bytes - less than its original value. */ -static enum pv_boolean -s390_on_stack (struct prologue_value *addr, - CORE_ADDR size, - struct prologue_value *gpr, - struct prologue_value *spill, - struct prologue_value *back_chain, - struct prologue_value **stack) -{ - struct prologue_value gpr_spill_addr; - struct prologue_value fpr_spill_addr; - struct prologue_value back_chain_addr; - int i; - enum pv_boolean b; + result = pv_add (result, data->gpr[b2]); - /* Construct the addresses of the spill arrays and the back chain. */ - pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * S390_GPR_SIZE); - pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * S390_GPR_SIZE); - back_chain_addr = gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; + return result; +} - /* We have to check for GPR and FPR references using two separate - calls to pv_is_array_ref, since the GPR and FPR spill slots are - different sizes. (SPILL is an array, but the thing it tracks - isn't really an array.) */ +/* Do a SIZE-byte store of VALUE to D2(X2,B2). */ +static void +s390_store (struct s390_prologue_data *data, + int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, + pv_t value) +{ + pv_t addr = s390_addr (data, d2, x2, b2); + pv_t offset; - /* Was it a reference to the GPR spill array? */ - b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, S390_GPR_SIZE, &i); - if (b == pv_definite_yes) - { - *stack = &spill[i]; - return pv_definite_yes; - } - if (b == pv_maybe) - return pv_maybe; + /* Check whether we are storing the backchain. */ + offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); - /* Was it a reference to the FPR spill array? */ - b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, S390_FPR_SIZE, &i); - if (b == pv_definite_yes) - { - *stack = &spill[14 + i]; - return pv_definite_yes; - } - if (b == pv_maybe) - return pv_maybe; - - /* Was it a reference to the back chain? - This isn't quite right. We ought to check whether we have - actually allocated any new frame at all. */ - b = pv_is_array_ref (addr, size, &back_chain_addr, 1, S390_GPR_SIZE, &i); - if (b == pv_definite_yes) - { - *stack = back_chain; - return pv_definite_yes; - } - if (b == pv_maybe) - return pv_maybe; + if (pv_is_constant (offset) && offset.k == 0) + if (size == data->gpr_size + && pv_is_register_k (value, S390_SP_REGNUM, 0)) + { + data->back_chain_saved_p = 1; + return; + } - /* All the above queries returned definite 'no's. */ - return pv_definite_no; -} + /* Check whether we are storing a register into the stack. */ + if (!pv_area_store_would_trash (data->stack, addr)) + pv_area_store (data->stack, addr, size, value); -/* Do a SIZE-byte store of VALUE to ADDR. GPR, SPILL, and BACK_CHAIN, - and the return value are as described for s390_on_stack, above. - Note that, when this returns pv_maybe, we have to assume that all - of our memory now contains unknown values. */ -static enum pv_boolean -s390_store (struct prologue_value *addr, - CORE_ADDR size, - struct prologue_value *value, - struct prologue_value *gpr, - struct prologue_value *spill, - struct prologue_value *back_chain) + + /* Note: If this is some store we cannot identify, you might think we + should forget our cached values, as any of those might have been hit. + + However, we make the assumption that the register save areas are only + ever stored to once in any given function, and we do recognize these + stores. Thus every store we cannot recognize does not hit our data. */ +} + +/* Do a SIZE-byte load from D2(X2,B2). */ +static pv_t +s390_load (struct s390_prologue_data *data, + int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) + { - struct prologue_value *stack; - enum pv_boolean on_stack - = s390_on_stack (addr, size, gpr, spill, back_chain, &stack); + pv_t addr = s390_addr (data, d2, x2, b2); + pv_t offset; - if (on_stack == pv_definite_yes) - *stack = *value; + /* If it's a load from an in-line constant pool, then we can + simulate that, under the assumption that the code isn't + going to change between the time the processor actually + executed it creating the current frame, and the time when + we're analyzing the code to unwind past that frame. */ + if (pv_is_constant (addr)) + { + struct section_table *secp; + secp = target_section_by_addr (¤t_target, addr.k); + if (secp != NULL + && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section) + & SEC_READONLY)) + return pv_constant (read_memory_integer (addr.k, size)); + } - return on_stack; + /* Check whether we are accessing one of our save slots. */ + return pv_area_fetch (data->stack, addr, size); } - -/* The current frame looks like a signal delivery frame: the first - instruction is an 'svc' opcode. If the next frame is a signal - handler's frame, set FI's saved register map to point into the - signal context structure. */ +/* Function for finding saved registers in a 'struct pv_area'; we pass + this to pv_area_scan. + + If VALUE is a saved register, ADDR says it was saved at a constant + offset from the frame base, and SIZE indicates that the whole + register was saved, record its offset in the reg_offset table in + PROLOGUE_UNTYPED. */ static void -s390_get_signal_frame_info (struct frame_info *fi) +s390_check_for_saved (void *data_untyped, pv_t addr, CORE_ADDR size, pv_t value) { - struct frame_info *next_frame = get_next_frame (fi); + struct s390_prologue_data *data = data_untyped; + int i, offset; - if (next_frame - && get_frame_extra_info (next_frame) - && get_frame_extra_info (next_frame)->sigcontext) - { - /* We're definitely backtracing from a signal handler. */ - CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi); - CORE_ADDR save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext - + DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM)); - int reg; + if (!pv_is_register (addr, S390_SP_REGNUM)) + return; - for (reg = 0; reg < S390_NUM_GPRS; reg++) - { - saved_regs[S390_GP0_REGNUM + reg] = save_reg_addr; - save_reg_addr += S390_GPR_SIZE; - } + offset = 16 * data->gpr_size + 32 - addr.k; - save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext - + (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET : - S390_SIGREGS_FP0_OFFSET)); - for (reg = 0; reg < S390_NUM_FPRS; reg++) - { - saved_regs[S390_FP0_REGNUM + reg] = save_reg_addr; - save_reg_addr += S390_FPR_SIZE; - } - } -} + /* If we are storing the original value of a register, we want to + record the CFA offset. If the same register is stored multiple + times, the stack slot with the highest address counts. */ + + for (i = 0; i < S390_NUM_GPRS; i++) + if (size == data->gpr_size + && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) + if (data->gpr_slot[i] == 0 + || data->gpr_slot[i] > offset) + { + data->gpr_slot[i] = offset; + return; + } + for (i = 0; i < S390_NUM_FPRS; i++) + if (size == data->fpr_size + && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) + if (data->fpr_slot[i] == 0 + || data->fpr_slot[i] > offset) + { + data->fpr_slot[i] = offset; + return; + } +} -static int -s390_get_frame_info (CORE_ADDR start_pc, - struct frame_extra_info *fextra_info, - struct frame_info *fi, - int init_extra_info) +/* Analyze the prologue of the function starting at START_PC, + continuing at most until CURRENT_PC. Initialize DATA to + hold all information we find out about the state of the registers + and stack slots. Return the address of the instruction after + the last one that changed the SP, FP, or back chain; or zero + on error. */ +static CORE_ADDR +s390_analyze_prologue (struct gdbarch *gdbarch, + CORE_ADDR start_pc, + CORE_ADDR current_pc, + struct s390_prologue_data *data) { + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + /* Our return value: - zero if we were able to read all the instructions we wanted, or - -1 if we got an error trying to read memory. */ - int result = 0; + The address of the instruction after the last one that changed + the SP, FP, or back chain; zero if we got an error trying to + read memory. */ + CORE_ADDR result = start_pc; /* The current PC for our abstract interpretation. */ CORE_ADDR pc; @@ -940,108 +853,187 @@ s390_get_frame_info (CORE_ADDR start_pc, /* The address of the next instruction after that. */ CORE_ADDR next_pc; - /* The general-purpose registers. */ - struct prologue_value gpr[S390_NUM_GPRS]; - - /* The floating-point registers. */ - struct prologue_value fpr[S390_NUM_FPRS]; - - /* The register spill stack slots in the caller's frame --- - general-purpose registers r2 through r15, and floating-point - registers. spill[i] is where gpr i+2 gets spilled; - spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */ - struct prologue_value spill[S390_NUM_SPILL_SLOTS]; - - /* The value of the back chain slot. This is only valid if the stack - pointer is known to be less than its original value --- that is, - if we have indeed allocated space on the stack. */ - struct prologue_value back_chain; - - /* The address of the instruction after the last one that changed - the SP, FP, or back chain. */ - CORE_ADDR after_last_frame_setup_insn = start_pc; - /* Set up everything's initial value. */ { int i; + data->stack = make_pv_area (S390_SP_REGNUM); + + /* For the purpose of prologue tracking, we consider the GPR size to + be equal to the ABI word size, even if it is actually larger + (i.e. when running a 32-bit binary under a 64-bit kernel). */ + data->gpr_size = word_size; + data->fpr_size = 8; + for (i = 0; i < S390_NUM_GPRS; i++) - pv_set_to_register (&gpr[i], S390_GP0_REGNUM + i, 0); + data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); for (i = 0; i < S390_NUM_FPRS; i++) - pv_set_to_register (&fpr[i], S390_FP0_REGNUM + i, 0); + data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); + + for (i = 0; i < S390_NUM_GPRS; i++) + data->gpr_slot[i] = 0; - for (i = 0; i < S390_NUM_SPILL_SLOTS; i++) - pv_set_to_unknown (&spill[i]); + for (i = 0; i < S390_NUM_FPRS; i++) + data->fpr_slot[i] = 0; - pv_set_to_unknown (&back_chain); + data->back_chain_saved_p = 0; } - /* Start interpreting instructions, until we hit something we don't - know how to interpret. (Ideally, we should stop at the frame's - real current PC, but at the moment, our callers don't give us - that info.) */ - for (pc = start_pc; ; pc = next_pc) + /* Start interpreting instructions, until we hit the frame's + current PC or the first branch instruction. */ + for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) { bfd_byte insn[S390_MAX_INSTR_SIZE]; int insn_len = s390_readinstruction (insn, pc); + bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; + bfd_byte *insn32 = word_size == 4 ? insn : dummy; + bfd_byte *insn64 = word_size == 8 ? insn : dummy; + /* Fields for various kinds of instructions. */ - unsigned int b2, r1, r2, d2, x2, r3; - int i2; + unsigned int b2, r1, r2, x2, r3; + int i2, d2; - /* The values of SP, FP, and back chain before this instruction, + /* The values of SP and FP before this instruction, for detecting instructions that change them. */ - struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain; + pv_t pre_insn_sp, pre_insn_fp; + /* Likewise for the flag whether the back chain was saved. */ + int pre_insn_back_chain_saved_p; /* If we got an error trying to read the instruction, report it. */ if (insn_len < 0) { - result = -1; + result = 0; break; } next_pc = pc + insn_len; - pre_insn_sp = gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; - pre_insn_fp = gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM]; - pre_insn_back_chain = back_chain; - - /* A special case, first --- only recognized as the very first - instruction of the function, for signal delivery frames: - SVC i --- system call */ - if (pc == start_pc - && is_rr (insn, op_svc, &r1, &r2)) + pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; + pre_insn_back_chain_saved_p = data->back_chain_saved_p; + + + /* LHI r1, i2 --- load halfword immediate. */ + /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ + /* LGFI r1, i2 --- load fullword immediate. */ + if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) + || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) + || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) + data->gpr[r1] = pv_constant (i2); + + /* LR r1, r2 --- load from register. */ + /* LGR r1, r2 --- load from register (64-bit version). */ + else if (is_rr (insn32, op_lr, &r1, &r2) + || is_rre (insn64, op_lgr, &r1, &r2)) + data->gpr[r1] = data->gpr[r2]; + + /* L r1, d2(x2, b2) --- load. */ + /* LY r1, d2(x2, b2) --- load (long-displacement version). */ + /* LG r1, d2(x2, b2) --- load (64-bit version). */ + else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) + data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); + + /* ST r1, d2(x2, b2) --- store. */ + /* STY r1, d2(x2, b2) --- store (long-displacement version). */ + /* STG r1, d2(x2, b2) --- store (64-bit version). */ + else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) + s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); + + /* STD r1, d2(x2,b2) --- store floating-point register. */ + else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) + s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); + + /* STM r1, r3, d2(b2) --- store multiple. */ + /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version). */ + /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ + else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) + || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) + || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) { - if (fi) - s390_get_signal_frame_info (fi); - break; + for (; r1 <= r3; r1++, d2 += data->gpr_size) + s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); } - - /* AHI r1, i2 --- add halfword immediate */ - else if (is_ri (insn, op1_ahi, op2_ahi, &r1, &i2)) - pv_add_constant (&gpr[r1], i2); - - - /* AGHI r1, i2 --- add halfword immediate (64-bit version) */ - else if (GDB_TARGET_IS_ESAME - && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2)) - pv_add_constant (&gpr[r1], i2); - /* AR r1, r2 -- add register */ - else if (is_rr (insn, op_ar, &r1, &r2)) - pv_add (&gpr[r1], &gpr[r1], &gpr[r2]); - - /* BASR r1, 0 --- branch and save + /* AHI r1, i2 --- add halfword immediate. */ + /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ + /* AFI r1, i2 --- add fullword immediate. */ + /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ + else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) + || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) + || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) + || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) + data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); + + /* ALFI r1, i2 --- add logical immediate. */ + /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ + else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) + || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) + data->gpr[r1] = pv_add_constant (data->gpr[r1], + (CORE_ADDR)i2 & 0xffffffff); + + /* AR r1, r2 -- add register. */ + /* AGR r1, r2 -- add register (64-bit version). */ + else if (is_rr (insn32, op_ar, &r1, &r2) + || is_rre (insn64, op_agr, &r1, &r2)) + data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); + + /* A r1, d2(x2, b2) -- add. */ + /* AY r1, d2(x2, b2) -- add (long-displacement version). */ + /* AG r1, d2(x2, b2) -- add (64-bit version). */ + else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) + data->gpr[r1] = pv_add (data->gpr[r1], + s390_load (data, d2, x2, b2, data->gpr_size)); + + /* SLFI r1, i2 --- subtract logical immediate. */ + /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ + else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) + || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) + data->gpr[r1] = pv_add_constant (data->gpr[r1], + -((CORE_ADDR)i2 & 0xffffffff)); + + /* SR r1, r2 -- subtract register. */ + /* SGR r1, r2 -- subtract register (64-bit version). */ + else if (is_rr (insn32, op_sr, &r1, &r2) + || is_rre (insn64, op_sgr, &r1, &r2)) + data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); + + /* S r1, d2(x2, b2) -- subtract. */ + /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ + /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ + else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) + data->gpr[r1] = pv_subtract (data->gpr[r1], + s390_load (data, d2, x2, b2, data->gpr_size)); + + /* LA r1, d2(x2, b2) --- load address. */ + /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ + else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) + || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) + data->gpr[r1] = s390_addr (data, d2, x2, b2); + + /* LARL r1, i2 --- load address relative long. */ + else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) + data->gpr[r1] = pv_constant (pc + i2 * 2); + + /* BASR r1, 0 --- branch and save. Since r2 is zero, this saves the PC in r1, but doesn't branch. */ else if (is_rr (insn, op_basr, &r1, &r2) && r2 == 0) - pv_set_to_constant (&gpr[r1], next_pc); + data->gpr[r1] = pv_constant (next_pc); - /* BRAS r1, i2 --- branch relative and save */ + /* BRAS r1, i2 --- branch relative and save. */ else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) { - pv_set_to_constant (&gpr[r1], next_pc); + data->gpr[r1] = pv_constant (next_pc); next_pc = pc + i2 * 2; /* We'd better not interpret any backward branches. We'll @@ -1050,235 +1042,24 @@ s390_get_frame_info (CORE_ADDR start_pc, break; } - /* L r1, d2(x2, b2) --- load */ - else if (is_rx (insn, op_l, &r1, &d2, &x2, &b2)) - { - struct prologue_value addr; - struct prologue_value *stack; - - compute_x_addr (&addr, gpr, d2, x2, b2); - - /* If it's a load from an in-line constant pool, then we can - simulate that, under the assumption that the code isn't - going to change between the time the processor actually - executed it creating the current frame, and the time when - we're analyzing the code to unwind past that frame. */ - if (addr.kind == pv_constant - && start_pc <= addr.k - && addr.k < next_pc) - pv_set_to_constant (&gpr[r1], - read_memory_integer (addr.k, 4)); - - /* If it's definitely a reference to something on the stack, - we can do that. */ - else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack) - == pv_definite_yes) - gpr[r1] = *stack; - - /* Otherwise, we don't know the value. */ - else - pv_set_to_unknown (&gpr[r1]); - } - - /* LA r1, d2(x2, b2) --- load address */ - else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)) - compute_x_addr (&gpr[r1], gpr, d2, x2, b2); - - /* LARL r1, i2 --- load address relative long */ - else if (GDB_TARGET_IS_ESAME - && is_ril (insn, op1_larl, op2_larl, &r1, &i2)) - pv_set_to_constant (&gpr[r1], pc + i2 * 2); - - /* LGR r1, r2 --- load from register */ - else if (GDB_TARGET_IS_ESAME - && is_rre (insn, op_lgr, &r1, &r2)) - gpr[r1] = gpr[r2]; - - /* LHI r1, i2 --- load halfword immediate */ - else if (is_ri (insn, op1_lhi, op2_lhi, &r1, &i2)) - pv_set_to_constant (&gpr[r1], i2); - - /* LGHI r1, i2 --- load halfword immediate --- 64-bit version */ - else if (is_ri (insn, op1_lghi, op2_lghi, &r1, &i2)) - pv_set_to_constant (&gpr[r1], i2); - - /* LR r1, r2 --- load from register */ - else if (is_rr (insn, op_lr, &r1, &r2)) - gpr[r1] = gpr[r2]; - - /* NGR r1, r2 --- logical and --- 64-bit version */ - else if (GDB_TARGET_IS_ESAME - && is_rre (insn, op_ngr, &r1, &r2)) - pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); - - /* NR r1, r2 --- logical and */ - else if (is_rr (insn, op_nr, &r1, &r2)) - pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); - - /* NGR r1, r2 --- logical and --- 64-bit version */ - else if (GDB_TARGET_IS_ESAME - && is_rre (insn, op_ngr, &r1, &r2)) - pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); - - /* NR r1, r2 --- logical and */ - else if (is_rr (insn, op_nr, &r1, &r2)) - pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]); - - /* S r1, d2(x2, b2) --- subtract from memory */ - else if (is_rx (insn, op_s, &r1, &d2, &x2, &b2)) - { - struct prologue_value addr; - struct prologue_value value; - struct prologue_value *stack; - - compute_x_addr (&addr, gpr, d2, x2, b2); - - /* If it's a load from an in-line constant pool, then we can - simulate that, under the assumption that the code isn't - going to change between the time the processor actually - executed it and the time when we're analyzing it. */ - if (addr.kind == pv_constant - && start_pc <= addr.k - && addr.k < pc) - pv_set_to_constant (&value, read_memory_integer (addr.k, 4)); - - /* If it's definitely a reference to something on the stack, - we could do that. */ - else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack) - == pv_definite_yes) - value = *stack; - - /* Otherwise, we don't know the value. */ - else - pv_set_to_unknown (&value); - - pv_subtract (&gpr[r1], &gpr[r1], &value); - } - - /* ST r1, d2(x2, b2) --- store */ - else if (is_rx (insn, op_st, &r1, &d2, &x2, &b2)) - { - struct prologue_value addr; - - compute_x_addr (&addr, gpr, d2, x2, b2); - - /* The below really should be '4', not 'S390_GPR_SIZE'; this - instruction always stores 32 bits, regardless of the full - size of the GPR. */ - if (s390_store (&addr, 4, &gpr[r1], gpr, spill, &back_chain) - == pv_maybe) - /* If we can't be sure that it's *not* a store to - something we're tracing, then we would have to mark all - our memory as unknown --- after all, it *could* be a - store to any of them --- so we might as well just stop - interpreting. */ - break; - } - - /* STD r1, d2(x2,b2) --- store floating-point register */ - else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) - { - struct prologue_value addr; - - compute_x_addr (&addr, gpr, d2, x2, b2); - - if (s390_store (&addr, 8, &fpr[r1], gpr, spill, &back_chain) - == pv_maybe) - /* If we can't be sure that it's *not* a store to - something we're tracing, then we would have to mark all - our memory as unknown --- after all, it *could* be a - store to any of them --- so we might as well just stop - interpreting. */ - break; - } - - /* STG r1, d2(x2, b2) --- 64-bit store */ - else if (GDB_TARGET_IS_ESAME - && is_rxe (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) - { - struct prologue_value addr; - - compute_x_addr (&addr, gpr, d2, x2, b2); - - /* The below really should be '8', not 'S390_GPR_SIZE'; this - instruction always stores 64 bits, regardless of the full - size of the GPR. */ - if (s390_store (&addr, 8, &gpr[r1], gpr, spill, &back_chain) - == pv_maybe) - /* If we can't be sure that it's *not* a store to - something we're tracing, then we would have to mark all - our memory as unknown --- after all, it *could* be a - store to any of them --- so we might as well just stop - interpreting. */ - break; - } - - /* STM r1, r3, d2(b2) --- store multiple */ - else if (is_rs (insn, op_stm, &r1, &r3, &d2, &b2)) - { - int regnum; - int offset; - struct prologue_value addr; - - for (regnum = r1, offset = 0; - regnum <= r3; - regnum++, offset += 4) - { - compute_x_addr (&addr, gpr, d2 + offset, 0, b2); - - if (s390_store (&addr, 4, &gpr[regnum], gpr, spill, &back_chain) - == pv_maybe) - /* If we can't be sure that it's *not* a store to - something we're tracing, then we would have to mark all - our memory as unknown --- after all, it *could* be a - store to any of them --- so we might as well just stop - interpreting. */ - break; - } - - /* If we left the loop early, we should stop interpreting - altogether. */ - if (regnum <= r3) - break; - } - - /* STMG r1, r3, d2(b2) --- store multiple, 64-bit */ - else if (GDB_TARGET_IS_ESAME - && is_rse (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) - { - int regnum; - int offset; - struct prologue_value addr; - - for (regnum = r1, offset = 0; - regnum <= r3; - regnum++, offset += 8) - { - compute_x_addr (&addr, gpr, d2 + offset, 0, b2); - - if (s390_store (&addr, 8, &gpr[regnum], gpr, spill, &back_chain) - == pv_maybe) - /* If we can't be sure that it's *not* a store to - something we're tracing, then we would have to mark all - our memory as unknown --- after all, it *could* be a - store to any of them --- so we might as well just stop - interpreting. */ - break; - } - - /* If we left the loop early, we should stop interpreting - altogether. */ - if (regnum <= r3) - break; - } + /* Terminate search when hitting any other branch instruction. */ + else if (is_rr (insn, op_basr, &r1, &r2) + || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) + || is_rr (insn, op_bcr, &r1, &r2) + || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) + || is_ri (insn, op1_brc, op2_brc, &r1, &i2) + || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2) + || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) + break; else /* An instruction we don't know how to simulate. The only safe thing to do would be to set every value we're tracking - to 'unknown'. Instead, we'll be optimistic: we just stop - interpreting, and assume that the machine state we've got - now is good enough for unwinding the stack. */ - break; + to 'unknown'. Instead, we'll be optimistic: we assume that + we *can* interpret every instruction that the compiler uses + to manipulate any of the data we're interested in here -- + then we can just ignore anything else. */ + ; /* Record the address after the last instruction that changed the FP, SP, or backlink. Ignore instructions that changed @@ -1286,740 +1067,703 @@ s390_get_frame_info (CORE_ADDR start_pc, restore instructions. (The back chain is never restored, just popped.) */ { - struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; - struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM]; + pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; - if ((! pv_is_identical (&pre_insn_sp, sp) - && ! pv_is_register (sp, S390_SP_REGNUM, 0)) - || (! pv_is_identical (&pre_insn_fp, fp) - && ! pv_is_register (fp, S390_FRAME_REGNUM, 0)) - || ! pv_is_identical (&pre_insn_back_chain, &back_chain)) - after_last_frame_setup_insn = next_pc; + if ((! pv_is_identical (pre_insn_sp, sp) + && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) + && sp.kind != pvk_unknown) + || (! pv_is_identical (pre_insn_fp, fp) + && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) + && fp.kind != pvk_unknown) + || pre_insn_back_chain_saved_p != data->back_chain_saved_p) + result = next_pc; } } - /* Okay, now gpr[], fpr[], spill[], and back_chain reflect the state - of the machine as of the first instruction we couldn't interpret - (hopefully the first non-prologue instruction). */ - { - /* The size of the frame, or (CORE_ADDR) -1 if we couldn't figure - that out. */ - CORE_ADDR frame_size = -1; + /* Record where all the registers were saved. */ + pv_area_scan (data->stack, s390_check_for_saved, data); - /* The value the SP had upon entry to the function, or - (CORE_ADDR) -1 if we can't figure that out. */ - CORE_ADDR original_sp = -1; + free_pv_area (data->stack); + data->stack = NULL; - /* Are we using S390_FRAME_REGNUM as a frame pointer register? */ - int using_frame_pointer = 0; + return result; +} - /* If S390_FRAME_REGNUM is some constant offset from the SP, then - that strongly suggests that we're going to use that as our - frame pointer register, not the SP. */ - { - struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM]; +/* Advance PC across any function entry prologue instructions to reach + some "real" code. */ +static CORE_ADDR +s390_skip_prologue (CORE_ADDR pc) +{ + struct s390_prologue_data data; + CORE_ADDR skip_pc; + skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data); + return skip_pc ? skip_pc : pc; +} - if (fp->kind == pv_register - && fp->reg == S390_SP_REGNUM) - using_frame_pointer = 1; - } +/* Return true if we are in the functin's epilogue, i.e. after the + instruction that destroyed the function's stack frame. */ +static int +s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + int word_size = gdbarch_ptr_bit (gdbarch) / 8; - /* If we were given a frame_info structure, we may be able to use - the frame's base address to figure out the actual value of the - original SP. */ - if (fi && get_frame_base (fi)) - { - int frame_base_regno; - struct prologue_value *frame_base; - - /* The meaning of the frame base depends on whether the - function uses a frame pointer register other than the SP or - not (see s390_read_fp): - - If the function does use a frame pointer register other - than the SP, then the frame base is that register's - value. - - If the function doesn't use a frame pointer, then the - frame base is the SP itself. - We're duplicating some of the logic of s390_fp_regnum here, - but we don't want to call that, because it would just do - exactly the same analysis we've already done above. */ - if (using_frame_pointer) - frame_base_regno = S390_FRAME_REGNUM; - else - frame_base_regno = S390_SP_REGNUM; - - frame_base = &gpr[frame_base_regno - S390_GP0_REGNUM]; - - /* We know the frame base address; if the value of whatever - register it came from is a constant offset from the - original SP, then we can reconstruct the original SP just - by subtracting off that constant. */ - if (frame_base->kind == pv_register - && frame_base->reg == S390_SP_REGNUM) - original_sp = get_frame_base (fi) - frame_base->k; - } + /* In frameless functions, there's not frame to destroy and thus + we don't care about the epilogue. - /* If the analysis said that the current SP value is the original - value less some constant, then that constant is the frame size. */ - { - struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM]; + In functions with frame, the epilogue sequence is a pair of + a LM-type instruction that restores (amongst others) the + return register %r14 and the stack pointer %r15, followed + by a branch 'br %r14' --or equivalent-- that effects the + actual return. - if (sp->kind == pv_register - && sp->reg == S390_SP_REGNUM) - frame_size = -sp->k; - } + In that situation, this function needs to return 'true' in + exactly one case: when pc points to that branch instruction. - /* If we knew other registers' current values, we could check if - the analysis said any of those were related to the original SP - value, too. But for now, we'll just punt. */ + Thus we try to disassemble the one instructions immediately + preceeding pc and check whether it is an LM-type instruction + modifying the stack pointer. - /* If the caller passed in an 'extra info' structure, fill in the - parts we can. */ - if (fextra_info) - { - if (init_extra_info || ! fextra_info->initialised) - { - s390_memset_extra_info (fextra_info); - fextra_info->function_start = start_pc; - fextra_info->initialised = 1; - } - - if (frame_size != -1) - { - fextra_info->stack_bought_valid = 1; - fextra_info->stack_bought = frame_size; - } - - /* Assume everything was okay, and indicate otherwise when we - find something amiss. */ - fextra_info->good_prologue = 1; - - if (using_frame_pointer) - /* Actually, nobody cares about the exact PC, so any - non-zero value will do here. */ - fextra_info->frame_pointer_saved_pc = 1; - - /* If we weren't able to find the size of the frame, or find - the original sp based on actual current register values, - then we're not going to be able to unwind this frame. - - (If we're just doing prologue analysis to set a breakpoint, - then frame_size might be known, but original_sp unknown; if - we're analyzing a real frame which uses alloca, then - original_sp might be known (from the frame pointer - register), but the frame size might be unknown.) */ - if (original_sp == -1 && frame_size == -1) - fextra_info->good_prologue = 0; - - if (fextra_info->good_prologue) - fextra_info->skip_prologue_function_start - = after_last_frame_setup_insn; - else - /* If the prologue was too complex for us to make sense of, - then perhaps it's better to just not skip anything at - all. */ - fextra_info->skip_prologue_function_start = start_pc; - } + Note that disassembling backwards is not reliable, so there + is a slight chance of false positives here ... */ - /* Indicate where registers were saved on the stack, if: - - the caller seems to want to know, - - the caller provided an actual SP, and - - the analysis gave us enough information to actually figure it - out. */ - if (fi - && deprecated_get_frame_saved_regs (fi) - && original_sp != -1) - { - int slot_num; - CORE_ADDR slot_addr; - CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi); - - /* Scan the spill array; if a spill slot says it holds the - original value of some register, then record that slot's - address as the place that register was saved. - - Just for kicks, note that, even if registers aren't saved - in their officially-sanctioned slots, this will still work - --- we know what really got put where. */ - - /* First, the slots for r2 -- r15. */ - for (slot_num = 0, slot_addr = original_sp + 2 * S390_GPR_SIZE; - slot_num < 14; - slot_num++, slot_addr += S390_GPR_SIZE) - { - struct prologue_value *slot = &spill[slot_num]; - - if (slot->kind == pv_register - && slot->k == 0) - saved_regs[slot->reg] = slot_addr; - } - - /* Then, the slots for f0, f2, f4, and f6. They're a - different size. */ - for (slot_num = 14, slot_addr = original_sp + 16 * S390_GPR_SIZE; - slot_num < S390_NUM_SPILL_SLOTS; - slot_num++, slot_addr += S390_FPR_SIZE) - { - struct prologue_value *slot = &spill[slot_num]; - - if (slot->kind == pv_register - && slot->k == 0) - saved_regs[slot->reg] = slot_addr; - } - - /* The stack pointer's element of saved_regs[] is special. */ - saved_regs[S390_SP_REGNUM] = original_sp; - } - } + bfd_byte insn[6]; + unsigned int r1, r3, b2; + int d2; - return result; + if (word_size == 4 + && !read_memory_nobpt (pc - 4, insn, 4) + && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) + && r3 == S390_SP_REGNUM - S390_R0_REGNUM) + return 1; + + if (word_size == 4 + && !read_memory_nobpt (pc - 6, insn, 6) + && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) + && r3 == S390_SP_REGNUM - S390_R0_REGNUM) + return 1; + + if (word_size == 8 + && !read_memory_nobpt (pc - 6, insn, 6) + && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) + && r3 == S390_SP_REGNUM - S390_R0_REGNUM) + return 1; + + return 0; } +/* Normal stack frames. */ + +struct s390_unwind_cache { + + CORE_ADDR func; + CORE_ADDR frame_base; + CORE_ADDR local_base; + + struct trad_frame_saved_reg *saved_regs; +}; + static int -s390_check_function_end (CORE_ADDR pc) -{ - bfd_byte instr[S390_MAX_INSTR_SIZE]; - int regidx, instrlen; +s390_prologue_frame_unwind_cache (struct frame_info *next_frame, + struct s390_unwind_cache *info) +{ + struct gdbarch *gdbarch = get_frame_arch (next_frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + struct s390_prologue_data data; + pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; + pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + int i; + CORE_ADDR cfa; + CORE_ADDR func; + CORE_ADDR result; + ULONGEST reg; + CORE_ADDR prev_sp; + int frame_pointer; + int size; + + /* Try to find the function start address. If we can't find it, we don't + bother searching for it -- with modern compilers this would be mostly + pointless anyway. Trust that we'll either have valid DWARF-2 CFI data + or else a valid backchain ... */ + func = frame_func_unwind (next_frame, NORMAL_FRAME); + if (!func) + return 0; - instrlen = s390_readinstruction (instr, pc); - if (instrlen < 0) - return -1; - /* check for BR */ - if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf) + /* Try to analyze the prologue. */ + result = s390_analyze_prologue (gdbarch, func, + frame_pc_unwind (next_frame), &data); + if (!result) return 0; - regidx = instr[1] & 0xf; - /* Check for LMG or LG */ - instrlen = - s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4)); - if (instrlen < 0) - return -1; - if (GDB_TARGET_IS_ESAME) - { - if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4) - return 0; - } - else if (instrlen != 4 || instr[0] != 0x98) - { - return 0; - } - if ((instr[2] >> 4) != 0xf) + /* If this was successful, we should have found the instruction that + sets the stack pointer register to the previous value of the stack + pointer minus the frame size. */ + if (!pv_is_register (*sp, S390_SP_REGNUM)) return 0; - if (regidx == 14) - return 1; - instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8)); - if (instrlen < 0) - return -1; - if (GDB_TARGET_IS_ESAME) - { - /* Check for LG */ - if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4) - return 0; - } - else + + /* A frame size of zero at this point can mean either a real + frameless function, or else a failure to find the prologue. + Perform some sanity checks to verify we really have a + frameless function. */ + if (sp->k == 0) { - /* Check for L */ - if (instrlen != 4 || instr[0] != 0x58) + /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame + size zero. This is only possible if the next frame is a sentinel + frame, a dummy frame, or a signal trampoline frame. */ + /* FIXME: cagney/2004-05-01: This sanity check shouldn't be + needed, instead the code should simpliy rely on its + analysis. */ + if (get_frame_type (next_frame) == NORMAL_FRAME) return 0; - } - if (instr[2] >> 4 != 0xf) - return 0; - if (instr[1] >> 4 != regidx) - return 0; - return 1; -} - -static CORE_ADDR -s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi) -{ - CORE_ADDR function_start, test_function_start; - int loop_cnt, err, function_end; - struct frame_extra_info fextra_info; - function_start = get_pc_function_start (pc); - if (function_start == 0) - { - test_function_start = pc; - if (test_function_start & 1) - return 0; /* This has to be bogus */ - loop_cnt = 0; - do + /* If we really have a frameless function, %r14 must be valid + -- in particular, it must point to a different function. */ + reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM); + reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; + if (get_pc_function_start (reg) == func) { + /* However, there is one case where it *is* valid for %r14 + to point to the same function -- if this is a recursive + call, and we have stopped in the prologue *before* the + stack frame was allocated. + + Recognize this case by looking ahead a bit ... */ - err = - s390_get_frame_info (test_function_start, &fextra_info, fi, 1); - loop_cnt++; - test_function_start -= 2; - function_end = s390_check_function_end (test_function_start); + struct s390_prologue_data data2; + pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + + if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) + && pv_is_register (*sp, S390_SP_REGNUM) + && sp->k != 0)) + return 0; } - while (!(function_end == 1 || err || loop_cnt >= 4096 || - (fextra_info.good_prologue))); - if (fextra_info.good_prologue) - function_start = fextra_info.function_start; - else if (function_end == 1) - function_start = test_function_start; } - return function_start; -} -static int -s390_frameless_function_invocation (struct frame_info *fi) -{ - struct frame_extra_info fextra_info, *fextra_info_ptr; - int frameless = 0; + /* OK, we've found valid prologue data. */ + size = -sp->k; - if (get_next_frame (fi) == NULL) /* no may be frameless */ + /* If the frame pointer originally also holds the same value + as the stack pointer, we're probably using it. If it holds + some other value -- even a constant offset -- it is most + likely used as temp register. */ + if (pv_is_identical (*sp, *fp)) + frame_pointer = S390_FRAME_REGNUM; + else + frame_pointer = S390_SP_REGNUM; + + /* If we've detected a function with stack frame, we'll still have to + treat it as frameless if we're currently within the function epilog + code at a point where the frame pointer has already been restored. + This can only happen in an innermost frame. */ + /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, + instead the code should simpliy rely on its analysis. */ + if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME) { - if (get_frame_extra_info (fi)) - fextra_info_ptr = get_frame_extra_info (fi); - else + /* See the comment in s390_in_function_epilogue_p on why this is + not completely reliable ... */ + if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame))) { - fextra_info_ptr = &fextra_info; - s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi), - fextra_info_ptr, fi, 1); + memset (&data, 0, sizeof (data)); + size = 0; + frame_pointer = S390_SP_REGNUM; } - frameless = (fextra_info_ptr->stack_bought_valid - && fextra_info_ptr->stack_bought == 0); } - return frameless; -} + /* Once we know the frame register and the frame size, we can unwind + the current value of the frame register from the next frame, and + add back the frame size to arrive that the previous frame's + stack pointer value. */ + prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size; + cfa = prev_sp + 16*word_size + 32; + /* Record the addresses of all register spill slots the prologue parser + has recognized. Consider only registers defined as call-saved by the + ABI; for call-clobbered registers the parser may have recognized + spurious stores. */ -static int -s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi, - CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc) -{ - bfd_byte instr[S390_MAX_INSTR_SIZE]; - int instrlen; - CORE_ADDR scontext; - int retval = 0; - CORE_ADDR orig_sp; - CORE_ADDR temp_sregs; - - scontext = temp_sregs = 0; - - instrlen = s390_readinstruction (instr, pc); - if (sigcaller_pc) - *sigcaller_pc = 0; - if (((instrlen == S390_SYSCALL_SIZE) && - (instr[0] == S390_SYSCALL_OPCODE)) && - ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn))) + for (i = 6; i <= 15; i++) + if (data.gpr_slot[i] != 0) + info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i]; + + switch (tdep->abi) { - if (sighandler_fi) - { - if (s390_frameless_function_invocation (sighandler_fi)) - orig_sp = get_frame_base (sighandler_fi); - else - orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR) - read_memory_integer (get_frame_base (sighandler_fi), - S390_GPR_SIZE)); - if (orig_sp && sigcaller_pc) - { - scontext = orig_sp + S390_SIGNAL_FRAMESIZE; - if (pc == scontext && instr[1] == s390_NR_rt_sigreturn) - { - /* We got a new style rt_signal */ - /* get address of read ucontext->uc_mcontext */ - temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ? - S390X_UC_MCONTEXT_OFFSET : - S390_UC_MCONTEXT_OFFSET); - } - else - { - /* read sigcontext->sregs */ - temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR) - read_memory_integer (scontext - + - (GDB_TARGET_IS_ESAME - ? - S390X_SIGCONTEXT_SREGS_OFFSET - : - S390_SIGCONTEXT_SREGS_OFFSET), - S390_GPR_SIZE)); - - } - /* read sigregs->psw.addr */ - *sigcaller_pc = - ADDR_BITS_REMOVE ((CORE_ADDR) - read_memory_integer (temp_sregs + - DEPRECATED_REGISTER_BYTE (S390_PC_REGNUM), - S390_PSW_ADDR_SIZE)); - } - } - retval = 1; + case ABI_LINUX_S390: + if (data.fpr_slot[4] != 0) + info->saved_regs[S390_F4_REGNUM].addr = cfa - data.fpr_slot[4]; + if (data.fpr_slot[6] != 0) + info->saved_regs[S390_F6_REGNUM].addr = cfa - data.fpr_slot[6]; + break; + + case ABI_LINUX_ZSERIES: + for (i = 8; i <= 15; i++) + if (data.fpr_slot[i] != 0) + info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i]; + break; } - if (sregs) - *sregs = temp_sregs; - return retval; -} -/* - We need to do something better here but this will keep us out of trouble - for the moment. - For some reason the blockframe.c calls us with fi->next->fromleaf - so this seems of little use to us. */ -static CORE_ADDR -s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi) -{ - CORE_ADDR sigcaller_pc; - CORE_ADDR pc = 0; - if (next_fromleaf) + /* Function return will set PC to %r14. */ + info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; + + /* In frameless functions, we unwind simply by moving the return + address to the PC. However, if we actually stored to the + save area, use that -- we might only think the function frameless + because we're in the middle of the prologue ... */ + if (size == 0 + && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM)) { - pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM)); - /* fix signal handlers */ + info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM; } - else if (get_next_frame (fi) && get_frame_pc (get_next_frame (fi))) - pc = s390_frame_saved_pc_nofix (get_next_frame (fi)); - if (pc && get_next_frame (fi) && get_frame_base (get_next_frame (fi)) - && s390_is_sigreturn (pc, get_next_frame (fi), NULL, &sigcaller_pc)) + + /* Another sanity check: unless this is a frameless function, + we should have found spill slots for SP and PC. + If not, we cannot unwind further -- this happens e.g. in + libc's thread_start routine. */ + if (size > 0) { - pc = sigcaller_pc; + if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM) + || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM)) + prev_sp = -1; } - return pc; -} -static void -s390_init_extra_frame_info (int fromleaf, struct frame_info *fi) -{ - frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info)); - if (get_frame_pc (fi)) - s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi), - get_frame_extra_info (fi), fi, 1); - else - s390_memset_extra_info (get_frame_extra_info (fi)); -} + /* We use the current value of the frame register as local_base, + and the top of the register save area as frame_base. */ + if (prev_sp != -1) + { + info->frame_base = prev_sp + 16*word_size + 32; + info->local_base = prev_sp - size; + } -/* If saved registers of frame FI are not known yet, read and cache them. - &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL, - in which case the framedata are read. */ + info->func = func; + return 1; +} static void -s390_frame_init_saved_regs (struct frame_info *fi) -{ - - int quick; - - if (deprecated_get_frame_saved_regs (fi) == NULL) +s390_backchain_frame_unwind_cache (struct frame_info *next_frame, + struct s390_unwind_cache *info) +{ + struct gdbarch *gdbarch = get_frame_arch (next_frame); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + CORE_ADDR backchain; + ULONGEST reg; + LONGEST sp; + + /* Get the backchain. */ + reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); + backchain = read_memory_unsigned_integer (reg, word_size); + + /* A zero backchain terminates the frame chain. As additional + sanity check, let's verify that the spill slot for SP in the + save area pointed to by the backchain in fact links back to + the save area. */ + if (backchain != 0 + && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp) + && (CORE_ADDR)sp == backchain) { - /* zalloc memsets the saved regs */ - frame_saved_regs_zalloc (fi); - if (get_frame_pc (fi)) - { - quick = (get_frame_extra_info (fi) - && get_frame_extra_info (fi)->initialised - && get_frame_extra_info (fi)->good_prologue); - s390_get_frame_info (quick - ? get_frame_extra_info (fi)->function_start - : s390_sniff_pc_function_start (get_frame_pc (fi), fi), - get_frame_extra_info (fi), fi, !quick); - } + /* We don't know which registers were saved, but it will have + to be at least %r14 and %r15. This will allow us to continue + unwinding, but other prev-frame registers may be incorrect ... */ + info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size; + info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size; + + /* Function return will set PC to %r14. */ + info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; + + /* We use the current value of the frame register as local_base, + and the top of the register save area as frame_base. */ + info->frame_base = backchain + 16*word_size + 32; + info->local_base = reg; } -} - + info->func = frame_pc_unwind (next_frame); +} -static CORE_ADDR -s390_frame_saved_pc_nofix (struct frame_info *fi) +static struct s390_unwind_cache * +s390_frame_unwind_cache (struct frame_info *next_frame, + void **this_prologue_cache) { - if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->saved_pc_valid) - return get_frame_extra_info (fi)->saved_pc; + struct s390_unwind_cache *info; + if (*this_prologue_cache) + return *this_prologue_cache; - if (deprecated_generic_find_dummy_frame (get_frame_pc (fi), - get_frame_base (fi))) - return deprecated_read_register_dummy (get_frame_pc (fi), - get_frame_base (fi), S390_PC_REGNUM); + info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); + *this_prologue_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (next_frame); + info->func = -1; + info->frame_base = -1; + info->local_base = -1; - s390_frame_init_saved_regs (fi); - if (get_frame_extra_info (fi)) - { - get_frame_extra_info (fi)->saved_pc_valid = 1; - if (get_frame_extra_info (fi)->good_prologue - && deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM]) - get_frame_extra_info (fi)->saved_pc - = ADDR_BITS_REMOVE (read_memory_integer - (deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM], - S390_GPR_SIZE)); - else - get_frame_extra_info (fi)->saved_pc - = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM)); - return get_frame_extra_info (fi)->saved_pc; - } - return 0; + /* Try to use prologue analysis to fill the unwind cache. + If this fails, fall back to reading the stack backchain. */ + if (!s390_prologue_frame_unwind_cache (next_frame, info)) + s390_backchain_frame_unwind_cache (next_frame, info); + + return info; } -static CORE_ADDR -s390_frame_saved_pc (struct frame_info *fi) +static void +s390_frame_this_id (struct frame_info *next_frame, + void **this_prologue_cache, + struct frame_id *this_id) { - CORE_ADDR saved_pc = 0, sig_pc; + struct s390_unwind_cache *info + = s390_frame_unwind_cache (next_frame, this_prologue_cache); - if (get_frame_extra_info (fi) - && get_frame_extra_info (fi)->sig_fixed_saved_pc_valid) - return get_frame_extra_info (fi)->sig_fixed_saved_pc; - saved_pc = s390_frame_saved_pc_nofix (fi); + if (info->frame_base == -1) + return; - if (get_frame_extra_info (fi)) - { - get_frame_extra_info (fi)->sig_fixed_saved_pc_valid = 1; - if (saved_pc) - { - if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc)) - saved_pc = sig_pc; - } - get_frame_extra_info (fi)->sig_fixed_saved_pc = saved_pc; - } - return saved_pc; + *this_id = frame_id_build (info->frame_base, info->func); } +static void +s390_frame_prev_register (struct frame_info *next_frame, + void **this_prologue_cache, + int regnum, int *optimizedp, + enum lval_type *lvalp, CORE_ADDR *addrp, + int *realnump, gdb_byte *bufferp) +{ + struct s390_unwind_cache *info + = s390_frame_unwind_cache (next_frame, this_prologue_cache); + trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, + optimizedp, lvalp, addrp, realnump, bufferp); +} + +static const struct frame_unwind s390_frame_unwind = { + NORMAL_FRAME, + s390_frame_this_id, + s390_frame_prev_register +}; +static const struct frame_unwind * +s390_frame_sniffer (struct frame_info *next_frame) +{ + return &s390_frame_unwind; +} -/* We want backtraces out of signal handlers so we don't set - (get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */ +/* Code stubs and their stack frames. For things like PLTs and NULL + function calls (where there is no true frame and the return address + is in the RETADDR register). */ -static CORE_ADDR -s390_frame_chain (struct frame_info *thisframe) +struct s390_stub_unwind_cache { - CORE_ADDR prev_fp = 0; + CORE_ADDR frame_base; + struct trad_frame_saved_reg *saved_regs; +}; - if (deprecated_generic_find_dummy_frame (get_frame_pc (thisframe), - get_frame_base (thisframe))) - return deprecated_read_register_dummy (get_frame_pc (thisframe), - get_frame_base (thisframe), - S390_SP_REGNUM); - else - { - int sigreturn = 0; - CORE_ADDR sregs = 0; - struct frame_extra_info prev_fextra_info; +static struct s390_stub_unwind_cache * +s390_stub_frame_unwind_cache (struct frame_info *next_frame, + void **this_prologue_cache) +{ + struct gdbarch *gdbarch = get_frame_arch (next_frame); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + struct s390_stub_unwind_cache *info; + ULONGEST reg; - memset (&prev_fextra_info, 0, sizeof (prev_fextra_info)); - if (get_frame_pc (thisframe)) - { - CORE_ADDR saved_pc, sig_pc; + if (*this_prologue_cache) + return *this_prologue_cache; - saved_pc = s390_frame_saved_pc_nofix (thisframe); - if (saved_pc) - { - if ((sigreturn = - s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc))) - saved_pc = sig_pc; - s390_get_frame_info (s390_sniff_pc_function_start - (saved_pc, NULL), &prev_fextra_info, NULL, - 1); - } - } - if (sigreturn) - { - /* read sigregs,regs.gprs[11 or 15] */ - prev_fp = read_memory_integer (sregs + - DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + - (prev_fextra_info. - frame_pointer_saved_pc - ? 11 : 15)), - S390_GPR_SIZE); - get_frame_extra_info (thisframe)->sigcontext = sregs; - } - else - { - if (deprecated_get_frame_saved_regs (thisframe)) - { - int regno; - - if (prev_fextra_info.frame_pointer_saved_pc - && deprecated_get_frame_saved_regs (thisframe)[S390_FRAME_REGNUM]) - regno = S390_FRAME_REGNUM; - else - regno = S390_SP_REGNUM; - - if (deprecated_get_frame_saved_regs (thisframe)[regno]) - { - /* The SP's entry of `saved_regs' is special. */ - if (regno == S390_SP_REGNUM) - prev_fp = deprecated_get_frame_saved_regs (thisframe)[regno]; - else - prev_fp = - read_memory_integer (deprecated_get_frame_saved_regs (thisframe)[regno], - S390_GPR_SIZE); - } - } - } - } - return ADDR_BITS_REMOVE (prev_fp); -} + info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); + *this_prologue_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (next_frame); -/* - Whether struct frame_extra_info is actually needed I'll have to figure - out as our frames are similar to rs6000 there is a possibility - i386 dosen't need it. */ + /* The return address is in register %r14. */ + info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM; + /* Retrieve stack pointer and determine our frame base. */ + reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); + info->frame_base = reg + 16*word_size + 32; + return info; +} -/* NOTE: cagney/2003-10-31: "return_value" makes - "extract_struct_value_address", "extract_return_value", and - "use_struct_convention" redundant. */ -static CORE_ADDR -s390_cannot_extract_struct_value_address (struct regcache *regcache) +static void +s390_stub_frame_this_id (struct frame_info *next_frame, + void **this_prologue_cache, + struct frame_id *this_id) { - return 0; + struct s390_stub_unwind_cache *info + = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache); + *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame)); } -/* a given return value in `regbuf' with a type `valtype', extract and copy its - value into `valbuf' */ static void -s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) +s390_stub_frame_prev_register (struct frame_info *next_frame, + void **this_prologue_cache, + int regnum, int *optimizedp, + enum lval_type *lvalp, CORE_ADDR *addrp, + int *realnump, gdb_byte *bufferp) +{ + struct s390_stub_unwind_cache *info + = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache); + trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, + optimizedp, lvalp, addrp, realnump, bufferp); +} + +static const struct frame_unwind s390_stub_frame_unwind = { + NORMAL_FRAME, + s390_stub_frame_this_id, + s390_stub_frame_prev_register +}; + +static const struct frame_unwind * +s390_stub_frame_sniffer (struct frame_info *next_frame) { - /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes. - We need to truncate the return value into float size (4 byte) if - necessary. */ - int len = TYPE_LENGTH (valtype); + CORE_ADDR addr_in_block; + bfd_byte insn[S390_MAX_INSTR_SIZE]; - if (TYPE_CODE (valtype) == TYPE_CODE_FLT) - memcpy (valbuf, ®buf[DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM)], len); - else - { - int offset = 0; - /* return value is copied starting from r2. */ - if (TYPE_LENGTH (valtype) < S390_GPR_SIZE) - offset = S390_GPR_SIZE - TYPE_LENGTH (valtype); - memcpy (valbuf, - regbuf + DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset, - TYPE_LENGTH (valtype)); - } + /* If the current PC points to non-readable memory, we assume we + have trapped due to an invalid function pointer call. We handle + the non-existing current function like a PLT stub. */ + addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME); + if (in_plt_section (addr_in_block, NULL) + || s390_readinstruction (insn, frame_pc_unwind (next_frame)) < 0) + return &s390_stub_frame_unwind; + return NULL; } -static char * -s390_promote_integer_argument (struct type *valtype, char *valbuf, - char *reg_buff, int *arglen) +/* Signal trampoline stack frames. */ + +struct s390_sigtramp_unwind_cache { + CORE_ADDR frame_base; + struct trad_frame_saved_reg *saved_regs; +}; + +static struct s390_sigtramp_unwind_cache * +s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame, + void **this_prologue_cache) { - char *value = valbuf; - int len = TYPE_LENGTH (valtype); + struct gdbarch *gdbarch = get_frame_arch (next_frame); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + struct s390_sigtramp_unwind_cache *info; + ULONGEST this_sp, prev_sp; + CORE_ADDR next_ra, next_cfa, sigreg_ptr; + int i; + + if (*this_prologue_cache) + return *this_prologue_cache; - if (len < S390_GPR_SIZE) + info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache); + *this_prologue_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (next_frame); + + this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); + next_ra = frame_pc_unwind (next_frame); + next_cfa = this_sp + 16*word_size + 32; + + /* New-style RT frame: + retcode + alignment (8 bytes) + siginfo (128 bytes) + ucontext (contains sigregs at offset 5 words) */ + if (next_ra == next_cfa) { - /* We need to upgrade this value to a register to pass it correctly */ - int idx, diff = S390_GPR_SIZE - len, negative = - (!TYPE_UNSIGNED (valtype) && value[0] & 0x80); - for (idx = 0; idx < S390_GPR_SIZE; idx++) - { - reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) : - value[idx - diff]); - } - value = reg_buff; - *arglen = S390_GPR_SIZE; + sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8); } + + /* Old-style RT frame and all non-RT frames: + old signal mask (8 bytes) + pointer to sigregs */ else { - if (len & (S390_GPR_SIZE - 1)) - { - fprintf_unfiltered (gdb_stderr, - "s390_promote_integer_argument detected an argument not " - "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE " - "we might not deal with this correctly.