]> git.ipfire.org Git - thirdparty/u-boot.git/commitdiff
stm32mp1: ram: add tuning in DDR interactive mode
authorPatrick Delaunay <patrick.delaunay@st.com>
Wed, 10 Apr 2019 12:09:29 +0000 (14:09 +0200)
committerPatrice Chotard <patrice.chotard@st.com>
Thu, 23 May 2019 09:38:11 +0000 (11:38 +0200)
Add command tuning for DDR interactive mode, used during
board bring-up or with CubeMX DDR tools to execute software
tuning for the DDR configuration:
- software read DQS Gating (replace the built-in one)
- Bit de-skew
- Eye Training or DQS training

Signed-off-by: Patrick Delaunay <patrick.delaunay@st.com>
drivers/ram/stm32mp1/Kconfig
drivers/ram/stm32mp1/Makefile
drivers/ram/stm32mp1/stm32mp1_ddr_regs.h
drivers/ram/stm32mp1/stm32mp1_interactive.c
drivers/ram/stm32mp1/stm32mp1_tests.h
drivers/ram/stm32mp1/stm32mp1_tuning.c [new file with mode: 0644]

index 4e682b4edff2f7d27fbf45d724829b14b91a2d51..2fd8c7b7e3b89a10f3ac6eedc1bd66a35cc4329b 100644 (file)
@@ -37,3 +37,13 @@ config STM32MP1_DDR_TESTS
        help
                activate test support for interactive support in
                STM32MP1 DDR controller driver: command test
+
+config STM32MP1_DDR_TUNING
+       bool "STM32MP1 DDR driver : support of tuning"
+       depends on STM32MP1_DDR_INTERACTIVE
+       default y
+       help
+               activate tuning command in STM32MP1 DDR interactive mode
+               used for DDR tuning tools
+               - DQ Deskew algorithm
+               - DQS Trimming
index 71ded6bed40f51ef1aa43adcde7ce2aa67e48175..e1e9135603a06495601b296ab5c1368954627bc6 100644 (file)
@@ -8,6 +8,7 @@ obj-y += stm32mp1_ddr.o
 
 obj-$(CONFIG_STM32MP1_DDR_INTERACTIVE) += stm32mp1_interactive.o
 obj-$(CONFIG_STM32MP1_DDR_TESTS) += stm32mp1_tests.o
+obj-$(CONFIG_STM32MP1_DDR_TUNING) += stm32mp1_tuning.o
 
 ifneq ($(DDR_INTERACTIVE),)
 CFLAGS_stm32mp1_interactive.o += -DCONFIG_STM32MP1_DDR_INTERACTIVE_FORCE=y
index 97f268e66dddf6bdd558686a8f668abb8d93c2cd..9d33186b3a25cc7df109db3339d719b21f715b5d 100644 (file)
@@ -332,6 +332,7 @@ struct stm32mp1_ddrphy {
 
 #define DDRPHYC_DXNGCR_DXEN                    BIT(0)
 
+#define DDRPHYC_DXNDLLCR_DLLSRST               BIT(30)
 #define DDRPHYC_DXNDLLCR_DLLDIS                        BIT(31)
 #define DDRPHYC_DXNDLLCR_SDPHASE_MASK          GENMASK(17, 14)
 #define DDRPHYC_DXNDLLCR_SDPHASE_SHIFT         14
index 62d61ac869b42ecac67c754363f9de688353a8ec..cc9b2e7c96c96e5c8fd4af70fa796cea99ebad19 100644 (file)
@@ -54,6 +54,9 @@ enum ddr_command stm32mp1_get_command(char *cmd, int argc)
                [DDR_CMD_GO] = "go",
 #ifdef CONFIG_STM32MP1_DDR_TESTS
                [DDR_CMD_TEST] = "test",
+#endif
+#ifdef CONFIG_STM32MP1_DDR_TUNING
+               [DDR_CMD_TUNING] = "tuning",
 #endif
        };
        /* min and max number of argument */
@@ -70,6 +73,9 @@ enum ddr_command stm32mp1_get_command(char *cmd, int argc)
                [DDR_CMD_GO] = { 0, 0 },
 #ifdef CONFIG_STM32MP1_DDR_TESTS
                [DDR_CMD_TEST] = { 0, 255 },
+#endif
+#ifdef CONFIG_STM32MP1_DDR_TUNING
+               [DDR_CMD_TUNING] = { 0, 255 },
 #endif
        };
        int i;
@@ -114,6 +120,9 @@ static void stm32mp1_do_usage(void)
                "reset                      reboots machine\n"
 #ifdef CONFIG_STM32MP1_DDR_TESTS
                "test [help] | <n> [...]    lists (with help) or executes test <n>\n"
+#endif
+#ifdef CONFIG_STM32MP1_DDR_TUNING
+               "tuning [help] | <n> [...]  lists (with help) or execute tuning <n>\n"
 #endif
                "\nwith for [type|reg]:\n"
                "  all registers if absent\n"
@@ -297,7 +306,7 @@ end:
        return step;
 }
 
-#if defined(CONFIG_STM32MP1_DDR_TESTS)
+#if defined(CONFIG_STM32MP1_DDR_TESTS) || defined(CONFIG_STM32MP1_DDR_TUNING)
 static const char * const s_result[] = {
                [TEST_PASSED] = "Pass",
                [TEST_FAILED] = "Failed",
@@ -457,6 +466,15 @@ bool stm32mp1_ddr_interactive(void *priv,
                        break;
 #endif
 
+#ifdef CONFIG_STM32MP1_DDR_TUNING
+               case DDR_CMD_TUNING:
+                       if (!stm32mp1_check_step(step, STEP_DDR_READY))
+                               continue;
+                       stm32mp1_ddr_subcmd(priv, argc, argv,
+                                           tuning, tuning_nb);
+                       break;
+#endif
+
                default:
                        break;
                }
index 8436780790fee0b898671c11b1809f9ee3d34ba7..55f5d6d93bc863e160f986578459b7a46d941730 100644 (file)
@@ -28,4 +28,7 @@ struct test_desc {
 extern const struct test_desc test[];
 extern const int test_nb;
 
+extern const struct test_desc tuning[];
+extern const int tuning_nb;
+
 #endif
diff --git a/drivers/ram/stm32mp1/stm32mp1_tuning.c b/drivers/ram/stm32mp1/stm32mp1_tuning.c
new file mode 100644 (file)
index 0000000..4e1c1fa
--- /dev/null
@@ -0,0 +1,1380 @@
+// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
+/*
+ * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
+ */
+#include <common.h>
+#include <console.h>
+#include <clk.h>
+#include <ram.h>
+#include <reset.h>
+#include <asm/io.h>
+
+#include "stm32mp1_ddr_regs.h"
+#include "stm32mp1_ddr.h"
+#include "stm32mp1_tests.h"
+
+#define MAX_DQS_PHASE_IDX _144deg
+#define MAX_DQS_UNIT_IDX 7
+#define MAX_GSL_IDX 5
+#define MAX_GPS_IDX 3
+
+/* Number of bytes used in this SW. ( min 1--> max 4). */
+#define NUM_BYTES 4
+
+enum dqs_phase_enum {
+       _36deg = 0,
+       _54deg = 1,
+       _72deg = 2,
+       _90deg = 3,
+       _108deg = 4,
+       _126deg = 5,
+       _144deg = 6
+};
+
+/* BIST Result struct */
+struct BIST_result {
+       /* Overall test result:
+        * 0 Fail (any bit failed) ,
+        * 1 Success (All bits success)
+        */
+       bool test_result;
+       /* 1: true, all fail /  0: False, not all bits fail */
+       bool all_bits_fail;
