+2002-06-21 Phil Edwards <pme@gcc.gnu.org>
+
+ * include/bits/stl_map.h, include/bits/stl_multimap.h,
+ include/bits/stl_queue.h, include/bits/stl_stack.h: Reformat and
+ complete doxygenation.
+ * include/bits/boost_concept_check.h: Minor comment.
+
2002-06-21 Benjamin Kosnik <bkoz@redhat.com>
* include/c_compatibility: New.
__a = __b; // const required for argument to assignment
}
_Tp __a;
+ // possibly should be "Tp* a;" and then dereference "a" in constraint
+ // functions? present way would require a default ctor, i think...
};
template <class _Tp>
* You should not attempt to use it directly.
*/
-#ifndef _CPP_BITS_STL_MAP_H
-#define _CPP_BITS_STL_MAP_H 1
+#ifndef __GLIBCPP_INTERNAL_MAP_H
+#define __GLIBCPP_INTERNAL_MAP_H
#include <bits/concept_check.h>
+// Since this entire file is within namespace std, there's no reason to
+// waste two spaces along the left column. Thus the leading indentation is
+// slightly violated from here on.
namespace std
{
/**
- * @brief A standard container made up of pairs (see std::pair in <utility>)
- * which can be retrieved based on a key.
+ * @brief A standard container made up of (key,value) pairs, which can be
+ * retrieved based on a key, in logarithmic time.
*
- * This is an associative container. Values contained within it can be
- * quickly retrieved through a key element. Example: MyMap["First"] would
- * return the data associated with the key "First".
+ * @ingroup Containers
+ * @ingroup Assoc_containers
+ *
+ * Meets the requirements of a <a href="tables.html#65">container</a>, a
+ * <a href="tables.html#66">reversible container</a>, and an
+ * <a href="tables.html#69">associative container</a> (using unique keys).
+ * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
+ * value_type is std::pair<const Key,T>.
+ *
+ * Maps support bidirectional iterators.
+ *
+ * @if maint
+ * The private tree data is declared exactly the same way for map and
+ * multimap; the distinction is made entirely in how the tree functions are
+ * called (*_unique versus *_equal, same as the standard).
+ * @endif
*/
-template <class _Key, class _Tp, class _Compare = less<_Key>,
- class _Alloc = allocator<pair<const _Key, _Tp> > >
-class map
+template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
+ typename _Alloc = allocator<pair<const _Key, _Tp> > >
+ class map
{
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
- __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept);
+ __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
public:
- // typedefs:
- typedef _Key key_type;
- typedef _Tp data_type;
- typedef _Tp mapped_type;
- typedef pair<const _Key, _Tp> value_type;
- typedef _Compare key_compare;
+ typedef _Key key_type;
+ typedef _Tp mapped_type;
+ typedef pair<const _Key, _Tp> value_type;
+ typedef _Compare key_compare;
class value_compare
- : public binary_function<value_type, value_type, bool> {
- friend class map<_Key,_Tp,_Compare,_Alloc>;
- protected :
- _Compare comp;
- value_compare(_Compare __c) : comp(__c) {}
- public:
- bool operator()(const value_type& __x, const value_type& __y) const {
- return comp(__x.first, __y.first);
- }
- };
+ : public binary_function<value_type, value_type, bool>
+ {
+ friend class map<_Key,_Tp,_Compare,_Alloc>;
+ protected:
+ _Compare comp;
+ value_compare(_Compare __c) : comp(__c) {}
+ public:
+ bool operator()(const value_type& __x, const value_type& __y) const
+ { return comp(__x.first, __y.first); }
+ };
private:
+ /// @if maint This turns a red-black tree into a [multi]map. @endif
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
- _Rep_type _M_t; // red-black tree representing map
+ /// @if maint The actual tree structure. @endif
+ _Rep_type _M_t;
+
public:
- typedef typename _Rep_type::pointer pointer;
- typedef typename _Rep_type::const_pointer const_pointer;
- typedef typename _Rep_type::reference reference;
- typedef typename _Rep_type::const_reference const_reference;
- typedef typename _Rep_type::iterator iterator;
- typedef typename _Rep_type::const_iterator const_iterator;
- typedef typename _Rep_type::reverse_iterator reverse_iterator;
- typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
- typedef typename _Rep_type::size_type size_type;
- typedef typename _Rep_type::difference_type difference_type;
- typedef typename _Rep_type::allocator_type allocator_type;
-
- // allocation/deallocation
-
- map() : _M_t(_Compare(), allocator_type()) {}
- explicit map(const _Compare& __comp,
- const allocator_type& __a = allocator_type())
- : _M_t(__comp, __a) {}
-
- template <class _InputIterator>
- map(_InputIterator __first, _InputIterator __last)
+ // many of these are specified differently in ISO, but the following are
+ // "functionally equivalent"
+ typedef typename _Rep_type::allocator_type allocator_type;
+ typedef typename _Rep_type::reference reference;
+ typedef typename _Rep_type::const_reference const_reference;
+ typedef typename _Rep_type::iterator iterator;
+ typedef typename _Rep_type::const_iterator const_iterator;
+ typedef typename _Rep_type::size_type size_type;
+ typedef typename _Rep_type::difference_type difference_type;
+ typedef typename _Rep_type::pointer pointer;
+ typedef typename _Rep_type::const_pointer const_pointer;
+ typedef typename _Rep_type::reverse_iterator reverse_iterator;
+ typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
+
+
+ // [23.3.1.1] construct/copy/destroy
+ // (get_allocator() is normally listed in this section, but seems to have
+ // been accidentally omitted in the printed standard)
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ map() : _M_t(_Compare(), allocator_type()) { }
+
+ // for some reason this was made a separate function
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ explicit
+ map(const _Compare& __comp, const allocator_type& __a = allocator_type())
+ : _M_t(__comp, __a) { }
+
+ /**
+ * @brief Map copy constructor.
+ * @param x A %map of identical element and allocator types.
+ *
+ * The newly-created %map uses a copy of the allocation object used
+ * by @a x.
+ */
+ map(const map& __x)
+ : _M_t(__x._M_t) { }
+
+ /**
+ * @brief Builds a %map from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * Creats a %map consisting of copies of the elements from [first,last).
+ * This is linear in N if the range is already sorted, and NlogN
+ * otherwise (where N is distance(first,last)).
+ */
+ template <typename _InputIterator>
+ map(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
- template <class _InputIterator>
- map(_InputIterator __first, _InputIterator __last, const _Compare& __comp,
- const allocator_type& __a = allocator_type())
- : _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
- map(const map<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
+ /**
+ * @brief Builds a %map from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ * @param comp A comparison functor.
+ * @param a An allocator object.
+ *
+ * Creats a %map consisting of copies of the elements from [first,last).
+ * This is linear in N if the range is already sorted, and NlogN
+ * otherwise (where N is distance(first,last)).