\n"); - } - *arglen = len; + sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size); } - return (value); -} + /* The sigregs structure looks like this: + long psw_mask; + long psw_addr; + long gprs[16]; + int acrs[16]; + int fpc; + int __pad; + double fprs[16]; */ -static void -s390_store_return_value (struct type *valtype, char *valbuf) -{ - int arglen; - char *reg_buff = alloca (max (S390_FPR_SIZE, DEPRECATED_REGISTER_SIZE)), *value; + /* Let's ignore the PSW mask, it will not be restored anyway. */ + sigreg_ptr += word_size; - if (TYPE_CODE (valtype) == TYPE_CODE_FLT) + /* Next comes the PSW address. */ + info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr; + sigreg_ptr += word_size; + + /* Then the GPRs. */ + for (i = 0; i < 16; i++) { - if (TYPE_LENGTH (valtype) == 4 - || TYPE_LENGTH (valtype) == 8) - deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM), - valbuf, TYPE_LENGTH (valtype)); - else - error ("GDB is unable to return `long double' values " - "on this architecture."); + info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr; + sigreg_ptr += word_size; } - else + + /* Then the ACRs. */ + for (i = 0; i < 16; i++) + { + info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr; + sigreg_ptr += 4; + } + + /* The floating-point control word. */ + info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr; + sigreg_ptr += 8; + + /* And finally the FPRs. */ + for (i = 0; i < 16; i++) { - value = - s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen); - /* Everything else is returned in GPR2 and up. */ - deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + 2), - value, arglen); + info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr; + sigreg_ptr += 8; } + + /* Restore the previous frame's SP. */ + prev_sp = read_memory_unsigned_integer ( + info->saved_regs[S390_SP_REGNUM].addr, + word_size); + + /* Determine our frame base. */ + info->frame_base = prev_sp + 16*word_size + 32; + + return info; +} + +static void +s390_sigtramp_frame_this_id (struct frame_info *next_frame, + void **this_prologue_cache, + struct frame_id *this_id) +{ + struct s390_sigtramp_unwind_cache *info + = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); + *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame)); } +static void +s390_sigtramp_frame_prev_register (struct frame_info *next_frame, + void **this_prologue_cache, + int regnum, int *optimizedp, + enum lval_type *lvalp, CORE_ADDR *addrp, + int *realnump, gdb_byte *bufferp) +{ + struct s390_sigtramp_unwind_cache *info + = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); + trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, + optimizedp, lvalp, addrp, realnump, bufferp); +} + +static const struct frame_unwind s390_sigtramp_frame_unwind = { + SIGTRAMP_FRAME, + s390_sigtramp_frame_this_id, + s390_sigtramp_frame_prev_register +}; -/* Not the most efficent code in the world */ -static int -s390_fp_regnum (void) +static const struct frame_unwind * +s390_sigtramp_frame_sniffer (struct frame_info *next_frame) { - int regno = S390_SP_REGNUM; - struct frame_extra_info fextra_info; + CORE_ADDR pc = frame_pc_unwind (next_frame); + bfd_byte sigreturn[2]; - CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM)); + if (read_memory_nobpt (pc, sigreturn, 2)) + return NULL; + + if (sigreturn[0] != 0x0a /* svc */) + return NULL; - s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info, - NULL, 1); - if (fextra_info.frame_pointer_saved_pc) - regno = S390_FRAME_REGNUM; - return regno; + if (sigreturn[1] != 119 /* sigreturn */ + && sigreturn[1] != 173 /* rt_sigreturn */) + return NULL; + + return &s390_sigtramp_frame_unwind; } + +/* Frame base handling. */ + static CORE_ADDR -s390_read_fp (void) +s390_frame_base_address (struct frame_info *next_frame, void **this_cache) { - return read_register (s390_fp_regnum ()); + struct s390_unwind_cache *info + = s390_frame_unwind_cache (next_frame, this_cache); + return info->frame_base; } - -static void -s390_pop_frame_regular (struct frame_info *frame) +static CORE_ADDR +s390_local_base_address (struct frame_info *next_frame, void **this_cache) { - int regnum; + struct s390_unwind_cache *info + = s390_frame_unwind_cache (next_frame, this_cache); + return info->local_base; +} - write_register (S390_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame)); +static const struct frame_base s390_frame_base = { + &s390_frame_unwind, + s390_frame_base_address, + s390_local_base_address, + s390_local_base_address +}; - /* Restore any saved registers. */ - if (deprecated_get_frame_saved_regs (frame)) - { - for (regnum = 0; regnum < NUM_REGS; regnum++) - if (deprecated_get_frame_saved_regs (frame)[regnum] != 0) - { - ULONGEST value; - - value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum], - DEPRECATED_REGISTER_RAW_SIZE (regnum)); - write_register (regnum, value); - } - - /* Actually cut back the stack. Remember that the SP's element of - saved_regs is the old SP itself, not the address at which it is - saved. */ - write_register (S390_SP_REGNUM, deprecated_get_frame_saved_regs (frame)[S390_SP_REGNUM]); - } +static CORE_ADDR +s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + ULONGEST pc; + pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM); + return gdbarch_addr_bits_remove (gdbarch, pc); +} - /* Throw away any cached frame information. */ - flush_cached_frames (); +static CORE_ADDR +s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + ULONGEST sp; + sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); + return gdbarch_addr_bits_remove (gdbarch, sp); } -/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the - machine state that was in effect before the frame was created. - Used in the contexts of the "return" command, and of - target function calls from the debugger. */ +/* DWARF-2 frame support. */ + static void -s390_pop_frame (void) +s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, + struct dwarf2_frame_state_reg *reg, + struct frame_info *next_frame) { - /* This function checks for and handles generic dummy frames, and - calls back to our function for ordinary frames. */ - generic_pop_current_frame (s390_pop_frame_regular); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + switch (tdep->abi) + { + case ABI_LINUX_S390: + /* Call-saved registers. */ + if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) + || regnum == S390_F4_REGNUM + || regnum == S390_F6_REGNUM) + reg->how = DWARF2_FRAME_REG_SAME_VALUE; + + /* Call-clobbered registers. */ + else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM) + || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM + && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM)) + reg->how = DWARF2_FRAME_REG_UNDEFINED; + + /* The return address column. */ + else if (regnum == S390_PC_REGNUM) + reg->how = DWARF2_FRAME_REG_RA; + break; + + case ABI_LINUX_ZSERIES: + /* Call-saved registers. */ + if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) + || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)) + reg->how = DWARF2_FRAME_REG_SAME_VALUE; + + /* Call-clobbered registers. */ + else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM) + || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM)) + reg->how = DWARF2_FRAME_REG_UNDEFINED; + + /* The return address column. */ + else if (regnum == S390_PC_REGNUM) + reg->how = DWARF2_FRAME_REG_RA; + break; + } } +/* Dummy function calls. */ + /* Return non-zero if TYPE is an integer-like type, zero otherwise. "Integer-like" types are those that should be passed the way integers are: integers, enums, ranges, characters, and booleans. */ @@ -2035,7 +1779,6 @@ is_integer_like (struct type *type) || code == TYPE_CODE_BOOL); } - /* Return non-zero if TYPE is a pointer-like type, zero otherwise. "Pointer-like" types are those that should be passed the way pointers are: pointers and references. */ @@ -2062,17 +1805,21 @@ is_pointer_like (struct type *type) ... and so on. - WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC - passes all float singletons and double singletons as if they were - simply floats or doubles. This is *not* what the ABI says it - should do. */ + All such structures are passed as if they were floats or doubles, + as the (revised) ABI says. */ static int is_float_singleton (struct type *type) { - return (TYPE_CODE (type) == TYPE_CODE_STRUCT - && TYPE_NFIELDS (type) == 1 - && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT - || is_float_singleton (TYPE_FIELD_TYPE (type, 0)))); + if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) + { + struct type *singleton_type = TYPE_FIELD_TYPE (type, 0); + CHECK_TYPEDEF (singleton_type); + + return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT + || is_float_singleton (singleton_type)); + } + + return 0; } @@ -2111,89 +1858,66 @@ is_float_like (struct type *type) } -/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as - defined by the parameter passing conventions described in the - "GNU/Linux for S/390 ELF Application Binary Interface Supplement". - Otherwise, return zero. */ static int -is_double_or_float (struct type *type) +is_power_of_two (unsigned int n) { - return (is_float_like (type) - && (TYPE_LENGTH (type) == 4 - || TYPE_LENGTH (type) == 8)); + return ((n & (n - 1)) == 0); } - -/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the - parameter passing conventions described in the "GNU/Linux for S/390 - ELF Application Binary Interface Supplement". Return zero - otherwise. */ +/* Return non-zero if TYPE should be passed as a pointer to a copy, + zero otherwise. */ static int -is_double_arg (struct type *type) +s390_function_arg_pass_by_reference (struct type *type) { unsigned length = TYPE_LENGTH (type); + if (length > 8) + return 1; - /* The s390x ABI doesn't handle DOUBLE_ARGS specially. */ - if (GDB_TARGET_IS_ESAME) - return 0; - - return ((is_integer_like (type) - || is_struct_like (type)) - && length == 8); + /* FIXME: All complex and vector types are also returned by reference. */ + return is_struct_like (type) && !is_power_of_two (length); } - -/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by - the parameter passing conventions described in the "GNU/Linux for - S/390 ELF Application Binary Interface Supplement". Return zero - otherwise. */ +/* Return non-zero if TYPE should be passed in a float register + if possible. */ static int -is_simple_arg (struct type *type) +s390_function_arg_float (struct type *type) { unsigned length = TYPE_LENGTH (type); + if (length > 8) + return 0; - /* This is almost a direct translation of the ABI's language, except - that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */ - return ((is_integer_like (type) && length <= DEPRECATED_REGISTER_SIZE) - || is_pointer_like (type) - || (is_struct_like (type) && !is_double_arg (type))); -} - - -static int -is_power_of_two (unsigned int n) -{ - return ((n & (n - 1)) == 0); + return is_float_like (type); } -/* Return non-zero if TYPE should be passed as a pointer to a copy, - zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by - `is_simple_arg'. */ +/* Return non-zero if TYPE should be passed in an integer register + (or a pair of integer registers) if possible. */ static int -pass_by_copy_ref (struct type *type) +s390_function_arg_integer (struct type *type) { unsigned length = TYPE_LENGTH (type); + if (length > 8) + return 0; - return (is_struct_like (type) - && !