+       bool bit_i_test_result[8];  /* 0 fail / 1 success */
+};
+
+/* a struct that defines tuning parameters of a byte. */
+struct tuning_position {
+       u8 phase; /* DQS phase */
+       u8 unit; /* DQS unit delay */
+       u32 bits_delay; /* Bits deskew in this byte */
+};
+
+/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
+const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
+
+static u8 BIST_error_max = 1;
+static u32 BIST_seed = 0x1234ABCD;
+
+static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
+{
+       u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
+       u8 nb_bytes = NUM_BYTES;
+
+       switch (data_bus) {
+       case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
+               nb_bytes /= 2;
+               break;
+       case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
+               nb_bytes /= 4;
+               break;
+       default:
+               break;
+       }
+
+       return nb_bytes;
+}
+
+static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
+{
+       stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
+}
+
+/* Read DQ unit delay register and provides the retrieved value for DQS
+ * We are assuming that we have the same delay when clocking
+ * by DQS and when clocking by DQSN
+ */
+static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
+{
+       u32 index;
+       u32 addr = DXNDQTR(phy, byte);
+
+       /* We are assuming that we have the same delay when clocking by DQS
+        * and when clocking by DQSN : use only the low bits
+        */
+       index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
+               & DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
+
+       pr_debug("%s: [%x]: %x => DQ unit index = %x\n",
+                __func__, addr, readl(addr), index);
+
+       return index;
+}
+
+/* Sets the DQS phase delay for a byte lane.
+ *phase delay is specified by giving the index of the desired delay
+ * in the dx_dll_phase array.
+ */
+static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
+{
+       u8 sdphase_val = 0;
+
+       /*      Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
+       sdphase_val = dx_dll_phase[phase_idx];
+       clrsetbits_le32(DXNDLLCR(phy, byte),
+                       DDRPHYC_DXNDLLCR_SDPHASE_MASK,
+                       sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
+}
+
+/* Sets the DQS unit delay for a byte lane.
+ * unit delay is specified by giving the index of the desired delay
+ * for dgsdly and dqsndly (same value).
+ */
+static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
+                          u8 byte, u8 unit_dly_idx)
+{
+       /* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
+       clrsetbits_le32(DXNDQSTR(phy, byte),
+                       DDRPHYC_DXNDQSTR_DQSDLY_MASK |
+                       DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
+                       (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
+                       (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
+
+       /* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
+        * plus PIR.INIT=1) must be issued.
+        */
+       stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
+}
+
+/* Sets the DQ unit delay for a bit line in particular byte lane.
+ * unit delay is specified by giving the desired delay
+ */
+static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
+                             u8 byte, u8 bit,
+                             u8 dq_delay_index)
+{
+       u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
+
+       /* same value on delay for clock DQ an DQS_b */
+       clrsetbits_le32(DXNDQTR(phy, byte),
+                       DDRPHYC_DXNDQTR_DQDLY_MASK
+                       << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
+                       dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
+}
+
+static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
+                            u8 byte, u8 r0dgsl_idx)
+{
+       clrsetbits_le32(DXNDQSTR(phy, byte),
+                       DDRPHYC_DXNDQSTR_R0DGSL_MASK,
+                       r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
+}
+
+static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
+                            u8 byte, u8 r0dgps_idx)
+{
+       clrsetbits_le32(DXNDQSTR(phy, byte),
+                       DDRPHYC_DXNDQSTR_R0DGPS_MASK,
+                       r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
+}
+
+/* Basic BIST configuration for data lane tests. */
+static void config_BIST(struct stm32mp1_ddrphy *phy)
+{
+       /* Selects the SDRAM bank address to be used during BIST. */
+       u32 bbank = 0;
+       /* Selects the SDRAM row address to be used during BIST. */
+       u32 brow = 0;
+       /* Selects the SDRAM column address to be used during BIST. */
+       u32 bcol = 0;
+       /* Selects the value by which the SDRAM address is incremented
+        * for each write/read access.
+        */
+       u32 bainc = 0x00000008;
+       /* Specifies the maximum SDRAM rank to be used during BIST.
+        * The default value is set to maximum ranks minus 1.
+        * must be 0 with single rank
+        */
+       u32 bmrank = 0;
+       /* Selects the SDRAM rank to be used during BIST.
+        * must be 0 with single rank
+        */
+       u32 brank = 0;
+       /* Specifies the maximum SDRAM bank address to be used during
+        * BIST before the address & increments to the next rank.
+        */
+       u32 bmbank = 1;
+       /* Specifies the maximum SDRAM row address to be used during
+        * BIST before the address & increments to the next bank.
+        */
+       u32 bmrow = 0x7FFF; /* To check */
+       /* Specifies the maximum SDRAM column address to be used during
+        * BIST before the address & increments to the next row.
