uint64_t reg_id = raz_wi_reg_ids[i];
uint64_t val;
- vcpu_get_reg(vcpu, reg_id, &val);
+ val = vcpu_get_reg(vcpu, reg_id);
TEST_ASSERT_EQ(val, 0);
/*
*/
vcpu_set_reg(vcpu, reg_id, BAD_ID_REG_VAL);
- vcpu_get_reg(vcpu, reg_id, &val);
+ val = vcpu_get_reg(vcpu, reg_id);
TEST_ASSERT_EQ(val, 0);
}
}
uint64_t reg_id = raz_invariant_reg_ids[i];
uint64_t val;
- vcpu_get_reg(vcpu, reg_id, &val);
+ val = vcpu_get_reg(vcpu, reg_id);
TEST_ASSERT_EQ(val, 0);
r = __vcpu_set_reg(vcpu, reg_id, BAD_ID_REG_VAL);
TEST_ASSERT(r < 0 && errno == EINVAL,
"unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
- vcpu_get_reg(vcpu, reg_id, &val);
+ val = vcpu_get_reg(vcpu, reg_id);
TEST_ASSERT_EQ(val, 0);
}
}
{
uint64_t val, el0;
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
+ val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
return el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY;
TEST_ASSERT(ss_enable, "Unexpected KVM_EXIT_DEBUG");
/* Check if the current pc is expected. */
- vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc);
+ pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
TEST_ASSERT(!test_pc || pc == test_pc,
"Unexpected pc 0x%lx (expected 0x%lx)",
pc, test_pc);
uint64_t aa64dfr0;
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &aa64dfr0);
+ aa64dfr0 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1));
__TEST_REQUIRE(debug_version(aa64dfr0) >= 6,
"Armv8 debug architecture not supported.");
kvm_vm_free(vm);
const struct kvm_fw_reg_info *reg_info = &fw_reg_info[i];
/* First 'read' should be an upper limit of the features supported */
- vcpu_get_reg(vcpu, reg_info->reg, &val);
+ val = vcpu_get_reg(vcpu, reg_info->reg);
TEST_ASSERT(val == FW_REG_ULIMIT_VAL(reg_info->max_feat_bit),
"Expected all the features to be set for reg: 0x%lx; expected: 0x%lx; read: 0x%lx",
reg_info->reg, FW_REG_ULIMIT_VAL(reg_info->max_feat_bit), val);
"Failed to clear all the features of reg: 0x%lx; ret: %d",
reg_info->reg, errno);
- vcpu_get_reg(vcpu, reg_info->reg, &val);
+ val = vcpu_get_reg(vcpu, reg_info->reg);
TEST_ASSERT(val == 0,
"Expected all the features to be cleared for reg: 0x%lx", reg_info->reg);
* Before starting the VM, the test clears all the bits.
* Check if that's still the case.
*/
- vcpu_get_reg(vcpu, reg_info->reg, &val);
+ val = vcpu_get_reg(vcpu, reg_info->reg);
TEST_ASSERT(val == 0,
"Expected all the features to be cleared for reg: 0x%lx",
reg_info->reg);
uint64_t pfr0;
vm = vm_create_with_one_vcpu(&vcpu, NULL);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &pfr0);
+ pfr0 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
__TEST_REQUIRE(FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), pfr0),
"GICv3 not supported.");
kvm_vm_free(vm);
{
uint64_t obs_pc, obs_x0;
- vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &obs_pc);
- vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.regs[0]), &obs_x0);
+ obs_pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
+ obs_x0 = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.regs[0]));
TEST_ASSERT(obs_pc == CPU_ON_ENTRY_ADDR,
"unexpected target cpu pc: %lx (expected: %lx)",
*/
vcpu_power_off(target);
- vcpu_get_reg(target, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &target_mpidr);
+ target_mpidr = vcpu_get_reg(target, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1));
vcpu_args_set(source, 1, target_mpidr & MPIDR_HWID_BITMASK);
enter_guest(source);
setup_vm(guest_test_system_off2, &source, &target);
- vcpu_get_reg(target, KVM_REG_ARM_PSCI_VERSION, &psci_version);
+ psci_version = vcpu_get_reg(target, KVM_REG_ARM_PSCI_VERSION);
TEST_ASSERT(psci_version >= PSCI_VERSION(1, 3),
"Unexpected PSCI version %lu.%lu",
uint64_t mask = ftr_bits->mask;
uint64_t val, new_val, ftr;
- vcpu_get_reg(vcpu, reg, &val);
+ val = vcpu_get_reg(vcpu, reg);
ftr = (val & mask) >> shift;
ftr = get_safe_value(ftr_bits, ftr);
val |= ftr;
vcpu_set_reg(vcpu, reg, val);
- vcpu_get_reg(vcpu, reg, &new_val);
+ new_val = vcpu_get_reg(vcpu, reg);
TEST_ASSERT_EQ(new_val, val);
return new_val;
uint64_t val, old_val, ftr;
int r;
- vcpu_get_reg(vcpu, reg, &val);
+ val = vcpu_get_reg(vcpu, reg);
ftr = (val & mask) >> shift;
ftr = get_invalid_value(ftr_bits, ftr);
TEST_ASSERT(r < 0 && errno == EINVAL,
"Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
- vcpu_get_reg(vcpu, reg, &val);
+ val = vcpu_get_reg(vcpu, reg);
TEST_ASSERT_EQ(val, old_val);
}
}
/* Get the id register value */
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
+ val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
/* Try to set MPAM=0. This should always be possible. */
val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
}
/* Get the id register value */
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), &val);
+ val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
/* Try to set MPAM_frac=0. This should always be possible. */
val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
uint64_t clidr;
int level;
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), &clidr);
+ clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
/* find the first empty level in the cache hierarchy */
for (level = 1; level < 7; level++) {
{
u64 ctr;
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), &ctr);
+ ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
ctr &= ~CTR_EL0_DIC_MASK;
if (ctr & CTR_EL0_IminLine_MASK)
ctr--;
test_clidr(vcpu);
test_ctr(vcpu);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &val);
+ val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1));
val++;
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), val);
size_t idx = encoding_to_range_idx(encoding);
uint64_t observed;
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding), &observed);
+ observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
TEST_ASSERT_EQ(test_reg_vals[idx], observed);
}
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
/* Check for AARCH64 only system */
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
+ val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
aarch64_only = (el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
"Failed to create vgic-v3, skipping");
/* Make sure that PMUv3 support is indicated in the ID register */
- vcpu_get_reg(vpmu_vm.vcpu,
- KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &dfr0);
+ dfr0 = vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1));
pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
create_vpmu_vm(guest_code);
vcpu = vpmu_vm.vcpu;
