swap_usage_sub(si, nr_entries);
}
-static int cluster_alloc_swap(struct swap_info_struct *si,
- unsigned char usage, int nr,
- swp_entry_t slots[], int order)
-{
- int n_ret = 0;
-
- while (n_ret < nr) {
- unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
-
- if (!offset)
- break;
- slots[n_ret++] = swp_entry(si->type, offset);
- }
-
- return n_ret;
-}
-
static int scan_swap_map_slots(struct swap_info_struct *si,
unsigned char usage, int nr,
swp_entry_t slots[], int order)
{
unsigned int nr_pages = 1 << order;
+ int n_ret = 0;
- /*
- * We try to cluster swap pages by allocating them sequentially
- * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
- * way, however, we resort to first-free allocation, starting
- * a new cluster. This prevents us from scattering swap pages
- * all over the entire swap partition, so that we reduce
- * overall disk seek times between swap pages. -- sct
- * But we do now try to find an empty cluster. -Andrea
- * And we let swap pages go all over an SSD partition. Hugh
- */
if (order > 0) {
/*
* Should not even be attempting large allocations when huge
return 0;
}
- return cluster_alloc_swap(si, usage, nr, slots, order);
+ while (n_ret < nr) {
+ unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
+
+ if (!offset)
+ break;
+ slots[n_ret++] = swp_entry(si->type, offset);
+ }
+
+ return n_ret;
}
static bool get_swap_device_info(struct swap_info_struct *si)