+        */
+       u32 bmcol = 0x3FF;  /* To check */
+       u32 bmode_conf = 0x00000001;  /* DRam mode */
+       u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */
+       u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */
+
+       /*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/
+       /*Write BISTRR.BMODE = 1?b1;*/
+       /*Write BISTRR.BDXEN = 1?b1;*/
+       /*Write BISTRR.BDPAT = 2?b10;*/
+
+       /* reset BIST */
+       writel(0x3, &phy->bistrr);
+
+       writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
+              &phy->bistrr);
+
+       /*Setup BIST Word Count*/
+       /*Write BISTWCR.BWCNT = 16?b0008;*/
+       writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
+
+       writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
+       writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
+
+       /* To check this line : */
+       writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
+}
+
+/* Select the Byte lane to be tested by BIST. */
+static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
+{
+       clrsetbits_le32(&phy->bistrr,
+                       DDRPHYC_BISTRR_BDXSEL_MASK,
+                       datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
+
+       /*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
+       /* Write BISTRR.BDXSEL = datx8; */
+}
+
+/* Perform BIST Write_Read test on a byte lane and return test result. */
+static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
+                     struct BIST_result *bist)
+{
+       bool result = true; /* BIST_SUCCESS */
+       u32 cnt = 0;
+       u32 error = 0;
+
+       bist->test_result = true;
+
+run:
+       itm_soft_reset(phy);
+
+       /*Perform BIST Reset*/
+       /* Write BISTRR.BINST = 3?b011; */
+       clrsetbits_le32(&phy->bistrr,
+                       0x00000007,
+                       0x00000003);
+
+       /*Re-seed LFSR*/
+       /* Write BISTLSR.SEED = 32'h1234ABCD; */
+       if (BIST_seed)
+               writel(BIST_seed, &phy->bistlsr);
+       else
+               writel(rand(), &phy->bistlsr);
+
+       /* some delay to reset BIST */
+       mdelay(1);
+
+       /*Perform BIST Run*/
+       clrsetbits_le32(&phy->bistrr,
+                       0x00000007,
+                       0x00000001);
+       /* Write BISTRR.BINST = 3?b001; */
+
+       /* Wait for a number of CTL clocks before reading BIST register*/
+       /* Wait 300 ctl_clk cycles;  ... IS it really needed?? */
+       /* Perform BIST Instruction Stop*/
+       /* Write BISTRR.BINST = 3?b010;*/
+
+       /* poll on BISTGSR.BDONE. If 0, wait.  ++TODO Add timeout */
+       while (!(readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDDONE))
+               ;
+
+       /*Check if received correct number of words*/
+       /* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
+       if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) ==
+           readl(&phy->bistwcr)) {
+               /*Determine if there is a data comparison error*/
+               /* if (Read BISTGSR.BDXERR = 1?b0) */
+               if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
+                       result = false; /* BIST_FAIL; */
+               else
+                       result = true; /* BIST_SUCCESS; */
+       } else {
+               result = false; /* BIST_FAIL; */
+       }
+
+       /* loop while success */
+       cnt++;
+       if (result && cnt != 1000)
+               goto run;
+
+       if (!result)
+               error++;
+
+       if (error < BIST_error_max) {
+               if (cnt != 1000)
+                       goto run;
+               bist->test_result = true;
+       } else {
+               bist->test_result = false;
+       }
+}
+
+/* After running the deskew algo, this function applies the new DQ delays
+ * by reading them from the array "deskew_delay"and writing in PHY registers.
+ * The bits that are not deskewed parfectly (too much skew on them,
+ * or data eye very wide) are marked in the array deskew_non_converge.
+ */
+static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
+                                u8 deskew_delay[NUM_BYTES][8],
+                                u8 deskew_non_converge[NUM_BYTES][8])
+{
+       u8  bit_i;
+       u8  index;
+
+       for (bit_i = 0; bit_i < 8; bit_i++) {
+               set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
+               index = DQ_unit_index(phy, byte, bit_i);
+               pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
+                        byte, bit_i, deskew_delay[byte][bit_i],
+                        index, index - 3);
+               printf("Byte %d, bit %d, DQ delay = %d",
+                      byte, bit_i, deskew_delay[byte][bit_i]);
+               if (deskew_non_converge[byte][bit_i] == 1)
+                       pr_debug(" - not converged : still more skew");
+               printf("\n");
+       }
+}
+
+/* DQ Bit de-skew algorithm.
+ * Deskews data lines as much as possible.
+ * 1. Add delay to DQS line until finding the failure
+ *    (normally a hold time violation)
+ * 2. Reduce DQS line by small steps until finding the very first time
+ *    we go back to "Pass" condition.
+ * 3. For each DQ line, Reduce DQ delay until finding the very first failure
+ *    (normally a hold time fail)
+ * 4. When all bits are at their first failure delay, we can consider them
+ *    aligned.
+ * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
+ * at any step)
+ * TODO Provide a return Status. Improve doc
+ */
+static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
+                                  struct stm32mp1_ddrphy *phy, char *string)
+{
+       /* New DQ delay value (index), set during Deskew algo */
+       u8 deskew_delay[NUM_BYTES][8];
+       /*If there is still skew on a bit, mark this bit. */
+       u8 deskew_non_converge[NUM_BYTES][8];
+       struct BIST_result result;
+       s8 dqs_unit_delay_index = 0;
+       u8 datx8 = 0;
+       u8 bit_i = 0;
+       s8 phase_idx = 0;
+       s8 bit_i_delay_index = 0;
+       u8 success = 0;
+       struct tuning_position last_right_ok;
+       u8 force_stop = 0;
+       u8 fail_found;
+       u8 error = 0;
+       u8 nb_bytes = get_nb_bytes(ctl);
+       /* u8 last_pass_dqs_unit = 0; */
+
+       memset(deskew_delay, 0, sizeof(deskew_delay));
+       memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
+
+       /*Disable DQS Drift Compensation*/
+       clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
+       /*Disable all bytes*/
+       /* Disable automatic power down of DLL and IOs when disabling
+        * a byte (To avoid having to add programming and  delay
+        * for a DLL re-lock when later re-enabling a disabled Byte Lane)
+        */
+       clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
+
+       /* Disable all data bytes */
+       clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+       /* Config the BIST block */
+       config_BIST(phy);
+       pr_debug("BIST Config done.\n");
+
+       /* Train each byte */
+       for (datx8 = 0; datx8 < nb_bytes; datx8++) {
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               datx8 + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               pr_debug("\n======================\n");
+               pr_debug("Start deskew byte %d .\n", datx8);
+               pr_debug("======================\n");
+               /* Enable Byte (DXNGCR, bit DXEN) */
+               setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
+
+               /* Select the byte lane for comparison of read data */
+               BIST_datx8_sel(phy, datx8);
+
+               /* Set all DQDLYn to maximum value. All bits within the byte
+                * will be delayed with DQSTR = 2 instead of max = 3
+                * to avoid inter bits fail influence
+                */
+               writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
+
+               /* Set the DQS phase delay to 90 DEG (default).