+ */
+ template <typename _InputIterator>
+ map(_InputIterator __first, _InputIterator __last,
+ const _Compare& __comp, const allocator_type& __a = allocator_type())
+ : _M_t(__comp, __a)
+ { _M_t.insert_unique(__first, __last); }
- map<_Key,_Tp,_Compare,_Alloc>&
- operator=(const map<_Key, _Tp, _Compare, _Alloc>& __x)
+ // FIXME There is no dtor declared, but we should have something generated
+ // by Doxygen. I don't know what tags to add to this paragraph to make
+ // that happen:
+ /**
+ * The dtor only erases the elements, and note that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+
+ /**
+ * @brief Map assignment operator.
+ * @param x A %map of identical element and allocator types.
+ *
+ * All the elements of @a x are copied, but unlike the copy constructor, the
+ * allocator object is not copied.
+ */
+ map&
+ operator=(const map& __x)
{
_M_t = __x._M_t;
return *this;
}
- // accessors:
-
- key_compare key_comp() const { return _M_t.key_comp(); }
- value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
- allocator_type get_allocator() const { return _M_t.get_allocator(); }
+ /// Get a copy of the memory allocation object.
+ allocator_type
+ get_allocator() const { return _M_t.get_allocator(); }
+ // iterators
/**
- * Returns a read/write iterator that points to the first pair in the map.
+ * Returns a read/write iterator that points to the first pair in the %map.
* Iteration is done in ascending order according to the keys.
*/
- iterator begin() { return _M_t.begin(); }
+ iterator
+ begin() { return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points to the first pair
- * in the map. Iteration is done in ascending order according to the keys.
+ * in the %map. Iteration is done in ascending order according to the keys.
*/
- const_iterator begin() const { return _M_t.begin(); }
+ const_iterator
+ begin() const { return _M_t.begin(); }
/**
* Returns a read/write iterator that points one past the last pair in the
- * map. Iteration is done in ascending order according to the keys.
+ * %map. Iteration is done in ascending order according to the keys.
*/
- iterator end() { return _M_t.end(); }
+ iterator
+ end() { return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points one past the last
- * pair in the map. Iteration is done in ascending order according to the
+ * pair in the %map. Iteration is done in ascending order according to the
* keys.
*/
- const_iterator end() const { return _M_t.end(); }
+ const_iterator
+ end() const { return _M_t.end(); }
/**
* Returns a read/write reverse iterator that points to the last pair in
- * the map. Iteration is done in descending order according to the keys.
+ * the %map. Iteration is done in descending order according to the keys.
*/
- reverse_iterator rbegin() { return _M_t.rbegin(); }
+ reverse_iterator
+ rbegin() { return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
- * pair in the map. Iteration is done in descending order according to
+ * pair in the %map. Iteration is done in descending order according to
* the keys.
*/
- const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
+ const_reverse_iterator
+ rbegin() const { return _M_t.rbegin(); }
/**
* Returns a read/write reverse iterator that points to one before the
- * first pair in the map. Iteration is done in descending order according
+ * first pair in the %map. Iteration is done in descending order according
* to the keys.
*/
- reverse_iterator rend() { return _M_t.rend(); }
+ reverse_iterator
+ rend() { return _M_t.rend(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
- * before the first pair in the map. Iteration is done in descending order
+ * before the first pair in the %map. Iteration is done in descending order
* according to the keys.
*/
- const_reverse_iterator rend() const { return _M_t.rend(); }
+ const_reverse_iterator
+ rend() const { return _M_t.rend(); }
+
+ // capacity
+ /** Returns true if the %map is empty. (Thus begin() would equal end().) */
+ bool
+ empty() const { return _M_t.empty(); }
+
+ /** Returns the size of the %map. */
+ size_type
+ size() const { return _M_t.size(); }
- /** Returns true if the map is empty. (Thus begin() would equal end().) */
- bool empty() const { return _M_t.empty(); }
- /** Returns the size of the map. */
- size_type size() const { return _M_t.size(); }
- /** Returns the maximum size of the map. */
- size_type max_size() const { return _M_t.max_size(); }
+ /** Returns the maximum size of the %map. */
+ size_type
+ max_size() const { return _M_t.max_size(); }
+ // [23.3.1.2] element access
/**
- * @brief Subscript ( [] ) access to map data.
+ * @brief Subscript ( @c [] ) access to %map data.
* @param k The key for which data should be retrieved.
- *
- * Allows for easy lookup with the subscript ( [] ) operator. Returns the
+ * @return A reference to the data of the (key,data) %pair.
+ *
+ * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
* data associated with the key specified in subscript. If the key does
- * not exist a pair with that key is created with a default value, which
+ * not exist, a pair with that key is created using default values, which
* is then returned.
+ *
+ * Lookup requires logarithmic time.
*/
- _Tp& operator[](const key_type& __k) {
+ mapped_type&
+ operator[](const key_type& __k)
+ {
+ // concept requirements
+ __glibcpp_function_requires(_DefaultConstructibleConcept<mapped_type>)
+
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
- __i = insert(__i, value_type(__k, _Tp()));
+ __i = insert(__i, value_type(__k, mapped_type()));
return (*__i).second;
}
- void swap(map<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
-
- // insert/erase
+ // modifiers
/**
- * @brief Attempts to insert a std::pair into the map.
+ * @brief Attempts to insert a std::pair into the %map.
* @param x Pair to be inserted (see std::make_pair for easy creation of
* pairs).
- * @return A pair of which the first element is an iterator that points
- * to the possibly inserted pair, a second element of type bool
- * to show if the pair was actually inserted.
+ * @return A pair, of which the first element is an iterator that points
+ * to the possibly inserted pair, and the second is a bool that
+ * is true if the pair was actually inserted.
+ *
+ * This function attempts to insert a (key, value) %pair into the %map. A
+ * %map relies on unique keys and thus a %pair is only inserted if its first
+ * element (the key) is not already present in the %map.
*
- * This function attempts to insert a (key, value) pair into the map. A
- * map relies on unique keys and thus a pair is only inserted if its first
- * element (the key) is not already present in the map.
+ * Insertion requires logarithmic time.
*/
- pair<iterator,bool> insert(const value_type& __x)
+ pair<iterator,bool>
+ insert(const value_type& __x)
{ return _M_t.insert_unique(__x); }
/**
- * @brief Attempts to insert a std::pair into the map.
+ * @brief Attempts to insert a std::pair into the %map.
* @param position An iterator that serves as a hint as to where the
* pair should be inserted.
* @param x Pair to be inserted (see std::make_pair for easy creation of
* pairs).
- * @return An iterator that points to the inserted (key,value) pair.
+ * @return An iterator that points to the element with key of @a x (may
+ * or may not be the %pair passed in).
*
- * This function is not concerned about whether the insertion took place
- * or not and thus does not return a boolean like the single-argument
+ * This function is not concerned about whether the insertion took place,
+ * and thus does not return a boolean like the single-argument
* insert() does. Note that the first parameter is only a hint and can
* potentially improve the performance of the insertion process. A bad
* hint would cause no gains in efficiency.
+ *
+ * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
+ * for more on "hinting".
+ *
+ * Insertion requires logarithmic time (if the hint is not taken).