(is_power_of_two (length) && length <= DEPRECATED_REGISTER_SIZE)); + return is_integer_like (type) + || is_pointer_like (type) + || (is_struct_like (type) && is_power_of_two (length)); } - /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full word as required for the ABI. */ static LONGEST extend_simple_arg (struct value *arg) { - struct type *type = VALUE_TYPE (arg); + struct type *type = value_type (arg); /* Even structs get passed in the least significant bits of the register / memory word. It's not really right to extract them as an integer, but it does take care of the extension. */ if (TYPE_UNSIGNED (type)) - return extract_unsigned_integer (VALUE_CONTENTS (arg), + return extract_unsigned_integer (value_contents (arg), TYPE_LENGTH (type)); else - return extract_signed_integer (VALUE_CONTENTS (arg), + return extract_signed_integer (value_contents (arg), TYPE_LENGTH (type)); } @@ -2249,63 +1973,42 @@ alignment_of (struct type *type) Our caller has taken care of any type promotions needed to satisfy prototypes or the old K&R argument-passing rules. */ static CORE_ADDR -s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ +s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, + int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_addr) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + ULONGEST orig_sp; int i; - int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT); - - /* The number of arguments passed by reference-to-copy. */ - int num_copies; /* If the i'th argument is passed as a reference to a copy, then copy_addr[i] is the address of the copy we made. */ CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR)); /* Build the reference-to-copy area. */ - num_copies = 0; for (i = 0; i < nargs; i++) { struct value *arg = args[i]; - struct type *type = VALUE_TYPE (arg); + struct type *type = value_type (arg); unsigned length = TYPE_LENGTH (type); - if (is_simple_arg (type) - && pass_by_copy_ref (type)) + if (s390_function_arg_pass_by_reference (type)) { sp -= length; sp = align_down (sp, alignment_of (type)); - write_memory (sp, VALUE_CONTENTS (arg), length); + write_memory (sp, value_contents (arg), length); copy_addr[i] = sp; - num_copies++; } } /* Reserve space for the parameter area. As a conservative simplification, we assume that everything will be passed on the - stack. */ - { - int i; - - for (i = 0; i < nargs; i++) - { - struct value *arg = args[i]; - struct type *type = VALUE_TYPE (arg); - int length = TYPE_LENGTH (type); - - sp = align_down (sp, alignment_of (type)); - - /* SIMPLE_ARG values get extended to DEPRECATED_REGISTER_SIZE bytes. - Assume every argument is. */ - if (length < DEPRECATED_REGISTER_SIZE) length = DEPRECATED_REGISTER_SIZE; - sp -= length; - } - } + stack. Since every argument larger than 8 bytes will be + passed by reference, we use this simple upper bound. */ + sp -= nargs * 8; - /* Include space for any reference-to-copy pointers. */ - sp = align_down (sp, pointer_size); - sp -= num_copies * pointer_size; - /* After all that, make sure it's still aligned on an eight-byte boundary. */ sp = align_down (sp, 8); @@ -2318,103 +2021,125 @@ s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp, int gr = 2; CORE_ADDR starg = sp; - /* A struct is returned using general register 2 */ + /* A struct is returned using general register 2. */ if (struct_return) - gr++; + { + regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, + struct_addr); + gr++; + } for (i = 0; i < nargs; i++) { struct value *arg = args[i]; - struct type *type = VALUE_TYPE (arg); - - if (is_double_or_float (type) - && fr <= S390_NUM_FP_PARAMETER_REGISTERS * 2 - 2) - { - /* When we store a single-precision value in an FP register, - it occupies the leftmost bits. */ - deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM + fr), - VALUE_CONTENTS (arg), - TYPE_LENGTH (type)); - fr += 2; - } - else if (is_simple_arg (type) - && gr <= 6) - { - /* Do we need to pass a pointer to our copy of this - argument? */ - if (pass_by_copy_ref (type)) - write_register (S390_GP0_REGNUM + gr, copy_addr[i]); - else - write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg)); - - gr++; - } - else if (is_double_arg (type) - && gr <= 5) - { - deprecated_write_register_gen (S390_GP0_REGNUM + gr, - VALUE_CONTENTS (arg)); - deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1, - VALUE_CONTENTS (arg) + DEPRECATED_REGISTER_SIZE); - gr += 2; - } - else - { - /* The `OTHER' case. */ - enum type_code code = TYPE_CODE (type); - unsigned length = TYPE_LENGTH (type); - - /* If we skipped r6 because we couldn't fit a DOUBLE_ARG - in it, then don't go back and use it again later. */ - if (is_double_arg (type) && gr == 6) - gr = 7; - - if (is_simple_arg (type)) - { - /* Simple args are always extended to - DEPRECATED_REGISTER_SIZE bytes. */ - starg = align_up (starg, DEPRECATED_REGISTER_SIZE); - - /* Do we need to pass a pointer to our copy of this - argument? */ - if (pass_by_copy_ref (type)) - write_memory_signed_integer (starg, pointer_size, - copy_addr[i]); - else - /* Simple args are always extended to - DEPRECATED_REGISTER_SIZE bytes. */ - write_memory_signed_integer (starg, DEPRECATED_REGISTER_SIZE, - extend_simple_arg (arg)); - starg += DEPRECATED_REGISTER_SIZE; - } - else - { - /* You'd think we should say: - starg = align_up (starg, alignment_of (type)); - Unfortunately, GCC seems to simply align the stack on - a four/eight-byte boundary, even when passing doubles. */ - starg = align_up (starg, S390_STACK_PARAMETER_ALIGNMENT); - write_memory (starg, VALUE_CONTENTS (arg), length); - starg += length; - } - } + struct type *type = value_type (arg); + unsigned length = TYPE_LENGTH (type); + + if (s390_function_arg_pass_by_reference (type)) + { + if (gr <= 6) + { + regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, + copy_addr[i]); + gr++; + } + else + { + write_memory_unsigned_integer (starg, word_size, copy_addr[i]); + starg += word_size; + } + } + else if (s390_function_arg_float (type)) + { + /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments, + the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */ + if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) + { + /* When we store a single-precision value in an FP register, + it occupies the leftmost bits. */ + regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr, + 0, length, value_contents (arg)); + fr += 2; + } + else + { + /* When we store a single-precision value in a stack slot, + it occupies the rightmost bits. */ + starg = align_up (starg + length, word_size); + write_memory (starg - length, value_contents (arg), length); + } + } + else if (s390_function_arg_integer (type) && length <= word_size) + { + if (gr <= 6) + { + /* Integer arguments are always extended to word size. */ + regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr, + extend_simple_arg (arg)); + gr++; + } + else + { + /* Integer arguments are always extended to word size. */ + write_memory_signed_integer (starg, word_size, + extend_simple_arg (arg)); + starg += word_size; + } + } + else if (s390_function_arg_integer (type) && length == 2*word_size) + { + if (gr <= 5) + { + regcache_cooked_write (regcache, S390_R0_REGNUM + gr, + value_contents (arg)); + regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1, + value_contents (arg) + word_size); + gr += 2; + } + else + { + /* If we skipped r6 because we couldn't fit a DOUBLE_ARG + in it, then don't go back and use it again later. */ + gr = 7; + + write_memory (starg, value_contents (arg), length); + starg += length; + } + } + else + internal_error (__FILE__, __LINE__, _("unknown argument type")); } } /* Allocate the standard frame areas: the register save area, the word reserved for the compiler (which seems kind of meaningless), and the back chain pointer. */ - sp -= S390_STACK_FRAME_OVERHEAD; + sp -= 16*word_size + 32; - /* Write the back chain pointer into the first word of the stack - frame. This will help us get backtraces from within functions - called from GDB. */ - write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT), - deprecated_read_fp ()); + /* Store return address. */ + regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); + + /* Store updated stack pointer. */ + regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp); - return sp; + /* We need to return the 'stack part' of the frame ID, + which is actually the top of the register save area. */ + return sp + 16*word_size + 32; } +/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that + dummy frame. The frame ID's base needs to match the TOS value + returned by push_dummy_call, and the PC match the dummy frame's + breakpoint. */ +static struct frame_id +s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + CORE_ADDR sp = s390_unwind_sp (gdbarch, next_frame); + + return frame_id_build (sp + 16*word_size + 32, + frame_pc_unwind (next_frame)); +} static CORE_ADDR s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) @@ -2425,88 +2150,127 @@ s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) } -static int -s390_use_struct_convention (int gcc_p, struct type *value_type) -{ - enum type_code code = TYPE_CODE (value_type); +/* Function return value access. */ - return (code == TYPE_CODE_STRUCT - || code == TYPE_CODE_UNION); -} +static enum return_value_convention +s390_return_value_convention (struct gdbarch *gdbarch, struct type *type) +{ + int length = TYPE_LENGTH (type); + if (length > 8) + return RETURN_VALUE_STRUCT_CONVENTION; + switch (TYPE_CODE (type)) + { + case TYPE_CODE_STRUCT: + case TYPE_CODE_UNION: + case TYPE_CODE_ARRAY: + return RETURN_VALUE_STRUCT_CONVENTION; -/* Return the GDB type object for the "standard" data type - of data in register N. */ -static struct type * -s390_register_virtual_type (int regno) -{ - if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS) - return builtin_type_double; - else - return builtin_type_int; + default: + return RETURN_VALUE_REGISTER_CONVENTION; + } } - -static struct type * -s390x_register_virtual_type (int regno) +static enum return_value_convention +s390_return_value (struct gdbarch *gdbarch, struct type *type, + struct regcache *regcache, gdb_byte *out, + const gdb_byte *in) { - return (regno == S390_FPC_REGNUM) || - (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int : - (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long; -} + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + int length = TYPE_LENGTH (type); + enum return_value_convention rvc = + s390_return_value_convention (gdbarch, type); + if (in) + { + switch (rvc) + { + case RETURN_VALUE_REGISTER_CONVENTION: + if (TYPE_CODE (type) == TYPE_CODE_FLT) + { + /* When we store a single-precision value in an FP register, + it occupies the leftmost bits. */ + regcache_cooked_write_part (regcache, S390_F0_REGNUM, + 0, length, in); + } + else if (length <= word_size) + { + /* Integer arguments are always extended to word size. */ + if (TYPE_UNSIGNED (type)) + regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, + extract_unsigned_integer (in, length)); + else + regcache_cooked_write_signed (regcache, S390_R2_REGNUM, + extract_signed_integer (in, length)); + } + else if (length == 2*word_size) + { + regcache_cooked_write (regcache, S390_R2_REGNUM, in); + regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size); + } + else + internal_error (__FILE__, __LINE__, _("invalid return type")); + break; + case RETURN_VALUE_STRUCT_CONVENTION: + error (_("Cannot set function return value.")); + break; + } + } + else if (out) + { + switch (rvc) + { + case RETURN_VALUE_REGISTER_CONVENTION: + if (TYPE_CODE (type) == TYPE_CODE_FLT) + { + /* When we store a single-precision value in an FP register, + it occupies the leftmost bits. */ + regcache_cooked_read_part (regcache, S390_F0_REGNUM, + 0, length, out); + } + else if (length <= word_size) + { + /* Integer arguments occupy the rightmost bits. */ + regcache_cooked_read_part (regcache, S390_R2_REGNUM, + word_size - length, length, out); + } + else if (length == 2*word_size) + { + regcache_cooked_read (regcache, S390_R2_REGNUM, out); + regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size); + } + else + internal_error (__FILE__, __LINE__, _("invalid return type")); + break; + case RETURN_VALUE_STRUCT_CONVENTION: + error (_("Function return value unknown.")); + break; + } + } -static void -s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) -{ - write_register (S390_GP0_REGNUM + 2, addr); + return rvc; } +/* Breakpoints. */ -static const unsigned char * +static const gdb_byte * s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) { - static unsigned char breakpoint[] = { 0x0, 0x1 }; + static const gdb_byte breakpoint[] = { 0x0, 0x1 }; *lenptr = sizeof (breakpoint); return breakpoint; } -/* Advance PC across any function entry prologue instructions to reach some - "real" code. */ -static CORE_ADDR -s390_skip_prologue (CORE_ADDR pc) -{ - struct frame_extra_info fextra_info; - - s390_get_frame_info (pc, &fextra_info, NULL, 1); - return fextra_info.skip_prologue_function_start; -} -/* Immediately after a function call, return the saved pc. - Can't go through the frames for this because on some machines - the new frame is not set up until the new function executes - some instructions. */ -static CORE_ADDR -s390_saved_pc_after_call (struct frame_info *frame) -{ - return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM)); -} +/* Address handling. */ static CORE_ADDR s390_addr_bits_remove (CORE_ADDR addr) { - return (addr) & 0x7fffffff; -} - - -static CORE_ADDR -s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp) -{ - write_register (S390_RETADDR_REGNUM, entry_point_address ()); - return sp; + return addr & 0x7fffffff; } static int @@ -2540,13 +2304,13 @@ s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name return 0; } +/* Set up gdbarch struct. */ + static struct gdbarch * s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { - static LONGEST s390_call_dummy_words[] = { 0 }; struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; - int elf_flags; /* First see if there is already a gdbarch that can satisfy the request. */ arches = gdbarch_list_lookup_by_info (arches, &info); @@ -2558,91 +2322,86 @@ s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) return NULL; /* No; then it's not for us. */ /* Yes: create a new gdbarch for the specified machine type. */ - gdbarch = gdbarch_alloc (&info, NULL); - - /* NOTE: cagney/2002-12-06: This can be deleted when this arch is - ready to unwind the PC first (see frame.c:get_prev_frame()). */ - set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default); + tdep = XCALLOC (1, struct gdbarch_tdep); + gdbarch = gdbarch_alloc (&info, tdep); set_gdbarch_believe_pcc_promotion (gdbarch, 0); set_gdbarch_char_signed (gdbarch, 0); - set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain); - set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs); - set_gdbarch_deprecated_store_struct_return (gdbarch, s390_store_struct_return); - set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value); - set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value); /* Amount PC must be decremented by after a breakpoint. This is - often the number of bytes returned by BREAKPOINT_FROM_PC but not + often the number of bytes returned by gdbarch_breakpoint_from_pc but not always. */ set_gdbarch_decr_pc_after_break (gdbarch, 2); - set_gdbarch_deprecated_pop_frame (gdbarch, s390_pop_frame); /* Stack grows downward. */ set_gdbarch_inner_than (gdbarch, core_addr_lessthan); - set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8); - set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8); set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc); set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue); - set_gdbarch_deprecated_init_extra_frame_info (gdbarch, s390_init_extra_frame_info); - set_gdbarch_deprecated_init_frame_pc_first (gdbarch, s390_init_frame_pc_first); - set_gdbarch_deprecated_target_read_fp (gdbarch, s390_read_fp); - /* This function that tells us whether the function invocation represented - by FI does not have a frame on the stack associated with it. If it - does not, FRAMELESS is set to 1, else 0. */ - set_gdbarch_frameless_function_invocation (gdbarch, - s390_frameless_function_invocation); - /* Return saved PC from a frame */ - set_gdbarch_deprecated_frame_saved_pc (gdbarch, s390_frame_saved_pc); - /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and - produces the frame's chain-pointer. */ - set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain); - set_gdbarch_deprecated_saved_pc_after_call (gdbarch, s390_saved_pc_after_call); - set_gdbarch_deprecated_register_byte (gdbarch, s390_register_byte); + set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p); + set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM); set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM); - set_gdbarch_deprecated_fp_regnum (gdbarch, S390_FP_REGNUM); - set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM); + set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM); set_gdbarch_num_regs (gdbarch, S390_NUM_REGS); - set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register); - set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register); - set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention); + set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS); set_gdbarch_register_name (gdbarch, s390_register_name); - set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum); - set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum); - set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum); - set_gdbarch_deprecated_extract_struct_value_address (gdbarch, s390_cannot_extract_struct_value_address); - - /* Parameters for inferior function calls. */ - set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); + set_gdbarch_register_type (gdbarch, s390_register_type); + set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); + set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); + set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); + set_gdbarch_value_from_register (gdbarch, s390_value_from_register); + set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p); + set_gdbarch_regset_from_core_section (gdbarch, + s390_regset_from_core_section); + + /* Inferior function calls. */ + set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call); + set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id); set_gdbarch_frame_align (gdbarch, s390_frame_align); - set_gdbarch_deprecated_push_arguments (gdbarch, s390_push_arguments); - set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); - set_gdbarch_deprecated_push_return_address (gdbarch, - s390_push_return_address); - set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (s390_call_dummy_words)); - set_gdbarch_deprecated_call_dummy_words (gdbarch, s390_call_dummy_words); + set_gdbarch_return_value (gdbarch, s390_return_value); + + /* Frame handling. */ + dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg); + frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); + frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); + frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer); + frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer); + frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer); + frame_base_set_default (gdbarch, &s390_frame_base); + set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc); + set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp); switch (info.bfd_arch_info->mach) { case bfd_mach_s390_31: - set_gdbarch_deprecated_register_size (gdbarch, 4); - set_gdbarch_deprecated_register_raw_size (gdbarch, s390_register_raw_size); - set_gdbarch_deprecated_register_virtual_size (gdbarch, s390_register_raw_size); - set_gdbarch_deprecated_register_virtual_type (gdbarch, s390_register_virtual_type); + tdep->abi = ABI_LINUX_S390; + + tdep->gregset = &s390_gregset; + tdep->sizeof_gregset = s390_sizeof_gregset; + tdep->fpregset = &s390_fpregset; + tdep->sizeof_fpregset = s390_sizeof_fpregset; set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove); - set_gdbarch_deprecated_register_bytes (gdbarch, S390_REGISTER_BYTES); + set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write); + set_solib_svr4_fetch_link_map_offsets + (gdbarch, svr4_ilp32_fetch_link_map_offsets); + break; case bfd_mach_s390_64: - set_gdbarch_deprecated_register_size (gdbarch, 8); - set_gdbarch_deprecated_register_raw_size (gdbarch, s390x_register_raw_size); - set_gdbarch_deprecated_register_virtual_size (gdbarch, s390x_register_raw_size); - set_gdbarch_deprecated_register_virtual_type (gdbarch, s390x_register_virtual_type); + tdep->abi = ABI_LINUX_ZSERIES; + + tdep->gregset = &s390x_gregset; + tdep->sizeof_gregset = s390x_sizeof_gregset; + tdep->fpregset = &s390_fpregset; + tdep->sizeof_fpregset = s390_sizeof_fpregset; set_gdbarch_long_bit (gdbarch, 64); set_gdbarch_long_long_bit (gdbarch, 64); set_gdbarch_ptr_bit (gdbarch, 64); - set_gdbarch_deprecated_register_bytes (gdbarch, S390X_REGISTER_BYTES); + set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write); + set_solib_svr4_fetch_link_map_offsets + (gdbarch, svr4_lp64_fetch_link_map_offsets); set_gdbarch_address_class_type_flags (gdbarch, s390_address_class_type_flags); set_gdbarch_address_class_type_flags_to_name (gdbarch, @@ -2652,11 +2411,14 @@ s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) break; } - /* Should be using push_dummy_call. */ - set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp); - set_gdbarch_print_insn (gdbarch, print_insn_s390); + set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); + + /* Enable TLS support. */ + set_gdbarch_fetch_tls_load_module_address (gdbarch, + svr4_fetch_objfile_link_map); + return gdbarch; }