+                * What is defined here is the index of the desired config
+                * in the PHASE array.
+                */
+               phase_idx = _90deg;
+
+               /* Set DQS unit delay to the max value. */
+               dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
+               DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
+               DQS_phase_delay(phy, datx8, phase_idx);
+
+               /* Issue a DLL soft reset */
+               clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
+               setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
+
+               /* Test this typical init condition */
+               BIST_test(phy, datx8, &result);
+               success = result.test_result;
+
+               /* If the test pass in this typical condition,
+                * start the algo with it.
+                * Else, look for Pass init condition
+                */
+               if (!success) {
+                       pr_debug("Fail at init condtion. Let's look for a good init condition.\n");
+                       success = 0; /* init */
+                       /* Make sure we start with a PASS condition before
+                        * looking for a fail condition.
+                        * Find the first PASS PHASE condition
+                        */
+
+                       /* escape if we find a PASS */
+                       pr_debug("increase Phase idx\n");
+                       while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
+                               DQS_phase_delay(phy, datx8, phase_idx);
+                               BIST_test(phy, datx8, &result);
+                               success = result.test_result;
+                               phase_idx++;
+                       }
+                       /* if ended with success
+                        * ==>> Restore the fist success condition
+                        */
+                       if (success)
+                               phase_idx--; /* because it ended with ++ */
+               }
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               datx8 + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               /* We couldn't find a successful condition, its seems
+                * we have hold violation, lets try reduce DQS_unit Delay
+                */
+               if (!success) {
+                       /* We couldn't find a successful condition, its seems
+                        * we have hold violation, lets try reduce DQS_unit
+                        * Delay
+                        */
+                       pr_debug("Still fail. Try decrease DQS Unit delay\n");
+
+                       phase_idx = 0;
+                       dqs_unit_delay_index = 0;
+                       DQS_phase_delay(phy, datx8, phase_idx);
+
+                       /* escape if we find a PASS */
+                       while (!success &&
+                              (dqs_unit_delay_index <=
+                               MAX_DQS_UNIT_IDX)) {
+                               DQS_unit_delay(phy, datx8,
+                                              dqs_unit_delay_index);
+                               BIST_test(phy, datx8, &result);
+                               success = result.test_result;
+                               dqs_unit_delay_index++;
+                       }
+                       if (success) {
+                               /* Restore the first success condition*/
+                               dqs_unit_delay_index--;
+                               /* last_pass_dqs_unit = dqs_unit_delay_index;*/
+                               DQS_unit_delay(phy, datx8,
+                                              dqs_unit_delay_index);
+                       } else {
+                               /* No need to continue,
+                                * there is no pass region.
+                                */
+                               force_stop = 1;
+                       }
+               }
+
+               /* There is an initial PASS condition
+                * Look for the first failing condition by PHASE stepping.
+                * This part of the algo can finish without converging.
+                */
+               if (force_stop) {
+                       printf("Result: Failed ");
+                       printf("[Cannot Deskew lines, ");
+                       printf("there is no PASS region]\n");
+                       error++;
+                       continue;
+               }
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               datx8 + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+
+               pr_debug("there is a pass region for phase idx %d\n",
+                        phase_idx);
+               pr_debug("Step1: Find the first failing condition\n");
+               /* Look for the first failing condition by PHASE stepping.
+                * This part of the algo can finish without converging.
+                */
+
+               /* escape if we find a fail (hold time violation)
+                * condition at any bit or if out of delay range.
+                */
+               while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
+                       DQS_phase_delay(phy, datx8, phase_idx);
+                       BIST_test(phy, datx8, &result);
+                       success = result.test_result;
+                       phase_idx++;
+               }
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               datx8 + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+
+               /* if the loop ended with a failing condition at any bit,
+                * lets look for the first previous success condition by unit
+                * stepping (minimal delay)
+                */
+               if (!success) {
+                       pr_debug("Fail region (PHASE) found phase idx %d\n",
+                                phase_idx);
+                       pr_debug("Let's look for first success by DQS Unit steps\n");
+                       /* This part, the algo always converge */
+                       phase_idx--;
+
+                       /* escape if we find a success condition
+                        * or if out of delay range.
+                        */
+                       while (!success && dqs_unit_delay_index >= 0) {
+                               DQS_unit_delay(phy, datx8,
+                                              dqs_unit_delay_index);
+                               BIST_test(phy, datx8, &result);
+                               success = result.test_result;
+                               dqs_unit_delay_index--;
+                       }
+                       /* if the loop ended with a success condition,
+                        * the last delay Right OK (before hold violation)
+                        *  condition is then defined as following:
+                        */
+                       if (success) {
+                               /* Hold the dely parameters of the the last
+                                * delay Right OK condition.
+                                * -1 to get back to current condition
+                                */
+                               last_right_ok.phase = phase_idx;
+                               /*+1 to get back to current condition */
+                               last_right_ok.unit = dqs_unit_delay_index + 1;
+                               last_right_ok.bits_delay = 0xFFFFFFFF;
+                               pr_debug("Found %d\n", dqs_unit_delay_index);
+                       } else {
+                               /* the last OK condition is then with the
+                                * previous phase_idx.
+                                * -2 instead of -1 because at the last
+                                * iteration of the while(),
+                                * we incremented phase_idx
+                                */
+                               last_right_ok.phase = phase_idx - 1;
+                               /* Nominal+1. Because we want the previous
+                                * delay after reducing the phase delay.
+                                */
+                               last_right_ok.unit = 1;
+                               last_right_ok.bits_delay = 0xFFFFFFFF;
+                               pr_debug("Not Found : try previous phase %d\n",
+                                        phase_idx - 1);
+
+                               DQS_phase_delay(phy, datx8, phase_idx - 1);
+                               dqs_unit_delay_index = 0;
+                               success = true;
+                               while (success &&
+                                      (dqs_unit_delay_index <
+                                       MAX_DQS_UNIT_IDX)) {
+                                       DQS_unit_delay(phy, datx8,
+                                                      dqs_unit_delay_index);
+                                       BIST_test(phy, datx8, &result);
+                                       success = result.test_result;
+                                       dqs_unit_delay_index++;
+                                       pr_debug("dqs_unit_delay_index = %d, result = %d\n",
+                                                dqs_unit_delay_index, success);
+                               }
+
+                               if (!success) {
+                                       last_right_ok.unit =
+                                                dqs_unit_delay_index - 1;
+                               } else {
+                                       last_right_ok.unit = 0;
+                                       pr_debug("ERROR: failed region not FOUND");
+                               }
+                       }
+               } else {
+                       /* we can't find a failing  condition at all bits
+                        * ==> Just hold the last test condition
+                        * (the max DQS delay)
+                        * which is the most likely,
+                        * the closest to a hold violation
+                        * If we can't find a Fail condition after
+                        * the Pass region, stick at this position
+                        * In order to have max chances to find a fail
+                        * when reducing DQ delays.