*/
- iterator insert(iterator position, const value_type& __x)
+ iterator
+ insert(iterator position, const value_type& __x)
{ return _M_t.insert_unique(position, __x); }
/**
- * @brief A template function that attemps to insert elements from
- * another range (possibly another map).
+ * @brief A template function that attemps to insert a range of elements.
* @param first Iterator pointing to the start of the range to be inserted.
* @param last Iterator pointing to the end of the range.
+ *
+ * Complexity similar to that of the range constructor.
*/
- template <class _InputIterator>
- void insert(_InputIterator __first, _InputIterator __last) {
- _M_t.insert_unique(__first, __last);
- }
+ template <typename _InputIterator>
+ void
+ insert(_InputIterator __first, _InputIterator __last)
+ { _M_t.insert_unique(__first, __last); }
/**
- * @brief Erases an element from a map.
+ * @brief Erases an element from a %map.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator, from
- * a map. Note that this function only erases the element, and that if
+ * a %map. Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
- void erase(iterator __position) { _M_t.erase(__position); }
+ void
+ erase(iterator __position) { _M_t.erase(__position); }
/**
- * @brief Erases an element according to the provided key.
+ * @brief Erases elements according to the provided key.
* @param x Key of element to be erased.
- * @return Doc me! (Number of elements that match key? Only makes sense
- * with multimap)
+ * @return The number of elements erased.
*
- * This function erases an element, located by the given key, from a map.
+ * This function erases all the elements located by the given key from
+ * a %map.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
- size_type erase(const key_type& __x) { return _M_t.erase(__x); }
+ size_type
+ erase(const key_type& __x) { return _M_t.erase(__x); }
/**
- * @brief Erases a [first,last) range of elements from a map.
+ * @brief Erases a [first,last) range of elements from a %map.
* @param first Iterator pointing to the start of the range to be erased.
* @param last Iterator pointing to the end of the range to be erased.
*
- * This function erases a sequence of elements from a map.
+ * This function erases a sequence of elements from a %map.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
- void erase(iterator __first, iterator __last)
- { _M_t.erase(__first, __last); }
+ void
+ erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
- /** Erases all elements in a map. Note that this function only erases
+ /**
+ * @brief Swaps data with another %map.
+ * @param x A %map of the same element and allocator types.
+ *
+ * This exchanges the elements between two maps in constant time.
+ * (It is only swapping a pointer, an integer, and an instance of
+ * the @c Compare type (which itself is often stateless and empty), so it
+ * should be quite fast.)
+ * Note that the global std::swap() function is specialized such that
+ * std::swap(m1,m2) will feed to this function.
+ */
+ void
+ swap(map& __x) { _M_t.swap(__x._M_t); }
+
+ /**
+ * Erases all elements in a %map. Note that this function only erases
* the elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
- void clear() { _M_t.clear(); }
+ void
+ clear() { _M_t.clear(); }
+
+ // observers
+ /**
+ * Returns the key comparison object out of which the %map was constructed.
+ */
+ key_compare
+ key_comp() const { return _M_t.key_comp(); }
- // map operations:
+ /**
+ * Returns a value comparison object, built from the key comparison
+ * object out of which the %map was constructed.
+ */
+ value_compare
+ value_comp() const { return value_compare(_M_t.key_comp()); }
+ // [23.3.1.3] map operations
/**
- * @brief Tries to locate an element in a map.
- * @param x Key of (key, value) pair to be located.
+ * @brief Tries to locate an element in a %map.
+ * @param x Key of (key, value) %pair to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
- * pointing to the sought after pair. If unsuccessful it returns the
- * one past the end ( end() ) iterator.
+ * pointing to the sought after %pair. If unsuccessful it returns the
+ * past-the-end ( @c end() ) iterator.
*/
- iterator find(const key_type& __x) { return _M_t.find(__x); }
+ iterator
+ find(const key_type& __x) { return _M_t.find(__x); }
/**
- * @brief Tries to locate an element in a map.
- * @param x Key of (key, value) pair to be located.
+ * @brief Tries to locate an element in a %map.
+ * @param x Key of (key, value) %pair to be located.
* @return Read-only (constant) iterator pointing to sought-after
* element, or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns a constant iterator
- * pointing to the sought after pair. If unsuccessful it returns the
- * one past the end ( end() ) iterator.
+ * pointing to the sought after %pair. If unsuccessful it returns the
+ * past-the-end ( @c end() ) iterator.
*/
- const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
+ const_iterator
+ find(const key_type& __x) const { return _M_t.find(__x); }
/**
- * @brief Finds the number of elements with given key.
+ * @brief Finds the number of elements with given key.
* @param x Key of (key, value) pairs to be located.
- * @return Number of elements with specified key.
+ * @return Number of elements with specified key.
*
- * This function only makes sense for multimaps.
+ * This function only makes sense for multimaps; for map the result will
+ * either be 0 (not present) or 1 (present).
*/
- size_type count(const key_type& __x) const {
- return _M_t.find(__x) == _M_t.end() ? 0 : 1;
- }
+ size_type
+ count(const key_type& __x) const
+ { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
/**
* @brief Finds the beginning of a subsequence matching given key.
* @return Iterator pointing to first element matching given key, or
* end() if not found.
*
- * This function is useful only with std::multimap. It returns the first
+ * This function is useful only with multimaps. It returns the first
* element of a subsequence of elements that matches the given key. If
* unsuccessful it returns an iterator pointing to the first element that
* has a greater value than given key or end() if no such element exists.
*/
- iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
+ iterator
+ lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* @return Read-only (constant) iterator pointing to first element
* matching given key, or end() if not found.
*
- * This function is useful only with std::multimap. It returns the first
+ * This function is useful only with multimaps. It returns the first
* element of a subsequence of elements that matches the given key. If
* unsuccessful the iterator will point to the next greatest element or,
* if no such greater element exists, to end().
*/
- const_iterator lower_bound(const key_type& __x) const {
- return _M_t.lower_bound(__x);
- }
+ const_iterator
+ lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
*
* This function only makes sense with multimaps.
*/
- iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
+ iterator
+ upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
*
* This function only makes sense with multimaps.
*/
- const_iterator upper_bound(const key_type& __x) const {
- return _M_t.upper_bound(__x);
- }
+ const_iterator
+ upper_bound(const key_type& __x) const
+ { return _M_t.upper_bound(__x); }
/**
* @brief Finds a subsequence matching given key.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
- * This function improves on lower_bound() and upper_bound() by giving a more
- * elegant and efficient solution. It returns a pair of which the first
+ * This function returns a pair of which the first
* element possibly points to the first element matching the given key
* and the second element possibly points to the last element matching the
* given key. If unsuccessful the first element of the returned pair will
*
* This function only makes sense for multimaps.
*/
- pair<iterator,iterator> equal_range(const key_type& __x) {
- return _M_t.equal_range(__x);
- }
+ pair<iterator,iterator>
+ equal_range(const key_type& __x)
+ { return _M_t.equal_range(__x); }
/**
* @brief Finds a subsequence matching given key.