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr_orig);
+ pmcr_orig = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0));
pmcr = pmcr_orig;
/*
*/
set_pmcr_n(&pmcr, pmcr_n);
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
+ pmcr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0));
if (expect_fail)
TEST_ASSERT(pmcr_orig == pmcr,
vcpu = vpmu_vm.vcpu;
/* Save the initial sp to restore them later to run the guest again */
- vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1), &sp);
+ sp = vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1));
run_vcpu(vcpu, pmcr_n);
* Test if the 'set' and 'clr' variants of the registers
* are initialized based on the number of valid counters.
*/
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), ®_val);
+ reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id));
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(set_reg_id), reg_val);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), ®_val);
+ reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id));
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
*/
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), ®_val);
+ reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id));
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(set_reg_id), reg_val);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), ®_val);
+ reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id));
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
uint64_t pmcr;
create_vpmu_vm(guest_code);
- vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
+ pmcr = vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0));
destroy_vpmu_vm();
return get_pmcr_n(pmcr);
}
return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
}
-static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
+static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
{
- struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
+ uint64_t val;
+ struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
+ return val;
}
static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
{
*/
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), &sctlr_el1);
- vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), &tcr_el1);
+ sctlr_el1 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1));
+ tcr_el1 = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1));
/* Configure base granule size */
switch (vm->mode) {
{
uint64_t pstate, pc;
- vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate), &pstate);
- vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc);
+ pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate));
+ pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
indent, "", pstate, pc);
{
struct kvm_riscv_core core;
- vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6);
+ core.mode = vcpu_get_reg(vcpu, RISCV_CORE_REG(mode));
+ core.regs.pc = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc));
+ core.regs.ra = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra));
+ core.regs.sp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp));
+ core.regs.gp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp));
+ core.regs.tp = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp));
+ core.regs.t0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0));
+ core.regs.t1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1));
+ core.regs.t2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2));
+ core.regs.s0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0));
+ core.regs.s1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1));
+ core.regs.a0 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0));
+ core.regs.a1 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1));
+ core.regs.a2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2));
+ core.regs.a3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3));
+ core.regs.a4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4));
+ core.regs.a5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5));
+ core.regs.a6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6));
+ core.regs.a7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7));
+ core.regs.s2 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2));
+ core.regs.s3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3));
+ core.regs.s4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4));
+ core.regs.s5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5));
+ core.regs.s6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6));
+ core.regs.s7 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7));
+ core.regs.s8 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8));
+ core.regs.s9 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9));
+ core.regs.s10 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10));
+ core.regs.s11 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11));
+ core.regs.t3 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3));
+ core.regs.t4 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4));
+ core.regs.t5 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5));
+ core.regs.t6 = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6));
fprintf(stream,
" MODE: 0x%lx\n", core.mode);
vcpu_init_vector_tables(vcpus[i]);
/* Initialize guest timer frequency. */
- vcpu_get_reg(vcpus[0], RISCV_TIMER_REG(frequency), &timer_freq);
+ timer_freq = vcpu_get_reg(vcpus[0], RISCV_TIMER_REG(frequency));
sync_global_to_guest(vm, timer_freq);
pr_debug("timer_freq: %lu\n", timer_freq);
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_DEBUG);
- vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &pc);
+ pc = vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc));
TEST_ASSERT_EQ(pc, LABEL_ADDRESS(sw_bp_1));
/* skip sw_bp_1 */
vcpu_init_vector_tables(vcpu);
/* Initialize guest timer frequency. */
- vcpu_get_reg(vcpu, RISCV_TIMER_REG(frequency), &timer_freq);
+ timer_freq = vcpu_get_reg(vcpu, RISCV_TIMER_REG(frequency));
sync_global_to_guest(vm, timer_freq);
run_vcpu(vcpu);
{
uint64_t eval_reg;
- vcpu_get_reg(vcpu, id, &eval_reg);
+ eval_reg = vcpu_get_reg(vcpu, id);
TEST_ASSERT(eval_reg == value, "value == 0x%lx", value);
}
static bool is_steal_time_supported(struct kvm_vcpu *vcpu)
{
uint64_t id = RISCV_SBI_EXT_REG(KVM_RISCV_SBI_EXT_STA);
- unsigned long enabled;
+ unsigned long enabled = vcpu_get_reg(vcpu, id);
- vcpu_get_reg(vcpu, id, &enabled);
TEST_ASSERT(enabled == 0 || enabled == 1, "Expected boolean result");
return enabled;