+                        */
+                       last_right_ok.phase = MAX_DQS_PHASE_IDX;
+                       last_right_ok.unit = MAX_DQS_UNIT_IDX;
+                       last_right_ok.bits_delay = 0xFFFFFFFF;
+                       pr_debug("Can't find the a fail condition\n");
+               }
+
+               /* step 2:
+                * if we arrive at this stage, it means that we found the last
+                * Right OK condition (by tweeking the DQS delay). Or we simply
+                * pushed DQS delay to the max
+                * This means that by reducing the delay on some DQ bits,
+                * we should find a failing condition.
+                */
+               printf("Byte %d, DQS unit = %d, phase = %d\n",
+                      datx8, last_right_ok.unit, last_right_ok.phase);
+               pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
+                        last_right_ok.unit, last_right_ok.phase,
+                        last_right_ok.bits_delay);
+
+               /* Restore the last_right_ok condtion. */
+               DQS_unit_delay(phy, datx8, last_right_ok.unit);
+               DQS_phase_delay(phy, datx8, last_right_ok.phase);
+               writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
+
+               /* train each bit
+                * reduce delay on each bit, and perform a write/read test
+                * and stop at the very first time it fails.
+                * the goal is the find the first failing condition
+                * for each bit.
+                * When we achieve this condition<  for all the bits,
+                * we are sure they are aligned (+/- step resolution)
+                */
+               fail_found = 0;
+               for (bit_i = 0; bit_i < 8; bit_i++) {
+                       if (ctrlc()) {
+                               sprintf(string,
+                                       "interrupted at byte %d/%d, error=%d",
+                                       datx8 + 1, nb_bytes, error);
+                               return error;
+                       }
+                       pr_debug("deskewing bit %d:\n", bit_i);
+                       success = 1; /* init */
+                       /* Set all DQDLYn to maximum value.
+                        * Only bit_i will be down-delayed
+                        * ==> if we have a fail, it will be definitely
+                        *     from bit_i
+                        */
+                       writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
+                       /* Arriving at this stage,
+                        * we have a success condition with delay = 3;
+                        */
+                       bit_i_delay_index = 3;
+
+                       /* escape if bit delay is out of range or
+                        * if a fatil occurs
+                        */
+                       while ((bit_i_delay_index >= 0) && success) {
+                               set_DQ_unit_delay(phy, datx8,
+                                                 bit_i,
+                                                 bit_i_delay_index);
+                               BIST_test(phy, datx8, &result);
+                               success = result.test_result;
+                               bit_i_delay_index--;
+                       }
+
+                       /* if escape with a fail condition
+                        * ==> save this position for bit_i
+                        */
+                       if (!success) {
+                               /* save the delay position.
+                                * Add 1 because the while loop ended with a --,
+                                * and that we need to hold the last success
+                                *  delay
+                                */
+                               deskew_delay[datx8][bit_i] =
+                                       bit_i_delay_index + 2;
+                               if (deskew_delay[datx8][bit_i] > 3)
+                                       deskew_delay[datx8][bit_i] = 3;
+
+                               /* A flag that states we found at least a fail
+                                * at one bit.
+                                */
+                               fail_found = 1;
+                               pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
+                                        bit_i, bit_i_delay_index + 1,
+                                        datx8, bit_i,
+                                        deskew_delay[datx8][bit_i]);
+                       } else {
+                               /* if we can find a success condition by
+                                * back-delaying this bit, just set the delay
+                                * to 0 (the best deskew
+                                * possible) and mark the bit.
+                                */
+                               deskew_delay[datx8][bit_i] = 0;
+                               /* set a flag that will be used later
+                                * in the report.
+                                */
+                               deskew_non_converge[datx8][bit_i] = 1;
+                               pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
+                                        bit_i, datx8, bit_i,
+                                        deskew_delay[datx8][bit_i]);
+                       }
+               }
+               pr_debug("**********byte %d tuning complete************\n",
+                        datx8);
+               /* If we can't find any failure by back delaying DQ lines,
+                * hold the default values
+                */
+               if (!fail_found) {
+                       for (bit_i = 0; bit_i < 8; bit_i++)
+                               deskew_delay[datx8][bit_i] = 0;
+                       pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
+               }
+
+               apply_deskew_results(phy, datx8, deskew_delay,
+                                    deskew_non_converge);
+               /* Restore nominal value for DQS delay */
+               DQS_phase_delay(phy, datx8, 3);
+               DQS_unit_delay(phy, datx8, 3);
+               /* disable byte after byte bits deskew */
+               clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
+       }  /* end of byte deskew */
+
+       /* re-enable all data bytes */
+       setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+       setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+       setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+       setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+       if (error) {
+               sprintf(string, "error = %d", error);
+               return TEST_FAILED;
+       }
+
+       return TEST_PASSED;
+} /* end function */
+
+/* Trim DQS timings and set it in the centre of data eye.