* @return Pair of read-only (constant) iterators that possibly points to
* the subsequence matching given key.
*
- * This function improves on lower_bound() and upper_bound() by giving a more
- * elegant and efficient solution. It returns a pair of which the first
+ * This function returns a pair of which the first
* element possibly points to the first element matching the given key
* and the second element possibly points to the last element matching the
* given key. If unsuccessful the first element of the returned pair will
*
* This function only makes sense for multimaps.
*/
- pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
- return _M_t.equal_range(__x);
- }
-
- template <class _K1, class _T1, class _C1, class _A1>
- friend bool operator== (const map<_K1, _T1, _C1, _A1>&,
- const map<_K1, _T1, _C1, _A1>&);
- template <class _K1, class _T1, class _C1, class _A1>
- friend bool operator< (const map<_K1, _T1, _C1, _A1>&,
- const map<_K1, _T1, _C1, _A1>&);
+ pair<const_iterator,const_iterator>
+ equal_range(const key_type& __x) const
+ { return _M_t.equal_range(__x); }
+
+ template <typename _K1, typename _T1, typename _C1, typename _A1>
+ friend bool operator== (const map<_K1,_T1,_C1,_A1>&,
+ const map<_K1,_T1,_C1,_A1>&);
+ template <typename _K1, typename _T1, typename _C1, typename _A1>
+ friend bool operator< (const map<_K1,_T1,_C1,_A1>&,
+ const map<_K1,_T1,_C1,_A1>&);
};
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y) {
- return __x._M_t == __y._M_t;
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y) {
- return __x._M_t < __y._M_t;
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y) {
- return !(__x == __y);
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y) {
- return __y < __x;
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y) {
- return !(__y < __x);
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
- const map<_Key,_Tp,_Compare,_Alloc>& __y) {
- return !(__x < __y);
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline void swap(map<_Key,_Tp,_Compare,_Alloc>& __x,
- map<_Key,_Tp,_Compare,_Alloc>& __y) {
- __x.swap(__y);
-}
+
+/**
+ * @brief Map equality comparison.
+ * @param x A %map.
+ * @param y A %map of the same type as @a x.
+ * @return True iff the size and elements of the maps are equal.
+ *
+ * This is an equivalence relation. It is linear in the size of the
+ * maps. Maps are considered equivalent if their sizes are equal,
+ * and if corresponding elements compare equal.
+*/
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __x._M_t == __y._M_t; }
+
+/**
+ * @brief Map ordering relation.
+ * @param x A %map.
+ * @param y A %map of the same type as @a x.
+ * @return True iff @a x is lexographically less than @a y.
+ *
+ * This is a total ordering relation. It is linear in the size of the
+ * maps. The elements must be comparable with @c <.
+ *
+ * See std::lexographical_compare() for how the determination is made.
+*/
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __x._M_t < __y._M_t; }
+
+/// Based on operator==
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__x == __y); }
+
+/// Based on operator<
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __y < __x; }
+
+/// Based on operator<
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__y < __x); }
+
+/// Based on operator<
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
+ const map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__x < __y); }
+
+/// See std::map::swap().
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline void
+ swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
+ { __x.swap(__y); }
} // namespace std
-#endif /* _CPP_BITS_STL_MAP_H */
+#endif /* __GLIBCPP_INTERNAL_MAP_H */
-// Local Variables:
-// mode:C++
-// End:
// Multimap implementation -*- C++ -*-
-// Copyright (C) 2001 Free Software Foundation, Inc.
+// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
#include <bits/concept_check.h>
+// Since this entire file is within namespace std, there's no reason to
+// waste two spaces along the left column. Thus the leading indentation is
+// slightly violated from here on.
namespace std
{
+
// Forward declaration of operators < and ==, needed for friend declaration.
-template <class _Key, class _Tp,
- class _Compare = less<_Key>,
- class _Alloc = allocator<pair<const _Key, _Tp> > >
+
+template <typename _Key, typename _Tp,
+ typename _Compare = less<_Key>,
+ typename _Alloc = allocator<pair<const _Key, _Tp> > >
class multimap;
-template <class _Key, class _Tp, class _Compare, class _Alloc>
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
-template <class _Key, class _Tp, class _Compare, class _Alloc>
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
/**
- * @brief A standard container made up of pairs (see std::pair in <utility>)
- * which can be retrieved based on a key.
+ * @brief A standard container made up of (key,value) pairs, which can be
+ * retrieved based on a key, in logarithmic time.
+ *
+ * @ingroup Containers
+ * @ingroup Assoc_containers
+ *
+ * Meets the requirements of a <a href="tables.html#65">container</a>, a
+ * <a href="tables.html#66">reversible container</a>, and an
+ * <a href="tables.html#69">associative container</a> (using equivalent keys).
+ * For a @c multimap<Key,T> the key_type is Key, the mapped_type is T, and
+ * the value_type is std::pair<const Key,T>.
*
- * This is an associative container. Values contained within it can be
- * quickly retrieved through a key element. In contrast with a map a
- * multimap can have multiple duplicate keys.
+ * Multimaps support bidirectional iterators.
+ *
+ * @if maint
+ * The private tree data is declared exactly the same way for map and
+ * multimap; the distinction is made entirely in how the tree functions are
+ * called (*_unique versus *_equal, same as the standard).
+ * @endif
*/
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-class multimap
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ class multimap
{
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
- __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept);
+ __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
public:
-
-// typedefs:
-
- typedef _Key key_type;
- typedef _Tp data_type;
- typedef _Tp mapped_type;
- typedef pair<const _Key, _Tp> value_type;
- typedef _Compare key_compare;
-
- class value_compare : public binary_function<value_type, value_type, bool> {
- friend class multimap<_Key,_Tp,_Compare,_Alloc>;
- protected:
- _Compare comp;
- value_compare(_Compare __c) : comp(__c) {}
- public:
- bool operator()(const value_type& __x, const value_type& __y) const {
- return comp(__x.first, __y.first);
- }
+ typedef _Key key_type;
+ typedef _Tp mapped_type;
+ typedef pair<const _Key, _Tp> value_type;
+ typedef _Compare key_compare;
+
+ class value_compare
+ : public binary_function<value_type, value_type, bool>
+ {
+ friend class multimap<_Key,_Tp,_Compare,_Alloc>;
+ protected:
+ _Compare comp;
+ value_compare(_Compare __c) : comp(__c) {}
+ public:
+ bool operator()(const value_type& __x, const value_type& __y) const
+ { return comp(__x.first, __y.first); }
};
private:
+ /// @if maint This turns a red-black tree into a [multi]map. @endif
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
- _Rep_type _M_t; // red-black tree representing multimap
-public:
- typedef typename _Rep_type::pointer pointer;
- typedef typename _Rep_type::const_pointer const_pointer;
- typedef typename _Rep_type::reference reference;
- typedef typename _Rep_type::const_reference const_reference;
- typedef typename _Rep_type::iterator iterator;
- typedef typename _Rep_type::const_iterator const_iterator;
- typedef typename _Rep_type::reverse_iterator reverse_iterator;
- typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
- typedef typename _Rep_type::size_type size_type;
- typedef typename _Rep_type::difference_type difference_type;
- typedef typename _Rep_type::allocator_type allocator_type;
-
-// allocation/deallocation
+ /// @if maint The actual tree structure. @endif
+ _Rep_type _M_t;
+public:
+ // many of these are specified differently in ISO, but the following are
+ // "functionally equivalent"
+ typedef typename _Rep_type::allocator_type allocator_type;
+ typedef typename _Rep_type::reference reference;
+ typedef typename _Rep_type::const_reference const_reference;
+ typedef typename _Rep_type::iterator iterator;
+ typedef typename _Rep_type::const_iterator const_iterator;
+ typedef typename _Rep_type::size_type size_type;
+ typedef typename _Rep_type::difference_type difference_type;
+ typedef typename _Rep_type::pointer pointer;
+ typedef typename _Rep_type::const_pointer const_pointer;
+ typedef typename _Rep_type::reverse_iterator reverse_iterator;
+ typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
+
+
+ // [23.3.2] construct/copy/destroy
+ // (get_allocator() is also listed in this section)
+ /**
+ * @brief Default constructor creates no elements.