+ * Look for a PPPPF region, then look for a FPPP region and finally select
+ * the mid of the FPPPPPF region
+ */
+static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
+                                    struct stm32mp1_ddrphy *phy, char *string)
+{
+       /*Stores the DQS trim values (PHASE index, unit index) */
+       u8 eye_training_val[NUM_BYTES][2];
+       u8 byte = 0;
+       struct BIST_result result;
+       s8 dqs_unit_delay_index = 0;
+       s8 phase_idx = 0;
+       s8 dqs_unit_delay_index_pass = 0;
+       s8 phase_idx_pass = 0;
+       u8 success = 0;
+       u8 left_phase_bound_found, right_phase_bound_found;
+       u8 left_unit_bound_found, right_unit_bound_found;
+       u8 left_bound_found, right_bound_found;
+       struct tuning_position left_bound, right_bound;
+       u8 error = 0;
+       u8 nb_bytes = get_nb_bytes(ctl);
+
+       /*Disable DQS Drift Compensation*/
+       clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
+       /*Disable all bytes*/
+       /* Disable automatic power down of DLL and IOs when disabling a byte
+        * (To avoid having to add programming and  delay
+        * for a DLL re-lock when later re-enabling a disabled Byte Lane)
+        */
+       clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
+
+       /*Disable all data bytes */
+       clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+       /* Config the BIST block */
+       config_BIST(phy);
+
+       for (byte = 0; byte < nb_bytes; byte++) {
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               byte + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               right_bound.phase = 0;
+               right_bound.unit = 0;
+
+               left_bound.phase = 0;
+               left_bound.unit = 0;
+
+               left_phase_bound_found = 0;
+               right_phase_bound_found = 0;
+
+               left_unit_bound_found = 0;
+               right_unit_bound_found = 0;
+
+               left_bound_found = 0;
+               right_bound_found = 0;
+
+               /* Enable Byte (DXNGCR, bit DXEN) */
+               setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
+
+               /* Select the byte lane for comparison of read data */
+               BIST_datx8_sel(phy, byte);
+
+               /* Set DQS phase delay to the nominal value. */
+               phase_idx = _90deg;
+               phase_idx_pass = phase_idx;
+
+               /* Set DQS unit delay to the nominal value. */
+               dqs_unit_delay_index = 3;
+               dqs_unit_delay_index_pass = dqs_unit_delay_index;
+               success = 0;
+
+               pr_debug("STEP0: Find Init delay\n");
+               /* STEP0: Find Init delay: a delay that put the system
+                * in a "Pass" condition then (TODO) update
+                * dqs_unit_delay_index_pass & phase_idx_pass
+                */
+               DQS_unit_delay(phy, byte, dqs_unit_delay_index);
+               DQS_phase_delay(phy, byte, phase_idx);
+               BIST_test(phy, byte, &result);
+               success = result.test_result;
+               /* If we have a fail in the nominal condition */
+               if (!success) {
+                       /* Look at the left */
+                       while (phase_idx >= 0 && !success) {
+                               phase_idx--;
+                               DQS_phase_delay(phy, byte, phase_idx);
+                               BIST_test(phy, byte, &result);
+                               success = result.test_result;
+                       }
+               }
+               if (!success) {
+                       /* if we can't find pass condition,
+                        * then look at the right
+                        */
+                       phase_idx = _90deg;
+                       while (phase_idx <= MAX_DQS_PHASE_IDX &&
+                              !success) {
+                               phase_idx++;
+                               DQS_phase_delay(phy, byte,
+                                               phase_idx);
+                               BIST_test(phy, byte, &result);
+                               success = result.test_result;
+                       }
+               }
+               /* save the pass condition */
+               if (success) {
+                       phase_idx_pass = phase_idx;
+               } else {
+                       printf("Result: Failed ");
+                       printf("[Cannot DQS timings, ");
+                       printf("there is no PASS region]\n");
+                       error++;
+                       continue;
+               }
+
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               byte + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               pr_debug("STEP1: Find LEFT PHASE DQS Bound\n");
+               /* STEP1: Find LEFT PHASE DQS Bound */
+               while ((phase_idx >= 0) &&
+                      (phase_idx <= MAX_DQS_PHASE_IDX) &&
+                      !left_phase_bound_found) {
+                       DQS_unit_delay(phy, byte,
+                                      dqs_unit_delay_index);
+                       DQS_phase_delay(phy, byte,
+                                       phase_idx);
+                       BIST_test(phy, byte, &result);
+                       success = result.test_result;
+
+                       /*TODO: Manage the case were at the beginning
+                        * there is already a fail
+                        */
+                       if (!success) {
+                               /* the last pass condition */
+                               left_bound.phase = ++phase_idx;
+                               left_phase_bound_found = 1;
+                       } else if (success) {
+                               phase_idx--;
+                       }
+               }
+               if (!left_phase_bound_found) {
+                       left_bound.phase = 0;
+                       phase_idx = 0;
+               }
+               /* If not found, lets take 0 */
+
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               byte + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               pr_debug("STEP2: Find UNIT left bound\n");
+               /* STEP2: Find UNIT left bound */
+               while ((dqs_unit_delay_index >= 0) &&
+                      !left_unit_bound_found) {
+                       DQS_unit_delay(phy, byte,
+                                      dqs_unit_delay_index);
+                       DQS_phase_delay(phy, byte, phase_idx);
+                       BIST_test(phy, byte, &result);
+                       success = result.test_result;
+                       if (!success) {
+                               left_bound.unit =
+                                       ++dqs_unit_delay_index;
+                               left_unit_bound_found = 1;
+                               left_bound_found = 1;
+                       } else if (success) {
+                               dqs_unit_delay_index--;
+                       }
+               }
+
+               /* If not found, lets take 0 */
+               if (!left_unit_bound_found)
+                       left_bound.unit = 0;
+
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               byte + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               pr_debug("STEP3: Find PHase right bound\n");
+               /* STEP3: Find PHase right bound, start with "pass"
+                * condition
+                */
+
+               /* Set DQS phase delay to the pass value. */
+               phase_idx = phase_idx_pass;
+
+               /* Set DQS unit delay to the pass value. */
+               dqs_unit_delay_index = dqs_unit_delay_index_pass;
+
+               while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
+                      !right_phase_bound_found) {
+                       DQS_unit_delay(phy, byte,
+                                      dqs_unit_delay_index);
+                       DQS_phase_delay(phy, byte, phase_idx);
+                       BIST_test(phy, byte, &result);
+                       success = result.test_result;
+                       if (!success) {
+                               /* the last pass condition */
+                               right_bound.phase = --phase_idx;
+                               right_phase_bound_found = 1;
+                       } else if (success) {
+                               phase_idx++;
+                       }
+               }
+
+               /* If not found, lets take the max value */
+               if (!right_phase_bound_found) {
+                       right_bound.phase = MAX_DQS_PHASE_IDX;
+                       phase_idx = MAX_DQS_PHASE_IDX;
+               }
+
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d, error=%d",
+                               byte + 1, nb_bytes, error);
+                       return TEST_FAILED;
+               }
+               pr_debug("STEP4: Find UNIT right bound\n");
+               /* STEP4: Find UNIT right bound */
+               while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
+                      !right_unit_bound_found) {
+                       DQS_unit_delay(phy, byte,
+                                      dqs_unit_delay_index);
+                       DQS_phase_delay(phy, byte, phase_idx);
+                       BIST_test(phy, byte, &result);
+                       success = result.test_result;
+                       if (!success) {
+                               right_bound.unit =
+                                       --dqs_unit_delay_index;
+                               right_unit_bound_found = 1;
+                               right_bound_found = 1;
+                       } else if (success) {
+                               dqs_unit_delay_index++;
+                       }
+               }
+               /* If not found, lets take the max value */
+               if (!right_unit_bound_found)
+                       right_bound.unit = MAX_DQS_UNIT_IDX;
+
+               /* If we found a regular FAil Pass FAil pattern
+                * FFPPPPPPFF
+                * OR PPPPPFF  Or FFPPPPP
+                */
+
+               if (left_bound_found || right_bound_found) {
+                       eye_training_val[byte][0] = (right_bound.phase +
+                                                left_bound.phase) / 2;
+                       eye_training_val[byte][1] = (right_bound.unit +
+                                                left_bound.unit) / 2;
+
+                       /* If we already lost 1/2PHASE Tuning,
+                        * let's try to recover by ++ on unit
+                        */
+                       if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
+                           eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
+                               eye_training_val[byte][1]++;
+                       pr_debug("** found phase : %d -  %d & unit %d - %d\n",
+                                right_bound.phase, left_bound.phase,
+                                right_bound.unit, left_bound.unit);
+                       pr_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n",
+                                eye_training_val[byte][0],
+                                eye_training_val[byte][1]);
+               } else {
+                       /* PPPPPPPPPP, we're already good.
+                        * Set nominal values.
+                        */
+                       eye_training_val[byte][0] = 3;
+                       eye_training_val[byte][1] = 3;
+               }
+               DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
+               DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
+
+               printf("Byte %d, DQS unit = %d, phase = %d\n",
+                      byte,
+                      eye_training_val[byte][1],
+                      eye_training_val[byte][0]);
+       }
+
+       if (error) {
+               sprintf(string, "error = %d", error);
+               return TEST_FAILED;
+       }
+
+       return TEST_PASSED;
+}
+
+static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
+{
+       u8 i = 0;
+
+       printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ",
+              byte);
+
+       for (i = 0; i < 8; i++)
+               printf("%d ", DQ_unit_index(phy, byte, i));
+       printf("\n");
+
+       printf("dxndllcr: [%08x] val:%08x\n",
+              DXNDLLCR(phy, byte),
+              readl(DXNDLLCR(phy, byte)));
+       printf("dxnqdstr: [%08x] val:%08x\n",
+              DXNDQSTR(phy, byte),
+              readl(DXNDQSTR(phy, byte)));
+       printf("dxndqtr: [%08x] val:%08x\n",
+              DXNDQTR(phy, byte),
+              readl(DXNDQTR(phy, byte)));
+}
+
+/* analyse the dgs gating log table, and determine the midpoint.*/
+static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
+                                      u8 dqs_gating[NUM_BYTES]
+                                                   [MAX_GSL_IDX + 1]
+                                                   [MAX_GPS_IDX + 1])
+{
+       /* stores the dqs gate values (gsl index, gps index) */
+       u8 dqs_gate_values[NUM_BYTES][2];
+       u8 gsl_idx, gps_idx = 0;
+       u8 left_bound_idx[2] = {0, 0};
+       u8 right_bound_idx[2] = {0, 0};
+       u8 left_bound_found = 0;
+       u8 right_bound_found = 0;
+       u8 intermittent = 0;
+       u8 value;
+
+       for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
+               for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
+                       value = dqs_gating[byte][gsl_idx][gps_idx];
+                       if (value == 1 && left_bound_found == 0) {
+                               left_bound_idx[0] = gsl_idx;
+                               left_bound_idx[1] = gps_idx;
+                               left_bound_found = 1;
+                       } else if (value == 0 &&
+                                  left_bound_found == 1 &&
+                                  !right_bound_found) {
+                               if (gps_idx == 0) {
+                                       right_bound_idx[0] = gsl_idx - 1;
+                                       right_bound_idx[1] = MAX_GPS_IDX;
+                               } else {
+                                       right_bound_idx[0] = gsl_idx;
+                                       right_bound_idx[1] = gps_idx - 1;
+                               }
+                               right_bound_found = 1;
+                       } else if (value == 1 &&
+                                  right_bound_found == 1) {
+                               intermittent = 1;
+                       }
+               }
+       }
+
+       /* if only ppppppp is found, there is no mid region. */
+       if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
+           right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
+               intermittent = 1;
+
+       /*if we found a regular fail pass fail pattern ffppppppff
+        * or pppppff  or ffppppp
+        */
+       if (!intermittent) {
+               /*if we found a regular fail pass fail pattern ffppppppff
+                * or pppppff  or ffppppp
+                */
+               if (left_bound_found || right_bound_found) {
+                       pr_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n",
+                                left_bound_found,
+                                right_bound_idx[0], left_bound_idx[0],
+                                right_bound_found,
+                                right_bound_idx[1], left_bound_idx[1]);
+                       dqs_gate_values[byte][0] =
+                               (right_bound_idx[0] + left_bound_idx[0]) / 2;
+                       dqs_gate_values[byte][1] =
+                               (right_bound_idx[1] + left_bound_idx[1]) / 2;
+                       /* if we already lost 1/2gsl tuning,
+                        * let's try to recover by ++ on gps
+                        */
+                       if (((right_bound_idx[0] +
+                             left_bound_idx[0]) % 2 == 1) &&
+                           dqs_gate_values[byte][1] != MAX_GPS_IDX)
+                               dqs_gate_values[byte][1]++;
+                       /* if we already lost 1/2gsl tuning and gps is on max*/
+                       else if (((right_bound_idx[0] +
+                                  left_bound_idx[0]) % 2 == 1) &&
+                                dqs_gate_values[byte][1] == MAX_GPS_IDX) {
+                               dqs_gate_values[byte][1] = 0;
+                               dqs_gate_values[byte][0]++;
+                       }
+                       /* if we have gsl left and write limit too close
+                        * (difference=1)
+                        */
+                       if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
+                               dqs_gate_values[byte][1] = (left_bound_idx[1] +
+                                                           right_bound_idx[1] +
+                                                           4) / 2;
+                               if (dqs_gate_values[byte][1] >= 4) {
+                                       dqs_gate_values[byte][0] =
+                                               right_bound_idx[0];
+                                       dqs_gate_values[byte][1] -= 4;
+                               } else {
+                                       dqs_gate_values[byte][0] =
+                                               left_bound_idx[0];
+                               }
+                       }
+                       pr_debug("*******calculating mid region: system latency: %d  phase: %d********\n",
+                                dqs_gate_values[byte][0],
+                                dqs_gate_values[byte][1]);
+                       pr_debug("*******the nominal values were system latency: 0  phase: 2*******\n");
+                       set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
+                       set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
+               }
+       } else {
+               /* if intermitant, restore defaut values */
+               pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
+               set_r0dgsl_delay(phy, byte, 0);