+ */
multimap() : _M_t(_Compare(), allocator_type()) { }
- explicit multimap(const _Compare& __comp,
- const allocator_type& __a = allocator_type())
+
+ // for some reason this was made a separate function
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ explicit
+ multimap(const _Compare& __comp, const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { }
- template <class _InputIterator>
- multimap(_InputIterator __first, _InputIterator __last)
- : _M_t(_Compare(), allocator_type())
- { _M_t.insert_equal(__first, __last); }
+ /**
+ * @brief %Multimap copy constructor.
+ * @param x A %multimap of identical element and allocator types.
+ *
+ * The newly-created %multimap uses a copy of the allocation object used
+ * by @a x.
+ */
+ multimap(const multimap& __x)
+ : _M_t(__x._M_t) { }
- template <class _InputIterator>
- multimap(_InputIterator __first, _InputIterator __last,
- const _Compare& __comp,
- const allocator_type& __a = allocator_type())
- : _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
- multimap(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { }
+ /**
+ * @brief Builds a %multimap from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * Creats a %multimap consisting of copies of the elements from
+ * [first,last). This is linear in N if the range is already sorted,
+ * and NlogN otherwise (where N is distance(first,last)).
+ */
+ template <typename _InputIterator>
+ multimap(_InputIterator __first, _InputIterator __last)
+ : _M_t(_Compare(), allocator_type())
+ { _M_t.insert_equal(__first, __last); }
- multimap<_Key,_Tp,_Compare,_Alloc>&
- operator=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) {
+ /**
+ * @brief Builds a %multimap from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ * @param comp A comparison functor.
+ * @param a An allocator object.
+ *
+ * Creats a %multimap consisting of copies of the elements from [first,last).
+ * This is linear in N if the range is already sorted, and NlogN
+ * otherwise (where N is distance(first,last)).
+ */
+ template <typename _InputIterator>
+ multimap(_InputIterator __first, _InputIterator __last,
+ const _Compare& __comp,
+ const allocator_type& __a = allocator_type())
+ : _M_t(__comp, __a)
+ { _M_t.insert_equal(__first, __last); }
+
+ // FIXME There is no dtor declared, but we should have something generated
+ // by Doxygen. I don't know what tags to add to this paragraph to make
+ // that happen:
+ /**
+ * The dtor only erases the elements, and note that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+
+ /**
+ * @brief %Multimap assignment operator.
+ * @param x A %multimap of identical element and allocator types.
+ *
+ * All the elements of @a x are copied, but unlike the copy constructor, the
+ * allocator object is not copied.
+ */
+ multimap&
+ operator=(const multimap& __x)
+ {
_M_t = __x._M_t;
- return *this;
+ return *this;
}
- // accessors:
-
- key_compare key_comp() const { return _M_t.key_comp(); }
- value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
- allocator_type get_allocator() const { return _M_t.get_allocator(); }
+ /// Get a copy of the memory allocation object.
+ allocator_type
+ get_allocator() const { return _M_t.get_allocator(); }
+ // iterators
/**
* Returns a read/write iterator that points to the first pair in the
- * multimap. Iteration is done in ascending order according to the keys.
+ * %multimap. Iteration is done in ascending order according to the keys.
*/
- iterator begin() { return _M_t.begin(); }
+ iterator
+ begin() { return _M_t.begin(); }
/**
* Returns a read-only (constant) iterator that points to the first pair
- * in the multimap. Iteration is done in ascending order according to the
+ * in the %multimap. Iteration is done in ascending order according to the
* keys.
*/
- const_iterator begin() const { return _M_t.begin(); }
+ const_iterator
+ begin() const { return _M_t.begin(); }
/**
* Returns a read/write iterator that points one past the last pair in the
- * multimap. Iteration is done in ascending order according to the keys.
+ * %multimap. Iteration is done in ascending order according to the keys.
*/
- iterator end() { return _M_t.end(); }
+ iterator
+ end() { return _M_t.end(); }
/**
* Returns a read-only (constant) iterator that points one past the last
- * pair in the multimap. Iteration is done in ascending order according
+ * pair in the %multimap. Iteration is done in ascending order according
* to the keys.
*/
- const_iterator end() const { return _M_t.end(); }
+ const_iterator
+ end() const { return _M_t.end(); }
/**
* Returns a read/write reverse iterator that points to the last pair in
- * the multimap. Iteration is done in descending order according to the
+ * the %multimap. Iteration is done in descending order according to the
* keys.
*/
- reverse_iterator rbegin() { return _M_t.rbegin(); }
+ reverse_iterator
+ rbegin() { return _M_t.rbegin(); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
- * pair in the multimap. Iteration is done in descending order according
+ * pair in the %multimap. Iteration is done in descending order according
* to the keys.
*/
- const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
+ const_reverse_iterator
+ rbegin() const { return _M_t.rbegin(); }
/**
* Returns a read/write reverse iterator that points to one before the
- * first pair in the multimap. Iteration is done in descending order
+ * first pair in the %multimap. Iteration is done in descending order
* according to the keys.
*/
- reverse_iterator rend() { return _M_t.rend(); }
+ reverse_iterator
+ rend() { return _M_t.rend(); }
/**
* Returns a read-only (constant) reverse iterator that points to one
- * before the first pair in the multimap. Iteration is done in descending
+ * before the first pair in the %multimap. Iteration is done in descending
* order according to the keys.
*/
- const_reverse_iterator rend() const { return _M_t.rend(); }
-
- /** Returns true if the map is empty. (Thus begin() would equal end().) */
- bool empty() const { return _M_t.empty(); }
+ const_reverse_iterator
+ rend() const { return _M_t.rend(); }
- /** Returns the size of the map. */
- size_type size() const { return _M_t.size(); }
+ // capacity
+ /** Returns true if the %multimap is empty. */
+ bool
+ empty() const { return _M_t.empty(); }
- /** Returns the maximum size of the map. */
- size_type max_size() const { return _M_t.max_size(); }
+ /** Returns the size of the %multimap. */
+ size_type
+ size() const { return _M_t.size(); }
- void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
+ /** Returns the maximum size of the %multimap. */
+ size_type
+ max_size() const { return _M_t.max_size(); }
- // insert/erase
+ // modifiers
/**
- * @brief Inserts a std::pair into the multimap.
+ * @brief Inserts a std::pair into the %multimap.
* @param x Pair to be inserted (see std::make_pair for easy creation of
* pairs).
* @return An iterator that points to the inserted (key,value) pair.
*
- * This function inserts a (key, value) pair into the multimap. Contrary
- * to a std::map the multimap does not rely on unique keys and thus a
+ * This function inserts a (key, value) pair into the %multimap. Contrary
+ * to a std::map the %multimap does not rely on unique keys and thus
* multiple pairs with the same key can be inserted.
+ *
+ * Insertion requires logarithmic time.
*/
- iterator insert(const value_type& __x) { return _M_t.insert_equal(__x); }
+ iterator
+ insert(const value_type& __x) { return _M_t.insert_equal(__x); }
/**
- * @brief Inserts a std::pair into the multimap.
+ * @brief Inserts a std::pair into the %multimap.
* @param position An iterator that serves as a hint as to where the
* pair should be inserted.
* @param x Pair to be inserted (see std::make_pair for easy creation of
* pairs).
* @return An iterator that points to the inserted (key,value) pair.
*
- * This function inserts a (key, value) pair into the multimap. Contrary
- * to a std::map the multimap does not rely on unique keys and thus a
+ * This function inserts a (key, value) pair into the %multimap. Contrary
+ * to a std::map the %multimap does not rely on unique keys and thus
* multiple pairs with the same key can be inserted.
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
+ *
+ * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
+ * for more on "hinting".
+ *
+ * Insertion requires logarithmic time (if the hint is not taken).
*/
- iterator insert(iterator __position, const value_type& __x) {
- return _M_t.insert_equal(__position, __x);
- }
+ iterator
+ insert(iterator __position, const value_type& __x)
+ { return _M_t.insert_equal(__position, __x); }
/**
- * @brief A template function that attemps to insert elements from
- * another range (possibly another multimap or standard container).
- * @param first Iterator pointing to the start of the range to be
- * inserted.
- * @param last Iterator pointing to the end of the range to be inserted.
+ * @brief A template function that attemps to insert a range of elements.
+ * @param first Iterator pointing to the start of the range to be inserted.
+ * @param last Iterator pointing to the end of the range.
+ *
+ * Complexity similar to that of the range constructor.
*/
- template <class _InputIterator>
- void insert(_InputIterator __first, _InputIterator __last) {
- _M_t.insert_equal(__first, __last);
- }
+ template <typename _InputIterator>
+ void
+ insert(_InputIterator __first, _InputIterator __last)
+ { _M_t.insert_equal(__first, __last); }
/**
- * @brief Erases an element from a multimap.
+ * @brief Erases an element from a %multimap.
* @param position An iterator pointing to the element to be erased.
*
* This function erases an element, pointed to by the given iterator, from
- * a mutlimap. Note that this function only erases the element, and that
+ * a %multimap. Note that this function only erases the element, and that
* if the element is itself a pointer, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
- void erase(iterator __position) { _M_t.erase(__position); }
+ void
+ erase(iterator __position) { _M_t.erase(__position); }
/**
- * @brief Erases an element according to the provided key.
+ * @brief Erases elements according to the provided key.
* @param x Key of element to be erased.
- * @return Doc me! (Number of elements erased?)
+ * @return The number of elements erased.
*
- * This function erases all elements, located by the given key, from a
- * multimap.
+ * This function erases all elements located by the given key from a
+ * %multimap.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibilty.
*/
- size_type erase(const key_type& __x) { return _M_t.erase(__x); }
+ size_type
+ erase(const key_type& __x) { return _M_t.erase(__x); }
/**
- * @brief Erases a [first,last) range of elements from a multimap.
+ * @brief Erases a [first,last) range of elements from a %multimap.
* @param first Iterator pointing to the start of the range to be erased.
* @param last Iterator pointing to the end of the range to be erased.
*
- * This function erases a sequence of elements from a multimap.
+ * This function erases a sequence of elements from a %multimap.
* Note that this function only erases the elements, and that if
* the elements themselves are pointers, the pointed-to memory is not
* touched in any way. Managing the pointer is the user's responsibilty.
*/
- void erase(iterator __first, iterator __last)
- { _M_t.erase(__first, __last); }
+ void
+ erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
+
+ /**
+ * @brief Swaps data with another %multimap.
+ * @param x A %multimap of the same element and allocator types.
+ *
+ * This exchanges the elements between two multimaps in constant time.
+ * (It is only swapping a pointer, an integer, and an instance of
+ * the @c Compare type (which itself is often stateless and empty), so it
+ * should be quite fast.)
+ * Note that the global std::swap() function is specialized such that
+ * std::swap(m1,m2) will feed to this function.
+ */
+ void
+ swap(multimap& __x) { _M_t.swap(__x._M_t); }
- /** Erases all elements in a multimap. Note that this function only erases
+ /**
+ * Erases all elements in a %multimap. Note that this function only erases
* the elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
- void clear() { _M_t.clear(); }
+ void
+ clear() { _M_t.clear(); }
+
+ // observers
+ /**
+ * Returns the key comparison object out of which the %multimap
+ * was constructed.
+ */
+ key_compare
+ key_comp() const { return _M_t.key_comp(); }
- // multimap operations:
+ /**
+ * Returns a value comparison object, built from the key comparison
+ * object out of which the %multimap was constructed.
+ */
+ value_compare
+ value_comp() const { return value_compare(_M_t.key_comp()); }
+ // multimap operations
/**
- * @brief Tries to locate an element in a multimap.
+ * @brief Tries to locate an element in a %multimap.
* @param x Key of (key, value) pair to be located.
- * @return Iterator pointing to sought-after (first matching?) element,
+ * @return Iterator pointing to sought-after element,
* or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
- * pointing to the sought after pair. If unsuccessful it returns the
- * one past the end ( end() ) iterator.
+ * pointing to the sought after %pair. If unsuccessful it returns the
+ * past-the-end ( @c end() ) iterator.
*/
- iterator find(const key_type& __x) { return _M_t.find(__x); }
+ iterator
+ find(const key_type& __x) { return _M_t.find(__x); }
/**
- * @brief Tries to locate an element in a multimap.
+ * @brief Tries to locate an element in a %multimap.
* @param x Key of (key, value) pair to be located.
- * @return Read-only (constant) iterator pointing to sought-after (first
- * matching?) element, or end() if not found.
+ * @return Read-only (constant) iterator pointing to sought-after
+ * element, or end() if not found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns a constant iterator
- * pointing to the sought after pair. If unsuccessful it returns the
- * one past the end ( end() ) iterator.