+               set_r0dgps_delay(phy, byte, 2);
+       }
+
+       /* return 0 if intermittent or if both left_bound
+        * and right_bound are not found
+        */
+       return !(intermittent || (left_bound_found && right_bound_found));
+}
+
+static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
+                                       struct stm32mp1_ddrphy *phy,
+                                       char *string)
+{
+       /* stores the log of pass/fail */
+       u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
+       u8 byte, gsl_idx, gps_idx = 0;
+       struct BIST_result result;
+       u8 success = 0;
+       u8 nb_bytes = get_nb_bytes(ctl);
+
+       memset(dqs_gating, 0x0, sizeof(dqs_gating));
+
+       /*disable dqs drift compensation*/
+       clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
+       /*disable all bytes*/
+       /* disable automatic power down of dll and ios when disabling a byte
+        * (to avoid having to add programming and  delay
+        * for a dll re-lock when later re-enabling a disabled byte lane)
+        */
+       clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
+
+       /* disable all data bytes */
+       clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
+       clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
+
+       /* config the bist block */
+       config_BIST(phy);
+
+       for (byte = 0; byte < nb_bytes; byte++) {
+               if (ctrlc()) {
+                       sprintf(string, "interrupted at byte %d/%d",
+                               byte + 1, nb_bytes);
+                       return TEST_FAILED;
+               }
+               /* enable byte x (dxngcr, bit dxen) */
+               setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
+
+               /* select the byte lane for comparison of read data */
+               BIST_datx8_sel(phy, byte);
+               for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
+                       for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
+                               if (ctrlc()) {
+                                       sprintf(string,
+                                               "interrupted at byte %d/%d",
+                                               byte + 1, nb_bytes);
+                                       return TEST_FAILED;
+                               }
+                               /* write cfg to dxndqstr */
+                               set_r0dgsl_delay(phy, byte, gsl_idx);
+                               set_r0dgps_delay(phy, byte, gps_idx);
+
+                               BIST_test(phy, byte, &result);
+                               success = result.test_result;
+                               if (success)
+                                       dqs_gating[byte][gsl_idx][gps_idx] = 1;
+                               itm_soft_reset(phy);
+                       }
+               }
+               set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
+               /* dummy reads */
+               readl(0xc0000000);
+               readl(0xc0000000);
+       }
+
+       /* re-enable drift compensation */
+       /* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
+       return TEST_PASSED;
+}
+
+/****************************************************************
+ * TEST
+ ****************************************************************
+ */
+static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
+                                          struct stm32mp1_ddrphy *phy,
+                                          char *string, int argc,
+                                          char *argv[])
+{
+       u32 rfshctl3 = readl(&ctl->rfshctl3);
+       u32 pwrctl = readl(&ctl->pwrctl);
+       enum test_result res;
+
+       stm32mp1_refresh_disable(ctl);
+       res = read_dqs_gating(ctl, phy, string);
+       stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
+
+       return res;
+}
+
+static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
+                                     struct stm32mp1_ddrphy *phy,
+                                     char *string, int argc, char *argv[])
+{
+       u32 rfshctl3 = readl(&ctl->rfshctl3);
+       u32 pwrctl = readl(&ctl->pwrctl);
+       enum test_result res;
+
+       stm32mp1_refresh_disable(ctl);
+       res = bit_deskew(ctl, phy, string);
+       stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
+
+       return res;
+}
+
+static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
+                                       struct stm32mp1_ddrphy *phy,
+                                       char *string, int argc, char *argv[])
+{
+       u32 rfshctl3 = readl(&ctl->rfshctl3);
+       u32 pwrctl = readl(&ctl->pwrctl);
+       enum test_result res;
+
+       stm32mp1_refresh_disable(ctl);
+       res = eye_training(ctl, phy, string);
+       stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
+
+       return res;
+}
+
+static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
+                                  struct stm32mp1_ddrphy *phy,
+                                  char *string, int argc, char *argv[])
+{
+       int byte;
+       u8 nb_bytes = get_nb_bytes(ctl);
+
+       for (byte = 0; byte < nb_bytes; byte++)
+               display_reg_results(phy, byte);
+
+       return TEST_PASSED;
+}
+
+static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
+                                      struct stm32mp1_ddrphy *phy,
+                                      char *string, int argc, char *argv[])
+{
+       unsigned long value;
+
+       if (argc > 0) {
+               if (strict_strtoul(argv[0], 0, &value) < 0) {
+                       sprintf(string, "invalid nbErr %s", argv[0]);
+                       return TEST_FAILED;
+               }
+               BIST_error_max = value;
+       }
+       if (argc > 1) {
+               if (strict_strtoul(argv[1], 0, &value) < 0) {
+                       sprintf(string, "invalid Seed %s", argv[1]);
+                       return TEST_FAILED;
+               }
+               BIST_seed = value;
+       }
+       printf("Bist.nbErr = %d\n", BIST_error_max);
+       if (BIST_seed)
+               printf("Bist.Seed = 0x%x\n", BIST_seed);
+       else
+               printf("Bist.Seed = random\n");
+
+       return TEST_PASSED;
+}
+
+/****************************************************************
+ * TEST Description
+ ****************************************************************
+ */
+
+const struct test_desc tuning[] = {
+       {do_read_dqs_gating, "Read DQS gating",
+               "software read DQS Gating", "", 0 },
+       {do_bit_deskew, "Bit de-skew", "", "", 0 },
+       {do_eye_training, "Eye Training", "or DQS training", "", 0 },
+       {do_display, "Display registers", "", "", 0 },
+       {do_bist_config, "Bist config", "[nbErr] [seed]",
+        "configure Bist test", 2},
+};
+
+const int tuning_nb = ARRAY_SIZE(tuning);