+ * pointing to the sought after %pair. If unsuccessful it returns the
+ * past-the-end ( @c end() ) iterator.
*/
- const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
+ const_iterator
+ find(const key_type& __x) const { return _M_t.find(__x); }
/**
* @brief Finds the number of elements with given key.
* @param x Key of (key, value) pairs to be located.
* @return Number of elements with specified key.
*/
- size_type count(const key_type& __x) const { return _M_t.count(__x); }
+ size_type
+ count(const key_type& __x) const { return _M_t.count(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* pointing to the first element that has a greater value than given key
* or end() if no such element exists.
*/
- iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
+ iterator
+ lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
/**
* @brief Finds the beginning of a subsequence matching given key.
* to the next greatest element or, if no such greater element exists, to
* end().
*/
- const_iterator lower_bound(const key_type& __x) const {
- return _M_t.lower_bound(__x);
- }
+ const_iterator
+ lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
* @param x Key of (key, value) pair to be located.
* @return Iterator pointing to last element matching given key.
*/
- iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
+ iterator
+ upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
/**
* @brief Finds the end of a subsequence matching given key.
* @return Read-only (constant) iterator pointing to last element matching
* given key.
*/
- const_iterator upper_bound(const key_type& __x) const {
- return _M_t.upper_bound(__x);
- }
+ const_iterator
+ upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); }
/**
* @brief Finds a subsequence matching given key.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
- * This function improves on lower_bound() and upper_bound() by giving a more
- * elegant and efficient solution. It returns a pair of which the first
+ * This function returns a pair of which the first
* element possibly points to the first element matching the given key
* and the second element possibly points to the last element matching the
* given key. If unsuccessful the first element of the returned pair will
* contain an iterator pointing to the next greatest element or, if no such
* greater element exists, to end().
*/
- pair<iterator,iterator> equal_range(const key_type& __x) {
- return _M_t.equal_range(__x);
- }
+ pair<iterator,iterator>
+ equal_range(const key_type& __x) { return _M_t.equal_range(__x); }
/**
* @brief Finds a subsequence matching given key.
* @return Pair of read-only (constant) iterators that possibly points to
* the subsequence matching given key.
*
- * This function improves on lower_bound() and upper_bound() by giving a more
- * elegant and efficient solution. It returns a pair of which the first
+ * This function returns a pair of which the first
* element possibly points to the first element matching the given key
* and the second element possibly points to the last element matching the
* given key. If unsuccessful the first element of the returned pair will
* contain an iterator pointing to the next greatest element or, if no such
* a greater element exists, to end().
*/
- pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
- return _M_t.equal_range(__x);
- }
-
- template <class _K1, class _T1, class _C1, class _A1>
- friend bool operator== (const multimap<_K1, _T1, _C1, _A1>&,
- const multimap<_K1, _T1, _C1, _A1>&);
- template <class _K1, class _T1, class _C1, class _A1>
- friend bool operator< (const multimap<_K1, _T1, _C1, _A1>&,
- const multimap<_K1, _T1, _C1, _A1>&);
+ pair<const_iterator,const_iterator>
+ equal_range(const key_type& __x) const { return _M_t.equal_range(__x); }
+
+ template <typename _K1, typename _T1, typename _C1, typename _A1>
+ friend bool operator== (const multimap<_K1,_T1,_C1,_A1>&,
+ const multimap<_K1,_T1,_C1,_A1>&);
+ template <typename _K1, typename _T1, typename _C1, typename _A1>
+ friend bool operator< (const multimap<_K1,_T1,_C1,_A1>&,
+ const multimap<_K1,_T1,_C1,_A1>&);
};
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- return __x._M_t == __y._M_t;
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- return __x._M_t < __y._M_t;
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- return !(__x == __y);
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- return __y < __x;
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- return !(__y < __x);
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline bool operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- return !(__x < __y);
-}
-
-template <class _Key, class _Tp, class _Compare, class _Alloc>
-inline void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
- multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
- __x.swap(__y);
-}
+
+/**
+ * @brief Multimap equality comparison.
+ * @param x A %multimap.
+ * @param y A %multimap of the same type as @a x.
+ * @return True iff the size and elements of the maps are equal.
+ *
+ * This is an equivalence relation. It is linear in the size of the
+ * multimaps. Multimaps are considered equivalent if their sizes are equal,
+ * and if corresponding elements compare equal.
+*/
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ {
+ return __x._M_t == __y._M_t;
+ }
+
+/**
+ * @brief Multimap ordering relation.
+ * @param x A %multimap.
+ * @param y A %multimap of the same type as @a x.
+ * @return True iff @a x is lexographically less than @a y.
+ *
+ * This is a total ordering relation. It is linear in the size of the
+ * multimaps. The elements must be comparable with @c <.
+ *
+ * See std::lexographical_compare() for how the determination is made.
+*/
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __x._M_t < __y._M_t; }
+
+/// Based on operator==
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__x == __y); }
+
+/// Based on operator<
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return __y < __x; }
+
+/// Based on operator<
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__y < __x); }
+
+/// Based on operator<
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline bool
+ operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ { return !(__x < __y); }
+
+/// See std::multimap::swap().
+template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
+ inline void
+ swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
+ multimap<_Key,_Tp,_Compare,_Alloc>& __y)
+ { __x.swap(__y); }
} // namespace std
#endif /* __GLIBCPP_INTERNAL_MULTIMAP_H */
-// Local Variables:
-// mode:C++
-// End:
class queue;
template <typename _Tp, typename _Seq>
-inline bool operator==(const queue<_Tp, _Seq>&, const queue<_Tp, _Seq>&);
+inline bool operator==(const queue<_Tp,_Seq>&, const queue<_Tp,_Seq>&);
template <typename _Tp, typename _Seq>
-inline bool operator<(const queue<_Tp, _Seq>&, const queue<_Tp, _Seq>&);
+inline bool operator<(const queue<_Tp,_Seq>&, const queue<_Tp,_Seq>&);
/**
* defining a strict weak ordering.
*
* Members not found in "normal" containers are @c container_type,
- * which is a typedef for the second Sequence parameter, and @c push and
- * @c pop, which are standard %queue/FIFO operations.
+ * which is a typedef for the second Sequence parameter, and @c push,
+ * @c pop, and @c top, which are standard %queue/FIFO operations.
*
* @note No equality/comparison operators are provided for %priority_queue.
*
// Stack implementation -*- C++ -*-
-// Copyright (C) 2001 Free Software Foundation, Inc.
+// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
#include <bits/concept_check.h>
+// Since this entire file is within namespace std, there's no reason to
+// waste two spaces along the left column. Thus the leading indentation is
+// slightly violated from here on.
namespace std
{
// Forward declarations of operators == and <, needed for friend declaration.
-template <class _Tp,
- class _Sequence = deque<_Tp> >
+template <typename _Tp, typename _Sequence = deque<_Tp> >
class stack;
-template <class _Tp, class _Seq>
-bool operator==(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y);
+template <typename _Tp, typename _Seq>
+inline bool operator==(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y);
-template <class _Tp, class _Seq>
-bool operator<(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y);
+template <typename _Tp, typename _Seq>
+inline bool operator<(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y);
-template <class _Tp, class _Sequence>
-class stack
+/**
+ * @brief A standard container giving FILO behavior.
+ *
+ * @ingroup Containers
+ * @ingroup Sequences
+ *
+ * Meets many of the requirements of a <a href="tables.html#65">container</a>,
+ * but does not define anything to do with iterators. Very few of the
+ * other standard container interfaces are defined.
+ *
+ * This is not a true container, but an @e adaptor. It holds another
+ * container, and provides a wrapper interface to that container. The
+ * wrapper is what enforces strict first-in-last-out %stack behavior.
+ *
+ * The second template parameter defines the type of the underlying
+ * sequence/container. It defaults to std::deque, but it can be any type
+ * that supports @c back, @c push_back, and @c pop_front, such as
+ * std::list, std::vector, or an appropriate user-defined type.
+ *
+ * Members not found in "normal" containers are @c container_type,
+ * which is a typedef for the second Sequence parameter, and @c push,
+ * @c pop, and @c top, which are standard %stack/FILO operations.
+*/
+template <typename _Tp, typename _Sequence>
+ class stack
{
// concept requirements
+ typedef typename _Sequence::value_type _Sequence_value_type;
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
__glibcpp_class_requires(_Sequence, _BackInsertionSequenceConcept)
- typedef typename _Sequence::value_type _Sequence_value_type;
- __glibcpp_class_requires2(_Tp, _Sequence_value_type, _SameTypeConcept);
+ __glibcpp_class_requires2(_Tp, _Sequence_value_type, _SameTypeConcept)
- template <class _Tp1, class _Seq1>
+ template <typename _Tp1, typename _Seq1>
friend bool operator== (const stack<_Tp1, _Seq1>&,
const stack<_Tp1, _Seq1>&);
- template <class _Tp1, class _Seq1>
+ template <typename _Tp1, typename _Seq1>
friend bool operator< (const stack<_Tp1, _Seq1>&,
const stack<_Tp1, _Seq1>&);
+
public:
- typedef typename _Sequence::value_type value_type;
- typedef typename _Sequence::size_type size_type;
- typedef _Sequence container_type;
+ typedef typename _Sequence::value_type value_type;
+ typedef typename _Sequence::reference reference;
+ typedef typename _Sequence::const_reference const_reference;
+ typedef typename _Sequence::size_type size_type;
+ typedef _Sequence container_type;
- typedef typename _Sequence::reference reference;
- typedef typename _Sequence::const_reference const_reference;
protected:
+ // See queue::c for notes on this name.
_Sequence c;
+
public:
- stack() : c() {}
- explicit stack(const _Sequence& __s) : c(__s) {}
-
- bool empty() const { return c.empty(); }
- size_type size() const { return c.size(); }
- reference top() { return c.back(); }
- const_reference top() const { return c.back(); }
- void push(const value_type& __x) { c.push_back(__x); }
- void pop() { c.pop_back(); }
+ // XXX removed old def ctor, added def arg to this one to match 14882
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ explicit
+ stack(const _Sequence& __c = _Sequence())
+ : c(__c) {}
+
+ /**
+ * Returns true if the %stack is empty.
+ */
+ bool
+ empty() const { return c.empty(); }
+
+ /** Returns the number of elements in the %stack. */
+ size_type
+ size() const { return c.size(); }
+
+ /**
+ * Returns a read/write reference to the data at the first element of the
+ * %stack.
+ */
+ reference
+ top() { return c.back(); }
+
+ /**
+ * Returns a read-only (constant) reference to the data at the first
+ * element of the %stack.
+ */
+ const_reference
+ top() const { return c.back(); }
+
+ /**
+ * @brief Add data to the top of the %stack.
+ * @param x Data to be added.
+ *
+ * This is a typical %stack operation. The function creates an element at
+ * the top of the %stack and assigns the given data to it.
+ * The time complexity of the operation depends on the underlying
+ * sequence.
+ */
+ void
+ push(const value_type& __x) { c.push_back(__x); }
+
+ /**
+ * @brief Removes first element.
+ *
+ * This is a typical %stack operation. It shrinks the %stack by one.
+ * The time complexity of the operation depends on the underlying
+ * sequence.
+ *
+ * Note that no data is returned, and if the first element's data is
+ * needed, it should be retrieved before pop() is called.
+ */
+ void
+ pop() { c.pop_back(); }
};
-template <class _Tp, class _Seq>
-bool operator==(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
-{
- return __x.c == __y.c;
-}
-template <class _Tp, class _Seq>
-bool operator<(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
-{
- return __x.c < __y.c;
-}
-
-template <class _Tp, class _Seq>
-bool operator!=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
-{
- return !(__x == __y);
-}
-
-template <class _Tp, class _Seq>
-bool operator>(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
-{
- return __y < __x;
-}
-
-template <class _Tp, class _Seq>
-bool operator<=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
-{
- return !(__y < __x);
-}
-
-template <class _Tp, class _Seq>
-bool operator>=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
-{
- return !(__x < __y);
-}
+/**
+ * @brief Stack equality comparison.
+ * @param x A %stack.
+ * @param y A %stack of the same type as @a x.
+ * @return True iff the size and elements of the stacks are equal.
+ *
+ * This is an equivalence relation. Complexity and semantics depend on the
+ * underlying sequence type, but the expected rules are: this relation is
+ * linear in the size of the sequences, and stacks are considered equivalent
+ * if their sequences compare equal.
+*/
+template <typename _Tp, typename _Seq>
+ inline bool
+ operator==(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
+ { return __x.c == __y.c; }
+
+/**
+ * @brief Stack ordering relation.
+ * @param x A %stack.
+ * @param y A %stack of the same type as @a x.
+ * @return True iff @a x is lexographically less than @a y.
+ *
+ * This is an total ordering relation. Complexity and semantics depend on the
+ * underlying sequence type, but the expected rules are: this relation is
+ * linear in the size of the sequences, the elements must be comparable
+ * with @c <, and std::lexographical_compare() is usually used to make the
+ * determination.
+*/
+template <typename _Tp, typename _Seq>
+ inline bool
+ operator<(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
+ { return __x.c < __y.c; }
+
+/// Based on operator==
+template <typename _Tp, typename _Seq>
+ inline bool
+ operator!=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
+ { return !(__x == __y); }
+
+/// Based on operator<
+template <typename _Tp, typename _Seq>
+ inline bool
+ operator>(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
+ { return __y < __x; }
+
+/// Based on operator<
+template <typename _Tp, typename _Seq>
+ inline bool
+ operator<=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
+ { return !(__y < __x); }
+
+/// Based on operator<
+template <typename _Tp, typename _Seq>
+ inline bool
+ operator>=(const stack<_Tp,_Seq>& __x, const stack<_Tp,_Seq>& __y)
+ { return !(__x < __y); }
} // namespace std
#endif /* __GLIBCPP_INTERNAL_STACK_H */
-// Local Variables:
-// mode:C++
-// End: